WorldWideScience

Sample records for atomic quantum bits

  1. A "Bit" of Quantum Mechanics

    Science.gov (United States)

    Oss, Stefano; Rosi, Tommaso

    2015-01-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…

  2. A Bit of Quantum Mechanics

    Science.gov (United States)

    Oss, Stefano; Rosi, Tommaso

    2015-04-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.

  3. Quantum measurement and entanglement of spin quantum bits in diamond

    NARCIS (Netherlands)

    Pfaff, W.

    2013-01-01

    This thesis presents a set of experiments that explore the possible realisation of a macroscopic quantum network based on solid-state quantum bits. Such a quantum network would allow for studying quantum mechanics on large scales (meters, or even kilometers), and can open new possibilities for

  4. Security of quantum bit-string generation

    Science.gov (United States)

    Barrett, Jonathan; Massar, Serge

    2004-11-01

    We consider the cryptographic task of bit-string generation. This is a generalization of coin tossing in which two mistrustful parties wish to generate a string of random bits such that an honest party can be sure that the other cannot have biased the string too much. We consider a quantum protocol for this task, originally introduced in Phys. Rev. A 69, 022322 (2004), that is feasible with present day technology. We introduce security conditions based on the average bias of the bits and the Shannon entropy of the string. For each, we prove rigorous security bounds for this protocol in both noiseless and noisy conditions under the most general attacks allowed by quantum mechanics. Roughly speaking, in the absence of noise, a cheater can only bias significantly a vanishing fraction of the bits, whereas in the presence of noise, a cheater can bias a constant fraction, with this fraction depending quantitatively on the level of noise. We also discuss classical protocols for the same task, deriving upper bounds on how well a classical protocol can perform. This enables the determination of how much noise the quantum protocol can tolerate while still outperforming classical protocols. We raise several conjectures concerning both quantum and classical possibilities for large n cryptography. An experiment corresponding to the scheme analyzed in this paper has been performed and is reported elsewhere.

  5. Geneva University - Superconducting flux quantum bits: fabricated quantum objects

    CERN Multimedia

    2007-01-01

    Ecole de physique Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 Tél: (022) 379 62 73 Fax: (022) 379 69 92 Lundi 29 janvier 2007 COLLOQUE DE LA SECTION DE PHYSIQUE 17 heures - Auditoire Stueckelberg Superconducting flux quantum bits: fabricated quantum objects Prof. Hans Mooij / Kavli Institute of Nanoscience, Delft University of Technology The quantum conjugate variables of a superconductor are the charge or number of Cooper pairs, and the phase of the order parameter. In circuits that contain small Josephson junctions, these quantum properties can be brought forward. In Delft we study so-called flux qubits, superconducting rings that contain three small Josephson junctions. When a magnetic flux of half a flux quantum is applied to the loop, there are two states with opposite circulating current. For suitable junction parameters, a quantum superposition of those macroscopic states is possible. Transitions can be driven with resonant microwaves. These quantum ...

  6. Bit-commitment-based quantum coin flipping

    Science.gov (United States)

    Nayak, Ashwin; Shor, Peter

    2003-01-01

    In this paper we focus on a special framework for quantum coin-flipping protocols, bit-commitment-based protocols, within which almost all known protocols fit. We show a lower bound of 1/16 for the bias in any such protocol. We also analyze a sequence of multiround protocols that tries to overcome the drawbacks of the previously proposed protocols in order to lower the bias. We show an intricate cheating strategy for this sequence, which leads to a bias of 1/4. This indicates that a bias of 1/4 might be optimal in such protocols, and also demonstrates that a more clever proof technique may be required to show this optimality.

  7. Quantum bits and superposition of displaced Fock states of the cavity field

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo A, L.M. [Centro de Investigaciones en Optica A.C., Prolongacion de Constitucion No. 607, Apdo. Postal 507, Aguascalientes (Mexico); Moya C, H. [Instituto Nacional de Astrofisica, Optica y Electronica, Apdo. Postal 51 y 216, 72000 Puebla (Mexico)

    2002-07-01

    We study the effects of counter rotating terms in the interaction of quantized light with a two-level atom, by using the method of small rotations. We give an expression for the wave function of the composed system atom plus field and point out one initial wave function that generates a quantum bit of the electromagnetic field with arbitrary amplitudes. (Author)

  8. Experimental bit commitment based on quantum communication and special relativity.

    Science.gov (United States)

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Kent, A; Gisin, N; Wehner, S; Zbinden, H

    2013-11-01

    Bit commitment is a fundamental cryptographic primitive in which Bob wishes to commit a secret bit to Alice. Perfectly secure bit commitment between two mistrustful parties is impossible through asynchronous exchange of quantum information. Perfect security is however possible when Alice and Bob split into several agents exchanging classical and quantum information at times and locations suitably chosen to satisfy specific relativistic constraints. Here we report on an implementation of a bit commitment protocol using quantum communication and special relativity. Our protocol is based on [A. Kent, Phys. Rev. Lett. 109, 130501 (2012)] and has the advantage that it is practically feasible with arbitrary large separations between the agents in order to maximize the commitment time. By positioning agents in Geneva and Singapore, we obtain a commitment time of 15 ms. A security analysis considering experimental imperfections and finite statistics is presented.

  9. How to Convert a Flavor of Quantum Bit Commitment

    DEFF Research Database (Denmark)

    Crepeau, Claude; Legare, Frédéric; Salvail, Louis

    2001-01-01

    In this paper we show how to convert a statistically binding but computationally concealing quantum bit commitment scheme into a computationally binding but statistically concealing QBC scheme. For a security parameter n, the construction of the statistically concealing scheme requires O(n2......) executions of the statistically binding scheme. As a consequence, statistically concealing but computationally binding quantum bit commitments can be based upon any family of quantum one-way functions. Such a construction is not known to exist in the classical world....

  10. Provably Secure Experimental Quantum Bit-String Generation

    Science.gov (United States)

    Lamoureux, L. P.; Brainis, E.; Amans, D.; Barrett, J.; Massar, S.

    2005-02-01

    Coin tossing is a cryptographic task in which two parties who do not trust each other aim to generate a common random bit. Using classical communication this is impossible, but nontrivial coin tossing is possible using quantum communication. Here we consider the case when the parties do not want to toss a single coin, but many. This is called bit-string generation. We report the experimental generation of strings of coins which are provably more random than achievable using classical communication. The experiment is based on the “plug and play” scheme developed for quantum cryptography, and therefore well suited for long distance quantum communication.

  11. Provably Secure Experimental Quantum Bit-String Generation

    OpenAIRE

    Lamoureux, Louis-Philippe; Brainis, Edouard; Amans, David; Barrett, Jonathan; Massar, Serge

    2004-01-01

    Coin tossing is a cryptographic task in which two parties who do not trust each other aim to generate a common random bit. Using classical communication this is impossible, but non trivial coin tossing is possible using quantum communication. Here we consider the case when the parties do not want to toss a single coin, but many. This is called bit string generation. We report the experimental generation of strings of coins which are provably more random than achievable using classical communi...

  12. An elementary quantum network of single atoms in optical cavities.

    Science.gov (United States)

    Ritter, Stephan; Nölleke, Christian; Hahn, Carolin; Reiserer, Andreas; Neuzner, Andreas; Uphoff, Manuel; Mücke, Martin; Figueroa, Eden; Bochmann, Joerg; Rempe, Gerhard

    2012-04-11

    Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.

  13. A single-atom quantum memory.

    Science.gov (United States)

    Specht, Holger P; Nölleke, Christian; Reiserer, Andreas; Uphoff, Manuel; Figueroa, Eden; Ritter, Stephan; Rempe, Gerhard

    2011-05-12

    The faithful storage of a quantum bit (qubit) of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must be able to receive and recreate the photonic qubit; additionally, it must store an unknown quantum state of light better than any classical device. So far, these two requirements have been met only by ensembles of material particles that store the information in collective excitations. Recent developments, however, have paved the way for an approach in which the information exchange occurs between single quanta of light and matter. This single-particle approach allows the material qubit to be addressed, which has fundamental advantages for realistic implementations. First, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection; this can be used to combat inevitable losses and finite efficiencies. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory, by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is tested with weak coherent pulses and analysed using full quantum process tomography. The average fidelity is measured to be 93%, and low decoherence rates result in qubit coherence times exceeding 180  microseconds. This makes our system a versatile quantum node with excellent prospects for applications in optical quantum gates and quantum repeaters.

  14. Quantum information with Rydberg atoms

    DEFF Research Database (Denmark)

    Saffman, Mark; Walker, T.G.; Mølmer, Klaus

    2010-01-01

    Rydberg atoms with principal quantum number n»1 have exaggerated atomic properties including dipole-dipole interactions that scale as n4 and radiative lifetimes that scale as n3. It was proposed a decade ago to take advantage of these properties to implement quantum gates between neutral atom...... of multiqubit registers, implementation of robust light-atom quantum interfaces, and the potential for simulating quantum many-body physics. The advances of the last decade are reviewed, covering both theoretical and experimental aspects of Rydberg-mediated quantum information processing....

  15. Why quantum bit commitment and ideal quantum coin tossing are impossible

    Science.gov (United States)

    Lo, Hoi-Kwong; Chau, H. F.

    1998-09-01

    There had been well-known claims of unconditionally secure quantum protocols for bit commitment. However, we, and independently Mayers, showed that all proposed quantum bit commitment schemes are, in principle, insecure because the sender, Alice, can almost always cheat successfully by using an Einstein-Podolsky-Rosen (EPR) type of attack and delaying her measurements. One might wonder if secure quantum bit commitment protocols exist at all. We answer this question by showing that the same type of attack by Alice will, in principle, break any bit commitment scheme. The cheating strategy generally requires a quantum computer. We emphasize the generality of this “no-go theorem”: Unconditionally secure bit commitment schemes based on quantum mechanics-fully quantum, classical or quantum but with measurements-are all ruled out by this result. Since bit commitment is a useful primitive for building up more sophisticated protocols such as zero-knowledge proofs, our results cast very serious doubt on the security of quantum cryptography in the so-called “post-cold-war” applications. We also show that ideal quantum coin tossing is impossible because of the EPR attack. This no-go theorem for ideal quantum coin tossing may help to shed some lights on the possibility of non-ideal protocols.

  16. Relativistic Quantum Protocols: Bit Commitment and Coin Tossing

    Science.gov (United States)

    Molotkov, S. N.; Nazin, S. S.

    2001-10-01

    The relativistic quantum protocols realizing the bit commitment and distant coin tossing schemes are proposed. The protocols are based on the fact that the non-stationary orthogonal extended quantum states cannot be reliably distinguished if they are not fully accessible for the measurement. As the states propagate from the domain controlled by one of the user to the domain accessible for the measurements performed by the other user, they become reliably distinguishable for the second user. Important for the protocol are both the quantum nature of the states and the existence of a finite maximum speed of the signal propagation imposed by the special relativity.

  17. Fully Distrustful Quantum Bit Commitment and Coin Flipping

    Science.gov (United States)

    Silman, J.; Chailloux, A.; Aharon, N.; Kerenidis, I.; Pironio, S.; Massar, S.

    2011-06-01

    In the distrustful quantum cryptography model the parties have conflicting interests and do not trust one another. Nevertheless, they trust the quantum devices in their labs. The aim of the device-independent approach to cryptography is to do away with the latter assumption, and, consequently, significantly increase security. It is an open question whether the scope of this approach also extends to protocols in the distrustful cryptography model, thereby rendering them “fully” distrustful. In this Letter, we show that for bit commitment—one of the most basic primitives within the model—the answer is positive. We present a device-independent (imperfect) bit-commitment protocol, where Alice’s and Bob’s cheating probabilities are ≃0.854 and (3)/(4), which we then use to construct a device-independent coin flipping protocol with bias ≲0.336.

  18. Quantum Electronics for Atomic Physics

    CERN Document Server

    Nagourney, Warren

    2010-01-01

    Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics. The book covers the usual topics, such as Gaussian beams, cavities, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. It includes such practical matters as the enhancement of nonlinear processes in a build-up cavity, impedance matching into a cavity, laser frequencystabilization (including servomechanism theory), astigmatism in ring cavities, and atomic/molecular spectroscopic techniques

  19. Multi-bit dark state memory: Double quantum dot as an electronic quantum memory

    Science.gov (United States)

    Aharon, Eran; Pozner, Roni; Lifshitz, Efrat; Peskin, Uri

    2016-12-01

    Quantum dot clusters enable the creation of dark states which preserve electrons or holes in a coherent superposition of dot states for a long time. Various quantum logic devices can be envisioned to arise from the possibility of storing such trapped particles for future release on demand. In this work, we consider a double quantum dot memory device, which enables the preservation of a coherent state to be released as multiple classical bits. Our unique device architecture uses an external gating for storing (writing) the coherent state and for retrieving (reading) the classical bits, in addition to exploiting an internal gating effect for the preservation of the coherent state.

  20. Single ion impact detection and scanning probe aligned ion implantation for quantum bit formation

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Christoph D.

    2011-10-04

    Quantum computing and quantum information processing is a promising path to replace classical information processing via conventional computers which are approaching fundamental physical limits. Instead of classical bits, quantum bits (qubits) are utilized for computing operations. Due to quantum mechanical phenomena such as superposition and entanglement, a completely different way of information processing is achieved, enabling enhanced performance for certain problem sets. Various proposals exist on how to realize a quantum bit. Among them are electron or nuclear spins of defect centers in solid state systems. Two such candidates with spin degree of freedom are single donor atoms in silicon and nitrogen vacancy (NV) defect centers in diamond. Both qubit candidates possess extraordinary qualities which makes them promising building blocks. Besides certain advantages, the qubits share the necessity to be placed precisely in their host materials and device structures. A commonly used method is to introduce the donor atoms into the substrate materials via ion implantation. For this, focused ion beam systems can be used, or collimation techniques as in this work. A broad ion beam hits the back of a scanning probe microscope (SPM) cantilever with incorporated apertures. The high resolution imaging capabilities of the SPM allows the non destructive location of device areas and the alignment of the cantilever and thus collimated ion beam spot to the desired implant locations. In this work, this technique is explored, applied and pushed forward to meet necessary precision requirements. The alignment of the ion beam to surface features, which are sensitive to ion impacts and thus act as detectors, is demonstrated. The technique is also used to create NV center arrays in diamond substrates. Further, single ion impacts into silicon device structures are detected which enables deliberate single ion doping.

  1. Quantum key distribution based on orthogonal states allows secure quantum bit commitment

    Science.gov (United States)

    He, Guang Ping

    2011-11-01

    For more than a decade, it was believed that unconditionally secure quantum bit commitment (QBC) is impossible. But based on a previously proposed quantum key distribution scheme using orthogonal states, here we build a QBC protocol in which the density matrices of the quantum states encoding the commitment do not satisfy a crucial condition on which the no-go proofs of QBC are based. Thus, the no-go proofs could be evaded. Our protocol is fault-tolerant and very feasible with currently available technology. It reopens the venue for other ‘post-cold-war’ multi-party cryptographic protocols, e.g. quantum bit string commitment and quantum strong coin tossing with an arbitrarily small bias. This result also has a strong influence on the Clifton-Bub-Halvorson theorem which suggests that quantum theory could be characterized in terms of information-theoretic constraints.

  2. Quantum Trajectories and Their Statistics for Remotely Entangled Quantum Bits

    Directory of Open Access Journals (Sweden)

    Areeya Chantasri

    2016-12-01

    Full Text Available We experimentally and theoretically investigate the quantum trajectories of jointly monitored transmon qubits embedded in spatially separated microwave cavities. Using nearly quantum-noise-limited superconducting amplifiers and an optimized setup to reduce signal loss between cavities, we can efficiently track measurement-induced entanglement generation as a continuous process for single realizations of the experiment. The quantum trajectories of transmon qubits naturally split into low and high entanglement classes. The distribution of concurrence is found at any given time, and we explore the dynamics of entanglement creation in the state space. The distribution exhibits a sharp cutoff in the high concurrence limit, defining a maximal concurrence boundary. The most-likely paths of the qubits’ trajectories are also investigated, resulting in three probable paths, gradually projecting the system to two even subspaces and an odd subspace, conforming to a “half-parity” measurement. We also investigate the most-likely time for the individual trajectories to reach their most entangled state, and we find that there are two solutions for the local maximum, corresponding to the low and high entanglement routes. The theoretical predictions show excellent agreement with the experimental entangled-qubit trajectory data.

  3. Quantum tiltmeter with atom interferometry

    Science.gov (United States)

    Xu, Wen-Jie; Zhou, Min-Kang; Zhao, Miao-Miao; Zhang, Ke; Hu, Zhong-Kun

    2017-12-01

    Matter-wave sensors with cold atoms have progressed tremendously over recent decades. We report a sensitive tilt sensor based on quantum technology employing cold atoms. This quantum tiltmeter is constructed with the configuration of a Ramsey-Bordé atom interferometer, achieving an improvement of nearly three orders of magnitude for tilt measurements with a short-term sensitivity of 1.3 μ rad/Hz 1 /2 , with resolution down to 55 nrad at an integration time of 1000 s. The deformation of the Earth's surface has been monitored in a continuous run of 31 h, showing that a quantum tiltmeter can be applied to record tilt tides and can be an valuable sensor in geophysics and various scientific facilities.

  4. Single-passage read-out of atomic quantum memory

    DEFF Research Database (Denmark)

    Fiurasek, J; Sherson, J; Opatrny, T

    2005-01-01

    Retrieving quantum information, collective atomic spin systems, quantum memory Udgivelsesdato: 17 Feb.......Retrieving quantum information, collective atomic spin systems, quantum memory Udgivelsesdato: 17 Feb....

  5. Undamped trace distance and coherence preservation of quantum bit in photonic crystal

    Science.gov (United States)

    Lu, Yu-Wei; You, Chun-Lian; Liu, Jing-Feng; Jiang, Hao-Xiang; Li, Ling-Yan

    2017-11-01

    We study the coherence preservation of quantum bit in photonic crystal using input-output trace distance. The input-output trace distance can be extremely short and the information hardly dissipates when the quantum bit frequency lies deep inside the photonic band gap. Different from the behavior in cavities, the undissipated information of the quantum bit can be held in the photonic band gap due to the effective interaction between the quantum bit and photonic crystal. A factor called coherence radius is defined in this paper for evaluating the quantum coherence preservation in photonic crystal, which is straightly linked to the visibility of input-output trace distance and the coherence of quantum states.

  6. "Electronium": A Quantum Atomic Teaching Model.

    Science.gov (United States)

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Outlines an alternative atomic model to the probability model, the descriptive quantum atomic model Electronium. Discusses the way in which it is intended to support students in learning quantum-mechanical concepts. (Author/MM)

  7. Multi-bit quantum random number generation by measuring positions of arrival photons.

    Science.gov (United States)

    Yan, Qiurong; Zhao, Baosheng; Liao, Qinghong; Zhou, Nanrun

    2014-10-01

    We report upon the realization of a novel multi-bit optical quantum random number generator by continuously measuring the arrival positions of photon emitted from a LED using MCP-based WSA photon counting imaging detector. A spatial encoding method is proposed to extract multi-bits random number from the position coordinates of each detected photon. The randomness of bits sequence relies on the intrinsic randomness of the quantum physical processes of photonic emission and subsequent photoelectric conversion. A prototype has been built and the random bit generation rate could reach 8 Mbit/s, with random bit generation efficiency of 16 bits per detected photon. FPGA implementation of Huffman coding is proposed to reduce the bias of raw extracted random bits. The random numbers passed all tests for physical random number generator.

  8. Quantum state atomic force microscopy

    OpenAIRE

    Passian, Ali; Siopsis, George

    2017-01-01

    New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the paramete...

  9. Rydberg Atom Quantum Hybrid Systems

    Science.gov (United States)

    Chao, Yuanxi; Sheng, Jiteng; Kumar, Santosh; Bigelow, Nicholas P.; Shaffer, James P.

    2017-04-01

    We report on our recent experimental and theoretical work with Rydberg atom-cavity and Rydberg atom-surface hybrid quantum systems. In the atom-cavity system, Rb contained in a dipole trap is transported into a high-finesse optical cavity using a focus-tunable lens. Cavity assisted Rydberg EIT is observed in the cavity transmission and used to characterize the electric fields in the cavity. The electric fields are attributed to surface adsorbates adhering to the cavity mirrors. We also investigate the coupling of a Rydberg atom ensemble to surface phonon polaritons (SPhPs) propagating on piezoelectric superlattices made from thin film ferroelectric materials. Strong coupling between the atomic and surface excitations can be achieved, due to the large Rydberg transition dipole moments and the local field enhancement of the SPhP modes. The system has many advantages for information transport since the atoms need only be placed at distances on the order of mms from the surface and the SPhPs do not couple to free space electro-magnetic fields. Experimental progress will be discussed, including the fabrication of submicron-period periodically poled Lithium Niobate using the direct e-beam writing technique. This work is supported by AFOSR.

  10. Possibility, impossibility and cheat-sensitivity of quantum bit string commitment

    Energy Technology Data Exchange (ETDEWEB)

    Buhrman, Harry; Wehner, Stephanie [CWI Amsterdam (Netherlands); Christandl, Matthias [University of Cambridge (United Kingdom); Hayden, Patrick [McGill University, Montreal (Canada); Lo, Hoi-Kwong [University of Toronto (Canada)

    2008-07-01

    Unconditionally secure non-relativistic bit commitment is known to be impossible in both the classical and the quantum worlds. But when committing to a string of n bits at once, how far can we stretch the quantum limits? In this paper, we introduce a framework for quantum schemes where Alice commits a string of n bits to Bob in such a way that she can only cheat on a bits and Bob can learn at most b bits of information before the reveal phase. Our results are two-fold: we show by an explicit construction that in the traditional approach, where the reveal and guess probabilities form the security criteria, no good schemes can exist: a+b is at least n. If, however, we use a more liberal criterion of security, the accessible information, we construct schemes where a=4log{sub 2} n+O(1) and b=4, which is impossible classically. We furthermore present a cheat-sensitive quantum bit string commitment protocol for which we give an explicit tradeoff between Bob's ability to gain information about the committed string, and the probability of him being detected cheating.

  11. Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.

    2017-03-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.

  12. Quantum Spin Lenses in Atomic Arrays

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2017-09-01

    Full Text Available We propose and discuss quantum spin lenses, where quantum states of delocalized spin excitations in an atomic medium are focused in space in a coherent quantum process down to (essentially single atoms. These can be employed to create controlled interactions in a quantum light-matter interface, where photonic qubits stored in an atomic ensemble are mapped to a quantum register represented by single atoms. We propose Hamiltonians for quantum spin lenses as inhomogeneous spin models on lattices, which can be realized with Rydberg atoms in 1D, 2D, and 3D, and with strings of trapped ions. We discuss both linear and nonlinear quantum spin lenses: in a nonlinear lens, repulsive spin-spin interactions lead to focusing dynamics conditional to the number of spin excitations. This allows the mapping of quantum superpositions of delocalized spin excitations to superpositions of spatial spin patterns, which can be addressed by light fields and manipulated. Finally, we propose multifocal quantum spin lenses as a way to generate and distribute entanglement between distant atoms in an atomic lattice array.

  13. Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.

    Science.gov (United States)

    Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R

    2014-08-01

    Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.

  14. Storage of Quantum Variables in Atomic Media

    DEFF Research Database (Denmark)

    Cviklinski, J.; Ortalo, J.; Josse, V.

    2007-01-01

    Storage and read-out of non classical states of light is a critical element for quantum information networks. Simultaneous storage of two non-commuting variables carried by light and subsequent read-out is shown to be possible in atomic ensembles. Interaction of light fields with three......-level systems allows direct mapping the quantum state of light into long lived coherences in the atomic ground state. We show that excess noise linked to atomic transitions can be made negligible. Experimental developments are discussed for atomic vapours and cold atoms....

  15. Optimized 4-bit Quantum Reversible Arithmetic Logic Unit

    Science.gov (United States)

    Ayyoub, Slimani; Achour, Benslama

    2017-08-01

    Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.

  16. Quantum physics: Atomic envoy enables molecular control

    Science.gov (United States)

    Campbell, Wes

    2017-05-01

    A technique for manipulating molecules uses an intermediary atom to query a nearby molecule's energy state and produces 'quantum superpositions' of these states, a prerequisite for extremely high-precision spectroscopy. See Letter p.203

  17. Quantum Repeaters and Atomic Ensembles

    DEFF Research Database (Denmark)

    Borregaard, Johannes

    During the last couple of decades, quantum mechanics has moved from being primarily a theory describing the behaviour of microscopical particles in advanced experiments to being the foundation of a novel technology. One of the cornerstones in this new quantum technology is the strong correlations...... that can exist between remote quantum systems called entanglement. These correlations are exploited to detect eavesdroppers and construct unconditionally secure communication channels, enhance the sensitivity in various metrology schemes and construct powerful quantum computers, which can solve extremely...... hard problems. Quantum technology is, however, still premature, which is partly due to the fragile nature of these quantum correlations to noise. Extended research is therefore taking place to find robust quantum systems and protocols, which can move quantum technology from the specialized laboratories...

  18. Atomic focusing by quantum fields: Entanglement properties

    Energy Technology Data Exchange (ETDEWEB)

    Paz, I.G. da [Departamento de Física, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, CEP 64049-550, Teresina, PI (Brazil); Frazão, H.M. [Universidade Federal do Piauí, Campus Profa. Cinobelina Elvas, CEP 64900-000, Bom Jesus, PI (Brazil); Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970 (Brazil); Nemes, M.C. [Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Caixa Postal 702, Belo Horizonte, MG 30123-970 (Brazil); Peixoto de Faria, J.G. [Departamento de Física e Matemática, Centro Federal de Educação Tecnológica de Minas Gerais, Av. Amazonas 7675, Belo Horizonte, MG 30510-000 (Brazil)

    2014-04-01

    The coherent manipulation of the atomic matter waves is of great interest both in science and technology. In order to study how an atom optic device alters the coherence of an atomic beam, we consider the quantum lens proposed by Averbukh et al. [1] to show the discrete nature of the electromagnetic field. We extend the analysis of this quantum lens to the study of another essentially quantum property present in the focusing process, i.e., the atom–field entanglement, and show how the initial atomic coherence and purity are affected by the entanglement. The dynamics of this process is obtained in closed form. We calculate the beam quality factor and the trace of the square of the reduced density matrix as a function of the average photon number in order to analyze the coherence and purity of the atomic beam during the focusing process.

  19. Quantum dots with single-atom precision.

    Science.gov (United States)

    Fölsch, Stefan; Martínez-Blanco, Jesús; Yang, Jianshu; Kanisawa, Kiyoshi; Erwin, Steven C

    2014-07-01

    Quantum dots are often called artificial atoms because, like real atoms, they confine electrons to quantized states with discrete energies. However, although real atoms are identical, most quantum dots comprise hundreds or thousands of atoms, with inevitable variations in size and shape and, consequently, unavoidable variability in their wavefunctions and energies. Electrostatic gates can be used to mitigate these variations by adjusting the electron energy levels, but the more ambitious goal of creating quantum dots with intrinsically digital fidelity by eliminating statistical variations in their size, shape and arrangement remains elusive. We used a scanning tunnelling microscope to create quantum dots with identical, deterministic sizes. By using the lattice of a reconstructed semiconductor surface to fix the position of each atom, we controlled the shape and location of the dots with effectively zero error. This allowed us to construct quantum dot molecules whose coupling has no intrinsic variation but could nonetheless be tuned with arbitrary precision over a wide range. Digital fidelity opens the door to quantum dot architectures free of intrinsic broadening-an important goal for technologies from nanophotonics to quantum information processing as well as for fundamental studies of confined electrons.

  20. Coexistence of High-Bit-Rate Quantum Key Distribution and Data on Optical Fiber

    Directory of Open Access Journals (Sweden)

    K. A. Patel

    2012-11-01

    Full Text Available Quantum key distribution (QKD uniquely allows the distribution of cryptographic keys with security verified by quantum mechanical limits. Both protocol execution and subsequent applications require the assistance of classical data communication channels. While using separate fibers is one option, it is economically more viable if data and quantum signals are simultaneously transmitted through a single fiber. However, noise-photon contamination arising from the intense data signal has severely restricted both the QKD distances and secure key rates. Here, we exploit a novel temporal-filtering effect for noise-photon rejection. This allows high-bit-rate QKD over fibers up to 90 km in length and populated with error-free bidirectional Gb/s data communications. With a high-bit rate and range sufficient for important information infrastructures, such as smart cities and 10-Gbit Ethernet, QKD is a significant step closer toward wide-scale deployment in fiber networks.

  1. A nanoscale quantum interface for single atoms

    Science.gov (United States)

    Tiecke, Tobias; Thompson, Jeff; Feist, Johannes; Yu, Chun; Akimov, Alexey; Chang, Darrick; Zibrov, Alexander; Vuletic, Vladan; Park, Hongkun; Lukin, Mikhail

    2012-02-01

    Neutral atoms are ideal quantum systems: they have long ground-state coherence times and strong optical cycling transitions that enable state detection and preparation. Building quantum networks of atoms interacting through photons is challenging, however, as many schemes for atom-photon interaction are inefficient or hard to scale. We propose a scheme to trap neutral atoms near silver nanowires, which are tightly confining waveguides for surface plasmons. The nanowire tip is used to generate a near-field optical trapping potential, and to enhance and efficiently collect spontaneous emission from the atom. We present experimental results on using the atom to sense the optical field at submicron distances from the wire and our current efforts towards loading the nanotrap.

  2. Trapped Circular Rydberg Atoms for Quantum Simulation

    Science.gov (United States)

    Cantat-Moltrecht, Tigrane; Nguyen, Thanh Long; Cortinas, Rodrigo; Sayrin, Clément; Haroche, Serge; Brune, Michel; Raimond, Jean-Michel

    2017-04-01

    Condensed-matter systems are interesting and important to understand but they are difficult to study, even numerically, given the significant sizes of their Hilbert space. Quantum simulation proposes to mimic those out-of-reach quantum systems with more controllable and accessible ones. The high polarizability of Rydberg atoms allows for strong and tunable short-range interactions, making them nice candidates for a quantum simulation platform. However, low angular momentum Rydberg atoms cannot be efficiently laser-trapped and their lifetimes would limit the scope of such a quantum simulator. We propose instead to use circular Rydberg atoms (of maximum angular momentum) which can be laser-trapped and whose lifetimes can be extended to the one minute range by placing them in a spontaneous emission-inhibiting capacitor. We aim at the deterministic preparation of a 1D-chain of 40 atoms, trapped in a Laguerre-Gauss hollow laser beam, with a collective lifetime of 2 seconds. With exchange rates in the 10 - 100 kHz range, this would provide a platform able to simulate quantum many-body physics for more than 104 exchange times. In this talk I will present this novel quantum simulation platform and our latest experimental results in the laser-trapping of circular Rydberg atoms.

  3. Shared symmetries of the hydrogen atom and the two-bit system

    Science.gov (United States)

    Rau, A. R. P.; Alber, G.

    2017-12-01

    The hydrogen atom is the simplest system of atomic and molecular physics, while a two-qubit system is the simplest of quantum information. Remarkably, they share common symmetry aspects which are described in this paper, based on a correspondence between the four-dimensional unitary group and the six-dimensional rotational group with its non-compact extensions. Both systems involve 15 basic operators. Reductions to Lorentz and Poincare space–time group symmetries of a free particle are also discussed.

  4. Engineering quantum hyperentangled states in atomic systems

    Science.gov (United States)

    Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor

    2017-11-01

    Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger–Horne–Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.

  5. A coherent quantum annealer with Rydberg atoms

    Science.gov (United States)

    Glaetzle, A. W.; van Bijnen, R. M. W.; Zoller, P.; Lechner, W.

    2017-06-01

    There is a significant ongoing effort in realizing quantum annealing with different physical platforms. The challenge is to achieve a fully programmable quantum device featuring coherent adiabatic quantum dynamics. Here we show that combining the well-developed quantum simulation toolbox for Rydberg atoms with the recently proposed Lechner-Hauke-Zoller (LHZ) architecture allows one to build a prototype for a coherent adiabatic quantum computer with all-to-all Ising interactions and, therefore, a platform for quantum annealing. In LHZ an infinite-range spin-glass is mapped onto the low energy subspace of a spin-1/2 lattice gauge model with quasi-local four-body parity constraints. This spin model can be emulated in a natural way with Rubidium and Caesium atoms in a bipartite optical lattice involving laser-dressed Rydberg-Rydberg interactions, which are several orders of magnitude larger than the relevant decoherence rates. This makes the exploration of coherent quantum enhanced optimization protocols accessible with state-of-the-art atomic physics experiments.

  6. Quantum coin tossing and bit-string generation in the presence of noise

    Science.gov (United States)

    Barrett, Jonathan; Massar, Serge

    2004-02-01

    We discuss the security implications of noise for quantum coin tossing protocols. We find that if quantum error correction can be used, so that noise levels can be made arbitrarily small, then reasonable security conditions for coin tossing can be framed so that results from the noiseless case will continue to hold. If, however, error correction is not available (as is the case with present day technology), and significant noise is present, then tossing a single coin becomes problematic. In this case, we are led to consider random n-bit string generation in the presence of noise, rather than single-shot coin tossing. We introduce precise security criteria for n-bit string generation and describe an explicit protocol that could be implemented with present day technology. In general, a cheater can exploit noise in order to bias coins to their advantage. We derive explicit upper bounds on the average bias achievable by a cheater for given noise levels.

  7. Resonant quantum transitions in trapped antihydrogen atoms

    CERN Document Server

    Amole, C; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-01-01

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom’s stature lies in its simplicity and in the accuracy with which its spectrum can be measured1 and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and—by comparison with measurements on its antimatter counterpart, antihydrogen—the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state2, 3 of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave...

  8. Redundancy of einselected information in quantum Darwinism: The irrelevance of irrelevant environment bits

    Science.gov (United States)

    Zwolak, Michael; Zurek, Wojciech H.

    2017-03-01

    The objective, classical world emerges from the underlying quantum substrate via the proliferation of redundant copies of selected information into the environment, which acts as a communication channel, transmitting that information to observers. These copies are independently accessible, allowing many observers to reach consensus about the state of a quantum system via its imprints in the environment. Quantum Darwinism recognizes that the redundancy of information is thus central to the emergence of objective reality in the quantum world. However, in addition to the "quantum system of interest," there are many other systems "of no interest" in the Universe that can imprint information on the common environment. There is therefore a danger that the information of interest will be diluted with irrelevant bits, suppressing the redundancy responsible for objectivity. We show that mixing of the relevant (the "wheat") and irrelevant (the "chaff") bits of information makes little quantitative difference to the redundancy of the information of interest. Thus, we demonstrate that it does not matter whether one separates the wheat (relevant information) from the (irrelevant) chaff: The large redundancy of the relevant information survives dilution, providing evidence of the objective, effectively classical world.

  9. Resonant quantum transitions in trapped antihydrogen atoms.

    Science.gov (United States)

    Amole, C; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Capra, A; Cesar, C L; Charlton, M; Deller, A; Donnan, P H; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Humphries, A J; Isaac, C A; Jonsell, S; Kurchaninov, L; Little, A; Madsen, N; McKenna, J T K; Menary, S; Napoli, S C; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Shields, C R; Silveira, D M; Stracka, S; So, C; Thompson, R I; van der Werf, D P; Wurtele, J S

    2012-03-07

    The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

  10. Atom-by-Atom Construction of a Quantum Device.

    Science.gov (United States)

    Petta, Jason R

    2017-03-28

    Scanning tunneling microscopes (STMs) are conventionally used to probe surfaces with atomic resolution. Recent advances in STM include tunneling from spin-polarized and superconducting tips, time-domain spectroscopy, and the fabrication of atomically precise Si nanoelectronics. In this issue of ACS Nano, Tettamanzi et al. probe a single-atom transistor in silicon, fabricated using the precision of a STM, at microwave frequencies. While previous studies have probed such devices in the MHz regime, Tettamanzi et al. probe a STM-fabricated device at GHz frequencies, which enables excited-state spectroscopy and measurements of the excited-state lifetime. The success of this experiment will enable future work on quantum control, where the wave function must be controlled on a time scale that is much shorter than the decoherence time. We review two major approaches that are being pursued to develop spin-based quantum computers and highlight some recent progress in the atom-by-atom fabrication of donor-based devices in silicon. Recent advances in STM lithography may enable practical bottom-up construction of large-scale quantum devices.

  11. Storage of Quantum Variables in Atomic Media

    DEFF Research Database (Denmark)

    Cviklinski, J.; Ortalo, J.; Josse, V.

    2007-01-01

    Storage and read-out of non classical states of light is a critical element for quantum information networks. Simultaneous storage of two non-commuting variables carried by light and subsequent read-out is shown to be possible in atomic ensembles. Interaction of light fields with three-level syst......Storage and read-out of non classical states of light is a critical element for quantum information networks. Simultaneous storage of two non-commuting variables carried by light and subsequent read-out is shown to be possible in atomic ensembles. Interaction of light fields with three...

  12. Correct mutual information, quantum bit error rate and secure transmission efficiency in Wojcik's eavesdropping scheme on ping-pong protocol

    OpenAIRE

    Zhang, Zhanjun

    2004-01-01

    Comment: The wrong mutual information, quantum bit error rate and secure transmission efficiency in Wojcik's eavesdropping scheme [PRL90(03)157901]on ping-pong protocol have been pointed out and corrected

  13. The analogue quantum mechanical of plasmonic atoms

    Science.gov (United States)

    Alves, R. A.; Silva, Nuno A.; Costa, J. C.; Gomes, M.; Guerreiro, A.

    2017-08-01

    Localized plasmons in metallic nanostructures present strong analogies with Quantum Mechanical problems of particles trapped in potential wells. In this paper we take this analogy further using the Madelung Formalism of Quantum Mechanics to express the fluid equations describing the charge density of the conduction electrons and corresponding interaction with light in terms of an effective generalized Non-linear Schr¨odinger equations. Within this context, it is possible to develop the analogy of a plasmonic atom and molecule that exhibits Rabi oscillations, Stark effect, among other Quantum Mechanical effects.

  14. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.

    Science.gov (United States)

    Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  15. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer

    Science.gov (United States)

    Garner, Andrew J. P.; Müller, Markus P.; Dahlsten, Oscar C. O.

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  16. Quantum Degenerate Gases of Atomic Strontium

    Science.gov (United States)

    Killian, T. C.

    2010-03-01

    This talk will describe the production and properties of a Bose-Einstein condensate of ^84Sr and a quantum degenerate mixture of ^87Sr (fermion) and ^88Sr (boson). ^88Sr has a small negative scattering length leading to a maximum condensate size for our trapping conditions of about 10^4 atoms. ^87Sr is used to sympathetically cool ^88Sr, but it is also of interest for study of quantum degenerate Fermi gases because it has a large nuclear spin (I=9/2). Alkaline-earth metal atoms and atoms with similar electronic structure are of interest for quantum computing proposals, cold collision studies, and investigation of quantum fluids. There are a wealth of isotopes that allow mass-tuning of interactions and creation of various quantum mixtures. The two-valence electrons lead to a singlet ground state and narrow intercombination transitions to metastable triplet states, offering the promise of low-loss optical Feshbach resonances for manipulating scattering lengths. Fermions often have large nuclear spin, which is decoupled from electronic degrees of freedom and leads to a large degree of symmetry and degeneracy in the interaction Hamiltonian. Work done in collaboration with Y.N. Martinez de Escobar, P.G. Mickelson, M. Yan, B.J. DeSalvo, and S.B. Nagel, Rice University.

  17. Quantum state engineering with single atom laser

    Science.gov (United States)

    Stefanov, V. P.

    2017-11-01

    On the basis of quantum stochastic trajectories approach it is shown that a single atom laser with coherent pumping can generate not only coherent states, but squeezed and Fock states, when different schemes of detection are followed by coherent feedback pulses or feedforward actions.

  18. Optimal control of complex atomic quantum systems

    Science.gov (United States)

    van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.

    2016-10-01

    Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit - the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.

  19. Querying a quasi-classical Oracle: One-bit function identification problem implemented in a single atom transistor

    Science.gov (United States)

    Fresch, B.; Verduijn, J.; Mol, J. A.; Rogge, S.; Remacle, F.

    2012-07-01

    We show that a single atom transistor (SAT) addressed by a pulsed gate voltage is a physical realization of an Oracle that can calculate the four one-bit Boolean functions, the logical output being encoded in a measurable current. The algorithm relies on the quasi-classical parallelism that arises from the linearity of the kinetic scheme used to describe incoherent electron transport through two levels of the SAT. We demonstrate that one of the four one-bit Boolean functions can be identified by a single current measurement. The generalization of the algorithm to n bit functions is also discussed.

  20. A Scanning Quantum Cryogenic Atom Microscope

    CERN Document Server

    Yang, Fan; Taylor, Stephen F; Turner, Richard W; Lev, Benjamin L

    2016-01-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a noise floor of 300 pT and provides a 100x improvement in magnetic flux sensitivity over previous atomic scanning probe magnetometers. These capabilities are carefully benchmarked by imaging magnet...

  1. Design and Implementation of 1-bit Comparator in Quantum-dot Cellular Automata (QCA

    Directory of Open Access Journals (Sweden)

    Ali Newaz BAHAR

    2017-02-01

    Full Text Available Abstract. For immense demand of speedy high-end gadgets, chips are becoming denser, but Moore's law is falling flat lately. Complementary Metal-Oxide-Semiconductor (CMOS technology is on its brink. Quantum-dot cellular automata (QCA has become a potential alternative technology to provide faster speed with low power dissipation at nano-scale extent. Here, we proposed an efficient QCA design of 1-bit comparator. The proposed comparator required 59% less area and dissipated 82% less energy. QCADesigner has been used to design and simulate the proposed comparator. Finally, QCAPro tool has been employed for estimating energy dissipation.Keywords: Comparator, Energy dissipation, QCA Designer, QCAPro

  2. Serial composition of quantum coin flipping and bounds on cheat detection for bit commitment

    Science.gov (United States)

    Mochon, Carlos

    2004-09-01

    Quantum protocols for coin flipping can be composed in series in such a way that a cheating party gains no extra advantage from using entanglement between different rounds. This composition principle applies to coin-flipping protocols with cheat sensitivity as well, and is used to derive two results: There are no quantum strong coin-flipping protocols with cheat sensitivity that is linear in the bias (or bit-commitment protocols with linear cheat detection) because these can be composed to produce strong coin flipping with arbitrarily small bias. On the other hand, it appears that quadratic cheat detection cannot be composed in series to obtain even weak coin flipping with arbitrarily small bias.

  3. Adiabatic Quantum Computation with Neutral Atoms

    Science.gov (United States)

    Biedermann, Grant

    2013-03-01

    We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories

  4. Implementing quantum electrodynamics with ultracold atomic systems

    Science.gov (United States)

    Kasper, V.; Hebenstreit, F.; Jendrzejewski, F.; Oberthaler, M. K.; Berges, J.

    2017-02-01

    We discuss the experimental engineering of model systems for the description of quantum electrodynamics (QED) in one spatial dimension via a mixture of bosonic 23Na and fermionic 6Li atoms. The local gauge symmetry is realized in an optical superlattice, using heteronuclear boson-fermion spin-changing interactions which preserve the total spin in every local collision. We consider a large number of bosons residing in the coherent state of a Bose-Einstein condensate on each link between the fermion lattice sites, such that the behavior of lattice QED in the continuum limit can be recovered. The discussion about the range of possible experimental parameters builds, in particular, upon experiences with related setups of fermions interacting with coherent samples of bosonic atoms. We determine the atomic system’s parameters required for the description of fundamental QED processes, such as Schwinger pair production and string breaking. This is achieved by benchmark calculations of the atomic system and of QED itself using functional integral techniques. Our results demonstrate that the dynamics of one-dimensional QED may be realized with ultracold atoms using state-of-the-art experimental resources. The experimental setup proposed may provide a unique access to longstanding open questions for which classical computational methods are no longer applicable.

  5. Bohr's Creation of his Quantum Atom

    Science.gov (United States)

    Heilbron, John

    2013-04-01

    Fresh letters throw new light on the content and state of Bohr's mind before and during his creation of the quantum atom. His mental furniture then included the atomic models of the English school, the quantum puzzles of Continental theorists, and the results of his own studies of the electron theory of metals. It also included the poetry of Goethe, plays of Ibsen and Shakespeare, novels of Dickens, and rhapsodies of Kierkegaard and Carlyle. The mind that held these diverse ingredients together oscillated between enthusiasm and dejection during the year in which Bohr took up the problem of atomic structure. He spent most of that year in England, which separated him for extended periods from his close-knit family and friends. Correspondence with his fianc'ee, Margrethe Nørlund, soon to be published, reports his ups and downs as he adjusted to J.J. Thomson, Ernest Rutherford, the English language, and the uneven course of his work. In helping to smooth out his moods, Margrethe played an important and perhaps an enabling role in his creative process.

  6. Atomic physics and quantum optics using superconducting circuits.

    Science.gov (United States)

    You, J Q; Nori, Franco

    2011-06-29

    Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

  7. Hanbury Brown and Twiss and other atom-atom correlations: advances in quantum atom optics

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Fifty years ago, two astronomers, R. Hanbury Brown and R. Q. Twiss, invented a new method to measure the angular diameter of stars, in spite of the atmospheric fluctuations. Their proposal prompted a hot debate among physicists : how might two particles (photons), emitted independently (at opposite extremities of a star) , behave in a correlated way when detected ? It was only after the development of R Glauber's full quantum analysis that the effect was understood as a two particle quantum interference effect. From a modern perspective, it can be viewed as an early example of the amazing properties of pairs of entangled particles. The effect has now been observed with bosonic and fermionic atoms, stressing its fully quantum character. After putting these experiments in a historical perspective, I will present recent results, and comment on their significance. I will also show how our single atom detection scheme has allowed us to demonstrate the creation of atom pairs by non linear mixing of matter wa...

  8. A Quantum Network with Atoms and Photons

    Science.gov (United States)

    2016-09-01

    extraneous noise photon measurements from the quantum memory SEDD developed and experimentally tested the use of a 85Rb vapor cell to attenuate pump...Meyers, Keith S Deacon, Arnold D Tunick, Qudsia Quraishi, and Patricia Lee 5d. PROJECT NUMBER  5e. TASK NUMBER 5f.  WORK  UNIT NUMBER  7. PERFORMING...information. We constructed the rubidium (⁸⁷Rb) atomic memory magneto optical trap (MOT) cell and laser controls, and developed protocols, hardware, and

  9. Quantum simulations with ultracold atoms in optical lattices.

    Science.gov (United States)

    Gross, Christian; Bloch, Immanuel

    2017-09-08

    Quantum simulation, a subdiscipline of quantum computation, can provide valuable insight into difficult quantum problems in physics or chemistry. Ultracold atoms in optical lattices represent an ideal platform for simulations of quantum many-body problems. Within this setting, quantum gas microscopes enable single atom observation and manipulation in large samples. Ultracold atom-based quantum simulators have already been used to probe quantum magnetism, to realize and detect topological quantum matter, and to study quantum systems with controlled long-range interactions. Experiments on many-body systems out of equilibrium have also provided results in regimes unavailable to the most advanced supercomputers. We review recent experimental progress in this field and comment on future directions. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Single-cell atomic quantum memory for light

    OpenAIRE

    Opatrny, Tomas

    2005-01-01

    Recent experiments demonstrating atomic quantum memory for light [B. Julsgaard et al., Nature 432, 482 (2004)] involve two macroscopic samples of atoms, each with opposite spin polarization. It is shown here that a single atomic cell is enough for the memory function if the atoms are optically pumped with suitable linearly polarized light, and quadratic Zeeman shift and/or ac Stark shift are used to manipulate rotations of the quadratures. This should enhance the performance of our quantum me...

  11. A Scanning Quantum Cryogenic Atom Microscope

    Science.gov (United States)

    Lev, Benjamin

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (2 um), or 6 nT / Hz1 / 2 per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly one-hundred points with an effective field sensitivity of 600 pT / Hz1 / 2 each point during the same time as a point-by-point scanner would measure these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly two orders of magnitude improvement in magnetic flux sensitivity (down to 10- 6 Phi0 / Hz1 / 2) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are for the first time carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns and done so using samples that may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge transport images at temperatures from room to \\x9D4K in unconventional superconductors and topologically nontrivial materials.

  12. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation

    Science.gov (United States)

    Zhao, P. Z.; Cui, Xiao-Dan; Xu, G. F.; Sjöqvist, Erik; Tong, D. M.

    2017-11-01

    Nonadiabatic geometric quantum computation provides a means to perform fast and robust quantum gates. It has been implemented in various physical systems, such as trapped ions, nuclear magnetic resonance, and superconducting circuits. Another system being adequate for implementation of nonadiabatic geometric quantum computation may be Rydberg atoms, since their internal states have very long coherence time and the Rydberg-mediated interaction facilitates the implementation of a two-qubit gate. Here, we propose a scheme of nonadiabatic geometric quantum computation based on Rydberg atoms, which combines the robustness of nonadiabatic geometric gates with the merits of Rydberg atoms.

  13. Quantum algorithmic information theory

    OpenAIRE

    Svozil, Karl

    1995-01-01

    The agenda of quantum algorithmic information theory, ordered `top-down,' is the quantum halting amplitude, followed by the quantum algorithmic information content, which in turn requires the theory of quantum computation. The fundamental atoms processed by quantum computation are the quantum bits which are dealt with in quantum information theory. The theory of quantum computation will be based upon a model of universal quantum computer whose elementary unit is a two-port interferometer capa...

  14. Quantum delayed-choice experiment with a single neutral atom.

    Science.gov (United States)

    Li, Gang; Zhang, Pengfei; Zhang, Tiancai

    2017-10-01

    We present a proposal to implement a quantum delayed-choice (QDC) experiment with a single neutral atom, such as a rubidium or cesium atom. In our proposal, a Ramsey interferometer is adopted to observe the wave-like or particle-like behaviors of a single atom depending on the existence or absence of the second π/2-rotation. A quantum-controlled π/2-rotation on target atom is realized through a Rydberg-Rydberg interaction by another ancilla atom. It shows that a heavy neutral atom can also have a morphing behavior between the particle and the wave. The realization of the QDC experiment with such heavy neutral atoms not only is significant to understand the Bohr's complementarity principle in matter-wave and matter-particle domains but also has great potential on the quantum information process with neutral atoms.

  15. Layered quantum Hall insulators with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, A. [ICFO-Institut de Ciencies Fotoniques, Av. Carl Friedrich Gauss 3, E-08860 Castelldefels (Barcelona) (Spain); Szirmai, G. [ICFO-Institut de Ciencies Fotoniques, Av. Carl Friedrich Gauss 3, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest (Hungary); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Av. Carl Friedrich Gauss 3, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Passeig Lluis Companys 23, E-08010 Barcelona (Spain)

    2011-11-15

    We consider a generalization of the two-dimensional (2D) quantum Hall insulator to a noncompact, non-Abelian gauge group, the Heisenberg-Weyl group. We show that this kind of insulator is actually a layered three-dimensional (3D) insulator with nontrivial topology. We further show that nontrivial combinations of quantized transverse conductivities can be engineered with the help of a staggered potential. We investigate the robustness and topological nature of this conductivity and connect it to the surface modes of the system. We also propose a simple experimental realization with ultracold atoms in 3D confined to a 2D square lattice with the third dimension being mapped to a gauge coordinate.

  16. Quantum optics and cavity QED Quantum network with individual atoms and photons

    Directory of Open Access Journals (Sweden)

    Rempe G.

    2013-08-01

    Full Text Available Quantum physics allows a new approach to information processing. A grand challenge is the realization of a quantum network for long-distance quantum communication and large-scale quantum simulation. This paper highlights a first implementation of an elementary quantum network with two fibre-linked high-finesse optical resonators, each containing a single quasi-permanently trapped atom as a stationary quantum node. Reversible quantum state transfer between the two atoms and entanglement of the two atoms are achieved by the controlled exchange of a time-symmetric single photon. This approach to quantum networking is efficient and offers a clear perspective for scalability. It allows for arbitrary topologies and features controlled connectivity as well as, in principle, infinite-range interactions. Our system constitutes the largest man-made material quantum system to date and is an ideal test bed for fundamental investigations, e.g. quantum non-locality.

  17. Steady state quantum discord for circularly accelerated atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China); Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China)

    2015-12-15

    We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptotic value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.

  18. Generation and storage of quantum states using cold atoms

    DEFF Research Database (Denmark)

    Dantan, Aurelien Romain; Josse, Vincent; Cviklinski, Jean

    2006-01-01

    Cold cesium or rubidium atomic samples have a good potential both for generation and storage of nonclassical states of light. Generation of nonclassical states of light is possible through the high non-linearity of cold atomic samples excited close to a resonance line. Quadrature squeezing......, polarization squeezing and entanglement have been demonstrated. Quantum state storage is made possible by the presence of long-lived angular momentum in the ground state. Cold atoms are thus a promising resource in quantum information....

  19. 1-out-of-2 oblivious transfer using a flawed bit-string quantum protocol

    Science.gov (United States)

    Plesch, Martin; Pawłowski, Marcin; Pivoluska, Matej

    2017-04-01

    Oblivious transfer (OT) is an important tool in cryptography. It serves as a subroutine to other complex procedures of both theoretical and practical significance. A common attribute of OT protocols is that one party (Alice) has to send a message to another party (Bob) and has to stay oblivious to whether Bob did receive the message. Specific (OT) protocols vary by exact definition of the task—in the all-or-nothing protocol, Alice sends a single bit-string message, which Bob is able to read with only 50 % probability, whereas in a 1-out-of-2 OT protocol Bob reads one out of two messages sent by Alice. These two flavors of protocol are known to be equivalent. Recently, a computationally secure all-or-nothing OT protocol based on quantum states was developed by A. Souto et al. [Phys. Rev. A 91, 042306 (2015), 10.1103/PhysRevA.91.042306], which, however, cannot be reduced to a 1-out-of-2 OT protocol by standard means. Here we present an elaborate reduction of this protocol that retains the security of the original.

  20. Distribution of quantum information between an atom and two photons

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Bernhard

    2008-11-03

    The construction of networks consisting of optically interconnected processing units is a promising way to scale up quantum information processing systems. To store quantum information, single trapped atoms are among the most proven candidates. By placing them in high finesse optical resonators, a bidirectional information exchange between the atoms and photons becomes possible with, in principle, unit efficiency. Such an interface between stationary and ying qubits constitutes a possible node of a future quantum network. The results presented in this thesis demonstrate the prospects of a quantum interface consisting of a single atom trapped within the mode of a high-finesse optical cavity. In a two-step process, we distribute entanglement between the stored atom and two subsequently emitted single photons. The long atom trapping times achieved in the system together with the high photon collection efficiency of the cavity make the applied protocol in principle deterministic, allowing for the creation of an entangled state at the push of a button. Running the protocol on this quasi-stationary quantum interface, the internal state of the atom is entangled with the polarization state of a single emitted photon. The entanglement is generated by driving a vacuum-stimulated Raman adiabatic passage between states of the coupled atom-cavity system. In a second process, the atomic part of the entangled state is mapped onto a second emitted photon using a similar technique and resulting in a polarization-entangled two-photon state. To verify and characterize the photon-photon entanglement, we measured a violation of a Bell inequality and performed a full quantum state tomography. The results prove the prior atom-photon entanglement and demonstrate a quantum information transfer between the atom and the two emitted photons. This reflects the advantages of a high-finesse cavity as a quantum interface in future quantum networks. (orig.)

  1. Generation of Exotic Quantum States of a Cold Atomic Ensemble

    DEFF Research Database (Denmark)

    Christensen, Stefan Lund

    Over the last decades quantum effects have become more and more controllable, leading to the implementations of various quantum information protocols. These protocols are all based on utilizing quantum correlation. In this thesis we consider how states of an atomic ensemble with such correlations...... can be created and characterized. First we consider a spin-squeezed state. This state is generated by performing quantum non-demolition measurements of the atomic population difference. We show a spectroscopically relevant noise reduction of -1.7dB, the ensemble is in a many-body entangled state...... — a nanofiber based light-atom interface. Using a dual-frequency probing method we measure and prepare an ensemble with a sub-Poissonian atom number distribution. This is a first step towards the implementation of more exotic quantum states....

  2. Quantum Atomic Clock Synchronization: An Entangled Concept of Nonlocal Simultaneity

    Science.gov (United States)

    Abrams, D.; Dowling, J.; Williams, C.; Jozsa, R.

    2000-01-01

    We demonstrate that two spatially separated parties (Alice and Bob) can utilize shared prior quantum entanglement, as well as a classical information channel, to establish a synchronized pair of atomic clocks.

  3. The Quantum Atomic Model "Electronium": A Successful Teaching Tool.

    Science.gov (United States)

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Focuses on the quantum atomic model Electronium. Outlines the Bremen teaching approach in which this model is used, and analyzes the learning of two students as they progress through the teaching unit. (Author/MM)

  4. Distributed atomic quantum information processing via optical fibers.

    Science.gov (United States)

    Luo, Ming-Xing; Li, Hui-Ran; Wang, Xiaojun

    2017-04-27

    The qudit system may offer great flexibilities for quantum information processing. We investigate the possibility of realizing elementary quantum gates between two high-dimensional atoms in distant cavities coupled by an optical fiber. We show that highly reliable special swap gate is achievable by different detuning. The numerical simulation shows that the proposed elementary gate is robust against the atomic spontaneous decay, photon leakage of cavities and optical fibers by choosing the experimental parameters appropriately.

  5. Quantum-Classical Connection for Hydrogen Atom-Like Systems

    Science.gov (United States)

    Syam, Debapriyo; Roy, Arup

    2011-01-01

    The Bohr-Sommerfeld quantum theory specifies the rules of quantization for circular and elliptical orbits for a one-electron hydrogen atom-like system. This article illustrates how a formula connecting the principal quantum number "n" and the length of the major axis of an elliptical orbit may be arrived at starting from the quantum…

  6. Quantum information entropies of ultracold atomic gases in a ...

    Indian Academy of Sciences (India)

    The position and momentum space information entropies of weakly interacting trapped atomic Bose–Einstein condensates and spin-polarized trapped atomic Fermi gases at absolute zero temperature are evaluated. We find that sum of the position and momentum space information entropies of these quantum systems ...

  7. Coherent control of mesoscopic atomic ensembles for quantum information

    OpenAIRE

    Beterov, I. I.; Saffman, M.; Zhukov, V. P.; Tretyakov, D. B.; Entin, V. M.; Yakshina, E. A.; Ryabtsev, I. I.; Mansell, C. W.; MacCormick, C.; Bergamini, S.; Fedoruk, M. P.

    2013-01-01

    We discuss methods for coherently controlling mesoscopic atomic ensembles where the number of atoms varies randomly from one experimental run to the next. The proposed schemes are based on adiabatic passage and Rydberg blockade and can be used for implementation of a scalable quantum register formed by an array of randomly loaded optical dipole traps.

  8. Heralded atomic-ensemble quantum memory for photon polarization states

    Energy Technology Data Exchange (ETDEWEB)

    Tanji, Haruka; Simon, Jonathan [Department of Physics, Harvard University, Cambridge, MA 02138 (United States); Ghosh, Saikat; Bloom, Benjamin; Vuletic, Vladan [Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: vuletic@mit.edu

    2009-07-15

    We describe the mapping of quantum states between single photons and an atomic ensemble. In particular, we demonstrate a heralded quantum memory based on the mapping of a photon polarization state onto a single collective-spin excitation (magnon) shared between two atomic ensembles. The polarization fidelity above 90(2)% for any input polarization far exceeds the classical limit of 2/3. The process also constitutes a quantum non-destructive probe that detects and regenerates a photon without measuring its polarization.

  9. Quantum Rabi model in the Brillouin zone with ultracold atoms

    Science.gov (United States)

    Felicetti, Simone; Rico, Enrique; Sabin, Carlos; Ockenfels, Till; Koch, Johannes; Leder, Martin; Grossert, Christopher; Weitz, Martin; Solano, Enrique

    2017-01-01

    The quantum Rabi model describes the interaction between a two-level quantum system and a single bosonic mode. We propose a method to perform a quantum simulation of the quantum Rabi model, introducing an implementation of the two-level system provided by the occupation of Bloch bands in the first Brillouin zone by ultracold atoms in tailored optical lattices. The effective qubit interacts with a quantum harmonic oscillator implemented in an optical dipole trap. Our realistic proposal allows one to experimentally investigate the quantum Rabi model for extreme parameter regimes, which are not achievable with natural light-matter interactions. When the simulated wave function exceeds the validity region of the simulation, we identify a generalized version of the quantum Rabi model in a periodic phase space.

  10. Towards Quantum Turbulence in Cold Atomic Fermionic Superfluids

    CERN Document Server

    Bulgac, Aurel; Wlazłowski, Gabriel

    2016-01-01

    Fermionic superfluids provide a new realization of quantum turbulence, accessible to both experiment and theory, yet relevant to both cold atoms and nuclear astrophysics. In particular, the strongly interacting Fermi gas realized in cold-atom experiments is closely related to dilute neutron matter in the neutron star crust. Unlike the liquid superfluids 4He (bosons) and 3He (fermions), where quantum turbulence has been studied in laboratory for decades, quantum gases, and in particular superfluid Fermi gases stand apart for a number of reasons. Fermi gases admit a rather reliable microscopic description based on density functional theory which describes both static and dynamical phenomena. Cold atom experiments demonstrate exquisite control over particle number, spin polarization, density, temperature, and interacting strength. Topological defects such as domain walls and quantized vortices, which lie at the heart of quantum turbulence, can be created and manipulated with time-dependent external potentials, a...

  11. Manipulating collective quantum states of ultracold atoms by probing

    DEFF Research Database (Denmark)

    Wade, Andrew Christopher James

    2015-01-01

    nature of the measurement interaction and backaction is yet to be realised. This dissertation is concerned with ultracold atoms and their control via fully quantum mechanical probes. Nonclassical, squeezed and entangled states of matter and single photon sources are important for fundamental studies...... and quantum technologies. By probing, the production of squeezed and entangled states of collective variables in a Bose-Einstein condensate is investigated. Thereafter, an atomic probe using the strong interactions between highly excited atomic states, manipulates the light-matter dynamics of an ultracold gas...

  12. Atomically precise, coupled quantum dots fabricated by cleaved edge overgrowth

    Science.gov (United States)

    Wegscheider, W.; Schedelbeck, G.; Bichler, M.; Abstreiter, G.

    Recent progress in the fabrication of quantum dots by molecular beam epitaxy along three directions in space is reviewed. The optical properties of different sample structures consisting of individual quantum dots, pairs of coupled dots as well as of linear arrays of dots are studied by microscopic photoluminescence spectroscopy. The high degree of control over shape, composition and position of the 7×7×7 nm3 size GaAs quantum dots, which form at the intesection of three orthogonal quantum wells, allows a detailed investigation of the influence of coupling between almost identical zero-dimensional objects. In contrast to the inhomogeneously broadened quantum well and quantum wire signals originating from the complex twofold cleaved edge overgrowth structure, the photoluminescence spetrum of an individual quantum dot exhibits a single sharp line (full width at half maximum denomination "artificial atoms" for the quantum dots. It is further demonstrated that an "artifical molecule", characterized by the existence of bonding and antibonding states can be assembled from two of such "artificial atoms". The coupling strength between the "artificial atoms" is adjusted by the "interatomic" distance and is reflected in the energetic separation of the bonding and antibonding levels and the linewidths of the corresponding interband transitions.

  13. Quantum electrodynamics with 1D arti cial atoms

    DEFF Research Database (Denmark)

    Javadi, Alisa

    A 1D atom, a single quantum emitter coupled to a single optical mode, exhibits rich quantum electrodynamic (QED) e_ects and is thought to be the key ingredient for many applications in quantuminformation processing. Single quantum dots (QD) in photonic-crystal waveguides (PCW) constitute a robust...... platform for realizing a 1D atom, and are the subject of theoretical and experimental investigations in this thesis. We use _nite element method in 3D to calculate the local density of states (LDOS) in photonic-crystal membranes. The detailed spatial maps show strong inhibition of LDOS in the bandgap...... atom. One of the signatures and functions of a 1D atom is the nonlinear optical response at the single-photon level. A PCW chip is designed to experimentally study the transmission spectrum of an embedded QD. The transmission spectrum is shown to be modi_ed by 30% around the resonance of the QD...

  14. Scalable quantum information processing with photons and atoms

    Science.gov (United States)

    Pan, Jian-Wei

    Over the past three decades, the promises of super-fast quantum computing and secure quantum cryptography have spurred a world-wide interest in quantum information, generating fascinating quantum technologies for coherent manipulation of individual quantum systems. However, the distance of fiber-based quantum communications is limited due to intrinsic fiber loss and decreasing of entanglement quality. Moreover, probabilistic single-photon source and entanglement source demand exponentially increased overheads for scalable quantum information processing. To overcome these problems, we are taking two paths in parallel: quantum repeaters and through satellite. We used the decoy-state QKD protocol to close the loophole of imperfect photon source, and used the measurement-device-independent QKD protocol to close the loophole of imperfect photon detectors--two main loopholes in quantum cryptograph. Based on these techniques, we are now building world's biggest quantum secure communication backbone, from Beijing to Shanghai, with a distance exceeding 2000 km. Meanwhile, we are developing practically useful quantum repeaters that combine entanglement swapping, entanglement purification, and quantum memory for the ultra-long distance quantum communication. The second line is satellite-based global quantum communication, taking advantage of the negligible photon loss and decoherence in the atmosphere. We realized teleportation and entanglement distribution over 100 km, and later on a rapidly moving platform. We are also making efforts toward the generation of multiphoton entanglement and its use in teleportation of multiple properties of a single quantum particle, topological error correction, quantum algorithms for solving systems of linear equations and machine learning. Finally, I will talk about our recent experiments on quantum simulations on ultracold atoms. On the one hand, by applying an optical Raman lattice technique, we realized a two-dimensional spin-obit (SO

  15. Critical side channel effects in random bit generation with multiple semiconductor lasers in a polarization-based quantum key distribution system.

    Science.gov (United States)

    Ko, Heasin; Choi, Byung-Seok; Choe, Joong-Seon; Kim, Kap-Joong; Kim, Jong-Hoi; Youn, Chun Ju

    2017-08-21

    Most polarization-based BB84 quantum key distribution (QKD) systems utilize multiple lasers to generate one of four polarization quantum states randomly. However, random bit generation with multiple lasers can potentially open critical side channels that significantly endangers the security of QKD systems. In this paper, we show unnoticed side channels of temporal disparity and intensity fluctuation, which possibly exist in the operation of multiple semiconductor laser diodes. Experimental results show that the side channels can enormously degrade security performance of QKD systems. An important system issue for the improvement of quantum bit error rate (QBER) related with laser driving condition is further addressed with experimental results.

  16. Quantum gates between superconducting and atomic qubits

    Science.gov (United States)

    Saffman, Mark; Wilhelm, Frank; McDermott, Robert

    2009-05-01

    We propose methods for performing entangling gate operations between superconducting phase qubits and neutral atom hyperfine qubits. The gate is mediated by mapping the superconducting qubit onto a microwave excitation of a coplanar waveguide resonator (CPW). The large transition dipole moments of atomic Rydberg states at microwave frequencies enable bidirectional entanglement between a single atom and a single CPW photon. Specific gate protocols and fidelity calculations are presented for experimentally realistic geometries.

  17. Single-Atom Gating of Quantum State Superpositions

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-04-28

    The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.

  18. Multi-million atom electronic structure calculations for quantum dots

    Science.gov (United States)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined

  19. Few-particle quantum magnetism with ultracold atoms

    Energy Technology Data Exchange (ETDEWEB)

    Murmann, Simon

    2015-11-25

    This thesis reports on the deterministic preparation of magnetically ordered states in systems of few fermionic atoms. We follow the concept of quantum simulation and use {sup 6}Li atoms in two different hyperfine states to mimic the behavior of electrons in a solidstate system. In a first experiment, we simulate the two-site Hubbard model by using two atoms in an isolated double-well potential. We prepare the two-particle ground state of this model with a fidelity exceeding 90%. By introducing strong repulsive interactions, we are able to realize a pure spin model and describe the energy spectrum with a two-site Heisenberg Hamiltonian. In a second experiment, we realize Heisenberg spin chains of up to four atoms in a single strongly-elongated trapping potential. Here, the atoms self-align along the potential axis due to strong repulsive interactions. We introduce two novel measurement techniques to identify the state of the spin chains and thereby confirm that we can deterministically prepare antiferromagnetic ground-state systems. This constitutes the first observation of quantum magnetism with fermionic atoms that exceeds nearest-neighbor correlations. Both the double-well system and the spin chains can be seen as building blocks of larger ground-state spin systems. Their deterministic preparation therefore opens up a new bottom-up approach to the experimental realization of quantum many-body systems with ultracold atoms.

  20. Quantum Chemical Topology: Knowledgeable atoms in peptides

    Science.gov (United States)

    Popelier, Paul L. A.

    2012-06-01

    The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.

  1. Quantum Information Science with Single Atoms and Photons

    Science.gov (United States)

    Kimble, H. J.

    2003-03-01

    Cavity quantum electrodynamics (QED) offers powerful possibilities for the deterministic control of atom-photon interactions quantum by quantum [1]. Indeed, modern experiments in cavity QED have achieved the exceptional circumstance of strong coupling, for which single quanta can profoundly impact the dynamics of the atom-cavity system. The diverse accomplishments of this field set the stage for advances into yet broader frontiers in quantum information science for which cavity QED offers unique advantages, including the creation of quantum networks [2]. The primary technical challenge on the road toward such scientific goals is the need to trap and localize atoms within a cavity in a setting suitable for strong coupling. Two separate experiments in our group have achieved significant milestones in this quest, namely the real-time trapping and tracking of single atoms in cavity QED [3-5]. In one experiment, an atom is trapped by an auxiliary field that functions as a far-detuned dipole-force trap (FORT) [3,4], with trap lifetime 3s, which should be compared to the nanosecond time scale for internal dynamics of the atom-cavity system. In a second experiment, we rely upon light forces at the single-photon level to trap a single atom within the cavity mode [5]. As illustrated by the movies available at http://www.its.caltech.edu/ qoptics/atomorbits/, these reconstructions reveal single atoms bound in orbit by the mechanical forces associated with single photons, and realize a new form of microscopy. Over the duration of the observation, the sensitivity is near the standard quantum limit for sensing the motion of a Cesium atom. This work is supported by the NSF, by the Caltech MURI for Quantum Networks administered by the ARO, and by the ONR. 1. For a review, see contributions in the Special Issue of Physica Scripta T76 (1998). 2. J. I. Cirac, S. J. van Enk, P. Zoller, H. J. Kimble, and H. Mabuchi, Physica Scripta T76, 223 (1998). 3. J. Ye, D. W. Vernooy, and H. J

  2. First-Order Quantum Phase Transition for Dicke Model Induced by Atom-Atom Interaction

    Science.gov (United States)

    Zhao, Xiu-Qin; Liu, Ni; Liang, Jiu-Qing

    2017-05-01

    In this article, we use the spin coherent state transformation and the ground state variational method to theoretically calculate the ground function. In order to consider the influence of the atom-atom interaction on the extended Dicke model’s ground state properties, the mean photon number, the scaled atomic population and the average ground energy are displayed. Using the self-consistent field theory to solve the atom-atom interaction, we discover the system undergoes a first-order quantum phase transition from the normal phase to the superradiant phase, but a famous Dicke-type second-order quantum phase transition without the atom-atom interaction. Meanwhile, the atom-atom interaction makes the phase transition point shift to the lower atom-photon collective coupling strength. Supported by the National Natural Science Foundation of China under Grant Nos. 11275118, 11404198, 91430109, 61505100, 51502189, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (STIP) under Grant No. 2014102, and the Launch of the Scientific Research of Shanxi University under Grant No. 011151801004, and the National Fundamental Fund of Personnel Training under Grant No. J1103210. The Natural Science Foundation of Shanxi Province under Grant No. 2015011008

  3. A Quantum Network with Atoms and Photons

    Science.gov (United States)

    2016-09-30

    be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade...stored. The incipient quantum repeater network development is based on an architecture where nodes are entangled with their nearest neighbors through...unlimited iii 5.2.9 Spontaneous Parametric Down conversion (SPDC) and Up Conversion 21 5.3 Teleportation Implementation 22 5.4 Entanglement and

  4. Signatures of a quantum diffusion limited hydrogen atom tunneling reaction.

    Science.gov (United States)

    Balabanoff, Morgan E; Ruzi, Mahmut; Anderson, David T

    2017-12-20

    We are studying the details of hydrogen atom (H atom) quantum diffusion in highly enriched parahydrogen (pH 2 ) quantum solids doped with chemical species in an effort to better understand H atom transport and reactivity under these conditions. In this work we present kinetic studies of the 193 nm photo-induced chemistry of methanol (CH 3 OH) isolated in solid pH 2 . Short-term irradiation of CH 3 OH at 1.8 K readily produces CH 2 O and CO which we detect using FTIR spectroscopy. The in situ photochemistry also produces CH 3 O and H atoms which we can infer from the post-photolysis reaction kinetics that display significant CH 2 OH growth. The CH 2 OH growth kinetics indicate at least three separate tunneling reactions contribute; (i) reactions of photoproduced CH 3 O with the pH 2 host, (ii) H atom reactions with the CH 2 O photofragment, and (iii) long-range migration of H atoms and reaction with CH 3 OH. We assign the rapid CH 2 OH growth to the following CH 3 O + H 2 → CH 3 OH + H → CH 2 OH + H 2 two-step sequential tunneling mechanism by conducting analogous kinetic measurements using deuterated methanol (CD 3 OD). By performing photolysis experiments at 1.8 and 4.3 K, we show the post-photolysis reaction kinetics change qualitatively over this small temperature range. We use this qualitative change in the reaction kinetics with temperature to identify reactions that are quantum diffusion limited. While these results are specific to the conditions that exist in pH 2 quantum solids, they have direct implications on the analogous low temperature H atom tunneling reactions that occur on metal surfaces and on interstellar grains.

  5. Quantum kinetic theory of trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2000-01-01

    We pesent a general framework in which we can accurately describe the non-equilibrium of trapped atomic gases. This is achieved by deriving a single Fokker-Planck equation for the gas. In this way we are able to discuss not only the dynamics of an interacting gas above and below the critical

  6. Nanoscale magnetic atom chips for quantum simulation

    NARCIS (Netherlands)

    La Rooij, A.L.

    2017-01-01

    This thesis consists of five chapters that describe the different things that I have done in the past few years which all concern my effort to create lattices of ultracold gaseous atoms at length-scales of approximately 100 nano-meters (a millionth of a decimeter, or 200 times smaller than the

  7. Quantum Simulation of a 2D Quasicrystal with Cold Atoms

    Directory of Open Access Journals (Sweden)

    Nicolas Macé

    2016-09-01

    Full Text Available We describe a way to obtain a two-dimensional quasiperiodic tiling with eight-fold symmetry using cold atoms. One can obtain a series of such optical tilings, related by scale transformations, for a series of specific values of the chemical potential of the atoms. A theoretical model for the optical system is described and compared with that of the well-known cut-and-project method for the Ammann–Beenker tiling. The relation between the two tilings is discussed. This type of cold atom structure should allow the simulation of several important lattice models for interacting quantum particles and spins in quasicrystals.

  8. Quantum theory of cold bosonic atoms in optical lattices

    NARCIS (Netherlands)

    Tilahun, T.; Duine, R.A.; MacDonald, A.H.

    2011-01-01

    Ultracold atoms in optical lattices undergo a quantum phase transition from a superfluid to a Mott insulator as the lattice potential depth is increased. We describe an approximate theory of interacting bosons in optical lattices which provides a qualitative description of both superfluid and

  9. Simulation and understanding of atomic and molecular quantum crystals

    Science.gov (United States)

    Cazorla, Claudio; Boronat, Jordi

    2017-07-01

    Quantum crystals abound in the whole range of solid-state species. Below a certain threshold temperature the physical behavior of rare gases (He 4 and Ne), molecular solids (H2 and CH4 ), and some ionic (LiH), covalent (graphite), and metallic (Li) crystals can be explained only in terms of quantum nuclear effects (QNE). A detailed comprehension of the nature of quantum solids is critical for achieving progress in a number of fundamental and applied scientific fields such as planetary sciences, hydrogen storage, nuclear energy, quantum computing, and nanoelectronics. This review describes the current physical understanding of quantum crystals formed by atoms and small molecules, as well as the wide palette of simulation techniques that are used to investigate them. Relevant aspects in these materials such as phase transformations, structural properties, elasticity, crystalline defects, and the effects of reduced dimensionality are discussed thoroughly. An introduction to quantum Monte Carlo techniques, which in the present context are the simulation methods of choice, and other quantum simulation approaches (e.g., path-integral molecular dynamics and quantum thermal baths) is provided. The overarching objective of this article is twofold: first, to clarify in which crystals and physical situations the disregard of QNE may incur in important bias and erroneous interpretations. And second, to promote the study and appreciation of QNE, a topic that traditionally has been treated in the context of condensed matter physics, within the broad and interdisciplinary areas of materials science.

  10. Multipartite quantum correlations among atoms in QED cavities

    Science.gov (United States)

    Batle, J.; Farouk, A.; Tarawneh, O.; Abdalla, S.

    2018-02-01

    We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

  11. Quantum coin tossing and bit-string generation in the presence of noise

    OpenAIRE

    Barrett, Jonathan; Massar, Serge

    2003-01-01

    We discuss the security implications of noise for quantum coin tossing protocols. We find that if quantum error correction can be used, so that noise levels can be made arbitrarily small, then reasonable security conditions for coin tossing can be framed so that results from the noiseless case will continue to hold. If, however, error correction is not available (as is the case with present day technology), and significant noise is present, then tossing a single coin becomes problematic. In t...

  12. The quantum beat principles and applications of atomic clocks

    CERN Document Server

    Major, F

    2007-01-01

    This work attempts to convey a broad understanding of the physical principles underlying the workings of these quantum-based atomic clocks, with introductory chapters placing them in context with the early development of mechanical clocks and the introduction of electronic time-keeping as embodied in the quartz-controlled clocks. While the book makes no pretense at being a history of atomic clocks, it nevertheless takes a historical perspective in its treatment of the subject. Intended for nonspecialists with some knowledge of physics or engineering, The Quantum Beat covers a wide range of salient topics relevant to atomic clocks, treated in a broad intuitive manner with a minimum of mathematical formalism. Detailed descriptions are given of the design principles of the rubidium, cesium, hydrogen maser, and mercury ion standards; the revolutionary changes that the advent of the laser has made possible, such as laser cooling, optical pumping, the formation of "optical molasses," and the cesium "fountain" stand...

  13. Single-atom based coherent quantum interference device structure.

    Science.gov (United States)

    Naydenov, Borislav; Rungger, Ivan; Mantega, Mauro; Sanvito, Stefano; Boland, John J

    2015-05-13

    We describe the fabrication, operation principles, and simulation of a coherent single-atom quantum interference device (QID) structure on Si(100) controlled by the properties of single atoms. The energy and spatial distribution of the wave functions associated with the device are visualized by scanning tunneling spectroscopy and the amplitude and phase of the evanescent wave functions that couple into the quantum well states are directly measured, including the action of an electrostatic gate. Density functional theory simulations were employed to simulate the electronic structure of the device structure, which is in excellent agreement with the measurements. Simulations of device transmission demonstrate that our coherent single-atom QID can have ON-OFF ratios in excess of 10(3) with potentially minimal power dissipation.

  14. Quantum dot semiconductor optical amplifier: role of second excited state on ultrahigh bit-rate signal processing.

    Science.gov (United States)

    Izadyar, Seyed Mohsen; Razaghi, Mohammad; Hassanzadeh, Abdollah

    2017-04-20

    In this paper, a theoretical model for a quantum dot semiconductor optical amplifier (QDSOA) is proposed. The dynamics of carriers in ground, excited, and continuum states and wetting layer are considered in this model. The effects of the second excited state (ES2) inclusion are investigated for the first time, to the best of our knowledge, in the proposed QDSOA model. Moreover, the inhomogeneous broadening effect due to size distribution of dots, and the homogeneous broadening effect of a single dot in the gain spectrum by grouping of dots based on their optical resonant frequency, are included in the model. Furthermore, grouping of photon modes is considered in the model. It is shown that improvement of QDSOA performance is possible by considering ES2 in rate equations. Gain saturation in different injection currents is obtained for various square-shaped pulse train bit-rates. It is shown that carriers' relaxation time plays an important role in signal amplification and processing of QDSOA. The results illustrate that QDSOA can be used for high bit-rate signal processing devices (up to 450 Gbps) with negligible wave distortion and fast gain recovery.

  15. Quantum Spin-Ice and Dimer Models with Rydberg Atoms

    Directory of Open Access Journals (Sweden)

    A. W. Glaetzle

    2014-11-01

    Full Text Available Quantum spin-ice represents a paradigmatic example of how the physics of frustrated magnets is related to gauge theories. In the present work, we address the problem of approximately realizing quantum spin ice in two dimensions with cold atoms in optical lattices. The relevant interactions are obtained by weakly laser-admixing Rydberg states to the atomic ground-states, exploiting the strong angular dependence of van der Waals interactions between Rydberg p states together with the possibility of designing steplike potentials. This allows us to implement Abelian gauge theories in a series of geometries, which could be demonstrated within state-of-the-art atomic Rydberg experiments. We numerically analyze the family of resulting microscopic Hamiltonians and find that they exhibit both classical and quantum order by disorder, the latter yielding a quantum plaquette valence bond solid. We also present strategies to implement Abelian gauge theories using both s- and p-Rydberg states in exotic geometries, e.g., on a 4–8 lattice.

  16. Quantum Spin-Ice and Dimer Models with Rydberg Atoms

    Science.gov (United States)

    Glaetzle, A. W.; Dalmonte, M.; Nath, R.; Rousochatzakis, I.; Moessner, R.; Zoller, P.

    2014-10-01

    Quantum spin-ice represents a paradigmatic example of how the physics of frustrated magnets is related to gauge theories. In the present work, we address the problem of approximately realizing quantum spin ice in two dimensions with cold atoms in optical lattices. The relevant interactions are obtained by weakly laser-admixing Rydberg states to the atomic ground-states, exploiting the strong angular dependence of van der Waals interactions between Rydberg p states together with the possibility of designing steplike potentials. This allows us to implement Abelian gauge theories in a series of geometries, which could be demonstrated within state-of-the-art atomic Rydberg experiments. We numerically analyze the family of resulting microscopic Hamiltonians and find that they exhibit both classical and quantum order by disorder, the latter yielding a quantum plaquette valence bond solid. We also present strategies to implement Abelian gauge theories using both s - and p -Rydberg states in exotic geometries, e.g., on a 4-8 lattice.

  17. Polarization states encoded by phase modulation for high bit rate quantum key distribution

    Science.gov (United States)

    Liu, Xiaobao; Tang, Zhilie; Liao, Changjun; Lu, Yiqun; Zhao, Feng; Liu, Songhao

    2006-10-01

    We present implementation of quantum cryptography with polarization code by wave-guide type phase modulator. At four different low input voltages of the phase modulator, coder encodes pulses into four different polarization states, 45°, 135° linearly polarized or right, left circle polarized, while the decoder serves as the complementary polarizers.

  18. Estimation of atomic interaction parameters by quantum measurements

    DEFF Research Database (Denmark)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    Quantum systems, ranging from atomic systems to field modes and mechanical devices are useful precision probes for a variety of physical properties and phenomena. Measurements by which we extract information about the evolution of single quantum systems yield random results and cause a back actio...... strategies, we address the Fisher information and the Cramér-Rao sensitivity bound. We investigate monitoring by photon counting, homodyne detection and frequent projective measurements respectively, and exemplify by Rabi frequency estimation in a driven two-level system....

  19. Certified quantum non-demolition measurement of atomic spins

    Science.gov (United States)

    Sewell, Robert; Napolitano, Mario; Behbood, Naeimeh; Colangelo, Giorgio; Martin Ciurana, Ferran; Mitchell, Morgan

    2014-05-01

    We report certified quantum non-demolition (QND) measurement of atomic spins via paramagnetic Faraday rotation, recently used to demonstrate spin squeezing in an optical magnetometer [Phys. Rev. Lett. 109, 253605 (2012)]. We apply rigorous criteria, originally developed for continuous variable experiments in optics [Nature 396, 537 (1998)] and which we have extended to describe measurements of material systems [New J. Phys. 14, 085021 (2012)], to distinguish QND from similar non-classical measurements. We observe quantum state preparation (QSP) and information-damage trade-off (IDT) beyond their classical limits by seven and twelve standard deviations, respectively [Nat. Phot. 7, 517 (2013)].

  20. Single-atom gating and magnetic interactions in quantum corrals

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Anh T.; Kim, Eugene H.; Ulloa, Sergio E.

    2017-04-01

    Single-atom gating, achieved by manipulation of adatoms on a surface, has been shown in experiments to allow precise control over superposition of electronic states in quantum corrals. Using a Green's function approach, we demonstrate theoretically that such atom gating can also be used to control the coupling between magnetic degrees of freedom in these systems. Atomic gating enables control not only on the direct interaction between magnetic adatoms, but also over superpositions of many-body states which can then control long distance interactions. We illustrate this effect by considering the competition between direct exchange between magnetic impurities and the Kondo screening mediated by the host electrons, and how this is affected by gating. These results suggest that both magnetic and nonmagnetic single-atom gating may be used to investigate magnetic impurity systems with tailored interactions, and may allow the control of entanglement of different spin states.

  1. Novel Quantum Effects in Light Scattering from Cold Trapped Atoms

    Science.gov (United States)

    Orlowski, A.; Gajda, M.; Krekora, P.; Glauber, R. J.; Mostowski, J.

    Both far off-resonance and resonant scattering of light from single atoms trapped by 3D harmonic potentials has thoroughly been studied. Novel effects are predicted for different physical regimes. We have shown that dynamics of the atomic center-of-mass strongly influences the scattering cross section. Possibility of using spectrum of the scattered light in far-off-resonance regime to nondestructively measure the temperature of ultracold atoms is advocated: off-resonance scattering can be used as an `optical thermometer'. The realistic Compton-like regime in resonant scattering has been investigated in detail. Another interesting quantum effect in resonant regime, which has not been discussed here due to the lack of space, is the time resolved scattering, showing up when the atom can remain in the excited state long enough to make many trips back and forth in the trap before emitting a photon. The possibility of the experimental observation of the predicted effects is now being scrutinized.

  2. Tartarus: A relativistic Green's function quantum average atom code

    Science.gov (United States)

    Gill, N. M.; Starrett, C. E.

    2017-09-01

    A relativistic Green's Function quantum average atom model is implemented in the Tartarus code for the calculation of equation of state data in dense plasmas. We first present the relativistic extension of the quantum Green's Function average atom model described by Starrett [1]. The Green's Function approach addresses the numerical challenges arising from resonances in the continuum density of states without the need for resonance tracking algorithms or adaptive meshes, though there are still numerical challenges inherent to this algorithm. We discuss how these challenges are addressed in the Tartarus algorithm. The outputs of the calculation are shown in comparison to PIMC/DFT-MD simulations of the Principal Shock Hugoniot in Silicon. We also present the calculation of the Hugoniot for Silver coming from both the relativistic and nonrelativistic modes of the Tartarus code.

  3. In situ magnetometry for experiments with atomic quantum gases

    Science.gov (United States)

    Krinner, Ludwig; Stewart, Michael; Pazmiño, Arturo; Schneble, Dominik

    2018-01-01

    Precise control of magnetic fields is a frequent challenge encountered in experiments with atomic quantum gases. Here we present a simple method for performing in situ monitoring of magnetic fields that can readily be implemented in any quantum-gas apparatus in which a dedicated field-stabilization approach is not feasible. The method, which works by sampling several Rabi resonances between magnetically field sensitive internal states that are not otherwise used in a given experiment, can be integrated with standard measurement sequences at arbitrary fields. For a condensate of 87Rb atoms, we demonstrate the reconstruction of Gauss-level bias fields with an accuracy of tens of microgauss and with millisecond time resolution. We test the performance of the method using measurements of slow resonant Rabi oscillations on a magnetic-field sensitive transition and give an example for its use in experiments with state-selective optical potentials.

  4. Imaging transport of ultracold atoms through a quantum wire

    Science.gov (United States)

    Hausler, Samuel; Lebrat, Martin; Husmann, Dominik; Corman, Laura; Krinner, Sebastian; Nakajima, Shuta; Brantut, Jean-Philippe; Esslinger, Tilman

    2017-04-01

    We report on a scanning gate technique to experimentally image the transport of fermionic lithium atoms through a quantum wire, similar to what is applied to solid state devices. The gate is created with a tightly focused repulsive laser beam whose aberrations are holographically corrected. By scanning its position over the wire and measuring the subsequent variations of conductance, we spatially map the transport at a resolution close to the transverse wave function of atoms inside the channel. The gate extends on the scale of the Fermi wavelength making it sensitive to quantum tunneling. Furthermore, our knowledge of the optical potential allows a direct comparison with an analytical and a numerical model for non-interacting particles. The flexibility offered by programmable holograms make it relatively simple to imprint more complex structures, such as a one-dimensional lattice inside the wire. This opens the path to study metal-insulator physics with strong attractive interactions.

  5. Quantum Control of Open Systems and Dense Atomic Ensembles

    Science.gov (United States)

    DiLoreto, Christopher

    Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated

  6. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures

    Science.gov (United States)

    2015-03-30

    Final 3. DATES COVERED (From - To) 14 Aug 13 to 13 Feb 15 4. TITLE AND SUBTITLE Nano Electronics on Atomically Controlled van der Waals ...dimensional (2D) van der Waals (vdW) materials for the realization of novel quantum electronic states. We employed molecular beam epitaxy (MBE) combined with...junctions that allowed to study transport across the van der Waals interface between the conductor and superconductor. Our observation of gate tunable

  7. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    Energy Technology Data Exchange (ETDEWEB)

    Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  8. Extending the lifetime of a quantum bit with error correction in superconducting circuits.

    Science.gov (United States)

    Ofek, Nissim; Petrenko, Andrei; Heeres, Reinier; Reinhold, Philip; Leghtas, Zaki; Vlastakis, Brian; Liu, Yehan; Frunzio, Luigi; Girvin, S M; Jiang, L; Mirrahimi, Mazyar; Devoret, M H; Schoelkopf, R J

    2016-08-25

    Quantum error correction (QEC) can overcome the errors experienced by qubits and is therefore an essential component of a future quantum computer. To implement QEC, a qubit is redundantly encoded in a higher-dimensional space using quantum states with carefully tailored symmetry properties. Projective measurements of these parity-type observables provide error syndrome information, with which errors can be corrected via simple operations. The 'break-even' point of QEC--at which the lifetime of a qubit exceeds the lifetime of the constituents of the system--has so far remained out of reach. Although previous works have demonstrated elements of QEC, they primarily illustrate the signatures or scaling properties of QEC codes rather than test the capacity of the system to preserve a qubit over time. Here we demonstrate a QEC system that reaches the break-even point by suppressing the natural errors due to energy loss for a qubit logically encoded in superpositions of Schrödinger-cat states of a superconducting resonator. We implement a full QEC protocol by using real-time feedback to encode, monitor naturally occurring errors, decode and correct. As measured by full process tomography, without any post-selection, the corrected qubit lifetime is 320 microseconds, which is longer than the lifetime of any of the parts of the system: 20 times longer than the lifetime of the transmon, about 2.2 times longer than the lifetime of an uncorrected logical encoding and about 1.1 longer than the lifetime of the best physical qubit (the |0〉f and |1〉f Fock states of the resonator). Our results illustrate the benefit of using hardware-efficient qubit encodings rather than traditional QEC schemes. Furthermore, they advance the field of experimental error correction from confirming basic concepts to exploring the metrics that drive system performance and the challenges in realizing a fault-tolerant system.

  9. Quantum entanglement in two-electron atomic models

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, D; Plastino, A R; Dehesa, J S [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, Granada E-18071 (Spain); Koga, T, E-mail: arplastino@ugr.e [Applied Chemistry Research Unit, Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan)

    2010-07-09

    We explore the main entanglement properties exhibited by the eigenfunctions of two exactly soluble two-electron models, the Crandall atom and the Hooke atom, and compare them with the entanglement features of helium-like systems. We compute the amount of entanglement associated with the wavefunctions corresponding to the fundamental and first few excited states of these models. We investigate the dependence of the entanglement on the parameters of the models and on the quantum numbers of the eigenstates. It is found that the amount of entanglement of the system tends to increase with energy in both models. In addition, we study the entanglement of a few states of helium-like systems, which we compute using high-quality Kinoshita-like eigenfunctions. The dependence of the entanglement of helium-like atoms on the nuclear charge and on energy is found to be consistent with the trends observed in the previous two model systems.

  10. Niels Bohr and the quantum atom the Bohr model of atomic structure 1913-1925

    CERN Document Server

    Kragh, Helge

    2012-01-01

    Niels Bohr and the Quantum Atom is the first book that focuses in detail on the birth and development of Bohr's atomic theory and gives a comprehensive picture of it. At the same time it offers new insight into Bohr's peculiar way of thinking, what Einstein once called his 'unique instinct and tact'. Contrary to most other accounts of the Bohr atom, the book presents it in a broader perspective which includes the reception among other scientists and the criticism launched against it by scientists of a more conservative inclination. Moreover, it discusses the theory as Bohr originally conceived it, namely, as an ambitious theory covering the structure of atoms as well as molecules. By discussing the theory in its entirety it becomes possible to understand why it developed as it did and thereby to use it as an example of the dynamics of scientific theories.

  11. Quantum Entanglement and Correlation of Two Qubit Atoms Interacting with the Coherent State Optical Field

    Science.gov (United States)

    Liu, Tang-Kun; Tao, Yu; Shan, Chuan-Jia; Liu, Ji-bing

    2017-10-01

    Using the three criterions of the concurrence, the negative eigenvalue and the geometric quantum discord, we investigate the quantum entanglement and quantum correlation dynamics of two two-level atoms interacting with the coherent state optical field. We discuss the influence of different photon number of the mean square fluctuations on the temporal evolution of the concurrence, the negative eigenvalue and the geometric quantum discord between two atoms when the two atoms are initially in specific three states. The results show that different photon number of the mean square fluctuations can lead to different effects of quantum entanglement and quantum correlation dynamics.

  12. A Programmable Five Qubit Quantum Computer Using Trapped Atomic Ions

    Science.gov (United States)

    Debnath, Shantanu

    Quantum computers can solve certain problems more efficiently compared to conventional classical methods. In the endeavor to build a quantum computer, several competing platforms have emerged that can implement certain quantum algorithms using a few qubits. However, the demonstrations so far have been done usually by tailoring the hardware to meet the requirements of a particular algorithm implemented for a limited number of instances. Although such proof of principal implementations are important to verify the working of algorithms on a physical system, they further need to have the potential to serve as a general purpose quantum computer allowing the flexibility required for running multiple algorithms and be scaled up to host more qubits. Here we demonstrate a small programmable quantum computer based on five trapped atomic ions each of which serves as a qubit. By optically resolving each ion we can individually address them in order to perform a complete set of single-qubit and fully connected two-qubit quantum gates and alsoperform efficient individual qubit measurements. We implement a computation architecture that accepts an algorithm from a user interface in the form of a standard logic gate sequence and decomposes it into fundamental quantum operations that are native to the hardware using a set of compilation instructions that are defined within the software. These operations are then effected through a pattern of laser pulses that perform coherent rotations on targeted qubits in the chain. The architecture implemented in the experiment therefore gives us unprecedented flexibility in the programming of any quantum algorithm while staying blind to the underlying hardware. As a demonstration we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms on the five-qubit processor and achieve average success rates of 95 and 90 percent, respectively. We also implement a five-qubit coherent quantum Fourier transform and examine its performance in the period

  13. Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory

    Science.gov (United States)

    Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-09-01

    Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.

  14. Revealing Quantum Statistics with a Pair of Distant Atoms

    Science.gov (United States)

    Roos, C. F.; Alberti, A.; Meschede, D.; Hauke, P.; Häffner, H.

    2017-10-01

    Quantum statistics have a profound impact on the properties of systems composed of identical particles. At the most elementary level, Bose and Fermi quantum statistics differ in the exchange phase, either 0 or π , which the wave function acquires when two identical particles are exchanged. In this Letter, we demonstrate that the exchange phase can be directly probed with a pair of massive particles by physically exchanging their positions. We present two protocols where the particles always remain spatially well separated, thus ensuring that the exchange contribution to their interaction energy is negligible and that the detected signal can only be attributed to the exchange symmetry of the wave function. We discuss possible implementations with a pair of trapped atoms or ions.

  15. Atoms, Molecules and Photons An Introduction to Atomic-, Molecular- and Quantum Physics

    CERN Document Server

    Demtröder, Wolfgang

    2010-01-01

    This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations. Completely revised new edition with new sections covering all actual developments, like x-ray optics, ion-cyclotron-resonance spectrometer, attosecond lasers, ultraprecission frequency measurement ...

  16. Quantum Quench in an Atomic One-Dimensional Ising Chain

    Science.gov (United States)

    Meinert, F.; Mark, M. J.; Kirilov, E.; Lauber, K.; Weinmann, P.; Daley, A. J.; Nägerl, H.-C.

    2013-08-01

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  17. Atomic Beam Correlations and the Quantum State of the Micromaser

    CERN Document Server

    Elmfors, P; Skagerstam, B S; Elmfors, Per; Lautrup, Benny; Skagerstam, Bo Sture

    1997-01-01

    Correlation measurements on atoms having passed through a micromaser can be used to infer properties of the quantum state of the radiation field in the cavity. Long- (or short)-range correlations in time are associated with super- (or sub)-Poissonian photon statistics. In some realistic experimental situations the long-range correlations may reach a magnitude of many times the decay time of the cavity. Our assertions are verified by comparing theoretical calculations with a high-precision Monte Carlo simulation of the micromaser system.

  18. Scalable quantum computer architecture with coupled donor-quantum dot qubits

    Science.gov (United States)

    Schenkel, Thomas; Lo, Cheuk Chi; Weis, Christoph; Lyon, Stephen; Tyryshkin, Alexei; Bokor, Jeffrey

    2014-08-26

    A quantum bit computing architecture includes a plurality of single spin memory donor atoms embedded in a semiconductor layer, a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, wherein a first voltage applied across at least one pair of the aligned quantum dot and donor atom controls a donor-quantum dot coupling. A method of performing quantum computing in a scalable architecture quantum computing apparatus includes arranging a pattern of single spin memory donor atoms in a semiconductor layer, forming a plurality of quantum dots arranged with the semiconductor layer and aligned with the donor atoms, applying a first voltage across at least one aligned pair of a quantum dot and donor atom to control a donor-quantum dot coupling, and applying a second voltage between one or more quantum dots to control a Heisenberg exchange J coupling between quantum dots and to cause transport of a single spin polarized electron between quantum dots.

  19. Sequential double Auger decay in atoms: A quantum informatic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Parida, S. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302 (India); Chandra, N. [Department of Physics and Meteorology, Indian Institute of Technology, Kharagpur 721302 (India)], E-mail: ncphy@phy.iitkgp.ernet.in

    2009-05-04

    We theoretically show that the process of inner-shell photoionization in an atom A, followed by the spontaneous sequential emission of two Auger electrons, produces various kinds of spin-entangled states of three flying electronic qubits. All properties of these states are completely pre-determined by the total spin quantum numbers of the electronic states of four atomic species (i.e., A, A{sup +{sup *}}, A{sup 2+{sup *}}, A{sup 3+}) participating in this process in the Russell-Saunders coupling. These tripartite states are readily characterized experimentally by measuring only energies of the three emitted electrons, without requiring any entanglement witness or other such protocols.

  20. Cavity Quantum Electrodynamics of Continuously Monitored Bose-Condensed Atoms

    Directory of Open Access Journals (Sweden)

    Mark D. Lee

    2015-09-01

    Full Text Available We study cavity quantum electrodynamics of Bose-condensed atoms that are subjected to continuous monitoring of the light leaking out of the cavity. Due to a given detection record of each stochastic realization, individual runs spontaneously break the symmetry of the spatial profile of the atom cloud and this symmetry can be restored by considering ensemble averages over many realizations. We show that the cavity optomechanical excitations of the condensate can be engineered to target specific collective modes. This is achieved by exploiting the spatial structure and symmetries of the collective modes and light fields. The cavity fields can be utilized both for strong driving of the collective modes and for their measurement. In the weak excitation limit the condensate–cavity system may be employed as a sensitive phonon detector which operates by counting photons outside the cavity that have been selectively scattered by desired phonons.

  1. The quantum beat the physical principles of atomic clocks

    CERN Document Server

    Major, F G

    1998-01-01

    One of the indicators of the level of technological development of a society has been, throughout history, the precision of clocks it was able to build. This book examines the physical principles underlying the workings of clocks--from the earliest mechanical clocks to the present-day sophisticated clocks based on the properties of individual atoms. Intended for non-specialists with some knowledge of physics or engineering,the book treats the material in a broad intuitive manner, with a minimum of mathematical formalism. The presentation covers a broad range of salient topics relevant to the measurement of frequency and time intervals. The main focus is on electronic time-keeping: clocks based on quartz crystal oscillators and, at greater length, atomic clocks based on quantum resonance in rubidium, cesium, and hydrogen atoms, and, more recently, mercury ions. The book treats the revolutionary changes that the optical laser has wrought on atomic standards through laser cooling and optical pumping, and it disc...

  2. Progress towards realization of quantum networks using atomic ensembles

    Science.gov (United States)

    Matthew, Eisaman

    2005-05-01

    We report on our progress towards generation, storage and communication of single photon states using atomic memory. Specifically, we describe proof-of principle experiments demonstrating generation of single photon pulses of light with controllable propagation direction, timing, and pulse shapes [1]. The approach is based on preparation of an atomic ensemble in a state with a desired number of atomic spin excitations, which is later converted into a photon pulse by exploiting long-lived coherent memory for photon states and electromagnetically induced transparency (EIT). We describe our efforts to optimize the performance of such a novel single photon source. Specifically we propose and demonstrate a novel propagation geometry that optimizes mode matching and signal to noise ratio. We discuss our progress towards transmitting single photon states between two atomic memory nodes connected by photonic channels and outline the prospects for long-distance quantum communication using these techniques. [1] M. D. Eisaman, L. Childress, A. Andr'e, F. Massou, A. S. Zibrov, and M. D. Lukin, Phys. Rev. Lett. 93, 233602 (2004).

  3. Ultracold atoms in optical lattices simulating quantum many-body systems

    CERN Document Server

    Lewenstein, Maciej; Ahufinger, Verònica

    2012-01-01

    Quantum computers, though not yet available on the market, will revolutionize the future of information processing. Quantum computers for special purposes like quantum simulators are already within reach. The physics of ultracold atoms, ions and molecules offer unprecedented possibilities of control of quantum many body systems and novel possibilities of applications to quantum information processing and quantum metrology. Particularly fascinating is the possibility of usingultracold atoms in lattices to simulate condensed matter or even high energy physics.This book provides a complete and co

  4. Quantum manipulation and enhancement of deterministic entanglement between atomic ensemble and light via coherent feedback control

    Science.gov (United States)

    Yan, Zhihui; Jia, Xiaojun

    2017-06-01

    A quantum mechanical model of the non-measurement based coherent feedback control (CFC) is applied to deterministic atom-light entanglement with imperfect retrieval efficiency, which is generated based on Raman process. We investigate the influence of different experimental parameters on entanglement property of CFC Raman system. By tailoring the transmissivity of coherent feedback controller, it is possible to manipulate the atom-light entanglement. Particularly, we show that CFC allows atom-light entanglement enhancement under appropriate operating conditions. Our work can provide entanglement source between atomic ensemble and light of high quality for high-fidelity quantum networks and quantum computation based on atomic ensemble.

  5. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot.

    Science.gov (United States)

    Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo

    2015-07-08

    We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

  6. A One-Dimensional Quantum Interface between a Few Atoms and Weak Light

    DEFF Research Database (Denmark)

    Béguin, Jean-Baptiste Sylvain

    Quantum interfaces between light and the collective degrees of freedom of an ensemble of identical atoms have been proposed as a valuable and promising alternative to cavity quantum electrodynamics enhanced interaction with single particles. Many features of the quantum world (e. g. multipartite...... entanglement, squeezed states), which are central to the future developments of Quantum Information Science and Metrology, can be explored with mesoscopic collective states of atoms. An efficient quantum interface needs a high optical depth for the atomic ensemble and a measurement sensitivity limited by both......, we propose an alternative to free space atomic ensembles to prepare quantum collective states. We build and explore a new interface based on the degrees of freedom between the evanescent fields of an optical nanofiber and fewer atoms Nat ∼ 10^3. We experimentally show an improvement of more than 2...

  7. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons

    Science.gov (United States)

    Wolters, Janik; Buser, Gianni; Horsley, Andrew; Béguin, Lucas; Jöckel, Andreas; Jahn, Jan-Philipp; Warburton, Richard J.; Treutlein, Philipp

    2017-08-01

    Quantum memories matched to single photon sources will form an important cornerstone of future quantum network technology. We demonstrate such a memory in warm Rb vapor with on-demand storage and retrieval, based on electromagnetically induced transparency. With an acceptance bandwidth of δ f =0.66 GHz , the memory is suitable for single photons emitted by semiconductor quantum dots. In this regime, vapor cell memories offer an excellent compromise between storage efficiency, storage time, noise level, and experimental complexity, and atomic collisions have negligible influence on the optical coherences. Operation of the memory is demonstrated using attenuated laser pulses on the single photon level. For a 50 ns storage time, we measure ηe2 e 50 ns=3.4 (3 )% end-to-end efficiency of the fiber-coupled memory, with a total intrinsic efficiency ηint=17 (3 )%. Straightforward technological improvements can boost the end-to-end-efficiency to ηe 2 e≈35 %; beyond that, increasing the optical depth and exploiting the Zeeman substructure of the atoms will allow such a memory to approach near unity efficiency. In the present memory, the unconditional read-out noise level of 9 ×10-3 photons is dominated by atomic fluorescence, and for input pulses containing on average μ1=0.27 (4 ) photons, the signal to noise level would be unity.

  8. Open quantum spin systems in semiconductor quantum dots and atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Schwager, Heike

    2012-07-04

    In this Thesis, we study open quantum spin systems from different perspectives. The first part is motivated by technological challenges of quantum computation. An important building block for quantum computation and quantum communication networks is an interface between material qubits for storage and data processing and travelling photonic qubits for communication. We propose the realisation of a quantum interface between a travelling-wave light field and the nuclear spins in a quantum dot strongly coupled to a cavity. Our scheme is robust against cavity decay as it uses the decay of the cavity to achieve the coupling between nuclear spins and the travelling-wave light fields. A prerequiste for such a quantum interface is a highly polarized ensemble of nuclear spins. High polarization of the nuclear spin ensemble is moreover highly desirable as it protects the potential electron spin qubit from decoherence. Here we present the theoretical description of an experiment in which highly asymmetric dynamic nuclear spin pumping is observed in a single self-assembled InGaAs quantum dot. The second part of this Thesis is devoted to fundamental studies of dissipative spin systems. We study general one-dimensional spin chains under dissipation and propose a scheme to realize a quantum spin system using ultracold atoms in an optical lattice in which both coherent interaction and dissipation can be engineered and controlled. This system enables the study of non-equilibrium and steady state physics of open and driven spin systems. We find, that the steady state expectation values of different spin models exhibit discontinuous behaviour at degeneracy points of the Hamiltonian in the limit of weak dissipation. This effect can be used to dissipatively probe the spectrum of the Hamiltonian. We moreover study spin models under the aspect of state preparation and show that dissipation drives certain spin models into highly entangled state. Finally, we study a spin chain with

  9. Atomic spin-chain realization of a model for quantum criticality

    NARCIS (Netherlands)

    Toskovic, R.; van den Berg, R.; Spinelli, A.; Eliens, I.S.; van den Toorn, B.; Bryant, B.; Caux, J.-S.; Otte, A.F.

    The ability to manipulate single atoms has opened up the door to constructing interesting and useful quantum structures from the ground up. On the one hand, nanoscale arrangements of magnetic atoms are at the heart of future quantum computing and spintronic devices; on the other hand, they can be

  10. A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)

    2014-12-15

    We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.

  11. Heralded quantum gates for atomic systems assisted by the scattering of photons off single emitters

    Science.gov (United States)

    Song, Guo-Zhu; Liu, Qian; Qiu, Jing; Yang, Guo-Jian; Alzahrani, Faris; Hobiny, Aatef; Deng, Fu-Guo; Zhang, Mei

    2017-12-01

    Quantum logic gates are essential in quantum information processing. Here, we propose three heralded schemes for universal quantum gates, including the controlled-NOT, Toffoli, and Fredkin gates on atomic systems, assisted by the scattering of photons off single emitters in one-dimensional waveguides. Interestingly, our schemes can turn faulty scattering processes of photons off atoms into the detection of the photon polarization. Furthermore, auxiliary atomic qubits are not needed and only one photon medium is adopted. With current technology, we discuss the feasibility of these universal quantum gates, concluding that they are feasible and scalable in solid-state quantum systems. We provide a different method for realizing universal quantum gates, and it may be useful in quantum information processing in the future.

  12. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

    KAUST Repository

    Tang, Jiang

    2011-09-18

    Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication. © 2011 Macmillan Publishers Limited. All rights reserved.

  13. Quantum annealing with ultracold atoms in a multimode optical resonator

    Science.gov (United States)

    Torggler, Valentin; Krämer, Sebastian; Ritsch, Helmut

    2017-03-01

    A dilutely filled N -site optical lattice near zero temperature within a high-Q multimode cavity can be mapped to a spin ensemble with tailorable interactions at all length scales. The effective full site to site interaction matrix can be dynamically controlled by the application of up to N (N +1 )/2 laser beams of suitable geometry, frequency, and power, which allows for the implementation of quantum annealing dynamics relying on the all-to-all effective spin coupling controllable in real time. Via an adiabatic sweep starting from a superfluid initial state one can find the lowest-energy stationary state of this system. As the cavity modes are lossy, errors can be amended and the ground state can still be reached even from a finite temperature state via ground-state cavity cooling. The physical properties of the final atomic state can be directly and almost nondestructively read off from the cavity output fields. As an example we simulate a quantum Hopfield associative memory scheme.

  14. Microwave photonics with superconducting quantum circuits

    National Research Council Canada - National Science Library

    Gu, Xiu; Kockum, Anton Frisk; Miranowicz, Adam; Liu, Yu-xi; Nori, Franco

    2017-01-01

    ... ], the last two decades have seen a greatly increased interest in using superconducting quantum circuits (SQCs), based on Josephson junctions, for implementing quantum bits — the basic units of quantum information processing. It has also been demonstrated that SQCs possess discrete energy levels and behave like atoms. For this reason, SQCs are oft...

  15. Fundamental Differences Between Application of Basic Principles of Quantum Mechanics on Atomic and Higher Levels

    OpenAIRE

    Nikulov, Alexey

    2007-01-01

    Superconductivity is macroscopic quantum phenomenon. From force of habit most physicists pay no heed to a paradoxicality of this fact. Niels Bohr considered quantum mechanics as atomic physics and the paradoxical quantum principles may be admissible on this level. But they seem quite strange on the macroscopic level. In the last years some experts, A. J. Leggett and other, attract our attention to a contradiction between quantum mechanics and macroscopic realism. In this paper I try to draw r...

  16. Hidden Markov Model of atomic quantum jump dynamics in an optically probed cavity

    DEFF Research Database (Denmark)

    Gammelmark, S.; Molmer, K.; Alt, W.

    2014-01-01

    We analyze the quantum jumps of an atom interacting with a cavity field. The strong atom- field interaction makes the cavity transmission depend on the time dependent atomic state, and we present a Hidden Markov Model description of the atomic state dynamics which is conditioned in a Bayesian......, the atomic state is determined in a Bayesian manner from the measurement data, and we present an iterative protocol, which determines both the atomic state and the model parameters. As a new element in the treatment of observed quantum systems, we employ a Bayesian approach that conditions the atomic state...... manner on the detected signal. We suggest that small variations in the observed signal may be due to spatial motion of the atom within the cavity, and we represent the atomic system by a number of hidden states to account for both the small variations and the internal state jump dynamics. In our theory...

  17. Quantum Emulation of Extreme Non-Equilibrium Phenomena with Trapped Atoms

    Science.gov (United States)

    Rajagopal, Shankari V.; Fujiwara, Kurt M.; Senaratne, Ruwan; Singh, Kevin; Geiger, Zachary A.; Weld, David M.

    2017-08-01

    Ultracold atomic physics experiments offer a nearly ideal context for the investigation of quantum systems far from equilibrium. We describe three related emerging directions of research into extreme non-equilibrium phenomena in atom traps: quantum emulation of ultrafast atom-light interactions, coherent phasonic spectroscopy in tunable quasicrystals, and realization of Floquet matter in strongly-driven lattice systems. We show that all three should enable quantum emulation in parameter regimes inaccessible in solid-state experiments, facilitating a complementary approach to open problems in non-equilibrium condensed matter.

  18. Ultrafast quantum beats of anisotropic excitons in atomically thin ReS2.

    Science.gov (United States)

    Sim, Sangwan; Lee, Doeon; Trifonov, Artur V; Kim, Taeyoung; Cha, Soonyoung; Sung, Ji Ho; Cho, Sungjun; Shim, Wooyoung; Jo, Moon-Ho; Choi, Hyunyong

    2018-01-24

    Quantum beats, periodic oscillations arising from coherent superposition states, have enabled exploration of novel coherent phenomena. Originating from strong Coulomb interactions and reduced dielectric screening, two-dimensional transition metal dichalcogenides exhibit strongly bound excitons either in a single structure or hetero-counterpart; however, quantum coherence between excitons is barely known to date. Here we observe exciton quantum beats in atomically thin ReS2 and further modulate the intensity of the quantum beats signal. Surprisingly, linearly polarized excitons behave like a coherently coupled three-level system exhibiting quantum beats, even though they exhibit anisotropic exciton orientations and optical selection rules. Theoretical studies are also provided to clarify that the observed quantum beats originate from pure quantum coherence, not from classical interference. Furthermore, we modulate on/off quantum beats only by laser polarization. This work provides an ideal laboratory toward polarization-controlled exciton quantum beats in two-dimensional materials.

  19. Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  20. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    Science.gov (United States)

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa. PMID:27922087

  1. Quantum-classical correspondence in chaotic dynamics of laser-driven atoms

    Science.gov (United States)

    Prants, S. V.

    2017-04-01

    This paper is a review article on some aspects of quantum-classical correspondence in chaotic dynamics of cold atoms interacting with a standing-wave laser field forming an optical lattice. The problem is treated from both (semi)classical and quantum points of view. In both approaches, the interaction of an atomic electic dipole with the laser field is treated quantum mechanically. Translational motion is described, at first, classically (atoms are considered to be point-like objects) and then quantum mechanically as a propagation of matter waves. Semiclassical equations of motion are shown to be chaotic in the sense of classical dynamical chaos. Point-like atoms in an absolutely deterministic and rigid optical lattice can move in a random-like manner demonstrating a chaotic walking with typical features of classical chaos. This behavior is explained by random-like ‘jumps’ of one of the atomic internal variable when atoms cross nodes of the standing wave and occurs in a specific range of the atom-field detuning. When treating atoms as matter waves, we show that they can make nonadiabatic transitions when crossing the standing-wave nodes. The point is that atomic wave packets split at each node in the same range of the atom-field detuning where the classical chaos occurs. The key point is that the squared amplitude of those semiclassical ‘jumps’ equal to the quantum Landau-Zener parameter which defines the probability of nonadiabatic transitions at the nodes. Nonadiabatic atomic wave packets are much more complicated compared to adiabatic ones and may be called chaotic in this sense. A few possible experiments to observe some manifestations of classical and quantum chaos with cold atoms in horizontal and vertical optical lattices are proposed and discussed.

  2. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.

    Science.gov (United States)

    Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2017-09-28

    It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.

  3. Clustering of Ions at Atomic-Dimensions in Quantum Plasmas

    CERN Document Server

    Shukla, P K

    2012-01-01

    By means of particle simulations of the equations of motion for ions interacting with the newly discovered Shukla-Eliasson (SE) force in a dense quantum plasma, we demonstrate that the SE force is powerful to bring ions closer at atomic dimensions. Specifically, we present simulation results on the dynamics of an ensemble of ions in the presence of the SE force without and with confining external potentials and collisions between the ions and degenerate electrons. Our particle simulations reveal that under the SE force, ions attract each other, come closer and form ionic clusters in the bath of degenerate electrons that shield the ions. Furthermore, an external confining potential produces robust ion clusters that can have cigar-like and ball-like shapes. The binding between the ions on account of the SE force may provide possibility of non-Coulombic explosions of ionic clusters for inertial confined fusion (ICF) schemes when high-energy density plasmas (density exceeding $10^{23}$ per cubic centimeters) are ...

  4. Photonic quantum state transfer between a cold atomic gas and a crystal.

    Science.gov (United States)

    Maring, Nicolas; Farrera, Pau; Kutluer, Kutlu; Mazzera, Margherita; Heinze, Georg; de Riedmatten, Hugues

    2017-11-22

    Interfacing fundamentally different quantum systems is key to building future hybrid quantum networks. Such heterogeneous networks offer capabilities superior to those of their homogeneous counterparts, as they merge the individual advantages of disparate quantum nodes in a single network architecture. However, few investigations of optical hybrid interconnections have been carried out, owing to fundamental and technological challenges such as wavelength and bandwidth matching of the interfacing photons. Here we report optical quantum interconnection of two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be transferred faithfully between a cold atomic ensemble and a rare-earth-doped crystal by means of a single photon at 1,552  nanometre telecommunication wavelength, using cascaded quantum frequency conversion. We demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred to the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85 per cent. Our results open up the prospect of optically connecting quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks.

  5. Performance analysis of quantum Diesel heat engines with a two-level atom as working substance

    Science.gov (United States)

    Huang, X. L.; Shang, Y. F.; Guo, D. Y.; Yu, Qian; Sun, Qi

    2017-07-01

    A quantum Diesel cycle, which consists of one quantum isobaric process, one quantum isochoric process and two quantum adiabatic processes, is established with a two-level atom as working substance. The parameter R in this model is defined as the ratio of the time in quantum isochoric process to the timescale for the potential width movement. The positive work condition, power output and efficiency are obtained, and the optimal performance is analyzed with different R. The effects of dissipation, the mixed state in the cycle and the results of other working substances are also discussed at the end of this analysis.

  6. The quantum measurement effect of interaction without interaction for an atomic beam

    Science.gov (United States)

    Huang, Yong-Yi

    When an atomic beam collectively and harmonically vibrates perpendicular to the wave vector of the beam, the number of atoms reaching the atomic detector will have a vibrant factor Δt / T if the measurement time interval Δt is shorter than the period T. This new quantum mechanical measurement effect for an atomic beam is called interaction without interaction: though the translational motion of the atomic beam does not interact with its collective and transverse harmonic vibration, the latter will have an effect on the measured number of atoms associated with the former. From the new measurement effect the classical harmonic vibration's period is evaluated. We give a clear physical picture and a satisfactory physical interpretation for the measurement effect based on the Copenhagen interpretation of quantum mechanics. We present an experimental proposal to verify this measurement effect for an ion beam instead of an atomic beam.

  7. Two simple systems with cold atoms: quantum chaos tests and nonequilibrium dynamics

    OpenAIRE

    Stone, Cavan; Aoud, Yassine Ait El; Yurovsky, Vladimir A; Olshanii, Maxim

    2010-01-01

    This article is an attempt to provide a link between the quantum nonequilibrium dynamics of cold gases and fifty years of progress in the lowdimensional quantum chaos. We identify two atomic systems lying on the interface: two interacting atoms in a harmonic multimode waveguide and an interacting two-component Bose-Bose mixture in a double-well potential. In particular, we study the level spacing distribution, the wavefunction statistics, the eigenstate thermalization, and the ability to ther...

  8. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    Science.gov (United States)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  9. Cooling a Single Atom in an Optical Tweezer to Its Quantum Ground State

    Directory of Open Access Journals (Sweden)

    A. M. Kaufman

    2012-11-01

    Full Text Available We report cooling of a single neutral atom to its three-dimensional vibrational ground state in an optical tweezer. After employing Raman sideband cooling for tens of milliseconds, we measure via sideband spectroscopy a three-dimensional ground-state occupation of about 90%. We further observe coherent control of the spin and motional state of the trapped atom. Our demonstration shows that an optical tweezer, formed simply by a tightly focused beam of light, creates sufficient confinement for efficient sideband cooling. This source of ground-state neutral atoms will be instrumental in numerous quantum simulation and logic applications that require a versatile platform for storing and manipulating ultracold single neutral atoms. For example, these results will improve current optical-tweezer experiments studying atom-photon coupling and Rydberg quantum logic gates, and could provide new opportunities such as rapid production of single dipolar molecules or quantum simulation in tweezer arrays.

  10. Let Students Derive, by Themselves, Two-Dimensional Atomic and Molecular Quantum Chemistry from Scratch

    Science.gov (United States)

    Ge, Yingbin

    2016-01-01

    Hands-on exercises are designed for undergraduate physical chemistry students to derive two-dimensional quantum chemistry from scratch for the H atom and H[subscript 2] molecule, both in the ground state and excited states. By reducing the mathematical complexity of the traditional quantum chemistry teaching, these exercises can be completed…

  11. Non-local correlation and quantum discord in two atoms in the non-degenerate model

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, A.-B.A., E-mail: Abdelbastm@yahoo.com

    2012-12-15

    By using geometric quantum discord (GQD) and measurement-induced nonlocality (MIN), quantum correlation is investigated for two atoms in the non-degenerate two-photon Tavis-Cummings model. It is shown that there is no asymptotic decay for MIN while asymptotic decay exists for GQD. Quantum correlations can be strengthened by introducing the dipole-dipole interaction. The evolvement period of quantum correlation gets shorter with the increase in the dipole-dipole parameter. It is found that there exists not only quantum nonlocality without entanglement but also quantum nonlocality without quantum discord. Also, the MIN and GQD are raised rather than entanglement, and also with weak initial entanglement, there are MIN and entanglement in a interval of death quantum discord. - Highlights: Black-Right-Pointing-Pointer Geometric quantum discord (GQD) and measurement induced nonlocality (MIN) are used to investigate the correlations of two two-level atoms. Black-Right-Pointing-Pointer There is no asymptotic decay for MIN while asymptotic decay exists for GQD. Black-Right-Pointing-Pointer Quantum correlations can be strengthened by introducing the dipole-dipole interaction. Black-Right-Pointing-Pointer There exists not only quantum nonlocality without entanglement but also without discord. Black-Right-Pointing-Pointer Weak initial entanglement leads to MIN and entanglement in intervals of death discord.

  12. Progress toward observation of quantum interference of currents in an Atom SQUID

    Science.gov (United States)

    Ryu, Changhyun; Samson, E. Carlo; Boshier, Malcolm

    2016-05-01

    Quantum interference of currents was first observed in a superconducting loop with two Josephson junctions, leading to the name ``SQUID'' for this device. This interference effect has been used to develop extremely sensitive magnetometers. The Atom SQUID, an analogous device based on ultracold atoms, has been developed recently to study SQUID physics in a device offering a better understanding of the underlying microscopic dynamics. Although many exciting experiments have been done with Atom SQUIDs, the quantum interference of currents has not yet been observed. In analogy with the SQUID magnetometer, it should be possible to use the quantum interference effect in an Atom SQUID to measure rotation, which may lead to the development of a sensitive gyroscope. In a previous experiment, we showed Josephson effects with an atom SQUID by observing the change from the dc Josephson regime to the ac Josephson regime by measurement of the critical atom number for this transition. Quantum interference should cause this critical atom number to vary with rotation rate. We have simulated this system with the Gross-Pitaevski Equation and found the expected oscillatory change of the critical atom number. We will present this simulation result and report the current status of our experiment to

  13. Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

    DEFF Research Database (Denmark)

    Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang

    2010-01-01

    We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from...

  14. Spin Squeezing and Entanglement with Room Temperature Atoms for Quantum Sensing and Communication

    DEFF Research Database (Denmark)

    Shen, Heng

    magnetometer at room temperature is reported. Furthermore, using spin-squeezing of atomic ensemble, the sensitivity of magnetometer is improved. Deterministic continuous variable teleportation between two distant atomic ensembles is demonstrated. The fidelity of teleportating dynamically changing sequence...... of spin states surpasses a classical benchmark, demonstrating the true quantum teleportation....

  15. Calculation of the factor of the time's relativity in quantum area for different atoms based on the `Substantial motion' theory of Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan

    2015-03-01

    Iranian Philosopher, Mulla Sadra (1571-1640) in his theory of ``Substantial motion'' emphasized that ``the universe moves in its entity'', and ``the time is the fourth dimension of the universe'' This definition of space-time is proposed by him at three hundred years before Einstein. He argued that the time is magnitude of the motion (momentum) of the matter in its entity. In the other words, the time for each atom (body) is sum of the momentums of its involved fundamental particles. The momentum for each atom is different from the other atoms. In this methodology, by proposing some formulas, we can calculate the time for involved particles' momentum (time) for each atom in a second of the Eastern Time Zone (ETZ). Due to differences between these momentums during a second in ETZ, the time for each atom, will be different from the other atoms. This is the relativity in quantum physics. On the other hand, the God communicates with elementary particles via sub-particles (see my next paper) and transfers the packages (bit) of information and laws to them for processing and selection of their next step. Differences between packages like complexity and velocity of processing during the time, is the second variable in relativity of time for each atom which may be effective on the factor.

  16. Theory of quantum and classical connections in modeling atomic, molecular and electrodynamical systems

    CERN Document Server

    Popa, Alexandru

    2013-01-01

    Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems is intended for scientists and graduate students interested in the foundations of quantum mechanics and applied scientists interested in accurate atomic and molecular models. This is a reference to those working in the new field of relativistic optics, in topics related to relativistic interactions between very intense laser beams and particles, and is based on 30 years of research. The novelty of this work consists of accurate connections between the properties of quantum equations and correspon

  17. Demonstration of a small programmable quantum computer with atomic qubits.

    Science.gov (United States)

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  18. Controlling the thermoelectric effect by mechanical manipulation of the electron's quantum phase in atomic junctions.

    Science.gov (United States)

    Aiba, Akira; Demir, Firuz; Kaneko, Satoshi; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Saffarzadeh, Alireza; Kirczenow, George; Kiguchi, Manabu

    2017-08-11

    The thermoelectric voltage developed across an atomic metal junction (i.e., a nanostructure in which one or a few atoms connect two metal electrodes) in response to a temperature difference between the electrodes, results from the quantum interference of electrons that pass through the junction multiple times after being scattered by the surrounding defects. Here we report successfully tuning this quantum interference and thus controlling the magnitude and sign of the thermoelectric voltage by applying a mechanical force that deforms the junction. The observed switching of the thermoelectric voltage is reversible and can be cycled many times. Our ab initio and semi-empirical calculations elucidate the detailed mechanism by which the quantum interference is tuned. We show that the applied strain alters the quantum phases of electrons passing through the narrowest part of the junction and hence modifies the electronic quantum interference in the device. Tuning the quantum interference causes the energies of electronic transport resonances to shift, which affects the thermoelectric voltage. These experimental and theoretical studies reveal that Au atomic junctions can be made to exhibit both positive and negative thermoelectric voltages on demand, and demonstrate the importance and tunability of the quantum interference effect in the atomic-scale metal nanostructures.

  19. Creation, destruction, and transfer of atomic multipole moments by electron scattering: Quantum-mechanical treatment

    Science.gov (United States)

    Csanak, G.; Kilcrease, D. P.; Fursa, D. V.; Bray, I.

    2008-12-01

    Using the wave-packet propagation method of Rodberg and Thaler and the density matrix method of Fano and Blum, we have defined by completely quantum-mechanical methods the cross sections for the creation, destruction, and transfer of atomic multipole moments by both elastic and inelastic scattering of electrons by atomic targets. All cross sections obtained quantum mechanically, except for the coherence transfer cross sections, agree in form with those obtained semiclassically by Fujimoto and co-workers. We also used the converged close-coupling (CCC) method to calculate numerically some of the above cross sections for selected transitions in electron scattering from hydrogen and barium atoms.

  20. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states.

    Science.gov (United States)

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2017-04-11

    We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.

  1. Unified quantum theory of elastic and inelastic atomic scattering from a physisorbed monolayer solid

    DEFF Research Database (Denmark)

    Bruch, L. W.; Hansen, Flemming Yssing; Dammann, Bernd

    2017-01-01

    the wave functions for elastic and inelastic scattered atoms. An attenuation of diffraction scattering by inelastic processes thus is inherent in the theory. The atomic motion and monolayer vibrations in the harmonic approximation are treated quantum mechanically and unitarity is preserved. The evaluation......A unified quantum theory of the elastic and inelastic scattering of low energy He atoms by a physisorbed monolayer solid in the one-phonon approximation is given. It uses a time-dependent wave packet with phonon creation and annihilation components and has a self-consistent feedback between...

  2. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states

    Science.gov (United States)

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2017-04-01

    We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.

  3. Atomic Quantum Simulations of Abelian and non-Abelian Gauge Theories

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, in a collaboration of atomic and particle physicists, we have constructed a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum link models which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows investigations of string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods. Similarly, using ultracold alkaline-earth atoms in optical lattices, we have constructed a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum ...

  4. Entanglement distillation for quantum communication network with atomic-ensemble memories.

    Science.gov (United States)

    Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo

    2014-10-06

    Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories.

  5. The quantum measurement effect of interaction without interaction for an atomic beam

    Directory of Open Access Journals (Sweden)

    Yong-Yi Huang

    Full Text Available When an atomic beam collectively and harmonically vibrates perpendicular to the wave vector of the beam, the number of atoms reaching the atomic detector will have a vibrant factor Δt/T if the measurement time interval Δt is shorter than the period T. This new quantum mechanical measurement effect for an atomic beam is called interaction without interaction: though the translational motion of the atomic beam does not interact with its collective and transverse harmonic vibration, the latter will have an effect on the measured number of atoms associated with the former. From the new measurement effect the classical harmonic vibration’s period is evaluated. We give a clear physical picture and a satisfactory physical interpretation for the measurement effect based on the Copenhagen interpretation of quantum mechanics. We present an experimental proposal to verify this measurement effect for an ion beam instead of an atomic beam. Keywords: The quantum measurement effect of interaction without interaction, The Copenhagen interpretation of quantum mechanics

  6. Chemical Reactivity Dynamics and Quantum Chaos in Highly Excited Hydrogen Atoms in an External Field: A Quantum Potential Approach

    Directory of Open Access Journals (Sweden)

    B. Maiti

    2002-04-01

    Full Text Available Abstract: Dynamical behavior of chemical reactivity indices like electronegativity, hardness, polarizability, electrophilicity and nucleophilicity indices is studied within a quantum fluid density functional framework for the interactions of a hydrogen atom in its ground electronic state (n = 1 and an excited electronic state (n = 20 with monochromatic and bichromatic laser pulses. Time dependent analogues of various electronic structure principles like the principles of electronegativity equalization, maximum hardness, minimum polarizability and maximum entropy have been found to be operative. Insights into the variation of intensities of the generated higher order harmonics on the color of the external laser field are obtained. The quantum signature of chaos in hydrogen atom has been studied using a quantum theory of motion and quantum fluid dynamics. A hydrogen atom in the electronic ground state (n = 1 and in an excited electronic state ( n = 20 behaves differently when placed in external oscillating monochromatic and bichromatic electric fields. Temporal evolutions of Shannon entropy, quantum Lyapunov exponent and Kolmogorov – Sinai entropy defined in terms of the distance between two initially close Bohmian trajectories for these two cases show marked differences. It appears that a larger uncertainty product and a smaller hardness value signal a chaotic behavior.

  7. Quantum Lyapunov Exponent of an Atomic Kicked Rotor

    Science.gov (United States)

    Galitski, Victor

    2017-04-01

    One of the most intriguing phenomena in the studies of classical chaos is the butterfly effect, which manifests itself in that small changes in initial conditions lead to drastically different trajectories. It is characterized by a Lyapunov exponent that measures divergence of the classical trajectories. The question how/if this prototypical effect of classical chaos theory generalizes to quantum systems (where the notion of a trajectory is undefined) has been of interest for decades, but became more popular recently, when it was realized that there exist intriguing connections to string theory and general relativity in some quantum chaotic models. At the center of this activity is the so-called out-of-time-ordered correlator (OTOC) - a quantity that in the classical limit seems to approximate the classical Lyapunov correlator. However, there are very few solvable models where one can actually calculate Lyapunov exponent and/or OTOC. In this talk, I will discuss the standard model of quantum and classical chaos - kicked rotor - calculate the correlator and Lypunov exponents, and show how classical chaos and Lyapunov divergence develop and cross-over to the quantum regime. We will see that the quantum out-of-time-ordered correlator exhibits a clear singularity at the Ehrenfest time, when quantum interference effects sharply kick in: transitioning from a time-independent value to its monotonous decrease with time. In conclusion, I will discuss possible experimental realizations of the model and predicted phenomena in ultracold quantum kicked rotors. NSF-DMR 1613029 and US-ARO.

  8. Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble

    DEFF Research Database (Denmark)

    Guerlin, Christine; Brion, Etienne; Esslinger, Tilman

    2010-01-01

    The realization of a Jaynes-Cummings model in the optical domain is proposed for an atomic ensemble. The scheme exploits the collective coupling of the atoms to a quantized cavity mode and the nonlinearity introduced by coupling to high-lying Rydberg states. A two-photon transition resonantly...... effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states and that the atomic nonlinearity gives rise to highly nontrivial photon emission from the cavity. Finally, we suggest...... couples the single-atom ground state |g> to a Rydberg state |e>via a nonresonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G...

  9. Multilevel Holstein-Primakoff approximation and its application to atomic spin squeezing and ensemble quantum memories

    DEFF Research Database (Denmark)

    Kurucz, Zoltan; Mølmer, Klaus

    2010-01-01

    We show that an ensemble of identical d-level atoms can be efficiently described by d-1 collective oscillator degrees of freedom in the vicinity of a product state with all atoms in the same, but otherwise arbitrary single-particle state. We apply our description to two different kinds of spin...... squeezing: (i) when each spin-F atom is individually squeezed without creating interatomic entanglement and (ii) when a particular collective atomic oscillator mode is squeezed via quantum nondemolition (QND) measurement and feedback. When combined in sequence, the order of the two methods is relevant...... in the final degree of squeezing. We also discuss the role of the two kinds of squeezing when multisublevel atoms are used as quantum memories for light....

  10. Toward quantum state tomography of a single polariton state of an atomic ensemble

    DEFF Research Database (Denmark)

    Christensen, S.L.; Béguin, J.B.; Sørensen, H.L.

    2013-01-01

    We present a proposal and a feasibility study for the creation and quantum state tomography of a single polariton state of an atomic ensemble. The collective non-classical and non-Gaussian state of the ensemble is generated by detection of a single forward-scattered photon. The state is subsequen...... the feasibility of the proposed method for the detection of a non-classical and non-Gaussian state of the mesoscopic atomic ensemble. This work represents the first attempt at hybrid discrete-continuous variable quantum state processing with atomic memories....... is subsequently characterized by atomic state tomography performed using strong dispersive light-atom interaction followed by a homodyne measurement on the transmitted light. The proposal is backed by preliminary experimental results showing projection noise limited sensitivity and a simulation demonstrating...

  11. Photon-Mediated Quantum Gate between Two Neutral Atoms in an Optical Cavity

    Directory of Open Access Journals (Sweden)

    Stephan Welte

    2018-02-01

    Full Text Available Quantum logic gates are fundamental building blocks of quantum computers. Their integration into quantum networks requires strong qubit coupling to network channels, as can be realized with neutral atoms and optical photons in cavity quantum electrodynamics. Here we demonstrate that the long-range interaction mediated by a flying photon performs a gate between two stationary atoms inside an optical cavity from which the photon is reflected. This single step executes the gate in 2  μs. We show an entangling operation between the two atoms by generating a Bell state with 76(2% fidelity. The gate also operates as a cnot. We demonstrate 74.1(1.6% overlap between the observed and the ideal gate output, limited by the state preparation fidelity of 80.2(0.8%. As the atoms are efficiently connected to a photonic channel, our gate paves the way towards quantum networking with multiqubit nodes and the distribution of entanglement in repeater-based long-distance quantum networks.

  12. Universal quantum gates for photon-atom hybrid systems assisted by bad cavities

    Science.gov (United States)

    Wang, Guan-Yu; Liu, Qian; Wei, Hai-Rui; Li, Tao; Ai, Qing; Deng, Fu-Guo

    2016-01-01

    We present two deterministic schemes for constructing a CNOT gate and a Toffoli gate on photon-atom and photon-atom-atom hybrid quantum systems assisted by bad cavities, respectively. They are achieved by cavity-assisted photon scattering and work in the intermediate coupling region with bad cavities, which relaxes the difficulty of their implementation in experiment. Also, bad cavities are feasible for fast quantum operations and reading out information. Compared with previous works, our schemes do not need any auxiliary qubits and measurements. Moreover, the schematic setups for these gates are simple, especially that for our Toffoli gate as only a quarter wave packet is used to interact the photon with each of the atoms every time. These atom-cavity systems can be used as the quantum nodes in long-distance quantum communication as their relatively long coherence time is suitable for multi-time operations between the photon and the system. Our calculations show that the average fidelities and efficiencies of our two universal hybrid quantum gates are high with current experimental technology. PMID:27067992

  13. Crystal-Phase Quantum Wires: One-Dimensional Heterostructures with Atomically Flat Interfaces.

    Science.gov (United States)

    Corfdir, Pierre; Li, Hong; Marquardt, Oliver; Gao, Guanhui; Molas, Maciej R; Zettler, Johannes K; van Treeck, David; Flissikowski, Timur; Potemski, Marek; Draxl, Claudia; Trampert, Achim; Fernández-Garrido, Sergio; Grahn, Holger T; Brandt, Oliver

    2018-01-10

    In semiconductor quantum-wire heterostructures, interface roughness leads to exciton localization and to a radiative decay rate much smaller than that expected for structures with flat interfaces. Here, we uncover the electronic and optical properties of the one-dimensional extended defects that form at the intersection between stacking faults and inversion domain boundaries in GaN nanowires. We show that they act as crystal-phase quantum wires, a novel one-dimensional quantum system with atomically flat interfaces. These quantum wires efficiently capture excitons whose radiative decay gives rise to an optical doublet at 3.36 eV at 4.2 K. The binding energy of excitons confined in crystal-phase quantum wires is measured to be more than twice larger than that of the bulk. As a result of their unprecedented interface quality, these crystal-phase quantum wires constitute a model system for the study of one-dimensional excitons.

  14. Atomic quantum superposition state generation via optical probing

    DEFF Research Database (Denmark)

    Nielsen, Anne Ersbak Bang; Poulsen, Uffe Vestergaard; Negretti, Antonio

    2009-01-01

    We analyze the performance of a protocol to prepare an atomic ensemble in a superposition of two macroscopically distinguishable states. The protocol relies on conditional measurements performed on a light field, which interacts with the atoms inside an optical cavity prior to detection, and we...

  15. Quantum yield and translational energy of hydrogen atoms

    Indian Academy of Sciences (India)

    TECS

    09) was determined by calibration method in which CH4 photolysis at 121⋅6 nm was used as a reference source of well-defined H atom concentrations. The line shapes of the measured H atom Doppler profiles indicate a Gaussian velocity ...

  16. Quantum fluctuation effects on nuclear fragment and atomic cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan). Dept. of Physics; Randrup, J.

    1997-05-01

    We investigate the nuclear fragmentation and atomic cluster formation by means of the recently proposed quantal Langevin treatment. It is shown that the effect of the quantal fluctuation is in the opposite direction in nuclear fragment and atomic cluster size distribution. This tendency is understood through the effective classical temperature for the observables. (author)

  17. Tomography vs quantum control for a three-level atom

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, O. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico)]. E-mail: caronte30@yahoo.com; Klimov, A.B. [Departamento de Fisica, Universidad de Guadalajara, Revolucion 1500, 44420 Guadalajara, Jalisco (Mexico); Guise, Hubert de [Department of Physics, Lakehead University, Thunder Bay, Ontario P7B 5E1 (Canada)

    2006-12-04

    We investigate the possibilities of controlling and reconstructing the state of a single three-level atom. We propose a physical scheme where information about the atomic state is extracted by measuring the total number of excitations after successive application of electromagnetic field pulses. We show that, in the non-degenerate case (different transition frequencies for different atomic transitions), a three-level atom is completely controllable and its state can be completely reconstructed. In the degenerate case (when both atomic transitions are identical), we consider two dynamically inequivalent configurations, {lambda} and {xi}. In this case, we show that the density matrix can always be completely reconstructed whereas their respective system cannot be completely controlled. We explain why this last incompatibility between control and tomography arises.

  18. Majorana fermions in equilibrium and in driven cold-atom quantum wires.

    Science.gov (United States)

    Jiang, Liang; Kitagawa, Takuya; Alicea, Jason; Akhmerov, A R; Pekker, David; Refael, Gil; Cirac, J Ignacio; Demler, Eugene; Lukin, Mikhail D; Zoller, Peter

    2011-06-03

    We introduce a new approach to create and detect Majorana fermions using optically trapped 1D fermionic atoms. In our proposed setup, two internal states of the atoms couple via an optical Raman transition-simultaneously inducing an effective spin-orbit interaction and magnetic field-while a background molecular BEC cloud generates s-wave pairing for the atoms. The resulting cold-atom quantum wire supports Majorana fermions at phase boundaries between topologically trivial and nontrivial regions, as well as "Floquet Majorana fermions" when the system is periodically driven. We analyze experimental parameters, detection schemes, and various imperfections.

  19. Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States

    Science.gov (United States)

    Yu, L.-z.; Zhong, F.

    2016-06-01

    This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.

  20. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  1. Quantum nonlinear optics with single photons enabled by strongly interacting atoms.

    Science.gov (United States)

    Peyronel, Thibault; Firstenberg, Ofer; Liang, Qi-Yu; Hofferberth, Sebastian; Gorshkov, Alexey V; Pohl, Thomas; Lukin, Mikhail D; Vuletić, Vladan

    2012-08-02

    The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons to strongly interacting atomic Rydberg states in a cold, dense atomic gas. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching, all-optical deterministic quantum logic and the realization of strongly correlated many-body states of light.

  2. Quantum nonlinear optics with single photons enabled by strongly interacting atoms

    DEFF Research Database (Denmark)

    Peyronel, Thibault; Firstenberg, Ofer; Liang, Qi Yu

    2012-01-01

    The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding...... to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons...... to strongly interacting atomic Rydberg states in a cold, dense atomic gas. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching, all-optical deterministic quantum logic and the realization of strongly correlated many-body states of light....

  3. Cracking quantum physics you, this book and 200 years of sub-atomic science

    CERN Document Server

    Clegg, Brian

    2017-01-01

    Enter the invisible world of sub-atomic physics and discover the very core of existence. Cracking Quantum Physics takes you through every area of particle physics to clearly explain how our world was, and is, created, and breaks down the most complex theories into easily understandable elements. Subjects covered include:-Time travel-The Higgs field-Dark Matter-The anatomy of the elements-Enter the atom-Quantum reality-Quantum tunnelling-Electrodynamics-Accelerators and colliders-The Zeno effectAn easy-to-understand guide to some of the most complex and intriguing topics: Cracking Quantum Physics is a must-read for anyone who has ever wondered about the underlying forces and materials that make up the world as we know it.

  4. Site-resolved imaging of single atoms with a Faraday quantum gas microscope

    CERN Document Server

    Yamamoto, Ryuta; Kato, Kohei; Kuno, Takuma; Sakura, Yuto; Takahashi, Yoshiro

    2016-01-01

    We successfully demonstrate a quantum gas microscopy using the Faraday effect which has an inherently non-destructive nature. The observed Faraday rotation angle reaches 3.0(2) degrees for a single atom. We reveal the non-destructive feature of this Faraday imaging method by comparing the detuning dependence of the Faraday signal strength with that of the photon scattering rate. We determine the atom distribution with deconvolution analysis. We also demonstrate the absorption and the dark field Faraday imaging, and reveal the different shapes of the point spread functions for these methods, which are fully explained by theoretical analysis. Our result is an important first step towards an ultimate quantum non-demolition site-resolved imaging and furthermore opens up the possibilities for quantum feedback control of a quantum many-body system with a single-site resolution.

  5. Quantum properties of a parametric four-wave mixing in a Raman type atomic system

    Directory of Open Access Journals (Sweden)

    Sharypov A.V.

    2017-01-01

    Full Text Available We present a study of the quantum properties of two light fields used to parametric four-wave mixing in a Raman type atomic system. The system realizes an effective Hamiltonian of beamsplitter type coupling between the light fields, which allows to control squeezing and amplitude distribution of the light fields, as well as realizing their entanglement. The scheme can be feasibly applied to engineer the quantum properties of two single-mode light fields in properly chosen input states.

  6. Field-ion microscopy of quantum oscillations of linear carbon atomic chains.

    Science.gov (United States)

    Mazilova, Tatjana I; Mikhailovskij, Igor M; Ksenofontov, Vjacheslav A; Sadanov, Evgenij V

    2009-02-01

    Field ion microscopic imaging of monatomic carbon chains near the ground quantum states and the visualization of their two-dimensional wave functions were demonstrated. Quantum motions with the frequency proportional to the electric field are detected and analyzed with subangstrom lateral resolution. Electric fields above 10(10) V/m can be used for control of a transverse vibration mode of atomic chains in the terahertz spectral range.

  7. Applications of quantum and classical connections in modeling atomic, molecular and electrodynamic systems

    CERN Document Server

    Popa, Alexandru

    2013-01-01

    Applications of Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamical Systems is a reference on the new field of relativistic optics, examining topics related to relativistic interactions between very intense laser beams and particles. Based on 30 years of research, this unique book connects the properties of quantum equations to corresponding classical equations used to calculate the energetic values and the symmetry properties of atomic, molecular and electrodynamical systems. In addition, it examines applications for these methods, and for the calculation of

  8. Two simple systems with cold atoms: quantum chaos tests and non-equilibrium dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Cavan; Aoud, Yassine Ait El; Olshanii, Maxim [Department of Physics, University of Massachusetts Boston, Boston MA 02125 (United States); Yurovsky, Vladimir A, E-mail: Maxim.Olshanii@umb.ed [School of Chemistry, Tel Aviv University, 69978 Tel Aviv (Israel)

    2010-05-15

    This paper is an attempt to establish a link between the quantum nonequilibrium dynamics of cold gases and 50 years of progress in low-dimensional quantum chaos. We identify two atomic systems lying in the interface: two interacting atoms in a harmonic multimode waveguide and an interacting two-component Bose-Bose mixture in a double-well potential. In particular, we study the level spacing distribution, the wavefunction statistics, the eigenstate thermalization and the ability to thermalize in a relaxation process as such.

  9. Quantum Optics with Atom-like Systems in Diamond

    Science.gov (United States)

    2013-11-19

    29 2.4.1 Optical Rabi oscillations and resonant spin readout . . . . . . 31 2.4.2 Multi-level systems and all-optical spin...external electromagnetic fields. In addition, the atoms are trapped and cooled using ion traps or optical lattices to reduce the effect of atomic motion...the diamond lattice . We do this by making use of the same Λ type system involved in generating spin-photon entanglement. Such a level structure allows

  10. Physics of quantum fluids. New trends and hot topics in atomic and polariton condensates

    Energy Technology Data Exchange (ETDEWEB)

    Bramati, Alberto [Paris Univ. (France). Laboratoire Kastler Brossel; Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Modugno, Michele (eds.) [IKERBASQUE, Bilbao (Spain); Univ. del Pais Vasco, Bilbao (Spain). Dept. de Fisica Teorica e Historia de la Ciencia

    2013-10-01

    Provides an overview of the field of quantum fluids. Presents analogies and differences between polariton and atomic quantum fluids. With contributions from the major actors in the field. Explains a new type of quantum fluid with specific characteristics. The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.

  11. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states

    Science.gov (United States)

    Rosi, G.; D'Amico, G.; Cacciapuoti, L.; Sorrentino, F.; Prevedelli, M.; Zych, M.; Brukner, Č.; Tino, G. M.

    2017-06-01

    The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space-time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10-9, improving previous results by almost two orders of magnitude.

  12. Energetic analysis of conjugated hydrocarbons using the interacting quantum atoms method.

    Science.gov (United States)

    Jara-Cortés, Jesús; Hernández-Trujillo, Jesús

    2017-10-26

    A number of aromatic, antiaromatic, and nonaromatic organic molecules was analyzed in terms of the contributions to the electronic energy defined in the quantum theory of atoms in molecules and the interacting quantum atoms method. Regularities were found in the exchange and electrostatic interatomic energies showing trends that are closely related to those of the delocalization indices defined in the theory. In particular, the CC interaction energies between bonded atoms allow to rationalize the energetic stabilization associated with the bond length alternation in conjugated polyenes. This approach also provides support to Clar's sextet rules devised for aromatic systems. In addition, the H⋯H bonding found in some of the aromatic molecules studied was of an attractive nature, according to the stabilizing exchange interaction between the bonded H atoms. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Quantum simulation of the Abelian-Higgs lattice gauge theory with ultracold atoms

    Science.gov (United States)

    González-Cuadra, Daniel; Zohar, Erez; Cirac, J. Ignacio

    2017-06-01

    We present a quantum simulation scheme for the Abelian-Higgs lattice gauge theory using ultracold bosonic atoms in optical lattices. The model contains both gauge and Higgs scalar fields, and exhibits interesting phases related to confinement and the Higgs mechanism. The model can be simulated by an atomic Hamiltonian, by first mapping the local gauge symmetry to an internal symmetry of the atomic system, the conservation of hyperfine angular momentum in atomic collisions. By including auxiliary bosons in the simulation, we show how the Abelian-Higgs Hamiltonian emerges effectively. We analyze the accuracy of our method in terms of different experimental parameters, as well as the effect of the finite number of bosons on the quantum simulator. Finally, we propose possible experiments for studying the ground state of the system in different regimes of the theory, and measuring interesting high energy physics phenomena in real time.

  14. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states.

    Science.gov (United States)

    Rosi, G; D'Amico, G; Cacciapuoti, L; Sorrentino, F; Prevedelli, M; Zych, M; Brukner, Č; Tino, G M

    2017-06-01

    The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space-time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10-9, improving previous results by almost two orders of magnitude.

  15. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact

    Science.gov (United States)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-01

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from ‘electrochemical’ to ‘mechanical’, which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  16. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact.

    Science.gov (United States)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-12

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from 'electrochemical' to 'mechanical', which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  17. From atomic to mesoscale the role of quantum coherence in systems of various complexities

    CERN Document Server

    Novikova, Irina

    2015-01-01

    This volume presents the latest advancements and future developments of atomic, molecular and optical (AMO) physics and its vital role in modern sciences and technologies. The chapters are devoted to studies of a wide range of quantum systems, with an emphasis on understanding of quantum coherence and other quantum phenomena originated from light-matter interactions. The book intends to survey the current research landscape and to highlight major scientific trends in AMO physics as well as those interfacing with interdisciplinary sciences. The volume may be particularly useful for young researchers working on establishing their scientific interests and goals.

  18. Quantum gates in mesoscopic atomic ensembles based on adiabatic passage and Rydberg blockade

    OpenAIRE

    Beterov, I. I.; Saffman, M.; Yakshina, E. A.; Zhukov, V. P.; Tretyakov, D. B.; Entin, V. M.; Ryabtsev, I. I.; Mansell, C. W.; MacCormick, C.; Bergamini, S.; Fedoruk, M. P.

    2012-01-01

    We present schemes for geometric phase compensation in adiabatic passage which can be used for the implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number of strongly interacting atoms. Protocols using double sequences of stimulated Raman adiabatic passage (STIRAP) or adiabatic rapid passage (ARP) pulses are analyzed. Switching the sign of the detuning between two STIRAP sequences, or inverting the phase between two ARP pulses, provides state transfer wit...

  19. Quantum Coherent Multielectron Processes in an Atomic Scale Contact

    DEFF Research Database (Denmark)

    Peters, Peter-Jan; Xu, Fei; Kaasbjerg, Kristen

    2017-01-01

    The light emission from a scanning tunneling microscope operated on a Ag(111) surface at 6 K is analyzed from low conductances to values approaching the conductance quantum. Optical spectra recorded at sample voltages V reveal emission with photon energies hv > 2eV. A model of electrons interacting...

  20. Probing many-body dynamics on a 51-atom quantum simulator.

    Science.gov (United States)

    Bernien, Hannes; Schwartz, Sylvain; Keesling, Alexander; Levine, Harry; Omran, Ahmed; Pichler, Hannes; Choi, Soonwon; Zibrov, Alexander S; Endres, Manuel; Greiner, Markus; Vuletić, Vladan; Lukin, Mikhail D

    2017-11-29

    Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter, enable the realization of new quantum phases and could ultimately lead to computational systems that outperform existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-body quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantum spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions into spatially ordered states that break various discrete symmetries, verify the high-fidelity preparation of these states and investigate the dynamics across the phase transition in large arrays of atoms. In particular, we observe robust many-body dynamics corresponding to persistent oscillations of the order after a rapid quantum quench that results from a sudden transition across the phase boundary. Our method provides a way of exploring many-body phenomena on a programmable quantum simulator and could enable realizations of new quantum algorithms.

  1. Realization of quantum non-demolition measurement of nuclear spin 1/2 of cold ytterbium atom

    Science.gov (United States)

    Takano, T.; Namiki, R.; Takahashi, Y.

    2009-04-01

    We have demonstrated a quantum non-demolition (QND) measurement with a collective spin of cold ytterbium atoms (171Yb) via Faraday rotation interaction, and have observed 1.8-1.5+2.4 dB spin squeezing. Since 171Yb atoms have only a nuclear spin of one-half in the ground state, the system constitutes the simplest spin ensemble and is thus robust against decoherence. Furthermore, we have considered the atomic quantum swapping gate as a quantum information device using multiple Faraday rotation interactions, and have found that we can realize the quantum-domain performance for a realistic experimental condition.

  2. A quantum trampoline for ultra-cold atoms

    Science.gov (United States)

    Robert-de-Saint-Vincent, M.; Brantut, J.-P.; Bordé, Ch. J.; Aspect, A.; Bourdel, T.; Bouyer, P.

    2010-01-01

    We have observed the interferometric suspension of a free-falling Bose-Einstein condensate periodically submitted to multiple-order diffraction by a vertical 1D standing wave. This scheme permits simultaneously the compensation of gravity and coherent splitting/recombination of the matter waves. It results in high-contrast interference in the number of atoms detected at constant height. For long suspension times, multiple-wave interference is revealed through a sharpening of the fringes. We characterize our atom interferometer and use it to measure the acceleration of gravity.

  3. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms

    Science.gov (United States)

    Hosten, Onur; Engelsen, Nils J.; Krishnakumar, Rajiv; Kasevich, Mark A.

    2016-01-01

    Quantum metrology uses quantum entanglement—correlations in the properties of microscopic systems—to improve the statistical precision of physical measurements. When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million 87Rb atoms in their ‘clock’ states. The ensemble is 20.1 ± 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 ± 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers. We infer entanglement of more than 680 ± 35 particles in the atomic ensemble. Applications include atomic clocks, inertial sensors, and fundamental physics experiments such as tests of general relativity or searches for electron electric dipole moment. To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 ± 0.3 decibels (11-fold), limited by the phase noise of our microwave source.

  4. Relativistic (SR-ZORA) quantum theory of atoms in molecules properties.

    Science.gov (United States)

    Anderson, James S M; Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W

    2017-01-15

    The Quantum Theory of Atoms in Molecules (QTAIM) is used to elucidate the effects of relativity on chemical systems. To do this, molecules are studied using density-functional theory at both the nonrelativistic level and using the scalar relativistic zeroth-order regular approximation. Relativistic effects on the QTAIM properties and topology of the electron density can be significant for chemical systems with heavy atoms. It is important, therefore, to use the appropriate relativistic treatment of QTAIM (Anderson and Ayers, J. Phys. Chem. 2009, 115, 13001) when treating systems with heavy atoms. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits.

    Science.gov (United States)

    Jin, Jeongwan; Saglamyurek, Erhan; Puigibert, Marcel lí Grimau; Verma, Varun; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-10-02

    Polarization-encoded photons at telecommunication wavelengths provide a compelling platform for practical realizations of photonic quantum information technologies due to the ease of performing single qubit manipulations, the availability of polarization-entangled photon-pair sources, and the possibility of leveraging existing fiber-optic links for distributing qubits over long distances. An optical quantum memory compatible with this platform could serve as a building block for these technologies. Here we present the first experimental demonstration of an atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of freedom of a telecom-wavelength photon. We show that heralded polarization qubits at a telecom wavelength are stored and retrieved with near-unity fidelity by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage efficiency and storage time, our broadband light-matter interface reveals the potential for use in future quantum information processing.

  6. Microtrap arrays on magnetic film atom chips for quantum information science.

    NARCIS (Netherlands)

    Leung, Y.F.V.; Tauschinsky, A.; van Druten, N.J.; Spreeuw, R.J.C.

    2011-01-01

    We present two different strategies for developing a quantum information science platform, based on our experimental results with magnetic microtrap arrays on a magnetic-film atom chip. The first strategy aims for mesoscopic ensemble qubits in a lattice of ~5 μm period, so that qubits can be

  7. Single atom doping for quantum device development in diamond and silicon

    NARCIS (Netherlands)

    Weis, C.D.; Schuh, A.; Batra, A.; Persaud, A.; Rangelow, I.W.; Bokor, J.; Lo, C.C.; Cabrini, S.; Sideras-Haddad, E.; Fuchs, G.D.; Hanson, R.; Awschalom, D.D.; Schenkel, T.

    2008-01-01

    The ability to inject dopant atoms with high spatial resolution, flexibility in dopant species, and high single ion detection fidelity opens opportunities for the study of dopant fluctuation effects and the development of devices in which function is based on the manipulation of quantum states in

  8. Atomic and Electronic Structure of Quantum Dots Measured with Scanning Probe Techniques

    NARCIS (Netherlands)

    Sun, Z.|info:eu-repo/dai/nl/314075674

    2012-01-01

    This thesis deals with low temperature scanning tunneling microscopy/spectroscopy and atomic force microscopy (LT-STM/STS and AFM) studies on colloidal semiconductor and graphene quantum dots (g-QDs). These nanostructures are interesting because they show tunable electrical and optical properties

  9. Interplay of classical and quantum dynamics in a thermal ensemble of atoms

    CERN Document Server

    Laskar, Arif Warsi; Mukherjee, Arunabh; Ghosh, Saikat

    2016-01-01

    In a thermal ensemble of atoms driven by coherent fields, how does evolution of quantum superposition compete with classical dynamics of optical pumping and atomic diffusion? Is it optical pumping that first prepares a thermal ensemble, with coherent superposition developing subsequently or is it the other way round: coherently superposed atoms driven to steady state via optical pumping? Using a stroboscopic probing technique, here we experimentally explore these questions. A 100 ns pulse is used to probe an experimentally simulated, closed three-level, lambda-like configuration in rubidium atoms, driven by strong coherent control and incoherent fields. Temporal evolution of probe transmission shows an initial overshoot with turn-on of control, resulting in a scenario akin to lasing without inversion (LWI). The corresponding rise time is dictated by coherent dynamics, with a distinct experimental signature of half-cycle Rabi flop in a thermal ensemble of atoms. Our results indicate that, in fact, optical pump...

  10. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    Science.gov (United States)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  11. Quantum non-demolition measurement of photon number with atom-light interferometers.

    Science.gov (United States)

    Chen, S Y; Chen, L Q; Ou, Z Y; Hang, Weipingz

    2017-12-11

    When atoms are illuminated by an off-resonant field, the AC Stark effect will lead to phase shifts in atomic states. The phase shifts are proportional to the photon number of the off-resonant illuminating field. By measuring the atomic phase with newly developed atom-light hybrid interferometers, we can achieve quantum non-demolition measurement of the photon number of the optical field. In this paper, we analyze theoretically the performance of this QND measurement scheme by using the QND measurement criteria established by Holland et al [Phys. Rev. A 42, 2995 (1990)]. We find the quality of the QND measurement depends on the phase resolution of the atom-light hybrid interferometers. We apply this QND measurement scheme to a twin-photon state from parametric amplifier to verify the photon correlation in the twin beams. Furthermore, a sequential QND measurement procedure is analyzed for verifying the projection property of quantum measurement and for the quantum information tapping. Finally, we discuss the possibility for single-photon-number-resolving detection via QND measurement.

  12. Electron quantum dynamics in atom-ion interaction.

    Science.gov (United States)

    Sabzyan, H; Jenabi, M J

    2016-04-07

    Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, which define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.

  13. Bits and q-bits as versatility measures

    Directory of Open Access Journals (Sweden)

    José R.C. Piqueira

    2004-06-01

    Full Text Available Using Shannon information theory is a common strategy to measure any kind of variability in a signal or phenomenon. Some methods were developed to adapt information entropy measures to bird song data trying to emphasize its versatility aspect. This classical approach, using the concept of bit, produces interesting results. Now, the original idea developed in this paper is to use the quantum information theory and the quantum bit (q-bit concept in order to provide a more complete vision of the experimental results.Usar a teoria da informação de Shannon é uma estratégia comum para medir todo tipo de variabilidade em um sinal ou fenômeno. Alguns métodos foram desenvolvidos para adaptar a medida de entropia informacional a dados de cantos de pássaro, tentando enfatizar seus aspectos de versatilidade. Essa abordagem clássica, usando o conceito de bit, produz resultados interessantes. Agora, a idéia original desenvolvida neste artigo é usar a teoria quântica da informação e o conceito de q-bit, com a finalidade de proporcionar uma visão mais completa dos resultados experimentais.

  14. QUANTUM NETWORKS WITH SINGLE ATOMS, PHOTONS AND PHONONS

    Science.gov (United States)

    2016-10-04

    position above the surface of the alligator PCW. Our calculations and measurements of Γ1D agree with COMSOL simulations (38) of the trap position, and...Version 8.12. http://www.lumerical.com/tcad-products/ fdtd/. 38. COMSOL Inc. (2009) COMSOL Multiphysics ( COMSOL AB, Stockholm), Version 3.5a. 39...for the infinite structure with COMSOL . The trap depth is calibrated with the 12-MHz AC Stark shift measured from the atomic spectra. Fig. S5B shows

  15. Controlled Rephasing of Single Collective Spin Excitations in a Cold Atomic Quantum Memory.

    Science.gov (United States)

    Albrecht, Boris; Farrera, Pau; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues

    2015-10-16

    We demonstrate active control of inhomogeneous dephasing and rephasing for single collective atomic spin excitations (spin waves) created by spontaneous Raman scattering in a quantum memory based on cold 87Rb atoms. The control is provided by a reversible external magnetic field gradient inducing an inhomogeneous broadening of the atomic hyperfine levels. We demonstrate experimentally that active rephasing preserves the single photon nature of the retrieved photons. Finally, we show that the control of the inhomogeneous dephasing enables the creation of time-separated spin waves in a single ensemble followed by a selective read-out in time. This is an important step towards the implementation of a functional temporally multiplexed quantum repeater node.

  16. A quantum transport model for atomic line radiation in plasmas*

    Science.gov (United States)

    Rosato, Joël

    2017-02-01

    Emission and absorption lines in plasmas are investigated theoretically using a phase space formulation of quantum electrodynamics. A transport equation for the one-photon Wigner function is derived and formulated in terms of the noncommutative Moyal product. This equation reduces to the standard radiative transfer equation at the large spectral band limit, when the characteristic spectral band of the emission and absorption coefficients is larger than the inverse photon absorption length and time. We examine deviations to this limit. An ideal slab geometry is considered. The Wigner function relative to hydrogen Lyman α in stellar atmospheric conditions is calculated.

  17. Entanglement of mixed quantum states for qubits and qudit in double photoionization of atoms

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, M., E-mail: bminakshi@yahoo.com [Department of Physics, Asansol Girls’ College, Asansol 713304 (India); Sen, S. [Department of Physics, Triveni Devi Bhalotia College, Raniganj 713347 (India)

    2015-08-15

    Highlights: • We study tripartite entanglement between two electronic qubits and an ionic qudit. • We study bipartite entanglement between any two subsystems of a tripartite system. • We have presented a quantitative application of entangled properties in Neon atom. - Abstract: Quantum entanglement and its paradoxical properties are genuine physical resources for various quantum information tasks like quantum teleportation, quantum cryptography, and quantum computer technology. The physical characteristic of the entanglement of quantum-mechanical states, both for pure and mixed, has been recognized as a central resource in various aspects of quantum information processing. In this article, we study the bipartite entanglement of one electronic qubit along with the ionic qudit and also entanglement between two electronic qubits. The tripartite entanglement properties also have been investigated between two electronic qubits and an ionic qudit. All these studies have been done for the single-step double photoionization from an atom following the absorption of a single photon without observing spin orbit interaction. The dimension of the Hilbert space of the qudit depends upon the electronic state of the residual photoion A{sup 2+}. In absence of SOI, when Russell–Saunders coupling (L–S coupling) is applicable, dimension of the qudit is equal to the spin multiplicity of A{sup 2+}. For estimations of entanglement and mixedness, we consider the Peres–Horodecki condition, concurrence, entanglement of formation, negativity, linear and von Neumann entropies. In case of L–S coupling, all the properties of a qubit–qudit system can be predicted merely with the knowledge of the spins of the target atom and the residual photoion.

  18. Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective.

    Science.gov (United States)

    Maxwell, Peter I; Popelier, Paul L A

    2017-11-05

    Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high-energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra-atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (O i -1 , C i , N i , N i +1 ) and some sidechain hydrogen atoms (H γ ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the O i -1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  19. Activating Carrier Multiplication in PbSe Quantum Dot Solids by Infilling with Atomic Layer Deposition.

    Science.gov (United States)

    Ten Cate, Sybren; Liu, Yao; Suchand Sandeep, C S; Kinge, Sachin; Houtepen, Arjan J; Savenije, Tom J; Schins, Juleon M; Law, Matt; Siebbeles, Laurens D A

    2013-06-06

    Carrier multiplication-the generation of multiple electron-hole pairs by a single photon-is currently of great interest for the development of highly efficient photovoltaics. We study the effects of infilling PbSe quantum-dot solids with metal oxides by atomic layer deposition on carrier multiplication. Using time-resolved microwave conductivity measurements, we find, for the first time, that carrier multiplication occurs in 1,2-ethanedithiol-linked PbSe quantum-dot solids infilled with Al2O3 or Al2O3/ZnO, while it is negligible or absent in noninfilled films. The carrier-multiplication efficiency of the infilled quantum-dot solids is close to that of solution-dispersed PbSe quantum dots, and not significantly limited by Auger recombination.

  20. Site-resolved imaging of single atoms with a Faraday quantum gas microscope

    Science.gov (United States)

    Yamamoto, Ryuta; Kobayashi, Jun; Kato, Kohei; Kuno, Takuma; Sakura, Yuto; Takahashi, Yoshiro

    2017-09-01

    We demonstrate a quantum gas microscope based on the Faraday effect that does not require a stochastic spontaneous emission process. We reveal the dispersive feature of this Faraday-imaging method by comparing the detuning dependence of the Faraday signal with that of the photon scattering rate. In addition, we determine the atom distribution through a deconvolution analysis, demonstrate absorption and dark-field Faraday imaging, and reveal the various shapes of the point spread functions for these methods, which are fully explained by a theoretical analysis. The results constitute an important first step toward ultimate quantum nondemolition site-resolved imaging and open the way to quantum feedback control of a quantum many-body system with single-site resolution.

  1. Echo spectroscopy and quantum stability of trapped atoms

    OpenAIRE

    Andersen, M. F.; Kaplan, A.; Davidson, N.

    2002-01-01

    We investigate the dephasing of ultra cold ^{85}Rb atoms trapped in an optical dipole trap and prepared in a coherent superposition of their two hyperfine ground states by interaction with a microwave pulse. We demonstrate that the dephasing, measured as the Ramsey fringe contrast, can be reversed by stimulating a coherence echo with a pi-pulse between the two pi/2 pulses, in analogy to the photon echo. We also demonstrate that the failure of the echo for certain trap parameters is due to dyn...

  2. Optically Controlled Distributed Quantum Computing Using Atomic Ensembles As Qubits

    Science.gov (United States)

    2016-02-23

    of conditions (i.e. semiclassical laser field, and no interaction between the atoms) itDISTRIBUTION A: Distribution apis not possible to block the...evolves according to i∂ |ψ〉L /∂t = HL1 |ψ〉L . Therefore, the transformation Q1 to remove time and phase dependence from HL1 is given by Q1 = exp(iωgt) |1...J. Szonert, Comput. Meth. Sci. Technol. Spec . SI2, 115 (2010). [22] J. D. Miller, R. A. Cline, and D. J. Heinzen, Phys. Rev. A 47, R4567 (1993). [23

  3. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms

    Energy Technology Data Exchange (ETDEWEB)

    Leung, V. Y. F. [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam (Netherlands); Complex Photonic Systems (COPS), MESA Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands); Pijn, D. R. M.; Schlatter, H.; Torralbo-Campo, L.; La Rooij, A. L.; Mulder, G. B.; Naber, J.; Soudijn, M. L.; Tauschinsky, A.; Spreeuw, R. J. C., E-mail: r.j.c.spreeuw@uva.nl [Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, PO Box 94485, 1090 GL Amsterdam (Netherlands); Abarbanel, C.; Hadad, B.; Golan, E. [Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be' er Sheva 84105 (Israel); Folman, R. [Department of Physics and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be' er Sheva 84105 (Israel)

    2014-05-15

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold {sup 87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  4. Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms.

    Science.gov (United States)

    Leung, V Y F; Pijn, D R M; Schlatter, H; Torralbo-Campo, L; La Rooij, A L; Mulder, G B; Naber, J; Soudijn, M L; Tauschinsky, A; Abarbanel, C; Hadad, B; Golan, E; Folman, R; Spreeuw, R J C

    2014-05-01

    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μm, suitable for experiments in quantum information science employing the interaction between atoms in highly excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cutout of a silver foil, was mounted under the atom chip in order to load ultracold (87)Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.

  5. Quantum correlations between each two-level system in a pair of atoms and general coherent fields

    Directory of Open Access Journals (Sweden)

    S. Abdel-Khalek

    Full Text Available The quantitative description of the quantum correlations between each two-level system in a two-atom system and the coherent fields initially defined in a coherent state in the framework of power-law potentials (PLPCSs is considered. Specifically, we consider two atoms locally interacting with PLPCSs and take into account the different terms of interactions, the entanglement and quantum discord are studied including the time-dependent coupling and photon transition effects. Using the monogamic relation between the entanglement of formation and quantum discord in tripartite systems, we show that the control and preservation of the different kinds of quantum correlations greatly benefit from the combination of the choice of the physical quantities. Finally, we explore the link between the dynamical behavior of quantum correlations and nonclassicality of the fields with and without atomic motion effect. Keywords: Quantum correlations, Monogamic relation, Coherent states, Power-law potentials, Wehrl entropy

  6. Recent results in quantum chaos and its applications to atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J M G; Relano, A; Retamosa, J [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Faleiro, E; Munoz, L [Departamento de Fisica Aplicada, E. U. I. T. Industrial, Universidad Politecnica de Madrid, E-28012 Madrid (Spain); Molina, R A, E-mail: gomezk@nuc1.fis.ucm.es [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain)

    2011-01-01

    A survey of chaotic dynamics in atomic nuclei is presented, using on the one hand standard statistics of quantum chaos studies, and on the other a new approach based on time series analysis methods. The study of shell-model spectra in the pf shell shows that nuclear chaos is strongly isospin dependent and increases with excitation energy. On the other hand, it is found that chaotic quantum systems exhibit 1/f noise and regular systems exhibit 1/f{sup 2} behaviour. It is shown that the time series approach can be used to calculate quite accurately the fraction of missing levels and the existence of mixed symmetries in experimental level spectra.

  7. Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Hidalgo, G., E-mail: gfloreshidalgo@unifei.edu.br [Instituto de Física e Química, Universidade Federal de Itajubá, 37500-903, Itajubá, MG (Brazil); Rojas, M., E-mail: moises.leyva@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil); Rojas, Onofre, E-mail: ors@dfi.ufla.br [Departamento de Física, Universidade Federal de Lavras, CP 3037, 37200-000, Lavras, MG (Brazil)

    2017-05-10

    We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting with a quantum vacuum field. As a simplified model for this system, we consider two harmonic oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R. Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range of initial states composed of a superposition of atomic states. Our results reveal how the entanglement of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for arbitrary coupling constant. All our computations are analytical and only the final step is numerical. - Highlights: • Entanglement time evolution in arbitrary cavity size is considered. • In free space concurrence approaches a fixed value at large time. • For finite cavity, concurrence behaves almost as a periodic function of time.

  8. Entanglement of a two-atom system driven by the quantum vacuum in arbitrary cavity size

    Science.gov (United States)

    Flores-Hidalgo, G.; Rojas, M.; Rojas, Onofre

    2017-05-01

    We study the entanglement dynamics of two distinguishable atoms confined into a cavity and interacting with a quantum vacuum field. As a simplified model for this system, we consider two harmonic oscillators linearly coupled to a massless scalar field which are inside a spherical cavity of radius R. Through the concurrence, the entanglement dynamics for the two-atom system is discussed for a range of initial states composed of a superposition of atomic states. Our results reveal how the entanglement of the two atoms behaves through the time evolution, in a precise way, for arbitrary cavity size and for arbitrary coupling constant. All our computations are analytical and only the final step is numerical.

  9. Quantitative analysis of quantum noise masking in quantum stream cipher by intensity modulation operating at G-bit/sec data rate

    Science.gov (United States)

    Iwakoshi, Takehisa; Futami, Fumio; Hirota, Osamu

    2011-11-01

    In any communication system, all data including encrypted data by the mathematical cipher are transmitted under the strict rule of the interface frame. Attacker can easily acquire the whole data the same as the data of legitimate users including the address, routing information and so on from the transmission line by tapping. This is very risky, especially for the secret sharing data center operations. So to hide the whole data in the transmission line is very attractive to ensure the high security level. This can be realized by Y-00 type random cipher that the ciphertext of simple mathematical cipher by PRNG is randomized by quantum noise and it gives a masking effect against the attacker's security analysis. This paper clarifies quantitative properties on the masking effect in the random cipher by Y-00 protocol, and shows the fact that a scheme by the intensity modulation may provide the greatest masking effect, even if the attacker employs the universal heterodyne receiver.

  10. Quantum Diffusion-Controlled Chemistry: Reactions of Atomic Hydrogen with Nitric Oxide in Solid Parahydrogen.

    Science.gov (United States)

    Ruzi, Mahmut; Anderson, David T

    2015-12-17

    Our group has been working to develop parahydrogen (pH2) matrix isolation spectroscopy as a method to study low-temperature condensed-phase reactions of atomic hydrogen with various reaction partners. Guided by the well-defined studies of cold atom chemistry in rare-gas solids, the special properties of quantum hosts such as solid pH2 afford new opportunities to study the analogous chemical reactions under quantum diffusion conditions in hopes of discovering new types of chemical reaction mechanisms. In this study, we present Fourier transform infrared spectroscopic studies of the 193 nm photoinduced chemistry of nitric oxide (NO) isolated in solid pH2 over the 1.8 to 4.3 K temperature range. Upon short-term in situ irradiation the NO readily undergoes photolysis to yield HNO, NOH, NH, NH3, H2O, and H atoms. We map the postphotolysis reactions of mobile H atoms with NO and document first-order growth in HNO and NOH reaction products for up to 5 h after photolysis. We perform three experiments at 4.3 K and one at 1.8 K to permit the temperature dependence of the reaction kinetics to be quantified. We observe Arrhenius-type behavior with a pre-exponential factor of A = 0.036(2) min(-1) and Ea = 2.39(1) cm(-1). This is in sharp contrast to previous H atom reactions we have studied in solid pH2 that display definitively non-Arrhenius behavior. The contrasting temperature dependence measured for the H + NO reaction is likely related to the details of H atom quantum diffusion in solid pH2 and deserves further study.

  11. Security enhanced memory for quantum state.

    Science.gov (United States)

    Mukai, Tetsuya

    2017-07-27

    Security enhancement is important in terms of both classical and quantum information. The recent development of a quantum storage device is noteworthy, and a coherence time of one second or longer has been demonstrated. On the other hand, although the encryption of a quantum bit or quantum memory has been proposed theoretically, no experiment has yet been carried out. Here we report the demonstration of a quantum memory with an encryption function that is realized by scrambling and retrieving the recorded quantum phase. We developed two independent Ramsey interferometers on an atomic ensemble trapped below a persistent supercurrent atom chip. By operating the two interferometers with random phases, the quantum phase recorded by a pulse of the first interferometer was modulated by the second interferometer pulse. The scrambled quantum phase was restored by employing another pulse of the second interferometer with a specific time delay. This technique paves way for improving the security of quantum information technology.

  12. Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies.

    Science.gov (United States)

    Tettamanzi, Giuseppe Carlo; Hile, Samuel James; House, Matthew Gregory; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y

    2017-03-28

    The ability to apply gigahertz frequencies to control the quantum state of a single P atom is an essential requirement for the fast gate pulsing needed for qubit control in donor-based silicon quantum computation. Here, we demonstrate this with nanosecond accuracy in an all epitaxial single atom transistor by applying excitation signals at frequencies up to ≈13 GHz to heavily phosphorus-doped silicon leads. These measurements allow the differentiation between the excited states of the single atom and the density of states in the one-dimensional leads. Our pulse spectroscopy experiments confirm the presence of an excited state at an energy ≈9 meV, consistent with the first excited state of a single P donor in silicon. The relaxation rate of this first excited state to the ground state is estimated to be larger than 2.5 GHz, consistent with theoretical predictions. These results represent a systematic investigation of how an atomically precise single atom transistor device behaves under radio frequency excitations.

  13. The giant acoustic atom - a single quantum system with a deterministic time delay

    Science.gov (United States)

    Guo, Lingzhen; Grimsmo, Arne; Frisk Kockum, Anton; Pletyukhov, Mikhail; Johansson, Göran

    2017-04-01

    We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. Furthermore, we find the short-time dynamics of the giant atom for arbitrary drive strength by a numerically exact method for open quantum systems with a finite-time-delay feedback loop. L. G. acknowledges financial support from Carl-Zeiss Stiftung (0563-2.8/508/2).

  14. Simulations of quantum transport in nanoscale systems: application to atomic gold and silver wires

    DEFF Research Database (Denmark)

    Mozos, J.L.; Ordejon, P.; Brandbyge, Mads

    2002-01-01

    's function techniques are used to calculate the quantum conductance. Here we apply the method to the study of the electronic transport in wires of gold and silver with atomic thickness. We show the results of our calculations, and compare with some of the abundant experimental data on these systems.......We present a first-principles method for studying the electronic transport through nanoscale atomic systems under non-equilibrium conditions. The method is based on density functional theory, and allows the calculation of the response of the system to an applied finite potential difference...

  15. The quantum exodus jewish fugitives, the atomic bomb, and the holocaust

    CERN Document Server

    Fraser, Gordon Murray

    2012-01-01

    It was no accident that the Holocaust and the Atomic Bomb happened at the same time. When the Nazis came into power in 1933, their initial objective was not to get rid of Jews. Rather, their aim was to refine German culture: Jewish professors and teachers at fine universities were sacked. Atomic science had attracted a lot of Jewish talent, and as Albert Einstein and other quantum exiles scattered, they realized that they held the key to a weapon of unimaginable power. Convincedthat their gentile counterparts in Germany had come to the same conclusion, and having witnessed what the Nazis were

  16. Molecular engineering with artificial atoms: designing a material platform for scalable quantum spintronics and photonics

    Science.gov (United States)

    Doty, Matthew F.; Ma, Xiangyu; Zide, Joshua M. O.; Bryant, Garnett W.

    2017-09-01

    Self-assembled InAs Quantum Dots (QDs) are often called "artificial atoms" and have long been of interest as components of quantum photonic and spintronic devices. Although there has been substantial progress in demonstrating optical control of both single spins confined to a single QD and entanglement between two separated QDs, the path toward scalable quantum photonic devices based on spins remains challenging. Quantum Dot Molecules, which consist of two closely-spaced InAs QDs, have unique properties that can be engineered with the solid state analog of molecular engineering in which the composition, size, and location of both the QDs and the intervening barrier are controlled during growth. Moreover, applied electric, magnetic, and optical fields can be used to modulate, in situ, both the spin and optical properties of the molecular states. We describe how the unique photonic properties of engineered Quantum Dot Molecules can be leveraged to overcome long-standing challenges to the creation of scalable quantum devices that manipulate single spins via photonics.

  17. Optimization of digital image processing to determine quantum dots' height and density from atomic force microscopy.

    Science.gov (United States)

    Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L

    2018-01-01

    An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Love, literature and the quantum atom Niels Bohr's 1913 trilogy revisited

    CERN Document Server

    Aaserud, Finn

    2013-01-01

    Niels Bohr ranks with Einstein among the physicists of the 20th century. He rose to this status through his invention of the quantum theory of the atom and his leadership in its defense and development. He also ranks with Einstein in his humanism and his sense of responsibility to his science and the society that enabled him to create it. Our book presents unpublished excerpts from extensive correspondence between Bohr and his immediate family, and uses it to describe and analyze the psychological and cultural background to his invention. The book also contains a reprinting of the three papers of 1913 - the "Trilogy" - in which Bohr worked out the provisional basis of a quantum theory of the atom.

  19. Probing an Excited-State Atomic Transition Using Hyperfine Quantum Beat Spectroscopy

    CERN Document Server

    Wade, Christopher G; Keaveney, James; Adams, Charles S; Weatherill, Kevin J

    2014-01-01

    We describe a method to observe the dynamics of an excited-state transition in a room temperature atomic vapor using hyperfine quantum beats. Our experiment using cesium atoms consists of a pulsed excitation of the D2 transition, and continuous-wave driving of an excited-state transition from the 6P$_{3/2}$ state to the 7S$_{1/2}$ state. We observe quantum beats in the fluorescence from the 6P$_{3/2}$ state which are modified by the driving of the excited-state transition. The Fourier spectrum of the beat signal yields evidence of Autler-Townes splitting of the 6P$_{3/2}$, F = 5 hyperfine level and Rabi oscillations on the excited-state transition. A detailed model provides qualitative agreement with the data, giving insight to the physical processes involved.

  20. Quantum interaction of SU(1,1) Lie group with entangled a two 2-level atoms

    Science.gov (United States)

    Alqannas, Haifa S.; Khalil, E. M.

    2018-01-01

    In present contribution, we consider a two two-level atoms in non-resonance case interacting with a quantum system. The wave function is obtained via solving the Schrödinger equation. The initial density operator is assumed, with respect to the quantum system starts in a Barut-Girardello state. We use the numerical results to describe the entanglement between the subsystem. Some statistical aspects, the atomic inversion, the squeezing phenomena and negatively are discussed in details. We study the effective of the detuning parameter on the population inversion and the squeezing phenomenon. Finally the negativity for different values of the detuning parameter are examined. It is shown that the effects of the detuning parameter changes the region of the entanglement sudden death and sudden birth phenomena.

  1. Quantum interference effects in a Λ-type atom interacting with two short laser pulse trains

    Science.gov (United States)

    Buica, Gabriela

    2014-10-01

    We study the quantum interference between the excitation pathways in a three-level Λ-type atom interacting with two short laser pulse trains under the conditions of electromagnetically induced transparency. The probability amplitude equations which describe the interaction of a three-level Λ-type atom with two laser pulse trains are numerically solved. We derive analytical expressions for the population of the upper excited state for resonant laser pulse trains with a rectangular temporal profile. By varying the parameters of the laser pulse trains such as area of a single pulse, detuning, repetition period, and number of individual pulses, we analyze the quantum interference between the excitation pathways in terms of the upper excited state population.

  2. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory

    Science.gov (United States)

    Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.

    2016-12-01

    Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.

  3. Localised quantum states of atomic and molecular particles physisorbed on carbon-based nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Trachta, Michal; Bludský, Ota; Špirko, Vladimír

    2014-01-01

    Roč. 141, č. 11 (2014), "114702-1"-"114702-10" ISSN 0021-9606 R&D Projects: GA ČR GAP205/11/0571; GA ČR GAP208/11/0436; GA ČR GAP208/10/0725 Institutional support: RVO:68378271 ; RVO:61388963 Keywords : periodic structure * carbon nanostructures * graphene * quantum mechanics * physisorbed Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.952, year: 2014

  4. Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique

    Directory of Open Access Journals (Sweden)

    Sakuma Y

    2006-01-01

    Full Text Available AbstractAn atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs. Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.

  5. Requirements for fault-tolerant factoring on an atom-optics quantum computer.

    Science.gov (United States)

    Devitt, Simon J; Stephens, Ashley M; Munro, William J; Nemoto, Kae

    2013-01-01

    Quantum information processing and its associated technologies have reached a pivotal stage in their development, with many experiments having established the basic building blocks. Moving forward, the challenge is to scale up to larger machines capable of performing computational tasks not possible today. This raises questions that need to be urgently addressed, such as what resources these machines will consume and how large will they be. Here we estimate the resources required to execute Shor's factoring algorithm on an atom-optics quantum computer architecture. We determine the runtime and size of the computer as a function of the problem size and physical error rate. Our results suggest that once the physical error rate is low enough to allow quantum error correction, optimization to reduce resources and increase performance will come mostly from integrating algorithms and circuits within the error correction environment, rather than from improving the physical hardware.

  6. Quantum simulation of the Hubbard model with dopant atoms in silicon.

    Science.gov (United States)

    Salfi, J; Mol, J A; Rahman, R; Klimeck, G; Simmons, M Y; Hollenberg, L C L; Rogge, S

    2016-04-20

    In quantum simulation, many-body phenomena are probed in controllable quantum systems. Recently, simulation of Bose-Hubbard Hamiltonians using cold atoms revealed previously hidden local correlations. However, fermionic many-body Hubbard phenomena such as unconventional superconductivity and spin liquids are more difficult to simulate using cold atoms. To date the required single-site measurements and cooling remain problematic, while only ensemble measurements have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low effective temperatures with single-site resolution using subsurface dopants in silicon. We measure quasi-particle tunnelling maps of spin-resolved states with atomic resolution, finding interference processes from which the entanglement entropy and Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of freedom, increases with increasing valence bond length. We find separation-tunable Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the Hubbard model.

  7. Detecting correlations in deterministically prepared quantum states with single-atom imaging

    Science.gov (United States)

    Bergschneider, Andrea; Klinkhamer, Vincent M.; Becher, Jan Hendrik; Bommer, Philine L.; Niedermayer, Justin F.; Zuern, Gerhard; Preiss, Philipp M.; Jochim, Selim

    2017-04-01

    We deterministically prepare quantum states consisting of few fermions in single and double-well potentials. Here we report on a new imaging scheme for 6Lithium with which we detect the correlations of the quantum state on a single-atom level and with spin resolution. The detection method uses fluorescence imaging at high magnetic field where the optical transitions for the used hyperfine states are almost closed. With a high-resolution objective we image about 15 scattered photons per atom on an EMCCD camera. This is sufficient to identify and locate single atoms in our imaging plane. We can perform this scheme in situ or after an expansion in time-of-flight and additionally resolve the spin by subsequently adressing the different hyperfine states. By combining this scheme with our deterministic preparation, we measure the two-point momentum correlations to probe the spatial symmetry of the two-particle wavefunction. The high contrast and the scalability of the detection technique allows us to go beyond measuring two-point correlations and characterize many-body quantum states.

  8. Quantum

    CERN Document Server

    Al-Khalili, Jim

    2003-01-01

    In this lively look at quantum science, a physicist takes you on an entertaining and enlightening journey through the basics of subatomic physics. Along the way, he examines the paradox of quantum mechanics--beautifully mathematical in theory but confoundingly unpredictable in the real world. Marvel at the Dual Slit experiment as a tiny atom passes through two separate openings at the same time. Ponder the peculiar communication of quantum particles, which can remain in touch no matter how far apart. Join the genius jewel thief as he carries out a quantum measurement on a diamond without ever touching the object in question. Baffle yourself with the bizzareness of quantum tunneling, the equivalent of traveling partway up a hill, only to disappear then reappear traveling down the opposite side. With its clean, colorful layout and conversational tone, this text will hook you into the conundrum that is quantum mechanics.

  9. Quantum phases of low-dimensional ultra-cold atom systems

    Science.gov (United States)

    Mathey, Ludwig G.

    2007-06-01

    In this thesis we derive and explore the quantum phases of various types of ultracold atom systems, as well as their experimental signature. The technology of cooling, trapping and manipulating ultracold atoms has advanced in an amazing fashion during the last decade, which has led to the study of many-body effects of atomic ensembles. We first consider atomic mixtures in one dimension, which show a rich structure of phases, using a Luttinger liquid description. We then go on to consider how noise correlations in time-of-flight images of one-dimensional systems can be used to draw conclusions about the many-body state that they're in. Thirdly, we consider the quantum phases of Bose-Fermi mixtures in optical lattices, either square lattices or triangular lattices, using the powerful method of functional renormalization group analysis. Lastly, we study the phases of two-coupled quasi-superfluids in two dimensions, which shows unusual phases, and which could be used to realize the Kibble-Zurek mechanism, i.e. the generation of topological defects by ramping across a phase transition, first proposed in the context of an early universe scenario.

  10. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bonfanti, Matteo, E-mail: matteo.bonfanti@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Jackson, Bret [Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Hughes, Keith H. [School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW (United Kingdom); Burghardt, Irene [Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main (Germany); Martinazzo, Rocco, E-mail: rocco.martinazzo@unimi.it [Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano (Italy); Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano (Italy)

    2015-09-28

    An accurate system-bath model to investigate the quantum dynamics of hydrogen atoms chemisorbed on graphene is presented. The system comprises a hydrogen atom and the carbon atom from graphene that forms the covalent bond, and it is described by a previously developed 4D potential energy surface based on density functional theory ab initio data. The bath describes the rest of the carbon lattice and is obtained from an empirical force field through inversion of a classical equilibrium correlation function describing the hydrogen motion. By construction, model building easily accommodates improvements coming from the use of higher level electronic structure theory for the system. Further, it is well suited to a determination of the system-environment coupling by means of ab initio molecular dynamics. This paper details the system-bath modeling and shows its application to the quantum dynamics of vibrational relaxation of a chemisorbed hydrogen atom, which is here investigated at T = 0 K with the help of the multi-configuration time-dependent Hartree method. Paper II deals with the sticking dynamics.

  11. Quantum statistics of a single-atom Scovil-Schulz-DuBois heat engine

    Science.gov (United States)

    Li, Sheng-Wen; Kim, Moochan B.; Agarwal, Girish S.; Scully, Marlan O.

    2017-12-01

    We study the statistics of the lasing output from a single-atom quantum heat engine, which was originally proposed by Scovil and Schulz-DuBois [H. E. D. Scovil and E. O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959), 10.1103/PhysRevLett.2.262]. In this heat engine model, a single three-level atom is coupled with an optical cavity and is in contact with a hot and a cold heat bath together. We derive a fully quantum laser equation for this heat engine model and obtain the photon number distribution both below and above the lasing threshold. With the increase of the hot bath temperature, the population is inverted and lasing light comes out. However, we notice that if the hot bath temperature keeps increasing, the atomic decay rate is also enhanced, which weakens the lasing gain. As a result, another critical point appears at a very high temperature of the hot bath, after which the output light become thermal radiation again. To avoid this double-threshold behavior, we introduce a four-level heat engine model, where the atomic decay rate does not depend on the hot bath temperature. In this case, the lasing threshold is much easier to achieve and the double-threshold behavior disappears.

  12. Quantum Otto engine of a two-level atom with single-mode fields

    Science.gov (United States)

    Wang, Jianhui; Wu, Zhaoqi; He, Jizhou

    2012-04-01

    We establish a quantum Otto engine (QOE) of a two-level atom, which is confined in a one-dimensional (1D) harmonic trap and is coupled to single-mode radiation fields. Besides two adiabatic processes, the QOE cycle consists of two isochoric processes, along one of which the two-level atom as the working substance interacts with a single-mode radiation field. Based on the semigroup approach, we derive the time for completing any adiabatic process and then present a performance analysis of the heat engine model. Furthermore, we generalize the results to the performance optimization for a QOE of a single two-level atom trapped in a 1D power-law potential. Our result shows that the efficiency at maximum power output is dependent on the trap exponent θ but is independent of the energy spectrum index σ.

  13. Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine

    Science.gov (United States)

    Wang, Hao; Liu, Sanqiu; He, Jizhou

    2009-04-01

    The simple system of two two-level identical atoms couple to single-mode optical cavity in the resonance case is studied for investigating the thermal entanglement. It is interesting to see that the critical temperature is only dependent on the coefficient of atom-atom dipole-dipole interaction. Based on the mode, we construct and investigate a entangled quantum Otto engine (QOE). Expressions for several important performance parameters such as the heat transferred, the work done in a cycle, and the efficiency of the entangled QOE in zero G are derived in terms of thermal concurrence. Some intriguing features and their qualitative explanations are given. Furthermore, the validity of the second law of thermodynamics is confirmed in the entangled QOE. The results obtained here have general significance and will be helpful to understand deeply the performance of an entangled QOE.

  14. Improving Sensitivity and Bandwidth of an Atomic Magnetometer using Quantum Non-Demolition Measurement

    Science.gov (United States)

    Shah, Vishal; Vasilakis, Georgios; Romalis, Michael

    2009-05-01

    The fundamental sensitivity of an atomic magnetometer is limited by spin projection noise. In the case of uniform spin relaxation, it is well understood that it is not possible to improve the sensitivity using spin squeezing induced by quantum non-demolition (QND) measurement for measurement time scales longer than spin relaxation time [1, 2]. It is however possible to increase the bandwidth of the magnetometer using QND measurement. Here we experimentally demonstrate, in excellent agreement with the theory, an improvement in the bandwidth of our scalar alkali vapor atomic magnetometer using continuous QND measurement. We also investigate the possibility of improving sensitivity of our magnetometer in the special case in which the spin relaxation is time dependent. The case of time dependent spin relaxation naturally arises in high polarization regime in an alkali-alkali spin-exchange relaxation dominated atomic sample. [1] S. F. Huelga, Phys. Rev. Lett. 79, 3865 -- 3868, 1997. [2] M. Auzinsh, Phys. Rev. Lett. 93, 173002, 2004.

  15. Quantum-mechanical calculations of cross sections for electron collisions with atoms and molecules

    CERN Document Server

    Bartschat, Klaus; Zatsarinny, Oleg

    2016-01-01

    An overview of quantum-mechanical methods to generate cross-section data for electron collisions with atoms and molecules is presented. Particular emphasis is placed on the time-independent close-coupling approach, since it is particularly suitable for low-energy collisions and also allows for systematic improvements as well as uncertainty estimates. The basic ideas are illustrated with examples for electron collisions with argon atoms and methane. For many atomic systems, such as e-Ar collisions, highly reliable cross sections can now be computed with quantified uncertainties. On the other hand, while electron collision calculations with molecules do provide key input data for plasma models, the methods and computer codes presently used require further development to make these inputs robust.

  16. New approaches in deep laser cooling of magnesium atoms for quantum metrology

    Science.gov (United States)

    Prudnikov, O. N.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.; Bonert, A. E.; Tropnikov, M. A.; Goncharov, A. N.

    2016-09-01

    Two approaches for solving the long-standing problem of deep laser cooling of neutral magnesium atoms are proposed. The first one uses optical molasses with orthogonal linear polarizations of light waves. The second approach involves a ‘nonstandard’ magneto-optical trap (NMOT) composed of light waves with elliptical polarizations (in general). Both the widely used semiclassical approach based on the Fokker-Planck equation and quantum treatment fully taking into account the recoil effect are employed for theoretical analysis. The results show the possibility of obtaining temperatures lower than 100 µK simultaneously with a large number of cold atoms ~106 ÷ 107. A new velocity-selective cooling technique allowing one to reach the microkelvin temperature range is also proposed. This technique may have some advantages over, for instance, the shallow-dipole-trap technique utilized by other authors. In the case of magnesium atoms this new technique may be used for obtaining a large number of ultracold atoms (T ~ 1 µK, N  >  105). Such a large number of ultracold atoms is crucial issue for metrological and many other applications of cold atoms.

  17. Coherence properties and quantum state transportation in an optical conveyor belt.

    Science.gov (United States)

    Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D

    2003-11-21

    We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.

  18. Quantum rekenen : Quantumcomputers en qubits

    NARCIS (Netherlands)

    Hensen, B.J.; Hanson, R.

    2013-01-01

    De quantum computer is een computer gebaseerd op quantum bits, kortweg qubits. Dat zijn bits die fysiek gemaakt zijn van quantum systemen, met de speciale eigenschap dat ze in een superpositie tussen twee toestanden kunnen zijn.

  19. Many-body quantum quench in an atomic one-dimensional Ising chain

    Science.gov (United States)

    Naegerl, Hanns-Christoph

    2014-03-01

    Quantum tunneling is one of the most fundamental processes in nature. Single particle hopping of ultracold atoms in optical lattices changes its character dramatically when the ensemble is prepared in strongly correlated quantum phases due to atom-atom interactions. Correlated hopping in a Mott-insulating chain of bosons that is tilted to the Mott gap has recently been employed to study long-range order in the 1D transvers Ising model. We study correlated tunneling dynamics for an ensemble of tilted 1D Mott chains after a sudden quench to the vicinity of the Ising paramagnetic to antiferromagnetic phase transition point. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response. We observe higher-order many-body tunneling processes over up to five lattice sites when the tilt per site is tuned to integer fractions of the Mott gap. Second- and third-order tunneling shows up in the transient response after the quench, from which we extract the characteristic scaling in accordance with perturbation theory and numerical simulations. In a second set of experiments we study the response of an ensemble of 1D superfluids in the Bose-Hubbard regime when subject to a tilt. For large values of the tilt, we observe interaction-induced coherent decay and matter-wave quantum phase revivals of the Bloch oscillating ensemble. We analyze the revival period dependence on interactions by means of a Feshbach resonance. When reducing the value of the tilt, we observe the disappearance of the quasi-periodic phase revival signature towards an irreversible decay of Bloch oscillations, indicating the transition from regular to quantum chaotic dynamics. Institute for

  20. Chaotic quantum ratchets and filters with cold atoms in optical lattices: Properties of Floquet states

    Science.gov (United States)

    Hur, Gwang-Ok

    The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are

  1. Quantum chaos in ultracold collisions of gas-phase erbium atoms.

    Science.gov (United States)

    Frisch, Albert; Mark, Michael; Aikawa, Kiyotaka; Ferlaino, Francesca; Bohn, John L; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana

    2014-03-27

    Atomic and molecular samples reduced to temperatures below one microkelvin, yet still in the gas phase, afford unprecedented energy resolution in probing and manipulating the interactions between their constituent particles. As a result of this resolution, atoms can be made to scatter resonantly on demand, through the precise control of a magnetic field. For simple atoms, such as alkalis, scattering resonances are extremely well characterized. However, ultracold physics is now poised to enter a new regime, where much more complex species can be cooled and studied, including magnetic lanthanide atoms and even molecules. For molecules, it has been speculated that a dense set of resonances in ultracold collision cross-sections will probably exhibit essentially random fluctuations, much as the observed energy spectra of nuclear scattering do. According to the Bohigas-Giannoni-Schmit conjecture, such fluctuations would imply chaotic dynamics of the underlying classical motion driving the collision. This would necessitate new ways of looking at the fundamental interactions in ultracold atomic and molecular systems, as well as perhaps new chaos-driven states of ultracold matter. Here we describe the experimental demonstration that random spectra are indeed found at ultralow temperatures. In the experiment, an ultracold gas of erbium atoms is shown to exhibit many Fano-Feshbach resonances, of the order of three per gauss for bosons. Analysis of their statistics verifies that their distribution of nearest-neighbour spacings is what one would expect from random matrix theory. The density and statistics of these resonances are explained by fully quantum mechanical scattering calculations that locate their origin in the anisotropy of the atoms' potential energy surface. Our results therefore reveal chaotic behaviour in the native interaction between ultracold atoms.

  2. Temporal Purity and Quantum Interference of Single Photons from Two Independent Cold Atomic Ensembles.

    Science.gov (United States)

    Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z Y; Chen, J F; Zhang, Weiping

    2016-07-01

    The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source.

  3. Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices.

    Science.gov (United States)

    Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik

    2017-07-24

    We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.

  4. Atomic-Scale Nuclear Spin Imaging Using Quantum-Assisted Sensors in Diamond

    Science.gov (United States)

    Ajoy, A.; Bissbort, U.; Lukin, M. D.; Walsworth, R. L.; Cappellaro, P.

    2015-01-01

    Nuclear spin imaging at the atomic level is essential for the understanding of fundamental biological phenomena and for applications such as drug discovery. The advent of novel nanoscale sensors promises to achieve the long-standing goal of single-protein, high spatial-resolution structure determination under ambient conditions. In particular, quantum sensors based on the spin-dependent photoluminescence of nitrogen-vacancy (NV) centers in diamond have recently been used to detect nanoscale ensembles of external nuclear spins. While NV sensitivity is approaching single-spin levels, extracting relevant information from a very complex structure is a further challenge since it requires not only the ability to sense the magnetic field of an isolated nuclear spin but also to achieve atomic-scale spatial resolution. Here, we propose a method that, by exploiting the coupling of the NV center to an intrinsic quantum memory associated with the nitrogen nuclear spin, can reach a tenfold improvement in spatial resolution, down to atomic scales. The spatial resolution enhancement is achieved through coherent control of the sensor spin, which creates a dynamic frequency filter selecting only a few nuclear spins at a time. We propose and analyze a protocol that would allow not only sensing individual spins in a complex biomolecule, but also unraveling couplings among them, thus elucidating local characteristics of the molecule structure.

  5. Atomic structures and gram scale synthesis of three tetrahedral quantum dots.

    Science.gov (United States)

    Beecher, Alexander N; Yang, Xiaohao; Palmer, Joshua H; LaGrassa, Alexandra L; Juhas, Pavol; Billinge, Simon J L; Owen, Jonathan S

    2014-07-30

    Luminescent semiconducting quantum dots (QDs) are central to emerging technologies that range from tissue imaging to solid-state lighting. However, existing samples are heterogeneous, which has prevented atomic-resolution determination of their structures and obscured the relationship between their atomic and electronic structures. Here we report the synthesis, isolation, and structural characterization of three cadmium selenide QDs with uniform compositions (Cd35Se20(X)30(L)30, Cd56Se35(X)42(L)42, Cd84Se56(X)56(L)56; X = O2CPh, L = H2N-C4H9). Their UV-absorption spectra show a lowest energy electronic transition that decreases in energy (3.54 eV, 3.26 eV, 3.04 eV) and sharpens as the size of the QD increases (fwhm = 207 meV, 145 meV, 115 meV). The photoluminescence spectra of all three QDs are broad with large Stokes shifts characteristic of trap-luminescence. Using a combination of single-crystal X-ray diffraction and atomic pair distribution function analysis, we determine the structures of their inorganic cores, revealing a series of pyramidal nanostuctures with cadmium terminated {111} facets. Theoretical and experimental studies on these materials will open the door to a deeper fundamental understanding of structure-property relationships in quantum-confined semiconductors.

  6. Universal diffraction of atoms and molecules from a quantum reflection grating.

    Science.gov (United States)

    Zhao, Bum Suk; Zhang, Weiqing; Schöllkopf, Wieland

    2016-03-01

    Since de Broglie's work on the wave nature of particles, various optical phenomena have been observed with matter waves of atoms and molecules. However, the analogy between classical and atom/molecule optics is not exact because of different dispersion relations. In addition, according to de Broglie's formula, different combinations of particle mass and velocity can give the same de Broglie wavelength. As a result, even for identical wavelengths, different molecular properties such as electric polarizabilities, Casimir-Polder forces, and dissociation energies modify (and potentially suppress) the resulting matter-wave optical phenomena such as diffraction intensities or interference effects. We report on the universal behavior observed in matter-wave diffraction of He atoms and He2 and D2 molecules from a ruled grating. Clear evidence for emerging beam resonances is observed in the diffraction patterns, which are quantitatively the same for all three particles and only depend on the de Broglie wavelength. A model, combining secondary scattering and quantum reflection, permits us to trace the observed universal behavior back to the peculiar principles of quantum reflection.

  7. Analysis of decoherence mechanisms in a single-atom quantum memory

    Science.gov (United States)

    Koerber, Matthias; Langenfeld, Stefan; Morin, Olivier; Neuzner, Andreas; Ritter, Stephan; Rempe, Gerhard

    2017-04-01

    While photons are ideal for the transmission of quantum information, they require dedicated memories for long-term storage. The challenge for such a photonic quantum memory is the combination of an efficient light-matter interface with a low-decoherence encoding. To increase the time before the quantum information is lost, a thorough analysis of the relevant decoherence mechanisms is indispensable. Our optical quantum memory consists of a single rubidium atom trapped in a two dimensional optical lattice in a high-finesse Fabry-Perot-type optical resonator. The qubit is initially stored in a superposition of Zeeman states, making magnetic field fluctuations the dominant source of decoherence. The impact to this type of noise is greatly reduced by transferring the qubit into a subspace less susceptible to magnetic field fluctuations. In this configuration, the achievable coherence times are no longer limited by those fluctuations, but decoherence mechanisms induced by the trapping beams pose a new limit. We will discuss the origin and magnitude of the relevant effects and strategies for possible resolutions.

  8. Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow

    Science.gov (United States)

    Malik, F. Bary

    1995-01-01

    The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.

  9. The Quantum Black Hole as a Hydrogen Atom: Microstates Without Strings Attached

    CERN Document Server

    Hooft, Gerard t

    2016-01-01

    Applying an expansion in spherical harmonics, turns the black hole with its microstates into something about as transparent as the hydrogen atom was in the early days of quantum mechanics. It enables us to present a concise description of the evolution laws of these microstates, linking them to perturbative quantum field theory, in the background of the Schwarzschild metric. Three pieces of insight are obtained: One, we learn how the gravitational back reaction, whose dominant component can be calculated exactly, turns particles entering the hole, into particles leaving it, by exchanging the momentum- and position operators; two, we find out how this effect removes firewalls, both on the future and the past event horizon, and three, we discover that the presence of region II in the Penrose diagram forces a topological twist in the background metric, culminating in antipodal identification. Although a cut-off is required that effectively replaces the transverse coordinates by a lattice, the effect of such a cu...

  10. Quantum spin dynamics of mode-squeezed Luttinger liquids in two-component atomic gases.

    Science.gov (United States)

    Widera, Artur; Trotzky, Stefan; Cheinet, Patrick; Fölling, Simon; Gerbier, Fabrice; Bloch, Immanuel; Gritsev, Vladimir; Lukin, Mikhail D; Demler, Eugene

    2008-04-11

    We report on the observation of many-body spin dynamics of interacting, one-dimensional (1D) ultracold bosonic gases with two spin states. By controlling the nonlinear atomic interactions close to a Feshbach resonance we are able to induce a phase diffusive many-body spin dynamics of the relative phase between the two components. We monitor this dynamical evolution by Ramsey interferometry, supplemented by a novel, many-body echo technique, which unveils the role of quantum fluctuations in 1D. We find that the time evolution of the system is well described by a Luttinger liquid initially prepared in a multimode squeezed state. Our approach allows us to probe the nonequilibrium evolution of one-dimensional many-body quantum systems.

  11. Quantum averaging and resonances: two-level atom in a one-mode classical laser field

    Directory of Open Access Journals (Sweden)

    M. Amniat-Talab

    2007-06-01

    Full Text Available   We use a nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet formalism. We illustrate this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained in the strong-coupling regime, are valid in the whole range of the coupling constant for the one-photon zero-field resonance.

  12. Photon-Pair Generation in Cold Atomic Ensemble for Long-Distance Quantum Communication

    Science.gov (United States)

    Kim, Pyeong Woo; Moon, Han Seb

    2017-04-01

    One of the common methods for overcoming limitation of long-distance quantum communication is using entangled photon pair sources between 1.5- μm band photon and near infrared photon. We investigate the three-photon electromagnetically induced absorption (TPEIA) and four-wave mixing (FWM) in the 5S1/2-5P3/2-4D5/2 transition of 87Rb atoms. We will report the photon-pairs with 780-nm and 1.5- μm generated by spontaneous four-wave mixing in this transition of 87Rb.

  13. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  14. Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2011-10-04

    Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO 2, we are able to grow QDs of adjustable size which act as sensitizers for solid-state QDsensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1-10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2\\',7,7\\'-tetrakis-(N,N-di-p methoxyphenylamine) 9,9\\'-spirobifluorene (spiro-OMeTAD) as the solid-state hole conductor. The ALD approach described here can be applied to fabrication of quantum-confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhiming, E-mail: 465609785@qq.com [School of Economics and Management, Wuyi University, Jiangmen 529020 (China); Situ, Haozhen, E-mail: situhaozhen@gmail.com [College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642 (China)

    2017-02-15

    In this article, the dynamics of quantum correlation and coherence for two atoms interacting with a bath of fluctuating massless scalar field in the Minkowski vacuum is investigated. We firstly derive the master equation that describes the system evolution with initial Bell-diagonal state. Then we discuss the system evolution for three cases of different initial states: non-zero correlation separable state, maximally entangled state and zero correlation state. For non-zero correlation initial separable state, quantum correlation and coherence can be protected from vacuum fluctuations during long time evolution when the separation between the two atoms is relatively small. For maximally entangled initial state, quantum correlation and coherence overall decrease with evolution time. However, for the zero correlation initial state, quantum correlation and coherence are firstly generated and then drop with evolution time; when separation is sufficiently small, they can survive from vacuum fluctuations. For three cases, quantum correlation and coherence first undergo decline and then fluctuate to relatively stable values with the increasing distance between the two atoms. Specially, for the case of zero correlation initial state, quantum correlation and coherence occur periodically revival at fixed zero points and revival amplitude declines gradually with increasing separation of two atoms.

  16. Quantum Phases with Bose-Condensed Cesium Atoms in an Optical Lattice

    Science.gov (United States)

    Zhang, Xibo; Hung, Chen-Lung; Gemelke, Nathan; Chin, Cheng

    2008-05-01

    The realization of the Mott-insulator to superfluid phase transition with neutral atoms in an optical lattice provides a tantalizing opportunity to test many-body physics with a high degree of accuracy. We report progress on an experimental and quantitative comparison of the superfluid to Mott-insulator quantum phase boundary with results from the Bose-Hubbard model, using Bose-condensed cesium atoms confined to a thin layer of an optical lattice potential. Feshbach resonances with cesium atoms enable us to scan the on-site interaction over a wide range without modifying the tunneling rate and the overall trapping potential; chemical potential can be adjusted by loading a varied mean atomic density into the lattice. We describe the physical apparatus constructed for this investigation, including novel construction designed to achieve precise and agile control of the magnetic field used in tuning interactions, adiabatic loading and manipulation of the lattice potential, and tight two-dimensional confinement applied to negate the effect of gravity without sacrifice in system homogeneity.

  17. A Rydberg Atom Ensemble-Surface Phonon Polariton Quantum Hybrid System

    Science.gov (United States)

    Chao, Yuanxi; Sheng, Jiteng; Bigelow, Nicholas P.; Shaffer, James P.

    2017-04-01

    We investigate a quantum hybrid system in the strong coupling regime, formed by a Rydberg atom ensemble and a surface phonon polariton (SPhP) propagating on a periodically poled piezoelectric metamaterial surface. We present our theoretical results and initial experiments on the possibilities for achieving strong coupling. Due to the large Rydberg transition dipole moments and the local field enhancement of confined SPhP excitations, the strong coupling regime can be achieved with a dilute atomic ensemble and a proper superlattice design according to our calculations. With submicron periodically poled crystals, even when the atomic ensemble is mms away from the crystal surface, the collective atom-surface coupling can exceed the loss rates, leading to the observation of strong coupling phenomena. For our work, the Rydberg transition from 87S1/2 to 87P1/2 in rubidium is chosen to couple to a SPhP mode at 5 GHz, corresponding to a periodically poled Lithium Niobate (PPLN) surface with a period of 1 μm . To fabricate the PPLN we use the direct e-beam write poling method. This work is supported by AFOSR.

  18. Optical Bragg, atomic Bragg and cavity QED detections of quantum phases and excitation spectra of ultracold atoms in bipartite and frustrated optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jinwu, E-mail: jy306@ccs.msstate.edu [Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048 (China); Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS 39762 (United States); Zhang, K.Y.; Li, Yan [Department of Physics, East China Normal university, Shanghai, 200062 (China); Chen, Yan [Department of Physics, State Key Laboratory of Surface Physics and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433 (China); Zhang, W.P. [Department of Physics, East China Normal university, Shanghai, 200062 (China)

    2013-01-15

    Ultracold atoms loaded on optical lattices can provide unprecedented experimental systems for the quantum simulations and manipulations of many quantum phases and quantum phase transitions between these phases. However, so far, how to detect these quantum phases and phase transitions effectively remains an outstanding challenge. In this paper, we will develop a systematic and unified theory of using the optical Bragg scattering, atomic Bragg scattering or cavity QED to detect the ground state and the excitation spectrum of many quantum phases of interacting bosons loaded in bipartite and frustrated optical lattices. The physically measurable quantities of the three experiments are the light scattering cross sections, the atom scattered clouds and the cavity leaking photons respectively. We show that the two photon Raman transition processes in the three detection methods not only couple to the density order parameter, but also the valence bond order parameter due to the hopping of the bosons on the lattice. This valence bond order coupling is very sensitive to any superfluid order or any valence bond (VB) order in the quantum phases to be probed. These quantum phases include not only the well-known superfluid and Mott insulating phases, but also other important phases such as various kinds of charge density waves (CDW), valence bond solids (VBS), and CDW-VBS phases with both CDW and VBS orders unique to frustrated lattices, and also various kinds of supersolids. We analyze respectively the experimental conditions of the three detection methods to probe these various quantum phases and their corresponding excitation spectra. We also address the effects of a finite temperature and a harmonic trap. We contrast the three scattering methods with recent in situ measurements inside a harmonic trap and argue that the two kinds of measurements are complementary to each other. The combination of both kinds of detection methods could be used to match the combination of

  19. Radio frequency superconducting quantum interference device meta-atoms and metamaterials: Experiment, theory and analysis

    Science.gov (United States)

    Zhang, Daimeng

    Metamaterials are 1D, 2D or 3D arrays of artificial atoms. The artificial atoms, called "meta-atoms", can be any component with tailorable electromagnetic properties, such as resonators, LC circuits, nano particles, and so on. By designing the properties of individual meta-atoms and the interaction created by putting them in a lattice, one can create a metamaterial with intriguing properties not found in nature. My Ph. D. work examines the meta-atoms based on radio frequency superconducting quantum interference devices (rf-SQUIDs); their tunability with dc magnetic field, rf magnetic field, and temperature are studied. The rf-SQUIDs are superconducting split ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. At relatively low rf magnetic field, a magnetic field tunability of the resonant frequency of up to 80 THz/Gauss by dc magnetic field is observed, and a total frequency tunability of 100% is achieved. The macroscopic quantum superconducting metamaterial also shows manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional electromagnetically induced transparency (EIT) or its classical analogs. A near complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bi-stability and can be tuned on/ off easily by altering rf and dc magnetic fields, temperature and history. Hysteretic in situ 100% tunability of transparency paves the way for auto-cloaking metamaterials, intensity dependent filters, and fast-tunable power limiters. An rf-SQUID metamaterial is shown to have qualitatively the same behavior as a single rf-SQUID with regards to dc flux, rf flux and temperature tuning. The two-tone response of self-resonant rf-SQUID meta-atoms and metamaterials is then studied here via

  20. Distinctive features of a crystal, crystal-like properties of a liquid and atomic quantum effects

    Energy Technology Data Exchange (ETDEWEB)

    Pavlov, V V [Ural State Mining University. Kuibyshev str. 30, Ekaterinburg, 620144 (Russian Federation)], E-mail: gmf.chm@ursmu.ru

    2008-02-15

    It is believed that 'a crystal is similar to the crowd which is tightly compressed within enclosed space' and its structure in the simplest case is similar to the closest ball packing. Based on this assumption the strength of a crystal, long range ordering, the granular structure, capability for polymorphic transformation etc. were deduced. In a liquid such properties are impossible even in feebly marked form. However some of crystal-like features of melts are revealed in experiments and they frequently remain unacknowledged with a theory. From the other hand, computer model of crystal does not give even listed distinctive features of a crystal state. In the classical model the solidification more than to sunflower oil consistence was not obtained. It is possible to reach the real solidification if quantum 'freezing' of a part of atomic degrees of freedom would taken into account and any movement would stopped at zero energy level. There are some reasons to believe that another crystal properties and corresponding crystal-like features of liquids also can be got basing on these atomic quantum effects. In this case the reasons of many discussions on 'heredity', 'memory' of liquid and its microheterogeneity disappear.

  1. QSATS: MPI-driven quantum simulations of atomic solids at zero temperature

    Science.gov (United States)

    Hinde, Robert J.

    2011-11-01

    We describe QSATS, a parallel code for performing variational path integral simulations of the quantum mechanical ground state of monatomic solids. QSATS is designed to treat Boltzmann quantum solids, in which individual atoms are permanently associated with distinguishable crystal lattice sites and undergo large-amplitude zero-point motions around these sites. We demonstrate the capabilities of QSATS by using it to compute the total energy and potential energy of hexagonal close packed solid 4He at the density ρ=4.61421×10a0-3. Program summaryProgram title:QSATS Catalogue identifier: AEJE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7329 No. of bytes in distributed program, including test data, etc.: 61 685 Distribution format: tar.gz Programming language: Fortran 77. Computer: QSATS should execute on any distributed parallel computing system that has the Message Passing Interface (MPI) [1] libraries installed. Operating system: Unix or Linux. Has the code been vectorized or parallelized?: Yes, parallelized using MPI [1]. RAM: The memory requirements of QSATS depend on both the number of atoms in the crystal and the number of replicas in the variational path integral chain. For parameter sets A and C (described in the long write-up), approximately 4.5 Mbytes and 12 Mbytes, respectively, are required for data storage by QSATS (exclusive of the executable code). Classification: 7.7, 16.13. External routines: Message Passing Interface (MPI) [1] Nature of problem: QSATS simulates the quantum mechanical ground state for a monatomic crystal characterized by large-amplitude zero-point motions of individual (distinguishable) atoms around their nominal lattice sites. Solution method: QSATS employs

  2. Finite quantal systems -- from semiconductor quantum dots to cold atoms in traps

    Science.gov (United States)

    Reimann, Stephanie M.

    2007-03-01

    Many-body systems that are set rotating may form vortices, characterized by rotating motion around a central cavity. This is familiar to us from every-day life: you can observe vortices while stirring your coffee, or watching a hurricane. In quantum physics, vortices are known to occur in superconducting films and rotating bosonic He-4 or fermionic He-3 liquids, and recently became a hot topic in the research on cold atoms in traps. Here we show that the rotation of trapped particles with a repulsive interaction may lead to vortex formation regardless of whether the particles are bosons or fermions. The exact many-particle wave function provides evidence that the mechanism is very similar in both cases. We discuss the close relation between rotating BECs and quantum dots at strong magnetic fields. The vortices can stick to particles to form composite particles, but also occur without association to any particular particle. In quantum dots we find off-electron vortices that are localized, giving rise to charge deficiency or holes in the density, with rotating currents around them. The vortex formation is observable in the energetics of the system. ``Giant vortices'' may form in anharmonic potentials. Here, the vortices accumulate at the trap center, leading to large cores in the electron and current densities. Turning from single traps to periodic lattices, we comment upon the analogies between optical lattices with cold fermionic atoms, and regular arrays of few-electron quantum dots. Trapping a few (N shell structure in the quantum wells determines the magnetism, leading to a systematic sequence of non-magnetic, ferromagnetic and antiferromagnetic states. M. Toreblad et al., Phys. Rev. Lett. 93, 090407 (2004); H. Saarikoski, et al., Phys. Rev. Lett. 93, 116802 (2004) , Phys. Rev. B 71, 035421 (2005); M. Manninen, et al., Phys. Rev. Lett. 94, 106405 (2005); E. R"as"anen, et al., Phys. Rev. B 73, 235324 (2006); M. Koskinen, et al., Phys. Rev. Lett. 90, 066802 (2003

  3. Coherent scattering of an atom in the field of a standing wave under conditions of initial quantum correlation of subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Trubilko, A. I., E-mail: trubilko.andrey@gmail.com [St. Petersburg University of State Fire Service of the Russian Ministry of Emergency Situations (Russian Federation)

    2016-10-15

    Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity and to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.

  4. Nanofabrication for On-Chip Optical Levitation, Atom-Trapping, and Superconducting Quantum Circuits

    Science.gov (United States)

    Norte, Richard Alexander

    a final value of Qm = 5.8(1.1) x 105, representing more than an order of magnitude improvement over the conventional limits of SiO2 for a pendulum geometry. Our technique may enable new opportunities for mechanical sensing and facilitate observations of quantum behavior in this class of mechanical systems. We then give a detailed overview of the techniques used to produce high-aspect-ratio nanostructures with applications in a wide range of quantum optics experiments. The ability to fabricate such nanodevices with high precision opens the door to a vast array of experiments which integrate macroscopic optical setups with lithographically engineered nanodevices. Coupled with atom-trapping experiments in the Kimble Lab, we use these techniques to realize a new waveguide chip designed to address ultra-cold atoms along lithographically patterned nanobeams which have large atom-photon coupling and near 4pi Steradian optical access for cooling and trapping atoms. We describe a fully integrated and scalable design where cold atoms are spatially overlapped with the nanostring cavities in order to observe a resonant optical depth of d0 ≈ 0.15. The nanodevice illuminates new possibilities for integrating atoms into photonic circuits and engineering quantum states of atoms and light on a microscopic scale. We then describe our work with superconducting microwave resonators coupled to a phononic cavity towards the goal of building an integrated device for quantum-limited microwave-to-optical wavelength conversion. We give an overview of our characterizations of several types of substrates for fabricating a low-loss high-frequency electromechanical system. We describe our electromechanical system fabricated on a SiN membrane which consists of a 12 GHz superconducting LC resonator coupled capacitively to the high frequency localized modes of a phononic nanobeam. Using our suspended membrane geometry we isolate our system from substrates with significant loss tangents

  5. Realization of quantum anomalous Hall effect in graphene from n -p codoping-induced stable atomic adsorption

    Science.gov (United States)

    Deng, Xinzhou; Qi, Shifei; Han, Yulei; Zhang, Kunhua; Xu, Xiaohong; Qiao, Zhenhua

    2017-03-01

    Using first-principles calculation methods, we study the possibility of realizing a quantum anomalous Hall effect in graphene from stable 3 d atomic adsorption via a charge-compensated n -p codoping scheme. As concrete examples, we show that long-range ferromagnetism can be established by codoping 3 d transition metal and boron atoms, but only the Ni codopants can open up a global bulk gap to harbor the quantum anomalous Hall effect. Our estimated ferromagnetic Curie transition temperature can reach over 10 K for various codoping concentrations.

  6. Realization of Quantum Anomalous Hall Effect in Graphene from n-p Codoping Induced Stable Atomic-Adsorption

    Science.gov (United States)

    Deng, Xinzhou; Qi, Shifei; Han, Yulei; Zhang, Kunhua; Xu, Xiaohong; Qiao, Zhenhua

    Using first-principles calculation methods, we study the possibility of realizing quantum anomalous Hall effect in graphene from stable 3d-atomic adsorption via charge-compensated n-p codoping scheme. As concrete examples, we show that long-range ferromagnetism can be established by codoping 3d transition metal and boron atoms, but only the Ni codopants can open up a global bulk gap to harbour the quantum anomalous Hall effect. Our estimated ferromagnetic Curie transition temperature can reach over 10 Kelvin for various codoping concentrations.

  7. Realization of Quantum Anomalous Hall Effect in Graphene from \\textit{n}-\\textit{p} Codoping Induced Stable Atomic-Adsorption

    OpenAIRE

    Deng, Xinzhou; Qi, Shifei; Han, Yulei; Zhang, Kunhua; Xu, Xiaohong; Qiao, Zhenhua

    2017-01-01

    Using first-principles calculation methods, we study the possibility of realizing quantum anomalous Hall effect in graphene from stable 3\\textit{d}-atomic adsorption via charge-compensated \\textit{n}-\\textit{p} codoping scheme. As concrete examples, we show that long-range ferromagnetism can be established by codoping 3\\textit{d} transition metal and boron atoms, but only the Ni codopants can open up a global bulk gap to harbour the quantum anomalous Hall effect. Our estimated ferromagnetic C...

  8. Quantum many-body dynamics of ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Stefan

    2014-04-15

    Ultracold atoms can be trapped in periodic intensity patterns of light created by counterpropagating laser beams, so-called optical lattices. In contrast to its natural counterpart, electrons in a solid state crystal, this man-made setup is very clean and highly isolated from environmental degrees of freedom. Moreover, to a large extent, the experimenter has dynamical control over the relevant system parameters: the interaction between atoms, the tunneling amplitude between lattice sites, and even the dimensionality of the lattice. These advantages render this system a unique platform for the simulation of quantum many-body dynamics for various lattice Hamiltonians as has been demonstrated in several experiments by now. The most significant step in recent times has arguably been the introduction of single-site detection of individual atoms in optical lattices. This technique, based on fluorescence microscopy, opens a new doorway for the study of quantum many-body states: the detection of the microscopic atom configuration. In this thesis, we theoretically explore the dynamics of ultracold atoms in optical lattices for various setups realized in present-day experiments. Our main focus lies on aspects that become experimentally accessible by (realistic extensions of) the novel single-site measurement technique. The first part deals with the expansion of initially confined atoms in a homogeneous lattice, which is one way to create atomic motion in experiments. We analyze the buildup of spatial correlations during the expansion of a finitely extended band insulating state in one dimension. The numerical simulation reveals the creation of remote spin-entangled fermions in the strongly interacting regime. We discuss the experimental observation of such spin-entangled pairs by means of a single-site measurement. Furthermore, we suggest studying the impact of observations on the expansion dynamics for the extreme case of a projective measurement in the spatial occupation

  9. Atom-chip-based quantum gravimetry for the precise determination of absolute gravity

    Science.gov (United States)

    Abend, Sven; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst

    2017-04-01

    We present a novel technique for the precise measurement of absolute local gravity with a quantum gravimeter based on an atom chip. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal [1]. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates [2], as ultra-sensitive probes for gravity. These sources offer unique properties that will allow to overcome the current limitations in the next generation of sensors. Furthermore, atom-chip technology offers the possibility to generate Bose-Einstein condensates in a fast and reliable way. We present a lab-based prototype that uses the atom chip itself to retro-reflect the interrogation laser and thus serves as inertial reference inside the vacuum [3]. With this setup, it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal. All steps are pursued on a baseline of 1 cm right below the atom chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will target for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz [4]. The device will be characterized in cooperation with the Müller group at the Institut für Erdmessung the sensor and finally employed in a campaign to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is supported by the CRC 1227 DQ-mat, the

  10. The atomic world spooky? It ain't necessarily so! emergent quantum mechanics, how the classical laws of nature can conspire to cause quantum-like behaviour

    CERN Document Server

    van Holten, Theo

    2017-01-01

    The present book takes the discovery that quantum-like behaviour is not solely reserved to atomic particles one step further. If electrons are modelled as vibrating droplets instead of the usually assumed point objects, and if the classical laws of nature are applied, then exactly the same behaviour as in quantum theory is found, quantitatively correct! The world of atoms is strange and quantum mechanics, the theory of this world, is almost magic. Or is it? Tiny droplets of oil bouncing round on a fluid surface can also mimic the world of quantum mechanics. For the layman - for whom the main part of this book is written - this is good news. If the everyday laws of nature can conspire to show up quantum-like phenomena, there is hope to form mental pictures how the atomic world works. The book is almost formula-free, and explains everything by using many sketches and diagrams. The mathematical derivations underlying the main text are kept separate in a -peer reviewed - appendix. The author, a retired professor ...

  11. Davisson-Germer Prize Talk: Atomically Uniform Thin Films as Quantum Wells and Device Components

    Science.gov (United States)

    Chiang, Tai C.

    2015-03-01

    Atomically uniform films can be made for various overlayer-substrate combinations (such as Ag, Pb, Sb, ...on Si, Ge, Fe, ...), many of which are not even lattice matched. These films show remarkable property variations as the film thickness is built up in atomic-layer increments. The thermal stability of the film, its work function, electron-phonon coupling, superconducting transition temperature, etc. exhibit damped and modulated oscillations as the film thickness increases toward the bulk limit. The underlying physics can be understood generally in terms of the energetics of a coarsened electronic structure of thin films and more specifically in terms of a ''one-dimensional shell effect'' - the quantized electronic levels in the film are progressively filled at increasing film thicknesses just like the elemental atomic shells in going through the periodic table. The phase and the amplitude of the oscillations can be tailored by surface/interface engineering that leads to changes in the surface potential and the interface Schottky barrier or band mismatch. These quantum size and confinement effects are important and observable at film thicknesses well in the realm of practical device dimensions and at room temperature, suggesting opportunities for applications. When the films are made of topologically nontrivial materials, the electron spin and its transport become relevant parameters. This talk will discuss issues related to uniform film growth, general trends in connection with reduced dimensions, surprising findings including phonon-mediated pseudogaps, and technology potential.

  12. Towards quantum chemistry on a quantum computer.

    Science.gov (United States)

    Lanyon, B P; Whitfield, J D; Gillett, G G; Goggin, M E; Almeida, M P; Kassal, I; Biamonte, J D; Mohseni, M; Powell, B J; Barbieri, M; Aspuru-Guzik, A; White, A G

    2010-02-01

    Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

  13. Quantum discord protection of a two-qutrit V-type atomic system from decoherence by partially collapsing measurements

    Science.gov (United States)

    Behzadi, N.; Faizi, E.; Heibati, O.

    2017-10-01

    In this paper, by exploiting the weak measurement and quantum measurement reversal procedure, we propose a scheme to show how one can protect the geometric quantum discord (GQD) of a two-qutrit V-type atomic system each of which interacts with a dissipative reservoir independently. We examine the scheme for the GQD of the initial two-qutrit Werner and Horodecki states for different classes of weak measurement strengths. It is found out that the presented protocol enables us to suppress decoherence due to the amplitude damping channel and preserve the quantum discord of the two-qutrit system successfully.

  14. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors

    Science.gov (United States)

    Dąbrowski, M.; Chrapkiewicz, R.; Wasilewski, W.

    2016-11-01

    Warm atomic vapor quantum memories are simple and robust, yet suffer from a number of parasitic processes which produce excess noise. For operating in a single-photon regime precise filtering of the output light is essential. Here, we report a combination of magnetically tuned absorption and Faraday filters, both light-direction insensitive, which stop the driving lasers and attenuate spurious fluorescence and four-wave mixing while transmitting narrowband Stokes and anti-Stokes photons generated in write-in and readout processes. We characterize both filters with respect to adjustable working parameters. We demonstrate a significant increase in the signal-to-noise ratio upon applying the filters seen qualitatively in measurements of correlation between the Raman scattered photons.

  15. Phase locking of a semiconductor double-quantum-dot single-atom maser

    Science.gov (United States)

    Liu, Y.-Y.; Hartke, T. R.; Stehlik, J.; Petta, J. R.

    2017-11-01

    We experimentally study the phase stabilization of a semiconductor double-quantum-dot (DQD) single-atom maser by injection locking. A voltage-biased DQD serves as an electrically tunable microwave frequency gain medium. The statistics of the maser output field demonstrate that the maser can be phase locked to an external cavity drive, with a resulting phase noise L =-99 dBc/Hz at a frequency offset of 1.3 MHz. The injection locking range, and the phase of the maser output relative to the injection locking input tone are in good agreement with Adler's theory. Furthermore, the electrically tunable DQD energy level structure allows us to rapidly switch the gain medium on and off, resulting in an emission spectrum that resembles a frequency comb. The free running frequency comb linewidth is ≈8 kHz and can be improved to less than 1 Hz by operating the comb in the injection locked regime.

  16. Quantum coherent control of the photoelectron angular distribution in bichromatic-field ionization of atomic neon

    Science.gov (United States)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Staroselskaya, E. I.; Douguet, N.; Bartschat, K.

    2018-01-01

    We investigate the coherent control of the photoelectron angular distribution in bichromatic atomic ionization. Neon is selected as target since it is one of the most popular systems in current gas-phase experiments with free-electron lasers (FELSs). In particular, we tackle practical questions, such as the role of the fine-structure splitting, the pulse length, and the intensity. Time-dependent and stationary perturbation theory are employed, and we also solve the time-dependent Schrödinger equation in a single-active electron model. We consider neon ionized by a FEL pulse whose fundamental frequency is in resonance with either 2 p -3 s or 2 p -4 s excitation. The contribution of the nonresonant two-photon process and its potential constructive or destructive role for quantum coherent control is investigated.

  17. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  18. Single atom cavity quantum electrodynamics with non-transversally polarized light fields

    Energy Technology Data Exchange (ETDEWEB)

    Junge, Christian; O' Shea, Danny; Volz, Juergen; Rauschenbeutel, Arno [Vienna Center for Quantum Science and Technology, TU Wien, Atominstitut, Stadionallee 2, A-1020 Wien (Austria)

    2013-07-01

    Whispering-gallery-mode (WGM) microresonators are versatile devices for enhancing light-matter interaction. They combine ultra high quality factors and small mode volumes with near lossless in- and out-coupling of light via tapered fiber couplers. Here, we report on a cavity quantum electrodynamics (CQED) experiment in which single {sup 85}Rb atoms interact in the strong coupling regime with a WGM in an ultra high-Q bottle microresonator. We present optical transmission spectra of our system that fundamentally deviate from the predictions of the established theoretical model for CQED in ring resonators. We identify the non-transversal character of the field of WGMs as the origin of this discrepancy. Excellent agreement is found between our data and the predictions of an extended theoretical model that accounts for the full vectorial description of the WGMs. Our studies demonstrate that the non-transversal character of WGMs allows one to realize a paradigmatic quantum system that is ideally suited for basic studies as well as for technological applications.

  19. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots.

    Science.gov (United States)

    Vanacore, Giovanni M; Hu, Jianbo; Liang, Wenxi; Bietti, Sergio; Sanguinetti, Stefano; Carbone, Fabrizio; Zewail, Ahmed H

    2017-07-01

    Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots-grown by Droplet Epitaxy on AlGaAs-with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.

  20. Perfect/complete scattering experiments probing quantum mechanics on atomic and molecular collisions and coincidences

    CERN Document Server

    Kleinpoppen, Hans; Grum-Grzhimailo, Alexei N

    2013-01-01

    The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter.  The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory.  It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'.  The language of the related theory is the language of quantum mechanical amplitudes and their relative phases.  This book captures the spi...

  1. Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots

    Directory of Open Access Journals (Sweden)

    Giovanni M. Vanacore

    2017-07-01

    Full Text Available Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots—grown by Droplet Epitaxy on AlGaAs—with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.

  2. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.

    Science.gov (United States)

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E

    2014-11-14

    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

  3. Quantum physics of light and matter a modern introduction to photons, atoms and many-body systems

    CERN Document Server

    Salasnich, Luca

    2014-01-01

    The book gives an introduction to the field quantization (second quantization) of light and matter with applications to atomic physics. The first chapter briefly reviews the origins of special relativity and quantum mechanics and the basic notions of quantum information theory and quantum statistical mechanics. The second chapter is devoted to the second quantization of the electromagnetic field, while the third chapter shows the consequences of the light field quantization in the description of electromagnetic transitions.In the fourth chapter it is analyzed the spin of the electron, and in particular its derivation from the Dirac equation, while the fifth chapter investigates the effects of external electric and magnetic fields on the atomic spectra (Stark and Zeeman effects). The sixth chapter describes the properties of systems composed by many interacting identical particles by introducing the Hartree-Fock variational method, the density functional theory, and the Born-Oppenheimer approximation. Finally,...

  4. FUV quantum efficiency degradation of cesium iodide photocathodes caused by exposure to thermal atomic oxygen

    Science.gov (United States)

    McPhate, Jason; Anne, Joshi; Bacinski, John; Banks, Bruce; Cates, Carey; Christensen, Paul; Cruden, Brett; Dunham, Larry; Graham, Eric; Hughes, David; Kimble, Randy; Lupie, Olivia; Niedner, Malcolm; Osterman, Steven; Penton, Steven; Proffitt, Charles; Pugel, Diane; Siegmund, Oswald; Wheeler, Thomas

    2011-09-01

    The color dependence of the measured decline of the on-orbit sensitivity of the FUV channel of the HST Cosmic Origins Spectrograph (HST-COS) indicated the principal loss mechanism to be degradation of the cesium iodide (CsI) photocathode of the open-faced FUV detector. A possible cause of this degradation is contamination by atomic oxygen (AO), prompting an investigation of the interaction of AO with CsI. To address this question, opaque CsI photocathodes were deposited on stainless steel substrates employing the same deposition techniques and parameters used for the photocathodes of the HST-COS FUV detector. The as-deposited FUV quantum efficiency of these photocathodes was measured in the 117-174 nm range. Several of the photocathodes were exposed to varying levels of thermalized, atomic oxygen (AO) fluence (produced via an RF plasma). The post AO exposure QE's were measured and the degradation of sensitivity versus wavelength and AO fluence are presented.

  5. The Strength of Chaos: Accurate Simulation of Resonant Electron Scattering by Many-Electron Ions and Atoms in the Presence of Quantum Chaos

    Science.gov (United States)

    2017-01-20

    AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos: accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...SUBTITLE The Strength of Chaos: accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos...Strength of Chaos: accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence of quantum chaos” Date 13

  6. Full quantum mechanical analysis of atomic three-grating Mach–Zehnder interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, A.S., E-mail: asanz@iff.csic.es [Instituto de Física Fundamental (IFF-CSIC), Serrano 123, 28006 Madrid (Spain); Davidović, M. [Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia); Božić, M. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia)

    2015-02-15

    Atomic three-grating Mach–Zehnder interferometry constitutes an important tool to probe fundamental aspects of the quantum theory. There is, however, a remarkable gap in the literature between the oversimplified models and robust numerical simulations considered to describe the corresponding experiments. Consequently, the former usually lead to paradoxical scenarios, such as the wave–particle dual behavior of atoms, while the latter make difficult the data analysis in simple terms. Here these issues are tackled by means of a simple grating working model consisting of evenly-spaced Gaussian slits. As is shown, this model suffices to explore and explain such experiments both analytically and numerically, giving a good account of the full atomic journey inside the interferometer, and hence contributing to make less mystic the physics involved. More specifically, it provides a clear and unambiguous picture of the wavefront splitting that takes place inside the interferometer, illustrating how the momentum along each emerging diffraction order is well defined even though the wave function itself still displays a rather complex shape. To this end, the local transverse momentum is also introduced in this context as a reliable analytical tool. The splitting, apart from being a key issue to understand atomic Mach–Zehnder interferometry, also demonstrates at a fundamental level how wave and particle aspects are always present in the experiment, without incurring in any contradiction or interpretive paradox. On the other hand, at a practical level, the generality and versatility of the model and methodology presented, makes them suitable to attack analogous problems in a simple manner after a convenient tuning. - Highlights: • A simple model is proposed to analyze experiments based on atomic Mach–Zehnder interferometry. • The model can be easily handled both analytically and computationally. • A theoretical analysis based on the combination of the position and

  7. Fast generation of N-atom Greenberger-Horne-Zeilinger state in separate coupled cavities via transitionless quantum driving

    Science.gov (United States)

    Shan, Wu-Jiang; Xia, Yan; Chen, Ye-Hong; Song, Jie

    2016-06-01

    By jointly using quantum Zeno dynamics and the approach of "transitionless quantum driving (TQD)" proposed by Berry to construct shortcuts to adiabatic passage, we propose an efficient scheme to fast generate multiatom Greenberger-Horne-Zeilinger (GHZ) state in separate cavities connected by optical fibers only by one-step manipulation. We first detail the generation of the three-atom GHZ state via TQD; then, we compare the proposed TQD scheme with the traditional ones with adiabatic passage. At last, the influence of various decoherence factors, such as spontaneous emission, cavity decay and fiber photon leakage, is discussed by numerical simulations. All of the results show that the present TQD scheme is fast and insensitive to atomic spontaneous emission and fiber photon leakage. Furthermore, the scheme can be directly generalized to realize N-atom GHZ state generation by the same principle in theory.

  8. Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.

    Science.gov (United States)

    Althorpe, Stuart C

    2004-07-15

    We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics

  9. Variational theory of average-atom and superconfigurations in quantum plasmas.

    Science.gov (United States)

    Blenski, T; Cichocki, B

    2007-05-01

    Models of screened ions in equilibrium plasmas with all quantum electrons are important in opacity and equation of state calculations. Although such models have to be derived from variational principles, up to now existing models have not been fully variational. In this paper a fully variational theory respecting virial theorem is proposed-all variables are variational except the parameters defining the equilibrium, i.e., the temperature T, the ion density ni and the atomic number Z. The theory is applied to the quasiclassical Thomas-Fermi (TF) atom, the quantum average atom (QAA), and the superconfigurations (SC) in plasmas. Both the self-consistent-field (SCF) equations for the electronic structure and the condition for the mean ionization Z* are found from minimization of a thermodynamic potential. This potential is constructed using the cluster expansion of the plasma free energy from which the zero and the first-order terms are retained. In the zero order the free energy per ion is that of the quantum homogeneous plasma of an unknown free-electron density n0 = Z* ni occupying the volume 1/ni. In the first order, ions submerged in this plasma are considered and local neutrality is assumed. These ions are considered in the infinite space without imposing the neutrality of the Wigner-Seitz (WS) cell. As in the Inferno model, a central cavity of a radius R is introduced, however, the value of R is unknown a priori. The charge density due to noncentral ions is zero inside the cavity and equals en0 outside. The first-order contribution to free energy per ion is the difference between the free energy of the system "central ion+infinite plasma" and the free energy of the system "infinite plasma." An important part of the approach is an "ionization model" (IM), which is a relation between the mean ionization charge Z* and the first-order structure variables. Both the IM and the local neutrality are respected in the minimization procedure. The correct IM in the TF case

  10. Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence

    CERN Document Server

    Orszag, Miguel

    2016-01-01

    This new edition gives a unique and broad coverage of basic laser-related phenomena that allow graduate students, scientists and engineers to carry out research in quantum optics and laser physics. It covers quantization of the electromagnetic field, quantum theory of coherence, atom-field interaction models, resonance fluorescence, quantum theory of damping, laser theory using both the master equation and the Langevin theory, the correlated emission laser, input-output theory with applications to non-linear optics, quantum trajectories, quantum non-demolition measurements and generation of non-classical vibrational states of ions in a Paul trap. In this third edition, there is an enlarged chapter on trapped ions, as well as new sections on quantum computing and quantum bits with applications. There is also additional material included for quantum processing and entanglement. These topics are presented in a unified and didactic manner, each chapter is accompanied by specific problems and hints to solutions to...

  11. The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, C.J., E-mail: colin.humphreys@msm.cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Griffiths, J.T., E-mail: jg641@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Tang, F., E-mail: ft274@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Oehler, F., E-mail: fabrice.oehler@lpn.cnrs.fr [CNRS/C2N, Paris Sud University, Route de Nozay, 91460 Marcoussis (France); Findlay, S.D., E-mail: scott.findlay@monash.edu [School of Physics and Astronomy, Monash University, Victoria 3800 (Australia); Zheng, C., E-mail: changlin.zheng@monash.edu [Monash Centre for Electron Microscopy, Monash University, Victoria 3800 (Australia); Etheridge, J., E-mail: joanne.etheridge@mcem.monash.edu [Department of Materials Science and Engineering, Monash University, Victoria 3800 (Australia); Martin, T.L., E-mail: tomas.martin@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Bagot, P.A.J., E-mail: paul.bagot@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Moody, M.P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Sutherland, D., E-mail: danny.sutherland@manchester.ac.uk [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Dawson, P., E-mail: philip.dawson@manchester.ac.uk [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Schulz, S., E-mail: stefan.schulz@tyndall.ie [Tyndall National Institute, Lee Maltings Complex, Dyke Parade, Cork (Ireland); and others

    2017-05-15

    Highlights: • We have studied the atomic structure of polar and non-polar InGaN quantum wells. • The non-polar (11-20) InGaN quantum wells contain indium-rich clusters, unlike the polar (0001) quantum wells. • The electrons and holes in the quantum wells are localised by different mechanisms. - Abstract: We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20 meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60 meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs.

  12. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    Science.gov (United States)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  13. Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model

    CERN Document Server

    Kuno, Yoshihito; Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2016-01-01

    In this paper, we study atomic quantum simulations of a U(1) gauge-Higgs model on a three-dimensional (3D) spatial lattice. We start from an extended 3D Bose-Hubbard model with nearest-neighbor repulsions and show that it can simulate a U(1) gauge-Higgs model with next nearest-neighbor Higgs couplings. Here the phase of the boson variable on each site of the optical lattice describes the vector potential on each link of the gauge-model lattice. To determine the phase diagram of the gauge-Higgs model at a zero temperature, we perform Monte-Carlo simulations of the corresponding 3+1-dimensional U(1) gauge-Higgs model, and obtain the three phases, i.e., the confinement, Coulomb and Higgs phases. To investigate the dynamical properties of the gauge-Higgs model, we apply the Gross-Pitaevskii equations to the extended Bose-Hubbard model. We simulate the time-evolution of an electric flux initially put on a straight line connecting two external point charges. We also calculate the potential energy between this pair ...

  14. Quantum dynamics of STM and laser induced desorption of atoms and molecules from surfaces

    CERN Document Server

    Boendgen, G

    2001-01-01

    The manipulation of atoms and molecules at solid surfaces by electronic excitations with electrons (or holes) emitted from the tip of a scanning tunneling microscope (STM) or with laser radiation is both of applied and fundamental interest, e.g. for micro- and nanostructuring of materials, the clarification of elementary (catalytic) reaction mechanisms and for the question of how to treat the quantum dynamics of a laser or STM driven 'system' (the adsorbate) in contact with a dissipative (energy-withdrawing) 'bath' (the substrate). Desorption induced by electronic transitions (DIET) and its variant DIMET (M = multiple) are among the simplest possible 'reactions' of adsorbate-surface systems; usually involving extremely short-lived electronically excited intermediates. In this thesis, the ultra-short dynamics of directly (localised to the adsorbate-substrate complex) and indirectly (i.e., through the substrate) stimulated DIET and DIMET processes was studied for Si(100)-(2x1):H(D) and Pt(111):NO. Isotope effec...

  15. Enhancing the quantum state transfer between two atoms in separate cavities via weak measurement and its reversal

    Science.gov (United States)

    Li, Yan-Ling; Huang, Jinsong; Xu, Zhonghui; Xiao, Xing

    2017-10-01

    Taking the advantage of weak measurement and quantum measurement reversal, we propose a scheme to enhance the fidelity of transferring quantum state from one atom trapped in cavity to another distant one trapped in another cavity which is coupled by an optical fiber. It is turned out that the fidelity can be greatly improved even when the system is under serious dissipation. Moreover, the scheme works in both the strong-coupling and weak-coupling regimes. It is also robust to the ratio of the coupling constant between the atoms and the cavity modes to the coupling constant between the fiber and cavity modes. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.

  16. Atom Tunneling in the Hydroxylation Process of Taurine/α-Ketoglutarate Dioxygenase Identified by Quantum Mechanics/Molecular Mechanics Simulations.

    Science.gov (United States)

    Álvarez-Barcia, Sonia; Kästner, Johannes

    2017-06-01

    Taurine/α-ketoglutarate dioxygenase is one of the most studied α-ketoglutarate-dependent dioxygenases (αKGDs), involved in several biotechnological applications. We investigated the key step in the catalytic cycle of the αKGDs, the hydrogen transfer process, by a quantum mechanics/molecular mechanics approach (B3LYP/CHARMM22). Analysis of the charge and spin densities during the reaction demonstrates that a concerted mechanism takes place, where the H atom transfer happens simultaneously with the electron transfer from taurine to the Fe═O cofactor. We found the quantum tunneling of the hydrogen atom to increase the rate constant by a factor of 40 at 5 °C. As a consequence, a quite high kinetic isotope effect close to 60 is obtained, which is consistent with the experimental value.

  17. Tunable self-assembled spin chains of strongly interacting cold atoms for demonstration of reliable quantum state transfer

    DEFF Research Database (Denmark)

    Loft, N. J. S.; Marchukov, O. V.; Petrosyan, D.

    2016-01-01

    We have developed an efficient computational method to treat long, one-dimensional systems of strongly-interacting atoms forming self-assembled spin chains. Such systems can be used to realize many spin chain model Hamiltonians tunable by the external confining potential. As a concrete demonstrat...... demonstration, we consider quantum state transfer in a Heisenberg spin chain and we show how to determine the confining potential in order to obtain nearly-perfect state transfer....

  18. Quantum logic gates based on off-resonant cavity-assisted interaction between three-level atoms and single photons

    Science.gov (United States)

    Akbari, M.; Andrianov, S. N.; Kalachev, A. A.

    2017-07-01

    A scheme for implementing quantum gates on the basis of a hybrid system that consists of flying photons and a stationary three-level atom interacting with each other in a microring resonator is developed. By employing the Schrieffer-Wolf transformation, it is shown that various two-qubit gates can be implemented under conditions of dispersive interaction without the need for orthogonal Λ structure of optical transitions. As a promising system for implementation, NV centers are considered.

  19. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    Science.gov (United States)

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  20. Hey! A Flea Bit Me!

    Science.gov (United States)

    ... System Taking Care of Your Teeth Bad Breath Hey! A Flea Bit Me! KidsHealth > For Kids > Hey! A Flea Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Gnat Bit Me! Hey! A Bedbug Bit ...

  1. Effects of classical stochastic webs on the quantum dynamics of cold atomic gases in a moving optical lattice

    Science.gov (United States)

    Welch, N.; Greenaway, M. T.; Fromhold, T. M.

    2017-11-01

    We introduce and investigate a system that uses temporal resonance-induced phase-space pathways to create strong coupling between an atomic Bose-Einstein condensate and a traveling optical lattice potential. We show that these pathways thread both the classical and quantum phase space of the atom cloud, even when the optical lattice potential is arbitrarily weak. The topology of the pathways, which form weblike patterns, can by controlled by changing the amplitude and period of the optical lattice. In turn, this control can be used to increase and limit the BEC's center-of-mass kinetic energy to prespecified values. Surprisingly, the strength of the atom-lattice interaction and resulting BEC heating of the center-of-mass motion is enhanced by the repulsive interatomic interactions.

  2. SiNx-induced intermixing in AlInGaAs/InP quantum well through interdiffusion of group III atoms

    OpenAIRE

    Lee, Ko-Hsin; Thomas, Kevin; Gocalińska, Agnieszka M.; Manganaro, Marina; Pelucchi, Emanuele; Peters, Frank H.; Corbett, Brian M.

    2012-01-01

    We analyze the composition profiles within intermixed and non-intermixed AlInGaAs-based multiple quantum wells structures by secondary ion mass spectrometry and observe that the band gap blue shift is mainly attributed to the interdiffusion of In and Ga atoms between the quantum wells and the barriers. Based on these results, several AlInGaAs-based single quantum well (SQW) structures with various compressive strain (CS) levels were grown and their photoluminescence spectra were investigated ...

  3. Optical and Atomic Force Microscopy Characterization of PbI2 Quantum Dots

    Science.gov (United States)

    Mu, R.; Tung, Y. S.; Ueda, A.; Henderson, D. O.

    1997-01-01

    Lead iodide (PbI2) clusters were synthesized from the chemical reaction of NaI (or KI) with Pb(NO3)2 in H2O, D2O, CH3OH, and C3H7OH media. The observation of the absorption features above 350 nm with the help of integrating sphere accessory strongly suggests the quantum dot formation of PbI2 in solution. Spectral comparison between the synthesized PbI2 clusters in solution and PbI2 nanophase by impregnation of PbI2 in four different pore-sized porous silica indicates that the PbI2 cluster size in solution is less than 2.5 nm in lateral dimension. Atomic force microscopy (AFM) measurements show that the PbL clusters deposited onto three different molecularly flat surfaces are single-layered. The measured height is 1.0 - 0.1 nm. The swollen layer thickness can be attributed to the intralayer contraction from the strong lateral interaction among PbI2 molecules, which is supported by ab initio calculation. Raman scattering measurement of LO and TO modes of PbI2 in bulk and in the confined state were also conducted in 50-150 cu cm region. The observed three bands at 74, %, 106 1/cm are assigned to TO2, LO2, and LO, mode, respectively. The relatively small red-shift in LO modes may be caused by the surface phonon polaritons of PbI2 nanophase in the porous silica.

  4. Formation, atomic structure, and electronic properties of GaSb quantum dots in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Timm, R.

    2007-12-14

    In this work, cross-sectional scanning tunneling microscopy and spectroscopy are used for the first time to study the shape, size, strain, chemical composition, and electronic properties of capped GaSb/GaAs QDs at the atomic scale. By evaluating such structural results on a variety of nanostructures built using different epitaxy methods and growth conditions, details on the underlying QD formation processes can be revealed. A cross-over from flat quantum wells (QWs) to optically active QDs can be observed in samples grown by metalorganic chemical vapor deposition (MOCVD) with increasing amount of GaSb, including self-assembled Sb accumulations within a still two-dimensional layer and tiny three-dimensional GaSb islands probably acting as precursor structures. The QWs consist of significantly intermixed material with stoichiometries of maximally 50% GaSb, additionally exhibiting small gaps filled with GaAs. A higher GaSb content up to nearly pure material is found in the QDs, being characterized by small sizes of up to 8 nm baselength and about 2 nm height. In spite of the intermixing, all nanostructures have rather abrupt interfaces, and no significant Sb segregation in growth direction is observed. This changes completely when molecular beam epitaxy (MBE) is used as growth method, in which case individual Sb atoms are found to be distributed over several nm above the nanostructures. Massive group-V atomic exchange processes are causing this strong inter-mixing and Sb segregation during GaAs overgrowth. In combination with the large strain inherent to GaSb/GaAs QDs, this segregation upon overgrowth is assumed to be the reason for a unique structural phenomenon: All MBE-grown QDs, independent of the amount of deposited GaSb, exhibit a ring structure, consisting of a ring body of high GaSb content and a more or less extended central gap filled with GaAs. These rings have formed in a self-assembled way even when the initial GaSb layer was overgrown considerably fast

  5. Classical and quantum binding of a particle with arbitrary spin in the magnetic field of a current-carrying wire: a simple guide for atoms

    Science.gov (United States)

    Schmiedmayer, Jörg; Scrinzi, Armin

    1996-06-01

    A neutral atom with a magnetic moment can be bound to, and guided along, a current-carrying wire. The atom is attracted to regions of high field strength (high-field seeking state) and repelled from the wire by the centrifugal barrier. In the classical regime the atoms move in Kepler-like orbits. In the quantum regime, the system resembles a two-dimensional hydrogen atom in Rydberg-like states. The wire replaces the nucleus and the atom plays the role of the electron. We give a quantum mechanical and a classical description of the system. We rigorously prove the existence of infinitely many bound states for zero or finite wire cross section and any spin (F) of the atom. The bound-state energies closely follow a Coulomb-like behaviour with an effective angular momentum, 1355-5111/8/3/029/img5.

  6. Compact Single Site Resolution Cold Atom Experiment for Adiabatic Quantum Computing

    Science.gov (United States)

    2016-02-03

    Specifically, we will design and construct a set of compact single atom traps with integrated optics, suitable for heralded entanglement and loophole...technical development is to achieve fast loading and qubit manipulation in the single- atom traps, which will enable our scientific investigation. The...goal of our scientific investigation is to demonstrate high fidelity and fast atom - atom entanglement between physically 1. REPORT DATE (DD-MM-YYYY) 4

  7. Probing the properties of quantum matter; an experimental study in three parts using ultracold atoms

    NARCIS (Netherlands)

    Bons, P.C.

    2015-01-01

    The three experiments described in this thesis investigate fundamental properties of ultracold atoms. Using laser cooling and evaporative cooling, a dilute gas of sodium atoms is cooled to ~100 nK. Under these circumstances a Bose-Einstein condensate (BEC) forms, where millions of atoms collapse

  8. Quantum control of ultra-cold atoms: uncovering a novel connection between two paradigms of quantum nonlinear dynamics

    DEFF Research Database (Denmark)

    Wang, Jiao; Mouritzen, Anders Sørrig; Gong, Jiangbin

    2009-01-01

    .e. the kicked rotor model and the kicked Harper model, is established. In particular, it is shown that Hofstadter's butterfly quasi-energy spectrum in periodically driven quantum systems may soon be realized experimentally, with the effective Planck constant tunable by varying the time delay between two...

  9. Quantum-mechanical theory including angular momenta analysis of atom-atom collisions in a laser field

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1978-01-01

    The problem of two atoms colliding in the presence of an intense radiation field, such as that of a laser, is investigated. The radiation field, which couples states of different electronic symmetry, is described by the number state representation while the electronic degrees of freedom (plus spin-orbit interaction) are discussed in terms of a diabatic representation. The total angular momentum of the field-free system and the angular momentum transferred by absorption (or emission) of a photon are explicitly considered in the derivation of the coupled scattering equations. A model calculation is discussed for the Xe + F collision system.

  10. Solution of a set of population balance equations for atomic and molecular quantum levels in some particular cases

    Science.gov (United States)

    Lipovka, A. A.

    1995-06-01

    Recursion solutions of population balance equations for levels of a quantum system were obtained. The solutions generalize Seaton's ones for the case when there is an outward leak of populations and an influx of populations from outside, and populations of levels are affected by either an equilibrium field of external radiation or stimulated collisional transitions. A recursion solution was also obtained for populations of rotational levels of a diatomic molecule in a nonequilibrium radiation field with an account for populations' outward leak and influx from outside (in particular, by means of radiative association and dissociation). The solutions suggested are compact; they allow us to quickly and conveniently calculate populations of atomic and molecular quantum levels in various astrophysical problems.

  11. Car-Parrinello molecular dynamics study of the melting behaviors of n-atom (n = 6, 10) graphene quantum dots

    Science.gov (United States)

    Shekaari, Ashkan; Abolhassani, Mohammad Reza

    2017-06-01

    First-principles molecular dynamics has been applied to inquire into the melting behaviors of n-atom (n = 6, 10) graphene quantum dots (GQD6 and zigzag GQD10) within the temperature range of T = 0-500 K. The temperature dependence of the geometry of each quantum dot is thoroughly evaluated via calculating the related shape deformation parameters and the eigenvalues of the quadrupole tensors. Examining the variations of some phase-transition indicators such as root-mean-square bond length fluctuations and mean square displacements broadly proposes the value of Tm = 70 K for the melting point of GQD6 while a continuous, two-stage phase transition has been concluded for zigzag GQD10.

  12. Model of a realistic InP surface quantum dot extrapolated from atomic force microscopy results.

    Science.gov (United States)

    Barettin, Daniele; De Angelis, Roberta; Prosposito, Paolo; Auf der Maur, Matthias; Casalboni, Mauro; Pecchia, Alessandro

    2014-05-16

    We report on numerical simulations of a zincblende InP surface quantum dot (QD) on In₀.₄₈Ga₀.₅₂ buffer. Our model is strictly based on experimental structures, since we extrapolated a three-dimensional dot directly by atomic force microscopy results. Continuum electromechanical, [Formula: see text] bandstructure and optical calculations are presented for this realistic structure, together with benchmark calculations for a lens-shape QD with the same radius and height of the extrapolated dot. Interesting similarities and differences are shown by comparing the results obtained with the two different structures, leading to the conclusion that the use of a more realistic structure can provide significant improvements in the modeling of QDs fact, the remarkable splitting for the electron p-like levels of the extrapolated dot seems to prove that a realistic experimental structure can reproduce the right symmetry and a correct splitting usually given by atomistic calculations even within the multiband [Formula: see text] approach. Moreover, the energy levels and the symmetry of the holes are strongly dependent on the shape of the dot. In particular, as far as we know, their wave function symmetries do not seem to resemble to any results previously obtained with simulations of zincblende ideal structures, such as lenses or truncated pyramids. The magnitude of the oscillator strengths is also strongly dependent on the shape of the dot, showing a lower intensity for the extrapolated dot, especially for the transition between the electrons and holes ground state, as a result of a relevant reduction of the wave functions overlap. We also compare an experimental photoluminescence spectrum measured on an homogeneous sample containing about 60 dots with a numerical ensemble average derived from single dot calculations. The broader energy range of the numerical spectrum motivated us to perform further verifications, which have clarified some aspects of the experimental

  13. Landauer, Kubo, and microcanonical approaches to quantum transport and noise: A comparison and implications for cold-atom dynamics

    Science.gov (United States)

    Chien, Chih-Chun; Di Ventra, Massimiliano; Zwolak, Michael

    2014-08-01

    We compare the Landauer, Kubo, and microcanonical [J. Phys.: Condens. Matter 16, 8025 (2005), 10.1088/0953-8984/16/45/024] approaches to quantum transport for the average current, the entanglement entropy, and the semiclassical full-counting statistics (FCS). Our focus is on the applicability of these approaches to isolated quantum systems such as ultracold atoms in engineered optical potentials. For two lattices connected by a junction, we find that the current and particle number fluctuations from the microcanonical approach compare well with the values predicted by the Landauer formalism and FCS assuming a binomial distribution. However, we demonstrate that well-defined reservoirs (i.e., particles in Fermi-Dirac distributions) are not present for a substantial duration of the quasi-steady state. Thus, on the one hand, the Landauer assumption of reservoirs and/or inelastic effects is not necessary for establishing a quasi-steady state. Maintaining such a state indefinitely requires an infinite system, and in this limit well-defined Fermi-Dirac distributions can occur. On the other hand, as we show, the existence of a finite speed of particle propagation preserves the quasi-steady state irrespective of the existence of well-defined reservoirs. This indicates that global observables in finite systems may be substantially different from those predicted by an uncritical application of the Landauer formalism, with its underlying thermodynamic limit. Therefore, the microcanonical formalism which is designed for closed, finite-size quantum systems seems more suitable for studying particle dynamics in ultracold atoms. Our results highlight both the connection and differences with more traditional approaches to calculating transport properties in condensed matter systems, and will help guide the way to their simulations in cold-atom systems.

  14. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  15. Circuit-quantum electrodynamics with direct magnetic coupling to single-atom spin qubits in isotopically enriched 28Si

    Directory of Open Access Journals (Sweden)

    Guilherme Tosi

    2014-08-01

    Full Text Available Recent advances in silicon nanofabrication have allowed the manipulation of spin qubits that are extremely isolated from noise sources, being therefore the semiconductor equivalent of single atoms in vacuum. We investigate the possibility of directly coupling an electron spin qubit to a superconducting resonator magnetic vacuum field. By using resonators modified to increase the vacuum magnetic field at the qubit location, and isotopically purified 28Si substrates, it is possible to achieve coupling rates faster than the single spin dephasing. This opens up new avenues for circuit-quantum electrodynamics with spins, and provides a pathway for dispersive read-out of spin qubits via superconducting resonators.

  16. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    Energy Technology Data Exchange (ETDEWEB)

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada)

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells.

  17. Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms.

    Science.gov (United States)

    Stannigel, K; Hauke, P; Marcos, D; Hafezi, M; Diehl, S; Dalmonte, M; Zoller, P

    2014-03-28

    We show how engineered classical noise can be used to generate constrained Hamiltonian dynamics in atomic quantum simulators of many-body systems, taking advantage of the continuous Zeno effect. After discussing the general theoretical framework, we focus on applications in the context of lattice gauge theories, where imposing exotic, quasilocal constraints is usually challenging. We demonstrate the effectiveness of the scheme for both Abelian and non-Abelian gauge theories, and discuss how engineering dissipative constraints substitutes complicated, nonlocal interaction patterns by global coupling to laser fields.

  18. A millikelvin all-fiber cavity optomechanical apparatus for merging with ultra-cold atoms in a hybrid quantum system

    Science.gov (United States)

    Zhong, H.; Fläschner, G.; Schwarz, A.; Wiesendanger, R.; Christoph, P.; Wagner, T.; Bick, A.; Staarmann, C.; Abeln, B.; Sengstock, K.; Becker, C.

    2017-02-01

    We describe the construction of an apparatus designed to realize a hybrid quantum system comprised of a cryogenically cooled mechanical oscillator and ultra-cold 87Rb atoms coupled via light. The outstanding feature of our instrument is an in situ adjustable asymmetric all-fiber membrane-in-the-middle cavity located inside an ultra-high vacuum dilution refrigerator based cryostat. We show that Bose-Einstein condensates of N = 2 × 10 6 atoms can be produced in less than 20 s and demonstrate a single photon optomechanical coupling strength of g 0 = 2 π × 9 kHz employing a high-stress Si3N4 membrane with a mechanical quality factor Q m > 10 7 at a cavity setup temperature of TMiM = 480 mK.

  19. Hey! A Tick Bit Me!

    Science.gov (United States)

    ... System Taking Care of Your Teeth Bad Breath Hey! A Tick Bit Me! KidsHealth > For Kids > Hey! A Tick Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Brown Recluse Spider Bit Me! Hey! A ...

  20. High-fidelity Rydberg quantum gate via a two-atom dark state

    Science.gov (United States)

    Petrosyan, David; Motzoi, Felix; Saffman, Mark; Mølmer, Klaus

    2017-10-01

    We propose a two-qubit gate for neutral atoms in which one of the logical state components adiabatically follows a two-atom dark state formed by the laser coupling to a Rydberg state and a strong resonant dipole-dipole exchange interaction between two Rydberg excited atoms. Our gate exhibits optimal scaling of the intrinsic error probability E ∝(Bτ ) -1 with the interatomic interaction strength B and the Rydberg state lifetime τ . Moreover, the gate is resilient to variations in the interaction strength, and even for finite probability of double Rydberg excitation the gate does not excite atomic motion and experiences no decoherence due to internal-translational entanglement.

  1. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  2. Nuclei and quantum worlds; Dans l'atome, des mondes quantiques

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    2000-07-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information.

  3. Quantum storage of orbital angular momentum entanglement in cold atomic ensembles

    Science.gov (United States)

    Shi, Bao-Sen; Ding, Dong-Sheng; Zhang, Wei

    2018-02-01

    Electromagnetic waves have both spin momentum and orbital angular momentum (OAM). Light carrying OAM has broad applications in micro-particle manipulation, high-precision optical metrology, and potential high-capacity optical communications. In the concept of quantum information, a photon encoded with information in its OAM degree of freedom enables quantum networks to carry much more information and increase their channel capacity greatly compared with those of current technology because of the inherent infinite dimensions for OAM. Quantum memories are indispensable to construct quantum networks. Storing OAM states has attracted considerable attention recently, and many important advances in this direction have been achieved during the past few years. Here we review recent experimental realizations of quantum memories using OAM states, including OAM qubits and qutrits at true single photon level, OAM states entangled in a two-dimensional or a high-dimensional space, hyperentanglement and hybrid entanglement consisting of OAM and other degree of freedom in a physical system. We believe that all achievements described here are very helpful to study quantum information encoded in a high-dimensional space.

  4. Phase-sensitive atom localization for closed-loop quantum systems

    Science.gov (United States)

    Hamedi, H. R.; Juzeliūnas, Gediminas

    2016-07-01

    A scheme of high-precision two- and three-dimensional (3D) atom localization is proposed and analyzed by using a density matrix method for a five-level atom-light coupling scheme. In this system four strong laser components (which could be standing waves) couple a pair of atomic internal states to another pair of states in all possible ways to form a closed-loop diamond-shape configuration of the atom-light interaction. By systematically solving the density matrix equations of the motion, we show that the imaginary part of the susceptibility for the weak probe field is position dependent. As a result, one can obtain information about the position of the atom by measuring the resulting absorption spectra. Focusing on the signatures of the relative phase of the applied fields stemming from the closed- loop structure of the diamond- shape subsystem, we find out that there exists a significant phase dependence of the eigenvalues required to have a maximum in the probe absorption spectra. It is found that by properly selecting the controlling parameters of the system, a nearly perfect 2D atom localization can be obtained. Finally, we numerically explore the phase control of 3D atom localization for the present scheme and show the possibility to obtain 1/2 detecting probability of finding the atom at a particular volume in 3D space within one period of standing waves.

  5. Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity

    Science.gov (United States)

    Jensen, Kasper; Budvytyte, Rima; Thomas, Rodrigo A.; Wang, Tian; Fuchs, Annette M.; Balabas, Mikhail V.; Vasilakis, Georgios; Mosgaard, Lars D.; Stærkind, Hans C.; Müller, Jörg H.; Heimburg, Thomas; Olesen, Søren-Peter; Polzik, Eugene S.

    2016-07-01

    Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the first detection of action potentials from an animal nerve using an optical atomic magnetometer. Using an optimal design we are able to achieve the sensitivity dominated by the quantum shot noise of light and quantum projection noise of atomic spins. Such sensitivity allows us to measure the nerve impulse with a miniature room-temperature sensor which is a critical advantage for biomedical applications. Positioning the sensor at a distance of a few millimeters from the nerve, corresponding to the distance between the skin and nerves in biological studies, we detect the magnetic field generated by an action potential of a frog sciatic nerve. From the magnetic field measurements we determine the activity of the nerve and the temporal shape of the nerve impulse. This work opens new ways towards implementing optical magnetometers as practical devices for medical diagnostics.

  6. Extended Bose-Hubbard model and atomic quantum simulation of U(1) gauge-Higgs model in (1 + 1) dimensions

    CERN Document Server

    Kuno, Yoshihito; Sakane, Shinya; Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2016-01-01

    In this paper, we study atomic quantum simulations of $(1+1)$-dimensional($(1+1)$D) U(1) gauge-Higgs models (GHMs) defined on a lattice. We explain how U(1) lattice GHMs appear from an extended Bose-Hubbard model (EBHM) describing ultra-cold atoms with a nearest neighbor repulsion in a 1D optical lattice. We first study a phase diagram of the 1D EBHM at low fillings by means of a quantum Monte-Carlo(MC) simulation. Next, we study the EBHM at large fillings and also GHMs by the MC simulations in the path-integral formalism and show that there are four phases, i.e., the Higgs phase(superfluid), the confinement phase (Mott insulator), and phases corresponding to the density wave and the supersolid. With the obtained phase diagrams, we investigate the relationship between the two models. Finally, we study real-time dynamic of an electric flux in the GHMs by the Gross-Pitaevskii equations and the truncated Wigner approximation.

  7. Atomic-scale nuclear spin imaging using quantum-assisted sensors in diamond

    Science.gov (United States)

    Ajoy, Ashok; Bissbort, Ulf; Liu, Yixiang; Marseglia, Luca; Saha, Kasturi; Cappellaro, Paola

    2015-05-01

    Recent developments in materials fabrication and coherent control have brought quantum magnetometers based on electronic spin defects in diamond close to single nuclear spin sensitivity. These quantum sensors have the potential to be a revolutionary tool in proteomics, thus helping drug discovery: They can overcome some of the challenges plaguing other experimental techniques (x-ray and NMR) and allow single protein reconstruction in their natural conditions. While the sensitivity of diamond-based magnetometers approaches the single nuclear spin level, the outstanding challenge is to resolve contributions arising from distinct nuclear spins in a dense sample and use the acquired signal to reconstruct their positions. This talk describes a strategy to boost the spatial resolution of NV-based magnetic resonance imaging, by combining the use of a quantum memory intrinsic to the NV system with Hamiltonian engineering by coherent quantum control. The proposed strategy promises to make diamond-based quantum sensors an invaluable technology for bioimaging, as they could achieve the reconstruction of biomolecules local structure without the need to crystallize them, to synthesize large ensembles or to alter their natural environment.

  8. Physical Roots of It from Bit

    Science.gov (United States)

    Berezin, Alexander A.

    2003-04-01

    Why there is Something rather than Nothing? From Pythagoras ("everything is number") to Wheeler ("it from bit") theme of ultimate origin stresses primordiality of Ideal Platonic World (IPW) of mathematics. Even popular "quantum tunnelling out of nothing" can specify "nothing" only as (essentially) IPW. IPW exists everywhere (but nowhere in particular) and logically precedes space, time, matter or any "physics" in any conceivable universe. This leads to propositional conjecture (axiom?) that (meta)physical "Platonic Pressure" of infinitude of numbers acts as engine for self-generation of physical universe directly out of mathematics: cosmogenesis is driven by the very fact of IPW inexhaustibility. While physics in other quantum branches of inflating universe (Megaverse)can be(arbitrary) different from ours, number theory (and rest of IPW)is not (it is unique, absolute, immutable and infinitely resourceful). Let (infinite) totality of microstates ("its") of entire Megaverse form countable set. Since countable sets are hierarchically inexhaustible (Cantor's "fractal branching"), each single "it" still has infinite tail of non-overlapping IPW-based "personal labels". Thus, each "bit" ("it") is infinitely and uniquely resourceful: possible venue of elimination ergodicity basis for eternal return cosmological argument. Physics (in any subuniverse) may be limited only by inherent impossibilities residing in IPW, e.g. insolvability of Continuum Problem may be IPW foundation of quantum indeterminicity.

  9. Mathematical Models of Contemporary Elementary Quantum Computing Devices

    OpenAIRE

    Chen, G.; Church, D. A.; Englert, B. -G.; Zubairy, M. S.

    2003-01-01

    Computations with a future quantum computer will be implemented through the operations by elementary quantum gates. It is now well known that the collection of 1-bit and 2-bit quantum gates are universal for quantum computation, i.e., any n-bit unitary operation can be carried out by concatenations of 1-bit and 2-bit elementary quantum gates. Three contemporary quantum devices--cavity QED, ion traps and quantum dots--have been widely regarded as perhaps the most promising candidates for the c...

  10. Atomic models for anionic ligand passivation of cation-rich surfaces of IV-VI, II-VI, and III-V colloidal quantum dots.

    Science.gov (United States)

    Ko, Jae-Hyeon; Yoo, Dongsuk; Kim, Yong-Hyun

    2016-12-22

    We formulated atomic models of cation-rich surfaces passivated with anionic ligands for IV-VI, II-VI, and III-V colloidal quantum dots, employing electron counting models and quantum mechanical calculations. We found that the fractional dangling bonds of cation-rich (100) and (111) surfaces could be greatly stabilized by dimerization-anion passivation and amine-anion co-passivation.

  11. Early twentieth century atomic models: from classical physics to the introduction of quantum theory

    OpenAIRE

    Lopes, Cesar Valmor Machado; PUC/SP

    2010-01-01

    The present research examines the history of atomic models in the early twentieth century approaching the contributions of Joseph John Thomson, Hantaro Nagaoka, Ernest Rutherford, John William Nicholson and Niels Bohr and his contemporaries.

  12. Quantum communication and information processing

    Science.gov (United States)

    Beals, Travis Roland

    Quantum computers enable dramatically more efficient algorithms for solving certain classes of computational problems, but, in doing so, they create new problems. In particular, Shor's Algorithm allows for efficient cryptanalysis of many public-key cryptosystems. As public key cryptography is a critical component of present-day electronic commerce, it is crucial that a working, secure replacement be found. Quantum key distribution (QKD), first developed by C.H. Bennett and G. Brassard, offers a partial solution, but many challenges remain, both in terms of hardware limitations and in designing cryptographic protocols for a viable large-scale quantum communication infrastructure. In Part I, I investigate optical lattice-based approaches to quantum information processing. I look at details of a proposal for an optical lattice-based quantum computer, which could potentially be used for both quantum communications and for more sophisticated quantum information processing. In Part III, I propose a method for converting and storing photonic quantum bits in the internal state of periodically-spaced neutral atoms by generating and manipulating a photonic band gap and associated defect states. In Part II, I present a cryptographic protocol which allows for the extension of present-day QKD networks over much longer distances without the development of new hardware. I also present a second, related protocol which effectively solves the authentication problem faced by a large QKD network, thus making QKD a viable, information-theoretic secure replacement for public key cryptosystems.

  13. Whispering galleries and the control of artificial atoms.

    Science.gov (United States)

    Forrester, Derek Michael; Kusmartsev, Feodor V

    2016-04-28

    Quantum computation using artificial-atoms, such as novel superconducting circuits, can be sensitively controlled by external electromagnetic fields. These fields and the self-fields attributable to the coupled artificial-atoms influence the amount of quantum correlation in the system. However, control elements that can operate without complete destruction of the entanglement of the quantum-bits are difficult to engineer. Here we investigate the possibility of using closely-spaced-linear arrays of metallic-elliptical discs as whispering gallery waveguides to control artificial-atoms. The discs confine and guide radiation through the array with small notches etched into their sides that act as scatterers. We focus on π-ring artificial-atoms, which can generate their own spontaneous fluxes. We find that the micro-discs of the waveguides can be excited by terahertz frequency fields to exhibit whispering-modes and that a quantum-phase-gate composed of π-rings can be operated under their influence. Furthermore, we gauge the level of entanglement through the concurrence measure and show that under certain magnetic conditions a series of entanglement sudden-deaths and revivals occur between the two qubits. This is important for understanding the stability and life-time of qubit operations using, for example, a phase gate in a hybrid of quantum technologies composed of control elements and artificial-atoms.

  14. Preservation of quantum correlations in a femtosecond light pulse train within an atomic ensemble

    Science.gov (United States)

    Manukhova, A. D.; Tikhonov, K. S.; Golubeva, T. Yu.; Golubev, Yu. M.

    2017-01-01

    In this paper, we examined a possibility of preservation of a substantially multimode radiation in a single cell of quantum memory. As a light source we considered a synchronously pumped optical parametric oscillator (SPOPO). As was shown in several studies, SPOPO radiation has a large number of the correlated modes making it attractive for the purposes of quantum communication and computing. We showed that these correlations can be mapped on the longitudinal spin waves of the memory cell and be restored later in the readout light. The efficiencies of the writing and readout depend on the mode structure of the memory determined by a mechanism of the light-matter interaction under consideration (the nonresonance Raman interaction) and by the profile of the driving light field. We showed that like the initial light pulse train, the restored one can be represented by a set of squeezed supermodes. The mapping of the quantum multimode correlations on the material medium offers opportunities to manipulate the quantum states within the memory cell followed by the reading of the transformed state.

  15. Development and Application of Semiconductor Quantum Dots to Quantum Computing

    National Research Council Canada - National Science Library

    Steel, Duncan

    2002-01-01

    .... Several major milestones were achieved during the present program including the demonstration of optically induced and detected quantum entanglement of two qubits, Rabi oscillation (one bit rotation...

  16. Drill bit assembly for releasably retaining a drill bit cutter

    Science.gov (United States)

    Glowka, David A.; Raymond, David W.

    2002-01-01

    A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

  17. Beyond quantum mechanics? Hunting the 'impossible' atoms (Pauli Exclusion Principle violation and spontaneous collapse of the wave function at test)

    CERN Document Server

    Piscicchia, K; Bartalucci, S; Bassi, A; Bertolucci, S; Berucci, C; Bragadireanu, A M; Cargnelli, M; Clozza, A; De Paolis, L; Di Matteo, S; Donadi, S; d'Uffizi, A; Egger, J-P; Guaraldo, C; Iliescu, M; Ishiwatari, T; Laubenstein, M; Marton, J; Milotti, E; Pietreanu, D; Ponta, T; Sbardella, E; Scordo, A; Shi, H; Sirghi, D L; Sirghi, F; Sperandio, L; Doce, O Vazquez; Zmeskal, J

    2015-01-01

    The development of mathematically complete and consistent models solving the so-called "measurement problem", strongly renewed the interest of the scientific community for the foundations of quantum mechanics, among these the Dynamical Reduction Models posses the unique characteristic to be experimentally testable. In the first part of the paper an upper limit on the reduction rate parameter of such models will be obtained, based on the analysis of the X-ray spectrum emitted by an isolated slab of germanium and measured by the IGEX experiment. The second part of the paper is devoted to present the results of the VIP (Violation of the Pauli exclusion principle) experiment and to describe its recent upgrade. The VIP experiment established a limit on the probability that the Pauli Exclusion Principle (PEP) is violated by electrons, using the very clean method of searching for PEP forbidden atomic transitions in copper.

  18. Phase control of Kerr nonlinearity due to quantum interference in a four-level N-type atomic system

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Seyyed Hossein, E-mail: S.hosein.asadpour@gmail.com [Young Researchers Club, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali (Iran, Islamic Republic of); Reza Hamedi, Hamid; Sahrai, Mostafa [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-08-15

    Linear and nonlinear response of a four-level N-type atomic system for a weak probe field is investigated. It is demonstrated that the giant Kerr nonlinearity with reduced absorption can be achieved by the spontaneously generated coherence. In addition, the effect of a relative phase between coupling fields on linear and nonlinear absorption as well as Kerr nonlinearity is then discussed. - Highlights: Black-Right-Pointing-Pointer The quantum interference due to spontaneous emission is considered in a four level medium. Black-Right-Pointing-Pointer The giant Kerr nonlinearity in the reduced linear absorption is obtained. Black-Right-Pointing-Pointer The phase control of driving fields on linear and nonlinear susceptibility is investigated.

  19. Full characterization of the quantum linear-zigzag transition in atomic chains

    OpenAIRE

    Silvi, Pietro; De Chiara, Gabriele; Calarco, Tommaso; Morigi, Giovanna; Montangero, Simone

    2013-01-01

    A string of repulsively interacting particles exhibits a phase transition to a zigzag structure, by reducing the transverse trap potential or the interparticle distance. The transition is driven by transverse, short wavelength vibrational modes. Based on the emergent symmetry Z_2 it has been argued that this instability is a quantum phase transition, which can be mapped to an Ising model in transverse field. We perform an extensive Density Matrix Renormalization Group analysis of the behaviou...

  20. A high repetition rate experimental setup for quantum non-linear optics with cold Rydberg atoms

    Science.gov (United States)

    Busche, Hannes; Ball, Simon W.; Huillery, Paul

    2016-12-01

    Using electromagnetically induced transparency and photon storage, the strong dipolar interactions between Rydberg atoms and the resulting dipole blockade can be mapped onto light fields to realise optical non-linearities and interactions at the single photon level. We report on the realisation of an experimental apparatus designed to study interactions between single photons stored as Rydberg excitations in optically trapped microscopic ensembles of ultracold 87Rb atoms. A pair of in-vacuum high numerical aperture lenses focus excitation and trapping beams down to 1 μm, well below the Rydberg blockade. Thanks to efficient magneto-optical trap (MOT) loading from an atomic beam generated by a 2D MOT and the ability to recycle the microscopic ensembles more than 20000 times without significant atom loss, we achieve effective repetition rates exceeding 110 kHz to obtain good photon counting statistics on reasonable time scales. To demonstrate the functionality of the setup, we present evidence of strong photon interactions including saturation of photon storage and the retrieval of non-classical light. Using in-vacuum antennae operating at up to 40 GHz, we perform microwave spectroscopy on photons stored as Rydberg excitations and observe an interaction induced change in lineshape depending on the number of stored photons.

  1. Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective

    Science.gov (United States)

    Zhao, Xin; Geskin, Victor; Stadler, Robert

    2017-03-01

    Destructive quantum interference (DQI) in single molecule electronics is a purely quantum mechanical effect and is entirely defined by the inherent properties of the molecule in the junction such as its structure and symmetry. This definition of DQI by molecular properties alone suggests its relation to other more general concepts in chemistry as well as the possibility of deriving simple models for its understanding and molecular device design. Recently, two such models have gained a wide spread attention, where one was a graphical scheme based on visually inspecting the connectivity of the carbon sites in conjugated π systems in an atomic orbital (AO) basis and the other one puts the emphasis on the amplitudes and signs of the frontier molecular orbitals (MOs). There have been discussions on the range of applicability for these schemes, but ultimately conclusions from topological molecular Hamiltonians should not depend on whether they are drawn from an AO or a MO representation, as long as all the orbitals are taken into account. In this article, we clarify the relation between both models in terms of the zeroth order Green's function and compare their predictions for a variety of systems. From this comparison, we conclude that for a correct description of DQI from a MO perspective, it is necessary to include the contributions from all MOs rather than just those from the frontier orbitals. The cases where DQI effects can be successfully predicted within a frontier orbital approximation we show them to be limited to alternant even-membered hydrocarbons, as a direct consequence of the Coulson-Rushbrooke pairing theorem in quantum chemistry.

  2. Hey! A Tarantula Bit Me!

    Science.gov (United States)

    ... System Taking Care of Your Teeth Bad Breath Hey! A Tarantula Bit Me! KidsHealth > For Kids > Hey! A Tarantula Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Fire Ant Stung Me! Hey! A Scorpion ...

  3. Hey! A Chigger Bit Me!

    Science.gov (United States)

    ... System Taking Care of Your Teeth Bad Breath Hey! A Chigger Bit Me! KidsHealth > For Kids > Hey! A Chigger Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Fire Ant Stung Me! Hey! A Scorpion ...

  4. Hey! A Bedbug Bit Me!

    Science.gov (United States)

    ... System Taking Care of Your Teeth Bad Breath Hey! A Bedbug Bit Me! KidsHealth > For Kids > Hey! A Bedbug Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Bee Stung Me! Hey! A Scorpion Stung ...

  5. Hey! A Gnat Bit Me!

    Science.gov (United States)

    ... System Taking Care of Your Teeth Bad Breath Hey! A Gnat Bit Me! KidsHealth > For Kids > Hey! A Gnat Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Fire Ant Stung Me! Hey! A Flea ...

  6. Master Equation Approach for Quantum Noise in Phase-Insensitive Linear Amplifier based on Resonant Atomic Systems

    CERN Document Server

    Zhou, Minchuan; Shahriar, Selim M

    2015-01-01

    Previously, we had proposed a white-light-cavity signal-recycling (WLC-SR) scheme incorporating a negative dispersive medium (NDM) in the SR cavity and showed an enhancement in the sensitivity-bandwidth product. For specific atomic systems, the single channel Caves model (SC-CM) that we used for the quantum noise (QN) due to amplification or absorption in the NDM may not apply. In this paper, we show that for a two-level atomic system, the SC-CM applies only when pure absorption or amplification exists. When the transmission profile of a four-level system has an absorption dip on top of a broad gain peak that results in perfect transparency at the center, the net QN is non-zero but a large, finite value. We also prove that in a Lambda-type EIT system, the QN at zero detuning is zero while the system is in the dark state. Therefore, we propose a Gain-EIT (GEIT) gain system, which has a negative dispersion needed for the WLC-SR scheme, but with nearly vanishing noise at the center.

  7. Indium clustering in a-plane InGaN quantum wells as evidenced by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Fengzai; Zhu, Tongtong; Oehler, Fabrice; Fu, Wai Yuen; Griffiths, James T.; Massabuau, Fabien C.-P.; Kappers, Menno J.; Oliver, Rachel A., E-mail: rao28@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Martin, Tomas L.; Bagot, Paul A. J.; Moody, Michael P., E-mail: michael.moody@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-02-16

    Atom probe tomography (APT) has been used to characterize the distribution of In atoms within non-polar a-plane InGaN quantum wells (QWs) grown on a GaN pseudo-substrate produced using epitaxial lateral overgrowth. Application of the focused ion beam microscope enabled APT needles to be prepared from the low defect density regions of the grown sample. A complementary analysis was also undertaken on QWs having comparable In contents grown on polar c-plane sample pseudo-substrates. Both frequency distribution and modified nearest neighbor analyses indicate a statistically non-randomized In distribution in the a-plane QWs, but a random distribution in the c-plane QWs. This work not only provides insights into the structure of non-polar a-plane QWs but also shows that APT is capable of detecting as-grown nanoscale clustering in InGaN and thus validates the reliability of earlier APT analyses of the In distribution in c-plane InGaN QWs which show no such clustering.

  8. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  9. Single-charge tunneling in ambipolar silicon quantum dots

    NARCIS (Netherlands)

    Müller, Filipp

    2015-01-01

    Spin qubits in coupled quantum dots (QDs) are promising for future quantum information processing (QIP). A quantum bit (qubit) is the quantum mechanical analogon of a classical bit. In general, each quantum mechanical two-level system can represent a qubit. For the spin of a single charge carrier

  10. Optical physics: A larger quantum alphabet

    Science.gov (United States)

    Osellame, Roberto

    2017-06-01

    Quantum objects that can hold more information than quantum bits have been generated and manipulated in an integrated photonic platform, paving the way for advanced protocols in quantum information processing. See Letter p.622

  11. Quantum entanglement and quantum computational algorithms

    Indian Academy of Sciences (India)

    Abstract. The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped ...

  12. Quantum Simulations of Condensed Matter Systems Using Ultra-Cold Atomic Gases

    Science.gov (United States)

    2013-03-01

    Mechanism    of    Collisional    Spin    Relaxation...Journal  of  Statistical     Mechanics  P11022  (2010).       124. S.  Trotzky,  L.  Pollet,  F.  Gerbier,  U...Sachdev,  “Spectral  Functions  of  the   Higgs  Mode  near  Two-­‐dimensional  Quantum   Critical  Points”,

  13. Towards hybrid quantum systems: Trapping a single atom near a nanoscale solid-state structure

    Directory of Open Access Journals (Sweden)

    Tiecke T.G.

    2013-08-01

    Full Text Available We describe and demonstrate a method to deterministically trap single atoms near nanoscale solid-state objects. The trap is formed by the interference of an optical tweezer and its reflection from the nano object, creating a one-dimensional optical lattice where the first lattice site is at z0 ∼ λ/4 from the surface. Using a tapered optical fiber as the nanoscopic object, we characterize the loading into different lattice sites by means of the AC-Stark shift induced by a guided fiber mode. We demonstrate a loading efficiency of 94(6% into the first lattice site, and measure the cooperativity for the emission of the atom into the guided mode of the nanofiber. We show that by tailoring the dimensions of the nanofiber the distance of the trap to the surface can be adjusted. This method is applicable to a large variety of nanostructures and represents a promising starting point for interfacing single atoms with arbitrary nanoscale solid-state systems.

  14. The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem.

    Science.gov (United States)

    Humphreys, C J; Griffiths, J T; Tang, F; Oehler, F; Findlay, S D; Zheng, C; Etheridge, J; Martin, T L; Bagot, P A J; Moody, M P; Sutherland, D; Dawson, P; Schulz, S; Zhang, S; Fu, W Y; Zhu, T; Kappers, M J; Oliver, R A

    2017-05-01

    We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. A course in mathematical physics 3 quantum mechanics of atoms and molecules

    CERN Document Server

    Thirring, Walter

    1981-01-01

    In this third volume of A Course in Mathematical Physics I have attempted not simply to introduce axioms and derive quantum mechanics from them, but also to progress to relevant applications. Reading the axiomatic litera­ ture often gives one the impression that it largely consists of making refined axioms, thereby freeing physics from any trace of down-to-earth residue and cutting it off from simpler ways of thinking. The goal pursued here, however, is to come up with concrete results that can be compared with experimental facts. Everything else should be regarded only as a side issue, and has been chosen for pragmatic reasons. It is precisely with this in mind that I feel it appropriate to draw upon the most modern mathematical methods. Only by their means can the logical fabric of quantum theory be woven with a smooth structure; in their absence, rough spots would . inevitably appear, especially in the theory of unbounded operators, where the details are too intricate to be comprehended easily. Great care...

  16. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  17. Quantum mechanical theory of a structured atom-diatom collision system - A + BC/1-Sigma/

    Science.gov (United States)

    Devries, P. L.; George, T. F.

    1977-01-01

    The problem of a 2-p state atom colliding with a singlet sigma state diatom, which involves multiple potential surfaces, is investigated. Within a diabatic representation for the electronic degrees of freedom (plus spin-orbit interaction), coupled scattering equations are derived in both space-fixed and body-fixed coordinate systems. Coefficients, analogous to Percival-Seaton coefficients, are obtained. Approximations to the exact equations, including angular momenta decoupling approximations, are discussed for both the space-fixed and body-fixed formalisms.

  18. Quantum-Mechanical Definition of Atoms and Chemical Bonds in Molecules

    Science.gov (United States)

    2015-01-01

    manufacture, use, or sell any patented invention that may relate to them. Qualified requestors may obtain copies of this report from the Defense...through ex-post-facto unitary transformations of the underlying molecular eigenfunctions. So-called quasi-atomic molecular orbitals [25, 26] and natural...representation Φ̃ (α,β) S (i, j : Rαβ), with the unitary matrix Ũ (α,β) p (Rαβ) in Eq. (16) employed to transform from this pair representation to the

  19. Mesoscale cavities in hollow-core waveguides for quantum optics with atomic ensembles

    Directory of Open Access Journals (Sweden)

    Haapamaki C.M.

    2016-08-01

    Full Text Available Single-mode hollow-core waveguides loaded with atomic ensembles offer an excellent platform for light–matter interactions and nonlinear optics at low photon levels. We review and discuss possible approaches for incorporating mirrors, cavities, and Bragg gratings into these waveguides without obstructing their hollow cores. With these additional features controlling the light propagation in the hollow-core waveguides, one could potentially achieve optical nonlinearities controllable by single photons in systems with small footprints that can be integrated on a chip. We propose possible applications such as single-photon transistors and superradiant lasers that could be implemented in these enhanced hollow-core waveguides.

  20. Algorithms and computer codes for atomic and molecular quantum scattering theory. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, L. (ed.)

    1979-01-01

    The goals of this workshop are to identify which of the existing computer codes for solving the coupled equations of quantum molecular scattering theory perform most efficiently on a variety of test problems, and to make tested versions of those codes available to the chemistry community through the NRCC software library. To this end, many of the most active developers and users of these codes have been invited to discuss the methods and to solve a set of test problems using the LBL computers. The first volume of this workshop report is a collection of the manuscripts of the talks that were presented at the first meeting held at the Argonne National Laboratory, Argonne, Illinois June 25-27, 1979. It is hoped that this will serve as an up-to-date reference to the most popular methods with their latest refinements and implementations.

  1. Observation of entanglement between a quantum dot spin and a single photon.

    Science.gov (United States)

    Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A

    2012-11-15

    Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.

  2. Coin Tossing is Strictly Weaker than Bit Commitment

    Science.gov (United States)

    Kent, Adrian

    1999-12-01

    We define cryptographic assumptions applicable to two mistrustful parties who each control two or more separate secure sites between which special relativity ensures a time lapse in communication. We show that, under these assumptions, unconditionally secure coin tossing can be carried out by exchanges of classical information. We then show that, under standard cryptographic assumptions, coin tossing is strictly weaker than bit commitment. That is, no unconditionally secure bit commitment protocol can be built from a finite number of invocations of a secure coin-tossing black box together with finitely many additional classical or quantum information exchanges.

  3. DRILL BITS FOR HORIZONTAL WELLS

    Directory of Open Access Journals (Sweden)

    Paolo Macini

    1996-12-01

    Full Text Available This paper underlines the importance of the correct drill bit application in horizontal wells. Afler the analysis of the peculiarities of horizontal wells and drainholes drilling techniques, advantages and disadvantages of the application of both roller cone and fixed cutters drill bits have been discussed. Also, a review of the potential specific featuries useful for a correct drill bit selection in horizontal small diameter holes has been highlighted. Drill bits for these special applications, whose importance is quickly increasing nowadays, should be characterised by a design capable to deliver a good penetration rate low WOB, and, at the same time, be able to withstand high RPM without premature cutting structure failure and undergauge. Formation properties will also determine the cutting structure type and the eventual specific features for additional gauge and shoulder protection.

  4. Facile synthesis of analogous graphene quantum dots with sp2 hybridized carbon atom dominant structures and their photovoltaic application

    Science.gov (United States)

    Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

    2014-10-01

    Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of ``pristine'' GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp2 hybridized carbon atom dominant structure and good solubility in organic solvents.Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of ``pristine'' GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel

  5. Fabrication of highly nonlinear germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots using atomization doping process and its optical nonlinearity.

    Science.gov (United States)

    Ju, Seongmin; Watekar, Pramod R; Han, Won-Taek

    2011-01-31

    Germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots (SQDs) in the core was fabricated by using the atomization process in modified chemical vapor deposition (MCVD) process. The absorption bands attributed to PbTe semiconductor quantum dots in the fiber core were found to appear at around 687 nm and 1055 nm. The nonlinear refractive index measured by the long-period fiber grating (LPG) pair method upon pumping with laser diode at 976.4 nm was estimated to be ~1.5 × 10(-16) m2/W.

  6. Quantum tomography of an electron

    Science.gov (United States)

    Jullien, T.; Roulleau, P.; Roche, B.; Cavanna, A.; Jin, Y.; Glattli, D. C.

    2014-10-01

    find direct application in probing the entanglement of electron flying quantum bits, electron decoherence and electron interactions. They could also be applied to cold fermionic (or spin-1/2) atoms.

  7. String bit models for superstring

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, O.; Thorn, C.B.

    1995-12-31

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.

  8. Mass the quest to understand matter from Greek atoms to quantum fields

    CERN Document Server

    Baggott, Jim

    2017-01-01

    Everything around us is made of 'stuff', from planets, to books, to our own bodies. Whatever it is, we call it matter or material substance. It is solid; it has mass. But what is matter, exactly? We are taught in school that matter is not continuous, but discrete. As a few of the philosophers of ancient Greece once speculated, nearly two and a half thousand years ago, matter comes in 'lumps', and science has relentlessly peeled away successive layers of matter to reveal its ultimate constituents. Surely, we can't keep doing this indefinitely. We imagine that we should eventually run up against some kind of ultimately fundamental, indivisible type of stuff, the building blocks from which everything in the Universe is made. The English physicist Paul Dirac called this 'the dream of philosophers'. But science has discovered that the foundations of our Universe are not as solid or as certain and dependable as we might have once imagined. They are instead built from ghosts and phantoms, of a peculiar quantum kind....

  9. Quantum Coin Tossing

    OpenAIRE

    Hwang, Won Young; Koh, In Gyu; Han, Yeong Deok

    1997-01-01

    We show that a secure quantum protocol for coin tossing exist. The existence of quantum coin tossing support the conjecture of D.Mayers [Phys.Rev.Lett. 78, 3414(1997)] that only asymmetrical tasks as quantum bit commitment are impossible.

  10. A Narrow-Linewidth Atomic Line Filter for Free Space Quantum Key Distribution under Daytime Atmospheric Conditions

    Science.gov (United States)

    Brown, Justin; Woolf, David; Hensley, Joel

    2016-05-01

    Quantum key distribution can provide secure optical data links using the established BB84 protocol, though solar backgrounds severely limit the performance through free space. Several approaches to reduce the solar background include time-gating the photon signal, limiting the field of view through geometrical design of the optical system, and spectral rejection using interference filters. Despite optimization of these parameters, the solar background continues to dominate under daytime atmospheric conditions. We demonstrate an improved spectral filter by replacing the interference filter (Δν ~ 50 GHz) with an atomic line filter (Δν ~ 1 GHz) based on optical rotation of linearly polarized light through a warm Rb vapor. By controlling the magnetic field and the optical depth of the vapor, a spectrally narrow region can be transmitted between crossed polarizers. We find that the transmission is more complex than a single peak and evaluate peak transmission as well as a ratio of peak transmission to average transmission of the local spectrum. We compare filters containing a natural abundance of Rb with those containing isotopically pure 87 Rb and 85 Rb. A filter providing > 95 % transmission and Δν ~ 1.1 GHz is achieved.

  11. Facile synthesis of analogous graphene quantum dots with sp(2) hybridized carbon atom dominant structures and their photovoltaic application.

    Science.gov (United States)

    Huang, Zhengcheng; Shen, Yongtao; Li, Yu; Zheng, Wenjun; Xue, Yunjia; Qin, Chengqun; Zhang, Bo; Hao, Jingxiang; Feng, Wei

    2014-11-07

    Graphene quantum dot (GQD) is an emerging class of zero-dimensional nanocarbon material with many novel applications. It is of scientific importance to prepare GQDs with more perfect structures, that is, GQDs containing negligible oxygenous defects, for both optimizing their optical properties and helping in their photovoltaic applications. Herein, a new strategy for the facile preparation of "pristine" GQDs is reported. The method we presented is a combination of a bottom-up synthetic and a solvent-induced interface separation process, during which the target products with highly crystalline structure were selected by the organic solvent. The obtained organic soluble GQDs (O-GQDs) showed a significant difference in structure and composition compared with ordinary aqueous soluble GQDs, thus leading to a series of novel properties. Furthermore, O-GQDs were applied as electron-acceptors in a poly(3-hexylthiophene) (P3HT)-based organic photovoltaic device. The performance highlights that O-GQD has potential to be a novel electron-acceptor material due to the sp(2) hybridized carbon atom dominant structure and good solubility in organic solvents.

  12. An interacting quantum atom study of model SN 2 reactions (X- ···CH3 X, X = F, Cl, Br, and I).

    Science.gov (United States)

    Alkorta, Ibon; Thacker, Joseph C R; Popelier, Paul L A

    2017-11-10

    The quantum chemical topology method has been used to analyze the energetic profiles in the X-  + CH3 X → XCH3  + X- SN 2 reactions, with X = F, Cl, Br, and I. The evolution of the electron density properties at the BCPs along the reaction coordinate has been analysed. The interacting quantum atoms (IQA) method has been used to evaluate the intra-atomic and interatomic energy variations along the reaction path. The different energetic terms have been examined by the relative energy gradient method and the ANANKE program, which enables automatic and unbiased IQA analysis. Four of the six most important IQA energy contributions were needed to reproduce the reaction barrier common to all reactions. The four reactions considered share many common characteristics but when X = F a number of particularities occur. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  13. Studying the InAs quantum points on the vicinal surface of a GaAs crystal by the atomic force microscopy

    CERN Document Server

    Evtikhiev, V P; Kotelnikov, E Y; Matveentsev, A V; Titkov, A N; Shkolnik, A S

    2002-01-01

    The methodology for processing the images, obtained through the atomic force microscopy, is proposed. It is shown by the concrete example, how the parameters of the InAs clusters on the vicinal surface of the GaAs crystal are determined. This makes it possible to calculate the energy levels of the electrons and holes in the quantum point with application of the previously developed cluster spherical model

  14. Hey! A Black Widow Spider Bit Me!

    Science.gov (United States)

    ... System Taking Care of Your Teeth Bad Breath Hey! A Black Widow Spider Bit Me! KidsHealth > For Kids > Hey! A Black Widow Spider Bit Me! Print A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Tarantula Bit Me! Hey! A Flea Bit ...

  15. Elementary quantum chemistry

    CERN Document Server

    Pilar, Frank L

    2003-01-01

    Useful introductory course and reference covers origins of quantum theory, Schrödinger wave equation, quantum mechanics of simple systems, electron spin, quantum states of atoms, Hartree-Fock self-consistent field method, more. 1990 edition.

  16. Numerical simulation of physicochemical interactions between oxygen atom and phosphatidylcholine due to direct irradiation of atmospheric pressure nonequilibrium plasma to biological membrane with quantum mechanical molecular dynamics

    Science.gov (United States)

    Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi

    2017-10-01

    Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.

  17. Quantum holographic encoding in a two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Christopher

    2010-05-26

    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.

  18. Hey! A Louse Bit Me!

    Science.gov (United States)

    ... of a sesame seed, and are tan to gray in color. Lice need to suck a tiny bit of blood to survive, and they sometimes live on people's heads and lay eggs in the hair , on the back of the neck, or behind ...

  19. Source-Independent Quantum Random Number Generation

    Science.gov (United States)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  20. Quantum Computation with Ultrafast Laser Pulse Shaping

    Indian Academy of Sciences (India)

    Quantum computing exploits the quantum mechanical na- ture of matter to exist in multiple possible states simulta- neously. BUilding up on the digital binary logic of bits, quantum computing is built on the basis of interacting two- level quantum systems or 'qubits' that follow the laws of quantum mechanics. Addressability of ...

  1. Coherent Operations, Entanglement, and Progress Toward Quantum Search in a Large 2D Array of Neutral Atom Qubits

    Science.gov (United States)

    2015-08-18

    but we physicists believe God works using quantum states, so then integers must then be the work of man. Given sufficient resources, a quantum... exercise in theory, we have that liberty. We have not yet dealt with superpositions, operators, or probability amplitudes. 4.3.1 Discretized Mapping As...perhaps we as physicists could embrace this conclusion by interpreting it as quantum superposition. 4.4.2.2 Supernatural Numbers In the Section 4.2.5, we

  2. What is matter? The unchangeable, atoms and the nothing, electromagnetic fields, quantum mechanics; Was ist Materie? Das Unveraenderbare, Atome und das Nichts, Elektromagnetische Felder, Quantenmechanik

    Energy Technology Data Exchange (ETDEWEB)

    Lesch, Harald [Muenchen Univ. (Germany). Inst. fuer Astronomie; Hochschule fuer Philosophie, Muenchen (Germany)

    2013-10-01

    In this CD an introduction is given to the philosophical description of matter starting from the philosophy of Demokrit and scholastics, going then via classical mechanics to the terms of fields, and concluding finally with quantum mechanics and the fundamental structure of particles together with a consideration of cosmology. (HSI)

  3. Single photon quantum cryptography.

    Science.gov (United States)

    Beveratos, Alexios; Brouri, Rosa; Gacoin, Thierry; Villing, André; Poizat, Jean-Philippe; Grangier, Philippe

    2002-10-28

    We report the full implementation of a quantum cryptography protocol using a stream of single photon pulses generated by a stable and efficient source operating at room temperature. The single photon pulses are emitted on demand by a single nitrogen-vacancy color center in a diamond nanocrystal. The quantum bit error rate is less that 4.6% and the secure bit rate is 7700 bits/s. The overall performances of our system reaches a domain where single photons have a measurable advantage over an equivalent system based on attenuated light pulses.

  4. Self-similarity, conservation of entropy/bits and the black hole information puzzle

    CERN Document Server

    Singleton, Douglas; Zhu, Tao

    2013-01-01

    John Wheeler coined the phrase ``it from bit" or ``bit from it" in the 1980s. However, much of the interest in the connection between information, i.e. ``bits", and physical objects, i.e. ``its", stems from the discovery that black holes have characteristics of thermodynamic systems having entropies and temperatures. This insight led to the information loss problem -- what happens to the ``bits" when the black hole has evaporated away due to the energy loss from Hawking radiation? In this essay we speculate on a conservative answer to this question using the assumption of self-similarity of quantum correction to the gravitational action and the requirement that the quantum corrected entropy be well behaved in the limit when the black hole mass goes to zero.

  5. Self-similarity, conservation of entropy/bits and the black hole information puzzle

    Science.gov (United States)

    Singleton, Douglas; Vagenas, Elias C.; Zhu, Tao

    2014-05-01

    John Wheeler coined the phrase "it from bit" or "bit from it" in the 1980s. However, much of the interest in the connection between information, i.e. "bits", and physical objects, i.e. "its", stems from the discovery that black holes have characteristics of thermodynamic systems having entropies and temperatures. This insight led to the information loss problem — what happens to the "bits" when the black hole has evaporated away due to the energy loss from Hawking radiation? In this essay we speculate on a radical answer to this question using the assumption of self-similarity of quantum correction to the gravitational action and the requirement that the quantum corrected entropy be well behaved in the limit when the black hole mass goes to zero.

  6. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Applications of Quantum Mechanics to 'Atoms, Molecules and Radiation' will be held at the Indian Academy of Sciences, Bangalore from December 8 to 20. 2014. The Course is primarily aimed at teachers teaching quantum mechanics and/ or atomic and molecular physics at the UG / PG level.

  7. A holistic approach to bit preservation

    DEFF Research Database (Denmark)

    Zierau, Eld

    2012-01-01

    Purpose: The purpose of this paper is to point out the importance of taking a holistic approach to bit preservation when setting out to find an optimal bit preservation solution for specific digital materials. In the last decade there has been an increasing awareness that bit preservation, which...... are taken into account. Design/methodology/approach: The paper describes the various findings from previous research which have led to the holistic approach to bit preservation. This paper also includes an introduction to digital preservation with a focus on the role of bit preservation, which sets...... of the shortcomings, the results can assist in analysis and evaluation of bit preservation strategies. Originality/value This paper is an extract of the findings presented in the doctoral thesis “A holistic approach to bit preservation”. The findings are relevant for any organisation that is required to do bit...

  8. A Holistic Approach to Bit Preservation

    DEFF Research Database (Denmark)

    Zierau, Eld

    2011-01-01

    This thesis presents three main results for a holistic approach to bit preservation, where the ultimate goal is to find the optimal bit preservation strategy for specific digital material that must be digitally preserved. Digital material consists of sequences of bits, where a bit is a binary digit...... preservation strategy. This can be aspects of how the permanent access to the digital material must be ensured. It can also be aspects of how the material must be treated as part of using it. This includes aspects related to how the digital material to be bit preserved is represented, as well as requirements...... for confidentiality, availability, costs, additional to the requirements of ensuring bit safety. A few examples are: • The way that digital material is represented in files and structures has an influence on whether it is possible to interpret and use the bits at a later stage. Consequentially, the way bits represent...

  9. Research on bit synchronization based on GNSS

    Science.gov (United States)

    Yu, Huanran; Liu, Yi-jun

    2017-05-01

    The signals transmitted by GPS satellites are divided into three components: carrier, pseudocode and data code. The processes of signal acquisition are acquisition, tracking, bit synchronization, frame synchronization, navigation message extraction, observation extraction and position speed calculation, among which bit synchronization is of greatest importance. The accuracy of bit synchronization and the shortening of bit synchronization time can help us to use satellite to realize positioning and acquire the information transmitted by satellite signals more accurately. Even under the condition of weak signal, how to improve bit synchronization performance is what we need to research. We adopt a method of polymorphic energy accumulation minima so as to find the bit synchronization point, as well as complete the computer simulation to conclude that under the condition of extremely weak signal power, this method still has superior synchronization performance, which can achieve high bit edge detection rate and the optimal bit error rate.

  10. Flexible Bit Preservation on a National Basis

    DEFF Research Database (Denmark)

    Jurik, Bolette; Nielsen, Anders Bo; Zierau, Eld

    2012-01-01

    In this paper we present the results from The Danish National Bit Repository project. The project aim was establishment of a system that can offer flexible and sustainable bit preservation solutions to Danish cultural heritage institutions. Here the bit preservation solutions must include support...... of bit safety as well as other requirements like e.g. confidentiality and availability. The Danish National Bit Repository is motivated by the need to investigate and handle bit preservation for digital cultural heritage. Digital preservation relies on the integrity of the bits which digital material...... consists of, and it is with this focus that the project was initiated. This paper summarizes the requirements for a general system to offer bit preservation to cultural heritage institutions. On this basis the paper describes the resulting flexible system which can support such requirements. The paper...

  11. Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, S M; Safari, L; Mahmoudi, M [Physics Department, Zanjan University, PO Box 45195-313, Zanjan (Iran, Islamic Republic of); Sahrai, M, E-mail: sahrai@tabrizu.ac.i [Research Institute for Applied Physics and Astronomy, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2010-08-28

    The effect of quantum interference on the optical properties of a pumped-probe three-level V-type atomic system is investigated. The probe absorption, dispersion, group index and optical bistability beyond the two-photon resonance condition are discussed. It is found that the optical properties of a medium in the frequency of the probe field, in general, are phase independent. The phase dependence arises from a scattering of the coupling field into the probe field at a frequency which in general differs from the probe field frequency. It is demonstrated that beyond the two-photon resonance condition the phase sensitivity of the medium will disappear.

  12. Hey! A Mosquito Bit Me! (For Kids)

    Science.gov (United States)

    ... System Taking Care of Your Teeth Bad Breath Hey! A Mosquito Bit Me! KidsHealth > For Kids > Hey! A Mosquito Bit Me! Print A A A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Flea Bit Me! Hey! A Scorpion Stung ...

  13. Fluorine Gauche Effect Explained by Electrostatic Polarization Instead of Hyperconjugation: An Interacting Quantum Atoms (IQA) and Relative Energy Gradient (REG) Study.

    Science.gov (United States)

    Thacker, Joseph C R; Popelier, Paul L A

    2018-02-08

    We present an interacting quantum atoms (IQA) study of the gauche effect by comparing 1,2-difluoroethane, 1,2-dichloroethane, and three conformers of 1,2,3,4,5,6-hexafluorocyclohexane. In the 1,2-difluoroethane, the gauche effect is observed in that the gauche conformation is more stable than the anti, whereas in 1,2-dichloroethane the opposite is true. The analysis performed here is exhaustive and unbiased thanks to using the recently introduced relative energy gradient (REG) method [ Thacker , J. C. R. ; Popelier , P. L. A. Theor. Chem. Acc . 2017 , 136 , 86 ], as implemented in the in-house program ANANKE. We challenge the common explanation that hyperconjugation is responsible for the gauche stability in 1,2-difluoroethane and instead present electrostatics as the cause of gauche stability. Our explanation of the gauche effect is also is seen in other molecules displaying local gauche conformations, such as the recently synthesized "all-cis" hexafluorocyclohexane and its conformers where all the fluorine atoms are in the equatorial positions. Using our extension of the traditional IQA methodology that allows for the partitioning of electrostatic terms into polarization and charge transfer, we propose that the cause of gauche stability is 1,3 C···F electrostatic polarization interactions. In other words, if a number of fluorine atoms are aligned, then the stability due to polarization of nearby carbon atoms is increased.

  14. Measurement device-independent quantum dialogue

    Science.gov (United States)

    Maitra, Arpita

    2017-12-01

    Very recently, the experimental demonstration of quantum secure direct communication (QSDC) with state-of-the-art atomic quantum memory has been reported (Zhang et al. in Phys Rev Lett 118:220501, 2017). Quantum dialogue (QD) falls under QSDC where the secrete messages are communicated simultaneously between two legitimate parties. The successful experimental demonstration of QSDC opens up the possibilities for practical implementation of QD protocols. Thus, it is necessary to analyze the practical security issues of QD protocols for future implementation. Since the very first proposal for QD by Nguyen (Phys Lett A 328:6-10, 2004), a large number of variants and extensions have been presented till date. However, all of those leak half of the secret bits to the adversary through classical communications of the measurement results. In this direction, motivated by the idea of Lo et al. (Phys Rev Lett 108:130503, 2012), we propose a measurement device-independent quantum dialogue scheme which is resistant to such information leakage as well as side-channel attacks. In the proposed protocol, Alice and Bob, two legitimate parties, are allowed to prepare the states only. The states are measured by an untrusted third party who may himself behave as an adversary. We show that our protocol is secure under this adversarial model. The current protocol does not require any quantum memory, and thus, it is inherently robust against memory attacks. Such robustness might not be guaranteed in the QSDC protocol with quantum memory (Zhang et al. 2017).

  15. Quantum logic gates using coherent population trapping states

    Indian Academy of Sciences (India)

    Coherent population trap; quantum computation; controlled phase gate. PACS Nos 42.50.Ex; 32.80.Qk; 32.90+a; 03.67.Lx. Conventional computers handle information in the form of bits – which take up values 0 or. 1. Quantum computers on the other hand, use quantum bits (qubits), which can be prepared in states 0, 1 or ...

  16. Generation of multipartite entangled states for chains of atoms in the framework of cavity-QED

    Energy Technology Data Exchange (ETDEWEB)

    Gonta, Denis

    2010-07-07

    Cavity quantum electrodynamics is a research field that studies electromagnetic fields in confined spaces and the radiative properties of atoms in such fields. Experimentally, the simplest example of such system is a single atom interacting with modes of a high-finesse resonator. Theoretically, such system bears an excellent framework for quantum information processing in which atoms and light are interpreted as bits of quantum information and their mutual interaction provides a controllable entanglement mechanism. In this thesis, we present several practical schemes for generation of multipartite entangled states for chains of atoms which pass through one or more high-finesse resonators. In the first step, we propose two schemes for generation of one- and two-dimensional cluster states of arbitrary size. These schemes are based on the resonant interaction of a chain of Rydberg atoms with one or more microwave cavities. In the second step, we propose a scheme for generation of multipartite W states. This scheme is based on the off-resonant interaction of a chain of three-level atoms with an optical cavity and a laser beam. We describe in details all the individual steps which are required to realize the proposed schemes and, moreover, we discuss several techniques to reveal the non-classical correlations associated with generated small-sized entangled states. (orig.)

  17. Bohmian picture of Rydberg atoms

    Indian Academy of Sciences (India)

    lished the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly ellipti- cal. Keywords. Rydberg atom; quantum trajectory. PACS No. 03.65.Ge. 1. Introduction. Ever since the advent of quantum ...

  18. Effects of weakly coupled and dense quantum plasmas environments on charge exchange and ionization processes in Na+ + Rb(5s) atom collisions

    Science.gov (United States)

    Pandey, Mukesh Kumar; Lin, Yen-Chang; Ho, Yew Kam

    2017-02-01

    The effects of weakly coupled or classical and dense quantum plasmas environment on charge exchange and ionization processes in Na+ + Rb(5s) atom collision at keV energy range have been investigated using classical trajectory Monte Carlo (CTMC) method. The interaction of three charged particles are described by the Debye-Hückel screen potential for weakly coupled plasma, whereas exponential cosine-screened Coulomb potential have been used for dense quantum plasma environment and the effects of both conditions on the cross sections are compared. It is found that screening effects on cross sections in high Debye length condition is quite small in both plasma environments. However, enhanced screening effects on cross sections are observed in dense quantum plasmas for low Debye length condition, which becomes more effective while decreasing the Debye length. Also, we have found that our calculated results for plasma-free case are comparable with the available theoretical results. These results are analyzed in light of available theoretical data with the choice of model potentials.

  19. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    1999-01-01

    Semiconductor quantum dots ("solid state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra.Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dots states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  20. Quantum dot spectroscopy

    DEFF Research Database (Denmark)

    Leosson, Kristjan

    Semiconductor quantum dots ("solid-state atoms") are promising candidates for quantum computers and future electronic and optoelectronic devices. Quantum dots are zero-dimensional electronic systems and therefore have discrete energy levels, similar to atoms or molecules. The size distribution...... of quantum dots, however, results in a large inhomogeneous broadening of quantum dot spectra. Work on self-assembled InGaAs/GaAs quantum dots will be presented. Properties of atom-like single-dot states are investigated optically using high spatial and spectral resolution. Single-dot spectra can be used...

  1. Stability of single skyrmionic bits

    Science.gov (United States)

    Vedmedenko, Olena; Hagemeister, Julian; Romming, Niklas; von Bergmann, Kirsten; Wiesendanger, Roland

    The switching between topologically distinct skyrmionic and ferromagnetic states has been proposed as a bit operation for information storage. While long lifetimes of the bits are required for data storage devices, the lifetimes of skyrmions have not been addressed so far. Here we show by means of atomistic Monte Carlo simulations that the field-dependent mean lifetimes of the skyrmionic and ferromagnetic states have a high asymmetry with respect to the critical magnetic field, at which these lifetimes are identical. According to our calculations, the main reason for the enhanced stability of skyrmions is a different field dependence of skyrmionic and ferromagnetic activation energies and a lower attempt frequency of skyrmions rather than the height of energy barriers. We use this knowledge to propose a procedure for the determination of effective material parameters and the quantification of the Monte Carlo timescale from the comparison of theoretical and experimental data. Financial support from the DFG in the framework of the SFB668 is acknowledged.

  2. Bit Threads and Holographic Entanglement

    Science.gov (United States)

    Freedman, Michael; Headrick, Matthew

    2017-05-01

    The Ryu-Takayanagi (RT) formula relates the entanglement entropy of a region in a holographic theory to the area of a corresponding bulk minimal surface. Using the max flow-min cut principle, a theorem from network theory, we rewrite the RT formula in a way that does not make reference to the minimal surface. Instead, we invoke the notion of a "flow", defined as a divergenceless norm-bounded vector field, or equivalently a set of Planck-thickness "bit threads". The entanglement entropy of a boundary region is given by the maximum flux out of it of any flow, or equivalently the maximum number of bit threads that can emanate from it. The threads thus represent entanglement between points on the boundary, and naturally implement the holographic principle. As we explain, this new picture clarifies several conceptual puzzles surrounding the RT formula. We give flow-based proofs of strong subadditivity and related properties; unlike the ones based on minimal surfaces, these proofs correspond in a transparent manner to the properties' information-theoretic meanings. We also briefly discuss certain technical advantages that the flows offer over minimal surfaces. In a mathematical appendix, we review the max flow-min cut theorem on networks and on Riemannian manifolds, and prove in the network case that the set of max flows varies Lipshitz continuously in the network parameters.

  3. Device-independent bit commitment based on the CHSH inequality

    Science.gov (United States)

    Aharon, N.; Massar, S.; Pironio, S.; Silman, J.

    2016-02-01

    Bit commitment and coin flipping occupy a unique place in the device-independent landscape, as the only device-independent protocols thus far suggested for these tasks are reliant on tripartite GHZ correlations. Indeed, we know of no other bipartite tasks, which admit a device-independent formulation, but which are not known to be implementable using only bipartite nonlocality. Another interesting feature of these protocols is that the pseudo-telepathic nature of GHZ correlations—in contrast to the generally statistical character of nonlocal correlations, such as those arising in the violation of the CHSH inequality—is essential to their formulation and analysis. In this work, we present a device-independent bit commitment protocol based on CHSH testing, which achieves the same security as the optimal GHZ-based protocol, albeit at the price of fixing the time at which Alice reveals her commitment. The protocol is analyzed in the most general settings, where the devices are used repeatedly and may have long-term quantum memory. We also recast the protocol in a post-quantum setting where both honest and dishonest parties are restricted only by the impossibility of signaling, and find that overall the supra-quantum structure allows for greater security.

  4. Superfluid Fermi atomic gas as a quantum simulator for the study of the neutron-star equation of state in the low-density region

    Science.gov (United States)

    van Wyk, Pieter; Tajima, Hiroyuki; Inotani, Daisuke; Ohnishi, Akira; Ohashi, Yoji

    2018-01-01

    We propose a theoretical idea to use an ultracold Fermi gas as a quantum simulator for the study of the low-density region of a neutron-star interior. Our idea is different from the standard quantum simulator that heads for perfect replication of another system, such as the Hubbard model discussed in high-Tc cuprates. Instead, we use the similarity between two systems and theoretically make up for the difference between them. That is, (1) we first show that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) can quantitatively explain the recent experiment on the equation of state (EoS) in a 6Li superfluid Fermi gas in the BCS (Bardeen-Cooper-Schrieffer) unitary limit far below the superfluid phase-transition temperature Tc. This region is considered to be very similar to the low-density region (crust regime) of a neutron star (where a nearly unitary s -wave neutron superfluid is expected). (2) We then theoretically compensate the difference that, while the effective range reff is negligibly small in a superfluid 6Li Fermi gas, it cannot be ignored (reff=2.7 fm) in a neutron star, by extending the NSR theory to include effects of reff. The calculated EoS when reff=2.7 fm is shown to agree well with the previous neutron-star EoS in the low-density region predicted in nuclear physics. Our idea indicates that an ultracold atomic gas may more flexibly be used as a quantum simulator for the study of other complicated quantum many-body systems, when we use not only the experimental high tunability, but also the recent theoretical development in this field. Since it is difficult to directly observe a neutron-star interior, our idea would provide a useful approach to the exploration for this mysterious astronomical object.

  5. Exploring the electron density localization in single MoS2 monolayers by means of a localize-electrons detector and the quantum theory of atoms in molecules

    Science.gov (United States)

    Aray, Yosslen

    2017-11-01

    The nature of the electron density localization in a MoS2 monolayer under 0 % to 11% tensile strain has been systematically studied by means of a localized electron detector function and the Quantum Theory of atoms in molecules. At 10% tensile strain, this monolayer become metallic. It was found that for less than 6.5% of applied stress, the same atomic structure of the equilibrium geometry (0% strain) is maintained; while over 6.5% strain induces a transformation to a structure where the sulfur atoms placed on the top and bottom layer form S2 groups. The localized electron detector function shows the presence of zones of highly electron delocalization extending throughout the Mo central layer. For less than 10% tensile strain, these zones comprise the BCPs and the remainder CPs in separates regions of the space; while for the structures beyond 10% strain, all the critical points are involved in a region of highly delocalized electrons that extends throughout the material. This dissimilar electron localization pattern is like to that previously reported for semiconductors such as Ge bulk and metallic systems such as transition metals bulk.

  6. Simple quantum password checking

    Science.gov (United States)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro

    2015-06-01

    We present a quantum password checking protocol where secrecy is protected by the laws of quantum mechanics. The passwords are encoded in quantum systems that can be compared but have a dimension too small to allow reading the encoded bits. We study the protocol under different replay attacks and show it is robust even for poorly chosen passwords. We also describe a possible implementation with conventional optical elements.

  7. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  8. "Material interactions": from atoms & bits to entangled practices

    DEFF Research Database (Denmark)

    Vallgårda, Anna

    This panel addresses some of the core aspects of the theme "It's the experience", for the CHI2012 conference by focusing on the materials that constitute the foundation for interaction with computers. We take a series of questions as a joint point of departure to consider the nature and character......, Daniela Rosner, Petra Sundström, Anna Vallgårda and Tobie Kerridge. This panel also features Mark Rolston, Chief Creative Officer at Frog design, Inc....

  9. Computer Simulations of Quantum Theory of Hydrogen Atom for Natural Science Education Students in a Virtual Lab

    Science.gov (United States)

    Singh, Gurmukh

    2012-01-01

    The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…

  10. Numerical calculations of the probabilities for quantum transitions in atoms and molecules by the path integral method

    Science.gov (United States)

    Biryukov, Alexander; Degtyareva, Yana

    2017-10-01

    The probabilities of molecular quantum transitions induced by electromagnetic field are expressed as path integrals of a real alternating functional. We propose a new method for computing these integrals by means of recurrence relations. We apply this approach to description of the two-photon Rabi oscillations.

  11. FastBit Reference Manual

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng

    2007-08-02

    An index in a database system is a data structure that utilizes redundant information about the base data to speed up common searching and retrieval operations. Most commonly used indexes are variants of B-trees, such as B+-tree and B*-tree. FastBit implements a set of alternative indexes call compressed bitmap indexes. Compared with B-tree variants, these indexes provide very efficient searching and retrieval operations by sacrificing the efficiency of updating the indexes after the modification of an individual record. In addition to the well-known strengths of bitmap indexes, FastBit has a special strength stemming from the bitmap compression scheme used. The compression method is called the Word-Aligned Hybrid (WAH) code. It reduces the bitmap indexes to reasonable sizes and at the same time allows very efficient bitwise logical operations directly on the compressed bitmaps. Compared with the well-known compression methods such as LZ77 and Byte-aligned Bitmap code (BBC), WAH sacrifices some space efficiency for a significant improvement in operational efficiency. Since the bitwise logical operations are the most important operations needed to answer queries, using WAH compression has been shown to answer queries significantly faster than using other compression schemes. Theoretical analyses showed that WAH compressed bitmap indexes are optimal for one-dimensional range queries. Only the most efficient indexing schemes such as B+-tree and B*-tree have this optimality property. However, bitmap indexes are superior because they can efficiently answer multi-dimensional range queries by combining the answers to one-dimensional queries.

  12. Innovative quantum technologies for microgravity fundamental physics and biological research

    Science.gov (United States)

    Kierk, I. K.

    2002-01-01

    This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.

  13. Bit-coded regular expression parsing

    DEFF Research Database (Denmark)

    Nielsen, Lasse; Henglein, Fritz

    2011-01-01

    Regular expression parsing is the problem of producing a parse tree of a string for a given regular expression. We show that a compact bit representation of a parse tree can be produced efficiently, in time linear in the product of input string size and regular expression size, by simplifying...... the DFA-based parsing algorithm due to Dub ´e and Feeley to emit the bits of the bit representation without explicitly materializing the parse tree itself. We furthermore show that Frisch and Cardelli’s greedy regular expression parsing algorithm can be straightforwardly modified to produce bit codings...

  14. Stinger Enhanced Drill Bits For EGS

    Energy Technology Data Exchange (ETDEWEB)

    Durrand, Christopher J. [Novatek International, Inc., Provo, UT (United States); Skeem, Marcus R. [Novatek International, Inc., Provo, UT (United States); Crockett, Ron B. [Novatek International, Inc., Provo, UT (United States); Hall, David R. [Novatek International, Inc., Provo, UT (United States)

    2013-04-29

    The project objectives were to design, engineer, test, and commercialize a drill bit suitable for drilling in hard rock and high temperature environments (10,000 meters) likely to be encountered in drilling enhanced geothermal wells. The goal is provide a drill bit that can aid in the increased penetration rate of three times over conventional drilling. Novatek has sought to leverage its polycrystalline diamond technology and a new conical cutter shape, known as the Stinger®, for this purpose. Novatek has developed a fixed bladed bit, known as the JackBit®, populated with both shear cutter and Stingers that is currently being tested by major drilling companies for geothermal and oil and gas applications. The JackBit concept comprises a fixed bladed bit with a center indenter, referred to as the Jack. The JackBit has been extensively tested in the lab and in the field. The JackBit has been transferred to a major bit manufacturer and oil service company. Except for the attached published reports all other information is confidential.

  15. Understanding BitTorrent Through Real Measurements

    OpenAIRE

    Mazurczyk, Wojciech; Kopiczko, Pawel

    2011-01-01

    In this paper the results of the BitTorrent measurement study are presented. Two sources of BitTorrent data were utilized: meta-data files that describe the content of resources shared by BitTorrent users and the logs of one of the currently most popular BitTorrent clients - {\\mu}Torrent. {\\mu}Torrent is founded upon a rather newly released UDP-based {\\mu}TP protocol that is claimed to be more efficient than TCP-based clients. Experimental data have been collected for fifteen days from the po...

  16. Quantum electrodynamics tests and X-rays standards using pionic atoms and highly charged ions; Tests d'electrodynamique quantique et etalons de rayons-X a l'aide des atomes pioniques et des ions multicharges

    Energy Technology Data Exchange (ETDEWEB)

    Martino, Trassinelli

    2005-12-15

    The object of this thesis is to present a new measurement of the pion mass using pionic nitrogen X-ray spectroscopy and results on helium-like argon and sulphur spectroscopy. The new pion mass has been measured with an accuracy of 1.7 ppm, 30% better that the present world average value, and it is obtained from Bragg spectroscopy of 5 ->4 pionic nitrogen transitions using the theoretical predictions provided by quantum electrodynamics. We have got: m({pi}{sup -}) = (139.571042 {+-} 0.000210 {+-} 0.000110) where the first error is due to the statistics and the second is the systematic error. I present the calculation of the hyperfine structure and recoil corrections for pionic atoms using a new perturbation method for the Klein-Gordon equation. The spectrometer used for this measurement has been characterized with the relativistic M1 transitions from helium-like ions produced with a new device, the Electron-Cyclotron-Resonance Ion Trap. High statistics spectra from these ions have enabled us to measure transition energies with an accuracy of some ppm which has allowed us to compare theoretical predictions with experiment data. X-ray emission from pionic atoms and multicharged ions can be used to define new types of X-ray standards for energies of a few keV.

  17. Ultraviolet photochemistry of buta-1,3- and buta-1,2-dienes: laser spectroscopic absolute hydrogen atom quantum yield and translational energy distribution measurements.

    Science.gov (United States)

    Hanf, A; Volpp, H-R; Sharma, P; Mittal, J P; Vatsa, R K

    2010-07-14

    Using pulsed H-atom Lyman-alpha laser-induced fluorescence spectroscopy along with a photolytic calibration approach, absolute H-atom product quantum yields of phi(H-b13d) = (0.32+/-0.04) and phi(H-b12d) = (0.36+/-0.04) were measured under collision-free conditions for the 193 nm gas-phase laser flash photolysis of buta-1,3- and buta-1,2-diene at room temperature, which demonstrate that nascent H-atom formation is of comparable importance for both parent molecules. Comparison of the available energy fraction, f(T-b13d) = (0.22+/-0.03) and f(T-b12d) = (0.13+/-0.01), released as H+C(4)H(5) product translational energy with results of impulsive and statistical energy partitioning modeling calculations indicates that for both, buta-1,3- and buta-1,2-diene, H-atom formation is preceded by internal conversion to the respective electronic ground state (S(0)) potential energy surfaces. In addition, values of sigma(b-1,3-d-L alpha) = (3.5+/-0.2)x10(-17) cm(2) and sigma(b-1,2-d-L alpha) = (4.4+/-0.2)x10(-17) cm(2) for the previously unknown Lyman-alpha (121.6 nm) radiation photoabsorption cross sections of buta-1,3- and buta-1,2-diene in the gas-phase were determined.

  18. When Should We Change Drill Bits? A Mechanical Comparison of New, Reprocessed, and Damaged Bits.

    Science.gov (United States)

    Myers, Richard; Kim, Hyunchul; Hsieh, Adam H; OʼToole, Robert V; Sciadini, Marcus F

    2017-05-01

    We assessed how reprocessed and damaged drill bits perform relative-to-new drill bits in terms of drilling force required, heat generated at near and far cortices, and number of usable passes. Nine pairs of nonosteoporotic human cadaveric femora were tested using 3 types of 3.2-mm drill bits (new, reprocessed, and damaged) in 3 investigations (force, temperature, and multiple usable passes). Operating room conditions were simulated. Force and temperature data were collected for each type. The multiple pass investigation measured only force. New and reprocessed drill bits performed similarly regarding force required and heat generated; both outperformed damaged bits. New and reprocessed bits had a similar number of usable passes in ideal conditions. Damaged bits required nearly 2.6 times as much force to maintain drilling rate. Reprocessed drill bits seem to be a viable alternative to new drill bits for fracture treatment surgery in terms of force required, heat generated, and number of usable passes. Drill bits that are damaged intraoperatively should be replaced. In ideal conditions, new and reprocessed drill bits can be used for multiple consecutive cases. Reprocessed drill bits may be as effective as new drill bits, representing potential cost savings for institutions. Both types can be considered for reuse.

  19. Quantum computation with nuclear spins in quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H.

    2008-01-24

    The role of nuclear spins for quantum information processing in quantum dots is theoretically investigated in this thesis. Building on the established fact that the most strongly coupled environment for the potential electron spin quantum bit are the surrounding lattice nuclear spins interacting via the hyperfine interaction, we turn this vice into a virtue by designing schemes for harnessing this strong coupling. In this perspective, the ensemble of nuclear spins can be considered an asset, suitable for an active role in quantum information processing due to its intrinsic long coherence times. We present experimentally feasible protocols for the polarization, i.e. initialization, of the nuclear spins and a quantitative solution to our derived master equation. The polarization limiting destructive interference effects, caused by the collective nature of the nuclear coupling to the electron spin, are studied in detail. Efficient ways of mitigating these constraints are presented, demonstrating that highly polarized nuclear ensembles in quantum dots are feasible. At high, but not perfect, polarization of the nuclei the evolution of an electron spin in contact with the spin bath can be efficiently studied by means of a truncation of the Hilbert space. It is shown that the electron spin can function as a mediator of universal quantum gates for collective nuclear spin qubits, yielding a promising architecture for quantum information processing. Furthermore, we show that at high polarization the hyperfine interaction of electron and nuclear spins resembles the celebrated Jaynes-Cummings model of quantum optics. This result opens the door for transfer of knowledge from the mature field of quantum computation with atoms and photons. Additionally, tailored specifically for the quantum dot environment, we propose a novel scheme for the generation of highly squeezed collective nuclear states. Finally we demonstrate that even an unprepared completely mixed nuclear spin

  20. Coherent coupling between a quantum dot and a donor in silicon.

    Science.gov (United States)

    Harvey-Collard, Patrick; Jacobson, N Tobias; Rudolph, Martin; Dominguez, Jason; Ten Eyck, Gregory A; Wendt, Joel R; Pluym, Tammy; Gamble, John King; Lilly, Michael P; Pioro-Ladrière, Michel; Carroll, Malcolm S

    2017-10-18

    Individual donors in silicon chips are used as quantum bits with extremely low error rates. However, physical realizations have been limited to one donor because their atomic size causes fabrication challenges. Quantum dot qubits, in contrast, are highly adjustable using electrical gate voltages. This adjustability could be leveraged to deterministically couple donors to quantum dots in arrays of qubits. In this work, we demonstrate the coherent interaction of a 31P donor electron with the electron of a metal-oxide-semiconductor quantum dot. We form a logical qubit encoded in the spin singlet and triplet states of the two-electron system. We show that the donor nuclear spin drives coherent rotations between the electronic qubit states through the contact hyperfine interaction. This provides every key element for compact two-electron spin qubits requiring only a single dot and no additional magnetic field gradients, as well as a means to interact with the nuclear spin qubit.

  1. Flipping quantum coins

    OpenAIRE

    Berlin, Guido; Brassard, Gilles; Bussieres, Felix; Godbout, Nicolas; Slater, Joshua A.; Tittel, Wolfgang

    2009-01-01

    Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit in order to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems a...

  2. Quantum engineering: Diamond envy

    Science.gov (United States)

    Nunn, Joshua

    2013-03-01

    Nitrogen atoms trapped tens of nanometres apart in diamond can now be linked by quantum entanglement. This ability to produce and control entanglement in solid systems could enable powerful quantum computers.

  3. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  4. A direct investigation of photocharge transfer across monomolecular layer between C60 and CdS quantum dots by photoassisted conductive atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Xiaohong Jiang

    2016-04-01

    Full Text Available The composite assembly of C60 and CdS Quantum Dots (QDs on ITO substrate was prepared by Langmuir-Blodgett (LB technique using arachic acid (AA, stearic acid (SA and octadecanyl amine (OA as additives. Photoassisted conductive atomic force microscopy was used to make point contact current-voltage (I-V measurements on both the CdS QDs and the composite assembly of C60/CdS. The result make it clear that the CdS, C60/CdS assemblies deposited on ITO substrate showed linear characteristics and the current increased largely under illumination comparing with that in the dark. The coherent, nonresonant tunneling mechanism was used to explain the current occurrence. It is considered that the photoinduced carriers CdS QDs tunneled through alkyl chains increased the current rapidly.

  5. A direct investigation of photocharge transfer across monomolecular layer between C{sub 60} and CdS quantum dots by photoassisted conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiaohong; Liu, He; Zhang, Xingtang; Cheng, Gang; Wang, Shujie; Du, Zuliang, E-mail: zld@henu.edu.cn [Key Laboratory for Special Functional Materials, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, PR. China (China)

    2016-04-15

    The composite assembly of C{sub 60} and CdS Quantum Dots (QDs) on ITO substrate was prepared by Langmuir-Blodgett (LB) technique using arachic acid (AA), stearic acid (SA) and octadecanyl amine (OA) as additives. Photoassisted conductive atomic force microscopy was used to make point contact current-voltage (I-V) measurements on both the CdS QDs and the composite assembly of C{sub 60}/CdS. The result make it clear that the CdS, C{sub 60}/CdS assemblies deposited on ITO substrate showed linear characteristics and the current increased largely under illumination comparing with that in the dark. The coherent, nonresonant tunneling mechanism was used to explain the current occurrence. It is considered that the photoinduced carriers CdS QDs tunneled through alkyl chains increased the current rapidly.

  6. Small Atomic Orbital Basis Set First-Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources.

    Science.gov (United States)

    Sure, Rebecca; Brandenburg, Jan Gerit; Grimme, Stefan

    2016-04-01

    In quantum chemical computations the combination of Hartree-Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double-zeta quality is still widely used, for example, in the popular B3LYP/6-31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean-field methods.

  7. Novel Parity-Preserving Designs of Reversible 4-Bit Comparator

    Science.gov (United States)

    Qi, Xue-mei; Chen, Fu-long; Wang, Hong-tao; Sun, Yun-xiang; Guo, Liang-min

    2014-04-01

    Reversible logic has attracted much attention in recent years especially when the calculation with minimum energy consumption is considered. This paper presents two novel approaches for designing reversible 4-bit comparator based on parity-preserving gates, which can detect any fault that affects no more than a single logic signal. In order to construct the comparator, three variable EX-OR gate (TVG), comparator gate (CPG), four variable EX-OR gate block (FVGB) and comparator gate block (CPGB) are designed, and they are parity-preserving and reversible. Their quantum equivalent implementations are also proposed. The design of two comparator circuits is completed by using existing reversible gates and the above new reversible circuits. All these comparators have been modeled and verified in Verilog hardware description language (Verilog HDL). The Quartus II simulation results indicate that their circuits' logic structures are correct. The comparative results are presented in terms of quantum cost, delay and garbage outputs.

  8. Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties

    Energy Technology Data Exchange (ETDEWEB)

    von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel, Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Ramakrishnan, Raghunathan [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel, Basel Switzerland; Rupp, Matthias [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel, Basel Switzerland; Knoll, Aaron [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne Illinois 60439; Texas Advanced Computing Center, University of Texas, Austin Texas

    2015-04-20

    We introduce a fingerprint representation of molecules based on a Fourier series of atomic radial distribution functions. This fingerprint is unique (except for chirality), continuous, and differentiable with respect to atomic coordinates and nuclear charges. It is invariant with respect to translation, rotation, and nuclear permutation, and requires no preconceived knowledge about chemical bonding, topology, or electronic orbitals. As such, it meets many important criteria for a good molecular representation, suggesting its usefulness for machine learning models of molecular properties trained across chemical compound space. To assess the performance of this new descriptor, we have trained machine learning models of molecular enthalpies of atomization for training sets with up to 10 k organic molecules, drawn at random from a published set of 134 k organic molecules with an average atomization enthalpy of over 1770 kcal/mol. We validate the descriptor on all remaining molecules of the 134 k set. For a training set of 10 k molecules, the fingerprint descriptor achieves a mean absolute error of 8.0 kcal/mol. This is slightly worse than the performance attained using the Coulomb matrix, another popular alternative, reaching 6.2 kcal/mol for the same training and test sets. (c) 2015 Wiley Periodicals, Inc.

  9. Davisson-Germer Prize in Atomic or Surface Physics Talk: Few-body processes in the quantum limit

    Science.gov (United States)

    Greene, Chris

    2010-03-01

    Recent theoretical studies of low energy collisions and resonant processes will be reviewed. These include the process of molecular dissociation induced by electron collision, and the role of universal Efimov physics in collisions of three or four atoms in an ultracold gas. The role of experiment in testing and advancing our understanding of these few-body studies will also be discussed.

  10. Quantum Dynamics in Atomic-Fountain Experiments for Measuring the Electric Dipole Moment of the Electron with Improved Sensitivity

    Directory of Open Access Journals (Sweden)

    B. J. Wundt

    2012-11-01

    Full Text Available An improved measurement of the electron electric dipole moment (EDM appears feasible using ground-state alkali atoms in an atomic fountain in which a strong electric field, which couples to a conceivable EDM, is applied perpendicular to the fountain axis. In a practical fountain, the ratio of the atomic tensor Stark shift to the Zeeman shift is a factor μ∼100. We expand the complete time-evolution operator in inverse powers of this ratio; complete results are presented for atoms of total spin F=3, 4, and 5. For a specific set of entangled hyperfine sublevels (coherent states, potential systematic errors enter only as even powers of 1/μ, making the expansion rapidly convergent. The remaining EDM-mimicking effects are further suppressed in a proposed double-differential setup, where the final state is interrogated in a differential laser configuration, and the direction of the strong electric field also is inverted. Estimates of the signal available at existing accelerator facilities indicate that the proposed apparatus offers the potential for a drastic improvement in EDM limits over existing measurements, and for constraining the parameter space of supersymmetric (SUSY extensions of the Standard Model.

  11. Effect of Al 2 O 3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells

    KAUST Repository

    Roelofs, Katherine E.

    2013-03-21

    Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO 2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current-voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al 2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer. © 2013 American Chemical Society.

  12. Hey! A Brown Recluse Spider Bit Me!

    Science.gov (United States)

    ... System Taking Care of Your Teeth Bad Breath Hey! A Brown Recluse Spider Bit Me! KidsHealth > For Kids > Hey! A Brown Recluse Spider Bit Me! Print A ... For Kids For Parents MORE ON THIS TOPIC Hey! A Fire Ant Stung Me! Hey! A Tarantula ...

  13. Multi-bit organic ferroelectric memory

    NARCIS (Netherlands)

    Khikhlovskyi, V.; Gorbunov, A.V.; Breemen, A.J.J.M. vN; Janssen, R.A.J.; Gelinck, G.H.; Kemerink, M.

    2013-01-01

    Storage of multiple bits per element is a promising alternative to miniaturization for increasing the information data density in memories. Here we introduce a multi-bit organic ferroelectric-based non-volatile memory with binary readout from a simple capacitor structure. The functioning of our

  14. Factorization of a 512-bit RSA modulus

    NARCIS (Netherlands)

    S.H. Cavallar; W.M. Lioen (Walter); H.J.J. te Riele (Herman); B. Dodson; A.K. Lenstra (Arjen); P.L. Montgomery; B. Murphy

    2000-01-01

    textabstractOn August 22, 1999, we completed the factorization of the 512--bit 155--digit number RSA--155 with the help of the Number Field Sieve factoring method (NFS). This is a new record for factoring general numbers. Moreover, 512--bit RSA keys are frequently used for the protection of

  15. Atomic motions in the layered copper pseudochalcogenide CuNCN indicative of a quantum spin-liquid scenario

    Science.gov (United States)

    Tchougréeff, Andrei L.; Stoffel, Ralf P.; Houben, Andreas; Jacobs, Philipp; Dronskowski, Richard; Pregelj, Matej; Zorko, Andrej; Arčon, Denis; Zaharko, Oksana

    2017-06-01

    We explore the thermodynamic properties of the layered copper(II) carbodiimide CuNCN by heat-capacity measurements and investigate the corresponding thermal atomic motions by means of neutron powder diffraction as well as inelastic neutron scattering. The experiments are complemented by a combination of density-functional calculations, phonon analysis and analytic theory. The existence of a soft flexural mode—bending of the layers, characteristic for the material structure—is established in the phonon spectrum of CuNCN by giving characteristic temperature-dependent contributions to the heat capacity and atomic displacement parameters. The agreement with the neutron data allows us to extract a residual—on top of the lattice—presumably spinon contribution to the heat capacity \\propto {{T}2} , speaking in favor of the spin-liquid picture of the electronic phases of CuNCN.

  16. Trial wave functions for ring-trapped ions and neutral atoms: Microscopic description of the quantum space-time crystal

    Science.gov (United States)

    Yannouleas, Constantine; Landman, Uzi

    2017-10-01

    A constructive theoretical platform for the description of quantum space-time crystals uncovers for N interacting and ring-confined rotating particles the existence of low-lying states with proper space-time crystal behavior. The construction of the corresponding many-body trial wave functions proceeds first via symmetry breaking at the mean-field level followed by symmetry restoration using projection techniques. The ensuing correlated many-body wave functions are stationary states and preserve the rotational symmetries, and at the same time they reflect the point-group symmetries of the mean-field crystals. This behavior results in the emergence of sequences of select magic angular momenta Lm. For angular-momenta away from the magic values, the trial functions vanish. Symmetry breaking beyond the mean-field level can be induced by superpositions of such good-Lm many-body stationary states. We show that superposing a pair of adjacent magic angular momenta states leads to formation of special broken-symmetry states exhibiting quantum space-time-crystal behavior. In particular, the corresponding particle densities rotate around the ring, showing undamped and nondispersed periodic crystalline evolution in both space and time. The experimental synthesis of such quantum space-time-crystal wave packets is predicted to be favored in the vicinity of ground-state energy crossings of the Aharonov-Bohm-type spectra accessed via an externally applied, natural or synthetic, magnetic field. These results are illustrated here for Coulomb-repelling fermionic ions and for a lump of contact-interaction attracting bosons.

  17. An Improved N-Bit to N-Bit Reversible Haar-Like Transform

    Energy Technology Data Exchange (ETDEWEB)

    Senecal, J G; Lindstrom, P; Duchaineau, M A; Joy, K I

    2004-07-26

    We introduce the Piecewise-Linear Haar (PLHaar) transform, a reversible n-bit to n-bit transform that is based on the Haar wavelet transform. PLHaar is continuous, while all current n-bit to n-bit methods are not, and is therefore uniquely usable with both lossy and lossless methods (e.g. image compression). PLHaar has both integer and continuous (i.e. non-discrete) forms. By keeping the coefficients to n bits PLHaar is particularly suited for use in hardware environments where channel width is limited, such as digital video channels and graphics hardware.

  18. High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms.

    Science.gov (United States)

    Krishnamurthy, Subramanian; Wang, Y; Tu, Y; Tseng, S; Shahriar, M S

    2012-06-18

    We demonstrate a high-efficiency optical modulator at ~1323 nm using the quantum Zeno effect in a ladder transition in a Rb vapor cell. The lower leg of the transitions represents the control beam while the upper leg of the transitions represents the signal beam. The cross-modulation of the signal beam transmission is observed as the control beam is intensity modulated, and is explained in terms of the quantum Zeno effect. We observe a modulation depth of near 100% at frequencies up to 1 MHz and demonstrate modulation at speeds up to 75 MHz, with a 3 dB bandwidth of about 5 MHz, limited by the homogeneous linewidth of the intermediate state. We also describe how much higher modulation speeds could be realized by using a buffer gas to broaden the transitions. We identify and explain the special conditions needed for optimizing the modulation efficiency. Numerical simulations of modulation at ~1 GHz are presented. The maximum modulation speed is found to scale with the pressure-broadened linewidth of the intermediate state, so that much higher speeds should be attainable.

  19. Quantum state readout of individual quantum dots by electrostatic force detection.

    Science.gov (United States)

    Miyahara, Yoichi; Roy-Gobeil, Antoine; Grutter, Peter

    2017-02-10

    Electric charge detection by atomic force microscopy (AFM) with single-electron resolution (e-EFM) is a promising way to investigate the electronic level structure of individual quantum dots (QDs). The oscillating AFM tip modulates the energy of the QDs, causing single electrons to tunnel between QDs and an electrode. The resulting oscillating electrostatic force changes the resonant frequency and damping of the AFM cantilever, enabling electrometry with a single-electron sensitivity. Quantitative electronic level spectroscopy is possible by sweeping the bias voltage. Charge stability diagram can be obtained by scanning the AFM tip around the QD. e-EFM technique enables to investigate individual colloidal nanoparticles and self-assembled QDs without nanoscale electrodes. e-EFM is a quantum electromechanical system where the back-action of a tunneling electron is detected by AFM; it can also be considered as a mechanical analog of admittance spectroscopy with a radio frequency resonator, which is emerging as a promising tool for quantum state readout for quantum computing. In combination with the topography imaging capability of the AFM, e-EFM is a powerful tool for investigating new nanoscale material systems which can be used as quantum bits.

  20. PERBANDINGAN APLIKASI MENGGUNAKAN METODE CAMELLIA 128 BIT KEY DAN 256 BIT KEY

    Directory of Open Access Journals (Sweden)

    Lanny Sutanto

    2014-01-01

    Full Text Available The rapid development of the Internet today to easily exchange data. This leads to high levels of risk in the data piracy. One of the ways to secure data is using cryptography camellia. Camellia is known as a method that has the encryption and decryption time is fast. Camellia method has three kinds of scale key is 128 bit, 192 bit, and 256 bit.This application is created using the C++ programming language and using visual studio 2010 GUI. This research compare the smallest and largest key size used on the file extension .Txt, .Doc, .Docx, .Jpg, .Mp4, .Mkv and .Flv. This application is made to comparing time and level of security in the use of 128-bit key and 256 bits. The comparison is done by comparing the results of the security value of avalanche effect 128 bit key and 256 bit key.

  1. Complex dynamics in planar two-electron quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Schroeter, Sebastian Josef Arthur

    2013-06-25

    Quantum dots play an important role in a wide range of recent experimental and technological developments. In particular they are promising candidates for realisations of quantum bits and further applications in quantum information theory. The harmonically confined Hooke's atom model is experimentally verified and separates in centre-of-mass and relative coordinates. Findings that are contradictory to this separability call for an extension of the model, in particular changing the confinement potential. In order to study effects of an anharmonic confinement potential on spectral properties of planar two-electron quantum dots a sophisticated numerical approach is developed. Comparison between the Helium atom, Hooke's atom and an anharmonic potential model are undertaken in order to improve the description of quantum dots. Classical and quantum features of complexity and chaos are investigated and used to characterise the dynamics of the system to be mixed regular-chaotic. Influence of decoherence can be described by quantum fidelity, which measures the effect of a perturbation on the time evolution. The quantum fidelity of eigenstates of the system depends strongly on the properties of the perturbation. Several methods for solving the time-dependent Schrödinger equation are implemented and a high level of accuracy for long time evolutions is achieved. The concept of offset entanglement, the entanglement of harmonic models in the noninteracting limit, is introduced. This concept explains different questions raised in the literature for harmonic quantum dot models, recently. It shows that only in the groundstate the electrons are not entangled in the fermionic sense. The applicability, validity, and origin of Hund's first rule in general quantum dot models is further addressed. In fact Hund's first rule is only applicable, and in this case also valid, for one pair of singlet and triplet states in Hooke's atom. For more realistic models of two

  2. Quantum-limit spectroscopy

    CERN Document Server

    Ficek, Zbigniew

    2017-01-01

    This book covers the main ideas, methods, and recent developments of quantum-limit optical spectroscopy and applications to quantum information, resolution spectroscopy, measurements beyond quantum limits, measurement of decoherence, and entanglement. Quantum-limit spectroscopy lies at the frontier of current experimental and theoretical techniques, and is one of the areas of atomic spectroscopy where the quantization of the field is essential to predict and interpret the existing experimental results. Currently, there is an increasing interest in quantum and precision spectroscopy both theoretically and experimentally, due to significant progress in trapping and cooling of single atoms and ions. This progress allows one to explore in the most intimate detail the ways in which light interacts with atoms and to measure spectral properties and quantum effects with high precision. Moreover, it allows one to perform subtle tests of quantum mechanics on the single atom and single photon scale which were hardly eve...

  3. Physical optimization of quantum error correction circuits with spatially separated quantum dot spins.

    Science.gov (United States)

    Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2013-05-20

    We propose an efficient protocol for optimizing the physical implementation of three-qubit quantum error correction with spatially separated quantum dot spins via virtual-photon-induced process. In the protocol, each quantum dot is trapped in an individual cavity and each two cavities are connected by an optical fiber. We propose the optimal quantum circuits and describe the physical implementation for correcting both the bit flip and phase flip errors by applying a series of one-bit unitary rotation gates and two-bit quantum iSWAP gates that are produced by the long-range interaction between two distributed quantum dot spins mediated by the vacuum fields of the fiber and cavity. The protocol opens promising perspectives for long distance quantum communication and distributed quantum computation networks.

  4. Endo-Fullerene and Doped Diamond Nanocrystallite Based Models of Qubits for Solid-State Quantum Computers

    Science.gov (United States)

    Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.

  5. Quantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls

    Directory of Open Access Journals (Sweden)

    V. Fallahi

    2012-06-01

    Full Text Available The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls can be controlled through the domain walls separation. Also, we have represented another alternative way that enables us to handle easily the magnetoresistance of such a system as well as its conductance by utilizing the Rashba-type spin-orbit interaction induced by the external gates.

  6. Quantum physics for beginners

    CERN Document Server

    Ficek, Zbigniew

    2016-01-01

    The textbook introduces students to the main ideas of quantum physics and the basic mathematical methods and techniques used in the fields of advanced quantum physics, atomic physics, laser physics, nanotechnology, quantum chemistry, and theoretical mathematics. The textbook explains how microscopic objects (particles) behave in unusual ways, giving rise to what's called quantum effects. It contains a wide range of tutorial problems from simple confidence-builders to fairly challenging exercises that provide adequate understanding of the basic concepts of quantum physics.

  7. Efficient exciton generation in atomic passivated CdSe/ZnS quantum dots light-emitting devices

    Science.gov (United States)

    Kang, Byoung-Ho; Lee, Jae-Sung; Lee, Sang-Won; Kim, Sae-Wan; Lee, Jun-Woo; Gopalan, Sai-Anand; Park, Ji-Sub; Kwon, Dae-Hyuk; Bae, Jin-Hyuk; Kim, Hak-Rin; Kang, Shin-Won

    2016-01-01

    We demonstrate the first-ever surface modification of green CdSe/ZnS quantum dots (QDs) using bromide anions (Br-) in cetyl trimethylammonium bromide (CTAB). The Br- ions reduced the interparticle spacing between the QDs and induced an effective charge balance in QD light-emitting devices (QLEDs). The fabricated QLEDs exhibited efficient charge injection because of the reduced emission quenching effect and their enhanced thin film morphology. As a result, they exhibited a maximum luminance of 71,000 cd/m2 and an external current efficiency of 6.4 cd/A, both significantly better than those of their counterparts with oleic acid surface ligands. In addition, the lifetime of the Br- treated QD based QLEDs is significantly improved due to ionic passivation at the QDs surface. PMID:27686147

  8. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  9. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  10. Digital Quantum Estimation

    Science.gov (United States)

    Hassani, Majid; Macchiavello, Chiara; Maccone, Lorenzo

    2017-11-01

    Quantum metrology calculates the ultimate precision of all estimation strategies, measuring what is their root-mean-square error (RMSE) and their Fisher information. Here, instead, we ask how many bits of the parameter we can recover; namely, we derive an information-theoretic quantum metrology. In this setting, we redefine "Heisenberg bound" and "standard quantum limit" (the usual benchmarks in the quantum estimation theory) and show that the former can be attained only by sequential strategies or parallel strategies that employ entanglement among probes, whereas parallel-separable strategies are limited by the latter. We highlight the differences between this setting and the RMSE-based one.

  11. Multiplexed Memory-Insensitive Quantum Repeaters

    OpenAIRE

    Collins, O. A.; Jenkins, S. D.; Kuzmich, A.; Kennedy, T. A. B.

    2006-01-01

    Long-distance quantum communication via distant pairs of entangled quantum bits (qubits) is the first step towards more secure message transmission and distributed quantum computing. To date, the most promising proposals require quantum repeaters to mitigate the exponential decrease in communication rate due to optical fiber losses. However, these are exquisitely sensitive to the lifetimes of their memory elements. We propose a multiplexing of quantum nodes that should enable the construction...

  12. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Bo Gui

    2007-12-01

    Full Text Available We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  13. Bit Loading Algorithms for Cooperative OFDM Systems

    Directory of Open Access Journals (Sweden)

    Gui Bo

    2008-01-01

    Full Text Available Abstract We investigate the resource allocation problem for an OFDM cooperative network with a single source-destination pair and multiple relays. Assuming knowledge of the instantaneous channel gains for all links in the entire network, we propose several bit and power allocation schemes aiming at minimizing the total transmission power under a target rate constraint. First, an optimal and efficient bit loading algorithm is proposed when the relay node uses the same subchannel to relay the information transmitted by the source node. To further improve the performance gain, subchannel permutation, in which the subchannels are reallocated at relay nodes, is considered. An optimal subchannel permutation algorithm is first proposed and then an efficient suboptimal algorithm is considered to achieve a better complexity-performance tradeoff. A distributed bit loading algorithm is also proposed for ad hoc networks. Simulation results show that significant performance gains can be achieved by the proposed bit loading algorithms, especially when subchannel permutation is employed.

  14. FastBit: Interactively Searching Massive Data

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng; Ahern, Sean; Bethel, E. Wes; Chen, Jacqueline; Childs, Hank; Cormier-Michel, Estelle; Geddes, Cameron; Gu, Junmin; Hagen, Hans; Hamann, Bernd; Koegler, Wendy; Lauret, Jerome; Meredith, Jeremy; Messmer, Peter; Otoo, Ekow; Perevoztchikov, Victor; Poskanzer, Arthur; Prabhat,; Rubel, Oliver; Shoshani, Arie; Sim, Alexander; Stockinger, Kurt; Weber, Gunther; Zhang, Wei-Ming

    2009-06-23

    As scientific instruments and computer simulations produce more and more data, the task of locating the essential information to gain insight becomes increasingly difficult. FastBit is an efficient software tool to address this challenge. In this article, we present a summary of the key underlying technologies, namely bitmap compression, encoding, and binning. Together these techniques enable FastBit to answer structured (SQL) queries orders of magnitude faster than popular database systems. To illustrate how FastBit is used in applications, we present three examples involving a high-energy physics experiment, a combustion simulation, and an accelerator simulation. In each case, FastBit significantly reduces the response time and enables interactive exploration on terabytes of data.

  15. Feedback control of superconducting quantum circuits

    NARCIS (Netherlands)

    Ristè, D.

    2014-01-01

    Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback

  16. A Free Object in Quantum Information Theory

    Science.gov (United States)

    2010-01-01

    beautiful city they represent. References [1] T. Crowder and K. Martin. Classical representations of qubit channels. Proceedings of Quantum Physics and...imperfect state. Theoretical Computer Science, Elsevier Science, submitted. [5] K. Martin. How to randomly flip a quantum bit. Proceedings of Quantum Physics and

  17. Super-micron-scale atomistic simulation for electronic transport with atomic vibration: Unified approach from quantum to classical transport

    Science.gov (United States)

    Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro

    2017-07-01

    We develop a powerful simulation method that can treat electronic transport in a super-micron-scale open system with atomic vibration at finite temperature. As an application of the developed method to realistic materials, we simulate electronic transport in metallic single-walled carbon nanotubes from nanometer scale to micrometer scale at room temperature. Based on the simulation results, we successfully identify two different crossovers, namely, ballistic to diffusive crossover and coherent to incoherent crossover, simultaneously and with equal footing, from which the mean free path and the phase coherence length can be extracted clearly. Moreover, we clarify the scaling behavior of the electrical resistance and the electronic current in the crossover regime.

  18. Quantum-kinetic modeling of electron release in low-energy surface collisions of atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Marbach, Johannes

    2012-09-20

    In this work we present a theoretical description of electron release in the collision of atomic and molecular projectiles with metallic and especially dielectric surfaces. The associated electron yield, the secondary electron emission coefficient, is an important input parameter for numerical simulations of dielectric barrier discharges and other bounded low-temperature gas discharges. The available reference data for emission coefficients is, however, very sparse and often uncertain, especially for molecular projectiles. With the present work we aim to contribute to the filling of these gaps by providing a flexible and easy-to-use model that allows for a convenient calculation of the emission coefficient and related quantities for a wide range of projectile-surface systems and the most dominant reaction channels.

  19. Quantum cryptography with entangled photons

    Science.gov (United States)

    Jennewein; Simon; Weihs; Weinfurter; Zeilinger

    2000-05-15

    By realizing a quantum cryptography system based on polarization entangled photon pairs we establish highly secure keys, because a single photon source is approximated and the inherent randomness of quantum measurements is exploited. We implement a novel key distribution scheme using Wigner's inequality to test the security of the quantum channel, and, alternatively, realize a variant of the BB84 protocol. Our system has two completely independent users separated by 360 m, and generates raw keys at rates of 400-800 bits/s with bit error rates around 3%.

  20. Diffusion bonding of Stratapax for drill bits

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, J.N.; Finger, J.T.

    1983-01-01

    A process has been developed for the diffusion bonding of General Electric's Stratapax drill blanks to support studs for cutter assemblies in drill bits. The diffusion bonding process is described and bond strength test data are provided for a variety of materials. The extensive process details, provided in the Appendices, should be sufficient to enable others to successfully build diffusion-bonded drill bit cutter assemblies.