WorldWideScience

Sample records for atomic radii

  1. Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 1. The Atomic Radii

    Directory of Open Access Journals (Sweden)

    Raka Biswas

    2002-02-01

    Full Text Available Abstract. A set of theoretical atomic radii corresponding to the principal maximum in the radial distribution function, 4πr2R2 for the outermost orbital has been calculated for the ground state of 103 elements of the periodic table using Slater orbitals. The set of theoretical radii are found to reproduce the periodic law and the Lother Meyer’s atomic volume curve and reproduce the expected vertical and horizontal trend of variation in atomic size in the periodic table. The d-block and f-block contractions are distinct in the calculated sizes. The computed sizes qualitatively correlate with the absolute size dependent properties like ionization potentials and electronegativity of elements. The radii are used to calculate a number of size dependent periodic physical properties of isolated atoms viz., the diamagnetic part of the atomic susceptibility, atomic polarizability and the chemical hardness. The calculated global hardness and atomic polarizability of a number of atoms are found to be close to the available experimental values and the profiles of the physical properties computed in terms of the theoretical atomic radii exhibit their inherent periodicity. A simple method of computing the absolute size of atoms has been explored and a large body of known material has been brought together to reveal how many different properties correlate with atomic size.

  2. Relativistic calculations of screening parameters and atomic radii of neutral atoms

    Science.gov (United States)

    Guerra, M.; Amaro, P.; Santos, J. P.; Indelicato, P.

    2017-09-01

    Calculations of the effective nuclear charge for elements with 1 ≤ Z ≤ 118 have been performed in a Dirac-Fock approach including all relativistic effects as well as contributions from quantum electrodynamics. Maximum charge density for every subshell of every element in the periodic table was also computed in the same framework as well as atomic radii based on the total charge density. Results were compared with the extensively cited works of Clementi et al., obtained in the 1960s with Roothan's self-consistent-field method.

  3. Consistent van der Waals radii for the whole main group.

    Science.gov (United States)

    Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G

    2009-05-14

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.

  4. The features of the atomic structure of the impurities complexes in the irradiated materials doped by the elements with a large atomic radii

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Sleptsov, A.N.; Marchenko, I.G.; Sleptsov, S.N.

    1995-01-01

    The interaction between impurity atoms and radiation-induced defects in Ni(Sc), Ni(Ti), Ni(Pr) and Ni(Y) alloys irradiated with 5 and 30 MeV electrons were studied by the residual resistivity measurements, and the methods of reciprocal damage rate and positron annihilation. The activation energies of the main recovery stages in pure nickel (I D+E - 54 K, II 4 -250 K, III 2 - 390 K) and dilute alloys (up to 700 K) were determined. The radii trapping, r t , of self-interstitial atoms (SIA) by the Sc and Ti atoms were calculated in the temperature range 45-300 K.It is found that the scandium atoms (among all large atomic size elements) are effective traps for SIA and vacancies and form compound complexes. The binding energy of vacancy-impurity complexes are about 0.25, 0.30 and 0.6 - 0.8 eV in Ni(Ti), Ni(Y) and Ni(Sc) alloys, respectively. The solubilities of Sc, Ti, Y and Pr in nickel were deduced from the analysis of dependence of the specific residual resistivity (ρ t ) and the lattice parameter (Δa/a) on concentration. 38 refs., 3 tab., 10 figs

  5. Nuclear moments and isotopic variation of the mean square charge radii of strontium nuclei by atomic beam laser spectroscopy

    International Nuclear Information System (INIS)

    Chongkum, S.

    1987-10-01

    Hyperfine structure and optical isotope shift measurements have been performed on a series of stable and radioactive strontium isotopes (A = 80 to 90), including two isomers 85m and 87m. The spectroscopy applied continuous wave dye laser induced fluorescence of free atoms at λ=293.2 nm in a well collimated atomic beam. The 293.2 nm ultraviolet light was generated by frequency doubling the output of a dye laser in either a temperature tuned Ammonium Dihydrogen Arsenate (ADA) crystal or an angle tuned Lithium Iodate crystal. A special radio frequency (rf) technique was used to tune the dye laser frequency with long term stability. Radioactive Sr isotopes were produced either by neutron capture of stable strontium or by (α,xn) reactions from krypton gas. The samples were purified by an electromagnetic mass separator and their sizes were of order 100 pg, which corresponds to 10 11 atoms. The observed results of the hyperfine structure components are evaluated in terms of nuclear magnetic dipole moments and electric quadrupole moments. Changes in mean square charge radii of strontium nuclei which were extracted from the isotope shift measurements, exhibit a distinct shell effect at the neutron magic number N=50. The experimental data are analysed and compared with some theoretical nuclear model predictions. The strong increase of the nuclear charge radii with decreasing neutron number of isotopes below N=50 is in agreement with the variation of the mean square deformation extracted from measured B(E2) values. (orig.) [de

  6. Investigation of the Effects of Expectation Values for Radii on the ...

    Indian Academy of Sciences (India)

    mation (NCA) wave functions to calculate expectation values of radii. The transition probability ... 1. Introduction. The optical properties of carbon, nitrogen and oxygen atoms are important in both atmospheric and ...... Zheng, N. W. 1988a, A new outline of atomic theory (Jiang Su Education Press). Zheng, N. W. 1988b, Chin.

  7. A differential equation for the Generalized Born radii.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2013-06-28

    The Generalized Born (GB) model offers a convenient way of representing electrostatics in complex macromolecules like proteins or nucleic acids. The computation of atomic GB radii is currently performed by different non-local approaches involving volume or surface integrals. Here we obtain a non-linear second-order partial differential equation for the Generalized Born radius, which may be solved using local iterative algorithms. The equation is derived under the assumption that the usual GB approximation to the reaction field obeys Laplace's equation. The equation admits as particular solutions the correct GB radii for the sphere and the plane. The tests performed on a set of 55 different proteins show an overall agreement with other reference GB models and "perfect" Poisson-Boltzmann based values.

  8. Charge radii and electromagnetic moments of At-211195

    Science.gov (United States)

    Cubiss, J. G.; Barzakh, A. E.; Seliverstov, M. D.; Andreyev, A. N.; Andel, B.; Antalic, S.; Ascher, P.; Atanasov, D.; Beck, D.; Bieroń, J.; Blaum, K.; Borgmann, Ch.; Breitenfeldt, M.; Capponi, L.; Cocolios, T. E.; Day Goodacre, T.; Derkx, X.; De Witte, H.; Elseviers, J.; Fedorov, D. V.; Fedosseev, V. N.; Fritzsche, S.; Gaffney, L. P.; George, S.; Ghys, L.; Heßberger, F. P.; Huyse, M.; Imai, N.; Kalaninová, Z.; Kisler, D.; Köster, U.; Kowalska, M.; Kreim, S.; Lane, J. F. W.; Liberati, V.; Lunney, D.; Lynch, K. M.; Manea, V.; Marsh, B. A.; Mitsuoka, S.; Molkanov, P. L.; Nagame, Y.; Neidherr, D.; Nishio, K.; Ota, S.; Pauwels, D.; Popescu, L.; Radulov, D.; Rapisarda, E.; Revill, J. P.; Rosenbusch, M.; Rossel, R. E.; Rothe, S.; Sandhu, K.; Schweikhard, L.; Sels, S.; Truesdale, V. L.; Van Beveren, C.; Van den Bergh, P.; Wakabayashi, Y.; Van Duppen, P.; Wendt, K. D. A.; Wienholtz, F.; Whitmore, B. W.; Wilson, G. L.; Wolf, R. N.; Zuber, K.

    2018-05-01

    Hyperfine-structure parameters and isotope shifts of At-211195 have been measured for the first time at CERN-ISOLDE, using the in-source resonance-ionization spectroscopy method. The hyperfine structures of isotopes were recorded using a triad of experimental techniques for monitoring the photo-ion current. The Multi-Reflection Time-of-Flight Mass Spectrometer, in connection with a high-resolution electron multiplier, was used as an ion-counting setup for isotopes that either were affected by strong isobaric contamination or possessed a long half-life; the ISOLDE Faraday cups were used for cases with high-intensity beams; and the Windmill decay station was used for short-lived, predominantly α -decaying nuclei. The electromagnetic moments and changes in the mean-square charge radii of the astatine nuclei have been extracted from the measured hyperfine-structure constants and isotope shifts. This was only made possible by dedicated state-of-the-art large-scale atomic computations of the electronic factors and the specific mass shift of atomic transitions in astatine that are needed for these extractions. By comparison with systematics, it was possible to assess the reliability of the results of these calculations and their ascribed uncertainties. A strong deviation in the ground-state mean-square charge radii of the lightest astatine isotopes, from the trend of the (spherical) lead isotopes, is interpreted as the result of an onset of deformation. This behavior bears a resemblance to the deviation observed in the isotonic polonium isotopes. Cases for shape coexistence have been identified in At,199197, for which a significant difference in the charge radii for ground (9 /2- ) and isomeric (1 /2+ ) states has been observed.

  9. Cepheid radii and effective temperatures

    International Nuclear Information System (INIS)

    Fernley, J.A.; Skillen, I.; Jameson, R.F.

    1989-01-01

    New infrared photometry for the Cepheid variables T Vul, δ Cephei and XCyg is presented. Combining this with published infrared photometry of T Vul, ηAql, S Sge and XCyg and published optical photometry we use the infrared flux method to determine effective temperatures and angular radii at all phases of the pulsation cycle. These angular radii combined with published radial velocity curves then give the radii of the stars. Knowing the radii and effective temperatures we obtain the absolute magnitudes. (author)

  10. Moments and mean square charge radii of short-lived argon isotopes

    CERN Document Server

    Klein, A; Georg, U; Keim, M; Lievens, P; Neugart, R; Neuroth, M; Silverans, R E; Vermeeren, L

    1996-01-01

    We report on the measurement of optical isotope shifts for $^{32-40}$Ar and for $^{46}$Ar from which the changes in mean square nuclear charge radii across the N = 20 neutron shell closure are deducted. The investigations were carried out by collinear laser spectroscopy in fast beams of neutral argon atoms. The ultra-sensitive detection combines optical pumping, state-selective collisional ionization and counting of $\\beta$-radioactivity. By reaching far into the sd-shell, the results add new information to the systematics of radii in the calcium region (Z $\\approx$ 20). Contrary to all major neutron shell closures with N $\\geq$ 28, the N = 20 shell closure causes no significant slope change in the development of the radii. Information from the hyperfine structure of the odd-A isotopes includes includes the magnetic moments of $^{33}$Ar (I=1/2) and $^{39}$Ar (I=7/2), and the quadrupole moments of $^{35}$Ar, $^{37}$Ar (I=3/2) and $^{39}$Ar. The electromagnetic moments are compared to shell-model predictions fo...

  11. Unexpectedly large charge radii of neutron-rich calcium isotopes

    CERN Document Server

    Garcia Ruiz, R F; Blaum, K; Ekström, A; Frömmgen, N; Hagen, G; Hammen, M; Hebeler, K; Holt, J D; Jansen, G R; Kowalska, M; Kreim, K; Nazarewicz, W; Neugart, R; Neyens, G; Nörtershäuser, W; Papenbrock, T; Papuga, J; Schwenk, A; Simonis, J; Wendt, K A; Yordanov, D T

    2016-01-01

    Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-...

  12. Radii of radioactive nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Plagnol, E.; Schutz, Y.

    1989-11-01

    A new simple direct method for the measurement of the total reaction cross section (σ R ) for several light radioactive nuclei (A≤40) is developed. From that, the reduced strong absorption radii (r o 2 ) are obtained. A comparison is made with data obtained by other techniques. A strong isospin dependence of the nuclear radii is observed. (L.C.) [pt

  13. Radii of nuclei off stability

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo

    1982-01-01

    An experiment is proposed to determine systematically the radii of the nuclei produced through the projectile fragmentation process in high energy heavy-ion collision. The measurement of total reaction cross section using the projectile fragments of a single nuclide on a target give information about nuclear radii. The production cross section of the fragments is appreciable for many nuclides. Therefore, it is possible to map systematically the reaction radii of the nuclei which can be produced as the projectile fragments. In an experiment using the projectile fragments as the incident beam, the cross section can be expressed as a function of the radii of a projectile and a target. An experiment with He-8 produced by the fragmentation of C-12 is proposed. The He-8 has four neutrons in the p-3/2 orbit outside the He-4 core. Proton and neutron distributions for He isotopes were calculated on the basis of the Hartree-Fock method. The information related to this kind of distribution can be obtained by the proposed experiment. The nuclear structure effect is seen in the nuclear radii of other unstable nuclei. The experimental examples of the isotope shift measurement and the excitation energy are presented. (Kato, T.)

  14. X-ray core states, atomic size and Moseley's law

    International Nuclear Information System (INIS)

    Smith, D.Y.; Karstens, William

    2000-01-01

    Vinti's dipolar sum-rule for the spatial extent of quantum states was tested on atomic K-shell and ns valence states. Agreement between radii derived from absorption spectra and from atomic-structure calculations is excellent, provided Pauli-principle-prohibited transitions are accounted for. These many-electron corrections to the single-electron sum-rule contributed less than 20% to the radii, which supports application of single-electron rules to electron-excess defects as a first approximation. We found the oscillator strength for K-shell excitations decreases rapidly with atomic number because of strength transfer to higher-lying p states. Hence, K-shell contributions to radiation damage decrease with increasing atomic number. A new interpretation of Moseley's law for the X-ray K edge in terms of K-shell radii is described

  15. Empirical atom model of Vegard's law

    International Nuclear Information System (INIS)

    Zhang, Lei; Li, Shichun

    2014-01-01

    Vegard's law seldom holds true for most binary continuous solid solutions. When two components form a solid solution, the atom radii of component elements will change to satisfy the continuity requirement of electron density at the interface between component atom A and atom B so that the atom with larger electron density will expand and the atom with the smaller one will contract. If the expansion and contraction of the atomic radii of A and B respectively are equal in magnitude, Vegard's law will hold true. However, the expansion and contraction of two component atoms are not equal in most situations. The magnitude of the variation will depend on the cohesive energy of corresponding element crystals. An empirical atom model of Vegard's law has been proposed to account for signs of deviations according to the electron density at Wigner–Seitz cell from Thomas–Fermi–Dirac–Cheng model

  16. Empirical atom model of Vegard's law

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei, E-mail: zhleile2002@163.com [Materials Department, College of Electromechanical Engineering, China University of Petroleum, Qingdao 266555 (China); School of Electromechanical Automobile Engineering, Yantai University, Yantai 264005 (China); Li, Shichun [Materials Department, College of Electromechanical Engineering, China University of Petroleum, Qingdao 266555 (China)

    2014-02-01

    Vegard's law seldom holds true for most binary continuous solid solutions. When two components form a solid solution, the atom radii of component elements will change to satisfy the continuity requirement of electron density at the interface between component atom A and atom B so that the atom with larger electron density will expand and the atom with the smaller one will contract. If the expansion and contraction of the atomic radii of A and B respectively are equal in magnitude, Vegard's law will hold true. However, the expansion and contraction of two component atoms are not equal in most situations. The magnitude of the variation will depend on the cohesive energy of corresponding element crystals. An empirical atom model of Vegard's law has been proposed to account for signs of deviations according to the electron density at Wigner–Seitz cell from Thomas–Fermi–Dirac–Cheng model.

  17. Charge radii and moments of tin nuclei by laser spectroscopy

    International Nuclear Information System (INIS)

    Anselment, M.; Bekk, K.; Hanser, A.; Hoeffgen, H.; Meisel, G.; Goering, S.; Rebel, H.; Schatz, G.

    1986-04-01

    The isotope shift and hyperfine structure of the optical Sn I resonance transition 5p 2 3 P 0 ->5p6s 3 P 1 at lambda=286.3 nm have been studied for 18 Sn nuclei including 2 isomers. Laser induced resonance fluorescence from a collimated atomic beam of tin was observed using a tunable cw dye laser with frequency doubler. The electromagnetic nuclear moments and changes of the mean square charge radii of the nuclear charge distributions were determined. The results are discussed with respect to the information they provide on the nuclear structure of the nuclei investigated; they are compared with various theoretical models. (orig.) [de

  18. Using Balls of Different Sports To Model the Variation of Atomic Sizes

    Science.gov (United States)

    Pinto, Gabriel

    1998-06-01

    In this article, an analogy is described about the order of magnitude of the variation of atomic sizes that can be used for discussion in introductory chemistry classes. The order of magnitude of this variation, involving microscopic magnitudes, is difficult for students to imagine. For the most part, the students are very familiar with the world of sports. In any case for example, the teacher can make use of the wide, informative coverage given to the olympic games or similar events, where different sports are televised in a few days. The radii of official balls for seven well-known sports are given, and students must assign an atom to each ball by using tabulated single-bond, covalent radii and by assigning the smallest ball (i.e., corresponding to ping-pong) to the smallest atom (i.e., hydrogen). The balls can also be used to show how the ionic radii change upon ionization.

  19. Diquark correlations from nucleon charge radii

    International Nuclear Information System (INIS)

    Carlson, Carl E.; Carone, Christopher D.; Kwee, Herry J.; Lebed, Richard F.

    2006-01-01

    We argue that precise measurements of charge and magnetic radii can meaningfully constrain diquark models of the nucleon. We construct properly symmetrized, nonrelativistic three-quark wave functions that interpolate between the limits of a pointlike diquark pair and no diquark correlation. We find that good fits to the data can be obtained for a wide range of diquark sizes, provided that the diquark wave functions are close to those that reduce to a purely scalar state in the pointlike limit. A modest improvement in the experimental uncertainties will render a fit to the charge radii a more telling diagnostic for the presence of spatially correlated quark pairs within the nucleon

  20. Radii of Redox Components from Absolute Redox Potentials Compared with Covalent and Aqueous Ionic Radii

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2010-01-01

    Roč. 22, č. 9 (2010), s. 903-907 ISSN 1040-0397 Institutional support: RVO:68081707 Keywords : Electrochemistry * Absolute redox potentials * Radii of redox components Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  1. Spins, moments and radii of Cd isotopes

    International Nuclear Information System (INIS)

    Hammen, Michael

    2013-01-01

    The complex nature of the nucleon-nucleon interaction and the wide range of systems covered by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear structure. Among the most prominent ones is the occurence of shell closures at so-called ''magic numbers'', which are explained by the nuclear shell model. Although the shell model already is on duty for several decades, it is still constantly extended and improved. For this process of extension, fine adjustment and verification, it is important to have experimental data of nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the motivation for the work performed in this thesis: the measurement and analysis of nuclear ground state properties of the isotopic chain of 100-130 Cd by collinear laser spectroscopy. The experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cadmium from A = 106 to A = 126 and extends the measured isotopes to even more exotic species. The required gain in sensitivity is mainly achieved by using a radiofrequency cooler and buncher for background reduction and by using the strong 5s 2 S 1/2 →5p 2 P 3/2 transition in singly ionized Cd. The latter requires a continuous wave laser system with a wavelength of 214.6 nm, which has been developed during this thesis. Fourth harmonic generation of an infrared titanium sapphire laser is achieved by two subsequent cavity-enhanced second harmonic generations, leading to the production of deep-UV laser light up to about 100 mW. The acquired data of the Z=48 Cd isotopes, having one proton pair less than the Z=50 shell closure at tin, covers the isotopes from N=52 up to N=82 and therefore almost the complete region between the neutron shell closures N=50 and N=82. The isotope shifts and the hyperfine structures of these isotopes have been recorded and the magnetic dipole moments

  2. Spins, moments and radii of Cd isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hammen, Michael

    2013-10-30

    The complex nature of the nucleon-nucleon interaction and the wide range of systems covered by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear structure. Among the most prominent ones is the occurence of shell closures at so-called ''magic numbers'', which are explained by the nuclear shell model. Although the shell model already is on duty for several decades, it is still constantly extended and improved. For this process of extension, fine adjustment and verification, it is important to have experimental data of nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the motivation for the work performed in this thesis: the measurement and analysis of nuclear ground state properties of the isotopic chain of {sup 100-130}Cd by collinear laser spectroscopy. The experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cadmium from A = 106 to A = 126 and extends the measured isotopes to even more exotic species. The required gain in sensitivity is mainly achieved by using a radiofrequency cooler and buncher for background reduction and by using the strong 5s {sup 2}S{sub 1/2}→5p{sup 2}P{sub 3/2} transition in singly ionized Cd. The latter requires a continuous wave laser system with a wavelength of 214.6 nm, which has been developed during this thesis. Fourth harmonic generation of an infrared titanium sapphire laser is achieved by two subsequent cavity-enhanced second harmonic generations, leading to the production of deep-UV laser light up to about 100 mW. The acquired data of the Z=48 Cd isotopes, having one proton pair less than the Z=50 shell closure at tin, covers the isotopes from N=52 up to N=82 and therefore almost the complete region between the neutron shell closures N=50 and N=82. The isotope shifts and the hyperfine structures of these isotopes have been

  3. Interaction cross-sections and matter radii of A = 20 isobars

    International Nuclear Information System (INIS)

    Chulkov, L.; Bochkarev, O.; Geissel, H.; Golovkov, M.; Janas, Z.; Keller, H.; Kobayashi, T.; Muenzenberg, G.; Nickel, F.; Ogloblin, A.; Patra, S.; Piechaczek, A.; Roeckl, E.; Schwab, W.; Suemmerer, K.; Suzuki, T.; Tanihata, I.; Yoshida, K.

    1995-11-01

    High-energy interaction cross-sections of A=20 nuclei ( 20 N, 20 O, 20 F, 20 Ne, 20 Na, 20 Mg) on carbon were measured with accuracies of ∼1%. The nuclear matter rms radii derived from the measured cross-sections show an irregular dependence on isospin projection. The largest difference in radii, which amounts to approximately 0.2 fm, has been obtained for the mirror nuclei 20 O and 20 Mg. The influenc of nuclear deformation and binding energy on the radii is discussed. By evaluating the difference in rms radii of neutron and proton distributions, evidence has been found for the existence of a proton skin for 20 Mg and of a neutron skin for 20 N. (orig.)

  4. Table of nuclear root mean square charge radii. Summary

    International Nuclear Information System (INIS)

    Paviotti-Corcuera, R.; McLaughlin, P.K.

    1999-01-01

    This document describes a table of nuclear root-mean-square (rms) charge radii evaluated by two different procedures. The data are available from the IAEA Nuclear Data Section via INTERNET or on PC diskettes upon request. This document supersedes the previous IAEA-NDS-163, 1990, 'Nuclear Charge Radii'. (author)

  5. Roles of dynamical symmetry breaking in driving oblate-prolate transitions of atomic clusters

    International Nuclear Information System (INIS)

    Oka, Yurie; Yanao, Tomohiro; Koon, Wang Sang

    2015-01-01

    This paper explores the driving mechanisms for structural transitions of atomic clusters between oblate and prolate isomers. We employ the hyperspherical coordinates to investigate structural dynamics of a seven-atom cluster at a coarse-grained level in terms of the dynamics of three gyration radii and three principal axes, which characterize overall mass distributions of the cluster. Dynamics of gyration radii is governed by two kinds of forces. One is the potential force originating from the interactions between atoms. The other is the dynamical forces called the internal centrifugal forces, which originate from twisting and shearing motions of the system. The internal centrifugal force arising from twisting motions has an effect of breaking the symmetry between two gyration radii. As a result, in an oblate isomer, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two largest gyration radii is crucial in triggering structural transitions into prolate isomers. In a prolate isomer, on the other hand, activation of the internal centrifugal force that has the effect of breaking the symmetry between the two smallest gyration radii is crucial in triggering structural transitions into oblate isomers. Activation of a twisting motion that switches the movement patterns of three principal axes is also important for the onset of structural transitions between oblate and prolate isomers. Based on these trigger mechanisms, we finally show that selective activations of specific gyration radii and twisting motions, depending on the isomer of the cluster, can effectively induce structural transitions of the cluster. The results presented here could provide further insights into the control of molecular reactions

  6. Statistical radii associated with amino acids to determine the contact map: fixing the structure of a type I cohesin domain in the Clostridium thermocellum cellulosome

    Science.gov (United States)

    Chwastyk, Mateusz; Poma Bernaola, Adolfo; Cieplak, Marek

    2015-07-01

    We propose to improve and simplify protein refinement procedures through consideration of which pairs of amino acid residues should form native contacts. We first consider 11 330 proteins from the CATH database to determine statistical distributions of contacts associated with a given type of amino acid. The distributions are set across the distances between the α-C atoms that are in contact. Based on this data, we determine typical radii of effective spheres that can be placed on the α-C atoms in order to reconstruct the distribution of the contact lengths. This is done by checking for overlaps with enlarged van der Waals spheres associated with heavy atoms on other amino acids. The resulting contacts can be used to identify non-native contacts that may arise during the time evolution of structure-based models. Here, the radii are used to guide reconstruction of nine missing side chains in a type I cohesin domain with the Protein Data Bank code 1AOH. We first identify the likely missing contacts and then sculpt the corresponding side chains by standard refinement tools to achieve consistency with the expected contact map. One ambiguity in refinement is resolved by determining all-atom conformational energies.

  7. The Observational and Theoretical Tidal Radii of Globular Clusters in M87

    Science.gov (United States)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  8. THE OBSERVATIONAL AND THEORETICAL TIDAL RADII OF GLOBULAR CLUSTERS IN M87

    International Nuclear Information System (INIS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-01-01

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R gc < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  9. Small radii of neutron stars as an indication of novel in-medium effects

    International Nuclear Information System (INIS)

    Jiang, Wei-Zhou; Li, Bao-An; Fattoyev, F.J.

    2015-01-01

    At present, neutron star radii from both observations and model predictions remain very uncertain. Whereas different models can predict a wide range of neutron star radii, it is not possible for most models to predict radii that are smaller than about 10 km, thus if such small radii are established in the future they will be very difficult to reconcile with model estimates. By invoking a new term in the equation of state that enhances the energy density, but leaves the pressure unchanged we simulate the current uncertainty in the neutron star radii. This new term can be possibly due to the exchange of the weakly interacting light U-boson with appropriate in-medium parameters, which does not compromise the success of the conventional nuclear models. The validity of this new scheme will be tested eventually by more precise measurements of neutron star radii. (orig.)

  10. Progress in Visualizing Atomic Size Effects with DFT-Chemical Pressure Analysis: From Isolated Atoms to Trends in AB5 Intermetallics.

    Science.gov (United States)

    Berns, Veronica M; Engelkemier, Joshua; Guo, Yiming; Kilduff, Brandon J; Fredrickson, Daniel C

    2014-08-12

    The notion of atomic size poses an important challenge to chemical theory: empirical evidence has long established that atoms have spatial requirements, which are summarized in tables of covalent, ionic, metallic, and van der Waals radii. Considerations based on these radii play a central role in the design and interpretation of experiments, but few methods are available to directly support arguments based on atomic size using electronic structure methods. Recently, we described an approach to elucidating atomic size effects using theoretical calculations: the DFT-Chemical Pressure analysis, which visualizes the local pressures arising in crystal structures from the interactions of atomic size and electronic effects. Using this approach, a variety of structural phenomena in intermetallic phases have already been understood in terms that provide guidance to new synthetic experiments. However, the applicability of the DFT-CP method to the broad range of the structures encountered in the solid state is limited by two issues: (1) the difficulty of interpreting the intense pressure features that appear in atomic core regions and (2) the need to divide space among pairs of interacting atoms in a meaningful way. In this article, we describe general solutions to these issues. In addressing the first issue, we explore the CP analysis of a test case in which no core pressures would be expected to arise: isolated atoms in large boxes. Our calculations reveal that intense core pressures do indeed arise in these virtually pressure-less model systems and allow us to trace the issue to the shifts in the voxel positions relative to atomic centers upon expanding and contracting the unit cell. A compensatory grid unwarping procedure is introduced to remedy this artifact. The second issue revolves around the difficulty of interpreting the pressure map in terms of interatomic interactions in a way that respects the size differences of the atoms and avoids artificial geometrical

  11. The production and investigation of cold antihydrogen atoms

    International Nuclear Information System (INIS)

    Pittner, H.

    2005-04-01

    This work reports on experiments in which antihydrogen atoms have been produced in cryogenic Penning traps from antiproton and positron plasmas by two different methods and on experiments that have been carried out subsequently in order to investigate the antihydrogen atoms. By the first method antihydrogen atoms have been formed during the process of positron cooling of antiprotons in so called nested Penning traps and detected via a field ionization method. A measurement of the state distribution has revealed that the antihydrogen atoms are formed in highly excited states. This suggests along with the high production rate that the antihydrogen atoms are formed by three-body recombination processes and subsequent collisional deexcitations. However current theory cannot yet account for the measured state distribution. Typical radii of the detected antihydrogen atoms lie in the range between 0.4 μm and 0.15 μm. The deepest bound antihydrogen atoms have radii below 0.1 μm.The kinetic energy of the weakest bound antihydrogen atoms has been measured to about 200 meV. By the second method antihydrogen atoms have been synthesized in charge-exchange processes. Lasers are used to produce a Rydberg cesium beam within the cryogenic Penning trap that collides with trapped positrons so that Rydberg positronium atoms are formed via charge-exchange reactions. The Rydberg positronium atoms that collide with nearby stored antiprotons form antihydrogen atoms in charge-exchange reactions. So far, 14±4 antihydrogen atoms have been detected background-free via a field-ionization method. The antihydrogen atoms produced via the two-step charge-exchange mechanism are expected to have a temperature of 4.2 K, the temperature of the antiprotons from which they are formed

  12. Anomalous atomic volume of alpha-Pu

    DEFF Research Database (Denmark)

    Kollar, J.; Vitos, Levente; Skriver, Hans Lomholt

    1997-01-01

    We have performed full charge-density calculations for the equilibrium atomic volumes of the alpha-phase light actinide metals using the local density approximation (LDA) and the generalized gradient approximation (GGA). The average deviation between the experimental and the GGA atomic radii is 1.......3%. The comparison between the LDA and GGA results show that the anomalously large atomic volume of alpha-Pu relative to alpha-Np can be ascribed to exchange-correlation effects connected with the presence of low coordinated sites in the structure where the f electrons are close to the onset of localization...

  13. The measurement of dynamic radii for passenger car tyre

    Science.gov (United States)

    Anghelache, G.; Moisescu, R.

    2017-10-01

    The tyre dynamic rolling radius is an extremely important parameter for vehicle dynamics, for operation of safety systems as ESP, ABS, TCS, etc., for road vehicle research and development, as well as for validation or as an input parameter of automotive simulations and models. The paper investigates the dynamic rolling radii of passenger car tyre and the influence of rolling speed and inflation pressure on their magnitude. The measurement of dynamic rolling radii has been performed on a chassis dynamometer test rig. The dynamic rolling radii have been measured indirectly, using longitudinal rolling speed and angular velocity of wheel. Due to the subtle effects that the parameters have on rolling radius magnitude, very accurate equipment has to be used. Two different methods have been chosen for measuring the wheel angular velocity: the stroboscopic lamp and the incremental rotary encoder. The paper shows that the stroboscopic lamp has an insufficient resolution, therefore it was no longer used for experimental investigation. The tyre dynamic rolling radii increase with rolling speed and with tyre inflation pressure, but the effect of pressure is more significant. The paper also makes considerations on the viability of simplified formulae from literature for calculating the tyre dynamic rolling radius.

  14. Testing asteroseismic radii of dwarfs and subgiants with Kepler and Gaia

    Science.gov (United States)

    Sahlholdt, C. L.; Silva Aguirre, V.; Casagrande, L.; Mosumgaard, J. R.; Bojsen-Hansen, M.

    2018-05-01

    We test asteroseismic radii of Kepler main-sequence and subgiant stars by deriving their parallaxes which are compared with those of the first Gaia data release. We compute radii based on the asteroseismic scaling relations as well as by fitting observed oscillation frequencies to stellar models for a subset of the sample, and test the impact of using effective temperatures from either spectroscopy or the infrared flux method. An offset of 3 per cent, showing no dependency on any stellar parameters, is found between seismic parallaxes derived from frequency modelling and those from Gaia. For parallaxes based on radii from the scaling relations, a smaller offset is found on average; however, the offset becomes temperature dependent which we interpret as problems with the scaling relations at high stellar temperatures. Using the hotter infrared flux method temperature scale, there is no indication that radii from the scaling relations are inaccurate by more than about 5 per cent. Taking the radii and masses from the modelling of individual frequencies as reference values, we seek to correct the scaling relations for the observed temperature trend. This analysis indicates that the scaling relations systematically overestimate radii and masses at high temperatures, and that they are accurate to within 5 per cent in radius and 13 per cent in mass for main-sequence stars with temperatures below 6400 K. However, further analysis is required to test the validity of the corrections on a star-by-star basis and for more evolved stars.

  15. Systematics of experimental charge radii of elements and elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Antony, M.S.; Britz, J.

    1987-02-01

    The systematics of experimental charge radii of elements and elementary particles ..pi../sup -/, K/sup -/, K/sup 0/, p and n is discussed. The root-meansquare charge radius of a quark core in nucleous derived from the systematics is estimated to be 0.3 fm. Charge radii evaluated from Coulomb displacement energies are also tabulated.

  16. The 3H–3He Charge Radii Difference

    Directory of Open Access Journals (Sweden)

    Myers L. S.

    2016-01-01

    Full Text Available The upcoming E12-14-009 [1] experiment at Jefferson Lab will determine the ratio of the electric form factors for the A=3 mirror nuclei 3He and 3H. The measurement will use a 1.1 GeV electron beam, a special collimator plate to allow for simultaneous optics measurements, and the low-activity tritium target being prepared for Jefferson Lab. By observing the dependence of the form factor ratio as a function of Q2 over 0.05–0.09 GeV2, the dependence of the radii extraction on the shape of the form factors is minimized. As a result, we anticipate the uncertainty of the extracted charge radii difference to be 0.03 fm, a reduction of 70% from the current measurement. Using precise measurements of the 3He charge radius from isotopic shift or μHe measurements [2–4], we can deduce the absolute 3H charge radius. The results will provide a direct comparison to recent calculations of the charge radii.

  17. Measurements of interaction cross sections and nuclear radii of Li isotopes

    International Nuclear Information System (INIS)

    Tanihata, I.; Hamagaki, H.; Hashimoto, O.; Shida, Y.; Yoshikawa, N.; Sugimoto, K.; Yamakawa, O.; Kobayashi, T.; Takahashi, N.

    1985-08-01

    Interaction cross sections(σ sub(I)) for all known Li isotopes ( 6 Li - 11 Li) and 9 Be on targets Be, C, and Al have been measured at 790 MeV/nucleon. Nuclear radii(R sub(I)) of these isotopes have been deduced from the σ sub(I). The differences of radii among isobars( 6 He - 6 Li, 8 He - 8 Li, and 9 Li - 9 Be) have been found for the first time. A comparison of R sub(I) with the rms radii obtained from electron-scattering is presented. (author)

  18. Fluorescent atom coincidence spectroscopy of extremely neutron-deficient barium isotopes

    International Nuclear Information System (INIS)

    Wells, S.A.; Evans, D.E.; Griffith, J.A.R.; Eastham, D.A.; Groves, J.; Smith, J.R.H.; Tolfree, D.W.L.; Warner, D.D.; Billowes, J.; Grant, I.S.; Walker, P.M.

    1988-01-01

    Fluorescent atom coincidence spectroscopy (FACS) has been used to measure the nuclear mean square radii and moments of the extremely neutron-deficient isotopes 120-124 Ba. At N=65 an abrupt change in nuclear mean square charge radii is observed which can be understood in terms of the occupation of the spin-orbit partner g 7/2 5/2[413] neutron and g 9/2 9/2[404] proton orbitals and the consequent enhancement of the n-p interaction. (orig.)

  19. Testing Asteroseismic Radii of Dwarfs and Subgiants with Kepler and Gaia

    DEFF Research Database (Denmark)

    Sahlholdt, C. L.; Silva Aguirre, V.; Casagrande, L.

    2018-01-01

    We test asteroseismic radii of Kepler main-sequence and subgiant stars by deriving their parallaxes which are compared with those of the first Gaia data release. We compute radii based on the asteroseismic scaling relations as well as by fitting observed oscillation frequencies to stellar models...... overestimate radii and masses at high temperatures, and that they are accurate to within 5% in radius and 13% in mass for main-sequence stars with temperatures below 6400 K. However, further analysis is required to test the validity of the corrections on a star-by-star basis and for more evolved stars....

  20. Nuclear charge radii of 8,9Li determined by laser spectroscopy

    International Nuclear Information System (INIS)

    Ewald, G.; Dax, A.; Goette, S.; Kirchner, R.; Kluge, H.J.; Kuehl, T.; Sanchez, R.; Wojtaszek, A.; Noertershaeuser, W.; Drake, G.W.F.; Yan, Z.C.; Zimmermann, C.

    2004-06-01

    The 2S → 3S transition of 6,7,8,9 Li was studied by high-resolution laser spectroscopy using two-photon Doppler-free excitation and resonance-ionization detection. The hyperfine structure splitting and the isotope shift were determined with precision at the 100 kHz level. Combined with recent theoretical work, the changes in nuclear charge radii of 8,9 Li were determined. These are now the lightest short-lived isotopes for which the charge radii have been measured. It is found that the charge radii monotonically decrease with increasing neutron number from 6 Li to 9 Li. (orig.)

  1. Collective excitations in circular atomic configurations and single-photon traps

    International Nuclear Information System (INIS)

    Hammer, Hanno

    2004-01-01

    Correlated excitations in a plane circular configuration of identical atoms with parallel dipole moments are investigated. The collective energy eigenstates, which are formally identical to Frenkel excitons, can be computed together with their level shifts and decay rates by decomposing the atomic state space into carrier spaces for the irreducible representations of the symmetry group Z N of the circle. It is shown that the index p of these representations can be used as a quantum number analogously to the orbital angular momentum quantum number l in hydrogenlike systems. Just as the hydrogen s states are the only electronic wave functions which can occupy the central region of the Coulomb potential, the quasiparticle corresponding to a collective excitation of the atoms in the circle can occupy the central atom only for vanishing Z N quantum number p. If a central atom is present, the p=0 state splits into two and shows level crossing at certain radii; in the regions between these radii, damped quantum beats between two 'extreme' p=0 configurations occur. The physical mechanisms behind super- and subradiance at a given radius are discussed. It is shown that, beyond a certain critical number of atoms in the circle, the lifetime of the maximally subradiant state increases exponentially with the number of atoms in the configuration, making the system a natural candidate for a single-photon trap

  2. Variation of nuclear radii in the drip line regions

    CERN Document Server

    Beiner, M; Mas, D

    1976-01-01

    The authors are concerned with predictions of the energy density method with respect to the nuclear sizes (RMS radii). It is known that the commonly accepted A/sup 1/3/-type laws are only approximative and deviations are expected to grow significantly as one goes away from the beta -stability region. Particular attention is paid to the variation of nuclear radii in the drip line regions. Implications of the resulting large total Coulomb energy variations between neighbouring nuclei will be emphasized.

  3. Variations of nuclear charge radii in mercury isotopes with A = 198, 199, 200, 201, 202, and 204 from x-ray isotope shifts

    International Nuclear Information System (INIS)

    Lee, P.L.; Boehm, F.; Hahn, A.A.

    1978-01-01

    The isotope shifts of atomic K x rays were measured for pairs of the six mercury isotopes with A = 198, 199, 200, 201, 202, and 204, using a curved crystal spectrometer. The changes of the nuclear charge radii were derived in terms of delta 2 > and deltaR/sub k/ and compared with optical an muonic isotope shift data. From our results, a renormalization of the optical data was obtained

  4. Charge radii of neutron-deficient Ca isotopes

    Science.gov (United States)

    Miller, A. J.; Minamisono, K.; Klose, A.; Everett, N.; Kalman, C.; Powel, R. C.; Watkins, J.; Garand, D.; Sumithrarachchi, C.; Krämer, J.; Maa, B.; Nörtershäuser, W.; Rossi, D. M.; Kujawa, C.; Pineda, S.; Lantis, J.; Liu, Y.; Mantica, P. F.; Pearson, M. R.

    2017-09-01

    Nucleon shell closures are generally associated with a local minimum in mean-square charge radii, 〈r2 〉 , along an isotopic chain. The 〈r2 〉 of 18Ar and 19K isotopes, however, do not show this signature at the N = 20 neutron shell closure. To gain a microscopic understanding of this abnormal behavior, measurements of 〈r2 〉 of neutron-deficient Ca isotopes below N = 20 have been proposed at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU. Preliminary results will be presented and the deduced charge radii will be compared to theoretical calculations and the trends in the nearby isotopic chains. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft through Grant SFB 1245.

  5. Ionization due to the interaction between two Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F

    2005-01-01

    Using a classical trajectory Monte Carlo method, we have computed the ionization resulting from the interaction between two cold Rydberg atoms. We focus on the products resulting from close interaction between two highly excited atoms. We give information on the distribution of ejected electron energies, the distribution of internal atom energies and the velocity distribution of the atoms and ions after the ionization. If the potential for the atom is not purely Coulombic, the average interaction between two atoms can change from attractive to repulsive giving a Van de Graaff-like mechanism for accelerating atoms. In a small fraction of ionization cases, we find that the ionization leads to a positive molecular ion where all of the distances are larger than 1000 Bohr radii

  6. Semiempirical potentials for positron scattering by atoms

    Energy Technology Data Exchange (ETDEWEB)

    Assafrao, Denise; Walters, H. R. J.; Arretche, Felipe; Dutra, Adriano; Mohallem, J. R. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910, Vitoria, ES (Brazil); Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast, BT7 1NN (United Kingdom); Departamento de Fisica, Universidade do Estado de Santa Catarina, 89223-100, Joinville, SC (Brazil); Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG (Brazil)

    2011-08-15

    We report calculations of differential and integral cross sections for positron scattering by noble gas and alkaline-earth atoms within the same methodology. The scattering potentials are constructed by scaling adiabatic potentials so that their minima coincide with the covalent radii of the target atoms. Elastic differential and integral cross sections are calculated for Ne, Ar, Be, and Mg, and the results are very close to experimental and best theoretical data. Particularly, elastic differential cross sections for Be and Mg at low energies are reported.

  7. LACK OF INFLATED RADII FOR KEPLER GIANT PLANET CANDIDATES RECEIVING MODEST STELLAR IRRADIATION

    International Nuclear Information System (INIS)

    Demory, Brice-Olivier; Seager, Sara

    2011-01-01

    The most irradiated transiting hot Jupiters are characterized by anomalously inflated radii, sometimes exceeding Jupiter's size by more than 60%. While different theoretical explanations have been applied, none of them provide a universal resolution to this observation, despite significant progress in the past years. We refine the photometric transit light curve analysis of 115 Kepler giant planet candidates based on public Q0-Q2 photometry. We find that 14% of them are likely false positives, based on their secondary eclipse depth. We report on planet radii versus stellar flux. We find an increase in planet radii with increased stellar irradiation for the Kepler giant planet candidates, in good agreement with existing hot Jupiter systems. We find that in the case of modest irradiation received from the stellar host, giant planets do not have inflated radii, and appear to have radii independent of the host star incident flux. This finding suggests that the physical mechanisms inflating hot Jupiters become ineffective below a given orbit-averaged stellar irradiation level of ∼2 × 10 8 erg s –1 cm –2 .

  8. Spins, moments and charge radii beyond $^{48}$Ca

    CERN Multimedia

    Neyens, G; Rajabali, M M; Hammen, M; Blaum, K; Froemmgen, N E; Garcia ruiz, R F; Kreim, K D; Budincevic, I

    Laser spectroscopy of $^{49-54}$Ca is proposed as a continuation of the experimental theme initiated with IS484 “Ground-state properties of K-isotopes from laser and $\\beta$-NMR spectroscopy” and expanded in INTC-I-117 “Moments, Spins and Charge Radii Beyond $^{48}$Ca.” It is anticipated that the charge radii of these isotopes can show strong evidence for the existence of a sub-shell closure at N=32 and could provide a first tentative investigation into the existence of a shell effect at N=34. Furthermore the proposed experiments will simultaneously provide model-independent measurements of the spins, magnetic moments and quadrupole moments of $^{51,53}$Ca permitting existing and future excitation spectra to be pinned to firm unambiguous ground states.

  9. Shannon entropy: A study of confined hydrogenic-like atoms

    Science.gov (United States)

    Nascimento, Wallas S.; Prudente, Frederico V.

    2018-01-01

    The Shannon entropy in the atomic, molecular and chemical physics context is presented by using as test cases the hydrogenic-like atoms Hc, Hec+ and Lic2 + confined by an impenetrable spherical box. Novel expressions for entropic uncertainty relation and Shannon entropies Sr and Sp are proposed to ensure their physical dimensionless characteristic. The electronic ground state energy and the quantities Sr,Sp and St are calculated for the hydrogenic-like atoms to different confinement radii by using a variational method. The global behavior of these quantities and different conjectures are analyzed. The results are compared, when available, with those previously published.

  10. The radii of the Wolf-Rayet stars and the extent of their chromosphere-corona formation

    Energy Technology Data Exchange (ETDEWEB)

    Sahade, J [Instituto de Astronomia y Fisica del Espacio, Buenos Aires, Argentina; Zorec, J [College de France, Paris, France

    1981-03-01

    The radii of 14 Wolf-Rayet stars are computed on the basis of previously reported absolute fluxes in the region from 4150 to 8000 A for 10 WN stars and from 3650 to 8000 A for four WC stars. For comparison, the radii of 11 Of stars are also calculated. The Wolf-Rayet radii are found to range from about 10 to 35 solar radii, values that do not appear to provide supporting evidence for the hypothesis that Of stars evolve into late WN stars. Available UV observations of Gamma-2 Vel are used to investigate the extent of the chromosphere-corona structure in Wolf-Rayet stars. It is suggested that the second electron-temperature maximum in a recently proposed model for the extended envelopes of Wolf-Rayet stars should be further than about 300 solar radii from the center of a star.

  11. Distribution of correlation radii in disordered ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Glinchuk, M. D.; Eliseev, E. A.; Stepanovich, V. A.; Jastrabík, Lubomír

    2002-01-01

    Roč. 81, č. 25 (2002), s. 4808-4810 ISSN 0003-6951 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : disordered ferroelectrics * distribution of correlation radii * polar nanoregions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.207, year: 2002

  12. Isospin dependence of nuclear charge radii and its microscopic demonstration

    International Nuclear Information System (INIS)

    Lei Yian; Zeng Jinyan

    2007-01-01

    The analysis of experimental nuclear charge radii R c indicates that R c deviates systematically from the A 1/3 law, i.e., R c /A 1/3 gradually decreases with increasing A, whereas R c /Z 1/3 remains almost a constant. This statement is also supported by the analysis of a large amount of experimental nuclear giant monopole resonance energy data E x ∝R -1 . The deviation of nuclear charge radii from the A 1/3 law is basically caused by the isospin independence of A 1/3 law, and the isospin dependence has been partly included in Z 1/3 law. In the frame of nuclear shell model, a microscopic demonstration of the Z 1/3 law is given. The difference in the harmonic oscillator potential strength between proton and neutron (ω p and ω n ) can be accounted for by the Z 1/3 law. Similar to Wigner's nuclear isobaric multiplet mass equation (IMME), a modified Z 1/3 law for nuclear charge radii is proposed. (authors)

  13. Fitted HBT radii versus space-time variances in flow-dominated models

    International Nuclear Information System (INIS)

    Lisa, Mike; Frodermann, Evan; Heinz, Ulrich

    2007-01-01

    The inability of otherwise successful dynamical models to reproduce the 'HBT radii' extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the 'RHIC HBT Puzzle'. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source which can be directly computed from the emission function, without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models some of which exhibit significant deviations from simple Gaussian behaviour. By Fourier transforming the emission function we compute the 2-particle correlation function and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and measured HBT radii remain, we show that a more 'apples-to-apples' comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data. (author)

  14. On the odd-even effect in the charge radii of isotopes

    International Nuclear Information System (INIS)

    Talmi, I.

    1984-01-01

    Core polarization by valence neutrons is suggested as a possible mechanism for producing odd-even variation in the charge radii of isotopes. The nuclei considered have closed proton shells and neutrons in states with lowest seniority or generalized seniority. Simple expressions are derived for jsup(n) neutron configurations and various multipole terms of the pn interaction. The resulting expressions give a good fit to the radii of calcium isotopes and also of lead isotopes for which these expressions are only approximate. (orig.)

  15. The magnetic field of the equatorial magnetotail from 10 to 40 earth radii

    Science.gov (United States)

    Fairfield, D. H.

    1986-01-01

    A statistical study of IMP 6, 7, and 8 magnetotail magnetic field measurements near the equatorial plane reveals new information about various aspects of magnetospheric structure. More magnetic flux crosses the equatorial plane on the dawn and dusk flanks of the tail than near midnight, but no evidence is found for a dependence on the interplanetary magnetic field sector polarity. Field magnitudes within 3 earth radii of the equatorial plane near dawn are more than twice as large as those near dusk for Xsm = -20 to -10 earth radii. The frequency of occurrence of southward fields is greatest near midnight, and such fields are seen almost twice as often for Xsm = -20 to -10 earth radii as for Xsm beyond -20 earth radii. This latter result supports the idea that the midnight region of the tail between 10 and 20 is a special location where neutral lines are particularly apt to form. Such a neutral line will approach nearest the earth in the midnight and premidnight region, where substorms are thought to have their onset.

  16. Observational constraints on neutron star masses and radii

    Energy Technology Data Exchange (ETDEWEB)

    Coleman Miller, M. [University of Maryland, Department of Astronomy and Joint Space-Science Institute, College Park, MD (United States); Lamb, Frederick K. [University of Illinois at Urbana-Champaign, Center for Theoretical Astrophysics and Department of Physics, Urbana, IL (United States); University of Illinois at Urbana-Champaign, Department of Astronomy, Urbana, IL (United States)

    2016-03-15

    Precise and reliable measurements of the masses and radii of neutron stars with a variety of masses would provide valuable guidance for improving models of the properties of cold matter with densities above the saturation density of nuclear matter. Several different approaches for measuring the masses and radii of neutron stars have been tried or proposed, including analyzing the X-ray fluxes and spectra of the emission from neutron stars in quiescent low-mass X-ray binary systems and thermonuclear burst sources; fitting the energy-dependent X-ray waveforms of rotation-powered millisecond pulsars, burst oscillations with millisecond periods, and accretion-powered millisecond pulsars; and modeling the gravitational radiation waveforms of coalescing double neutron star and neutron star - black hole binary systems. We describe the strengths and weaknesses of these approaches, most of which currently have substantial systematic errors, and discuss the prospects for decreasing the systematic errors in each method. (orig.)

  17. RADII OF RAPIDLY ROTATING STARS, WITH APPLICATION TO TRANSITING-PLANET HOSTS

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2010-01-01

    The currently favored method for estimating radii and other parameters of transiting-planet host stars is to match theoretical models to observations of the stellar mean density ρ * , the effective temperature T eff , and the composition parameter [Z]. This explicitly model-dependent approach is based on readily available observations, and results in small formal errors. Its performance will be central to the reliability of results from ground-based transit surveys such as TrES, HAT, and SuperWASP, as well as to the space-borne missions MOST, CoRoT, and Kepler. Here, I use two calibration samples of stars (eclipsing binaries (EBs) and stars for which asteroseismic analyses are available) having well-determined masses and radii to estimate the accuracy and systematic errors inherent in the ρ * method. When matching to the Yonsei-Yale stellar evolution models, I find the most important systematic error results from selection bias favoring rapidly rotating (hence probably magnetically active) stars among the EB sample. If unaccounted for, this bias leads to a mass-dependent underestimate of stellar radii by as much as 4% for stars of 0.4 M sun , decreasing to zero for masses above about 1.4 M sun . Relative errors in estimated stellar masses are three times larger than those in radii. The asteroseismic sample suggests (albeit with significant uncertainty) that systematic errors are small for slowly rotating, inactive stars. Systematic errors arising from failings of the Yonsei-Yale models of inactive stars probably exist, but are difficult to assess because of the small number of well-characterized comparison stars having low mass and slow rotation. Poor information about [Z] is an important source of random error, and may be a minor source of systematic error as well. With suitable corrections for rotation, it is likely that systematic errors in the ρ * method can be comparable to or smaller than the random errors, yielding radii that are accurate to about 2% for

  18. Precise Masses & Radii of the Planets Orbiting K2-3 and GJ3470

    Science.gov (United States)

    Kosiarek, Molly; Crossfield, Ian; Hardegree-Ullman, Kevin; Livingston, John; Howard, Andrew; Fulton, Benjamin; Hirsch, Lea; Isaacson, Howard; Petigura, Erik; Sinukoff, Evan; Weiss, Lauren; Knutson, Heather; Bonfils, Xavier; Benneke, Björn; Beichman, Charles; Dressing, Courtney

    2018-01-01

    We report improved masses, radii, and densities for two planetary systems, K2-3 and GJ3470, derived from a combination of new radial velocity and transit observations. Both stars are nearby, early M dwarfs. K2-3 hosts three super-Earth planets between 1.5 and 2 Earth-radii at orbital periods between 10 and 45 days, while GJ 3470 hosts one 4 Earth-radii planet with a period of 3.3 days. Furthermore, we confirmed GJ3470's rotation period through multi-year ground-based photometry; RV analysis must account for this rotation signature. Due to the planets' low densities (all stars, they are among the best candidates for transmission spectroscopy with JWST and HST in order to characterize their atmospheric compositions.

  19. Vacancy decay in endohedral atoms

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Baltenkov, A. S.

    2006-01-01

    It is demonstrated that the fullerene shell dramatically affects the radiative and Auger vacancy decay of an endohedral atom A-C 60 . The collectivized electrons of the C 60 shell add new possibilities for radiative and nonradiative decays similar to that in ordinary atoms where the vacancies in the initial and final state almost always belong to different subshells. It is shown that the smallness of the atomic shell radii as compared to that of the fullerene shell provides an opportunity to derive the simple formulas for the probabilities of the electron transitions. It is shown that the radiative and Auger (or Koster-Kronig) widths of the vacancy decay due to electron transition in the atom A in A-C 60 acquire an additional factor that can be expressed via the polarizability of the C 60 at transition energy. It is demonstrated that due to an opening of the nonradiative decay channel for vacancies in subvalent subshells the decay probability increases by five to six orders of magnitude

  20. The Rydberg constant and proton size from atomic hydrogen

    Science.gov (United States)

    Beyer, Axel; Maisenbacher, Lothar; Matveev, Arthur; Pohl, Randolf; Khabarova, Ksenia; Grinin, Alexey; Lamour, Tobias; Yost, Dylan C.; Hänsch, Theodor W.; Kolachevsky, Nikolai; Udem, Thomas

    2017-10-01

    At the core of the “proton radius puzzle” is a four-standard deviation discrepancy between the proton root-mean-square charge radii (rp) determined from the regular hydrogen (H) and the muonic hydrogen (µp) atoms. Using a cryogenic beam of H atoms, we measured the 2S-4P transition frequency in H, yielding the values of the Rydberg constant R∞ = 10973731.568076(96) per meterand rp = 0.8335(95) femtometer. Our rp value is 3.3 combined standard deviations smaller than the previous H world data, but in good agreement with the µp value. We motivate an asymmetric fit function, which eliminates line shifts from quantum interference of neighboring atomic resonances.

  1. Carbon nanotori as traps for atoms and ions

    International Nuclear Information System (INIS)

    Chan Yue; Cox, Barry J.; Hill, James M.

    2012-01-01

    Carbon nanotori surely represent an ideal location to trap both charged and uncharged atoms, since they are open, accessible and possess strong attractive energy. In this paper, we investigate the plausibility of carbon nanotori as atomic traps and we use the continuum approximation together with the Lennard-Jones potential to model the encapsulation of an atom or ion by a nanotorus. The critical geometric factors such as the minor and major radii, i.e. r and R of the nanotorus, for which the maximum interaction between the atom and the nanotorus occurs, are determined. For various atoms, assumed situated along the axis of the torus, the minimum potential energy between the atom and the nanotorus is calculated and compared, and shown to be approximately kηεσ 2 , where η is the uniform atomic density, ε and σ are the Lennard-Jones well depth and the van der Waals radius, respectively, and k is a universal non-dimensional constant with the approximate value -12.42. The results given in this paper might be used for future drug delivery and biosensing design.

  2. Laser induced fluorescence spectroscopy in atomic beams of radioactive nuclides

    International Nuclear Information System (INIS)

    Rebel, H.; Schatz, G.

    1982-01-01

    Measurements of the resonant scattering of light from CW tunable dye lasers, by a well collimated atomic beam, enable hyperfine splittings and optical isotope shifts to be determined with high precision and high sensitivity. Recent off-line atomic beam experiments with minute samples, comprising measurements with stable and unstable Ba, Ca and Pb isotopes are reviewed. The experimental methods and the analysis of the data are discussed. Information on the variation of the rms charge radii and on electromagnetic moments of nuclei in long isotopic chains is presented. (orig.) [de

  3. The inflated radii of M dwarfs in the Pleiades

    Science.gov (United States)

    Jackson, R. J.; Deliyannis, Constantine P.; Jeffries, R. D.

    2018-05-01

    Rotation periods obtained with the Kepler satellite have been combined with precise measurements of projected rotation velocity from the WIYN 3.5-m telescope to determine the distribution of projected radii for several hundred low-mass (0.1 ≤ M/M⊙ ≤ 0.8), fast-rotating members of the Pleiades cluster. A maximum likelihood modelling technique, that takes account of observational uncertainties, selection effects and censored data, and considers the effects of differential rotation and unresolved binarity, has been used to find that the average radius of these stars is 14 ± 2 per cent larger at a given luminosity than predicted by current evolutionary models of Dotter et al. and Baraffe et al. The same models are a reasonable match to the interferometric radii of older, magnetically inactive field M dwarfs, suggesting that the over-radius may be associated with the young, magnetically active nature of the Pleiades objects. No evidence is found for any change in this over-radius above and below the boundary marking the transition to full convection. Published evolutionary models that incorporate either the effects of magnetic inhibition of convection or the blocking of flux by dark star-spots do not individually explain the radius inflation, but a combination of the two effects might. The distribution of projected radii is consistent with the adopted hypothesis of a random spatial orientation of spin axes; strong alignments of the spin vectors into cones with an opening semi-angle <30° can be ruled out. Any plausible but weaker alignment would increase the inferred over-radius.

  4. Hvad enhver kordreng skal kunne. Betragtning af motetten Ut Phebi radiis af Josquin Desprez

    DEFF Research Database (Denmark)

    Christoffersen, Peter Woetmann

    2003-01-01

    Josquin Desprez, Ut Phebi radiis, motet, prayer mode, hexachord, Ockeghem, Brumel, Isaac, Compère, sound, udtryk......Josquin Desprez, Ut Phebi radiis, motet, prayer mode, hexachord, Ockeghem, Brumel, Isaac, Compère, sound, udtryk...

  5. Influence of piezoceramic to fused silica plate thickness on the radii of curvature of piezoelectric bimorph mirror

    International Nuclear Information System (INIS)

    Libu, M.; Susanth, S.; Vasanthakumari, K. G.; Dileep Kumar, C. J.; Raghu, N.

    2012-01-01

    Piezoelectric based bimorph mirrors (PBM) find extensive use in focusing of x-ray beams. Many optical instruments require use of PBM whose radii of curvature can be tuned precisely. The 100 mm and 300 mm PBMs were fabricated with varying piezoelectric to fused silica plate thicknesses. The radii of curvature of free standing mirrors were measured as a function of voltage and it was found to decrease with increasing voltage. For a given piezoelectric plate thickness, as the fused silica thickness increases, the radii of curvature was found to increase owing to increase in stiffness of the mirror. On the other hand, for a given fused silica plate thickness, when the piezoelectric plate thickness is increased, the radii of curvature are decreased for a given electric field, due to increase in generated force. This study brings out the influence of piezoceramic to fused silica plate thickness on the radii of curvature of PBM.

  6. The magnetic field of the equatorial magnetotail - AMPTE/CCE observations at R less than 8.8 earth radii

    Science.gov (United States)

    Fairfield, D. H.; Acuna, M. H.; Zanetti, L. J.; Potemra, T. A.

    1987-01-01

    The MPTE/CCE magnetic field experiment has been used to obtain a quantitative evaluation of the frequency and extent of magnetic field distortion in the near-tail region at less than 8.8 earth radii. The variation of this distortion with Kp, radial distance, longitude, and near-equatorial latitude is reported. It has been found that taillike distortions from the dipole field direction may reach 80 deg near the MPTE/CE apogee of 8.8 earth radii. The Bz field component in dipole coordinates was always positive within 0.5 earth radii of the equatorial current sheet, indicating the neutral lines were never seen inside of 8.8 earth radii. Fields were most taillike near midnight and during times of high Kp. At 8.5 earth radii the equatorial field magnitude depressions were roughly half the dipole field strength of 51 nT. These depressions are larger at lesser distances, reaching -40 nT at 3.4 earth radii for Kp of 2- or less and -80 nT and Kp of 3+ and greater.

  7. Form factors and charge radii in a quantum chromodynamics ...

    Indian Academy of Sciences (India)

    tic form factors and charge radii of D, Ds,B,Bs and Bc mesons in a quantum chromodynamics. (QCD)-inspired ... as pointed out in [12,13], one can expect a similar success here too. .... 0 were large and the formalism failed to account for large ...

  8. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from 55Cs to 80Hg

    Directory of Open Access Journals (Sweden)

    Hiroshi Tatewaki

    2015-06-01

    Full Text Available We consider, for atoms from 55Cs to 80Hg, the effective atomic radius (rear, which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He2. The values of rear are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of rear decreases from 55Cs to 56Ba and undergoes increases and decreases with rising nuclear charge from 57La to 70Y b. In fact rear is understood as comprising two interlaced sequences; one consists of 57La, 58Ce, and 64Gd, which have electronic configuration (4fn−1(5d1(6s2, and the remaining atoms have configuration (4fn(6s2. The sphere defined by rear contains 85%–90% of the 6s electrons. From 71Lu to 80Hg the radius rear also involves two sequences, corresponding to the two configurations 5dn+16s1 and 5dn6s2. The radius rear according to the present methodology is considerably larger than rvdW obtained by other investigators, some of who have found values of rvdW close to .

  9. Systematics of nuclear RMS charge radii

    International Nuclear Information System (INIS)

    Brown, B.A.; Bronk, C.; Hodgson, P.E.

    1984-01-01

    The experimental RMS charge radii of isotopic sequences of nuclei are compared with calculations based on the spherical droplet model and spherical single-particle potential models. Harmonic-oscillator, Woods-Saxon and Skyrme Hartree-Fock single-particle potentials are considered. Deviations between experiment and theory are discussed in terms of the model parameters and in terms of the fundamental inadequacies of the models. The experimental B(E2) values connecting the ground states to the lowest 2 + states are used to estimate the increase in RMS radius due to the effects of deformation and zero-point vibrational motion. (author)

  10. Fitted Hanbury-Brown Twiss radii versus space-time variances in flow-dominated models

    Science.gov (United States)

    Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan

    2006-04-01

    The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.

  11. Fitted Hanbury-Brown-Twiss radii versus space-time variances in flow-dominated models

    International Nuclear Information System (INIS)

    Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan

    2006-01-01

    The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown-Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data

  12. ELLIPTICAL GALAXY MASSES OUT TO FIVE EFFECTIVE RADII: THE REALM OF DARK MATTER

    International Nuclear Information System (INIS)

    Deason, A. J; Belokurov, V.; Evans, N. W.; McCarthy, I. G.

    2012-01-01

    We estimate the masses of elliptical galaxies out to five effective radii using planetary nebulae and globular clusters as tracers. A sample of 15 elliptical galaxies with a broad variation in mass is compiled from the literature. A distribution function-maximum likelihood analysis is used to estimate the overall potential slope, normalization, and velocity anisotropy of the tracers. We assume power-law profiles for the potential and tracer density and a constant velocity anisotropy. The derived potential power-law indices lie in between the isothermal and Keplerian regime and vary with mass: there is tentative evidence that the less massive galaxies have steeper potential profiles than the more massive galaxies. We use stellar mass-to-light ratios appropriate for either a Chabrier/KTG (Kroupa, Tout and Gilmore) or Salpeter initial mass function to disentangle the stellar and dark matter components. The fraction of dark matter within five effective radii increases with mass, in agreement with several other studies. We employ simple models to show that a combination of star formation efficiency and baryon extent are able to account for this trend. These models are in good agreement with both our measurements out to five effective radii and recent Sloan Lens ACS Survey measurements within one effective radii when a universal Chabrier/KTG initial mass function is adopted.

  13. Average configuration of the distant (less than 220-earth-radii) magnetotail - Initial ISEE-3 magnetic field results

    Science.gov (United States)

    Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.

    1983-01-01

    Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.

  14. Photoexcitation and ionization of hydrogen atom confined in Debye environment

    International Nuclear Information System (INIS)

    Lumb, S.; Lumb, S.; Nautiyal, V.

    2015-01-01

    The dynamics of a hydrogen atom confined in an impenetrable spherical box and under the effect of Debye screening, in the presence of intense short laser pulses of few femtosecond is studied in detail. The energy spectra and wave functions have been calculated using Bernstein polynomial (B-polynomial) method. Variation of transition probabilities for various transitions due to changes in Debye screening length, confinement radius as well as the parameters characterizing applied laser pulse is studied and explained. The results are found to be in good agreement with the results obtained by others. The photoexcitation and ionization of the atom strongly depend on confinement radius and screening parameter. For small confinement radii and for some values of screening parameter the atom is found to be ionized easily. The dynamics of the atom can be easily controlled by varying pulse parameters

  15. Interaction potential for two different atoms

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Peresypkin, V.V.

    1991-01-01

    Using the rigorous approach to the nonrelativistic four Coulomb particle problem the interaction potentials between an ordinary hydrogen and muonic-hydrogen atoms at large: R>a e +a μ (1), and intermediate: a e >R>>a μ (2) distances, where a e and a μ are the Bohr radii, are calculated in the adiabatic approximation. The van der Waals potential constants in the region (1) and an explicit potential form in the region (2) taking into account both the polarization effects and the electron screening corrections are determined. 10 refs

  16. ON THE RADII OF BROWN DWARFS MEASURED WITH AKARI NEAR-INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Sorahana, S.; Yamamura, I.; Murakami, H.

    2013-01-01

    We derive the radii of 16 brown dwarfs observed by AKARI using their parallaxes and the ratios of observed to model fluxes. We find that the brown dwarf radius ranges between 0.64-1.13 R J with an average radius of 0.83 R J . We find a trend in the relation between radii and T eff ; the radius is at a minimum at T eff ∼ 1600 K, which corresponds to the spectral types of mid- to late-L. The result is interpreted by a combination of radius-mass and radius-age relations that are theoretically expected for brown dwarfs older than 10 8 yr.

  17. Centrality dependence of pion freeze-out radii in Pb-Pb collisions at $\\sqrt{\\mathbf{s_{NN}}}$=2.76 TeV

    OpenAIRE

    Adam, Jaroslav; Adamova, Dagmar; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno

    2015-01-01

    We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb--Pb collisions at $\\sqrt{s_{\\rm NN}}=2.76$ TeV as a function of collision centrality and the average transverse momentum of the pair $k_{\\rm T}$. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with $k_{\\rm T}$, following a power-law behavior. This is qualitatively consistent with expectations from ...

  18. Centrality dependence of pion freeze-out radii in Pb-Pb collisions at $\\sqrt{\\mathbf{s_{NN}}}$=2.76 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Zhang, Chunhui; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadlovska, Slavka; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ferreira Natal Da Luz, Pedro Hugo; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Masui, Hiroshi; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-02-04

    We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb--Pb collisions at $\\sqrt{s_{\\rm NN}}=2.76$ TeV as a function of collision centrality and the average transverse momentum of the pair $k_{\\rm T}$. Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with $k_{\\rm T}$, following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with $\\left^{1/3}$. This behaviour is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller $\\sqrt{s_{\\rm NN}}$, a decrease in the $R_{\\rm out}/R_{\\rm side}$ ratio is seen, which is in qualitative agreement with specific predictions from hydrodynamic models. The results provide further evidence for the production of a collective, strongly c...

  19. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions.

    Science.gov (United States)

    Kuechler, Erich R; Giese, Timothy J; York, Darrin M

    2016-04-28

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.

  20. Reanalysis of the radii of the Benchmark eclipsing binary V578 Mon

    International Nuclear Information System (INIS)

    Garcia, E. V.; Stassun, Keivan G.; Torres, Guillermo

    2013-01-01

    V578 Mon is an eclipsing binary system in which both stars have masses above 10 M ☉ determined with an accuracy better than 3%. It is one of only five such massive eclipsing binaries known that also possess eccentric orbits and measured apsidal motions, thus making it an important benchmark for theoretical stellar evolution models. However, recently reported determinations of the radii of V578 Mon differ significantly from previously reported values. We reanalyze the published data for V578 Mon and trace the discrepancy to the use of an incorrect formulation for the stellar potentials in the most recent analysis. Here we report corrected radii for this important benchmark eclipsing binary.

  1. Sub-coulomb transfer method of a nucleon for measure orbital radii

    International Nuclear Information System (INIS)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.; Avila, O.

    1986-04-01

    The neutron transfer method is revised to measure neutron orbital radii and possible interest systems to apply it are determined. Its were carried out DWBA preliminary calculations for the system 209 Bi(d,t) 208 Bi. (Author)

  2. Understanding the proton radius puzzle: Nuclear structure effects in light muonic atoms

    Directory of Open Access Journals (Sweden)

    Ji Chen

    2016-01-01

    Full Text Available We present calculations of nuclear structure effects to the Lamb shift in light muonic atoms. We adopt a modern ab-initio approach by combining state-of-the-art nuclear potentials with the hyperspherical harmonics method. Our calculations are instrumental to the determination of nuclear charge radii in the Lamb shift measurements, which will shed light on the proton radius puzzle.

  3. Self-Regular Black Holes Quantized by means of an Analogue to Hydrogen Atoms

    CERN Document Server

    Liu, Chang; Wu, Yu-Mei; Zhang, Yu-Hao

    2016-01-01

    We suggest a proposal of quantization for black holes that is based on an analogy between a black hole and a hydrogen atom. A self-regular Schwarzschild-AdS black hole is investigated, where the mass density of the extreme black hole is given by the probability density of the ground state of hydrogen atoms and the mass densities of non-extreme black holes are chosen to be the probability densities of excited states with no angular momenta. Consequently, it is logical to accept quantization of mean radii of hydrogen atoms as that of black hole horizons. In this way, quantization of total black hole masses is deduced. Furthermore, the quantum hoop conjecture and the Correspondence Principle are discussed.

  4. Variation of diffusivity with the cation radii in molten salts of ...

    Indian Academy of Sciences (India)

    Abstract. A molecular dynamics study of the dependence of diffusivity of the cation on ionic radii in molten. AgI is reported. ... potential) to carry out molecular dynamics simulations on α-AgI. ..... There is no clustering of these ions. The anionic.

  5. The axial dipole moment of two intersecting spheres of equal radii

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1988-01-01

    The use of a finite number of image charges to solve electrostatic problems associated with two conducting spheres intersecting at an angle of pi/n (n an integer) has been known for over a century. If, however, only spheres of equal radii are considered, it is possible to extend the permissible...

  6. Nuclear charge radii from X-ray transitions in muonic C, O and N

    CERN Document Server

    Dubler, T; Schellenberg, L; Schneuwly, H; Vuilleumier, J L; Walter, H K

    1973-01-01

    Energies of muonic X-rays permit an almost model independent determination of nuclear root mean square (rms) radii for light and medium nuclei, which can be compared to those obtained from elastic electron scattering experiments at low momentum transfer. In the present experiment the X-ray energies of the K series of C, N and O up to the 6p-1s transition are determined with an accuracy of +or-15 eV from which rms radii are deduced comparable in precision to the electron scattering data. Muons from the CERN muon channel were stopped in a target, which contained 70 gr dimethylglyoxim (C/sub 4/H /sub 8/N/sub 2/O/sub 2/) and 18 gr rhodium powder. (0 refs).

  7. Atomic radii for atoms with the 6s shell outermost: The effective atomic radius and the van der Waals radius from {sub 55}Cs to {sub 80}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Tatewaki, Hiroshi, E-mail: htatewak@nsc.nagoya-cu.ac.jp [Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501 (Japan); Institute of Advanced Studies in Artificial Intelligence, Chukyo University, Toyota, Aichi 470-0393 (Japan); Hatano, Yasuyo [School of Information Science and Technology, Chukyo University, Toyota, Aichi 470-0393 (Japan); Noro, Takeshi [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810 (Japan); Yamamoto, Shigeyoshi [School of International Liberal Studies, Chukyo University, Nagoya, Aichi 466-8666 (Japan)

    2015-06-15

    We consider, for atoms from {sub 55}Cs to {sub 80}Hg, the effective atomic radius (r{sub ear}), which is defined as the distance from the nucleus at which the magnitude of the electric field is equal to that in He at one half of the equilibrium bond length of He{sub 2}. The values of r{sub ear} are about 50% larger than the mean radius of the outermost occupied orbital of 6s, . The value of r{sub ear} decreases from {sub 55}Cs to {sub 56}Ba and undergoes increases and decreases with rising nuclear charge from {sub 57}La to {sub 70}Y b. In fact r{sub ear} is understood as comprising two interlaced sequences; one consists of {sub 57}La, {sub 58}Ce, and {sub 64}Gd, which have electronic configuration (4f{sup n−1})(5d{sup 1})(6s{sup 2}), and the remaining atoms have configuration (4f{sup n})(6s{sup 2}). The sphere defined by r{sub ear} contains 85%–90% of the 6s electrons. From {sub 71}Lu to {sub 80}Hg the radius r{sub ear} also involves two sequences, corresponding to the two configurations 5d{sup n+1}6s{sup 1} and 5d{sup n}6s{sup 2}. The radius r{sub ear} according to the present methodology is considerably larger than r{sub vdW} obtained by other investigators, some of who have found values of r{sub vdW} close to .

  8. A Hartree–Fock study of the confined helium atom: Local and global basis set approaches

    Energy Technology Data Exchange (ETDEWEB)

    Young, Toby D., E-mail: tyoung@ippt.pan.pl [Zakład Metod Komputerowych, Instytut Podstawowych Prolemów Techniki Polskiej Akademia Nauk, ul. Pawińskiego 5b, 02-106 Warszawa (Poland); Vargas, Rubicelia [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico); Garza, Jorge, E-mail: jgo@xanum.uam.mx [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico)

    2016-02-15

    Two different basis set methods are used to calculate atomic energy within Hartree–Fock theory. The first is a local basis set approach using high-order real-space finite elements and the second is a global basis set approach using modified Slater-type orbitals. These two approaches are applied to the confined helium atom and are compared by calculating one- and two-electron contributions to the total energy. As a measure of the quality of the electron density, the cusp condition is analyzed. - Highlights: • Two different basis set methods for atomic Hartree–Fock theory. • Galerkin finite element method and modified Slater-type orbitals. • Confined atom model (helium) under small-to-extreme confinement radii. • Detailed analysis of the electron wave-function and the cusp condition.

  9. Laser-spectroscopy measurements of 72-96Kr spins, moments and charge radii

    International Nuclear Information System (INIS)

    Keim, M.

    1995-01-01

    The spins, moments and radii of krypton isotopes have been investigated by collinear fast-beam laser spectroscopy in combination with ultra-sensitive collisional ionization detection. The sequence of isotopes under study ranges from the neutron-deficient N=Z=36 isotope 72 Kr to the neutron-rich 96 Kr (N=60). The mean-square charge radii in the neighbourhood of the N=50 neutron-shell closure exhibit a pronounced shell effect which has recently been explained in the framework of relativistic mean-field theory. The results for the neutron-deficient nuclei are related to the shape coexistence of strongly prolate and near-spherical states which is known from nuclear spectroscopy. Here, an inversion of the odd-even staggering is observed below the neutron number N=45. The neutron-rich transitional nuclei are influenced by the N=56 subshell closure. In contrast to the N=60 isotones 97 Rb, 98 Sr and 100 Zr, the new isotope 96 Kr is not strongly deformed. ((orig.))

  10. Resonance contributions to Hanbury-Brown endash Twiss correlation radii

    International Nuclear Information System (INIS)

    Wiedemann, U.A.; Heinz, U.

    1997-01-01

    We study the effect of resonance decays on intensity interferometry for heavy ion collisions. Collective expansion of the source leads to a dependence of the two-particle correlation function on the pair momentum K. This opens the possibility to reconstruct the dynamics of the source from the K dependence of the measured Hanburg-Brown endash Twiss (HBT) radii. Here we address the question to what extent resonance decays can fake such a flow signal. Within a simple parametrization for the emission function we present a comprehensive analysis of the interplay of flow and resonance decays on the one- and two-particle spectra. We discuss in detail the non-Gaussian features of the correlation function introduced by long-lived resonances and the resulting problems in extracting meaningful HBT radii. We propose to define them in terms of the second-order q moments of the correlator C(q,K). We show that this yields a more reliable characterisation of the correlator in terms of its width and the correlation strength λ than other commonly used fit procedures. The normalized fourth-order q moments (kurtosis) provide a quantitative measure for the non-Gaussian features of the correlator. At least for the class of models studied here, the kurtosis helps separating effects from expansion flow and resonance decays, and provides the cleanest signal to distinguish between scenarios with and without transverse flow. copyright 1997 The American Physical Society

  11. Nonlocal Response of Metallic Nanospheres Probed by Light, Electrons, and Atoms

    DEFF Research Database (Denmark)

    Christensen, Thomas; Yan, Wei; Raza, Søren

    2014-01-01

    Inspired by recent measurements on individual metallic nanospheres that cannot be explained with traditional classical electrodynamics, we theoretically investigate the effects of nonlocal response by metallic nanospheres in three distinct settings: atomic spontaneous emission, electron energy loss...... blueshifted surface plasmon but also an infinite series of bulk plasmons that have no counterpart in a local-response approximation. We show that these increasingly blueshifted multipole plasmons become spectrally more prominent at shorter probe-to-surface separations and for decreasing nanosphere radii...

  12. Early Hydrodynamic Escape Limits Rocky Planets to Less Than or Equal to 1.6 Earth Radii

    Science.gov (United States)

    Lehmer, O. R.; Catling, D. C.

    2017-01-01

    In the past decade thousands of exoplanet candidates and hundreds of confirmed exoplanets have been found. For sub-Neptune-sized planets, those less than approx. 10 Earth masses, we can separate planets into two broad categories: predominantly rocky planets, and gaseous planets with thick volatile sheaths. Observations and subsequent analysis of these planets show that rocky planets are only found with radii less than approx. 1.6 Earth radii. No rocky planet has yet been found that violates this limit. We propose that hydrodynamic escape of hydrogen rich protoatmospheres, accreted by forming planets, explains the limit in rocky planet size. Following the hydrodynamic escape model employed by Luger et al. (2015), we modelled the XUV driven escape from young planets (less than approx.100 Myr in age) around a Sun-like star. With a simple, first-order model we found that the rocky planet radii limit occurs consistently at approx. 1.6 Earth radii across a wide range of plausible parameter spaces. Our model shows that hydrodynamic escape can explain the observed cutoff between rocky and gaseous planets. Fig. 1 shows the results of our model for rocky planets between 0.5 and 10 Earth masses that accrete 3 wt. % H2/He during formation. The simulation was run for 100 Myr, after that time the XUV flux drops off exponentially and hydrodynamic escape drops with it. A cutoff between rocky planets and gaseous ones is clearly seen at approx. 1.5-1.6 Earth radii. We are only interested in the upper size limit for rocky planets. As such, we assumed pure hydrogen atmospheres and the highest possible isothermal atmospheric temperatures, which will produce an upper limit on the hydrodynamic loss rate. Previous work shows that a reasonable approximation for an upper temperature limit in a hydrogen rich protoatmosphere is 2000-3000 K, consistent with our assumptions. From these results, we propose that the observed dichotomy between mini-Neptunes and rocky worlds is simply explained by

  13. On the extended and Allan spectra and topological radii

    Directory of Open Access Journals (Sweden)

    Hugo Arizmendi-Peimbert

    2012-01-01

    Full Text Available In this paper we prove that the extended spectrum \\(\\Sigma(x\\, defined by W. Żelazko, of an element \\(x\\ of a pseudo-complete locally convex unital complex algebra \\(A\\ is a subset of the spectrum \\(\\sigma_A(x\\, defined by G.R. Allan. Furthermore, we prove that they coincide when \\(\\Sigma(x\\ is closed. We also establish some order relations between several topological radii of \\(x\\, among which are the topological spectral radius \\(R_t(x\\ and the topological radius of boundedness \\(\\beta_t(x\\.

  14. A study on the service radii and accessibility to health facilities in ...

    African Journals Online (AJOL)

    Government policies over the years has centered on the provision and delivery of healthcare to all. Spatial distribution of health facilities is subject to a number of social and commercial influences and healthcare needs of the population. The objective of this paper analyzed the service radii and accessibility of health ...

  15. Interaction cross sections and matter radii of oxygen isotopes using the Glauber model

    Science.gov (United States)

    Ahmad, Suhel; Usmani, A. A.; Ahmad, Shakeb; Khan, Z. A.

    2017-05-01

    Using the Coulomb modified correlation expansion for the Glauber model S matrix, we calculate the interaction cross sections of oxygen isotopes (O-2616) on 12C at 1.0 GeV/nucleon. The densities of O-2616 are obtained using (i) the Slater determinants consisting of the harmonic oscillator single-particle wave functions (SDHO) and (ii) the relativistic mean-field approach (RMF). Retaining up to the two-body density term in the correlation expansion, the calculations are performed employing the free as well as the in-medium nucleon-nucleon (N N ) scattering amplitude. The in-medium N N amplitude considers the effects arising due to phase variation, higher momentum transfer components, and Pauli blocking. Our main focus in this work is to reveal how could one make the best use of SDHO densities with reference to the RMF one. The results demonstrate that the SDHO densities, along with the in-medium N N amplitude, are able to provide satisfactory explanation of the experimental data. It is found that, except for O,2423, the predicted SDHO matter rms radii of oxygen isotopes closely agree with those obtained using the RMF densities. However, for O,2423, our results require reasonably larger SDHO matter rms radii than the RMF values, thereby predicting thicker neutron skins in 23O and 24O as compared to RMF ones. In conclusion, the results of the present analysis establish the utility of SDHO densities in predicting fairly reliable estimates of the matter rms radii of neutron-rich nuclei.

  16. Thermal correction of the radii of curvature of mirrors for GEO 600

    International Nuclear Information System (INIS)

    Lueck, H; Freise, A; Gossler, S; Hild, S; Kawabe, K; Danzmann, K

    2004-01-01

    A mismatch of the radii of curvature of the mirrors in the arms of an interferometric gravitational-wave detector can be partly compensated by creating a thermal gradient inside the mirror. This paper shows how the interference quality at the output of the German/British GEO 600 gravitational-wave detector could be improved with a simple ring heater

  17. Mechanism of equalization of proton and neutron radii and the Coulomb anomaly

    International Nuclear Information System (INIS)

    Caurier, E.; Poves, A.; Zuker, A.

    1980-01-01

    It is shown that a one parameter modification of the effective forces allows to resolve the Coulomb energy anomalies in the Ca region within the framework of Hartree Fock (HF) and isospin projected Hartree Fock (IPHF) theories. A simple microscopic mechanism of equalization of neutron and proton radii is invoked to produce results consistent with available data

  18. ENAM'04 Fourth International Conference on Exotic Nuclei and Atomic Masses

    International Nuclear Information System (INIS)

    Gross, C. J.; Nazarewicz, W.; Rykaczewski, K. P.

    2005-01-01

    The conference can trace its origins to the 1950s and 1960s with the Atomic Mass and Fundamental Constants (AMCO) and the Nuclei Far From Stability (NFFS) series of conferences. Held jointly in 1992, the conferences officially merged in 1995 and the fourth conference was held at Callaway Gardens in Pine Mountain, GA and was organized by the Physics Division at Oak Ridge National Laboratory. The conference covered a broad list of topics consisting of a series of invited and contributed presentation highlighting recent research in the following fields: Atomic masses, nuclear moments, and nuclear radii; Forms of radioactivity; Nuclear structure, nuclei at the drip lines, cluster phenomena; Reactions with radioactive ion beams; Nuclear astrophysics; Fundamental symmetries and interactions; Heaviest elements and fission; Radioactive ion beam production and experimental developments; Applications of exotic nuclei

  19. Corrections for hydrostatic atmospheric models: radii and effective temperatures of Wolf Rayet stars

    International Nuclear Information System (INIS)

    Loore, C. de; Hellings, P.; Lamers, H.J.G.L.M.

    1982-01-01

    With the assumption of plane-parallel hydrostatic atmospheres, used generally for the computation of evolutionary models, the radii of WR stars are seriously underestimated. The true atmospheres may be very extended, due to the effect of the stellar wind. Instead of these hydrostatic atmospheres the authors consider dynamical atmospheres adopting a velocity law. The equation of the optical depth is integrated outwards using the equation of continuity. The ''hydrostatic'' radii are to be multiplied with a factor 2 to 8, and the effective temperatures with a factor 0.8 to 0.35 when Wolf Rayet characteristics for the wind are considered, and WR mass loss rates are used. With these corrections the effective temperatures of the theoretical models, which are helium burning Roche lobe overflow remnants, range between 30,000 K and 50,000 K. Effective temperatures calculated in the hydrostatic hypothesis can be as high as 150,000 K for helium burning RLOF-remnants with WR mass loss rates. (Auth.)

  20. Calculation of the radii of neutron rich light exotic nuclei

    International Nuclear Information System (INIS)

    Charagi, S.K.; Gupta, S.K.

    1991-01-01

    The interaction cross section of a few unstable neutron rich nuclei have been measured using exotic isotope beams produced through the projectile fragmentation process in high energy heavy-ion collisions. Interaction cross section of He, Li, Be and B isotope projectiles with Be, C and Al targets have thus been measured at 790 MeV/nucleon. We have made a comprehensive analysis of the data on the interaction cross section, to extract the radii of these neutron rich light nuclei. 7 refs., 1 fig., 3 tabs

  1. Nuclear moments and charge radii of argon isotopes between the neutron-shell closures N=20 and N=28

    CERN Document Server

    Blaum, K; Lassen, J; Lievens, P; Marinova, K; Neugart, R

    2008-01-01

    We report the measurement of optical isotope shifts for $^{40-44}\\!$Ar relative to $^{38}$Ar from which changes in the mean square nuclear charge radii across the 1$\\scriptstyle{f}_{7/2}$ neutron shell are deduced. In addition, the hyperfine structure of $^{41\\!}$Ar and $^{43}$Ar yields the spins, magnetic dipole and electric quadrupole moments, in particular the spin $\\,\\scriptstyle\\textrm{I}$ = 5/2 for $\\,^{43}\\!$Ar. The investigations were carried out by fast-beam collinear laser spectroscopy using highly sensitive detection based on optical pumping and state-selective collisional ionization. Mean square charge radii are now known from $^{32}$Ar to $^{46}$Ar, covering sd-shell as well as $\\scriptstyle{f}_{7/2}$-shell nuclei. They are discussed in the framework of spherical SGII Skyrme-type Hartree-Fock calculations, semi-empirically corrected for quadrupole core polarization. The Zamick-Talmi formula excellently describes the charge radii across the $\\scriptstyle{f}_{7/2}$ neutron shell, as it does for the...

  2. Systematics of interaction and strong absorption radii determined from heavy-ion elastic scattering

    International Nuclear Information System (INIS)

    Birkelund, J.R.; Huizenga, J.R.

    1977-01-01

    Various methods for determining the strong absorption radius for light and intermediate mass nuclei are discussed. It is found that this determination in terms of the half-density radii of the target and projectile is more accurate over the whole range of available data than the other simple parametrizations. 62 references

  3. A new perspective on charge radii around Z = 82

    Energy Technology Data Exchange (ETDEWEB)

    Cocolios, T. E., E-mail: thomas.cocolios@kuleuven.be [KU Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    2017-11-15

    In the last 35 years, a large amount of data on the changes in the mean-square charge radii, δ〈r{sup 2}〉, around the lead region has been gathered. Isotopic chains are often normalised and compared to reduce the impact of systematic uncertainties of the extracted δ〈r{sup 2}〉 from the isotope shifts. However, this biased picture can obscure other interesting effects that are apparent in absolute scale. In this contribution, we review the extent of the knowledge on the δ〈r{sup 2}〉 in the lead region in addition to observations on the absolute scale.

  4. Research on Flow Pattern of Nitrogen Tetroxide Liquid in the Different Bend Radii Pipes

    Directory of Open Access Journals (Sweden)

    Hao Pengfei

    2016-01-01

    Full Text Available N2O4 is a common rocket fuel propellants, it has the characteristics of low boiling point and a large viscosity , the friction between viscosity fluids and pipeline dramatic leads to a huge sticky heat, therefore, the vaporization phenomenon often occurs in the pipeline, particularly in bending of the viscous heat. For this reason, the research of the different bending radii vaporized fluid conditions for optimizing the piping and precise the filling flow is significant. In this paper, the MIXTURE mixed flow model is used to achieve the numerical simulation the pipelines filling of the three different bending radii, it still have not solved the mass transfer problem between the different phases. Therefore, the custom functions are needed to define the mass transfer problems from the liquid phase to the vapor phase. Though the contrast among the volume phase cloud of six different elbow models , we have the following conclusions: 1 In the entire pipeline transportation, the distribution vaporization rate from the inlet pipe to the outlet pipe follows the distribution of the first increasing and then decreasing, the gas rates of the elbow area is highest; 2Analyzing the sticky heat for different bend radii, we have the conclusion that the lowest bending vaporization the of the optimal radius is 0.45m. The above conclusions are drawn in good agreement with the actual law, can effectively guide the engineering practice, have important significance for the future design for the optimization of the fuel pipeline transportation.

  5. Laser measurements of radii and moments of barium nuclei near the proton drip line

    International Nuclear Information System (INIS)

    Eastham; Smith, J.R.H.; Groves, J.

    1987-01-01

    A new technique of laser spectroscopy has been used to measure the magnetic dipole and electric quadrupole moment of /sup 121/Ba, and the r.m.s. charge radii of /sup 120,121/Ba. The results are discussed in terms of the unified model

  6. Protein Nano-Object Integrator (ProNOI for generating atomic style objects for molecular modeling

    Directory of Open Access Journals (Sweden)

    Smith Nicholas

    2012-12-01

    Full Text Available Abstract Background With the progress of nanotechnology, one frequently has to model biological macromolecules simultaneously with nano-objects. However, the atomic structures of the nano objects are typically not available or they are solid state entities. Because of that, the researchers have to investigate such nano systems by generating models of the nano objects in a manner that the existing software be able to carry the simulations. In addition, it should allow generating composite objects with complex shape by combining basic geometrical figures and embedding biological macromolecules within the system. Results Here we report the Protein Nano-Object Integrator (ProNOI which allows for generating atomic-style geometrical objects with user desired shape and dimensions. Unlimited number of objects can be created and combined with biological macromolecules in Protein Data Bank (PDB format file. Once the objects are generated, the users can use sliders to manipulate their shape, dimension and absolute position. In addition, the software offers the option to charge the objects with either specified surface or volumetric charge density and to model them with user-desired dielectric constants. According to the user preference, the biological macromolecule atoms can be assigned charges and radii according to four different force fields: Amber, Charmm, OPLS and PARSE. The biological macromolecules and the atomic-style objects are exported as a position, charge and radius (PQR file, or if a default dielectric constant distribution is not selected, it is exported as a position, charge, radius and epsilon (PQRE file. As illustration of the capabilities of the ProNOI, we created a composite object in a shape of a robot, aptly named the Clemson Robot, whose parts are charged with various volumetric charge densities and holds the barnase-barstar protein complex in its hand. Conclusions The Protein Nano-Object Integrator (ProNOI is a convenient tool for

  7. Commissioning of a new photon detection system for charge radii measurements of neutron-deficient Ca

    Science.gov (United States)

    Watkins, J.; Garand, D.; Miller, A. J.; Minamisono, K.; Everett, N.; Powel, R. C.; Maaß, B.; Nörtershäuser, W.; Kalman, C.; Lantis, J.; Kujawa, C.; Mantica, P.

    2017-09-01

    Calcium is unique for its possession of two stable isotopes of ``doubly magic'' nuclei at proton and neutron numbers (Z , N) = (20 , 20) and (20 , 28) . Recent charge radii measurements of neutron-rich calcium isotopes yielded an upward trend beyond current theoretical predictions. At the BECOLA facility at NSCL/MSU, Ca charge radii measurements will be extended to the neutron-deficient regime using collinear laser spectroscopy. A new photon detection system with an ellipsoidal reflector and a compound parabolic concentrator has been commissioned for the experiment. The system increases the signal-to-noise ratio by reducing background, which is critical for the low production rates of the Ca experiment. Details of the system and results of the characterization tests will be discussed. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft Grant SFB 1245.

  8. The radii and masses of dwarf Cepheids

    International Nuclear Information System (INIS)

    Fernley, J.A.; Jameson, R.F.; Sherrington, M.R.; Skillen, I.

    1987-01-01

    The authors present VJK photometry for the dwarf Cepheids CY Aqr, YZ Boo and VZ Cnc, and a radial velocity curve for CY Aqr. Using these data, plus radial velocity curves taken from the literature, Wesselink-type radii, and hence absolute magnitudes and masses, are derived for the three stars. Using these results, plus previously published work, a mean 'pulsation' mass for dwarf Cepheids of 1.2 +-0.3M solar mass is determined. If dwarf Cepheids are early post-main-sequence stars this is less than their 'evolutionary' mass by the ratio Msub(puls)/Msub(evol)approx.0.75. Previously published data on period changes show an order of magnitude larger than predicted by early post-main-sequence evolutionary tracks. The possibility that these stars are at a more advanced evolutionary state is briefly discussed. The properties of fundamental and possible/probable overtone pulsators are compared. Finally attention is drawn to the small cycle-to-cycle variations in dwarf Cepheid light curves noted by many observers and the possible link between these variations and delta Scuti behaviour. (author)

  9. A Study of Confined Helium Atom

    International Nuclear Information System (INIS)

    Xie Wenfang

    2007-01-01

    The helium atom confined by a spherical parabolic potential well is studied employing the adiabatic hyperspherical approach method. Total energies of the ground and three low-excited states are obtained as a function of the confined potential radii. We find that the energies of a spherical parabolic potential well are in good agreement with those of an impenetrable spherical box for the larger confined potential radius. We find also that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values. The results for the three-dimensional spherical potential well and the two-dimensional disc-like potential well are compared with each other. We find that the energy difference between states in a two-dimensional parabolic potential is also obviously larger than the corresponding levels for a spherical parabolic potential.

  10. Charge radii and electromagnetic moments of Li and Be isotopes from the ab initio no-core shell model

    International Nuclear Information System (INIS)

    Forssen, C.; Caurier, E.; Navratil, P.

    2009-01-01

    Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole and magnetic-dipole moments are in good agreement with experimental results with the exception of the 11 Li charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the quadrupole moments are about 10% too small. The small magnitude of the 6 Li quadrupole moment is reproduced, and with the CD-Bonn NN potential, also its correct sign

  11. The distribution of masses and radii of white-dwarf stars

    International Nuclear Information System (INIS)

    Shipman, H.L.

    1978-01-01

    The status of determinations of white dwarf radii by model atmosphere methods is reviewed. The results are that (i) the mean radius of a sample of 95 hydrogen-rich stars with parallaxes is 0.0131 R(Sun); (ii) the mean radius of a sample of 13 helium-rich stars is 0.011 R(Sun), indistinguishably different from the radius of the hydrogen-rich stars; and (iii) that the most serious limitation on our knowledge of the mean radius of white dwarfs is the influence of selection effects. An estimate of the selection effects indicates that the true mean white dwarf radius is near 0.011 R(Sun). (Auth.)

  12. Trapping of self-interstitials at manganese atoms in electron-irradiated dilute AlMn alloys

    International Nuclear Information System (INIS)

    Bartels, A.; Dworschak, F.

    1985-01-01

    Dilute AlMn alloys were irradiated isothermally at different temperatures in stage II with 1.8 MeV electrons and the resistivity damage rates were measured as a function of the residual resistivity increase. The results demonstrate that Mn atoms provide deep traps at least up to 150 K for mobile interstitials. A quantitative evaluation of the data with respect to trapping radii is somewhat handicapped by the fact that the resistivity contribution of a Mn-Al interstitial complex was found to be considerably less than the sum of the resistivity contributions of an isolated solute Mn atom and an Al self-interstitial. The results can be explained by a model which assumes that both the trapping radius and the resistivity contribution of solute-self-interstitial complexes increase with the number of trapped interstitials. (author)

  13. Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.

    Science.gov (United States)

    Meroni, Alice; Lazzaro, Federico; Muzi-Falconi, Marco; Podestà, Alessandro

    2018-01-01

    We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.

  14. Rare-earth nuclei: Radii, isotope-shifts and deformation properties in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.

    1996-01-01

    A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β 2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N=82, the RMF theory predicts the well-known onset of prolate deformation at about N=88, which saturates at about N=102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)

  15. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    Science.gov (United States)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  16. LARGER PLANET RADII INFERRED FROM STELLAR ''FLICKER'' BRIGHTNESS VARIATIONS OF BRIGHT PLANET-HOST STARS

    International Nuclear Information System (INIS)

    Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua

    2014-01-01

    Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ( f licker ) of stars can be used to measure log g to a high accuracy of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T eff = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested

  17. Form factors and charge radii in a quantum chromodynamics-inspired potential model using variationally improved perturbation theory

    International Nuclear Information System (INIS)

    Hazarika, Bhaskar Jyoti; Choudhury, D.K.

    2015-01-01

    We use variationally improved perturbation theory (VIPT) for calculating the elastic form factors and charge radii of D, D s , B, B s and B c mesons in a quantum chromodynamics (QCD)-inspired potential model. For that, we use linear-cum-Coulombic potential and opt the Coulombic part first as parent and then the linear part as parent. The results show that charge radii and form factors are quite small for the Coulombic parent compared to the linear parent. Also, the analysis leads to a lower as well as upper bounds on the four-momentum transfer Q 2 , hinting at a workable range of Q 2 within this approach, which may be useful in future experimental analyses. Comparison of both the options shows that the linear parent is the better option. (author)

  18. Consequences of the proposed near equality of neutron and proton radii in the calcium isotopes

    International Nuclear Information System (INIS)

    Zamick, L.

    1976-01-01

    If the difference in neutron and proton radii in the Calcium Isotopes is much less than has up to now been calculated, one does have a mechanism for solving the Nolen-Schiffer anomaly; but then one runs into difficulty with other quantities such as the renormalized effective interaction between identical nucleons. (B.G.)

  19. A new version of PIRK (elastic pion-nucleus scattering) to handle differing proton and neutron radii

    International Nuclear Information System (INIS)

    Funsten, H.O.

    1979-01-01

    This program is a modification of the Eisenstein-Miller program (1974) for calculating elastic pion-nucleus differential cross sections using free π-N scattering amplitudes. This revision permits the use of separate proton and neutron radii for the nuclear density function rho(r). (Auth.)

  20. Neutron star radii, universal relations, and the role of prior distributions

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, A.W. [University of Tennessee, Department of Physics and Astronomy, Knoxville, TN (United States); Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN (United States); Lattimer, J.M. [Stony Brook University, Dept. of Physics and Astronomy, Stony Brook, NY (United States); Brown, E.F. [Michigan State University, Department of Physics and Astronomy, East Lansing, MI (United States); Michigan State University, The Joint Institute for Nuclear Astrophysics-Center for the Evolution of the Elements, East Lansing, MI (United States); Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States)

    2016-02-15

    We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. In the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4M {sub CircleDot} neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. We also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia. (orig.)

  1. A novel stibacarbaborane cluster with adjacent antimony atoms exhibiting unique pnictogen bond formation that dominates its crystal packing.

    Science.gov (United States)

    Holub, Josef; Melichar, Petr; Růžičková, Zdeňka; Vrána, Jan; Wann, Derek A; Fanfrlík, Jindřich; Hnyk, Drahomír; Růžička, Aleš

    2017-10-17

    We have prepared nido-7,8,9,11-Sb 2 C 2 B 7 H 9 , the first cluster with simultaneous Sb-B, Sb-C and Sb-Sb atom pairs with interatomic separations with magnitudes that approach the respective sums of covalent radii. However, the length of the Sb-Sb separation in this cluster is slightly less than the sum of the covalent radii. Quantum chemical analysis has revealed that the crystal packing of nido-7,8,9,11-Sb 2 C 2 B 7 H 9 is predominantly dictated by pnictogen (Pn) bonding, an unconventional σ-hole interaction. Indeed, the interaction energy of a very strong Sb 2 H-B Pn-bond in the nido-7,8,9,11-Sb 2 C 2 B 7 H 9 dimer exceeds -6.0 kcal mol -1 . This is a very large value and is comparable to the strengths of known Pn-bonds in Cl 3 Pnπ complexes (Pn = As, Sb).

  2. Parametric Study of Amorphous High-Entropy Alloys formation from two New Perspectives: Atomic Radius Modification and Crystalline Structure of Alloying Elements

    Science.gov (United States)

    Hu, Q.; Guo, S.; Wang, J. M.; Yan, Y. H.; Chen, S. S.; Lu, D. P.; Liu, K. M.; Zou, J. Z.; Zeng, X. R.

    2017-01-01

    Chemical and topological parameters have been widely used for predicting the phase selection in high-entropy alloys (HEAs). Nevertheless, previous studies could be faulted due to the small number of available data points, the negligence of kinetic effects, and the insensitivity to small compositional changes. Here in this work, 92 TiZrHfM, TiZrHfMM, TiZrHfMMM (M = Fe, Cr, V, Nb, Al, Ag, Cu, Ni) HEAs were prepared by melt spinning, to build a reliable and sufficiently large material database to inspect the robustness of previously established parameters. Modification of atomic radii by considering the change of local electronic environment in alloys, was critically found out to be superior in distinguishing the formation of amorphous and crystalline alloys, when compared to using atomic radii of pure elements in topological parameters. Moreover, crystal structures of alloying element were found to play an important role in the amorphous phase formation, which was then attributed to how alloying hexagonal-close-packed elements and face-centered-cubic or body-centered-cubic elements can affect the mixing enthalpy. Findings from this work not only provide parametric studies for HEAs with new and important perspectives, but also reveal possibly a hidden connection among some important concepts in various fields.

  3. PubChem atom environments.

    Science.gov (United States)

    Hähnke, Volker D; Bolton, Evan E; Bryant, Stephen H

    2015-01-01

    Atom environments and fragments find wide-spread use in chemical information and cheminformatics. They are the basis of prediction models, an integral part in similarity searching, and employed in structure search techniques. Most of these methods were developed and evaluated on the relatively small sets of chemical structures available at the time. An analysis of fragment distributions representative of most known chemical structures was published in the 1970s using the Chemical Abstracts Service data system. More recently, advances in automated synthesis of chemicals allow millions of chemicals to be synthesized by a single organization. In addition, open chemical databases are readily available containing tens of millions of chemical structures from a multitude of data sources, including chemical vendors, patents, and the scientific literature, making it possible for scientists to readily access most known chemical structures. With this availability of information, one can now address interesting questions, such as: what chemical fragments are known today? How do these fragments compare to earlier studies? How unique are chemical fragments found in chemical structures? For our analysis, after hydrogen suppression, atoms were characterized by atomic number, formal charge, implicit hydrogen count, explicit degree (number of neighbors), valence (bond order sum), and aromaticity. Bonds were differentiated as single, double, triple or aromatic bonds. Atom environments were created in a circular manner focused on a central atom with radii from 0 (atom types) up to 3 (representative of ECFP_6 fragments). In total, combining atom types and atom environments that include up to three spheres of nearest neighbors, our investigation identified 28,462,319 unique fragments in the 46 million structures found in the PubChem Compound database as of January 2013. We could identify several factors inflating the number of environments involving transition metals, with many

  4. Magnetic Inflation and Stellar Mass. II. On the Radii of Single, Rapidly Rotating, Fully Convective M-Dwarf Stars

    Science.gov (United States)

    Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg

    2018-06-01

    Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.

  5. Analysis of transverse mass dependence of Bose-Einstein correlation radii using the DELPHI data

    International Nuclear Information System (INIS)

    Loerstad, B.; Smirnova, O.G.

    1997-01-01

    The study of the directional dependence of two-particle correlations in the hadronic decays of the Z boson is performed, using the data collected by the DELPHI experiment. Investigation of the dependence of correlation radii on the transverse mass reveals a behaviour similar to that in heavy ion collisions, namely, an approximate 1/√m t dependence. Comparison to a simple Monte Carlo model shows a similar tendency

  6. Empirical Accurate Masses and Radii of Single Stars with TESS and Gaia

    Science.gov (United States)

    Stassun, Keivan G.; Corsaro, Enrico; Pepper, Joshua A.; Gaudi, B. Scott

    2018-01-01

    We present a methodology for the determination of empirical masses of single stars through the combination of three direct observables with Gaia and Transiting Exoplanet Survey Satellite (TESS): (i) the surface gravity via granulation-driven variations in the TESS light curve, (ii) the bolometric flux at Earth via the broadband spectral energy distribution, and (iii) the distance via the Gaia parallax. We demonstrate the method using 525 Kepler stars for which these measures are available in the literature, and show that the stellar masses can be measured with this method to a precision of ∼25%, limited by the surface-gravity precision of the granulation “flicker” method (∼0.1 dex) and by the parallax uncertainties (∼10% for the Kepler sample). We explore the impact of expected improvements in the surface gravity determinations—through the application of granulation background fitting and the use of recently published granulation-metallicity relations—and improvements in the parallaxes with the arrival of the Gaia second data release. We show that the application of this methodology to stars that will be observed by TESS should yield radii good to a few percent and masses good to ≈10%. Importantly, the method does not require the presence of an orbiting, eclipsing, or transiting body, nor does it require spatial resolution of the stellar surface. Thus, we can anticipate the determination of fundamental, accurate stellar radii and masses for hundreds of thousands of bright single stars—across the entire sky and spanning the Hertzsprung–Russell diagram—including those that will ultimately be found to host planets.

  7. Center-of-mass correction and confinement radii of the composite vector bosons

    International Nuclear Information System (INIS)

    Tadic, D.; Tadic, G.

    1985-01-01

    Describing a composite W boson by a center-of-mass--corrected bag model one finds a relation R/sub W/ 3 M/sub W/ 3 / f/sub W/ 2 approx. =R/sub rho/ 3 m/sub rho/ 3 / f/sub rho/ 2 for the confinement radii (R), masses, and coupling constants (f) of W and rho bosons. Using experimental values for f/sub rho/, m/sub rho/, and M/sub W/ and with f/sub W/ = 0.66, one obtains R/sub W//R/sub rho/approx. =2 x 10 -3 . f/sub rho/, f/sub W/, and masses can be calculated separately

  8. Local atomic characterization of LiCo1/3Ni1/3Mn1/3O2 cathode material

    International Nuclear Information System (INIS)

    Nedoseykina, Tatiana; Kim, Sung-Soo; Nitta, Yoshiaki

    2006-01-01

    Co, Ni and Mn K-edge XAFS investigation of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 as alternative cathode material to commercially used LiCoO 2 in lithium rechargeable battery has been performed. Parameters of a local atomic structure such as radii of metal-oxygen and metal-metal coordination shells and disorder in those shells have been determined. It has been found that the radius of the first coordination shell (metal-oxygen) as well as a local disorder in the second shell (metal-metal) around each of the 3d-metals are in a good agreement with obtained for superlattice model of √3 x √3] R30 o type in triangular lattice of sites by first principle calculation. Other parameters of the local atomic structure around Co, Ni and Mn atoms do not provide evidence for presence of superstructure in LiCo 1/3 Ni 1/3 Mn 1/3 O 2

  9. A study of atom zigzag chains on the surface of tungsten

    International Nuclear Information System (INIS)

    Audiffren, M.; Traimond, P.; Bardon, J.; Drechsler, M.

    1978-01-01

    Nishigaki and Nakamura have observed zigzag chains on the central (011) face of tungsten after field evaporation at T > 140 K. In this paper, a study of the formation, disappearance and structure of such chains is described. Tungsten tips of small radii down to 60 A were used. Chains of 3 to 9 spots, that are clearly visible, are found even at 90 K. Four different structure models of the zigzag chains are discussed, including the multibranch model proposed by the japanese authors. The interpretation of the experimental results shows fairly clearly that the real zigzag chain structure is a special non-dense structure. It must be formed by a local displacement of the tungsten adatoms in the field. Without the field, a zigzag chain is transformed into a two-dimensional cluster of the nearest neighbour atom by a small increase in temperature. If the field is reintroduced, the cluster can revert to the initial zigzag structure. The zigzag structure is interpreted as being caused by forces of repulsion between the atom dipoles. (Auth.)

  10. Uniform spatial distribution of collagen fibril radii within tendon implies local activation of pC-collagen at individual fibrils

    Science.gov (United States)

    Rutenberg, Andrew D.; Brown, Aidan I.; Kreplak, Laurent

    2016-08-01

    Collagen fibril cross-sectional radii show no systematic variation between the interior and the periphery of fibril bundles, indicating an effectively constant rate of collagen incorporation into fibrils throughout the bundle. Such spatially homogeneous incorporation constrains the extracellular diffusion of collagen precursors from sources at the bundle boundary to sinks at the growing fibrils. With a coarse-grained diffusion equation we determine stringent bounds, using parameters extracted from published experimental measurements of tendon development. From the lack of new fibril formation after birth, we further require that the concentration of diffusing precursors stays below the critical concentration for fibril nucleation. We find that the combination of the diffusive bound, which requires larger concentrations to ensure homogeneous fibril radii, and lack of nucleation, which requires lower concentrations, is only marginally consistent with fully processed collagen using conservative bounds. More realistic bounds may leave no consistent concentrations. Therefore, we propose that unprocessed pC-collagen diffuses from the bundle periphery followed by local C-proteinase activity and subsequent collagen incorporation at each fibril. We suggest that C-proteinase is localized within bundles, at fibril surfaces, during radial fibrillar growth. The much greater critical concentration of pC-collagen, as compared to fully processed collagen, then provides broad consistency between homogeneous fibril radii and the lack of fibril nucleation during fibril growth.

  11. 2S-4S spectroscopy in hydrogen atom: The new value for the Rydberg constant and the proton charge radius

    Science.gov (United States)

    Kolachevsky, N.; Beyer, A.; Maisenbacher, L.; Matveev, A.; Pohl, R.; Khabarova, K.; Grinin, A.; Lamour, T.; Yost, D. C.; Haensch, T. W.; Udem, Th.

    2018-02-01

    The core of the "proton radius puzzle" is the discrepancy of four standard deviations between the proton root mean square charge radii (rp) determined from regular hydrogen (H), and the muonic hydrogen atom (μp). We have measured the 2S-4P transition frequency in H, utilizing a cryogenic beam of H and directly demonstrate that quantum interference of neighboring atomic resonances can lead to line shifts much larger than the proton radius discrepancy. Using an asymmetric fit function we obtain rp = 0.8335(95) fm and the Rydberg constant R∞ = 10 973 731.568 076 (96) m-1. The new value for rp is 3.3 combined standard deviations smaller than the latest CODATA value, but in good agreement with the value from μp.

  12. On the Radii of Close-in Giant Planets.

    Science.gov (United States)

    Burrows; Guillot; Hubbard; Marley; Saumon; Lunine; Sudarsky

    2000-05-01

    The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.

  13. Measurement of Moments and Radii of Light Nuclei by Collinear Fast-Beam Laser Spectroscopy and $\\beta$-NMR Spectroscopy

    CERN Multimedia

    Marinova, K P

    2002-01-01

    Nuclear Moments and radii of light unstable isotopes are investigated by applying different high-sensitivity and high-resolution techniques based on collinear fast-beam laser spectroscopy. A study of nuclear structure in the sd shell is performed on neon isotopes in the extended chain of $^{17-28}$Ne, in particular on the proton-halo candidate $^{17}$Ne. Measurements of hyperfine structure and isotope shift have become possible by introducing an ultra-sensitive non-optical detection method which is based on optical pumping, state-selective collisional ionization and $\\beta$-activity counting. The small effect of nuclear radii on the optical isotope shifts of light elements requires very accurate measurements. The errors are dominated by uncertainties of the Doppler shifts which are conventionally determined from precisely measured acceleration voltages. These uncertainties are removed by measuring the beam energy with simultaneous excitation of two optical lines in parallel / antiparallel beam configuration. ...

  14. CHARACTERIZATIONS ON BENDING EFFECT ON CUSTOMIZED SPLITTERS USING VARIOUS RADII OF ELLIPTICAL-SHAPED BLOCKS

    Directory of Open Access Journals (Sweden)

    L. S. SUPIAN

    2016-11-01

    Full Text Available Macro-bending effect unto polymer optical fiber (POF based splitters study is done to analyse the performance and characterizations using several bending radii of geometrical blocks that hold a customized prepared polymer fiber splitter. A pair of etched fibers with similar core diameters are attached to the ellipse-shaped blocks built using matching refractive index material where the blocks were built with various bending radii. The tapered fibers were lapped closely with some forces exerted upon them in order to stimulate the splitting of modes between the two fibers. This study is done by experimental set-up where each of the splitter ports is connected with optical power meter to measure the power output while pressure is exerted. Characterization is executed in order to investigate and analyse which bending radius gives the most optimize splitting ratio with considerable low loss for the particular splitter prepared. As for normal force of 0.3 lbF, the optimum splitting ratio with low loss is specified having bending radius, Rc, of 13 mm whilst for external force of 3.0 lbF, bending radius is found to be 19 mm. Small bending radius stimulates the radiation of rays into the second fiber while larger Rc gives longer coupling length that optimize the splitting ratios. Efficiencies between simulated values and experimental values are also analysed.

  15. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Peterson, D.L.; Mosher, D.; Roderick, N.F.

    1998-01-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh - Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ∼40 TW and energy of ∼325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ∼8 TW and energy of ∼70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh - Taylor instability observed in small-wire-number imploding loads. copyright 1998 American Institute of Physics

  16. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.

  17. Molecular single-bond covalent radii for elements 1-118.

    Science.gov (United States)

    Pyykkö, Pekka; Atsumi, Michiko

    2009-01-01

    A self-consistent system of additive covalent radii, R(AB)=r(A) + r(B), is set up for the entire periodic table, Groups 1-18, Z=1-118. The primary bond lengths, R, are taken from experimental or theoretical data corresponding to chosen group valencies. All r(E) values are obtained from the same fit. Both E-E, E-H, and E-CH(3) data are incorporated for most elements, E. Many E-E' data inside the same group are included. For the late main groups, the system is close to that of Pauling. For other elements it is close to the methyl-based one of Suresh and Koga [J. Phys. Chem. A 2001, 105, 5940] and its predecessors. For the diatomic alkalis MM' and halides XX', separate fits give a very high accuracy. These primary data are then absorbed with the rest. The most notable exclusion are the transition-metal halides and chalcogenides which are regarded as partial multiple bonds. Other anomalies include H(2) and F(2). The standard deviation for the 410 included data points is 2.8 pm.

  18. Application of the method of maximum likelihood to the determination of cepheid radii

    International Nuclear Information System (INIS)

    Balona, L.A.

    1977-01-01

    A method is described whereby the radius of any pulsating star can be obtained by applying the Principle of Maximum Likelihood. The relative merits of this method and of the usual Baade-Wesselink method are discussed in an Appendix. The new method is applied to 54 well-observed cepheids which include a number of spectroscopic binaries and two W Vir stars. An empirical period-radius relation is constructed and discussed in terms of two recent period-luminosity-colour calibrations. It is shown that the new method gives radii with an error of no more than 10 per cent. (author)

  19. Self-consistent theory of finite Fermi systems and radii of nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Tolokonnikov, S. V.

    2011-01-01

    Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

  20. On radii of neutron distributions in nuclei

    International Nuclear Information System (INIS)

    Varma, G.K.; Zamick, L.

    1978-01-01

    The analyses of the differences between rms radii (Δ=rsub(n) - rsub(p) of neutron and proton distributions are considered in a wide variety of nuclei. It is noted that apart from its own intrinsic interest, the quantity Δ is of importance for isotope shifts, core polarization contributions to the Coulomb energy difference of mirror pairs (Nolen-Schiffer anomaly) and the renormalization of the effective interaction. For example, if Δ were very small in 48 Ca then the Nolen-Schiffer anomaly could be explained by a core polarization mechanism. The various methods of determining Δ are considered critically and it is concluded that at present probably the most reliable method is high energy (approximately 1 GeV) proton-nucleon scattering. The different theoretical analyses based upon, e.g. the multiple diffraction theory (where Glauber amplitude is the leading term) or the optical potential (KMT) formalisms appear to be converging to essentially the same answer when analyzing the same data. High energy α-particles and medium energy pions can also become useful sources of information if higher order optical potentials are treated with care. It is found that Δ is rather large in 48 Ca, i.e. there is a neutron skin, so that the Nolen-Schiffer anomaly cannot be explained by a core polarization mechanism. The results of high energy proton-nucleus scattering are in excellent agreement with current density dependent Hartree-Fock calculation. (Auth.)

  1. Measurement of nuclear moments and radii by collinear laser spectroscopy

    CERN Multimedia

    Geithner, W R; Lievens, P; Kotrotsios, G; Silverans, R; Kappertz, S

    2002-01-01

    %IS304 %title\\\\ \\\\Collinear laser spectroscopy on a fast beam has proven to be a widely applicable and very efficient tool for measurements of changes in mean square nuclear charge radii, nuclear spins, magnetic dipole and electric quadrupole moments. Recent developments of extremely sensitive non-optical detection schemes enabled for some elements the extension of the measurements towards the very short-lived isotopes in the far wings of the ISOLDE production curves. The gain in sensitivity opens up new perspectives, particularly for measurements on lighter nuclei whose ground-state properties can be interpreted by large scale microscopic calculations instead of the more phenomenologic models used for heavier nuclei.\\\\ \\\\ For the sequence of argon isotopes $^{32-40}$Ar and $^{46}$Ar isotope shifts and nuclear moments were measured by optical pumping followed by state selective collisional ionization and detection of the $\\beta$-decay. Similarly, the low-background $\\alpha$-detection was used to extend earlie...

  2. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0010 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, DC 20375 (United States); Roderick, N.F. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. {bold 77}, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh{endash}Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of {approximately}40 TW and energy of {approximately}325 kJ show little change outside of a {plus_minus}15{percent} shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak {ital K}-shell (lines plus continuum) power of {approximately}8 TW and energy of {approximately}70 kJ show little change with radius. The minimal change in {ital K}-shell yield is in agreement with simple {ital K}-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh{endash}Taylor instability observed in small-wire-number imploding loads. {copyright} {ital 1998 American Institute of Physics.}

  3. Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC

    NARCIS (Netherlands)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arbor, N.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A R; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, T. O.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J. Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, T. O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jachołkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kramer, F.; Kravčáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kučera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X. G.; Luettig, P.; Lunardon, M.; Luparello, G.; Luzzi, C.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petráček, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J M; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J M; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Torii, H.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ulery, J.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Vannucci, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Xiang, C.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhou, Zhuo; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.

    2014-01-01

    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage

  4. Freeze-out radii extracted from three-pion cumulants in pp, p-Pb and Pb-Pb collisions at the LHC

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Aggarwal, Madan Mohan; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arbor, Nicolas; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellwied, Rene; Belmont Moreno, Ernesto; Belmont Iii, Ronald John; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gumbo, Mervyn; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Torii, Hisayuki; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Vannucci, Luigi; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zyzak, Maksym

    2014-12-12

    In high-energy collisions, the spatio-temporal size of the particle production region can be measured using the Bose-Einstein correlations of identical bosons at low relative momentum. The source radii are typically extracted using two-pion correlations, and characterize the system at the last stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. Such correlations can be suppressed using three-pion cumulant correlations. We present the first measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in pp, p-Pb and Pb-Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted in p-Pb collisions are found to be 5-15% larger than those in pp, while those in Pb-Pb are 35-55% larger than those in p-Pb. Our measurements disfavor models which incorporate substantially stronger collecti...

  5. The NuSTAR spectrum of Mrk 335: extreme relativistic effects within two gravitational radii of the event horizon?

    DEFF Research Database (Denmark)

    Parker, M. L.; Wilkins, D. R.; Fabian, A. C.

    2014-01-01

    gravitational radii (R-G) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 R-G as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3 sigma confidence level. By adding a spin-dependent upper...

  6. An atomic-force-microscopy study of the structure of surface layers of intact fibroblasts

    Science.gov (United States)

    Khalisov, M. M.; Ankudinov, A. V.; Penniyaynen, V. A.; Nyapshaev, I. A.; Kipenko, A. V.; Timoshchuk, K. I.; Podzorova, S. A.; Krylov, B. V.

    2017-02-01

    Intact embryonic fibroblasts on a collagen-treated substrate have been studied by atomic-force microscopy (AFM) using probes of two types: (i) standard probes with tip curvature radii of 2-10 nm and (ii) special probes with a calibrated 325-nm SiO2 ball radius at the tip apex. It is established that, irrespective of probe type, the average maximum fibroblast height is on a level of 1.7 μm and the average stiffness of the probe-cell contact amounts to 16.5 mN/m. The obtained AFM data reveal a peculiarity of the fibroblast structure, whereby its external layers move as a rigid shell relative to the interior and can be pressed inside to a depth dependent on the load only.

  7. Observations and Interpretations of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Barghouty, A. f.; Cohen, C. M. S.; Cummings, A. c.; Labrador, A. W.; vonRosenvinge, T. T.

    2009-01-01

    We discuss recently reported observations of energetic neutral hydrogen atoms (ENAs) from an X9 solar flare/coronal mass ejection event on 5 December 2006, located at E79. The observations were made by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV energetic neutral hydrogen atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. Taking into account ENA losses, we find that the observed ENAs must have been produced in the high corona at heliocentric distances > or equal to 2 solar radii. Although there are no CME images from this event, it is shown that CME-shock-accelerated protons can, in principle, produce a time-history consistent with the observations.

  8. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Flare

    Science.gov (United States)

    Barghouty, A. F.; Mewaldt, R. A.; Leske, R. A.; Shih, A. Y.; Stone, E. C.; Cohen, C. M. S.; Cummings, A. C.; Labrador, A. W.; vonRosenvinge, T. T.; Wiedenbeck, M. E.

    2009-01-01

    We discuss observations of energetic neutral hydrogen atoms (ENAs) from a solar flare/coronal mass ejection event reported by Mewaldt et al. (2009). The observations were made during the 5 December 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on STEREO A and B. Prior to the arrival of the main solar energetic particle (SEP) event at Earth, both LETs observed a sudden burst of 1.6 to 15 MeV particles arriving from the Sun. The derived solar emission profile, arrival directions, and energy spectrum all show that the atoms produced by either flare or shock-accelerated protons. RHESSI measurements of the 2.2-MeV gamma-ray line provide an estimate of the number of interacting flare-accelerated protons in this event, which leads to an improved estimate of ENA production by flare-accelerated protons. CME-driven shock acceleration is also considered. Taking into account ENA losses, we conclude that the observed ENAs must have been produced in the high corona at heliocentric distances .2 solar radii.

  9. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin, E-mail: wangxx@tsinghua.edu.cn [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  10. Collinear Laser Spectroscopy of Potassium Nuclear Charge Radii beyond N = 28

    CERN Document Server

    AUTHOR|(CDS)2078903; Jochim, Selim

    Nuclear ground-state properties, such as spin, charge radius, and magnetic dipole and electric quadrupole moments are important quantities to describe the nucleus. The comparison of experimental data to shell-model calculations gives insight in the underlying nuclear structure and composition of ground-state wave functions. Spins and charge radii can also be used to test the predictions of state-of-the-art microscopic models. This work contributes to these studies providing new measurements in the region of the nuclear chart around the magic proton number Z = 20. The data have been obtained at the collinear laser spectroscopy setup COLLAPS located at the radioactive-ion-beam facility ISOLDE at CERN. Using bunched-beam laser spectroscopy hyperne structure spectra of the potassium isotopes with mass number A = 48 51 could be recorded for the first time. Ground-state spins and isotope shifts could be deduced for 4851K contributing to the evolution of the d3=2 orbital beyond the shell closure at the magi...

  11. Rotating neutron stars with exotic cores: masses, radii, stability

    Energy Technology Data Exchange (ETDEWEB)

    Haensel, P.; Bejger, M.; Fortin, M.; Zdunik, L. [Polish Academy of Sciences, N. Copernicus Astronomical Center, Warszawa (Poland)

    2016-03-15

    A set of theoretical mass-radius relations for rigidly rotating neutron stars with exotic cores, obtained in various theories of dense matter, is reviewed. Two basic observational constraints are used: the largest measured rotation frequency (716Hz) and the maximum measured mass (2M {sub CircleDot}). The present status of measuring the radii of neutron stars is described. The theory of rigidly rotating stars in general relativity is reviewed and limitations of the slow rotation approximation are pointed out. Mass-radius relations for rotating neutron stars with hyperon and quark cores are illustrated using several models. Problems related to the non-uniqueness of the crust-core matching are mentioned. Limits on rigid rotation resulting from the mass-shedding instability and the instability with respect to the axisymmetric perturbations are summarized. The problem of instabilities and of the back-bending phenomenon are discussed in detail. Metastability and instability of a neutron star core in the case of a first-order phase transition, both between pure phases, and into a mixed-phase state, are reviewed. The case of two disjoint families (branches) of rotating neutron stars is discussed and generic features of neutron-star families and of core-quakes triggered by the instabilities are considered. (orig.)

  12. Pulsed-voltage atom probe tomography of low conductivity and insulator materials by application of ultrathin metallic coating on nanoscale specimen geometry.

    Science.gov (United States)

    Adineh, Vahid R; Marceau, Ross K W; Chen, Yu; Si, Kae J; Velkov, Tony; Cheng, Wenlong; Li, Jian; Fu, Jing

    2017-10-01

    We present a novel approach for analysis of low-conductivity and insulating materials with conventional pulsed-voltage atom probe tomography (APT), by incorporating an ultrathin metallic coating on focused ion beam prepared needle-shaped specimens. Finite element electrostatic simulations of coated atom probe specimens were performed, which suggest remarkable improvement in uniform voltage distribution and subsequent field evaporation of the insulated samples with a metallic coating of approximately 10nm thickness. Using design of experiment technique, an experimental investigation was performed to study physical vapor deposition coating of needle specimens with end tip radii less than 100nm. The final geometries of the coated APT specimens were characterized with high-resolution scanning electron microscopy and transmission electron microscopy, and an empirical model was proposed to determine the optimal coating thickness for a given specimen size. The optimal coating strategy was applied to APT specimens of resin embedded Au nanospheres. Results demonstrate that the optimal coating strategy allows unique pulsed-voltage atom probe analysis and 3D imaging of biological and insulated samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  14. Uniformity of cylindrical imploding underwater shockwaves at very small radii

    Science.gov (United States)

    Yanuka, D.; Rososhek, A.; Bland, S. N.; Krasik, Ya. E.

    2017-11-01

    We compare the convergent shockwaves generated from underwater, cylindrical arrays of copper wire exploded by multiple kilo-ampere current pulses on nanosecond and microsecond scales. In both cases, the pulsed power devices used for the experiments had the same stored energy (˜500 J) and the wire mass was adjusted to optimize energy transfer to the shockwave. Laser backlit framing images of the shock front were achieved down to the radius of 30 μm. It was found that even in the case of initial azimuthal non-symmetry, the shock wave self-repairs in the final stages of its motion, leading to a highly uniform implosion. In both these and previous experiments, interference fringes have been observed in streak and framing images as the shockwave approached the axis. We have been able to accurately model the origin of the fringes, which is due to the propagation of the laser beam diffracting off the uniform converging shock front. The dynamics of the shockwave and its uniformity at small radii indicate that even with only 500 J stored energies, this technique should produce pressures above 1010 Pa on the axis, with temperatures and densities ideal for warm dense matter research.

  15. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    Science.gov (United States)

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  16. The Golden ratio, ionic and atomic radii and bond lengths

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Rajalakshmi

    2005-01-01

    Roč. 103, 6-8 (2005), s. 877-882 ISSN 0026-8976 R&D Projects: GA MPO(CZ) 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : Bohr radius * bond lengths * axial ratios Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.351, year: 2005

  17. Positron states and nanoobjects in proton-irradiated quartz single crystals: Positronium atom in quartz

    International Nuclear Information System (INIS)

    Grafutin, V. I.; Zaluzhnyi, A. G.; Timoshenkov, S. P.; Britkov, O. M.; Ilyukhina, O. V.; Myasishcheva, G. G.; Prokop'ev, E. P.; Funtikov, Yu. V.

    2008-01-01

    The influence of proton bombardment and metal atom impurities on the structure of quartz single crystals has been studied. The related defects have been studied using positron annihilation spectroscopy (angular correlation of positron-annihilation photons), acoustic absorption, and optical absorption measurements. It is shown that the presence of a narrow component f in the angular distribution of annihilation photons (ADAP), which is related to the formation of parapositronium, determines a high sensitivity of this method with respect to features of the crystal structure of quartz. It is established that the defectness of the structure of irradiated quartz crystals can be characterized by the ratio f/f 0 of the relative intensities of narrow components in the ADAP curves measured before (f 0 ) and after (f) irradiation. Any process leading to a decrease in the probability of positronium formation (e.g., positron loss as a result of the trapping on defects and the interaction with impurity atoms and lattice distortions) decreases the intensity of the narrow component. Based on the ADAP data, estimates of the radii and concentrations of nanodefects in quartz have been obtained and their variation upon annealing at temperatures up to T = 873 K has been studied

  18. Sub-coulomb transfer method of a nucleon for measure orbital radii; Metodo de transferencia sub-coulombiana de un nucleon para medir radios orbitales

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Murillo, G.; Ramirez, J.; Avila, O. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1986-04-15

    The neutron transfer method is revised to measure neutron orbital radii and possible interest systems to apply it are determined. Its were carried out DWBA preliminary calculations for the system {sup 209} Bi(d,t) {sup 208} Bi. (Author)

  19. Excitation strengths and transition radii differences of one-phonon quadrupole excitations from electron scattering on {sup 92,94}Zr and {sup 94}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Sheikh Obeid, Abdulrahman

    2014-11-01

    In the framework of this thesis electron scattering experiments on low-energy excitations of {sup 92}Zr and {sup 94}Zr were performed at the S-DALINAC in a momentum transfer range q=0.3-0.6 fm{sup -1}. The nature of one-phonon symmetric and mixed-symmetric 2{sup +} and 3{sup -} states of {sup 92}Zr was investigated by comparison with predictions of the quasi-particle phonon model (QPM). Theoretical (e,e') cross sections have been calculated within the distorted wave Born approximation (DWBA) to account for Coulomb distortion effects. The reduced strengths of the one-quadrupole phonon states and the one-octupole phonon state have been extracted. The similarity of the momentum-transfer dependence of the form factors between the 2{sup +} states supports the one-phonon nature of the 2{sup +}{sub 2} state of {sup 92}Zr. A new method based on the Plane Wave Born Approximation (PWBA) for a model-independent determination of the ratio of the E2 transition strengths of fully symmetric (FSS) and mixed-symmetry (MSS) one-phonon excitations of heavy vibrational nuclei is introduced. Due to the sensitivity of electron scattering to charge distributions, the charge transition-radii difference can be determined. The basic assumptions (independence from the ratio of Coulomb corrections and from absolute values of transition radii) are tested within the Tassie model, which makes no specific assumptions about the structure of the states other than collectivity. It is shown that a PWBA analysis of the form factors, which usually fails for heavy nuclei, can nevertheless be applied in a relative analysis. This is a new promising approach to determine the ground state transition strength of the 2{sup +} MSS of vibrational nuclei with a precision limited only by the experimental information about the B(E2;2{sup +}{sub 1}→0{sup +}{sub 1}) strength. The PWBA approach furthermore provides information about differences of the proton transition radii of the respective states

  20. Particle-number fluctuations and neutron-proton pairing effects on proton and neutron radii of even-even N Almost-Equal-To Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Douici, M.; Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R. [Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Institut des Sciences et Technologie, Centre Universitaire de Khemis Miliana, Route de Theniet-El-Had, 44225 Khemis-Milia (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria) and Centre de Recherche Nucleaire d' Alger, COMENA, BP399 Alger-Gare, Alger (Algeria); Laboratoire de Physique Theorique, Faculte de Physique, USTHB BP 32 El-Alia, 16111 Bab-Ezzouar, Alger (Algeria)

    2012-10-20

    The particle-number fluctuation effect on the root-mean-square (rms) proton and neutron radii of even-even N Almost-Equal-To Z nuclei is studied in the isovector neutron-proton (np) pairing case using an exact particle-number projection method and the Woods-Saxon model.

  1. Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii

    Science.gov (United States)

    Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.

    2007-01-01

    Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.

  2. Nuclear charge radii of light isotopes based on frequency comb measurements

    International Nuclear Information System (INIS)

    Zakova, Monika

    2010-01-01

    Optical frequency comb technology has been used in this work for the first time to investigate the nuclear structure of light radioactive isotopes. Therefore, three laser systems were stabilized with different techniques to accurately known optical frequencies and used in two specialized experiments. Absolute transition frequency measurements of lithium and beryllium isotopes were performed with accuracy on the order of 10 -10 . Such a high accuracy is required for the light elements since the nuclear volume effect has only a 10 -9 contribution to the total transition frequency. For beryllium, the isotope shift was determined with an accuracy that is sufficient to extract information about the proton distribution inside the nucleus. A Doppler-free two-photon spectroscopy on the stable lithium isotopes 6,7 Li was performed in order to determine the absolute frequency of the 2S → 3S transition. The achieved relative accuracy of 2 x 10 -10 is improved by one order of magnitude compared to previous measurements. The results provide an opportunity to determine the nuclear charge radius of the stable and short-lived isotopes in a pure optical way but this requires an improvement of the theoretical calculations by two orders of magnitude. The second experiment presented here was performed at ISOLDE/CERN, where the absolute transition frequencies of the D 1 and D 2 lines in beryllium ions for the isotopes 7,9,10,11 Be were measured with an accuracy of about 1 MHz. Therefore, an advanced collinear laser spectroscopy technique involving two counter-propagating frequency-stabilized laser beams with a known absolute frequency was developed. The extracted isotope shifts were combined with recent accurate mass shift calculations and the root-mean square nuclear charge radii of 7,10 Be and the one-neutron halo nucleus 11 Be were determined. Obtained charge radii are decreasing from 7 Be to 10 Be and increasing again for 11 Be. While the monotone decrease can be explained by a

  3. A new version of DWPI (inelastic pion-nucleus scattering) to incorporate microscopic form factors and differing proton and neutron radii

    International Nuclear Information System (INIS)

    Funsten, H.O.

    1979-01-01

    This is a modification of the Eisenstein-Miller program for calculation of collective inelastic pion-nucleus differential cross sections using free π-N scattering amplitudes. This revision permits the additional use of microscopic (shell model) proton and neutron form factors. It also incorporates separate proton and neutron radii for the nuclear density rho(r) generating the distorted wave optical potential. (Auth.)

  4. On the Sizes of the North Atlantic Basin Tropical Cyclones Based on 34- and 64-kt Wind Radii Data, 2004-2013

    Science.gov (United States)

    Wilson, Robert M.

    2014-01-01

    At end of the 2012 hurricane season the National Hurricane Center retired the original HURDAT dataset and replaced it with the newer version HURDAT2, which reformatted the original data and included additional information, in particular, estimates of the 34-, 50, and 64-kt wind radii for the interval 2004-2013. During the brief 10-year interval, some 164 tropical cyclones are noted to have formed in the North Atlantic basin, with 77 becoming hurricanes. Hurricane Sandy (2012) stands out as being the largest individual storm that occurred in the North Atlantic basin during the 2004 -2013 timeframe, both in terms of its 34- and 64-kt wind radii and wind areas, having maximum 34- and 64-kt wind radii, maximum wind areas, and average wind areas each more than 2 standard deviations larger than the corresponding means. In terms of the largest yearly total 34-kt wind area (i.e., the sum of all individual storm 34-kt wind areas during the year), the year 2010 stands out as being the largest (about 423 × 10(exp 6) nmi(exp 2)), compared to the mean of about 174 × 10(exp 6) nmi(exp 2)), surpassing the year 2005 (353 x 10(exp 6) nmi(exp 2)) that had the largest number of individual storms (28). However, in terms of the largest yearly total 64-kt wind area, the year 2005 was the largest (about 9 × 10(exp 6) nmi(exp 2)), compared to the mean of about 3 × 106 nmi(exp 2)). Interesting is that the ratio of total 64-kt wind area to total 34-kt wind area has decreased over time, from 0.034 in 2004 to 0.008 in 2013.

  5. A quantitative study of particle size effects in the magnetorelaxometry of magnetic nanoparticles using atomic magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Dolgovskiy, V. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Lebedev, V., E-mail: victor.lebedev@unifr.ch [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Colombo, S.; Weis, A. [Physics Department, University of Fribourg, CH-1700 Fribourg (Switzerland); Michen, B.; Ackermann-Hirschi, L. [Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg (Switzerland); Petri-Fink, A. [Adolphe Merkle Institute, University of Fribourg, CH-1700 Fribourg (Switzerland); Chemistry Department, University of Fribourg, CH-1700 Fribourg (Switzerland)

    2015-04-01

    The discrimination of immobilised superparamagnetic iron oxide nanoparticles (SPIONs) against SPIONs in fluid environments via their magnetic relaxation behaviour is a powerful tool for bio-medical imaging. Here we demonstrate that a gradiometer of laser-pumped atomic magnetometers can be used to record accurate time series of the relaxing magnetic field produced by pre-polarised SPIONs. We have investigated dry in vitro maghemite nanoparticle samples with different size distributions (average radii ranging from 14 to 21 nm) and analysed their relaxation using the Néel–Brown formalism. Fitting our model function to the magnetorelaxation (MRX) data allows us to extract the anisotropy constant K and the saturation magnetisation M{sub S} of each sample. While the latter was found not to depend on the particle size, we observe that K is inversely proportional to the (time- and size-) averaged volume of the magnetised particle fraction. We have identified the range of SPION sizes that are best suited for MRX detection considering our specific experimental conditions and sample preparation technique. - Highlights: • We studied magnetorelaxation of magnetic nanoparticles using atomic magnetometers. • We show that atomic magnetometers yield high precision MRX data. • The observed magnetorelaxation is well described by the moment superposition model. • Model fits allow extraction of nanoparticle material parameters of six samples. • All samples exhibit an unexpected size-dependent anisotropy constant.

  6. Accurate Masses, Radii, and Temperatures for the Eclipsing Binary V2154 Cyg, and Tests of Stellar Evolution Models

    Science.gov (United States)

    Bright, Jane; Torres, Guillermo

    2018-01-01

    We report new spectroscopic observations of the F-type triple system V2154 Cyg, in which two of the stars form an eclipsing binary with a period of 2.6306303 ± 0.0000038 days. We combine the results from our spectroscopic analysis with published light curves in the uvby Strömgren passbands to derive the first reported absolute dimensions of the stars in the eclipsing binary. The masses and radii are measured with high accuracy to better than 1.5% precision. For the primary and secondary respectively, we find that the masses are 1.269 ± 0.017 M⊙ and 0.7542 ± 0.0059 M⊙, the radii are 1.477 ± 0.012 R⊙ and 0.7232 ± 0.0091R⊙, and the temperatures are 6770 ± 150 K and 5020 ± 150 K. Current models of stellar evolution agree with the measured properties of the primary, but the secondary is larger than predicted. This may be due to activity in the secondary, as has been shown for other systems with a star of similar mass with this same discrepancy.The SAO REU program is funded by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant AST-1659473, and by the Smithsonian Institution. GT acknowledges partial support for this work from NSF grant AST-1509375.

  7. Analytic properties of the relativistic Thomas-Fermi equation and the total energy of atomic ions

    International Nuclear Information System (INIS)

    March, N.H.; Senatore, G.

    1985-06-01

    The analytic properties of solutions of the relativistic Thomas-Fermi equation which tend to zero at infinity are first examined, the neutral atom solution being a member of this class. A new length is shown to enter the theory, proportional to the square root of the fine structure constant. This information is used to develop a perturbation expansion around the neutral atom solution, corresponding to positive atomic ions with finite but large radii. The limiting law relating ionic radius to the degree of ionization is thereby displayed in functional form, and solved explicitly to lowest order in the fine structure constant. To embrace this knowledge of heavy positive ions, as well as results from the one-electron Dirac equation, a proposal is then advanced as to the analytic form of the relativistic total energy E(Z,N) of an atomic ion with nuclear charge Ze and total number of electrons N. The fact that, for N>1, the nucleus is known only to bind Z+n electrons, where n is 1 or 2, indicates non-analyticity in the complex Z plane, represented by a circle of radius Z approx.= N. Such non-analyticity is also a property of the non-relativistic energy derived from the many-electron Schroedinger equation. The relativistic theory, however, must also embody a second type of non-analyticity associated with the known property for N=1 that the Dirac equation predicts electron-positron pair production when the electronic binding energy becomes equal to twice the electron rest mass energy. This corresponds to a second circle of non-analyticity in E(Z,N), and hence to a Taylor-Laurent expansion of this quantity in the atomic number Z. The relation of this expansion to the Layzer-Bahcall series is finally discussed. (author)

  8. Symmetry dependence of rms charge radii

    International Nuclear Information System (INIS)

    Angeli, I.

    2000-01-01

    Complete text of publication follows. The nucleon number dependence of rms charge radii is often approximated by some simple formula containing the mass number A only, R(A) = r(A) x A 1/3 where r(A) is a slowly varying function of A e.g. r(A) = r 0 + r 1 A -2/3 + r 2 A -4/3 ; r 0 , r 1 and r 2 are determined from a fit to experimental data. These simple mass-dependent formulae R(A) may be useful for nuclei along the valley of stability. However, for nuclei of the stability line, the mass number A = N + Z in itself is not enough to characterise the dependence of the R(Z,N) radius surface of the nucleon numbers Z and N. Changing a neutron to a proton a change in the charge radius can be expected, although A remains constant. In the present work, to extend the traditional radius formula, an additional term has been included, depending on the symmetry parameter I = (N-Z)/A. Several parametrisations were tried, using weighted least-squares (minimum χ 2 ) procedures for the fit to present-day data base (1). The best fit (with χ 2 /n'∼16) was found for R b (A,I) = r(A) x A 1/3 + b(I-I st ), where I st = (N st -Z st )/A is the value of the symmetry parameter of the stable isobar with the given mass number A, and b = -0.83. The alternative formula R a (A,I) = [r(A) + a(I-I st ) x A 1/3 is only slightly inferior to the previous one; here a = -0.20 and χ 2 /n'∼18. These results are practically independent of the ways of minimum search: fixing the parameters r 0 , r 1 and r 2 and varying teh parameter b (a) or varying the radius parameters r 0 , r 1 and r 2 and b (a) simultaneously. The main difficulty in determining the right parametrisation is caused by the fact that the experimental surface R exp (A,I) is not smooth. On the contrary, there are significant shell- and deformation effects (2,3) and isolated irregular points that may strongly affect the result of the fit. In order to avoid the effect of these strong deviations on the smooth symmetry dependence, more than

  9. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  10. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  11. Charge radii of magnesium isotopes by laser spectroscopy a structural study over the $sd$ shell

    CERN Multimedia

    Schug, M; Krieger, A R

    We propose to study the evolution of nuclear sizes and shapes over the magnesium chain by measuring the root-mean-square charge radii of $^{21 - 32}$Mg, essentially covering the entire $\\textit{sd}$ shell. Our goal is to detect the structural changes, which in the neutron-deficient isotopes may originate from clustering, in a way similar to neon, and on the neutron-rich side would characterize the transition to the "island of inversion". We will combine, for the first time, the sensitive $\\beta$-detection technique with traditional fluorescence spectroscopy for isotope-shift measurements and in such a way gain access to the exotic species near the ${N}$ = 8 and ${N}$ = 20 shell closures.

  12. Atomic structure of glassy Mg60Cu30Y10 investigated with EXAFS, x-ray and neutron diffraction, and reverse Monte Carlo simulations

    DEFF Research Database (Denmark)

    Jovari, P.; Saksl, K.; Pryds, Nini

    2007-01-01

    Short range order of amorphous Mg60Cu30Y10 was investigated by x-ray and neutron diffraction, Cu and Y K-edge x-ray absorption fine structure measurements, and the reverse Monte Carlo simulation technique. We found that Mg-Mg and Mg-Cu nearest neighbor distances are very similar to values found...... in crystalline Mg2Cu. The Cu-Y coordination number is 1.1 +/- 0.2, and the Cu-Y distance is similar to 4% shorter than the sum of atomic radii, suggesting that attraction between Cu and Y plays an important role in stabilizing the glassy state. Thermal stability and structure evolution upon annealing were also...

  13. Detection of Intrinsic Source Structure at ∼3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*

    Science.gov (United States)

    Lu, Ru-Sen; Krichbaum, Thomas P.; Roy, Alan L.; Fish, Vincent L.; Doeleman, Sheperd S.; Johnson, Michael D.; Akiyama, Kazunori; Psaltis, Dimitrios; Alef, Walter; Asada, Keiichi; Beaudoin, Christopher; Bertarini, Alessandra; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C.; Brinkerink, Christiaan; Broderick, Avery E.; Cappallo, Roger; Crew, Geoffrey B.; Dexter, Jason; Dexter, Matt; Falcke, Heino; Freund, Robert; Friberg, Per; Greer, Christopher H.; Gurwell, Mark A.; Ho, Paul T. P.; Honma, Mareki; Inoue, Makoto; Kim, Junhan; Lamb, James; Lindqvist, Michael; Macmahon, David; Marrone, Daniel P.; Martí-Vidal, Ivan; Menten, Karl M.; Moran, James M.; Nagar, Neil M.; Plambeck, Richard L.; Primiani, Rurik A.; Rogers, Alan E. E.; Ros, Eduardo; Rottmann, Helge; SooHoo, Jason; Spilker, Justin; Stone, Jordan; Strittmatter, Peter; Tilanus, Remo P. J.; Titus, Michael; Vertatschitsch, Laura; Wagner, Jan; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H.; Zensus, J. Anton; Ziurys, Lucy M.

    2018-05-01

    We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional uv coverage in the N–S direction, and leads to a spatial resolution of ∼30 μas (∼3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of ∼4%–13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of ∼3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.

  14. Isotope shift measurements in the 2s(1/2) -> 2p(3/2) transition of Be+ and extraction of the nuclear charge radii for Be-7,Be-10,Be-11

    CERN Document Server

    Zakova, M; Yordanov, D T; Lochmann, M; Drake, G W F; Yan, Z-C; Neugart, R; Kowalska, M; Blaum, K; Andjelkovic, Z; Kraemer, J; Bissell, M L; Neff, T; Schmidt-Kaler, F; Sanchez, R; Noertershaeuser, W; Geppert, Ch; Tiedemann, D; Zimmermann, C

    2010-01-01

    We have performed isotope shift measurements in the 2s(1/2) -> 2p(3/2) transition of Be+ ions using advanced collinear laser spectroscopy with two counter-propagating laser beams. Measurements involving a frequency comb for laser stabilization and absolute frequency determination allowed us to determine the isotope shifts with an accuracy of 2 MHz. From the isotope shifts between Be-9 and Be-7,Be-10,Be-11, high-accuracy mass shift calculations and the charge radius of the reference isotope Be-9 we determined nuclear charge radii for the isotopes Be-7,Be-10 and the one-neutron halo nucleus Be-11. The results are compared to nuclear-structure calculations using the fermionic molecular dynamics model which reproduce well the general trend of the radii. Decreasing charge radii from Be-7 to Be-10 are explained by the cluster structure of the nuclei. The increase from Be-10 to Be-11 is mainly caused by the halo neutron by which the Be-10 core moves relative to the center of mass. Polarization of the Be-10 core has ...

  15. Nuclear charge radii of light isotopes based on frequency comb measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zakova, Monika

    2010-02-11

    Optical frequency comb technology has been used in this work for the first time to investigate the nuclear structure of light radioactive isotopes. Therefore, three laser systems were stabilized with different techniques to accurately known optical frequencies and used in two specialized experiments. Absolute transition frequency measurements of lithium and beryllium isotopes were performed with accuracy on the order of 10{sup -10}. Such a high accuracy is required for the light elements since the nuclear volume effect has only a 10{sup -9} contribution to the total transition frequency. For beryllium, the isotope shift was determined with an accuracy that is sufficient to extract information about the proton distribution inside the nucleus. A Doppler-free two-photon spectroscopy on the stable lithium isotopes {sup 6,7}Li was performed in order to determine the absolute frequency of the 2S {yields} 3S transition. The achieved relative accuracy of 2 x 10{sup -10} is improved by one order of magnitude compared to previous measurements. The results provide an opportunity to determine the nuclear charge radius of the stable and short-lived isotopes in a pure optical way but this requires an improvement of the theoretical calculations by two orders of magnitude. The second experiment presented here was performed at ISOLDE/CERN, where the absolute transition frequencies of the D{sub 1} and D{sub 2} lines in beryllium ions for the isotopes {sup 7,9,10,11}Be were measured with an accuracy of about 1 MHz. Therefore, an advanced collinear laser spectroscopy technique involving two counter-propagating frequency-stabilized laser beams with a known absolute frequency was developed. The extracted isotope shifts were combined with recent accurate mass shift calculations and the root-mean square nuclear charge radii of {sup 7,10}Be and the one-neutron halo nucleus {sup 11}Be were determined. Obtained charge radii are decreasing from {sup 7}Be to {sup 10}Be and increasing again for

  16. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  17. Nuclear charge radii of proton-rich strontium isotopes

    International Nuclear Information System (INIS)

    Eastham, D.A.; Walker, P.M.; Smith, J.R.H.; Warner, D.D.; Griffith, J.A.R.; Evans, D.E.; Wells, S.A.; Fawcett, M.J.; Grant, I.S.

    1987-01-01

    A new technique of atom-photon coincidence laser spectroscopy has been developed and used to study the isotope shifts of /sup 78-84/Sr. The results show that neither the droplet model nor existing interacting boson model calculations can adequately describe the rapid onset of nuclear deformation below N = 50. The odd-even staggering of the charge radius is found to be opposite to that normally encountered, indicating the possible existence of permanent octupole distortions

  18. Nuclear Charge Radii in the Region of Shape Isomerism at Z $\\leq$ 80

    CERN Multimedia

    2002-01-01

    The determination of isotope shifts in the isotopic chain of Hg has led to quite a number of unexpected observations as the transition from slightly oblate to strongly prolate deformation below A~=~186, the shape coexistence in |1|8|5Hg and a huge odd-even staggering of the charge radii in the region 181~@$<$~ Until now it is quite open if the observed instability of the nuclear shape is an isolated and unique feature of the light Hg isotopes and how it changes with Z and depends on the shell and pairing energies.\\\\ \\\\ Therefore we propose to carry out a study of the isotope shifts in the neighbouring isotopes of the elements Au and Pt which can be obtained at ISOLDE as daughters of a primary Hg beam. Resonance ionization spectroscopy will be applied as a novel technique at ISOLDE. The time of flight of the photo ionized Au (or Pt) isotope in a drift tube will be used to get rid of any background events.

  19. Theoretical assessment of the disparity in the electrostatic forces between two point charges and two conductive spheres of equal radii

    Science.gov (United States)

    Kolikov, Kiril

    2016-11-01

    The Coulomb's formula for the force FC of electrostatic interaction between two point charges is well known. In reality, however, interactions occur not between point charges, but between charged bodies of certain geometric form, size and physical structure. This leads to deviation of the estimated force FC from the real force F of electrostatic interaction, thus imposing the task to evaluate the disparity. In the present paper the problem is being solved theoretically for two charged conductive spheres of equal radii and arbitrary electric charges. Assessment of the deviation is given as a function of the ratio of the distance R between the spheres centers to the sum of their radii. For the purpose, relations between FC and F derived in a preceding work of ours, are employed to generalize the Coulomb's interactions. At relatively short distances between the spheres, the Coulomb force FC, as estimated to be induced by charges situated at the centers of the spheres, differ significantly from the real force F of interaction between the spheres. In the case of zero and non-zero charge we prove that with increasing the distance between the two spheres, the force F decrease rapidly, virtually to zero values, i.e. it appears to be short-acting force.

  20. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  1. Nolen-Schiffer anomaly and atomic masses

    International Nuclear Information System (INIS)

    Fayans, S. A.

    1998-01-01

    A new form of the nuclear energy-density functional for describing the ground state properties of finite nuclei up to the drip lines and beyond is proposed. The surface energy-density term has a fractional form containing (∇ρ) 2 both in the numerator and in the denominator. An effective ρ-dependent Coulomb-nuclear correlation term is added. A fit to the nuclear masses and radii shows that the latter term gives contribution of the same order of magnitude as the Nolen-Schiffer anomaly in Coulomb displacement energy. The self-consistent run with the suggested functional, performed for about 100 spherical nuclei, has given the rms deviations from the experiment of ≅1.2 Mev in masses and ≅0.01 fm in radii. The extrapolation to the drip lines goes in between the ETFSI and the macroscopic-microscopic model predictions

  2. Fossil hominin radii from the Sima de los Huesos Middle Pleistocene site (Sierra de Atapuerca, Spain).

    Science.gov (United States)

    Rodríguez, Laura; Carretero, José Miguel; García-González, Rebeca; Lorenzo, Carlos; Gómez-Olivencia, Asier; Quam, Rolf; Martínez, Ignacio; Gracia-Téllez, Ana; Arsuaga, Juan Luis

    2016-01-01

    Complete radii in the fossil record preceding recent humans and Neandertals are very scarce. Here we introduce the radial remains recovered from the Sima de los Huesos (SH) site in the Sierra de Atapuerca between 1976 and 2011 and which have been dated in excess of 430 ky (thousands of years) ago. The sample comprises 89 specimens, 49 of which are attributed to adults representing a minimum of seven individuals. All elements are described anatomically and metrically, and compared with other fossil hominins and recent humans in order to examine the phylogenetic polarity of certain radial features. Radial remains from SH have some traits that differentiate them from those of recent humans and make them more similar to Neandertals, including strongly curved shafts, anteroposterior expanded radial heads and both absolutely and relatively long necks. In contrast, the SH sample differs from Neandertals in showing a high overall gracility as well as a high frequency (80%) of an anteriorly oriented radial tuberosity. Thus, like the cranial and dental remains from the SH site, characteristic Neandertal radial morphology is not present fully in the SH radii. We also analyzed the cross-sectional properties of the SH radial sample at two different levels: mid-shaft and at the midpoint of the neck length. When standardized by shaft length, no difference in the mid-shaft cross-sectional properties were found between the SH hominins, Neandertals and recent humans. Nevertheless, due to their long neck length, the SH hominins show a higher lever efficiency than either Neandertals or recent humans. Functionally, the SH radial morphology is consistent with more efficient pronation-supination and flexion-extension movements. The particular trait composition in the SH sample and Neandertals resembles more closely morphology evident in recent human males. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. First-principles nonlocal-pseudopotential approach in the density-functional formalism: Development and application to atoms

    International Nuclear Information System (INIS)

    Zunger, A.; Cohen, M.L.

    1978-01-01

    We present a method for obtaining first-principles nonlocal atomic pseudopotentials in the density-functional formalism by direct inversion of the pseudopotential eigenvalue problem, where the pseudo-wave-functions are represented as a unitary rotation of the exact all-electron wave functions. The usual pseudopotential nonuniqueness of the orbitals is fixed by imposing the physically appealing constraints of maximum similarity to the all-electron wave functions and minimum radial kinetic energy. These potentials are shown to yield very accurate energy eigenvalues, total energy differences, and wave-function moments over a wide range of excited atomic configurations. We have calculated the potentials for 68 transition and nontransition elements of rows 1--5 in the Periodic Table. Their characteristic features, such as classical turning points and minimum potential radii, faithfully reflect the chemical regularities of the Periodic Table. The nonempirical nature of these potentials permits both an analysis of their dominant features in terms of the underlying interelectronic potentials and the systematic improvement of their predictions through inclusion of appropriate correlation terms. As these potentials accurately reproduce both energy eigenvalues and wave functions and can be readily fit to analytic forms with known asymptotic behavior, they can be used directly for studies of many structural and electronic properties of solids

  4. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  5. Experimental root mean square charge radii, isotope shifts, ground state magnetic dipole and electric quadrupole moments of 1≤A≤ 239 nuclei

    International Nuclear Information System (INIS)

    Antony, M.S.; Britz, J.

    1986-01-01

    A compilation of experimental root-mean square radii, isotope shifts, ground-state magnetic dipole and electric quadrupole moments of nuclei 1≤A≤239 is presented. Shell, sub-subshell closures and changes in nuclear deformations discernible from data are displayed graphically. The nuclear charge distribution, for 1≤A≤ 239 nuclei deduced from Coulomb displacement energies is shown for comparison

  6. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  7. Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements.

    Science.gov (United States)

    Brik, Mikhail G; Suchocki, Andrzej; Kamińska, Agata

    2014-05-19

    A thorough consideration of the relation between the lattice parameters of 185 binary and ternary spinel compounds, on one side, and ionic radii and electronegativities of the constituting ions, on the other side, allowed for establishing a simple empirical model and finding its linear equation, which links together the above-mentioned quantities. The derived equation gives good agreement between the experimental and modeled values of the lattice parameters in the considered group of spinels, with an average relative error of about 1% only. The proposed model was improved further by separate consideration of several groups of spinels, depending on the nature of the anion (oxygen, sulfur, selenium/tellurium, nitrogen). The developed approach can be efficiently used for prediction of lattice constants for new isostructural materials. In particular, the lattice constants of new hypothetic spinels ZnRE2O4, CdRE2S4, CdRE2Se4 (RE = rare earth elements) are predicted in the present Article. In addition, the upper and lower limits for the variation of the ionic radii, electronegativities, and their certain combinations were established, which can be considered as stability criteria for the spinel compounds. The findings of the present Article offer a systematic overview of the structural properties of spinels and can serve as helpful guides for synthesis of new spinel compounds.

  8. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  9. VizieR Online Data Catalog: Tidal radii of 7 globular clusters (Lehmann+ 1997)

    Science.gov (United States)

    Lehmann, I.; Scholz, R.-D.

    1998-02-01

    We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962AJ.....67..471K) we derived the following structural parameters: tidal radius rt, core radius rc and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al., 1995AJ....109.2553G). (1 data file).

  10. Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer

    International Nuclear Information System (INIS)

    Dedina, Jiri

    2007-01-01

    This review summarizes and discusses the individual atomizers of volatile compounds. A set of criteria important for analytical praxis is used to rank all the currently existing approaches to the atomization based on on-line atomization for atomic absorption (AAS) and atomic fluorescence spectrometry (AFS) as well as on in-atomizer trapping for AAS. Regarding on-line atomization for AAS, conventional quartz tubes are currently the most commonly used devices. They provide high sensitivity and low baseline noise. Running and investment costs are low. The most serious disadvantage is the poor resistance against atomization interferences and often unsatisfactory linearity of calibration graphs. Miniature diffusion flame (MDF) is extremely resistant to interferences, simple, cheap and user-friendly. Its essential disadvantage is low sensitivity. A novel device, known as a multiatomizer, was designed to overcome disadvantages of previous atomizers. It matches performance of conventional quartz tubes in terms of sensitivity and baseline noise as well as in running and investment costs. The multiatomizer, however, provides much better (i) resistance against atomization interferences and (ii) linearity of calibration graphs. In-atomizer trapping enhances the sensitivity of the determination and eliminates the effect of the generation kinetics and of surges in gas flow on the signal shape. This is beneficial for the accuracy of the determination. It could also be an effective tool for reducing some interferences in the liquid phase. In-situ trapping in graphite furnaces (GF) is presently by far the most popular approach to the in-atomizer trapping. Its resistance against interferences is reasonably good and it can be easily automated. In-situ trapping in GF is a mature method well established in various application fields. These are the reasons to rank in-situ trapping in GF as currently the most convenient approach to hydride atomization for AAS. The recently suggested

  11. Atomic collisions related to atomic laser isotope separation

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    1995-01-01

    Atomic collisions are important in various places in atomic vapor laser isotope separation (AVLIS). At a vaporization zone, many atomic collisions due to high density have influence on the atomic beam characteristics such as velocity distribution and metastable states' populations at a separation zone. In the separation zone, a symmetric charge transfer between the produced ions and the neutral atoms may degrade selectivity. We have measured atomic excitation temperatures of atomic beams and symmetric charge transfer cross sections for gadolinium and neodymium. Gadolinium and neodymium are both lanthanides. Nevertheless, results for gadolinium and neodymium are very different. The gadolinium atom has one 5d electron and neodymium atom has no 5d electron. It is considered that the differences are due to existence of 5d electron. (author)

  12. Superradiators created atom by atom

    Science.gov (United States)

    Meschede, Dieter

    2018-02-01

    High radiation rates are usually associated with macroscopic lasers. Laser radiation is “coherent”—its amplitude and phase are well-defined—but its generation requires energy inputs to overcome loss. Excited atoms spontaneously emit in a random and incoherent fashion, and for N such atoms, the emission rate simply increases as N. However, if these atoms are in close proximity and coherently coupled by a radiation field, this microscopic ensemble acts as a single emitter whose emission rate increases as N2 and becomes “superradiant,” to use Dicke's terminology (1). On page 662 of this issue, Kim et al. (2) show the buildup of coherent light fields through collective emission from atomic radiators injected one by one into a resonator field. There is only one atom ever in the cavity, but the emission is still collective and superradiant. These results suggest another route toward thresholdless lasing.

  13. New sources of cold atoms for atomic clocks

    International Nuclear Information System (INIS)

    Aucouturier, E.

    1997-01-01

    The purpose of this doctoral work is the realisation of new sources of cold cesium atoms that could be useful for the conception of a compact and high-performance atomic clock. It is based on experiences of atomic physics using light induced atomic manipulation. We present here the experiences of radiative cooling of atoms that have been realised at the Laboratoire de l'Horloge Atomique from 1993 to 1996. Firstly, we applied the techniques of radiative cooling and trapping of atoms in order to create a three-dimensional magneto-optical trap. For this first experience, we developed high quality laser sources, that were used for other experiments. We imagined a new configuration of trapping (two-dimensional magneto-optical trap) that was the basis for a cold atom source. This design gives the atoms a possibility to escape towards one particular direction. Then, we have extracted the atoms from this anisotropic trap in order to create a continuous beam of cold atoms. We have applied three methods of extraction. Firstly, the launching of atoms was performed by reducing the intensity of one of the cooling laser beams in the desired launching direction. Secondly, a frequency detuning between the two laser laser beams produced the launching of atoms by a so-called 'moving molasses'. The third method consisted in applying a static magnetic field that induced the launching of atoms in the direction of this magnetic field. At the same time, another research on cold atoms was initiated at the I.H.A. It consisted in cooling a large volume of atoms from a cell, using an isotropic light. This offers an interesting alternative to the traditional optical molasses. (author)

  14. Study of the Neutron Deficient Pb and Bi Isotopes by Simultaneous Atomic- and Nuclear-Spectroscopy

    CERN Multimedia

    Kessler, T

    2002-01-01

    We propose to study systematically nuclear properties of the neutron deficient lead $^{183-189}$Pb, $^{191g}$Pb, $^{193g}$Pb and bismuth isotopes $^{188-200}$Bi by atomic spectroscopy with the ISOLDE resonance ionisation laser ion source (RILIS) combined with simultaneous nuclear spectroscopy at the detection set-up. The main focus is the determination of the mean square charge radii of $^{183-190}$Pb and $^{188-193}$Bi from which the influence of low-lying intruder states should become obvious. Also the nuclear spin and magnetic moments of ground-states and long-lived isomers will be determined unambiguously through evaluation of the hyperfine structure, and new isomers could be discovered. The decay properties of these nuclei can be measured by $\\alpha$-$\\gamma$ and $\\beta$-$\\gamma$ spectroscopy. With this data at hand, possible shape transitions around mid-shell at N$\\sim$104 will be studied. This data is crucial for the direct test of nuclear theory in the context of intruder state influence (e.g. energy ...

  15. Controlling Initial and Final Radii to Achieve a Low-Complexity Sphere Decoding Technique in MIMO Channels

    Directory of Open Access Journals (Sweden)

    Fatemeh Eshagh Hosseini

    2012-01-01

    Full Text Available In order to apply sphere decoding algorithm in multiple-input multiple-output communication systems and to make it feasible for real-time applications, its computational complexity should be decreased. To achieve this goal, this paper provides some useful insights into the effect of initial and the final sphere radii and estimating them effortlessly. It also discusses practical ways of initiating the algorithm properly and terminating it before the normal end of the process as well as the cost of these methods. Besides, a novel algorithm is introduced which utilizes the presented techniques according to a threshold factor which is defined in terms of the number of transmit antennas and the noise variance. Simulation results show that the proposed algorithm offers a desirable performance and reasonable complexity satisfying practical constraints.

  16. Integration of uniform design and quantum-behaved particle swarm optimization to the robust design for a railway vehicle suspension system under different wheel conicities and wheel rolling radii

    Science.gov (United States)

    Cheng, Yung-Chang; Lee, Cheng-Kang

    2017-10-01

    This paper proposes a systematic method, integrating the uniform design (UD) of experiments and quantum-behaved particle swarm optimization (QPSO), to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear theory and a heuristic nonlinear creep model, the modeling and dynamic analysis of a 24 degree-of-freedom railway vehicle system were investigated. The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds. Generally, the critical hunting speeds of a vehicle system resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having original wheels without different wheel rolling radii. Because of worn wheels, the critical hunting speed of a running railway vehicle substantially declines over the long term. For safety reasons, it is necessary to design the suspension system parameters to increase the robustness of the system and decrease the sensitive of wheel noises. By applying UD and QPSO, the nominal-the-best signal-to-noise ratio of the system was increased from -48.17 to -34.05 dB. The rate of improvement was 29.31%. This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension system.

  17. Atom interferometry with trapped Bose-Einstein condensates: impact of atom-atom interactions

    International Nuclear Information System (INIS)

    Grond, Julian; Hohenester, Ulrich; Mazets, Igor; Schmiedmayer, Joerg

    2010-01-01

    Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long measurement times and precise readout. Ultracold atoms can be precisely manipulated at the quantum level and can be held for very long times in traps; they would therefore be an ideal setting for interferometry. In this paper, we discuss how the nonlinearities from atom-atom interactions, on the one hand, allow us to efficiently produce squeezed states for enhanced readout and, on the other hand, result in phase diffusion that limits the phase accumulation time. We find that low-dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control, the achievable minimal detectable interaction energy ΔE min is of the order of 10 -4 μ, where μ is the chemical potential of the Bose-Einstein condensate (BEC) in the trap. From these we have to conclude that for more precise measurements with atom interferometers, more sophisticated strategies, or turning off the interaction-induced dephasing during the phase accumulation stage, will be necessary.

  18. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  19. Code ATOM for calculation of atomic characteristics

    International Nuclear Information System (INIS)

    Vainshtein, L.A.

    1990-01-01

    In applying atomic physics to problems of plasma diagnostics, it is necessary to determine some atomic characteristics, including energies and transition probabilities, for very many atoms and ions. Development of general codes for calculation of many types of atomic characteristics has been based on general but comparatively simple approximate methods. The program ATOM represents an attempt at effective use of such a general code. This report gives a brief description of the methods used, and the possibilities of and limitations to the code are discussed. Characteristics of the following processes can be calculated by ATOM: radiative transitions between discrete levels, radiative ionization and recombination, collisional excitation and ionization by electron impact, collisional excitation and ionization by point heavy particle (Born approximation only), dielectronic recombination, and autoionization. ATOM explores Born (for z=1) or Coulomb-Born (for z>1) approximations. In both cases exchange and normalization can be included. (N.K.)

  20. Atomic physics

    International Nuclear Information System (INIS)

    Armbruster, P.; Beyer, H.; Bosch, F.; Dohmann, H.D.; Kozhuharov, C.; Liesen, D.; Mann, R.; Mokler, P.H.

    1984-01-01

    The heavy ion accelerator UNILAC is well suited to experiments in the field of atomic physics because, with the aid of high-energy heavy ions atoms can be produced in exotic states - that is, heavy atoms with only a few electrons. Also, in close collisions of heavy ions (atomic number Z 1 ) and heavy target atoms (Z 2 ) short-lived quasi-atomic 'superheavy' systems will be formed - huge 'atoms', where the inner electrons are bound in the field of the combined charge Z 1 + Z 2 , which exceeds by far the charge of the known elements (Z <= 109). Those exotic or transient superheavy atoms delivered from the heavy ion accelerator make it possible to study for the first time in a terrestrial laboratory exotic, but fundamental, processes, which occur only inside stars. Some of the basic research carried out with the UNILAC is discussed. This includes investigation of highly charged heavy atoms with the beam-foil method, the spectroscopy of highly charged slow-recoil ions, atomic collision studies with highly ionised, decelerated ions and investigations of super-heavy quasi-atoms. (U.K.)

  1. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent.

    Science.gov (United States)

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P

    2017-06-13

    We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.

  2. Atom optics

    International Nuclear Information System (INIS)

    Balykin, V. I.; Jhe, W.

    1999-01-01

    Atom optics, in analogy to neutron and electron optics, deals with the realization of as a traditional elements, such as lenes, mirrors, beam splitters and atom interferometers, as well as a new 'dissipative' elements such as a slower and a cooler, which have no analogy in an another types of optics. Atom optics made the development of atom interferometer with high sensitivity for measurement of acceleration and rotational possible. The practical interest in atom optics lies in the opportunities to create atom microprobe with atom-size resolution and minimum damage of investigated objects. (Cho, G. S.)

  3. Effective temperatures, angular diameters, distances and linear radii for 160 O and B stars

    International Nuclear Information System (INIS)

    Underhill, A.B.; Divan, L.; Prevot-Burnichon, M.L.; Doazan, V.

    1979-01-01

    The significance is explained of the effective temperatures, angular diameters, distances and linear diameters which have been found from published ultraviolet spectrophotometry, visible and near infrared intermediate-band photometry and model-atmosphere fluxes for 160 O and B stars using a method which is fully explained and evaluated in the full paper which is reproduced on Microfiche MN 189/1. An appendix to the full paper presents BCD spectrophotometry for 77 of the program stars. The angular diameters are systematically the same as those measured previously, and the flux effective temperatures of the main-sequence and giant stars reproduce well the relationship established by other authors, for main-sequence and giant O and B stars. The O8 - B9 supergiants have systematically lower temperatures than do main-sequence stars of the same subtype. The Beta Cephei stars and most Be stars have the same effective temperature as normal stars of the same spectral type. The radii of O and B stars increase from main-sequence to supergiant. The late B supergiants are about twice as large as the O9 supergiants. (author)

  4. Spins, moments and radii of Cd isotopes

    CERN Document Server

    Hammen, Michael

    The complex nature of the nucleon-nucleon interaction and the wide range of systems covered by the roughly 3000 known nuclides leads to a multitude of effects observed in nuclear structure. Among the most prominent ones is the occurence of shell closures at so-called ”magic numbers”, which are explained by the nuclear shell model. Although the shell model already is on duty for several decades, it is still constantly extended and improved. For this process of extension, fine adjustment and verification, it is important to have experimental data of nuclear properties, especially at crucial points like in the vicinity of shell closures. This is the motivation for the work performed in this thesis: the measurement and analysis of nuclear ground state properties of the isotopic chain of $^{100−130}$Cd by collinear laser spectroscopy. The experiment was conducted at ISOLDE/CERN using the collinear laser spectroscopy apparatus COLLAPS. This experiment is the continuation of a run on neutral atomic cadmium f...

  5. Directed Atom-by-Atom Assembly of Dopants in Silicon.

    Science.gov (United States)

    Hudak, Bethany M; Song, Jiaming; Sims, Hunter; Troparevsky, M Claudia; Humble, Travis S; Pantelides, Sokrates T; Snijders, Paul C; Lupini, Andrew R

    2018-05-17

    The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.

  6. Atomic weight versus atomic mass controversy

    International Nuclear Information System (INIS)

    Holden, N.E.

    1985-01-01

    A problem for the Atomic Weights Commission for the past decade has been the controversial battle over the names ''atomic weight'' and ''atomic mass''. The Commission has considered the arguments on both sides over the years and it appears that this meeting will see more of the same discussion taking place. In this paper, I review the situation and offer some alternatives

  7. Angular momentum coupling in atom-atom collisions

    International Nuclear Information System (INIS)

    Grosser, J.

    1986-01-01

    The coupling between the electronic angular momentum and the rotating atom-atom axis in the initial or the final phase of an atom-atom collision is discussed, making use of the concepts of radial and rotational (Coriolis) coupling between different molecular states. The description is based on a limited number of well-understood approximations, and it allows an illustrative geometric representation of the transition from the body fixed to the space fixed motion of the electrons. (orig.)

  8. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    Science.gov (United States)

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  9. Proton radius, Darwin-Foldy term and radiative corrections

    International Nuclear Information System (INIS)

    Jentschura, U.D.

    2011-01-01

    We discuss the role of the so-called Darwin-Foldy term in the evaluation of the proton and deuteron charge radii from atomic hydrogen spectroscopy and nuclear scattering data. The question of whether this term should be included or excluded from the nuclear radius has been controversially discussed in the literature. We attempt to clarify which literature values correspond to which conventions. A detailed discussion of the conventions appears useful because a recent experiment [R. Pohl et al., Nature 466, 213 (2010)] has indicated that there is a discrepancy between the proton charge radii inferred from ordinary ('electronic') atomic hydrogen and muonic hydrogen. We also investigate the role of quantum electrodynamic radiative corrections in the determination of nuclear radii from scattering data, and propose a definition of the nuclear self energy which is compatible with the subtraction of the radiative corrections in scattering experiments. (author)

  10. Sub-Angstrom Atomic-Resolution Imaging of Heavy Atoms to Light Atoms

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, Michael A.; Shao-Horn, Yang

    2003-05-23

    Three decades ago John Cowley and his group at ASU achieved high-resolution electron microscope images showing the crystal unit cell contents at better than 4Angstrom resolution. Over the years, this achievement has inspired improvements in resolution that have enabled researchers to pinpoint the positions of heavy atom columns within the cell. More recently, this ability has been extended to light atoms as resolution has improved. Sub-Angstrom resolution has enabled researchers to image the columns of light atoms (carbon, oxygen and nitrogen) that are present in many complex structures. By using sub-Angstrom focal-series reconstruction of the specimen exit surface wave to image columns of cobalt, oxygen, and lithium atoms in a transition metal oxide structure commonly used as positive electrodes in lithium rechargeable batteries, we show that the range of detectable light atoms extends to lithium. HRTEM at sub-Angstrom resolution will provide the essential role of experimental verification for the emergent nanotech revolution. Our results foreshadow those to be expected from next-generation TEMs with Cs-corrected lenses and monochromated electron beams.

  11. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  12. Atom chips: mesoscopic physics with cold atoms

    International Nuclear Information System (INIS)

    Krueger, P.; Wildermuth, S.; Hofferberth, S.; Haller, E.; GAllego Garcia, D.; Schmiedmayer, J.

    2005-01-01

    Full text: Cold neutral atoms can be controlled and manipulated in microscopic potentials near surfaces of atom chips. These integrated micro-devices combine the known techniques of atom optics with the capabilities of well established micro- and nanofabrication technology. In analogy to electronic microchips and integrated fiber optics, the concept of atom chips is suitable to explore the domain of mesoscopic physics with matter waves. We use current and charge carrying structures to form complex potentials with high spatial resolution only microns from the surface. In particular, atoms can be confined to an essentially one-dimensional motion. In this talk, we will give an overview of our experiments studying the manipulation of both thermal atoms and BECs on atom chips. First experiments in the quasi one-dimensional regime will be presented. These experiments profit from strongly reduced residual disorder potentials caused by imperfections of the chip fabrication with respect to previously published experiments. This is due to our purely lithographic fabrication technique that proves to be advantageous over electroplating. We have used one dimensionally confined BECs as an ultra-sensitive probe to characterize these potentials. These smooth potentials allow us to explore various aspects of the physics of degenerate quantum gases in low dimensions. (author)

  13. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  14. Role of atom--atom inelastic collisions in two-temperature nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Kunc, J.A.

    1987-01-01

    The contribution of inelastic atom--atom collisions to the production of electrons and excited atoms in two-temperature (with electron temperature T/sub e/, atomic temperature T/sub a/, and atomic density N/sub a/), steady-state, nonequilibrium atomic hydrogen plasma is investigated. The results are valid for plasmas having large amounts of atomic hydrogen as one of the plasma components, so that e--H and H--H inelastic collisions and interaction of these atoms with radiation dominate the production of electrons and excited hydrogen atoms. Densities of electrons and excited atoms are calculated in low-temperature plasma, with T/sub e/ and T/sub a/≤8000 K and 10 16 cm -3 ≤N/sub a/≤10 18 cm -3 , and with different degrees of the reabsorption of radiation. The results indicate that inelastic atom--atom collisions are important for production of electrons and excited atoms in partially ionized plasmas with medium and high atomic density and temperatures below 8000 K

  15. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model

    Science.gov (United States)

    2016-01-01

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642

  16. Empirically Calibrated Asteroseismic Masses and Radii for Red Giants in the Kepler Fields

    Science.gov (United States)

    Pinsonneault, Marc; Elsworth, Yvonne; Silva Aguirre, Victor; Chaplin, William J.; Garcia, Rafael A.; Hekker, Saskia; Holtzman, Jon; Huber, Daniel; Johnson, Jennifer; Kallinger, Thomas; Mosser, Benoit; Mathur, Savita; Serenelli, Aldo; Shetrone, Matthew; Stello, Dennis; Tayar, Jamie; Zinn, Joel; APOGEE Team, KASC Team, APOKASC Team

    2018-01-01

    We report on the joint asteroseismic and spectroscopic properties of a sample of 6048 evolved stars in the fields originally observed by the Kepler satellite. We use APOGEE spectroscopic data taken from Data Release 13 of the Sloan Digital Sky Survey, combined with asteroseismic data analyzed by members of the Kepler Asteroseismic Science Consortium. With high statistical significance, the different pipelines do not have relative zero points that are the same as the solar values, and red clump stars do not have the same empirical relative zero points as red giants. We employ theoretically motivated corrections to the scaling relation for the large frequency spacing, and adjust the zero point of the frequency of maximum power scaling relation to be consistent with masses and radii for members of star clusters. The scatter in calibrator masses is consistent with our error estimation. Systematic and random mass errors are explicitly separated and identified. The measurement scatter, and random uncertainties, are three times larger for red giants where one or more technique failed to return a value than for targets where all five methods could do so, and this is a substantial fraction of the sample (20% of red giants and 25% of red clump stars). Overall trends and future prospects are discussed.

  17. Spatially resolved photoionization of ultracold atoms on an atom chip

    International Nuclear Information System (INIS)

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  18. Rocky Worlds Limited to ∼1.8 Earth Radii by Atmospheric Escape during a Star’s Extreme UV Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Lehmer, Owen R.; Catling, David C., E-mail: info@lehmer.us [Dept. Earth and Space Sciences, Box 351310, University of Washington, Seattle, WA (United States)

    2017-08-20

    Recent observations and analysis of low-mass (<10 M {sub ⊕}) exoplanets have found that rocky planets only have radii up to 1.5–2 R {sub ⊕}. Two general hypotheses exist for the cause of the dichotomy between rocky and gas-enveloped planets (or possible water worlds): either low-mass planets do not necessarily form thick atmospheres of a few wt.%, or the thick atmospheres on these planets easily escape, driven by X-ray and extreme ultraviolet (XUV) emissions from young parent stars. Here, we show that a cutoff between rocky and gas-enveloped planets due to hydrodynamic escape is most likely to occur at a mean radius of 1.76 ± 0.38 (2 σ ) R {sub ⊕} around Sun-like stars. We examine the limit in rocky planet radii predicted by hydrodynamic escape across a wide range of possible model inputs, using 10,000 parameter combinations drawn randomly from plausible parameter ranges. We find a cutoff between rocky and gas-enveloped planets that agrees with the observed cutoff. The large cross-section available for XUV absorption in the extremely distended primitive atmospheres of low-mass planets results in complete loss of atmospheres during the ∼100 Myr phase of stellar XUV saturation. In contrast, more-massive planets have less-distended atmospheres and less escape, and so retain thick atmospheres through XUV saturation—and then indefinitely as the XUV and escape fluxes drop over time. The agreement between our model and exoplanet data leads us to conclude that hydrodynamic escape plausibly explains the observed upper limit on rocky planet size and few planets (a “valley”, or “radius gap”) in the 1.5–2 R {sub ⊕} range.

  19. Empirical Bolometric Fluxes and Angular Diameters of 1.6 Million Tycho-2 Stars and Radii of 350,000 Stars with Gaia DR1 Parallaxes

    Science.gov (United States)

    Stevens, Daniel J.; Stassun, Keivan G.; Gaudi, B. Scott

    2017-12-01

    We present bolometric fluxes and angular diameters for over 1.6 million stars in the Tycho-2 catalog, determined using previously determined empirical color-temperature and color-flux relations. We vet these relations via full fits to the full broadband spectral energy distributions for a subset of benchmark stars and perform quality checks against the large set of stars for which spectroscopically determined parameters are available from LAMOST, RAVE, and/or APOGEE. We then estimate radii for the 355,502 Tycho-2 stars in our sample whose Gaia DR1 parallaxes are precise to ≲ 10 % . For these stars, we achieve effective temperature, bolometric flux, and angular diameter uncertainties of the order of 1%-2% and radius uncertainties of order 8%, and we explore the effect that imposing spectroscopic effective temperature priors has on these uncertainties. These stellar parameters are shown to be reliable for stars with {T}{eff} ≲ 7000 K. The over half a million bolometric fluxes and angular diameters presented here will serve as an immediate trove of empirical stellar radii with the Gaia second data release, at which point effective temperature uncertainties will dominate the radius uncertainties. Already, dwarf, subgiant, and giant populations are readily identifiable in our purely empirical luminosity-effective temperature (theoretical) Hertzsprung-Russell diagrams.

  20. Atomic polarizabilities

    International Nuclear Information System (INIS)

    Safronova, M. S.; Mitroy, J.; Clark, Charles W.; Kozlov, M. G.

    2015-01-01

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed

  1. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  2. Atomic physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  3. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Permanent link: https://www.ias.ac.in/article/fulltext/reso/018/09/0799-0809. Keywords. Atomic radius; quantum mechanical expectation; periodic table; polarizability; van der Waals radii; metastable atoms. Author Affiliations. K N Joshipura1. Department of Physics Sardar Patel University Vallabh Vidyanagar 388 120 Gujarat ...

  4. Systematics of atom-atom collision strengths at high speeds

    International Nuclear Information System (INIS)

    Gillespie, G.H.; Inokuti, M.

    1980-01-01

    The collision strengths for atom-atom collisions at high speeds are calculated in the first Born approximation. We studied four classes of collisions, distinguished depending upon whether each of the collision partners becomes excited or not. The results of numerical calculations of the collision strengths are presented for all neutral atoms with Z< or =18. The calculations are based on atomic form factors and incoherent scattering functions found in the literature. The relative contribution of each class of collision processes to the total collision cross section is examined in detail. In general, inelastic processes dominate for low-Z atoms, while elastic scattering is more important for large Z. Other systematics of the collision strengths are comprehensively discussed. The relevant experimental literature has been surveyed and the results of this work for the three collision systems H-He, He-He, and H-Ar are compared with the data for electron-loss processes. Finally, suggestions are made for future work in measurements of atom-atom and ion-atom collision cross sections

  5. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  6. Stable atomic hydrogen: Polarized atomic beam source

    International Nuclear Information System (INIS)

    Niinikoski, T.O.; Penttilae, S.; Rieubland, J.M.; Rijllart, A.

    1984-01-01

    We have carried out experiments with stable atomic hydrogen with a view to possible applications in polarized targets or polarized atomic beam sources. Recent results from the stabilization apparatus are described. The first stable atomic hydrogen beam source based on the microwave extraction method (which is being tested ) is presented. The effect of the stabilized hydrogen gas density on the properties of the source is discussed. (orig.)

  7. Highly excited atoms

    International Nuclear Information System (INIS)

    Kleppner, D.; Littman, M.G.; Zimmerman, M.L.

    1981-01-01

    Highly excited atoms are often called Rydberg atoms. These atoms have a wealth of exotic properties which are discussed. Of special interest, are the effects of electric and magnetic fields on Rydberg atoms. Ordinary atoms are scarcely affected by an applied electric or magnetic field; Rydberg atoms can be strongly distorted and even pulled apart by a relatively weak electric field, and they can be squeezed into unexpected shapes by a magnetic field. Studies of the structure of Rydberg atoms in electric and magnetic fields have revealed dramatic atomic phenomena that had not been observed before

  8. Atomic mirrors for a Λ-type three-level atom

    International Nuclear Information System (INIS)

    Felemban, Nuha; Aldossary, Omar M; Lembessis, Vassilis E

    2014-01-01

    We propose atom mirror schemes for a three-level atom of Λ-type interacting with two evanescent fields, which are generated as a result of the total internal reflection of two coherent Gaussian laser beams at the interface of a dielectric prism with vacuum. The forces acting on the atom are derived by means of optical Bloch equations, based on the atomic density matrix elements. The theory is illustrated by setting up the equations of motion for 23 Na atom. Two types of excited schemes are examined, namely the cases in which the evanescent fields have polarization types of σ + −σ − and σ + −π. The equations are solved numerically and we get results for atomic trajectories for different parameters. The performance of the mirror for the two types of polarization schemes is quantified and discussed. The possibility of reflecting atoms at pre-determined directions is also discussed. (paper)

  9. Quasi-atoms

    International Nuclear Information System (INIS)

    Armbruster, P.

    1976-01-01

    The concept of a quasi-atom is discussed, and several experiments are described in which molecular or quasi-atomic transitions have been observed. X-ray spectra are shown for these experiments in which heavy ion projectiles were incident on various targets and the resultant combined system behaved as a quasi-atom. This rapidly developing field has already given new insight into atomic collision phenomena. (P.J.S.)

  10. Atomic fusion, Gerrard atomic fusion

    International Nuclear Information System (INIS)

    Gerrard, T.H.

    1980-01-01

    In the approach to atomic fusion described here the heat produced in a fusion reaction, which is induced in a chamber by the interaction of laser beams and U.H.F. electromagnetic beams with atom streams, is transferred to a heat exchanger for electricity generation by a coolant flowing through a jacket surrounding the chamber. (U.K.)

  11. Interferometry with atoms

    International Nuclear Information System (INIS)

    Helmcke, J.; Riehle, F.; Witte, A.; Kisters, T.

    1992-01-01

    Physics and experimental results of atom interferometry are reviewed and several realizations of atom interferometers are summarized. As a typical example of an atom interferometer utilizing the internal degrees of freedom of the atom, we discuss the separated field excitation of a calcium atomic beam using four traveling laser fields and demonstrate the Sagnac effect in a rotating interferometer. The sensitivity of this interferometer can be largely increased by use of slow atoms with narrow velocity distribution. We therefore furthermore report on the preparation of a laser cooled and deflected calcium atomic beam. (orig.)

  12. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    International Nuclear Information System (INIS)

    Stuyver, T.; Fias, S.; De Proft, F.; Geerlings, P.; Fowler, P. W.

    2015-01-01

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability

  13. Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.; Geerlings, P. [ALGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Fowler, P. W. [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom)

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  14. Conduction of molecular electronic devices: qualitative insights through atom-atom polarizabilities.

    Science.gov (United States)

    Stuyver, T; Fias, S; De Proft, F; Fowler, P W; Geerlings, P

    2015-03-07

    The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.

  15. Magnetic atom optics: mirrors, guides, traps, and chips for atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hinds, E.A.; Hughes, I.G. [Sussex Centre for Optical and Atomic Physics, University of Sussex, Brighton (United Kingdom)

    1999-09-21

    For the last decade it has been possible to cool atoms to microkelvin temperatures ({approx}1 cm s{sup -1}) using a variety of optical techniques. Light beams provide the very strong frictional forces required to slow atoms from room temperature ({approx}500 m s{sup -1}). However, once the atoms are cold, the relatively weak conservative forces of static electric and magnetic fields play an important role. In our group we have been studying the interaction of cold rubidium atoms with periodically magnetized data storage media. Here we review the underlying principles of the forces acting on atoms above a suitably magnetized substrate or near current-carrying wires. We also summarize the status of experiments. These structures can be used as smooth or corrugated reflectors for controlling the trajectories of cold atoms. Alternatively, they may be used to confine atoms to a plane, a line, or a dot and in some cases to reach the quantum limit of confinement. Atoms levitated above a magnetized surface can be guided electrostatically by wires deposited on the surface. The flow and interaction of atoms in such a structure may form the basis of a new technology, 'integrated atom optics' which might ultimately be capable of realizing a quantum computer. (author)

  16. Low energy atom-atom collisions

    International Nuclear Information System (INIS)

    Child, M.S.

    1980-01-01

    The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail. The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabetic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stuckelberg), Demkov and Nikitin models. The relation between Stuckelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F( 2 P) + Xe( 2 S) scattering

  17. Mechanism of yttrium atom formation in electrothermal atomization from metallic and metal-carbide surfaces of a heated graphite atomizer in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wahab, H.S.; Chakrabarti, C.L.

    1981-01-01

    Mechanism of Y atom formation from pyrocoated graphite, tantalum and tungsten metal surfaces of a graphite tube atomizer has been studied and a mechanism for the formation for Y atoms is proposed for the first time. (author)

  18. Atomic Physics 16: Sixteenth International Conference on Atomic Physics. Proceedings

    International Nuclear Information System (INIS)

    Baylis, W.E.; Drake, G.W.

    1999-01-01

    These proceedings represent papers presented at the 16th International Conference on Atomic Physics held in Windsor, Ontario, Canada, in August, 1998. The topics discussed included a wide array of subjects in atomic physics such as atom holography, alignment in atomic collisions, coulomb-interacting particles, muon experiments, x-rays from comets, atomic electron collisions in intense laser fields, spectroscopy of trapped ions, and Bose-Einstein condensates. This conference represents the single most important meeting world wide on fundamental advances in atomic physics. There were 30 papers presented at the conference,out of which 4 have been abstracted for the Energy, Science and Technology database

  19. A low-cost vaporization-atomization system for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bruhn F, C.G.; Ambiado V, F.; Woerner V, R.

    1990-01-01

    A low-cost vaporization-atomization system for atomic absorption spectrometry is developed as an alternative to the use of a graphite furnace in electrothermal atomic absorption spectrometry. (Author)

  20. Atom localization via controlled spontaneous emission in a five-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhiping; Yu Benli; Zhu Jun; Cao Zhigang; Zhen Shenglai; Wu Xuqiang; Xu Feng

    2012-01-01

    We investigate the one- and two-dimensional atom localization behaviors via spontaneous emission in a coherently driven five-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of atom localization behaviors can be significantly improved via adjusting the system parameters. More importantly, the two-dimensional atom localization patterns reveal that the maximal probability of finding an atom within the sub-wavelength domain of the standing waves can reach unity when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization. - Highlights: ► One- and two-dimensional atom localization behaviors via spontaneous emission in five-level atoms are investigated. ► An assisting radio-frequency field is used to control the atom localization behaviors. ► High-precision and high-resolution two-dimensional atom localization can be realized in this scheme.

  1. Three-atom clusters

    International Nuclear Information System (INIS)

    Pen'kov, F.M.

    1998-01-01

    The Born-Oppenheimer approximation is used to obtain an equation for the effective interaction in three atoms bound by a single electron. For low binding energies in an 'electron + atom' pair, long-range forces arise between the atoms, leading to bound states when the size of the three-atom cluster is a few tens of angstrom. A system made of alkali-metal atoms is considered as an example

  2. Atomic Fisher information versus atomic number

    International Nuclear Information System (INIS)

    Nagy, A.; Sen, K.D.

    2006-01-01

    It is shown that the Thomas-Fermi Fisher information is negative. A slightly more sophisticated model proposed by Gaspar provides a qualitatively correct expression for the Fisher information: Gaspar's Fisher information is proportional to the two-third power of the atomic number. Accurate numerical calculations show an almost linear dependence on the atomic number

  3. Atomic-fluorescence spectrophotometry

    International Nuclear Information System (INIS)

    Bakhturova, N.F.; Yudelevich, I.G.

    1975-01-01

    Atomic-fluorescence spectrophotometry, a comparatively new method for the analysis of trace quantities, has developed rapidly in the past ten years. Theoretical and experimental studies by many workers have shown that atomic-fluorescence spectrophotometry (AFS) is capable of achieving a better limit than atomic absorption for a large number of elements. The present review examines briefly the principles of atomic-fluorescence spectrophotometry and the types of fluorescent transition. The excitation sources, flame and nonflame atomizers, used in AFS are described. The limits of detection achieved up to the present, using flame and nonflame methods of atomization are given

  4. Optically polarized atoms understanding light-atom interactions

    CERN Document Server

    Auzinsh, Marcis; Rochester, Simon M

    2010-01-01

    This book is addressed at upper-level undergraduate and graduate students involved in research in atomic, molecular, and optical Physics. It will also be useful to researchers practising in this field. It gives an intuitive, yet sufficiently detailed and rigorous introduction to light-atom interactions with a particular emphasis on the symmetry aspects of the interaction, especially those associated with the angular momentum of atoms and light. The book will enable readers to carryout practical calculations on their own, and is richly illustrated with examples drawn from current research topic

  5. Decay of long-lived autoionization atomic states in atom collisions

    International Nuclear Information System (INIS)

    Krakov, B.G.

    1994-01-01

    Radiationless decay of long-lived autoionization states of helium atoms in atom collisions is investigated. It is shown that the states may decay in atom collisions due to softening of the selection rules

  6. Hot atom chemistry of monovalent atoms in organic condensed phases

    International Nuclear Information System (INIS)

    Stoecklin, G.

    1975-01-01

    The advantages and disadvantages of hot atom studies in condensed organic phases are considered, and recent advances in condensed phase organic hot atom chemistry of recoil tritium and halogen atoms are discussed. Details are presented of the present status and understanding of liquid phase hot atom chemistry and also that of organic solids. The consequences of the Auger effect in condensed organic systems are also considered. (author)

  7. Ab initio calculation atomics ground state wave function for interactions Ion- Atom

    International Nuclear Information System (INIS)

    Shojaee, F.; Bolori zadeh, M. A.

    2007-01-01

    Ab initio calculation atomics ground state wave function for interactions Ion- Atom Atomic wave function expressed in a Slater - type basis obtained within Roothaan- Hartree - Fock for the ground state of the atoms He through B. The total energy is given for each atom.

  8. Neutron studies of paramagnetic fullerenols’ assembly in aqueous solutions

    Science.gov (United States)

    Lebedev, V. T.; Szhogina, A. A.; Suyasova, M. V.

    2018-03-01

    Recent results on structural studies of aqueous solutions of water-soluble derivatives of endofullerenes encapsulating 4f- and 3d-elements have been presented. Neutron small angle scattering experiments allowed recognize subtle features of fullerenols assembly as dependent on chemical nature (atomic number) of interior atom, pH-factor and temperature of solutions. It was observed a fractal-type fullerenols’ ordering at the scale of correlation radii ∼ 10-20 nm when molecules with iron atoms are integrated into branched structures at low concentrations (C ≤ 1 % wt.) and organized into globular aggregates at higher amounts (C > 1 % wt.). On the other hand, for Lanthanides captured in carbon cages the supramolecular structures are mostly globular and have larger gyration radii ∼ 30 nm. They demonstrated a good stability in acidic (pH ∼ 3) and neutral (pH ∼ 7) media that is important for forthcoming medical applications.

  9. Radial and azimuthal distribution of Io's oxygen neutral cloud observed by Hisaki/EXCEED

    Science.gov (United States)

    Koga, R.; Tsuchiya, F.; Kagitani, M.; Sakanoi, T.; Yoneda, M.; Yoshikawa, I.; Yoshioka, K.; Murakami, G.; Yamazaki, A.; Kimura, T.; Smith, H. T.

    2017-12-01

    We report the spatial distributions of oxygen neural cloud surrounding Jupiter's moon Io and along Io's orbit observed by the HISAKI satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exobase and move to corona ( 5.8 Io radii) mainly due to atmospheric sputtering. Io plasma torus is formed by ionization of these atoms by electron impact and charge exchange processes. It is essential to examine the dominant source of Io plasma torus, particularly in the vicinity of Io (5.8 Io radii; extended neutral clouds). The spatial distribution of oxygen and sulfur neutral clouds is important to understand the source. The extreme ultraviolet spectrometer called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Hisaki satellite observed Io plasma torus continuously in 2014-2015, and we carried out the monitoring of the distribution of atomic oxygen emission at 130.4 nm. The emission averaged over the distance range of 4.5-6.5 Jovian radii on the dawn and dusk sides strongly depends on the Io phase angle (IPA), and has a emission peak between IPA of 60-90 degrees on the dawn side, and between 240-270 degrees on the dusk side, respectively. It also shows the asymmetry with respect to Io's position: the intensity averaged for IPA 60-90 degrees (13.3 Rayleighs (R)) is 1.2 times greater than that for IPA 90-120 degrees (11.1 R) on the dawn side. The similar tendency is found on the dusk side. Weak atomic oxygen emission (4 R) uniformly distributes in every IPA. We also examined the radial distribution of the oxygen neutral cloud during the same period and found the emission peak near Io's orbit with decreasing the intensity toward 8.0 Jupiter radii. The results show the high density component of the oxygen neutral cloud is concentrated around Io and extends mainly toward leading side of Io. In addition, the low density neutrals uniformly exist along Io's orbit. Both components extend radially outward up to 8 Jovian radii with

  10. Kinetic model of the bichromatic dark trap for atoms

    Science.gov (United States)

    Krasnov, I. V.

    2017-08-01

    A kinetic model of atom confinement in a bichromatic dark trap (BDT) is developed with the goal of describing its dissipative properties. The operating principle of the deep BDT is based on using the combination of multiple bichromatic cosine-Gaussian optical beams (CGBs) for creating high-potential barriers, which is described in our previous work (Krasnov 2016 Laser Phys. 26 105501). In the indicated work, particle motion in the BDT is described in terms of classical trajectories. In the present study, particle motion is analyzed by means of the Wigner function (phase-space distribution function (DF)), which allows one to properly take into account the quantum fluctuations of optical forces. Besides, we consider an improved scheme of the BDT, where CGBs create, apart from plane potential barriers, a narrow cooling layer. We find an asymptotic solution of the Fokker-Planck equation for the DF and show that the DF of particles deeply trapped in a BDT with a cooling layer is the Tsallis distribution with the effective temperature, which can be considerably lower than in a BDT without a cooling layer. Moreover, it can be adjusted by slightly changing the CGBs’ radii. We also study the effect of particle escape from the trap due to the scattering of resonant photons and show that the particle lifetime in a BDT can exceed several tens of hours when it is limited by photon scattering.

  11. Atomic switches: atomic-movement-controlled nanodevices for new types of computing

    International Nuclear Information System (INIS)

    Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu

    2011-01-01

    Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. (topical review)

  12. Atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 2 3 Po, 2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 2 3 Po level of helium-like krypton

  13. Progress in atomic spectroscopy

    International Nuclear Information System (INIS)

    Beyer, H.J.; Kleinpoppen, H.

    1984-01-01

    This book presents reviews by leading experts in the field covering areas of research at the forefront of atomic spectroscopy. Topics considered include the k ordering of atomic structure, multiconfiguration Hartree-Fock calculations for complex atoms, new methods in high-resolution laser spectroscopy, resonance ionization spectroscopy (inert atom detection), trapped ion spectroscopy, high-magnetic-field atomic physics, the effects of magnetic and electric fields on highly excited atoms, x rays from superheavy collision systems, recoil ion spectroscopy with heavy ions, investigations of superheavy quasi-atoms via spectroscopy of electron rays and positrons, impact ionization by fast projectiles, and amplitudes and state parameters from ion- and atom-atom excitation processes

  14. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  15. Study of Nuclear Moments and Mean Square Charge Radii by Collinear Fast-Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    The collinear fast-beam laser technique is used to measure atomic hyperfine structures and isotope shifts of unstable nuclides produced at ISOLDE. This gives access to basic nuclear ground-state and isomeric-state properties such as spins, magnetic dipole and electric quadrupole moments, and the variation of the nuclear mean square charge radius within a sequence of isotopes. \\\\ \\\\ Among the various techniques used for this purpose, the present approach is of greatest versatility, due to the direct use of the beams from the isotope separator. Their phase-space properties are exploited to achieve high sensitivity and resolution. The optical spectra of neutral atoms are made accessible by converting the ion beams into fast atomic beams. This is accomplished in the charge-exchange cell which is kept at variable potential ($\\pm$10~kV) for Doppler-tuning of the effective laser wavelength. The basic optical resolution of 10$^{-8}$ requires a 10$^{-5}$ stability of the 60~kV main acceleration voltage and low energy ...

  16. Rapid prototyping of versatile atom chips for atom interferometry applications.

    Science.gov (United States)

    Kasch, Brian; Squires, Matthew; Olson, Spencer; Kroese, Bethany; Imhof, Eric; Kohn, Rudolph; Stuhl, Benjamin; Schramm, Stacy; Stickney, James

    2016-05-01

    We present recent advances in the manipulation of ultracold atoms with ex-vacuo atom chips (i.e. atom chips that are not inside to the UHV chamber). Details will be presented of an experimental system that allows direct bonded copper (DBC) atom chips to be removed and replaced in minutes, requiring minimal re-optimization of parameters. This system has been used to create Bose-Einstein condensates, as well as magnetic waveguides with precisely tunable axial parameters, allowing double wells, pure harmonic confinement, and modified harmonic traps. We investigate the effects of higher order magnetic field contributions to the waveguide, and the implications for confined atom interferometry.

  17. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    International Nuclear Information System (INIS)

    Zhao Xiu-Qin; Liu Ni; Liang Jiu-Qing

    2017-01-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. (paper)

  18. Evolution Properties of Atomic Fidelity in the Combined Multi-Atom-Cavity Field System

    International Nuclear Information System (INIS)

    Wang Ju-Xia; Zhang Xiao-Juan; Zhang Xiu-Xing

    2015-01-01

    The atom fidelity is investigated in a system consisting of Mtwo-level atoms and M single-mode fields by use of complete quantum theory and numerical evaluation method. The influences of various system parameters on the evolution of atomic fidelity are studied. The results show that the atomic fidelity evolves in a Rabi oscillation manner. The oscillation frequency is mainly modulated by the coupling strength between atoms and light field, the atomic transition probabilities and the average photon numbers. Other factors hardly impact on the atomic fidelity. The present results may provide a useful approach to the maintenance of the atomic fidelity in the atom cavity field systems. (paper)

  19. AtomPy: an open atomic-data curation environment

    Science.gov (United States)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.

  20. Ubiquitous atom

    International Nuclear Information System (INIS)

    Spruch, G.M.; Spruch, L.

    1974-01-01

    The fundamentals of modern physics, including the basic physics and chemistry of the atom, elementary particles, cosmology, periodicity, and recent advances, are surveyed. The biology and chemistry of the life process is discussed to provide a background for considering the effects of atomic particles on living things. The uses of atomic power in space travel, merchant shipping, food preservation, desalination, and nuclear clocks are explored. (Pollut. Abstr.)

  1. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, Yasin [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Mehmet Akif Ersoy University, Faculty of Arts & Sciences, Chemistry Department, 15030 Burdur (Turkey); Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Dědina, Jiří, E-mail: dedina@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-01-01

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg{sup −1}. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml{sup −1}, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect. - Highlights: • On-line atomization of gold volatile species for AAS in quartz devices was studied. • Atomization mechanism was proposed and atomization efficiency was estimated. • Possibilities of in-atomizer preconcentration of gold volatile species were assessed.

  2. A procedure for the hardening of materials

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1984-01-01

    A method of hardening metals or ceramics which have fcc, bcc or hcp structures in which two species of differing atomic radii are introduced into the material to be hardened. One species is of a size such that it can diffuse through the lattice normally. The other is of a size such that it can diffuse readily only along dislocations. Ion bombardment is the preferred method of introducing the species with different atomic radii. The material to be hardened is subjected to heat and plastic deformation so as to cause a large number of dislocations with jogs. The species meet at the jogs where they interact and are trapped and set up strain fields which prevent further deformation of the material. (author)

  3. Electronic structure of atoms: atomic spectroscopy information system

    International Nuclear Information System (INIS)

    Kazakov, V V; Kazakov, V G; Kovalev, V S; Meshkov, O I; Yatsenko, A S

    2017-01-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists. (paper)

  4. Electronic structure of atoms: atomic spectroscopy information system

    Science.gov (United States)

    Kazakov, V. V.; Kazakov, V. G.; Kovalev, V. S.; Meshkov, O. I.; Yatsenko, A. S.

    2017-10-01

    The article presents a Russian atomic spectroscopy, information system electronic structure of atoms (IS ESA) (http://grotrian.nsu.ru), and describes its main features and options to support research and training. The database contains over 234 000 records, great attention paid to experimental data and uniform filling of the database for all atomic numbers Z, including classified levels and transitions of rare earth and transuranic elements and their ions. Original means of visualization of scientific data in the form of spectrograms and Grotrian diagrams have been proposed. Presentation of spectral data in the form of interactive color charts facilitates understanding and analysis of properties of atomic systems. The use of the spectral data of the IS ESA together with its functionality is effective for solving various scientific problems and training of specialists.

  5. Experimental atomic physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The experimental atomic physics program within the physics division is carried out by two groups, whose reports are given in this section. Work of the accelerator atomic physics group is centered around the 6.5-MV EN tandem accelerator; consequently, most of its research is concerned with atomic processes occurring to, or initiated by, few MeV/amu heavy ions. Other activities of this group include higher energy experiments at the Holifield Heavy Ion Research Facility (HHIRF), studies of electron and positron channeling radiation, and collaborative experiments at other institutions. The second experimental group concerns itself with lower energy atomic collision physics in support of the Fusion Energy Program. During the past year, the new Electron Cyclotron Resonance Source has been completed and some of the first data from this facility is presented. In addition to these two activities in experimental atomic physics, other chapters of this report describe progress in theoretical atomic physics, experimental plasma diagnostic development, and atomic data center compilation activities

  6. Atom-atom interactions around the band edge of a photonic crystal waveguide.

    Science.gov (United States)

    Hood, Jonathan D; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E; Kimble, H J

    2016-09-20

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields [Formula: see text] outside the bandgap to localized fields [Formula: see text] within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the [Formula: see text] line of atomic cesium for [Formula: see text] atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

  7. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  8. Experiments with Rydberg atoms on a current-carrying atom chip

    NARCIS (Netherlands)

    Cisternas San Martín, N.V.

    2018-01-01

    On one side, atom-chip experiments have demonstrated to be a versatile tool to study quantum physics in cold atoms systems. On the other side, Rydberg atoms have exaggerated properties that makes them good candidates to study quantum information and quantum simulations protocols. In this thesis both

  9. Atom

    International Nuclear Information System (INIS)

    Auffray, J.P.

    1997-01-01

    The atom through centuries, has been imagined, described, explored, then accelerated, combined...But what happens truly inside the atom? And what are mechanisms who allow its stability? Physicist and historian of sciences, Jean-Paul Auffray explains that these questions are to the heart of the modern physics and it brings them a new lighting. (N.C.)

  10. Entanglement dynamics between an isolated atom and a moving atom in the cavity

    International Nuclear Information System (INIS)

    Xiao-Juan, Deng; Mao-Fa, Fang; Guo-Dong, Kang

    2009-01-01

    The entanglement dynamics between an isolated atom and a moving atom interacting with a cavity field is investigated. The results show that there appears sudden death of entanglement between the isolated atom and the moving atom and that the time of entanglement sudden death (ESD) is independent of the initial state of the system. It is interesting that the isolated atom can also entangle with a cavity field, though they do not interact with each other originally, which stems from the fact that the entanglement between the isolated atom and the moving atom may turn into the entanglement between the isolated atom and the cavity. (general)

  11. Do atoms and anti-atoms obey the same laws of physics?

    CERN Multimedia

    Jeffrey Hangst

    2010-01-01

    ALPHA physicists have recently succeeded in trapping anti-atoms for the first time. Being able to hold on to the simplest atoms of antimatter is an important step towards the collaboration’s ultimate goal: precision spectroscopic comparison of hydrogen and antihydrogen. The question they are seeking to answer: do atoms and anti-atoms obey the same laws of physics? The Standard Model says that they must.   The ALPHA Collaboration celebrates the successful results. The ALPHA collaboration has taken it up a gear and trapped 38 atoms of antihydrogen for the first time. Antihydrogen atoms have been mass-produced at the Antiproton Decelerator (AD) since 2002, when ATHENA (ALPHA’s predecessor) and ATRAP learned how to mix clouds of antiprotons and positrons at cryogenic temperatures. However, these anti-atoms were not confined, and flew off in a few microseconds to meet their fate: annihilation with matter in the walls of the experiment. ALPHA uses antiprotons produced at...

  12. Design and Construction of an Atomic Clock on an Atom Chip

    International Nuclear Information System (INIS)

    Reinhard, Friedemann

    2009-01-01

    We describe the design and construction of an atomic clock on an atom chip, intended as a secondary standard, with a stability in the range of few 10 -13 at 1 s. This clock is based on a two-photon transition between the hyperfine states |F = 1; m F = -1> and |2; 1> of the electronic ground state of the 87 Rb atom. This transition is interrogated using a Ramsey scheme, operating on either a cloud of thermal atoms or a Bose-Einstein condensate. In contrast to atomic fountain clocks, this clock is magnetically trapped on an atom chip. We describe a theoretical model of the clock stability and the design and construction of a dedicated apparatus. It is able to control the magnetic field at the relative 10 -5 level and features a hybrid atom chip, containing DC conductors as well as a microwave transmission line for the clock interrogation. (author)

  13. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    Science.gov (United States)

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chemical reactions of recoil atoms and thermal atoms of tritium with haloid benzenes

    International Nuclear Information System (INIS)

    Simirskij, Yu.N.; Firsova, L.P.

    1978-01-01

    Radiochemical yields have been determined for the products of substitution of hydrogen atoms and halides in Cl-, Br-, and I-benzenes with tritium atoms obtained during thermal dissociation of T 2 and with recoil atoms T arising in nuclear reaction 6 Li(n, P)T. It is shown that in the series of Cl-, Br-, and I-benzenes yields of the products of substitution of halides atoms with tritium grow, whereas those of hydrogen atom substitution change only little. The correlation nature of the yields of substitution products of halide atoms with tritium remains constant in a wide range of the initial kinetic energies of T atoms for the recoil atoms with E 0 =2.7 MeV and for the completely thermolized atoms during thermal dissociation of T 2

  15. Atomic fountain and applications

    International Nuclear Information System (INIS)

    Rawat, H.S.

    2000-01-01

    An overview of the development of working of MOT along with the basic principle of laser atom cooling and trapping is given. A technique to separate the cooled and trapped atoms from the MOT using atomic fountain technique will also be covered. The widely used technique for atomic fountain is, first to cool and trap the neutral atoms in MOT and then launch them in the vertical direction, using moving molasses technique. Using 133 Cs atomic fountain clock, time improvement of 2 to 3 order of magnitude over a conventional 133 Cs atomic clock has been observed

  16. Generation of a slow and continuous cesium atomic beam for an atomic clock

    International Nuclear Information System (INIS)

    Park, Sang Eon; Lee, Ho Seong; Shin, Eun-joo; Kwon, Taeg Yong; Yang, Sung Hoon; Cho, Hyuck

    2002-01-01

    A thermal atomic beam from a cesium oven was slowed down by use of the Hoffnagle modified white-light cooling technique. In addition, the atomic beam was collimated by use of a two-dimensional optical molasses that was installed transverse to the atomic-beam direction. The flux of the atomic beam was 2x10 10 atoms/s, an increase of a factor of 16 as a result of the collimation. The mean longitudinal velocity was ∼24.4 m/s, and the rms velocity spread of the slowed atomic beam was ∼1 m/s. Compared with other methods, we found that the Hoffnagle method is suitable for the generation of slow atomic beams to be used in an atomic clock, which requires an ultralow magnetic field environment. This atomic beam was deflected by an angle of 30 deg. by a one-dimensional optical molasses to separate it from laser light and high-velocity atoms

  17. Atomic inner-shell physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  18. Effect of temperature on atom-atom collision chain length in metals

    International Nuclear Information System (INIS)

    Makarov, A.A.; Demkin, N.A.; Lyashchenko, B.G.

    1981-01-01

    Focused atom-atom collision chain lengths are calculated for fcc-crystals with account of thermal oscillations. The model of solid spheres with the Born-Merier potential has been used in the calculations. The dependence of chain lengths on the temperature, energy and movement direction of the first chain atom for Cu, Au, Ag, Pb, Ni is considered. The plot presented shows that the chain lengths strongly decrease with temperature growth, for example, for the gold at T=100 K the chain length equals up to 37 interatomic spacings, whereas at T=1000 K their length decreases down to 5 interatomic distances. The dependence of the energy loss by the chain atoms on the atom number in the chain is obtained in a wide range of crystal temperature and the primary chain atom energy [ru

  19. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  20. Cold experiment of slag centrifugal granulation by rotary atomizer: Effect of atomizer configuration

    International Nuclear Information System (INIS)

    Wu, Jun-Jun; Wang, Hong; Zhu, Xun; Liao, Qiang; Li, Kai

    2017-01-01

    Centrifugal granulation has recently been employed to produce small blast furnace slag particles, so as to recover the waste heat from the high-temperature molten blast furnace slag. An appropriate atomizer enables centrifugal granulation to become a better cost-effective process for particle production. Thus, increasing emphasis has been placed on influence of atomizer configuration on granulation. In present study, three groups of atomizers were specially designed and the granulation performance of each atomizer was experimentally tested during cold experiments. The influences of atomizer configuration on granulation modes and droplet characteristics were investigated visually. Two modified correlations were proposed to predict the granulating droplet size by means of data fitting. The results indicated that the rotary cup atomizers can inhibit the film formation in contrast to rotary disc atomizer. Moreover, atomizers with outer angle of 90° was capable of producing smaller droplets. The revised correlation as well as the newly-developed correlation including the influence of atomizer configurations, presented in good agreement with the experiment data. In addition, an analysis on atomizer design was conducted to provide a good insight for industrialization. It was recommended to adopt cup-like atomizer in granulation for its ability to produce fine particles with smaller atomizer size.

  1. Observation of dynamic atom-atom correlation in liquid helium in real space.

    Science.gov (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  2. Atom-atom interactions around the band edge of a photonic crystal waveguide

    Science.gov (United States)

    Hood, Jonathan D.; Goban, Akihisa; Asenjo-Garcia, Ana; Lu, Mingwu; Yu, Su-Peng; Chang, Darrick E.; Kimble, H. J.

    2016-09-01

    Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields E(x)∝e±ikxxE(x)∝e±ikxx outside the bandgap to localized fields E(x)∝e-κx|x|E(x)∝e-κx|x| within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the D1D1 line of atomic cesium for N¯=3.0±0.5N¯=3.0±0.5 atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

  3. Theoretical treatment of electron capture and excitation in two-electron system ion-atom, atom-atom collisions at low to intermediate energy

    International Nuclear Information System (INIS)

    Kimura, M.

    1986-01-01

    A review of various theoretical treatments which have been used to study electron-capture and excitation processes in two-electron-system ion-atom, atom-atom collisions at low to intermediate energy is presented. Advantages as well as limitations associated with these theoretical models in application to practical many-electron ion-atom, atom-atom collisions are specifically pointed out. Although a rigorous theoretical study of many-electron systems has just begun so that reports of theoretical calculations are scarce to date in comparison to flourishing experimental activities, some theoretical results are of great interest and provide important information for understanding collision dynamics of the system which contains many electrons. Selected examples are given for electron capture in a multiply charged ion-He collision, ion-pair formation in an atom-atom collision and alignment and orientation in a Li + + He collision. (Auth.)

  4. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  5. Observation of atomic arrangement by using photoelectron holography and atomic stereo-photograph

    International Nuclear Information System (INIS)

    Matsushita, Tomohiro; Guo, Fang Zhun; Agui, Akane; Matsui, Fumihiko; Daimon, Hiroshi

    2006-01-01

    Both a photoelectron holography and atomic stereo-photograph are the atomic structure analysis methods on the basis of photoelectron diffraction. They have six special features such as 1) direct determination of atomic structure, 2) measurement of three dimensional atomic arrangements surrounding of specific element in the sample, 3) determination of position of atom in spite of electron cloud, 4) unnecessary of perfect periodic structure, 5) good sensitivity of structure in the neighborhood of surface and 6) information of electron structure. Photoelectron diffraction, the principle and measurement system of photoelectron holography and atomic stereo-photograph is explained. As application examples of atomic stereo-photograph, the single crystal of cupper and graphite are indicated. For examples of photoelectron holography, Si(001)2p and Ge(001)3s are explained. (S.Y.)

  6. Atom dynamics in laser fields

    International Nuclear Information System (INIS)

    Jang, Su; Mi, No Gin

    2004-12-01

    This book introduces coherent dynamics of internal state, spread of atoms wave speed, semiclassical atoms density matrix such as dynamics equation in both still and moving atoms, excitation of atoms in movement by light, dipole radiating power, quantum statistical mechanics by atoms in movement, semiclassical atoms in movement, atoms in movement in the uniform magnetic field including effects of uniform magnetic field, atom cooling using laser such as Doppler cooling, atom traps using laser and mirrors, radiant heat which particles receive, and near field interactions among atoms in laser light.

  7. prepared via atom transfer radical polymerization, reverse atom

    Indian Academy of Sciences (India)

    Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and ... Zydex Industries, 25-A Gandhi Oil Mill Compound, Gorwa, Vadodara 390 016, India; Rubber Technology Centre, Indian Institute of Technology Kharagpur, ...

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  9. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  10. Small-angle scattering of ions or atoms by atomic hydrogen

    International Nuclear Information System (INIS)

    Franco, V.

    1982-01-01

    A theory for small-angle scattering of arbitrary medium- or high-energy atoms or ions by atomic hydrogen is described. Results are obtained in terms of the known closed-form and easily calculable Glauber-approximation scattering amplitudes for electron-hydrogen collisions and for collisions between the nucleus (treated as one charged particle) of the ion or atom and the hydrogen atom, and in terms of the transition form factor of the arbitrary ion or atom. Applications are made to the angular differential cross sections for the excitation of atomic hydrogen to its n = 2 states by singly charged ground-state helium ions having velocities of roughly between 1/2 and 1 a.u. The differential cross sections are obtained in terms of electron-hydrogen amplitudes and the known He + ground-state form factor. Comparisons are made with other calculations and with recent measurements. The results are in good agreement with the data. It is seen that the effect of the He + electron is to produce significant constructive interference at most energies

  11. Optimum radii and heights of U-shaped baffles in a square duct heat exchanger using surrogate-assisted optimization

    Directory of Open Access Journals (Sweden)

    Kittinan Wansasueb

    2017-06-01

    Full Text Available In this paper, optimum U-shaped baffles in a square channel heat exchanger using air as a working fluid were developed using surrogate-assisted optimization. The design problem is set to maximize heat transfer performance and simultaneously minimize pressure loss across the channel. Design variables determine the radii and heights of the baffles, whereas the optimization problem is treated as box-constrained optimization. The work in this paper is aimed at finding an appropriate surrogate model for designing such a heat exchanger system. Function evaluations are performed by means of computational fluid dynamics (CFD. The computations are based on the finite volume method and are carried out at a Reynolds number of 4000. It has been found that the use of U-shaped baffles as heat transfer enhancement devices improves the thermal performance of the heat exchanger. Comparative results reveal that the Kriging model is the most accurate surrogate model, however, the surrogate model giving the best result is support vector regression.

  12. Mechanism of formation and spatial distribution of lead atoms in quartz tube atomizers

    Science.gov (United States)

    Johansson, M.; Baxter, D. C.; Ohlsson, K. E. A.; Frech, W.

    1997-05-01

    The cross-sectional and longitudinal spatial distributions of lead atoms in a quartz tube (QT) atomizers coupled to a gas chromatograph have been investigated. A uniform analyte atom distribution over the cross-section was found in a QT having an inner diameter (i.d.) of 7 mm, whereas a 10 mm i.d. QT showed an inhomogeneous distribution. These results accentuate the importance of using QTs with i.d.s below 10 mm to fulfil the prerequirement of the Beer—Lambert law to avoid bent calibration curves. The influence of the make up gas on the formation of lead atoms from alkyllead compounds has been studied, and carbon monoxide was found equally efficient in promoting free atom formation as hydrogen. This suggests that hydrogen radicals are not essential for mediating the atomization of alkyllead in QT atomizers at ˜ 1200 K. Furthermore, thermodynamic equilibrium calculations describing the investigated system were performed supporting the experimental results. Based on the presented data, a mechanism for free lead atom formation in continuously heated QT atomizers is proposed; thermal atomization occurs under thermodynamic equilibrium conditions in a reducing gas. The longitudinal atom distribution has been further investigated applying other make up gases, N 2 and He. These results show the effect of the influx of atmospheric oxygen on the free lead atom formation. Calculations of the partial pressure of oxygen in the atomizer gas phase assuming thermodynamic equilibrium have been undertaken using a convective-diffusional model.

  13. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  14. 0.75 atoms improve the clock signal of 10,000 atoms

    DEFF Research Database (Denmark)

    Kruse, I.; Lange, K.; Peise, Jan

    2017-01-01

    Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case.......75 atoms to improve the clock sensitivity of 10,000 atoms by 2.05 dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based...... on atomic squeezed vacuum....

  15. Multipolar electrostatics for proteins: atom-atom electrostatic energies in crambin.

    Science.gov (United States)

    Yuan, Yongna; Mills, Matthew J L; Popelier, Paul L A

    2014-02-15

    Accurate electrostatics necessitates the use of multipole moments centered on nuclei or extra point charges centered away from the nuclei. Here, we follow the former alternative and investigate the convergence behavior of atom-atom electrostatic interactions in the pilot protein crambin. Amino acids are cut out from a Protein Data Bank structure of crambin, as single amino acids, di, or tripeptides, and are then capped with a peptide bond at each side. The atoms in the amino acids are defined through Quantum Chemical Topology (QCT) as finite volume electron density fragments. Atom-atom electrostatic energies are computed by means of a multipole expansion with regular spherical harmonics, up to a total interaction rank of L = ℓA+ ℓB + 1 = 10. The minimum internuclear distance in the convergent region of all the 15 possible types of atom-atom interactions in crambin that were calculated based on single amino acids are close to the values calculated from di and tripeptides. Values obtained at B3LYP/aug-cc-pVTZ and MP2/aug-cc-pVTZ levels are only slightly larger than those calculated at HF/6-31G(d,p) level. This convergence behavior is transferable to the well-known amyloid beta polypeptide Aβ1-42. Moreover, for a selected central atom, the influence of its neighbors on its multipole moments is investigated, and how far away this influence can be ignored is also determined. Finally, the convergence behavior of AMBER becomes closer to that of QCT with increasing internuclear distance. Copyright © 2013 Wiley Periodicals, Inc.

  16. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Batty, C.J.

    1989-07-01

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  17. Determination of the charge radii of several light nuclei from precision, high-energy electron elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, Al Amin [Kent State Univ., Kent, OH (United States)

    2015-12-01

    Analysis of high-energy electron scattering has been used to determine the charge radii of nuclei for several decades. Recent analysis of the Lamb shift in muonic hydrogen found an r.m.s. radius significantly different than the electron scattering result. To understand this puzzle we have analyzed the "LEDEX" data for the (e, e'p) reaction. This experiment includes measurements on several light nuclei, hydrogen, deuterium, lithium, boron, and carbon. To test our ability to measure absolute cross sections, as well as our ability to extract the charge radius, we tested our technique against the extremely well-measured carbon case and found excellent agreement using the Fourier-Bessel parametrization. We then extended the procedure to boron and lithium, which show nice agreement with the latest theoretical calculations. For hydrogen, we see clearly the limits of this technique and therefore, the charge radius is determined from the traditional extrapolation to q2 = 0. We will show that there is a model dependence in extracting the charge radius of hydrogen and its unambiguous determination is very difficult with available electron-scattering measurements.

  18. Stellar kinematics and populations out to 1.5 effective radii in the elliptical galaxy NGC 4636

    International Nuclear Information System (INIS)

    Pu Shibi; Han Zhanwen

    2011-01-01

    We present high quality long slit spectra along the major and minor axes out to 1.5 effective radii of the massive galaxy NGC 4636 taken by the Hobby-Eberly Telescope. Using the Fourier Correlation Quotient method, we measured the stellar line-of-sight velocity distribution along the axes. Furthermore, six Lick/IDS indices (Hβ, Mgb, Fe 5015 , Fe 5270 , Fe 5335 , Fe 5406 ) are derived from the clean spectrum. By comparing the measured absorption line strengths with the predictions of Simple Stellar Population (SSP) models, we derived ages, total metallicity and α abundance profiles of the galaxy. This galaxy presents old and [α/Fe] overabundant stellar populations. Indeed, using the SSP model, we obtained the broadband color profiles. The theoretical colors match well with the measured colors and present red sharp peaks at the galaxy center. The sharp peaks of the colors are mainly shaped by the high metallicity in the galaxy's center. Interestingly, the galaxy has steep negative metallicity gradients, but the trend flattens outwards. This result likely suggests that the center and outer regions of the galaxy formed through different formation processes.

  19. Nuclear moments and charge radii of magnesium isotopes from N=8 up to (and beyond) N=20

    CERN Multimedia

    Mattolat, C F; Mallion, S N; Himpe, P

    2002-01-01

    We propose to measure the nuclear monopole, dipole and quadrupole moments of magnesium isotopes from the neutron deficient nuclei near the N=8 shell closure ($^{21}$Mg), up to the neutron rich Mg nuclei beyond N=20 ($^{33}$Mg). The physics issues that will be addressed in this project are related to: \\begin{itemize} \\item The properties of mirror nuclei (e.g. $^{21}$Mg - $^{21}$F being members of a T=3/2 multiplet) \\item The evolution of shell structure and deformation with isospin. \\item Changes in the shell structure in the "island of inversion" around $^{32}$Mg and along the N=9 isotones. \\end{itemize} Radioactive beams of Mg isotopes will be produced by the RILlS ion source. The Mg isotopes will be resonantly polarized at the COLLAPS set-up. With $\\beta$-NMR techniques, precision measurements of g-factors and quadrupole moments of the radioactive $^{21,23}$Mg and $^{29,31,33}$Mg isotopes will be performed. Isotope shifts, thus changes in mean square charge radii, will be deduced from hyperfine spectra mea...

  20. Nanomechanical measurements of hair as an example of micro-fibre analysis using atomic force microscopy nanoindentation

    International Nuclear Information System (INIS)

    Clifford, Charles A.; Sano, Naoko; Doyle, Peter; Seah, Martin P.

    2012-01-01

    The characterisation of nanoscale surface properties of textile and hair fibres is key to developing new effective laundry and hair care products. Here, we develop nanomechanical methods to characterise fibres using an atomic force microscope (AFM) to give their nanoscale modulus. Good mounting methods for the fibre that are chemically inert, clean and give strong mechanical coupling to a substrate are important and here we detail two methods to do this. We show, for elastic nanoindentation measurements, the situation when the tip radius significantly affects the result via a function of the ratio of the radii of the tip and fibre and indicate the importance of using an AFM for such work. A valid method to measure the nanoscale modulus of fibres using AFM is thus detailed and exampled on hair to show that bleaching changes the nanoscale reduced modulus at the outer surface. -- Highlights: ► Valid AFM nanomechanical characterisation of fibres developed. ► Good mounting methods detailed. ► Errors of not taking the fibre radius into account in indentation theory highlighted. ► Modulus of bleached and unbleached hair compared.

  1. Nanomechanical measurements of hair as an example of micro-fibre analysis using atomic force microscopy nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Clifford, Charles A., E-mail: charles.clifford@npl.co.uk [Analytical Science Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Sano, Naoko [Analytical Science Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Doyle, Peter [Unilever R and D, Port Sunlight, Wirral, Merseyside, CH63 3JW (United Kingdom); Seah, Martin P. [Analytical Science Division, National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2012-03-15

    The characterisation of nanoscale surface properties of textile and hair fibres is key to developing new effective laundry and hair care products. Here, we develop nanomechanical methods to characterise fibres using an atomic force microscope (AFM) to give their nanoscale modulus. Good mounting methods for the fibre that are chemically inert, clean and give strong mechanical coupling to a substrate are important and here we detail two methods to do this. We show, for elastic nanoindentation measurements, the situation when the tip radius significantly affects the result via a function of the ratio of the radii of the tip and fibre and indicate the importance of using an AFM for such work. A valid method to measure the nanoscale modulus of fibres using AFM is thus detailed and exampled on hair to show that bleaching changes the nanoscale reduced modulus at the outer surface. -- Highlights: Black-Right-Pointing-Pointer Valid AFM nanomechanical characterisation of fibres developed. Black-Right-Pointing-Pointer Good mounting methods detailed. Black-Right-Pointing-Pointer Errors of not taking the fibre radius into account in indentation theory highlighted. Black-Right-Pointing-Pointer Modulus of bleached and unbleached hair compared.

  2. Atoms - molecules - nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Otter, G.; Honecker, R.

    1993-01-01

    This first volume covers the following topics: Wave-particle dualism, classical atomic physics; the Schroedinger equation, angular momentum in quantum physics, one-electron atoms and many-electron atoms with atomic structure, atomic spectra, exotic atoms, influence of electric and magnetic fields

  3. Amplitudes and state parameters from ion- and atom-atom excitation processes

    International Nuclear Information System (INIS)

    Andersen, T.; Horsdal-Pedersen, E.

    1984-01-01

    This chapter examines single collisions between two atomic species, one of which is initially in a 1 S state (there is only one initial spin channel). The collisions are characterized by a definite scattering plane and a definite orientation. Topics considered include an angular correlation between scattered particles and autoionization electrons or polarized photons emitted from states excited in atomic collisions (photon emission, electron emission, selectivity excited target atoms), experimental methods for obtaining information on the alignment and orientation parameters of atoms or ions excited in specific collisions, results of experiments and numerical calculations (quasi-oneelectron systems, He + -He collisions, other collision systems), and future aspects and possible applications of the polarizedphoton, scattered-particle coincidence techniques to atomic spectroscopy

  4. ‘Which-way’ collective atomic spin excitation among atomic ensembles by photon indistinguishability

    International Nuclear Information System (INIS)

    Zhang Guowan; Bian Chenglin; Chen, L Q; Ou, Z Y; Zhang Weiping

    2012-01-01

    In spontaneous Raman scattering in an atomic ensemble, a collective atomic spin wave is created in correlation with the Stokes field. When the Stokes photons from two or more such atomic ensembles are made indistinguishable, a ‘which-way’ collective atomic spin excitation is generated among the independent atomic ensembles. We demonstrate this phenomenon experimentally by reading out the atomic spin excitations and observing interference between the read-out beams. When a single-photon projective measurement is made on the indistinguishable Stokes photons, this simple scheme can be used to entangle independent atomic ensembles. Compared to other currently used methods, this scheme can be easily scaled up and has greater efficiency. (paper)

  5. Atomic interferometry

    International Nuclear Information System (INIS)

    Baudon, J.; Robert, J.

    2004-01-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation λ = h/(mv), where λ is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  6. Clarifying atomic weights: A 2016 four-figure table of standard and conventional atomic weights

    Science.gov (United States)

    Coplen, Tyler B.; Meyers, Fabienne; Holden, Norman E.

    2017-01-01

    To indicate that atomic weights of many elements are not constants of nature, in 2009 and 2011 the Commission on Isotopic Abundances and Atomic Weights (CIAAW) of the International Union of Pure and Applied Chemistry (IUPAC) replaced single-value standard atomic weight values with atomic weight intervals for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium); for example, the standard atomic weight of nitrogen became the interval [14.00643, 14.00728]. CIAAW recognized that some users of atomic weight data only need representative values for these 12 elements, such as for trade and commerce. For this purpose, CIAAW provided conventional atomic weight values, such as 14.007 for nitrogen, and these values can serve in education when a single representative value is needed, such as for molecular weight calculations. Because atomic weight values abridged to four figures are preferred by many educational users and are no longer provided by CIAAW as of 2015, we provide a table containing both standard atomic weight values and conventional atomic weight values abridged to four figures for the chemical elements. A retrospective review of changes in four-digit atomic weights since 1961 indicates that changes in these values are due to more accurate measurements over time or to the recognition of the impact of natural isotopic fractionation in normal terrestrial materials upon atomic weight values of many elements. Use of the unit “u” (unified atomic mass unit on the carbon mass scale) with atomic weight is incorrect because the quantity atomic weight is dimensionless, and the unit “amu” (atomic mass unit on the oxygen scale) is an obsolete term: Both should be avoided.

  7. Three-dimensional atom localization via electromagnetically induced transparency in a three-level atomic system.

    Science.gov (United States)

    Wang, Zhiping; Cao, Dewei; Yu, Benli

    2016-05-01

    We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.

  8. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  9. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  10. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases

    Directory of Open Access Journals (Sweden)

    N. Boichenko

    2015-12-01

    Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.

  11. Atomic force microscopy. A new method for atom identification and manipulation

    International Nuclear Information System (INIS)

    Abe, Masayuki; Sugimoto, Yoshiaki; Morita, Seizo

    2007-01-01

    Frequency modulation atomic force microscopy (FM-AFM) is a scanning probe technique that detects the interaction forces between the outermost atom of a sharp tip and the atoms at a surface to image the sample surface. It is expected that the FM-AFM can cover the research field which scanning tunneling microscopy does not provide. In this article, we would introduce FM-AFM experiments applied to site-specific force measurements and atom manipulation, including how to solve the problems to achieve precise FM-AFM measurements. (author)

  12. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a 'platform' effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 {sup o}C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element

  13. Ionization of highly excited atoms by atomic particle impact

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1976-01-01

    The ionization of a highly excited atom by a collision with an atom or molecule is considered. The theory of these processes is presented and compared with experimental data. Cross sections and ionization potential are discussed. 23 refs

  14. Two-dimensional atom localization via probe absorption in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang Zhi-Ping; Ge Qiang; Ruan Yu-Hua; Yu Ben-Li

    2013-01-01

    We have investigated the two-dimensional (2D) atom localization via probe absorption in a coherently driven four-level atomic system by means of a radio-frequency field driving a hyperfine transition. It is found that the detecting probability and precision of 2D atom localization can be significantly improved via adjusting the system parameters. As a result, our scheme may be helpful in laser cooling or the atom nano-lithography via atom localization

  15. Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope

    Science.gov (United States)

    Yao, Zhan-Wei; Lu, Si-Bin; Li, Run-Bing; Luo, Jun; Wang, Jin; Zhan, Ming-Sheng

    2018-01-01

    We propose and demonstrate a method for calibrating atomic trajectories in a large-area dual-atom-interferometer gyroscope. The atom trajectories are monitored by modulating and delaying the Raman transition, and they are precisely calibrated by controlling the laser orientation and the bias magnetic field. To improve the immunity to the gravity effect and the common phase noise, the symmetry and the overlap of two large-area atomic interference loops are optimized by calibrating the atomic trajectories and by aligning the Raman-laser orientations. The dual-atom-interferometer gyroscope is applied in the measurement of the Earth's rotation. The sensitivity is 1.2 ×10-6 rad s -1 Hz-1/2, and the long-term stability is 6.2 ×10-8 rad/s at 2000 s.

  16. A study of atomic interaction between suspended nanoparticles and sodium atoms in liquid sodium

    International Nuclear Information System (INIS)

    Saito, Jun-ichi; Ara, Kuniaki

    2010-01-01

    A feasibility study of suppression of the chemical reactivity of sodium itself using an atomic interaction between nanoparticles and sodium atoms has been carried out. We expected that the atomic interaction strengthens when the nanoparticle metal is the transition element which has a major difference in electronegativity from sodium. We also calculated the atomic interaction between nanoparticle and sodium atoms. It became clear that the atomic bond between the nanoparticle atom and the sodium atom is larger than that between sodium atoms, and the charge transfer takes place to the nanoparticle atom from the sodium atom. Using sodium with suspended nanoparticles, the fundamental physical properties related to the atomic interaction were investigated to verify the atomic bond. The surface tension of sodium with suspended nanoparticles increased, and the evaporation rate of sodium with suspended nanoparticles also decreased compared with that of sodium. Therefore the presence of the atomic interaction between nanoparticles and sodium was verified from these experiments. Because the fundamental physical property changes by the atomic interaction, we expected changes in the chemical reactivity characteristics. The chemical reaction properties of sodium with suspended nanoparticles with water were investigated experimentally. The released reaction heat and the reaction rate of sodium with suspended nanoparticles were reduced than those of sodium. The influence of the charge state of nanoparticle on the chemical process with water was theoretically investigated to speculate on the cause of reaction suppression. The potential energy in both primary and side reactions changed by the charge transfer, and the free energy of activation of the reaction with water increased. Accordingly, the reaction barrier also increased. This suggests there is a possibility of the reduction in the reaction of sodium by the suspension of nanoparticles. Consequently the possibility of the

  17. Influence of the atomic structure on the quantum state of sputtered Ir atoms

    International Nuclear Information System (INIS)

    Bastiaansen, J.; Philipsen, V.; Lievens, P.; Silverans, R.E.; Vandeweert, E.

    2004-01-01

    The probability of the ejection of a neutral atom in a specific quantum state after keV-ion beam sputtering is often interpreted in terms of the interaction between the atomic states of the escaping atom and the electronic states of the solid. In this work, we examined this interplay in the sputtering of iridium as this element has--unlike the elements employed in previous investigations--a complex atomic structure due to strong configuration interactions. Double-resonant two-photon laser ionization is used to probe the sputtered Ir atoms yielding information about the probability for an ejected atom to populate a specific atomic state and its escape velocity. The qualitative features of the corresponding population partition and state-selective velocity distributions show the influence of the excitation energy and the electronic structure of the different atomic states. A comparison is made between the experimental data and predictions from the resonant electron transfer description

  18. AtomPy: A Cloud Atomic-data Service for Astrophysical Applications

    Science.gov (United States)

    Mendoza, Claudio; Boswell, J. S.; Bautista, M.

    2013-06-01

    Apart from our long-term commitment to the computing of accurate atomic data for astrophysical applications, we have also been interested in the problems of data access and dissemination. In this respect, one of us took part in the developments of TIPTOPbase [1, 2, 3], the astrophysical opacity server referred to as OPserver [4, 5], and, more recently, of the Virtual Atomic and Molecular Data Center [6, 7]. Our present effort is now with the establishment of a cloud atomic data web service, AtomPy, implemented by means of SOAP web services, Google Drive spreadsheets and Python modules. In the present poster we will describe the outline of this ambitious project, illustrated with some prototypes that are already operational.

  19. Atom and Bond Fukui Functions and Matrices: A Hirshfeld-I Atoms-in-Molecule Approach.

    Science.gov (United States)

    Oña, Ofelia B; De Clercq, Olivier; Alcoba, Diego R; Torre, Alicia; Lain, Luis; Van Neck, Dimitri; Bultinck, Patrick

    2016-09-19

    The Fukui function is often used in its atom-condensed form by isolating it from the molecular Fukui function using a chosen weight function for the atom in the molecule. Recently, Fukui functions and matrices for both atoms and bonds separately were introduced for semiempirical and ab initio levels of theory using Hückel and Mulliken atoms-in-molecule models. In this work, a double partitioning method of the Fukui matrix is proposed within the Hirshfeld-I atoms-in-molecule framework. Diagonalizing the resulting atomic and bond matrices gives eigenvalues and eigenvectors (Fukui orbitals) describing the reactivity of atoms and bonds. The Fukui function is the diagonal element of the Fukui matrix and may be resolved in atom and bond contributions. The extra information contained in the atom and bond resolution of the Fukui matrices and functions is highlighted. The effect of the choice of weight function arising from the Hirshfeld-I approach to obtain atom- and bond-condensed Fukui functions is studied. A comparison of the results with those generated by using the Mulliken atoms-in-molecule approach shows low correlation between the two partitioning schemes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Kepler-62: a five-planet system with planets of 1.4 and 1.6 Earth radii in the habitable zone.

    Science.gov (United States)

    Borucki, William J; Agol, Eric; Fressin, Francois; Kaltenegger, Lisa; Rowe, Jason; Isaacson, Howard; Fischer, Debra; Batalha, Natalie; Lissauer, Jack J; Marcy, Geoffrey W; Fabrycky, Daniel; Désert, Jean-Michel; Bryson, Stephen T; Barclay, Thomas; Bastien, Fabienne; Boss, Alan; Brugamyer, Erik; Buchhave, Lars A; Burke, Chris; Caldwell, Douglas A; Carter, Josh; Charbonneau, David; Crepp, Justin R; Christensen-Dalsgaard, Jørgen; Christiansen, Jessie L; Ciardi, David; Cochran, William D; DeVore, Edna; Doyle, Laurance; Dupree, Andrea K; Endl, Michael; Everett, Mark E; Ford, Eric B; Fortney, Jonathan; Gautier, Thomas N; Geary, John C; Gould, Alan; Haas, Michael; Henze, Christopher; Howard, Andrew W; Howell, Steve B; Huber, Daniel; Jenkins, Jon M; Kjeldsen, Hans; Kolbl, Rea; Kolodziejczak, Jeffery; Latham, David W; Lee, Brian L; Lopez, Eric; Mullally, Fergal; Orosz, Jerome A; Prsa, Andrej; Quintana, Elisa V; Sanchis-Ojeda, Roberto; Sasselov, Dimitar; Seader, Shawn; Shporer, Avi; Steffen, Jason H; Still, Martin; Tenenbaum, Peter; Thompson, Susan E; Torres, Guillermo; Twicken, Joseph D; Welsh, William F; Winn, Joshua N

    2013-05-03

    We present the detection of five planets--Kepler-62b, c, d, e, and f--of size 1.31, 0.54, 1.95, 1.61 and 1.41 Earth radii (R⊕), orbiting a K2V star at periods of 5.7, 12.4, 18.2, 122.4, and 267.3 days, respectively. The outermost planets, Kepler-62e and -62f, are super-Earth-size (1.25 R⊕ planet radius ≤ 2.0 R⊕) planets in the habitable zone of their host star, respectively receiving 1.2 ± 0.2 times and 0.41 ± 0.05 times the solar flux at Earth's orbit. Theoretical models of Kepler-62e and -62f for a stellar age of ~7 billion years suggest that both planets could be solid, either with a rocky composition or composed of mostly solid water in their bulk.

  1. Symmetric Atom–Atom and Ion–Atom Processes in Stellar Atmospheres

    Directory of Open Access Journals (Sweden)

    Vladimir A. Srećković

    2017-12-01

    Full Text Available We present the results of the influence of two groups of collisional processes (atom–atom and ion–atom on the optical and kinetic properties of weakly ionized stellar atmospheres layers. The first type includes radiative processes of the photodissociation/association and radiative charge exchange, the second one the chemi-ionisation/recombination processes with participation of only hydrogen and helium atoms and ions. The quantitative estimation of the rate coefficients of the mentioned processes were made. The effect of the radiative processes is estimated by comparing their intensities with those of the known concurrent processes in application to the solar photosphere and to the photospheres of DB white dwarfs. The investigated chemi-ionisation/recombination processes are considered from the viewpoint of their influence on the populations of the excited states of the hydrogen atom (the Sun and an M-type red dwarf and helium atom (DB white dwarfs. The effect of these processes on the populations of the excited states of the hydrogen atom has been studied using the general stellar atmosphere code, which generates the model. The presented results demonstrate the undoubted influence of the considered radiative and chemi- ionisation/recombination processes on the optical properties and on the kinetics of the weakly ionized layers in stellar atmospheres.

  2. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  3. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer

    Directory of Open Access Journals (Sweden)

    Qiufeng Yan

    2018-03-01

    Full Text Available Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured at various voltages, and the influence of the micro-tapered aperture and its variation on the atomization rate was characterized. The resonance frequency of the piezoelectric vibrator was obtained using a laser vibrometer, and the atomization rates were measured at each resonance frequency. From experiments, we found that the atomization rates at the first five resonance frequencies increased as the working frequency increased. At the fifth resonance frequency (121.1 kHz, the atomization rate was maximized (0.561 mL/min, and at the sixth resonance frequency (148.3 kHz, the atomization rate decreased significantly (0.198 mL/min. The experimental results show that the vibration characteristics of the piezoelectric vibrator have a relatively strong impact on the atomization rate. This research is expected to contribute to the manufacture of micro-tapered aperture atomizers.

  4. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer.

    Science.gov (United States)

    Yan, Qiufeng; Zhang, Jianhui; Huang, Jun; Wang, Ying

    2018-03-21

    Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured at various voltages, and the influence of the micro-tapered aperture and its variation on the atomization rate was characterized. The resonance frequency of the piezoelectric vibrator was obtained using a laser vibrometer, and the atomization rates were measured at each resonance frequency. From experiments, we found that the atomization rates at the first five resonance frequencies increased as the working frequency increased. At the fifth resonance frequency (121.1 kHz), the atomization rate was maximized (0.561 mL/min), and at the sixth resonance frequency (148.3 kHz), the atomization rate decreased significantly (0.198 mL/min). The experimental results show that the vibration characteristics of the piezoelectric vibrator have a relatively strong impact on the atomization rate. This research is expected to contribute to the manufacture of micro-tapered aperture atomizers.

  5. Atomic secrecy

    International Nuclear Information System (INIS)

    Sweet, W.

    1979-01-01

    An article, The H-Bomb Secret: How We Got It, Why We're Telling It, by Howard Morland was to be published in The Progressive magazine in February, 1979. The government, after learning of the author's and the editors' intention to publish the article and failing to persuade them to voluntarily delete about 20% of the text and all of the diagrams showing how an H-bomb works, requested a court injunction against publication. Acting under the Atomic Energy Act of 1954, US District Court Judge Robert W. Warren granted the government's request on March 26. Events dealing with the case are discussed in this publication. Section 1, Progressive Hydrogen Bomb Case, is discussed under the following: Court Order Blocking Magazine Report; Origins of the Howard Morland Article; Author's Motives, Defense of Publication; and Government Arguments Against Disclosure. Section 2, Access to Atomic Data Since 1939, contains information on need for secrecy during World War II; 1946 Atomic Energy Act and its effects; Soviet A-Bomb and the US H-Bomb; and consequences of 1954 Atomic Energy Act. Section 3, Disputed Need for Atomic Secrecy, contains papers entitled: Lack of Studies on H-Bomb Proliferation; Administration's Position on H-Bombs; and National Security Needs vs Free Press

  6. Compilation of data from hadronic atoms

    International Nuclear Information System (INIS)

    Poth, H.

    1979-01-01

    This compilation is a survey of the existing data of hadronic atoms (pionic-atoms, kaonic-atoms, antiprotonic-atoms, sigmonic-atoms). It collects measurements of the energies, intensities and line width of X-rays from hadronic atoms. Averaged values for each hadronic atom are given and the data are summarized. The listing contains data on 58 pionic-atoms, on 54 kaonic-atoms, on 23 antiprotonic-atoms and on 20 sigmonic-atoms. (orig./HB) [de

  7. The Effect of Vibration Characteristics on the Atomization Rate in a Micro-Tapered Aperture Atomizer

    OpenAIRE

    Qiufeng Yan; Jianhui Zhang; Jun Huang; Ying Wang

    2018-01-01

    Because little is known about the atomization theory of a micro-tapered aperture atomizer, we investigated the vibration characteristics of this type of atomizer. The atomization mechanism of a micro-tapered aperture atomizer was described, and the atomization rate equation was deduced. As observed via microscopy, the angle of the micro-tapered aperture changes with the applied voltage, which proved the existence of a dynamic cone angle. The forward and reverse atomization rates were measured...

  8. Contribution of Lattice Distortion to Solid Solution Strengthening in a Series of Refractory High Entropy Alloys

    Science.gov (United States)

    Chen, H.; Kauffmann, A.; Laube, S.; Choi, I.-C.; Schwaiger, R.; Huang, Y.; Lichtenberg, K.; Müller, F.; Gorr, B.; Christ, H.-J.; Heilmaier, M.

    2018-03-01

    We present an experimental approach for revealing the impact of lattice distortion on solid solution strengthening in a series of body-centered-cubic (bcc) Al-containing, refractory high entropy alloys (HEAs) from the Nb-Mo-Cr-Ti-Al system. By systematically varying the Nb and Cr content, a wide range of atomic size difference as a common measure for the lattice distortion was obtained. Single-phase, bcc solid solutions were achieved by arc melting and homogenization as well as verified by means of scanning electron microscopy and X-ray diffraction. The atomic radii of the alloying elements for determination of atomic size difference were recalculated on the basis of the mean atomic radii in and the chemical compositions of the solid solutions. Microhardness (μH) at room temperature correlates well with the deduced atomic size difference. Nevertheless, the mechanisms of microscopic slip lead to pronounced temperature dependence of mechanical strength. In order to account for this particular feature, we present a combined approach, using μH, nanoindentation, and compression tests. The athermal proportion to the yield stress of the investigated equimolar alloys is revealed. These parameters support the universality of this aforementioned correlation. Hence, the pertinence of lattice distortion for solid solution strengthening in bcc HEAs is proven.

  9. High-dimensional atom localization via spontaneously generated coherence in a microwave-driven atomic system.

    Science.gov (United States)

    Wang, Zhiping; Chen, Jinyu; Yu, Benli

    2017-02-20

    We investigate the two-dimensional (2D) and three-dimensional (3D) atom localization behaviors via spontaneously generated coherence in a microwave-driven four-level atomic system. Owing to the space-dependent atom-field interaction, it is found that the detecting probability and precision of 2D and 3D atom localization behaviors can be significantly improved via adjusting the system parameters, the phase, amplitude, and initial population distribution. Interestingly, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength. Our scheme opens a promising way to achieve high-precision and high-efficiency atom localization, which provides some potential applications in high-dimensional atom nanolithography.

  10. Early Atomism

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  11. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    International Nuclear Information System (INIS)

    Perreault, John D.; Cronin, Alexander D.

    2005-01-01

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm

  12. Polarizational radiation or 'atomic' bremsstrahlung

    International Nuclear Information System (INIS)

    Ya Amusia, M.

    1992-01-01

    It is demonstrated that a new kind of continuum spectrum radiation exists, where the mechanism of formation is quite different from that of ordinary bremsstrahlung. The latter originates due to slowing down of the charged projectile in the target field, while the former, called polarization radiation or 'atomic' bremsstrahlung, is a result of radiation either of the target or the projectile particles dipolarly polarized during the collision process. Not only general formulae, but also results of concrete calculations are presented. These demonstrate, that for electron-atom collisions the atomic contribution to the total bremsstrahlung spectrum becomes dominant for photon energies near and above the atomic ionization potential. As to atom-atom or ion-atom collisions, the bremsstrahlung spectrum is completely determined by the atomic contribution. The specific features of the case when the incoming particles are relativistic are discussed at length. A number of examples of colliding pairs are considered, for which the atomic bremsstrahlung process is quite essential: A bare nucleus and an atom, pair of atoms, at least one of which is excited, electron, or atom interacting with a molecule. The same mechanism is essential also in formation of radiation in nuclear and elementary particle collisions. (orig.)

  13. Nuclear moments, spins and charge radii of copper isotopes from N=28 to N=50 by collinear fast-beam laser spectroscopy

    CERN Document Server

    2002-01-01

    We aim at establishing an unambiguous spin determination of the ground and isomeric states in the neutron rich Cu-isotopes from A=72 up to A=78 and to measure the magnetic and quadrupole moments between the N=28 and N=50 shell closures. This study will provide information on the double-magicity of $^{56}$Ni and $^{78}$Ni, both at the extremes of nuclear stability. It will provide evidence on the suggested inversion of ground state spin around A$\\approx$74, due to the monopole migration of the $\\pi f_{5/2}$ level. The collinear laser spectroscopy technique will be used, which furthermore provides information on the changes in mean square charge radii between both neutron shell closures, probing a possible onset of deformation in this region.

  14. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  15. Bag-model analyses of proton-antiproton scattering and atomic bound states

    International Nuclear Information System (INIS)

    Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.

    1983-01-01

    We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model

  16. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  17. Understanding Atomic Structure: Is There a More Direct and Compelling Connection between Atomic Line Spectra and the Quantization of an Atom's Energy?

    Science.gov (United States)

    Rittenhouse, Robert C.

    2015-01-01

    The "atoms first" philosophy, adopted by a growing number of General Chemistry textbook authors, places greater emphasis on atomic structure as a key to a deeper understanding of the field of chemistry. A pivotal concept needed to understand the behavior of atoms is the restriction of an atom's energy to specific allowed values. However,…

  18. Use of pseudopotentials in atom-atom (or molecule) collisions

    International Nuclear Information System (INIS)

    Pascale, J.

    1985-09-01

    Knowledge of interactions between ions, atoms or molecules is fundamental for interpretating or predicting collisional processes which may occur under various circumstances. The aim of this paper is to demonstrate the usefulness of using semiempirical effective interactions (more particularly, emphasis will be put on the pseudopotential approach) in the study of atom-atom (or molecule) collisions. We would like to show that if the semiempirical effective interactions are carefully defined, their use in molecular-structure calculations and in collision problems can give quite accurate results. We will limit our examples to one-electron systems. We consider the M-atom-He systems as a first example. For these systems, recent molecular-structure calculations have been carried out using an 1-dependent semiempirical pseudopotential approach and they have been tested against numerous experimental data in extensive calculations of cross sections for intra-and-inter-doublet transitions in the M-atom in collisions with He. Our second example will concern the M-H 2 systems, for which semiempirical pseudopotential molecular-structure calculations have been performed very recently using an one-electron two-center model. The results of these calculations are quite encouraging and we foresee the use of the pseudopotential approach in future studies of some reactive scattering processes

  19. Single atom oscillations

    International Nuclear Information System (INIS)

    Wiorkowski, P.; Walther, H.

    1990-01-01

    Modern methods of laser spectroscopy allow the study of single atoms or ions in an unperturbed environment. This has opened up interesting new experiments, among them the detailed study of radiation-atom coupling. In this paper, the following two experiments dealing with this problem are reviewed: the single-atom maser and the study of the resonance fluorescence of a single stored ion. The simplest and most fundamental system for studying radiation-matter coupling is a single two-level atom interacting with a single mode of an electromagnetic field in a cavity. This problem received a great deal of attention shortly after the maser was invented

  20. Rydberg atoms in strong fields

    International Nuclear Information System (INIS)

    Kleppner, D.; Tsimmerman, M.

    1985-01-01

    Experimental and theoretical achievements in studying Rydberg atoms in external fields are considered. Only static (or quasistatic) fields and ''one-electron'' atoms, i.e. atoms that are well described by one-electron states, are discussed. Mainly behaviour of alkali metal atoms in electric field is considered. The state of theoretical investigations for hydrogen atom in magnetic field is described, but experimental data for atoms of alkali metals are presented as an illustration. Results of the latest experimental and theoretical investigations into the structure of Rydberg atoms in strong fields are presented

  1. Performance of Twin-Fluid Atomizers for Atomization of Viscous Solutions

    Directory of Open Access Journals (Sweden)

    Mlkvik Marek

    2015-01-01

    Full Text Available Presented paper deals with a comparison of two internally mixing twin fluid atomizers. The well - known Y- jet atomizer and so called outside-in-liquid effervescent atomizer (OUIL were investigated. The working regimes were defined by the pressure drop (Δp and the gas to the liquid ratio (GLR. The internal and the external two-phase flows of both atomizers were studied. The influence of the mixing mechanism on the internal flow was evaluated by the gas to the liquid momentum ratio (Φ. In advance, the stability of the separated flow (liquid film was examined in term of the critical wavelength of the surface disturbances (λc. The external flow was observed by the high – speed camera. The influence of the basic forces on the deformation of the liquid was determined by a dimensionless criterion w·μ / σ. The values of Φ 3, where the liquid momentum overcomes the gas momentum. The values of w·μ / σ> 20 for both atomizers indicates the dominant influence of the viscosity and the drag force on the breakup process.

  2. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  3. Energy flux of hot atoms

    International Nuclear Information System (INIS)

    Wotzak, G.P.; Kostin, M.D.

    1976-01-01

    The process in which hot atoms collide with thermal atoms of a gas, transfer kinetic energy to them, and produce additional hot atoms is investigated. A stochastic method is used to obtain numerical results for the spatial and time dependent energy flux of hot atoms in a gas. The results indicate that in hot atom systems a front followed by an intense energy flux of hot atoms may develop

  4. Atomic masses 1995. The 1995 atomic mass evaluation

    International Nuclear Information System (INIS)

    Audi, G.; Wapstra, A.H.

    1995-01-01

    The 1995 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment or systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  5. Atomic masses 1993. The 1993 atomic mass evaluation

    International Nuclear Information System (INIS)

    Audi, G.; Wapstra, A.H.

    1993-01-01

    The 1993 atomic mass evaluation by G. Audi and A.H. Wapstra is documented. The resulting data files containing recommended values of atomic masses, obtained by experiment of systematics, and related data such as reaction and separation energies are described. The data files can be obtained through online services from several nuclear data centers or on magnetic tape, free of charge. (author)

  6. The exhibition Lumiere d'Atomes (Atoms light)

    International Nuclear Information System (INIS)

    Foos, Jacques

    1995-01-01

    Full text: This exhibition has been conceived in order to show for everybody, whatever his scientific level, the peaceful uses of transformations (natural or made by Man) and energetic possibilities of the atomic nucleus. The key-ideas of this exhibition were-: - nuclear applications a world of high technology; - nuclear industry men as the others; - nuclear energy an energetic independence. 6 themes were proposed: 1- Atoms and radioactivity; 2- The nuclear power stations; 3- The nuclear fuel cycle; 4- Surety and environment; 5- The other uses of radioactivity; 6- The French choice: The world nuclear data. This exhibition that comprises information posters, paintings, demonstration models, films and video games, was shown for the first time in Paris in april 1991. From this time, it was shown in many regional cities, with the help of SFEN members. 'Lumiere d'Atomes' received in 1991 the SFEN prize for its information on nuclear energy. (author)

  7. Atomic energy law in Indonesia Perundang-undangan tenaga atom di Indonesia/

    International Nuclear Information System (INIS)

    Poernomo, Moendi.

    1980-01-01

    Levels of the development of the National Atomic Energy Agency of Indonesia covering the reorganization and the president's decree concerning the agency since 1958 are presented. The National Atomic Energy Agency BATAN is responsible for application of radioactive materials over the country and the protection of the general public against radioactive hazards. BATAN's missions are embodied with the atomic energy law. (SMN)

  8. Nuclear charge radii of the 1fsub(7/2) shell nuclei from muonic atoms

    International Nuclear Information System (INIS)

    Wohlfahrt, H.D.

    1979-01-01

    Muonic X-ray of medium-weight nuclei have been performed in recent years by the Los Alamos muonic X-ray group, using the high intensity muon beam available at the LAMPF 800 MeV proton accelerator. These studies, which together include all stable 1fsub(7/2) neutron shell nuclei, provide information about the proton core polarization due to the successive addition of neutrons for the proton cores Z = 20 (Ca), 22 (Ti), 24(Cr), 26(Fe) and 28(Ni). In addition, these studies, which represent the first systematic investigations of isotone shifts, provide the opportunity to compare the core polarization caused by protons with core polarization caused by neutrons in the same (1fsub(7/2)) shell. (KBE)

  9. Atomic and molecular sciences

    International Nuclear Information System (INIS)

    Lane, N.F.

    1989-01-01

    The theoretical atomic and molecular physics program at Rice University addresses basic questions about the collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on inelastic collision processes that are important in understanding energy and ionization balance in disturbed gases and plasmas. Emphasis is placed on systems and processes where some experimental information is available or where theoretical results may be expected to stimulate new measurements. Examples of current projects include: excitation and charge-transfer processes; orientation and alignment of excited states following collisions; Rydberg atom collisions with atoms and molecules; Penning ionization and ion-pair formation in atom-atom collisions; electron-impact ionization in dense, high-temperature plasmas; electron-molecule collisions; and related topics

  10. AtomPy: An Open Atomic Data Curation Environment for Astrophysical Applications

    Directory of Open Access Journals (Sweden)

    Claudio Mendoza

    2014-05-01

    Full Text Available We present a cloud-computing environment, referred to as AtomPy, based on Google-Drive Sheets and Pandas (Python Data Analysis Library DataFrames to promote community-driven curation of atomic data for astrophysical applications, a stage beyond database development. The atomic model for each ionic species is contained in a multi-sheet workbook, tabulating representative sets of energy levels, A-values and electron impact effective collision strengths from different sources. The relevant issues that AtomPy intends to address are: (i data quality by allowing open access to both data producers and users; (ii comparisons of different datasets to facilitate accuracy assessments; (iii downloading to local data structures (i.e., Pandas DataFrames for further manipulation and analysis by prospective users; and (iv data preservation by avoiding the discard of outdated sets. Data processing workflows are implemented by means of IPython Notebooks, and collaborative software developments are encouraged and managed within the GitHub social network. The facilities of AtomPy are illustrated with the critical assessment of the transition probabilities for ions in the hydrogen and helium isoelectronic sequences with atomic number Z ≤ 10.

  11. Superconducting microtraps for ultracold atoms

    International Nuclear Information System (INIS)

    Hufnagel, C.

    2011-01-01

    Atom chips are integrated devices in which atoms and atomic clouds are stored and manipulated in miniaturized magnetic traps. State of the art fabrication technologies allow for a flexible design of the trapping potentials and consequently provide extraordinary control over atomic samples, which leads to a promising role of atom chips in the engineering and investigation of quantum mechanical systems. Naturally, for quantum mechanical applications, the atomic coherence has to be preserved. Using room temperature circuits, the coherence time of atoms close to the surface was found to be drastically limited by thermal current fluctuations in the conductors. Superconductors offer an elegant way to circumvent thermal noise and therefore present a promising option for the coherent manipulation of atomic quantum states. In this thesis trapping and manipulation of ultracold Rubidium atoms in superconducting microtraps is demonstrated. In this connection the unique properties of superconductors are used to build traps based on persistent currents, the Meissner effect and remanent magnetization. In experiment it is shown, that in superconducting atom chips, thermal magnetic field noise is significantly reduced. Furthermore it is demonstrated, that atomic samples can be employed to probe the properties of superconducting materials. (author) [de

  12. Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Kuang Leman; Zhou Lan

    2003-01-01

    In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level Λ-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states

  13. Observation and Interpretation of Energetic Neutral Hydrogen Atoms from the December 5, 2006 Solar Event

    Science.gov (United States)

    Mewaldt, R. A.; Leske, R. A.; Stone, E. C.; Barghouty, A. F.; Shih, A. Y.; von Rosenvinge, T. T.; Labrador, A. W.; Cohen, C. M. S.; Cummings, A. C.; Cummings, A. C.

    2009-01-01

    We report the first observations of energetic neutral atoms (ENAs) from a solar flare/coronal mass ejection event. The observations were made during the December 5, 2006 X9 solar flare, located at E79, by the Low Energy Telescopes (LETs) on the STEREO A and B spacecraft. Within 1-2 hours of the flare onset, both LETs observed a sudden burst of 1.6 to 15 MeV protons arriving hours before the onset of the main solar energetic particle (SEP) event at Earth. More than 70% of these particles arrived from a longitude within +-10 degrees of the Sun. The derived emission profile at the Sun lasted for more than an hour and had a profile remarkably similar to the GOES soft X-ray profile. The observed arrival directions and energy spectrum argue strongly that the particle events atoms that were stripped of their electrons upon entering the LET sensor. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. We discuss possible origins for the production of ENAs in solar events, including charge-transfer reactions involving both flare and shock-accelerated protons. Assuming isotropic emission, we find that 2 x 10E28 ENAs escaped from the Sun in the upper hemisphere. Based on the 2.2 MeV gamma-ray emission observed by RHESSI in this event, and using measured and theoretical cross sections, we estimate that 3 x 10E31 ENAs with 1.8 - 5 MeV could be produced by protons accelerated in the flare. CME-driven shock acceleration is also a possible ENA source, but unfortunately there were no CME observations available from this event. Taking into account ENA losses, we conclude that the observed ENAs were most likely produced in the high corona at heliocentric distances 1.6 solar radii.

  14. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  15. The Atomic energy basic law

    International Nuclear Information System (INIS)

    1979-01-01

    The law aims to secure future energy resources, push forward progress of science and advancement of industry for welfare of the mankind and higher standard of national life by helping research, development and utilization of atomic power. Research, development and utilization of atomic power shall be limited to the peaceful purpose with emphasis laid on safety and carried on independently under democratic administration. Basic concepts and terms are defined, such as: atomic power; nuclear fuel material; nuclear raw material; reactor and radiation. The Atomic Energy Commission and the Atomic Energy Safety Commission shall be set up at the Prime Minister's Office deliberately to realize national policy of research, development and utilization of atomic power and manage democratic administration for atomic energy. The Atomic Energy Commission shall plan, consider and decide matters concerning research, development and utilization of atomic energy. The Atomic Energy Safety Commission shall plan, consider and decide issues particularly concerning safety securing among such matters. The Atomic Energy Research Institute shall be founded under the governmental supervision to perform research, experiment and other necessary affairs for development of atomic energy. The Power Reactor and Nuclear Fuel Development Corporation shall be established likewise to develop fast breeding reactor, advanced thermal reactor and nuclear fuel materials. Development of radioactive minerals, control of nuclear fuel materials and reactors and measures for patent and invention concerning atomic energy, etc. are stipulated respectively. (Okada, K.)

  16. Atom spectroscopy

    International Nuclear Information System (INIS)

    Kodling, K.

    1981-01-01

    Experiments on atom photoabsorption spectroscopy using synchrotron radiation in the 10-1000 eV range are reviewed. Properties of the necessary synchrotron radiation and the experiment on absorption spectroscopy are briefly described. Comparison with other spectroscopy methods is conducted. Some data on measuring photoabsorption, photoelectron emission and atom mass spectra are presented [ru

  17. Report on the atom what you should know about atomic energy

    CERN Document Server

    Dean, Gordon

    1954-01-01

    The American approach to the atom ; Uranium is where you find it ; the production line: ore to bombs ; the expanding programme ; the headaches ; the pay-off: weapons ; the military and the atoms ; power: the peaceful goals, first phase ; power: the peaceful goals, second goals ; radioisotopes: servants of man ; the quest for knowledge ; secrecy, security and spies ; the international atom ; behind the Iron Curtain ; the way ahead.

  18. The Atomic Energy Control Board

    International Nuclear Information System (INIS)

    Doern, G.B.

    1976-01-01

    This study describes and assesses the regulatory and administrative processes and procedures of the Atomic Energy Control Board, the AECB. The Atomic Energy Control Act authorized the AECB to control atomic energy materials and equipment in the national interest and to participate in measures for the international control of atomic energy. The AECB is authorized to make regulations to control atomic energy materials and equipment and to make grants in support of atomic energy research. (author)

  19. Trapped atoms along nanophotonic resonators

    Science.gov (United States)

    Fields, Brian; Kim, May; Chang, Tzu-Han; Hung, Chen-Lung

    2017-04-01

    Many-body systems subject to long-range interactions have remained a very challenging topic experimentally. Ultracold atoms trapped in extreme proximity to the surface of nanophotonic structures provides a dynamic system combining the strong atom-atom interactions mediated by guided mode photons with the exquisite control implemented with trapped atom systems. The hybrid system promises pair-wise tunability of long-range interactions between atomic pseudo spins, allowing studies of quantum magnetism extending far beyond nearest neighbor interactions. In this talk, we will discuss our current status developing high quality nanophotonic ring resonators, engineered on CMOS compatible optical chips with integrated nanostructures that, in combination with a side illuminating beam, can realize stable atom traps approximately 100nm above the surface. We will report on our progress towards loading arrays of cold atoms near the surface of these structures and studying atom-atom interaction mediated by photons with high cooperativity.

  20. The atomic conflict

    International Nuclear Information System (INIS)

    Mez, L.

    1981-01-01

    This book provides a general view at the atomic programmes of several countries and makes an attempt to unmask the atomic industrial combines with their interlockings. The governments role is analysed as well as the atomic policy of the parties, union-trades and associations. Then, the anti-atomic movements in those countries, their forms of resistance, the resonance and the alternative proposals are presented. The countries concerned are Australia, the FRG, COMECON, Danmark, the EG, Finland, France, Great Britain, Ireland, Japan, the Netherlands, Norway, Austria, Sweden, Switzerland, Spain and the USA. For the pocket book version, Lutz Mez adds an updating epilogue which continues with the developments until springtime 1981. (orig./HP) [de

  1. Laser-excited atomic-fluorescence spectrometry with electrothermal tube atomization.

    Science.gov (United States)

    Vera, J A; Leong, M B; Stevenson, C L; Petrucci, G; Winefordner, J D

    1989-12-01

    The performance of graphite-tube electrothermal atomizers is evaluated for laser-excited atomic-fluorescence spectrometry for several elements. Three pulsed laser systems are used to pump tunable dye lasers which subsequently are used to excite Pb, Ga, In, Fe, Ir, and Tl atoms in the hot graphite tube. The dye laser systems used are pumped by nitrogen, copper vapour and Nd:YAG lasers. Detection limits in the femtogram and subfemtogram range are typically obtained for all elements. A commercial graphite-tube furnace is important for the successful utilization of the laser-based method when the determination of trace elements is intended, especially when complicated matrices may be present.

  2. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    Science.gov (United States)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  3. Electron - atom bremsstrahlung

    International Nuclear Information System (INIS)

    Kim, L.

    1986-01-01

    Features of bremsstrahlung radiation from neutral atoms and atoms in hot dense plasmas are studied. Predictions for the distributions of electron-atom bremsstrahlung radiation for both the point-Coulomb potential and screened potentials are obtained using a classical numerical method. Results agree with exact quantum-mechanical partial-wave results for low incident electron energies in both the point-Coulomb and screened potentials. In the screened potential, the asymmetry parameter of a spectrum is reduced from the Coulomb values. The difference increases with decreasing energy and begins to oscillate at very low energies. The scaling properties of bremsstrahlung spectra and energy losses were also studied. It was found that the ratio of the radiative energy loss for positrons to that for electrons obeys a simple scaling law, being expressible fairly accurately as a function only of the quantity T 1 /Z 2 . This scaling is exact in the case of the point-Coulomb potential, both for classical bremsstrahlung and for the nonrelativistic dipole Sommerfeld formula. Bremsstrahlung from atoms in hot dense plasmas were also studied describing the atomic potentials by the temperature-and-density dependent Thomas-Fermi mode. Gaunt factors were obtained with the relativistic partial-wave method for atoms in plasmas of various densities and temperatures

  4. R-Matrix Theory of Atomic Collisions Application to Atomic, Molecular and Optical Processes

    CERN Document Server

    Burke, Philip George

    2011-01-01

    Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include electron and photon collisions with atoms, ions and molecules required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.

  5. Deeply bound pionic atom

    International Nuclear Information System (INIS)

    Toki, Hiroshi; Yamazaki, Toshimitsu

    1989-01-01

    The standard method of pionic atom formation does not produce deeply bound pionic atoms. A study is made on the properties of deeply bound pionic atom states by using the standard pion-nucleus optical potential. Another study is made to estimate the cross sections of the formation of ls pionic atom states by various methods. The pion-nucleus optical potential is determined by weakly bound pionic atom states and pion nucleus scattering. Although this potential may not be valid for deeply bound pionic atoms, it should provide some hint on binding energies and level widths of deeply bound states. The width of the ls state comes out to be 0.3 MeV and is well separated from the rest. The charge dependence of the ls state is investigated. The binding energies and the widths increase linearly with Z azbove a Z of 30. The report then discusses various methods to populate deeply bound pionic atoms. In particular, 'pion exchange' reactions are proposed. (n, pπ) reaction is discussed first. The cross section is calculated by assuming the in- and out-going nucleons on-shell and the produced pion in (n1) pionic atom states. Then, (n, dπ - ) cross sections are estimated. (p, 2 Heπ - ) reaction would have cross sections similar to the cross section of (n, dπ - ) reaction. In conclusion, it seems best to do (n, p) experiment on heavy nuclei for deeply bound pionic atom. (Nogami, K.)

  6. Collision-produced atomic states

    International Nuclear Information System (INIS)

    Andersen, N.; Copenhagen Univ.

    1988-01-01

    The last 10-15 years have witnessed the development of a new, powerful class of experimental techniques for atomic collision studies, allowing partial or complete determination of the state of the atoms after a collision event, i.e. the full set of quantum-mechanical scattering amplitudes or - more generally - the density matrix describing the system. Evidently, such studies, involving determination of alignment and orientation parameters, provide much more severe tests of state-of-the-art scattering theories than do total or differential cross section measurements which depend on diagonal elements of the density matrix. The off-diagonal elements give us detailed information about the shape and dynamics of the atomic states. Therefore, close studies of collision-produced atomic states are currently leading to deeper insights into the fundamental physical mechanisms governing the dynamics of atomic collision events. The first part of the lectures deals with the language used to describe atomic states, while the second part presents a selection of recent results for model systems which display fundamental aspects of the collision physics in particularly instructive ways. I shall here restrict myself to atom-atom collisions. The discussion will be focused on states decaying by photon emission though most of the ideas can be easily modified to include electron emission as well. (orig./AH)

  7. Pharao: study of an atomic clock using laser-cooled atoms and realization of a prototype

    International Nuclear Information System (INIS)

    Lemonde, P.

    1997-01-01

    Thermal jets and atomic fountains are two different principles on which atomic clocks are based. In atomic fountains the velocity of atoms can be reduced to a few cm/s so the classical limitations of thermal jets such as phase shift between two Ramsey impulses, second order Doppler effect become negligible. The new limitations set by atomic fountain clocks are now collisions between cold atoms and the radiation emitted by the black body. Weightlessness leads to a different running of the atomic clock and can imply an enhancement of its performances. In micro-gravity an interatomic interaction time of several seconds can be reached. The application of such atomic clocks can go beyond time or frequency metrology. This work is dedicated to the development of a spatial atomic clock to fully use the extremely low velocity of laser-cooled atoms and to quantify what can be expected of weightlessness. This study has involved the realization of a prototype and its testing in a zero-g plane. The experimental results are presented and it is highlighted that an accuracy and a one-day stability of 10 -16 are within reach with an optimized version of this atomic clock. (A.C.)

  8. Self-lacing atom chains

    International Nuclear Information System (INIS)

    Zandvliet, Harold J W; Van Houselt, Arie; Poelsema, Bene

    2009-01-01

    The structural and electronic properties of self-lacing atomic chains on Pt modified Ge(001) surfaces have been studied using low-temperature scanning tunnelling microscopy and spectroscopy. The self-lacing chains have a cross section of only one atom, are perfectly straight, thousands of atoms long and virtually defect free. The atomic chains are composed of dimers that have their bonds aligned in a direction parallel to the chain direction. At low temperatures the atomic chains undergo a Peierls transition: the periodicity of the chains doubles from a 2 x to a 4 x periodicity and an energy gap opens up. Furthermore, at low temperatures (T<80 K) novel quasi-one-dimensional electronic states are found. These quasi-one-dimensional electronic states originate from an electronic state of the underlying terrace that is confined between the atomic chains.

  9. Laser-Free Cold-Atom Gymnastics

    Science.gov (United States)

    Gould, Harvey; Feinberg, Benedict; Munger, Charles T., Jr.; Nishimura, Hiroshi

    2017-01-01

    We have performed beam transport simulations on ultra cold (2 μK) and cold (130 μK) neutral Cs atoms in the F = M = + 4 (magnetic weak-field seeking) ground state. We use inhomogeneous magnetic fields to focus and accelerate the atoms. Acceleration of neutral atoms by an inhomogeneous magnetic field was demonstrated by Stern and Gerlach in 1922. In the simulations, a two mm diameter cloud of atoms is released to fall under gravity. A magnetic coil focuses the falling atoms. After falling 41 cm, the atoms are reflected in the magnetic fringe field of a solenoid. They return to their starting height, about 0.7 s later, having passed a second time through the focusing coil. The simulations show that > 98 % of ultra cold Cs atoms and > 70 % of cold Cs atoms will survive at least 15 round trips (assuming perfect vacuum). More than 100 simulations were run to optimize coil currents and focusing coil diameter and height. Simulations also show that atoms can be launched into a fountain. An experimental apparatus to test the simulations, is being constructed. This technique may find application in atomic fountain clocks, interferometers, and gravitometers, and may be adaptable for use in microgravity. It may also work with Bose-Einstein condensates of paramagnetic atoms.

  10. Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit

    International Nuclear Information System (INIS)

    Kasch, B; Hattermann, H; Cano, D; Judd, T E; Zimmermann, C; Kleiner, R; Koelle, D; Fortagh, J; Scheel, S

    2010-01-01

    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near-field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom/solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.

  11. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  12. Design and performance of a high intensity copper atom beam source nozzle for use in inelastic atom--atom collision experiments

    International Nuclear Information System (INIS)

    Santavicca, D.A.

    1975-01-01

    The research was aimed at developing a neutral copper atom beam source which could be used to study the collision cross sections for electronic excitation of neutral copper atoms in collision with neutral argon atoms. Of particular interest is the excitation from the ground state to the two upper laser levels at 3.80 and 3.82 electron volts

  13. High-precision atom localization via controllable spontaneous emission in a cycle-configuration atomic system.

    Science.gov (United States)

    Ding, Chunling; Li, Jiahua; Yu, Rong; Hao, Xiangying; Wu, Ying

    2012-03-26

    A scheme for realizing two-dimensional (2D) atom localization is proposed based on controllable spontaneous emission in a coherently driven cycle-configuration atomic system. As the spatial-position-dependent atom-field interaction, the frequency of the spontaneously emitted photon carries the information about the position of the atom. Therefore, by detecting the emitted photon one could obtain the position information available, and then we demonstrate high-precision and high-resolution 2D atom localization induced by the quantum interference between the multiple spontaneous decay channels. Moreover, we can achieve 100% probability of finding the atom at an expected position by choosing appropriate system parameters under certain conditions.

  14. Exotic atoms

    International Nuclear Information System (INIS)

    Horvath, D.; Lambrecht, R.M.

    1984-01-01

    This bibliography on exotic atoms covers the years 1939 till 1982. The annual entries are headed by an introduction describing the state of affairs of the branch of science and listing the main applications in quantum electrodynamics, particle physics, nuclear physics, atomic physics, chemical physics and biological sciences. The bibliography includes an author index and a subject index. (Auth.)

  15. Effect of inelastic energy losses on development of atom-atom collision cascades

    International Nuclear Information System (INIS)

    Marinyuk, V.V.; Remizovich, V.S.

    2001-01-01

    The problem of influence of inelastic energy losses (ionization braking) of particles on the development of atom-atom collision cascades in infinite medium was studied theoretically. Main attention was paid to study of angular and energy distributions of primary ions and cascade atoms in the presence of braking. Analytical calculations were made in the assumption that single scattering of particles occurs by solid balls law, while the value of electron braking ability of a medium is determined by the Lindhard formula. It is shown that account of braking (directly when solving the Boltzmann transport equation) changes in principle the previously obtained angular and energy spectra of ions and cascade atoms. Moreover, it is the braking that is the determining factor responsible for anisotropy of angular distributions of low-energy primary ions and cascade atoms [ru

  16. Cold atoms in singular potentials

    International Nuclear Information System (INIS)

    Denschlag, J. P.

    1998-09-01

    We studied both theoretically and experimentally the interaction between cold Li atoms from a magnetic-optical trap (MOT) and a charged or current-carrying wire. With this system, we were able to realize 1/r 2 and 1/r potentials in two dimensions and to observe the motion of cold atoms in both potentials. For an atom in an attractive 1/r 2 potential, there exist no stable trajectories, instead there is a characteristic class of trajectories for which atoms fall into the singularity. We were able to observe this falling of atoms into the center of the potential. Moreover, by probing the singular 1/r 2 potential with atomic clouds of varying size and temperature we extracted scaling properties of the atom-wire interaction. For very cold atoms, and very thin wires the motion of the atoms must be treated quantum mechanically. Here we predict that the absorption cross section for the 1/r 2 potential should exhibit quantum steps. These quantum steps are a manifestation of the quantum mechanical decomposition of plane waves into partial waves. For the second part of this work, we realized a two dimensional 1/r potential for cold atoms. If the potential is attractive, the atoms can be bound and follow Kepler-like orbits around the wire. The motion in the third dimension along the wire is free. We were able to exploit this property and constructed a novel cold atom guide, the 'Kepler guide'. We also demonstrated another type of atom guide (the 'side guide'), by combining the magnetic field of the wire with a homogeneous offset magnetic field. In this case, the atoms are held in a potential 'tube' on the side of the wire. The versatility, simplicity, and scaling properties of this guide make it an interesting technique. (author)

  17. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  18. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  19. Atom diffraction with a 'natural' metastable atom nozzle beam

    International Nuclear Information System (INIS)

    Karam, J-C; Wipf, N; Grucker, J; Perales, F; Boustimi, M; Vassilev, G; Bocvarski, V; Mainos, C; Baudon, J; Robert, J

    2005-01-01

    The resonant metastability-exchange process is used to obtain a metastable atom beam with intrinsic properties close to those of a ground-state atom nozzle beam (small angular aperture, narrow velocity distribution). The estimated effective source diameter (15 μm) is small enough to provide at a distance of 597 mm a transverse coherence radius of about 873 nm for argon, 1236 nm for neon and 1660 nm for helium. It is demonstrated both by experiment and numerical calculations with He*, Ne* and Ar* metastable atoms, that this beam gives rise to diffraction effects on the transmitted angular pattern of a silicon-nitride nano-slit grating (period 100 nm). Observed patterns are in good agreement with previous measurements with He* and Ne* metastable atoms. For argon, a calculation taking into account the angular aperture of the beam (0.35 mrad) and the effect of the van der Waals interaction-the van der Waals constant C 3 1.83 +0.1 -0.15 au being derived from spectroscopic data-leads to a good agreement with experiment

  20. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Directory of Open Access Journals (Sweden)

    Zeng Wei

    2018-03-01

    Full Text Available For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  1. Three-dimensional atom localization via probe absorption in a cascade four-level atomic system

    Science.gov (United States)

    Zeng, Wei; Deng, Li; Chen, Aixi

    2018-03-01

    For an atomic system with cascade four-level type, a useful scheme about three-dimensional (3D) atom localization is proposed. In our scheme the atomic system is coherently controlled by using a radio-frequency field to couple with two-folded levels under the condition of the existence of probe absorption. Our results show that detecting precision of 3D atom localization may be obviously improved by properly adjusting the frequency detuning and strength of the radio-frequency driving field. So our scheme could be helpful to realize 3D atom localization with high-efficiency and high-precision . In the field of laser cooling or the atom nano-lithography, our studies provide potential applications.

  2. Cancer in atomic bomb survivors

    International Nuclear Information System (INIS)

    Shigematsu, I.; Kagan, A.

    1986-01-01

    This book presents information on the following topics: sampling of atomic bomb survivors and method of cancer detection in Hiroshima and Nagasaki; atomic bomb dosimetry for epidemiological studies of survivors in Hiroshima and Nagasaki; tumor and tissue registries in Hiroshima and Nagasaki; the cancer registry in Nagasaki, with atomic bomb survivor data, 1973-1977; cancer mortality; methods for study of delayed health effects of a-bomb radiation; experimental radiation carcinogenesis in rodents; leukemia, multiple myeloma, and malignant lymphoma; cancer of the thyroid and salivary glands; malignant tumors in atomic bomb survivors with special reference to the pathology of stomach and lung cancer; colorectal cancer among atomic bomb survivors; breast cancer in atomic bomb survivors; and ovarian neoplasms in atomic bomb survirors

  3. Hydride generation – in-atomizer collection of Pb in a quartz trap-and-atomizer device for atomic absorption spectrometry – an interference study

    Energy Technology Data Exchange (ETDEWEB)

    Novotný, Pavel [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic); High School in Hořice, Husova 1414, 508 01 Hořice (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v.v.i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-01-01

    Interferences of selected hydride forming elements (As, Sb, Bi, Se and Sn) on lead determination by hydride generation atomic absorption spectrometry were extensively studied in both on-line atomization and preconcentration (collection) modes. The commonly used on-line atomization mode was found free of significant interferences, whereas strong interference from Bi was observed when employing the preconcentration mode with plumbane collection in a quartz trap-and-atomizer device. Interference of Bi seems to take place in the preconcentration step. Interference of Bi in the collection mode cannot be reduced by increased hydrogen radical amount in the trap and/or the atomizer. - Highlights: ► Interference study on Pb determination by in-atomizer trapping was performed for the first time. ► Bi was found as a severe interferent in the preconcentration mode (Pb:Bi ratio 1:100). ► No interference was found in the on-line atomization (no preconcentration). ► Bi interference occurs during preconcentration.

  4. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Ryo, E-mail: ishikawa@sigma.t.u-tokyo.ac.jp [Institute of Engineering Innovation, University of Tokyo, Tokyo 113-8656 (Japan); Lupini, Andrew R. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hinuma, Yoyo [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan); Pennycook, Stephen J. [Department of Materials Science and Engineering, The University of Tennessee, 328 Ferris Hall, Knoxville, TN 37996 (United States)

    2015-04-15

    To fully understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us to measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation. - Highlights: • We theoretically demonstrate 3D near-atomic depth resolution imaging by large-angle illumination STEM. • This method can be useful to identify the depth of single dopants, single vacancies within materials. • This method can be useful to determine reconstructed surface atomic structures.

  5. Physics of atoms and molecules

    International Nuclear Information System (INIS)

    Bransden, B.H.; Joachain, C.J.

    1983-01-01

    This book presents a unified account of the physics of atoms and molecules at a level suitable for second- and third-year undergraduate students of physics and physical chemistry. Following a brief historical introduction to the subject the authors outline the ideas and approximation methods of quantum mechanics to be used later in the book. Six chapters look at the structure of atoms and the interactions between atoms and electromagnetic radiation. The authors then move on to describe the structure of molecules and molecular spectra. Three chapters deal with atomic collisions, the scattering of electrons by atoms and the scattering of atoms by atoms. The concluding chapter considers a few of the many important applications of atomic physics within astrophysics, laser technology, and nuclear fusion. Problems are given at the end of each chapter, with hints at the solutions in an appendix. Other appendices include various special topics and derivations together with useful tables of units. (author)

  6. Line splitting and modified atomic decay of atoms coupled with N quantized cavity modes

    Science.gov (United States)

    Zhu, Yifu

    1992-05-01

    We study the interaction of a two-level atom with N non-degenerate quantized cavity modes including dissipations from atomic decay and cavity damps. In the strong coupling regime, the absorption or emission spectrum of weakly excited atom-cavity system possesses N + 1 spectral peaks whose linewidths are the weighted averages of atomic and cavity linewidths. The coupled system shows subnatural (supernatural) atomic decay behavior if the photon loss rates from the N cavity modes are smaller (larger) than the atomic decay rate. If N cavity modes are degenerate, they can be treated effectively as a single mode. In addition, we present numerical calculations for N = 2 to characterize the system evolution from the weak coupling to strong coupling limits.

  7. AtomDB Progress Report: Atomic data and new models for X-ray spectroscopy.

    Science.gov (United States)

    Smith, Randall K.; Foster, Adam; Brickhouse, Nancy S.; Stancil, Phillip C.; Cumbee, Renata; Mullen, Patrick Dean; AtomDB Team

    2018-06-01

    The AtomDB project collects atomic data from both theoretical and observational/experimental sources, providing both a convenient interface (http://www.atomdb.org/Webguide/webguide.php) as well as providing input to spectral models for many types of astrophysical X-ray plasmas. We have released several updates to AtomDB in response to the Hitomi data, including new data for the Fe K complex, and have expanded the range of models available in AtomDB to include the Kronos charge exchange models from Mullen at al. (2016, ApJS, 224, 2). Combined with the previous AtomDB charge exchange model (http://www.atomdb.org/CX/), these data enable a velocity-dependent model for X-ray and EUV charge exchange spectra. We also present a new Kappa-distribution spectral model, enabling plasmas with non-Maxwellian electron distributions to be modeled with AtomDB. Tools are provided within pyAtomDB to explore and exploit these new plasma models. This presentation will review these enhancements and describe plans for the new few years of database and code development in preparation for XARM, Athena, and (hopefully) Arcus.

  8. Laser-excited atomic fluorescence spectrometry in a pressure-controlled electrothermal atomizer.

    Science.gov (United States)

    Lonardo, R F; Yuzefovsky, A I; Irwin, R L; Michel, R G

    1996-02-01

    A theoretical model was developed to describe the loss of analyte atoms in graphite furnaces during atomization. The model was based on two functions, one that described the supply of analyte by vaporization, and another that described the removal of the analyte by diffusion. Variation in working pressure was shown to affect the competition between these two processes. Optimal atomization efficiency was predicted to occur at a pressure where the supply of the analyte was maximized, and gas phase interactions between the analyte and matrix were minimized. Experiments to test the model included the direct determination of phosphorus and tellurium in nickel alloys and of cobalt in glass. In all cases, reduction in working pressure from atmospheric pressure to 7 Pa decreased sensitivity by 2 orders of magnitude, but improved temporal peak shape. For the atomization of tellurium directly from a solid nickel alloy, and the atomization of cobalt from an aqueous solution, no change in sensitivity was observed as the working pressure was reduced from atmospheric pressure to approximately 70 kPa. If a reduction in working pressure affected only the diffusion of the analyte, poorer sensitivity should have been obtained. Only a commensurate increase in analyte vaporization could account for maintained sensitivity at lower working pressures. Overall, analyte vaporization was not dramatically improved at reduced working pressures, and maximum atomization efficiency was found to occur near atmospheric pressure.

  9. Atomic imaging of an InSe single-crystal surface with atomic force microscope

    OpenAIRE

    Uosaki, Kohei; Koinuma, Michio

    1993-01-01

    The atomic force microscope was employed to observed in air the surface atomic structure of InSe, one of III-VI compound semiconductors with layered structures. Atomic arrangements were observed in both n-type and p-type materials. The observed structures are in good agreement with those expected from bulk crystal structures. The atomic images became less clear by repeating the imaging process. Wide area imaging after the imaging of small area clearly showed that a mound was created at the sp...

  10. Atomic mass spectrometry

    International Nuclear Information System (INIS)

    Sanz-Medel, A.

    1997-01-01

    The elemental inorganic analysis seems to be dominated today by techniques based on atomic spectrometry. After an evaluation of advantages and limitations of using mass analysers (ion detectors) versus conventional photomultipliers (photon detector) a brief review of the more popular techniques of the emerging Atomic Mass spectrometry is carried out. Their huge potential for inorganic trace analysis is such that in the future we could well witness how this end of the century and millennium marked the fall of the photons empire in Analytical Atomic Spectrometry. (Author)

  11. Atomic Energy Control Act

    International Nuclear Information System (INIS)

    1970-01-01

    This act provides for the establishment of the Atomic Energy Control Board. The board is responsible for the control and supervision of the development, application and use of atomic energy. The board is also considered necessary to enable Canada to participate effectively in measures of international control of atomic energy

  12. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  13. Single-atom-resolved fluorescence imaging of an atomic Mott insulator

    DEFF Research Database (Denmark)

    Sherson, Jacob; Weitenberg, Christof; Andres, Manuel

    2010-01-01

    in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution...

  14. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Dressed-state analysis of efficient two-dimensional atom localization in a four-level atomic system

    International Nuclear Information System (INIS)

    Wang, Zhiping; Yu, Benli

    2014-01-01

    We investigate two-dimensional atom localization via spontaneous emission in a four-level atomic system. It is found that the detection probability and precision of two-dimensional atom localization can be significantly improved due to the interference effect between the spontaneous decay channels and the dynamically induced quantum interference generated by the probe and composite fields. More importantly, a 100% probability of finding an atom within the sub-half-wavelength domain of the standing waves can be reached when the corresponding conditions are satisfied. As a result, our scheme may be helpful in laser cooling or atom nano-lithography via atom localization. (paper)

  16. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  17. A model for the north coronal hole observed at the 1973 eclipse, between 1.3 and 3.2 solar radii

    International Nuclear Information System (INIS)

    Crifo, F.; Picat, J.-P.

    1980-01-01

    At the 1973 eclipse, several pictures of the white-light corona were obtained using polarizers and a radially-compensated filter. These pictures provide a very good opportunity for studying the large coronal hole at the north polar cap; this hole has been extensively studied during the Skylab period. On the plates reliable intensities between 1.3 and 3.2 solar radii could be recorded. The absolute calibration was made using the stars observed in the field at the same time. This method allows a direct comparison of well-exposed objects on a same plate and must therefore be highly reliable. The northern hole was very dark and from the synoptic maps and the X-ray pictures, one can conclude that probably no high-latitude streamers were projected over the hole in the plane of the sky. Intensities in the radial and tangential directions of polarization were recorded in the darkest part of the hole between the visible plumes. (Auth.)

  18. Experimental realization of suspended atomic chains composed of different atomic species

    International Nuclear Information System (INIS)

    Bettini, Jefferson; Ugarte, Daniel; Sato, Fernando; Galvao, Douglas Soares; Coura, Pablo Zimmerman; Dantas, Socrates de Oliveira

    2006-01-01

    We report high resolution transmission electron microscopy (HRTEM) and molecular dynamics results of the first experimental test of suspended atomic chains composed of different atomic species formed from spontaneous stretching of metallic nanowires. (author)

  19. Interplay of vacuum-mediated inter- and intra-atomic couplings in a pair of atoms

    International Nuclear Information System (INIS)

    Schmid, Sandra Isabelle; Evers, Joerg

    2010-01-01

    The resonance fluorescence emitted by a system of two dipole-dipole interacting nearby four-level atoms in a J=1/2↔J=1/2 configuration is studied. This setup is the simplest realistic model system which provides a complete description of the (inter-atomic) dipole-dipole interaction for arbitrary orientation of the inter-atomic distance vector, and at the same time allows for intra-atomic spontaneously generated coherences. Our main interest is the interplay of both these different coupling mechanisms. We discuss different methods to analyze the contribution of the various vacuum-induced coupling constants to the total resonance fluorescence spectrum. These allow us to find a dressed state interpretation of the contribution of the different inter-atomic dipole-dipole couplings to the total spectrum. We further study the role of the spontaneously generated coherences, and identify two different contributions to the single-particle vacuum-induced couplings. We show that they have a noticeable impact on the total resonance fluorescence spectrum down to small inter-atomic distances, even though the dipole-dipole coupling constants then are much larger in magnitude than the the single-particle coupling constants. Interestingly, we find that the inter-atomic couplings can induce an effect of the intra-atomic spontaneously generated coherences on the observed spectra which is not present in single-atom systems.

  20. Efficient atom localization via probe absorption in an inverted-Y atomic system

    Science.gov (United States)

    Wu, Jianchun; Wu, Bo; Mao, Jiejian

    2018-06-01

    The behaviour of atom localization in an inverted-Y atomic system is theoretically investigated. For the atoms interacting with a weak probe field and several orthogonal standing-wave fields, their position information can be obtained by measuring the probe absorption. Compared with the traditional scheme, we couple the probe field to the transition between the middle and top levels. It is found that the probe absorption sensitively depends on the detuning and strength of the relevant light fields. Remarkably, the atom can be localized at a particular position in the standing-wave fields by coupling a microwave field to the transition between the two ground levels.

  1. Hanbury Brown and Twiss and other atom-atom correlations: advances in quantum atom optics

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Fifty years ago, two astronomers, R. Hanbury Brown and R. Q. Twiss, invented a new method to measure the angular diameter of stars, in spite of the atmospheric fluctuations. Their proposal prompted a hot debate among physicists : how might two particles (photons), emitted independently (at opposite extremities of a star) , behave in a correlated way when detected ? It was only after the development of R Glauber's full quantum analysis that the effect was understood as a two particle quantum interference effect. From a modern perspective, it can be viewed as an early example of the amazing properties of pairs of entangled particles. The effect has now been observed with bosonic and fermionic atoms, stressing its fully quantum character. After putting these experiments in a historical perspective, I will present recent results, and comment on their significance. I will also show how our single atom detection scheme has allowed us to demonstrate the creation of atom pairs by non linear mixing of matter wa...

  2. A new atomization cell for trace metal determinations by tungsten coil atomic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Donati, G.L., E-mail: georgedonati@yahoo.com.br [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States); Wildman, R.B.; Jones, B.T. [Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2011-02-28

    A new metallic atomization cell is used for trace metal determinations by tungsten coil atomic absorption spectrometry and tungsten coil atomic emission spectrometry. Different protecting gas mixtures are evaluated to improve atomic emission signals. Ar, N{sub 2}, CO{sub 2} and He are used as solvents, and H{sub 2} and C{sub 2}H{sub 2} as solutes. A H{sub 2}/Ar mixture provided the best results. Parameters such as protecting gas flow rate and atomization current are also optimized. The optimal conditions are used to determine the figures of merit for both methods and the results are compared with values found in the literature. The new cell provides a better control of the radiation reaching the detector and a small, more isothermal environment around the atomizer. A more concentrated atomic cloud and a smaller background signal result in lower limits of detection using both methods. Cu (324.7 nm), Cd (228.8 nm) and Sn (286.3 nm) determined by tungsten coil atomic absorption spectrometry presented limits of detection as low as 0.6, 0.1, and 2.2 {mu}g L{sup -1}, respectively. For Cr (425.4 nm), Eu (459.4 nm) and Sr (460.7 nm) determined by tungsten coil atomic emission spectrometry, limits of detection of 4.5, 2.5, and 0.1 {mu}g L{sup -1} were calculated. The method is used to determine Cu, Cd, Cr and Sr in a water standard reference material. Results for Cu, Cd and Cr presented no significant difference from reported values in a 95% confidence level. For Sr, a 113% recovery was obtained.

  3. Atomic nucleus and elementary particles

    International Nuclear Information System (INIS)

    Zakrzewski, J.

    1976-01-01

    Negatively charged leptons and hadrons can be incorporated into atomic shells forming exotic atoms. Nucleon resonances and Λ hyperons can be considered as constituents of atomic nuclei. Information derived from studies of such exotic systems enriches our knowledge of both the interactions of elementary particles and of the structure of atomic nuclei. (author)

  4. mu. -nucleon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Dobretsov, Yu; Dolgoshein, B; Kirillov-Ugryumov, V

    1980-12-01

    The properties and formation are described of ..mu..-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of ..mu..-nucleon atoms is shown. The prospects of their use are indicated.

  5. Entanglement properties between two atoms in the binomial optical field interacting with two entangled atoms

    International Nuclear Information System (INIS)

    Liu Tang-Kun; Zhang Kang-Long; Tao Yu; Shan Chuan-Jia; Liu Ji-Bing

    2016-01-01

    The temporal evolution of the degree of entanglement between two atoms in a system of the binomial optical field interacting with two arbitrary entangled atoms is investigated. The influence of the strength of the dipole–dipole interaction between two atoms, probabilities of the Bernoulli trial, and particle number of the binomial optical field on the temporal evolution of the atomic entanglement are discussed. The result shows that the two atoms are always in the entanglement state. Moreover, if and only if the two atoms are initially in the maximally entangled state, the entanglement evolution is not affected by the parameters, and the degree of entanglement is always kept as 1. (paper)

  6. μ-nucleon atoms

    International Nuclear Information System (INIS)

    Dobretsov, Yu.; Dolgoshejn, B.; Kirillov-Ugryumov, V.

    1980-01-01

    The properties and formation are described of μ-nucleon atoms, the Larmor method of muon spin precession is discussed and the experimental confirmation of the existence of μ-nucleon atoms is shown. The prospects of their use are indicated. (J.P.)

  7. Beyond the Atom

    Science.gov (United States)

    Cox, John

    2011-08-01

    1. Introduction - the atom in the seventies; 2. The vacuum tube; 3. The new rays; 4. The new substances; 5. Disintegration; 6. A family tree; 7. Verifications and results; 8. The objective reality of molecules; 9. The new atom; Bibliography; Index.

  8. Electromagnetic trapping of neutral atoms

    International Nuclear Information System (INIS)

    Metcalf, H.J.

    1986-01-01

    Cooling and trapping of neutral atoms is a new branch of applied physics that has potential for application in many areas. The authors present an introduction to laser cooling and magnetic trapping. Some basic ideas and fundamental limitations are discussed, and the first successful experiments are reviewed. Trapping a neutral object depends on the interaction between an inhomogeneous electromagnetic field and a multiple moment that results in the exchange of kinetic for potential energy. In neutral atom traps, the potential energy must be stored as internal atomic energy, resulting in two immediate and extremely important consequences. First, the atomic energy levels will necessarily shift as the atoms move in the trap, and, second, practical traps for ground state neutral atoms atr necessarily very shallow compared to thermal energy. This small depth also dictates stringent vacuum requirements because a trapped atom cannot survive a single collision with a thermal energy background gas molecule. Neutral trapping, therefore, depends on substantial cooling of a thermal atomic sample and is inextricably connected with the cooling process

  9. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  10. Trends in exotic-atom research

    International Nuclear Information System (INIS)

    Lambrecht, R.M.; Horvath, D.

    1983-01-01

    An attempt was made to analyze the trends in the development of exotic-atom research on the basis of a recently compiled bibliography. The analysis of nearly 4000 publications demonstrated that: (1) exotic atoms are nuclear probes used in every field of physics, from the test of quantum electrodynamics (QED) to chemical physics, to materials sciences; (2) the role of nuclear and atomic physics in exotic atom research is decreasing (although it is still significant), while that of materials sciences and chemial physics is exponentially increasing; and (3) prior to 1980 most investigators were mainly interested in atoms with negative muons, while during the last few years the positive muon (μSR) studies have dominated exotic atom research

  11. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  12. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  13. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  14. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  15. Push-Pull Laser-Atomic Oscillator

    International Nuclear Information System (INIS)

    Jau, Y.-Y.; Happer, W.

    2007-01-01

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the 'field-independent 0-0 frequency' of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs

  16. Synchrotron radiation in atomic physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1998-01-01

    Much of present understanding of atomic and molecular structure and dynamics was gained through studies of photon-atom interactions. In particular, observations of the emission, absorption, and scattering of X rays have complemented particle-collision experiments in elucidating the physics of atomic inner shells. Grounded on Max von Laue's theoretical insight and the invention of the Bragg spectrometer, the field's potential underwent a step function with the development of synchrotron-radiation sources. Notably current third-generation sources have opened new horizons in atomic and molecular physics by producing radiation of wide tunability and exceedingly high intensity and polarization, narrow energy bandwidth, and sharp time structure. In this review, recent advances in synchrotron-radiation studies in atomic and molecular science are outlined. Some tempting opportunities are surveyed that arise for future studies of atomic processes, including many-body effects, aspects of fundamental photon-atom interactions, and relativistic and quantum-electrodynamic phenomena. (author)

  17. Super-Coulombic atom-atom interactions in hyperbolic media

    Science.gov (United States)

    Cortes, Cristian L.; Jacob, Zubin

    2017-01-01

    Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

  18. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  19. Giant light enhancement in atomic clusters

    International Nuclear Information System (INIS)

    Gadomsky, O. N.; Gadomskaya, I. V.; Altunin, K. K.

    2009-01-01

    We show that the polarizing effect of the atoms in an atomic cluster can lead to full compensation of the radiative damping of excited atomic states, a change in the sign of the dispersion of the atomic polarizability, and giant light enhancement by the atomic cluster.

  20. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  1. Spin noise measurement with diamagnetic atoms

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ichihara, S.; Takano, T.; Kumakura, M.; Takahashi, Y.

    2007-01-01

    We report the measurement of the atomic spin noise of the diamagnetic atom ytterbium (Yb). Yb has various merits for utilizing the quantum nature of the atomic spin ensemble compared with the paramagnetic atoms used in all previous experiments. From the magnitude of the noise level and dependence on the detuning, we concluded that we succeeded in the measurement of 171 Yb atomic spin noise in an atomic beam

  2. Atomic displacement distributions for light energetic atoms incident on heavy atom targets

    International Nuclear Information System (INIS)

    Brice, D.K.

    1975-01-01

    The depth distributions of atomic displacements produced by 4 to 100 keV H, D, and He ions incident on Cr, Mo, and W targets have been calculated using a sharp displacement threshold, E/sub d/ = 35 eV, and a previously described calculational procedure. These displacement depth distributions have been compared with the depth distributions of energy deposited into atomic processes to determine if a proportionality (modified Kinchin--Pease relationship) can be established. Such a relationship does exist for He ions and D ions incident on these metals at energies above 4 keV and 20 keV, respectively. For H ions the two distributions have significantly different shapes at all incident energies considered

  3. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH 4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l −1 and 1.0 ng l −1 , respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l −1

  4. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  5. Selective hydrogen atom abstraction by hydrogen atoms in photolysis and radiolysis of alkane mixtures at 770 K

    International Nuclear Information System (INIS)

    Miyazaki, T.; Kinugawa, K.; Eguchi, M.; Guedes, S.M.L.

    1977-01-01

    Selective hydrogen atom abstraction reaction by H atoms, has been found in Isobutane, 2,2,3,3-tetramethylbutane(TMB), cyclopropane matrices besides neopentane matrix. The selective hydrogen atom abstraction reaction in neopentane-isobutane mixture is affected by the difference of kinetic energies of H atoms. The reaction occurs more favorably with decreasing the kinetic energy of H atoms. Competitive reaction between c-C 6 H 12 and Hi for H atoms has been studied in the radiolysis and photolysis of neo-C 5 H 12 HI mixture at 77 K. The rate constants of these reactions in neopentane matrix are quite different from these of thermal H atom reaction, but similar to those of hot H atom reaction. Importance of the selective hydrogen atom abstraction reaction by H atoms is pointed out in the radical formation in the radiolysis of pure TMB at 77 K [pt

  6. Atoms in Slovakia

    International Nuclear Information System (INIS)

    Danis, D.; Feik, K.; Florek, M.; Kmosena, J.; Chrapan, J.; Morovic, M.; Slugen, V.; Seliga, M.; Valovic, J.

    2006-01-01

    In this book the history of development of using of nuclear energy in the Slovak Republic as well as in the Czechoslovakia (before 1993 year) is presented. The aim of the book is to preserve the memory of the period when the creation and development of nuclear physics, technology, nuclear medicine, radioecology and energetics in Slovakia occurred - as witnessed by people who experienced this period and to adapt it to future generations. The Editorial board of the SNUS collected the views of 60 contributors and distinguished workers - Slovakian experts in nuclear science, education and technology. Calling upon a wide spectrum of experts ensured an objective historical description of the period. A huge amount of subjective views on recent decades were collected and supported by a wealth of photographic documentation. This created a synthesised reflection on the history of the 'atoms' in Slovakia. The book contains 15 tables, 192 black and white and 119 colour pictures from around the world and from places involved in the compilation of the study and with the study of atomic science in Slovakia. The main chapters are as follows: Atoms in the world, Atoms in Slovakia, Atoms in the educational system, Atoms in health services (Radiology, Nuclear medicine, Radiation protection, the Cyclotron centre of the Slovak Republic), Radioecology, Other applications of irradiation, Nuclear energetics (Electric energy in the second half of the 20 th century, NPP Bohunice, NPP Mochovce, the back-end of Nuclear energetics, Big names in Nuclear energetics in Slovakia), Chronology and an Appendix entitled 'Slovak companies in nuclear energetics'

  7. History of early atomic clocks

    International Nuclear Information System (INIS)

    Ramsey, N.F.

    2005-01-01

    This review of the history of early atomic clocks includes early atomic beam magnetic resonance, methods of separated and successive oscillatory fields, microwave absorption, optical pumping and atomic masers. (author)

  8. Electron population uncertainty and atomic covalency

    International Nuclear Information System (INIS)

    Chesnut, D.B.

    2006-01-01

    The atoms-in-molecules (AIM) index of atomic covalency is directly related to the AIM atomic population uncertainty. The covalent bond order, delocalization index, and, therefore, the atomic covalency are maximal when electron pairs are equally shared by the atoms involved. When polarization effects are present, these measures of covalent bond character decrease. We present atomic covalences for the single- and double-heavy atom hydrides of elements of the first and second low rows of the periodic table to illustrate these effects. Some usual behavior is seen in hydrogen-bridged species due in some cases to stronger than expected multicenter bonds and in other cases to many atoms contributing to the covalency index

  9. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  10. Study on the dynamics responses of a transmission system made from carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hang; Cai, Kun, E-mail: kuicansj@163.com; Wei, Ning [College of Water Resources and Architectural Engineering, Northwest A and F University, Yangling 712100 (China); Qin, Qing-Hua [Research School of Engineering, The Australian National University, Canberra, Australian Capital Territory 2601 (Australia); Shi, Jiao [Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211-2200 (United States)

    2015-06-21

    A rotational transmission system from coaxial carbon nanotubes (CNTs) is investigated using a computational molecular dynamics approach. The system consists of a motor from a single-walled carbon nanotube and a bearing from a double-walled carbon nanotube. The motor has a high fixed rotational frequency and the two ends of the outer tube in the bearing are fixed. The inner tube in the bearing works as a rotor. Because of the interlayer friction in the bearing, configurations of the joint between the adjacent ends of motor and rotor have significant effects on rotational transmission properties. Four factors are considered in simulation, i.e., the bonding types of atoms (sp{sup 1} and sp{sup 2}) on the ends of motor and rotor, the difference between motor and rotor radii, the rotational speed of motor, and the environmental temperature. It is found that the synchronous transmission happens if the sp{sup 1} atoms on the jointed ends of motor and rotor are bonded each other and become new sp{sup 2} atoms. Therefore, the lower difference between radii of motor and rotor, higher temperature of environment leads to synchronous rotational transmission easily. If the environmental temperature is too low (e.g., <150 K), the end of motor adjacent to rotor is easily under buckling and new sp{sup 2} atoms appear, too. With capped CNTs or higher radii difference between rotor and motor at an appropriate temperature, a stable asynchronous rotation of rotor can be generated, and the rotor's frequency varying linearly with motor's frequency between 230 and 270 GHz. A multi-signal transmission device combined with oscillating and rotational motion is proposed for motor and stator shares a same size in radius.

  11. Study on the dynamics responses of a transmission system made from carbon nanotubes

    International Nuclear Information System (INIS)

    Yin, Hang; Cai, Kun; Wei, Ning; Qin, Qing-Hua; Shi, Jiao

    2015-01-01

    A rotational transmission system from coaxial carbon nanotubes (CNTs) is investigated using a computational molecular dynamics approach. The system consists of a motor from a single-walled carbon nanotube and a bearing from a double-walled carbon nanotube. The motor has a high fixed rotational frequency and the two ends of the outer tube in the bearing are fixed. The inner tube in the bearing works as a rotor. Because of the interlayer friction in the bearing, configurations of the joint between the adjacent ends of motor and rotor have significant effects on rotational transmission properties. Four factors are considered in simulation, i.e., the bonding types of atoms (sp 1 and sp 2 ) on the ends of motor and rotor, the difference between motor and rotor radii, the rotational speed of motor, and the environmental temperature. It is found that the synchronous transmission happens if the sp 1 atoms on the jointed ends of motor and rotor are bonded each other and become new sp 2 atoms. Therefore, the lower difference between radii of motor and rotor, higher temperature of environment leads to synchronous rotational transmission easily. If the environmental temperature is too low (e.g., <150 K), the end of motor adjacent to rotor is easily under buckling and new sp 2 atoms appear, too. With capped CNTs or higher radii difference between rotor and motor at an appropriate temperature, a stable asynchronous rotation of rotor can be generated, and the rotor's frequency varying linearly with motor's frequency between 230 and 270 GHz. A multi-signal transmission device combined with oscillating and rotational motion is proposed for motor and stator shares a same size in radius

  12. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    Science.gov (United States)

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Spontaneous emission by moving atoms

    International Nuclear Information System (INIS)

    Meystre, P.; Wilkens, M.

    1994-01-01

    It is well known that spontaneous emission is not an intrinsic atomic property, but rather results from the coupling of the atom to the vacuum modes of the electromagnetic field. As such, it can be modified by tailoring the electromagnetic environment into which the atom can radiate. This was already realized by Purcell, who noted that the spontaneous emission rate can be enhanced if the atom placed inside a cavity is resonant with one of the cavity is resonant with one of the cavity modes, and by Kleppner, who discussed the opposite case of inhibited spontaneous emission. It has also been recognized that spontaneous emission need not be an irreversible process. Indeed, a system consisting of a single atom coupled to a single mode of the electromagnetic field undergoes a periodic exchange of excitation between the atom and the field. This periodic exchange remains dominant as long as the strength of the coupling between the atom and a cavity mode is itself dominant. 23 refs., 6 figs

  14. A linear atomic quantum coupler

    Energy Technology Data Exchange (ETDEWEB)

    El-Orany, Faisal A A [Department of Mathematics and computer Science, Faculty of Science, Suez Canal University 41522, Ismailia (Egypt); Wahiddin, M R B, E-mail: el_orany@hotmail.co, E-mail: faisal.orany@mimos.m, E-mail: mridza@mimos.m [Cyberspace Security Laboratory, MIMOS Berhad, Technology Park Malaysia, 57000 Kuala Lumpur (Malaysia)

    2010-04-28

    In this paper we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of which includes a localized atom. These waveguides are placed close enough to allow exchange of energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way as the Jaynes-Cummings model (JCM) and with the atom-mode system in the second waveguide via the evanescent wave. We present the Hamiltonian for this system and deduce its wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional coupler the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit a long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions the system can yield the results of the two-mode JCM.

  15. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry—Performance evaluation for selenium

    Energy Technology Data Exchange (ETDEWEB)

    Duben, Ondřej [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Faculty of Science, Department of Analytical Chemistry, Charles University in Prague, Hlavova 8, Prague, CZ 128 43 Czech Republic (Czech Republic); Boušek, Jaroslav [Faculty of Electrical Engineering and Communications, Brno University of Technology, Technická 1058/10, 61600 Brno (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the CAS, v.v.i., Veveří 97, CZ-602 00 Brno (Czech Republic)

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min{sup −1} Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml{sup −1} Se in the DBD and 0.15 ng ml{sup −1} Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer. - Highlights: • SeH{sub 2} atomization in a dielectric barrier discharge (DBD) was optimized for AAS. • Atomizer performance was compared for DBD and externally heated quartz atomizer. • Detection limits were quantified and interferences were studied in both atomizers. • Atomization efficiency in the DBD was estimated.

  16. Dependences of the van der Waals atom-wall interaction on atomic and material properties

    International Nuclear Information System (INIS)

    Caride, A.O.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Zanette, S.I.

    2005-01-01

    The 1%-accurate calculations of the van der Waals interaction between an atom and a cavity wall are performed in the separation region from 3 nm to 150 nm. The cases of metastable He * and Na atoms near metal, semiconductor, and dielectric walls are considered. Different approximations to the description of wall material and atomic dynamic polarizability are carefully compared. The smooth transition to the Casimir-Polder interaction is verified. It is shown that to obtain accurate results for the atom-wall van der Waals interaction at short separations with an error less than 1% one should use the complete optical-tabulated data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. The obtained results may be useful for the theoretical interpretation of recent experiments on quantum reflection and Bose-Einstein condensation of ultracold atoms on or near surfaces of different kinds

  17. Stopping atoms with diode lasers

    International Nuclear Information System (INIS)

    Watts, R.N.; Wieman, C.E.

    1986-01-01

    The use of light pressure to cool and stop neutral atoms has been an area of considerable interest recently. Cooled neutral atoms are needed for a variety of interesting experiments involving neutral atom traps and ultrahigh-resolution spectroscopy. Laser cooling of sodium has previously been demonstrated using elegant but quite elaborate apparatus. These techniques employed stabilized dye lasers and a variety of additional sophisticated hardware. The authors have demonstrated that a frequency chirp technique can be implemented using inexpensive diode lasers and simple electronics. In this technique the atoms in an atomic beam scatter resonant photons from a counterpropagating laser beam. The momentum transfer from the photons slows the atoms. The primary difficulty is that as the atoms slow their Doppler shift changes, and so they are no longer in resonance with the incident photons. In the frequency chirp technique this is solved by rapidly changing the laser frequency so that the atoms remain in resonance. To achieve the necessary frequency sweep with a dye laser one must use an extremely sophisticated high-speed electrooptic modulator. With a diode laser, however, the frequency can be smoothly and rapidly varied over many gigahertz simply by changing the injection current

  18. Stabilisation of ZrO/sub 2/ with rare-earth oxides with atomic numbers from 58 to 71

    Energy Technology Data Exchange (ETDEWEB)

    Tcheivili, L; Passarino de Marques, M N [Instituto Nacional de Tecnologia Industrial, Buenos Aires (Argentina)

    1978-01-01

    In the present work, the stabilisation of ZrO/sub 2/ with 14 rare earths (58 to 71) was investigated. The aim was to carry out the experiments at a temperature of 1550/sup 0/C, at which many oxides do not exist in the cubic form and the others, such as PrO/sub 2/ and Lu/sub 2/O/sub 3/, have not yet been studied. All the experiments of the series were carried out under constant conditions, in order to determine if there was any difference in principle between them. All the oxides stabilise ZrO/sub 2/, but those with the lower atomic numbers (58, 59, 60) show some deviation. The minimum and maximum mol% limits were ascertained, between which ZrO/sub 2/ is fully stabilised, and the phases are given which occur with the various mol% proportions. In conclusion, an experiment was carried out with all oxides having di- tri- and quadri-valent cations, which belong to the cubic system. In view of their difference in ionic radius to the Zr/sup 4 +/ ion, the conclusion can be drawn that all oxides which can stabilise ZrO/sub 2/ have larger cation radii than that of the Zr/sup 4 +/ ion.

  19. Optics with an Atom Laser Beam

    International Nuclear Information System (INIS)

    Bloch, Immanuel; Koehl, Michael; Greiner, Markus; Haensch, Theodor W.; Esslinger, Tilman

    2001-01-01

    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing, and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin flip in the inhomogeneous magnetic field. More than 98% of the incident atom laser beam is reflected specularly

  20. FAO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  1. On the bosonic atoms

    Science.gov (United States)

    Amusia, M. Ya.; Chernysheva, L. V.

    2018-01-01

    We investigate ground state properties of atoms, in which substitute fermions - electrons by bosons, namely π --mesons. We perform some calculations in the frame of modified Hartree-Fock (HF) equation. The modification takes into account symmetry, instead of anti-symmetry of the pair identical bosons wave function. The modified HF approach thus enhances (doubles) the effect of self-action for the boson case. Therefore, we accordingly modify the HF equations by eliminating the self-action terms "by hand". The contribution of meson-meson and meson-nucleon non-Coulomb interaction is inessential at least for atoms with low and intermediate nuclear charge, which is our main subject. We found that the binding energy of pion negative ions A π - , pion atoms A π , and the number of extra bound pions ΔN π increases with the growth of nuclear charge Z. For e.g. Xe ΔN π = 4. As an example of a simple process with a pion atom, we consider photoionization that differs essentially from that for electron atoms. Namely, it is not monotonic decreasing from the threshold but has instead a prominent maximum above threshold. We study also elastic scattering of pions by pion atoms.

  2. FAO and atomic energy

    International Nuclear Information System (INIS)

    1960-01-01

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  3. Big Atoms for Small Children: Building Atomic Models from Common Materials to Better Visualize and Conceptualize Atomic Structure

    Science.gov (United States)

    Cipolla, Laura; Ferrari, Lia A.

    2016-01-01

    A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).

  4. Atomic bomb cataracts

    International Nuclear Information System (INIS)

    Shiraeda, Kanji

    1992-01-01

    Eye disturbance caused by atomic bomb radiation can be divided into three groups: direct injury immediately after exposure, eye lesions associated with radiation syndrome, and delayed disturbance. The crystalline lens of the eye is the most radiosensitive. Atomic bomb cataract has been investigated in a number of studies. The first section of this chapter discusses radiation cataract in terms of the incidence and characteristics. The second section deals with atomic bomb cataract, which can be diagnosed based on the four criteria: (1) opacity of the crystalline lens, (2) a history of proximal exposure, (3) lack of eye disease complicating cataract, and (4) non-exposure to radiation other than atomic bombing. The prevalence of cataract and severity of opacity are found to correlate with exposure doses and age at the time of exposure. Furthermore, it is found to correlate with distance from the hypocenter, the condition of shielding, epilation, and the presence or absence or degree of radiation syndrome. (N.K.)

  5. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  6. Economical Atomic Layer Deposition

    Science.gov (United States)

    Wyman, Richard; Davis, Robert; Linford, Matthew

    2010-10-01

    Atomic Layer Deposition is a self limiting deposition process that can produce films at a user specified height. At BYU we have designed a low cost and automated atomic layer deposition system. We have used the system to deposit silicon dioxide at room temperature using silicon tetrachloride and tetramethyl orthosilicate. Basics of atomic layer deposition, the system set up, automation techniques and our system's characterization are discussed.

  7. Modular L-design of hydride atomizers for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rezacova, Olga; Dedina, Jiri

    2009-01-01

    A novel modular L-shaped design of hydride atomizer for atomic absorption spectrometry is described. It makes it possible to replace the optical tube of the atomizer and, mainly, to employ optical tubes made also from other materials than fused quartz. The design is useful mainly for further improvement of hydride atomizers based on the multiatomizer concept. Employing selenium hydride as the analyte and arsine as the interferent, a preliminary evaluation of performance of three types of L-shaped multiatomizers based on various optical tubes in terms of sensitivity, linearity of calibration graph and resistance to atomization interferences is made. The 'classical' T-shaped multiatomizer was employed as a reference. The L-shaped multiatomizer with the optical tube analogous to that employed in the 'classical' T-shaped multiatomizer offers virtually the same performance as the reference multiatomizer. Optical tube made of fused quartz with holes with smaller diameters does not offer significantly better performance compared to the reference T-shaped multiatomizer. However, the L-shaped multiatomizer with optical tube fabricated from porous quartz glass overpowers all the other multiatomizers substantially in terms of the resistance against interferences: even the maximum As interferent concentration of 5 μg ml - 1 does not significantly influence the observed signal. This should be compared with multiatomizers based on plain fused quartz tubes with holes: tolerance limit around 0.5 μg ml - 1 ; interferent concentration of 1 μg ml - 1 causing 20% signal depression.

  8. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  9. THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Kino, Motoki; Doi, Akihiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Nagai, Hiroshi; Honma, Mareki; Hagiwara, Yoshiaki; Kawaguchi, Noriyuki [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-09-20

    We investigated the detailed inner jet structure of M87 using Very Long Baseline Array data at 2, 5, 8.4, 15, 23.8, 43, and 86 GHz, especially focusing on the multi-frequency properties of the radio core at the jet base. First, we measured the size of the core region transverse to the jet axis, defined as W{sub c}, at each frequency ν, and found a relation between W{sub c} and ν: W{sub c}(ν)∝ν{sup –0.71±0.05}. Then, by combining W{sub c}(ν) and the frequency dependence of the core position r{sub c}(ν), which was obtained in our previous study, we constructed a collimation profile of the innermost jet W{sub c}(r) down to ∼10 Schwarzschild radii (R{sub s}) from the central black hole. We found that W{sub c}(r) smoothly connects with the width profile of the outer edge-brightened, parabolic jet and then follows a similar radial dependence down to several tens of R{sub s}. Closer to the black hole, the measured radial profile suggests a possible change in the jet collimation shape from the outer parabolic one, where the jet shape tends to become more radially oriented. This result could be related to a magnetic collimation process or/and interactions with surrounding materials at the jet base. The present results shed light on the importance of higher-sensitivity/resolution imaging studies of M87 at 86, 43, and 22 GHz; these studies should be examined more rigorously.

  10. Atom beams split by gentle persuasion

    International Nuclear Information System (INIS)

    Pool, R.

    1994-01-01

    Two different research teams have taken a big step toward atom interferometry. They have succeeded in splitting atomic beams by using atoms in spin states that neither absorb nor reemit laser light. By proper adjustment of experimental conditions, atoms are changed from one spin state to another, without passing through the intermediary excited state. The atoms in essence absorb momentum from the laser photons, without absorption or emission of photons. The change in momentum deflects atoms in the proper spin state

  11. Muonic atoms with vacant electron shells

    International Nuclear Information System (INIS)

    Bacher, R.; Gotta, D.; Simons, L.M.; Missimer, J.; Mukhopadhyay, N.C.

    1985-01-01

    We show that the cascade in muonic atoms with Z<20 ejects sufficient atomic electrons to ionize an isolated muonic atom completely. In gases, the rates with which electrons refill the atomic shell can be accurately deduced from measured and calculated electron transfer cross sections. Thus, we can conclude that completely ionized muonic atoms can be prepared in gases, and that they remain isolated for long enough times at attainable pressures to facilitate studies of fundamental interactions in muonic atoms

  12. Mechanisms and energetics of surface atomic processes

    International Nuclear Information System (INIS)

    Tsong, T.T.

    1991-01-01

    The energies involved in various surface atomic processes such as surface diffusion, the binding of small atomic clusters on the surface, the interaction between two adsorbed atoms, the dissociation of an atom from a small cluster or from a surface layer, the binding of kink size atoms or atoms at different adsorption sites to the surface etc., can be derived from an analysis of atomically resolved field ion microscope images and a kinetic energy measurement of low temperature field desorbed ions using the time-of-flight atom-probe field ion microscope. These energies can be used to compare with theories and to understand the transport of atoms on the surface in atomic reconstructions, epitaxial growth of surface layers and crystal growth, adsorption layer superstructure formation, and also why an atomic ordering or atomic reconstruction at the surface is energetically favored. Mechanisms of some of the surface atomic processes are also clarified from these quantitative, atomic resolution studies. In this paper work in this area is bris briefly reviewed

  13. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  14. Determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Usenko, S.I.; Prorok, M.M.

    1992-01-01

    A method of direct determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization was developed. Concomitant elements Si, K, Mg, Na, present in natural waters in the concentration of 0.05-100 mg/cv 3 , do not produce effect on the value of boron atomic absorption. Boron determination limit constituted 0.02 mg/cm 3 for 25 ml of solution introduced

  15. Classical approach in atomic physics

    International Nuclear Information System (INIS)

    Solov'ev, E.A.

    2011-01-01

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)

  16. Spectroscopy of highly ionized atoms

    International Nuclear Information System (INIS)

    Livingston, A.E.

    1987-01-01

    The atomic structure and decay characteristics of excited states in multiply ionized atoms represent a fertile testing ground for atomic calculations ranging from accurate ab initio theory for few-electron systems to practical semi-empirical approaches for many-electron species. Excitation of fast ions by thin foils generally produces the highest ionization stages for heavy ions in laboratory sources. The associated characteristics of spectroscopic purity and high time resolution provide unique capabilities for studying the atomic properties of highly-ionized atoms. This report is limited to a brief discussion of three classes of atomic systems that are experiencing current theoretical and experimental interest: precision structure of helium-like ions, fine structure of doubly-excited states, and lifetimes of metastable states. Specific measurements in each of these types of systems are mentioned, with emphasis on the relation to studies involving slow, highly-charged ions

  17. Atomization process for metal powder

    International Nuclear Information System (INIS)

    Lagutkin, Stanislav; Achelis, Lydia; Sheikhaliev, Sheikhali; Uhlenwinkel, Volker; Srivastava, Vikas

    2004-01-01

    A new atomization process has been developed, which combines pressure and gas atomization. The melt leaves the pressure nozzle as a hollow thin film cone. After the pre-filming step, the melt is atomized by a gas stream delivered by a ring nozzle. The objectives of this investigation are to achieve a narrow size distribution and low specific gas consumption compared to conventional gas atomization techniques. Both lead to a higher efficiency and low costs. Tin and some alloys have been atomized successfully with this technique. The mass median diameters from different experiments are between 20 and 100 μm. Sieving analysis of the tin powder shows close particle size distributions

  18. The relation of double peaks, observed in quartz hydride atomizers, to the fate of free analyte atoms in the determination of arsenic and selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    D'Ulivo, Alessandro; Dedina, Jiri

    2002-01-01

    The mechanism at the origin of double peaks formation in quartz hydride atomizers were investigated by continuous flow hydride generation atomic absorption spectrometry. Arsenic and selenium were used as model analytes. The effect of atomization mode (flame-in-gas-shield (FIGS), miniature diffusion flame and double flame (DF)) and some experimental parameters as oxygen supply rate for microflame and the distance from atomization to free atoms detection point, were investigated on the shape of both analytical signals and calibration graphs. Rollover of calibration graphs and double peak formation are strictly related each to the other and could be observed only in FIGS atomizer mode under some particular conditions. A mechanism based on incomplete atomization of hydrides cannot explain the collected experimental evidences because the microflame of FIGS is able to produce quantitative atomization of large amount of hydrides even at supply rate of oxygen close to extinction threshold of microflame. The heterogeneous gas-solid reactions between finely dispersed particles, formed by free atom recombination, and the free atoms in the gaseous phase are at the origin of double peak formation

  19. Elementary Atom Interaction with Matter

    OpenAIRE

    Mrowczynski, Stanislaw

    1998-01-01

    The calculations of the elementary atom (the Coulomb bound state of elementary particles) interaction with the atom of matter, which are performed in the Born approximation, are reviewed. We first discuss the nonrelativistic approach and then its relativistic generalization. The cross section of the elementary atom excitation and ionization as well as the total cross section are considered. A specific selection rule, which applies for the atom formed as positronium by particle-antiparticle pa...

  20. Atoms stories; Histoire d`atomes

    Energy Technology Data Exchange (ETDEWEB)

    Radvanyi, P; Bordry, M [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)

    1988-12-31

    Physicists from different countries told each evening during one learning week, to an audience of young people, some great discoveries in evoking the difficulties and problems to which the researchers were confronted. From Antiquity to a more recent history, it is a succession of atoms stories. (N.C.)

  1. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M; Tomonaga, M; Amenomori, T; Matsuo, T [Nagasaki Univ. (Japan). School of Medicine

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  2. Atomic clocks for geodesy

    Science.gov (United States)

    Mehlstäubler, Tanja E.; Grosche, Gesine; Lisdat, Christian; Schmidt, Piet O.; Denker, Heiner

    2018-06-01

    We review experimental progress on optical atomic clocks and frequency transfer, and consider the prospects of using these technologies for geodetic measurements. Today, optical atomic frequency standards have reached relative frequency inaccuracies below 10‑17, opening new fields of fundamental and applied research. The dependence of atomic frequencies on the gravitational potential makes atomic clocks ideal candidates for the search for deviations in the predictions of Einstein’s general relativity, tests of modern unifying theories and the development of new gravity field sensors. In this review, we introduce the concepts of optical atomic clocks and present the status of international clock development and comparison. Besides further improvement in stability and accuracy of today’s best clocks, a large effort is put into increasing the reliability and technological readiness for applications outside of specialized laboratories with compact, portable devices. With relative frequency uncertainties of 10‑18, comparisons of optical frequency standards are foreseen to contribute together with satellite and terrestrial data to the precise determination of fundamental height reference systems in geodesy with a resolution at the cm-level. The long-term stability of atomic standards will deliver excellent long-term height references for geodetic measurements and for the modelling and understanding of our Earth.

  3. Atomic bomb and leukemia

    International Nuclear Information System (INIS)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T.

    1991-01-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5∼0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author)

  4. Metal powder production by gas atomization

    Science.gov (United States)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  5. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  6. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  7. Cascaded two-photon spectroscopy of Yb atoms with a transportable effusive atomic beam apparatus

    International Nuclear Information System (INIS)

    Song, Minsoo; Yoon, Tai Hyun

    2013-01-01

    We present a transportable effusive atomic beam apparatus for cascaded two-photon spectroscopy of the dipole-forbidden transition (6s 2 1 S 0 ↔ 6s7s 1 S 0 ) of Yb atoms. An ohmic-heating effusive oven is designed to have a reservoir volume of 1.6 cm 3 and a high degree of atomic beam collimation angle of 30 mrad. The new atomic beam apparatus allows us to detect the spontaneously cascaded two-photons from the 6s7s 1 S 0 state via the intercombination 6s6p 3 P 1 state with a high signal-to-noise ratio even at the temperature of 340 °C. This is made possible in our apparatus because of the enhanced atomic beam flux and superior detection solid angle.

  8. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  9. Modular L-design of hydride atomizers for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rezacova, Olga [Institute of Analytical Chemistry of the ASCR, v.v.i., Laboratory of Trace Element Analysis, Videnska 1083, CZ-142 20 Prague (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, Prague 2, CZ 128 43 (Czech Republic); Dedina, Jiri [Institute of Analytical Chemistry of the ASCR, v.v.i., Laboratory of Trace Element Analysis, Videnska 1083, CZ-142 20 Prague (Czech Republic)], E-mail: dedina@biomed.cas.cz

    2009-07-15

    A novel modular L-shaped design of hydride atomizer for atomic absorption spectrometry is described. It makes it possible to replace the optical tube of the atomizer and, mainly, to employ optical tubes made also from other materials than fused quartz. The design is useful mainly for further improvement of hydride atomizers based on the multiatomizer concept. Employing selenium hydride as the analyte and arsine as the interferent, a preliminary evaluation of performance of three types of L-shaped multiatomizers based on various optical tubes in terms of sensitivity, linearity of calibration graph and resistance to atomization interferences is made. The 'classical' T-shaped multiatomizer was employed as a reference. The L-shaped multiatomizer with the optical tube analogous to that employed in the 'classical' T-shaped multiatomizer offers virtually the same performance as the reference multiatomizer. Optical tube made of fused quartz with holes with smaller diameters does not offer significantly better performance compared to the reference T-shaped multiatomizer. However, the L-shaped multiatomizer with optical tube fabricated from porous quartz glass overpowers all the other multiatomizers substantially in terms of the resistance against interferences: even the maximum As interferent concentration of 5 {mu}g ml{sup - 1} does not significantly influence the observed signal. This should be compared with multiatomizers based on plain fused quartz tubes with holes: tolerance limit around 0.5 {mu}g ml{sup - 1}; interferent concentration of 1 {mu}g ml{sup - 1} causing 20% signal depression.

  10. Efficient Atomic One-Qubit Phase Gate Realized by a Cavity QED and Identical Atoms System

    International Nuclear Information System (INIS)

    He Yong; Jiang Nianquan

    2010-01-01

    We present a scheme to implement a one-qubit phase gate with a two-level atom crossing an optical cavity in which some identical atoms are trapped. One can conveniently acquire an arbitrary phase shift of the gate by properly choosing the number of atoms trapped in the cavity and the velocity of the atom crossing the cavity. The present scheme provides a very simple and efficient way for implementing one-qubit phase gate. (general)

  11. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    Science.gov (United States)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  12. Molecular dynamics simulation study of the influence of the lattice atom potential function upon atom ejection processes

    International Nuclear Information System (INIS)

    Harrison, D.E. Jr.; Webb, R.P.

    1982-01-01

    A molecular dynamics simulation has been used to investigate the sensitivity of atom ejection processes from a single-crystal target to changes in the atom-atom potential function. Four functions, three constructed from the Gibson potentials with Anderman's attractive well, and a fouth specifically developed for this investigation, were investigated in the Cu/Ar/sup +/ system over a range of ion energies from 1.0 to 10.0 kev with the KSE-B ion-atom potential. Well depths and widths also were varied. The calculations were done at normal incidence on the fcc (111) crystal orientation. Computed values were compared with experimental data where they exist. Sputtering yields, multimer yield ratios, layer yield ratios, and the ejected atom energy distribution vary systematically with the parameters of the atom-atom potential function. Calculations also were done with the modified Moliere function. Yields and other properties fall exactly into the positions predicted from the Born-Mayer function analysis. Simultaneous analysis of the ejected atom energy distribution and the ion energy dependence of the sputtering yield curve provides information about the parameters of both the wall and well portions of the atom-atom potential function

  13. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  14. Atomic Energy Act 1953-1966

    International Nuclear Information System (INIS)

    1970-01-01

    The Atomic Energy Act 1953-1966 establishes the Australian Atomic Energy Commission and lays down its powers, duties, rules of procedure and financing. The members of the Commission are appointed by the Governor-General. It is responsible, inter alia, for all activities covering uranium research, mining and trading as well as for atomic energy development and nuclear plant construction and operation. Its duties also include training of scientific research workers and collection and dissemination of information on atomic energy. For purposes of security, the Act further-more prescribes sanctions in relation to unauthorised acquisition or communication of information on this subject. Finally, the Act repeals the Atomic Energy (Control of Materials) Act 1946 and 1952. (NEA) [fr

  15. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  16. Atomic transport properties

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)

  17. The atomic energy basic law

    International Nuclear Information System (INIS)

    1977-01-01

    The law establishes clearly the principles that Japan makes R and D, and utilizations of atomic energy only for the peaceful purposes. All the other laws and regulations concerning atomic energy are based on the law. The first chapter lays down the above mentioned objective of the law, and gives definitions of basic concepts and terms, such as atomic energy, nuclear fuel material, nuclear source material, nuclear reactor and radiation. The second chapter provides for the establishment of Atomic Energy Commission which conducts plannings and investigations, and also makes decisions concerning R and D, and utilizations of atomic energy. The third chapter stipulates for establishment of two government organizations which perform R and D of atomic energy developments including experiments and demonstrations of new types of reactors, namely, Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. Chapters from 4th through 8th provide for the regulations on development and acquisition of the minerals containing nuclear source materials, controls on nuclear fuel materials and nuclear reactors, administrations of the patents and inventions concerning atomic energy, and also prevention of injuries due to radiations. The last 9th chapter requires the government and its appointee to compensate the interested third party for damages in relation to the exploitation of nuclear source materials. (Matsushima, A.)

  18. Atomization mechanisms for barium in furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Styris, D.L.

    1984-01-01

    Atomic absorption spectrometry and mass spectrometry are used simultaneously in order to elucidate atomization mechanisms of barium dichloride in pyrolytic graphite, vitreous carbon, and tantalum furnaces. Gas-phase barium dicarbide is observed to appear concurrently with the free barium. Barium oxide and barium dihydroxide precursors appear with the chlorides. Surface reactions involving species that are absorbed on the various furnaces are postulated to explain the appearances of the species that are observed in the gas phase. 49 references, 4 figures, 1 table

  19. Atom Optics in a Nutshell

    Science.gov (United States)

    Meystre, Pierre

    This chapter presents a brief introduction to atom optics, assuming only a basic knowledge of elementary physics ideas such as conservation of energy and conservation of momentum, and making only limited use of elementary algebra. Starting from a historical perspective we introduce the idea of wave-particle duality, a fundamental tenet of quantum mechanics that teaches us that atoms, just like light, behave sometimes as waves, and sometimes as particles. It is this profound but counter-intuitive property that allows one to do with atoms much of what is familiar from conventional optics. However, because in contrast to photons atoms have a mass, there are also fundamental differences between the two that have important consequences. In particular this property opens up a number of applications that are ill-suited for conventional optical methods. After explaining why it is particularly advantageous to work at temperatures close to absolute zero to benefit most readily from the wave nature of atoms we discuss several of these applications, concentrating primarily on the promise of atom microscopes and atom interferometers in addressing fundamental and extraordinarily challenging questions at the frontier of current physics knowledge.

  20. Atomic physics made clear

    International Nuclear Information System (INIS)

    Meinhold, H.

    1980-01-01

    This book is a popular introduction into the foundations of atomic physics und quantum mechanics. Starting from some phenomenological concepts Bohr's model and the construction of the periodic system regarding the shell structure of atoms are introduced. In this framework the selection rules and magnetic moments of atomic electrons are considered. Finally the wave-particle dualism is considered. In the appendix some mathematical methods are described which are useful for a deeper penetration into the considered ideas. (HSI)

  1. A Many-Atom Cavity QED System with Homogeneous Atom-Cavity Coupling

    OpenAIRE

    Lee, Jongmin; Vrijsen, Geert; Teper, Igor; Hosten, Onur; Kasevich, Mark A.

    2013-01-01

    We demonstrate a many-atom-cavity system with a high-finesse dual-wavelength standing wave cavity in which all participating rubidium atoms are nearly identically coupled to a 780-nm cavity mode. This homogeneous coupling is enforced by a one-dimensional optical lattice formed by the field of a 1560-nm cavity mode.

  2. Near relativistic study of binded levels in atoms. Application to alkaline atoms

    International Nuclear Information System (INIS)

    Varade, A.; Delgado-Barrio, G.; Villarreal, P.

    1985-01-01

    A model is described for the calculation of the atomic binding energies. The Pauli equation has been solved with a local potential. The results for alkaline atoms are reported here and compared with the perturbative calculation and experimental data. (author)

  3. Dynamics of an atomic wave packet in a standing-wave cavity field: A cavity-assisted single-atom detection

    International Nuclear Information System (INIS)

    Chough, Young-Tak; Nha, Hyunchul; Kim, Sang Wook; An, Kyungwon; Youn, Sun-Hyun

    2002-01-01

    We investigate the single-atom detection system using an optical standing-wave cavity, from the viewpoint of the quantized center-of-mass motion of the atomic wave packet. We show that since the atom-field coupling strength depends upon the overlap integral of the atomic wave packet and the field mode function, the effect of the wave-packet spreading via the momentum exchange process brings about a significant effect in the detection efficiency. We find that, as a result, the detection efficiency is not sensitive to the individual atomic trajectory for reasonably slow atoms. We also address an interesting phenomenon of the atomic wave-packet splitting occurring when an atom passes through a node of the cavity field

  4. Quantum Phases of Atom-Molecule Mixtures of Fermionic Atoms

    Science.gov (United States)

    Lopez, Nicolas; Tsai, Shan-Wen

    2009-11-01

    Cold atom experiments have observed atom-molecule mixtures by tuning the interactions between particles.footnotetextM.L. Olsen, J. D. Perreault, T. D. Cumby, and D. S. Jin, Phys. Rev. A 80, 030701(R) (2009) We study many particle interactions by examaning a simple model that describes the destruction of fermionic atom pairs to form single bosonic molecules and vice versa. A set of functional Renomalization Group equationsfootnotetextR. Shankar, Rev. Mod. Phys., Vol 66 No. 1, January 1994^,footnotetextS.W. Tsai, A.H. Castro Neto, R. Shankar, D.K. Campbell, Phys. Rev. B 72, 054531 (2005) describing these processes are set up and solved numerically. The Self Energy of the fermions are attained as a function of frequency and we search for frequency dependent instabilities that could denote a transition from a disordered liquid to a BCS phase. (Financial support from NSF DMR-084781 and UC-Lab Fees Research Program.)

  5. State-selective imaging of cold atoms

    NARCIS (Netherlands)

    Sheludko, D.V.; Bell, S.C.; Anderson, R.; Hofmann, C.S.; Vredenbregt, E.J.D.; Scholten, R.E.

    2008-01-01

    Atomic coherence phenomena are usually investigated using single beam techniques without spatial resolution. Here we demonstrate state-selective imaging of cold 85Rb atoms in a three-level ladder system, where the atomic refractive index is sensitive to the quantum coherence state of the atoms. We

  6. Distance criterion for hydrogen bond

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Distance criterion for hydrogen bond. In a D-H ...A contact, the D...A distance must be less than the sum of van der Waals Radii of the D and A atoms, for it to be a hydrogen bond.

  7. Theoretical Atomic Physics code development IV: LINES, A code for computing atomic line spectra

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1988-12-01

    A new computer program, LINES, has been developed for simulating atomic line emission and absorption spectra using the accurate fine structure energy levels and transition strengths calculated by the (CATS) Cowan Atomic Structure code. Population distributions for the ion stages are obtained in LINES by using the Local Thermodynamic Equilibrium (LTE) model. LINES is also useful for displaying the pertinent atomic data generated by CATS. This report describes the use of LINES. Both CATS and LINES are part of the Theoretical Atomic PhysicS (TAPS) code development effort at Los Alamos. 11 refs., 9 figs., 1 tab

  8. Atoms: for war or peace

    Energy Technology Data Exchange (ETDEWEB)

    Subrahmanyam, K V

    1981-08-01

    History of nuclear power generation starting from the experimental split of uranium atom in 1938 to the establishment of the International Atomic Energy Agency is traced. In India, the Atomic Energy Commission was established with the major objective of developing nuclear power to make up India's deficiencies in energy sources. It is noted that from the very beginning the commission's activities were covered under a blanket of secrecy. According to the author, India's atomic energy programme stagnated after Dr. Bhabha's death. The Department of Atomic Energy diverted its attention to the nuclear explosion which was carried out in 1974. This event caused a great setback to the collaboration with Canada and USA in the nuclear power programme. The resulting problems are still not fully solved. The author maintains that the Department of Atomic Energy should have confined its efforts to the reactor development with special reference to the fast breeder reactor so that thorium can be utilised to the maximum advantage.

  9. A kilobyte rewritable atomic memory

    Science.gov (United States)

    Kalff, Floris; Rebergen, Marnix; Fahrenfort, Nora; Girovsky, Jan; Toskovic, Ranko; Lado, Jose; FernáNdez-Rossier, JoaquíN.; Otte, Sander

    The ability to manipulate individual atoms by means of scanning tunneling microscopy (STM) opens op opportunities for storage of digital data on the atomic scale. Recent achievements in this direction include data storage based on bits encoded in the charge state, the magnetic state, or the local presence of single atoms or atomic assemblies. However, a key challenge at this stage is the extension of such technologies into large-scale rewritable bit arrays. We demonstrate a digital atomic-scale memory of up to 1 kilobyte (8000 bits) using an array of individual surface vacancies in a chlorine terminated Cu(100) surface. The chlorine vacancies are found to be stable at temperatures up to 77 K. The memory, crafted using scanning tunneling microscopy at low temperature, can be read and re-written automatically by means of atomic-scale markers, and offers an areal density of 502 Terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude.

  10. Cold atoms in a cryogenic environment

    International Nuclear Information System (INIS)

    Haslinger, S.

    2011-01-01

    The idea of quantum information processing attracts increasingly interest, where a complex collection of quantum objects and quantum bits are employed to find the ideal building blocks for quantum information systems. Hybrid quantum systems are therefore promising objects as they countervail the particular drawbacks of single quantum objects. Based on superconducting resonator technology, microwave coplanar waveguides provide a well suited interconnection for photons and solid-state quantum bits (qubits), extensively investigated in recent years. Since a quantum memory is presently missing in those electrical accessible circuit cavity quantum devices, connecting the fast processing in a solid sate device to the exceptional long coherence times in atomic ensembles, the presented work is focused to establish the technological foundations for the hybridization of such quantum systems. The microwave photons stored in a superconducting high finesse microwave resonator are therefore an ideal connection between the atom and the solid state quantum world. In the last decade, the miniaturization and integration of quantum optics and atomic physics manipulation techniques on to a single chip was successfully established. Such atom chips are capable of detailed quantum manipulation of ultra-cold atoms and provide a versatile platform to combine the manipulation techniques from atomic physics with the capability of nano-fabrication. In recent years several experiments succeeded in realization of superconducting atom chips in cryogenic environments which opens the road for integrating super-conductive microwave resonators to magnetically couple an atomic ensemble to photons stored in the coplanar high finesse cavity. This thesis presents the concept, design and experimental setup of two approaches to establish an atomic ensemble of rubidium atoms inside a cryogenic environment, based on an Electron beam driven alkali metal atom source for loading a magneto optical trap in a

  11. Insufficiency of the Young’s modulus for illustrating the mechanical behavior of GaN nanowires

    Science.gov (United States)

    Zamani Kouhpanji, Mohammad Reza; Behzadirad, Mahmoud; Feezell, Daniel; Busani, Tito

    2018-05-01

    We use a non-classical modified couple stress theory including the acceleration gradients (MCST-AG), to precisely demonstrate the size dependency of the mechanical properties of gallium nitride (GaN) nanowires (NWs). The fundamental elastic constants, Young’s modulus and length scales of the GaN NWs were estimated both experimentally, using a novel experimental technique applied to atomic force microscopy, and theoretically, using atomic simulations. The Young’s modulus, static and the dynamic length scales, calculated with the MCST-AG, were found to be 323 GPa, 13 and 14.5 nm, respectively, for GaN NWs from a few nanometers radii to bulk radii. Analyzing the experimental data using the classical continuum theory shows an improvement in the experimental results by introducing smaller error. Using the length scales determined in MCST-AG, we explain the inconsistency of the Young’s moduli reported in recent literature, and we prove the insufficiency of the Young’s modulus for predicting the mechanical behavior of GaN NWs.

  12. Magnetic trapping of Rydberg atoms

    NARCIS (Netherlands)

    Niestadt, D.; Naber, J.; Kokkelmans, S.J.J.M.F.; Spreeuw, R.J.C.

    2016-01-01

    Magnetic trapping is a well-established technique for ground state atoms. We seek to extend this concept to Rydberg atoms. Rydberg atoms are important for current visions of quantum simulators that will be used in the near future to simulate and analyse quantum problems. Current efforts in Amsterdam

  13. A Single Atom Antenna

    International Nuclear Information System (INIS)

    Trinter, Florian; Williams, Joshua B; Weller, Miriam; Waitz, Markus; Pitzer, Martin; Voigtsberger, Jörg; Schober, Carl; Kastirke, Gregor; Müller, Christian; Goihl, Christoph; Burzynski, Phillip; Wiegandt, Florian; Wallauer, Robert; Kalinin, Anton; Schmidt, Lothar Ph H; Schöffler, Markus S; Jahnke, Till; Dörner, Reinhard; Chiang, Ying-Chih; Gokhberg, Kirill

    2015-01-01

    Here we demonstrate the smallest possible implementation of an antenna-receiver complex which consists of a single (helium) atom acting as the antenna and a second (neon) atom acting as a receiver. (paper)

  14. Variational Monte Carlo Method with Dirichlet Boundary Conditions: Application to the Study of Confined Systems by Impenetrable Surfaces with Different Symmetries.

    Science.gov (United States)

    Sarsa, Antonio; Le Sech, Claude

    2011-09-13

    Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules, and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems. This is illustrated by the study of helium atom in its ground state (1)S and the first (3)S excited state confined by spherical, cylindrical, and plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces (cylindrical, planes) around the radii values corresponding to ionization. The ground (2)S and the first (2)P and (2)D excited states of the lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the (2)S and (2)P states is observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the hybridized state sp(3) becomes lower in energy than the ground state (3)P due to a modification and a mixing of the atomic orbitals s, p under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon atom in chemistry.

  15. Giant atoms cast long shadow

    International Nuclear Information System (INIS)

    Amato, I.

    1996-01-01

    Atoms swollen with energy can serve as supersensitive detectors. They also probe the shadow realm where the quantum world of the atom gives way to the familiar classical world. Created in the laboratory, where they live for a few milliseconds inside vacuum chambers, Rydberg atoms acquire their girth when one or sometimes two of their electrons are excited to very high energy levels, displacing them far from the nuclear core. This article describes the atoms, the history of their identification, and future possibilities. 2 figs

  16. Exotic objects of atomic physics

    Science.gov (United States)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  17. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  18. Melting point gram-atomic volumes and enthalpies of atomization for liquid elements

    International Nuclear Information System (INIS)

    Lamoreaux, R.H.

    1976-01-01

    Values of the gram-atomic volumes and enthalpies of atomization to the monatomic ideal gas state for liquid elements at their melting points are collected to facilitate predictions of the behavior of mixed systems. Estimated values are given for experimentally undetermined quantities

  19. Atomic Australia: 1944-1990

    International Nuclear Information System (INIS)

    Cawte, Alice.

    1992-01-01

    This book tells how successive Australian governments pursued the elusive uranium dream. With Australian uranium committed to the West's atomic arsenals, Australia seemed set to become a nation powered by the atom. But by the mid-1950 the Australian government learnt that their expectations were premature, if not unrealistic. The background of the creation of the Australian Atomic Energy Commission is also given along with the examination of the uranium controversies of the 1970s and 1980s. 150 refs

  20. Recent experiments involving highly excited atoms

    International Nuclear Information System (INIS)

    Latimer, C.J.

    1979-01-01

    Very large and fragile atoms may be produced by exciting normal atoms with light or by collisions with other atomic particles. Atoms as large as 10 -6 m are now routinely produced in the laboratory and their properties studied. In this review some of the simpler experimental methods available for the production and detection of such atoms are described including tunable dye laser-excitation and field ionization. A few recent experiments which illustrate the collision properties and the effects of electric and and magnetic fields are also described. The relevance of highly excited atoms in other areas of research including radioastronomy and isotope separation are discussed. (author)