WorldWideScience

Sample records for atomic products operation

  1. Hanford Atomic Products Operation monthly report, January 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-02-24

    This is the monthly report for the Hanford Atomic Laboratories Products Operation, February, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  2. Hanford Atomic Products Operation monthly report for June 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-07-28

    This is the monthly report for the Hanford Atomic Products Operation, June, 1955. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  3. Partitioned key-value store with atomic memory operations

    Energy Technology Data Exchange (ETDEWEB)

    Bent, John M.; Faibish, Sorin; Grider, Gary

    2017-02-07

    A partitioned key-value store is provided that supports atomic memory operations. A server performs a memory operation in a partitioned key-value store by receiving a request from an application for at least one atomic memory operation, the atomic memory operation comprising a memory address identifier; and, in response to the atomic memory operation, performing one or more of (i) reading a client-side memory location identified by the memory address identifier and storing one or more key-value pairs from the client-side memory location in a local key-value store of the server; and (ii) obtaining one or more key-value pairs from the local key-value store of the server and writing the obtained one or more key-value pairs into the client-side memory location identified by the memory address identifier. The server can perform functions obtained from a client-side memory location and return a result to the client using one or more of the atomic memory operations.

  4. Hanford Atomic Products Operation monthly report, January 1954

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1954-02-25

    This is a progress report of the production reactors on the Hanford Reservation for the month of January 1954. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes the accomplishments and employee relations for that month.

  5. Hanford Atomic Products Operation monthly report, April 1953

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1953-05-20

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  6. Hanford Atomic Products Operation monthly report, March 1953

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1953-04-22

    This is a progress report of the production reactors on the Hanford Reservation for the month of March 1953. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  7. Hanford Atomic Products Operation monthly report, February 1954

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1954-03-23

    This is a progress report of the production reactors on the Hanford Reservation for the month of February 1951. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  8. Hanford Atomic Products Operation monthly report, April 1954

    Energy Technology Data Exchange (ETDEWEB)

    McCune, F.K.

    1954-05-21

    This is a progress report of the production reactors on the Hanford Reservation for the month of April 1954. This report takes each division (e.g., manufacturing, medical, accounting, occupational safety, security, reactor operations, etc.) of the site and summarizes its accomplishments and employee relations for that month.

  9. Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions.

    Science.gov (United States)

    Ben-Nun, M; Mills, J D; Hinde, R J; Winstead, C L; Boatz, J A; Gallup, G A; Langhoff, P W

    2009-07-02

    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H(2), CH) and triatomic (H(3), CH(2)) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or

  10. Production and detection of cold antihydrogen atoms

    CERN Multimedia

    Amoretti, M; Bonomi, G; Bouchta, A; Bowe, P; Carraro, C; Cesar, C L; Charlton, M; Collier, M; Doser, Michael; Filippini, V; Fine, K S; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Holzscheiter, M H; Jørgensen, L V; Lagomarsino, V; Landua, Rolf; Landua, Rolf; Lindelöf, D; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Marchesotti, M; Montagna, P; Pruys, H S; Regenfus, C; Riedler, P; Rochet, J; Rotondi, A; Rouleau, G; Testera, G; Van der Werf, D P; Variola, A; Watson, T L; CERN. Geneva

    2002-01-01

    A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted by Dirac, can be used to test the CPT theorem experimental investigations involving comparisons of particles with antiparticles are numerous. Cold atoms and anti-atoms, such as hydrogen and anti-hydrogen, could form the basis of a new precise test, as CPT invariance implies that they must have the same spectrum. Observations of antihydrogen in small quantities and at high energies have been reported at the European Organization for Nuclear Research (CERN) and at Fermilab, but were not suited to precision comparison measurements. Here we demonstrate the production of antihydrogen atoms at very low energy by mixing trapped antiprotons and positrons in a cryogenic environment. The neutral anti-atoms have been detected...

  11. Spouted bed drying of Bauhinia forficata link extract: the effects of feed atomizer position and operating conditions on equipment performance and product properties

    Directory of Open Access Journals (Sweden)

    C. R. F. Souza

    2005-06-01

    Full Text Available In this paper the effects of feed atomizer position and operating conditions on equipment performance (accumulation rate, product recovery, elutriation and thermal efficiency and product properties (moisture content, size distribution, flavonoid degradation and flow properties during spouted bed drying of Bauhinia forficata Link extract are evaluated. The parameters studied were the position of the atomizer system (top spray or bottom spray, the inlet temperature of the spouting gas (80 and 150oC and the feed mass flow rate of concentrated extract relative to the evaporation capacity of the dryer, Ws/Wmax (15 to 100%. Higher accumulation rate values were obtained with the atomizer placed at the bottom of the bed. In this configuration, the accumulation rate increases with the increase in the Ws/Wmax ratio. The best drying performance was obtained for the top spray configuration.

  12. Metal powder production by gas atomization

    Science.gov (United States)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  13. Production of hyperthermal hydrogen atoms by an arc discharge

    International Nuclear Information System (INIS)

    Samano, E.C.

    1993-01-01

    A magnetically confined thermal electric arc gas heater has been designed and built as a suitable source of heat for dissociating hydrogen molecules with energy in the range of a few eV. Specifically, the average beam kinetic energy is determined to be 1.5 eV, the dissociation rate is 0.5 atoms per molecule and the atom beam intensity in the forward direction is 1018 atoms/sr-sec. The working pressure in the arc discharge region is from 15 to 25 torr. This novel atom source has been successfully ignited and operated with pure hydrogen during several hours of continuous performance, maintaining its characteristics. The hyperthermal hydrogen atom beam, which is obtained from this source is analyzed and characterized in a high vacuum system, the characterization of the atom beam is accomplished by two different methods: calorimetry and surface ionization. Calorimetic sensor were used for detecting the atom beam by measuring the delivered power of the impinging atoms on the sensor surface. In the second approach an H-surface production backscattering experiment from a low work function surface was conducted. The validity of these two methods is discussed, and the results are compared. The different collision mechanisms to dissociate and ionize hydrogen molecules in the arch discharge are reviewed, as well as the physics of electric arcs. Finally, a Monte Carlo simulation program is used to calculate the ionization probability of low energy atoms perpendicularly reflected from a surface converter, as a model for atom surface ionization

  14. Complex operator method of the hydrogen atom

    International Nuclear Information System (INIS)

    Jiang, X.

    1989-01-01

    Frequently the hydrogen atom eigenvalue problem is analytically solved by solving a radial wave equation for a particle in a Coulomb field. In this article, complex coordinates are introduced, and an expression for the energy levels of the hydrogen atom is obtained by means of the algebraic solution of operators. The form of this solution is in accord with that of the analytical solution

  15. Atomic iodine production in a gas flow by decomposing methyl iodide in a dc glow discharge

    International Nuclear Information System (INIS)

    Mikheyev, P A; Shepelenko, A A; Voronov, A I; Kupryaev, Nikolai V

    2002-01-01

    The production of atomic iodine for an oxygen - iodine laser is studied by decomposing methyl iodide in a dc glow discharge in a vortex gas flow. The concentration of iodine atoms in discharge products was measured from the atomic iodine absorption of the radiation of a single-frequency tunable diode laser at a wavelength of 1.315 μm. Atomic iodine concentrations sufficient for the operation of an oxygen - iodine laser were obtained. The concentration of atomic iodine amounted to 3.6 x 10 15 cm -3 for a pressure of the carrying argon gas of 15 Torr. The discharge stabilisation by a vortex gas flow allowed the glow discharge to be sustained in a strongly electronegative halogen-containing gas mixture for pressures up to 20 Torr. (active media)

  16. Mesonic atom production in high-energy nuclear collisions

    International Nuclear Information System (INIS)

    Wakai, M.; Bando, H.; Sano, M.

    1987-08-01

    The production probability of π-mesonic atom in high-energy nuclear collisions is estimated by a coalescence model. The production cross section is calculated for p + Ne and Ne + Ne systems at 2.1 GeV/A and 5.0 GeV/A beam energy. It is shown that nuclear fragments with larger charge numbers have the advantage in the formation of π-mesonic atoms. The cross section is proportional to Z 3 and of the order of magnitude of 1 ∼ 10 μb in all the above cases. The production cross sections of K-mesonic atoms are also estimated. (author)

  17. Laser diagnostics of atomic hydrogen and oxygen production in rf and microwave plasma discharges

    International Nuclear Information System (INIS)

    Preppernau, B.L.

    1993-01-01

    The research for this thesis involved the application of two-photon allowed laser-induced fluorescence (TALIF) to the study of atomic hydrogen and oxygen production in industrial scale radio-frequency and microwave plasma discharge apparatus. Absolute atomic hydrogen concentration profiles were measured in a Gaseous Electronics Conference Reference Cell installed at Wright-Patterson AFB, Ohio operating with a simple H 2 discharge. Two-dimensional atomic hydrogen concentration profiles were also measured in an ASTEX HPMM microwave plasma diamond deposition reactor during actual diamond growth. In addition absolute atomic oxygen concentrations were measured in the ASTEX system. Particular attention as paid to refining the concentration calibration technique and in determining a correction to account for the collisional quenching of excited state fluorescence in high pressure gases

  18. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard

    2013-01-01

    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  19. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.

    Science.gov (United States)

    Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei

    2018-06-01

    We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.

  20. The atom in international co-operation. Peace and progress through co-operation

    International Nuclear Information System (INIS)

    1965-01-01

    This issue describes the role of the IAEA in the context of international cooperation in bringing the benefits of atoms or nuclear energy in energy production, public health, water resources management and agriculture

  1. A Study on the Efficient Operating Management of Atomic Energy Commission

    International Nuclear Information System (INIS)

    Yun, Sungwon; Chung, W. S.; Lee, D. S.; Park, S. J.

    2013-04-01

    This study aimed to provide professionals in humanities and social sciences, not only nuclear, with a place for communication by establishing a website of Atomic Energy Commission and people with a place for participation which help the nuclear policy reflect public opinions. By establishing the website of Atomic Energy Commission, experts (including those in humanities and social sciences) can suggest policy agenda and public opinions can be suggested through the place for public participation. Also the website should restrict on indiscreet search by separating sections only for experts and provide experts with a section for active and creative debate on nuclear policy. All the accessible meeting agenda and minutes have been chronologically organized and the findings of the committee have been announced to share with people concerning nuclear policy. In terms of the effective operation of Atomic Energy Commission, research has been conducted for standing committee, regular meeting, activating the commission through system change and expert committee in addition to support for the 2nd meeting of Atomic Energy Committee and the 31st Nuclear Expert Committee. Activation measures to improve the operating system of the commission is proposed as following; changing of the commission's chairman operating system, standing commission regular meeting, activation of subcommittee and expanding and diversifying of agenda

  2. Safety and Mission Assurance (SMA) Automated Task Order Management System (ATOMS) Operation Manual

    Science.gov (United States)

    Wallace, Shawn; Fikes, Lou A.

    2016-01-01

    This document describes operational aspects of the ATOMS system. The information provided is limited to the functionality provided by ATOMS and does not include information provided in the contractor's proprietary financial and task management system.

  3. Hanford Atomic Products Operation monthly report for February 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-02-21

    This is the monthly report for the Hanford Laboratories Operation, February, 1956. Metallurgy, reactors fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations are discussed.

  4. The production and investigation of cold antihydrogen atoms

    International Nuclear Information System (INIS)

    Pittner, H.

    2005-04-01

    This work reports on experiments in which antihydrogen atoms have been produced in cryogenic Penning traps from antiproton and positron plasmas by two different methods and on experiments that have been carried out subsequently in order to investigate the antihydrogen atoms. By the first method antihydrogen atoms have been formed during the process of positron cooling of antiprotons in so called nested Penning traps and detected via a field ionization method. A measurement of the state distribution has revealed that the antihydrogen atoms are formed in highly excited states. This suggests along with the high production rate that the antihydrogen atoms are formed by three-body recombination processes and subsequent collisional deexcitations. However current theory cannot yet account for the measured state distribution. Typical radii of the detected antihydrogen atoms lie in the range between 0.4 μm and 0.15 μm. The deepest bound antihydrogen atoms have radii below 0.1 μm.The kinetic energy of the weakest bound antihydrogen atoms has been measured to about 200 meV. By the second method antihydrogen atoms have been synthesized in charge-exchange processes. Lasers are used to produce a Rydberg cesium beam within the cryogenic Penning trap that collides with trapped positrons so that Rydberg positronium atoms are formed via charge-exchange reactions. The Rydberg positronium atoms that collide with nearby stored antiprotons form antihydrogen atoms in charge-exchange reactions. So far, 14±4 antihydrogen atoms have been detected background-free via a field-ionization method. The antihydrogen atoms produced via the two-step charge-exchange mechanism are expected to have a temperature of 4.2 K, the temperature of the antiprotons from which they are formed

  5. On the merger between Toshiba Corporation and Japan Atomic Energy Operation Co., Ltd. (reply report)

    International Nuclear Information System (INIS)

    1990-01-01

    The Nuclear Safety Commission made a careful examination regarding the merger between Toshiba Corporation and Japan Atomic Energy Operation Co., Ltd., (an issue submitted on August 16, 1989, for deliberation), and submitted a report to the prime minister. A study was carried out to determine whether the technical expertise possessed by Japan Atomic Energy Operation Co. would taken over properly by Toshiba Corporation, which would continue to exist after the merger. Results of the study revealed that the organization and technical experts existing at Japan Atomic Energy Operation Co. before the merger would properly incorporated into the existing system in Toshiba Corporation. Thus, it was confirmed that Toshiba Corporation after the merger would have technical capabilities required to install and operate nuclear reactors. The Atomic Nuclear Safety Commission started the above-mentioned study on the subject matter at the 32nd meeting, which was held on August 24, 1989, and reached the conclusion at the 34th meeting held on August 31, 1989. (N.K.)

  6. Hanford Atomic Products Operation monthly report for March 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-04-20

    This is the monthly report for the Hanford Laboratories Operation, March, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology; financial activities, visits, biology operation, physics and instrumentation research, employee relations, pile technology, safety and radiological sciences are discussed.

  7. Operation of plant to produce Mo-99 from fission products

    International Nuclear Information System (INIS)

    Marques, R.O.; Cristini, P.R.; Marziale, D.P.; Furnari, E.S.; Fernandez, H.O.

    1987-01-01

    As it is well known, the production of Mo-99/Tc-99m generators has an outstanding place in radioisotope programs of the Argentine National Atomic Energy Commission. The basic raw material is Mo-99 from fission of U-235. In 1985 the production plant of this radionuclide began to operate, according to an adaptation of the method that was developed in Kernforschungszentrum Karlsruhe. The present work describes the target irradiation conditions in the reactor RA-3 (mini plates of U/Al alloy with 90% enriched uranium), the flow diagram and the operative conditions of the production process. The containment, filtration and removal conditions of the generated fission gases and the disposal of liquid and solid wastes are also analyzed. On the basis of the experience achieved in the development of more than twenty production processes, process efficiency is analyzed, taking into account the theoretical evaluation resulting from the application of the computer program 'Origin'(ORML) to the conditions of our case. The purity characteristics of the final product are reported (Zr-95 0,1 ppm; Nb-95 1 ppm; Ru-103 20 ppm; I-131 10 ppm) as well as the chemical characteristics that make it suitable to be used in the production of Mo-99/I c-99m generators. (Author)

  8. Investigation of nitrogen atom production in Ar/N2 and He/N2 surface wave plasmas

    International Nuclear Information System (INIS)

    Tabbal, M.; Kazopoulo, M.; Christidis, T.; Isber, S.

    2000-01-01

    Full text: There is presently great interest in nitrogen plasmas for surface coating processes. Such as the deposition of nitride thin films and surface treatment of materials. Indeed, nitrogen plasmas have been used to nitride the surface of ferrous and non-ferrous materials in order to improve their surface properties such as resistance to corrosion and hardness. Moreover, the design and development of nitrogen atom sources could be essential for the synthesis of gallium nitride (GaN), a wide band-gap semiconductor whose properties have revolutionized the microelectronics and optoelectronics industries. Correlations have been established between the density of active species in the process, namely atomic nitrogen (N) produced by the discharge and GaN film properties. Thus, it is of fundamental importance to investigate the N-atom production mechanisms in such discharges. N-atom production has been studied in pure N 2 surface-wave plasmas (SWP), as a function of operating parameters, namely gas pressure and electrical power. These studies indicate that the increase in the gas temperature (T g ) limits the N-atom production. One possible way of enhancing the N 2 dissociation rate ([N]/[N 2 ]) in the plasma could be the use of gas mixtures such as Ar/N 2 or He/N 2 . the aim of this paper is to characterize an Ar/N 2 and He/N 2 surface-wave discharge (SWD) by optical emission spectroscopy (OES), in order to determine the optimal plasma conditions in terms of [N]/[N 2 ]. The plasma is generated by a radio frequency (40.68 MHz) wave launcher. The effect of mixing N 2 with Ar and He on the production of N-atoms in the plasma was investigated at varying experimental conditions, such as operating pressure (4.5 and 7.5 Torr), electrical power (40 to 120 W), at a total gas flow of 250 sccm. It was found that [N]/[N 2 ] increases with the partial pressure of Ar in the mixture by a factor of about 8 at 120W. Such an enhancement is reduced at lower incident powers. On the

  9. The production and certification of a plutonium equal-atom reference material: NBL CRM 128

    International Nuclear Information System (INIS)

    Crawford, D.W.

    1990-07-01

    This report describes the design, production, and certification of the New Brunswick Laboratory plutonium equal-atom certified reference material (CRM), NBL CRM 128. The primary use of this CRM is for the determination of bias corrections encountered in the operation of a mass spectrometer. This reference material is available to the US Department of Energy contractor-operated and government-operated laboratories, as well as to the international nuclear safeguards community. The absolute, or unbiased, certified value for the CRM's Pu-242/Pu-239 ratio is 1.00063 ± 0.00026 (95% confidence interval) as of October 1, 1984. This value was obtained through the quantitative blending of high-purity, chemically and isotopically characterized separated isotopes, as well as through intercomparisons of CRM samples with calibration mixtures using thermal ionization mass spectrometry. 32 tabs

  10. Radiological safety experience in nuclear fuel cycle operations at Bhabha Atomic Research Center, Trombay, Mumbai, India

    International Nuclear Information System (INIS)

    Pushparaja; Gopalakrishnan, R.K.; Subramaniam, G.

    2000-01-01

    Activities at Bhabha Atomic Research Centre (BARC), Mumbai, cover nuclear fuel cycle operations based on natural uranium as the fuel. The facilities include: plant for purification and production of nuclear grade uranium metal, fuel fabrication, research reactor operation, fuel reprocessing and radioactive waste management in each stage. Comprehensive radiation protection programmes for assessment and monitoring of radiological impact of these operations, both in occupational and public environment, have been operating in BARC since beginning. These programmes, based on the 1990 ICRP Recommendations as prescribed by national regulatory body, the Atomic Energy Regulatory Board (AERB), are being successfully implemented by the Health, Safety and Environment Group, BARC. Radiation Hazards Control Units attached to the nuclear fuel cycle facilities provide radiation safety surveillance to the various operations. The radiation monitoring programme consists of measurement and control of external exposures by thermoluminescent dosimeters (TLDs), hand-held and installed instruments, and internal exposures by bioassay and direct whole body counting using shadow shield counter for beta gamma emitters and phoswich detector based system for plutonium. In addition, an environmental monitoring programme is in place to assess public exposures resulting from the operation of these facilities. The programme involves analysis of various matrices in the environment such as bay water, salt, fish, sediment and computation of resulting public exposures. Based on the operating experience in these plants, improved educating and training programmes for plant operators, have been designed. This, together with the application of new technologies have brought down individual as well as average doses of occupational workers. The environmental releases remain a small fraction of the authorised limits. The operating health physics experience in some of these facilities is discussed in this paper

  11. Synthetic Strategies toward Natural Products Containing Contiguous Stereogenic Quaternary Carbon Atoms.

    Science.gov (United States)

    Büschleb, Martin; Dorich, Stéphane; Hanessian, Stephen; Tao, Daniel; Schenthal, Kyle B; Overman, Larry E

    2016-03-18

    Strategies for the total synthesis of complex natural products that contain two or more contiguous stereogenic quaternary carbon atoms in their intricate structures are reviewed with 12 representative examples. Emphasis has been put on methods to create quaternary carbon stereocenters, including syntheses of the same natural product by different groups, thereby showcasing the diversity of thought and individual creativity. A compendium of selected natural products containing two or more contiguous stereogenic quaternary carbon atoms and key reactions in their total or partial syntheses is provided in the Supporting Information. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Excited-atom production by electron and ion bombardment of alkali halides

    International Nuclear Information System (INIS)

    Walkup, R.E.; Avouris, P.; Ghosh, A.P.

    1987-01-01

    We present experimental results on the production of excited atoms by electron and ion bombardment of alkali halides. For the case of electron bombardment, Doppler shift measurements show that the electronically excited atoms have a thermal velocity distribution in equilibrium with the surface temperature. Measurements of the absolute yield of excited atoms, the distribution of population among the excited states, and the systematic dependence on incident electron current and sample temperature support a model in which the excited atoms are produced by gas-phase collisions between desorbed ground-state atoms and secondary electrons. In contrast, for the case of ion bombardment, the excited atoms are directly sputtered from the surface, with velocity distributions characteristic of a collision cascade, and with typical energies of --10 eV

  13. Tobacco Products Production and Operations Reports

    Data.gov (United States)

    Department of the Treasury — Monthly statistical reports on tobacco products production and operations. Data for Tobacco Statistical Release is derived directly from the Report – Manufacturer of...

  14. Bottom-up production of meta-atoms for optical magnetism in visible and NIR light

    Science.gov (United States)

    Barois, Philippe; Ponsinet, Virginie; Baron, Alexandre; Richetti, Philippe

    2018-02-01

    Many unusual optical properties of metamaterials arise from the magnetic response of engineered structures of sub-wavelength size (meta-atoms) exposed to light. The top-down approach whereby engineered nanostructure of well-defined morphology are engraved on a surface proved to be successful for the generation of strong optical magnetism. It faces however the limitations of high cost and small active area in visible light where nanometre resolution is needed. The bottom-up approach whereby the fabrication metamaterials of large volume or large area results from the combination of nanochemitry and self-assembly techniques may constitute a cost-effective alternative. This approach nevertheless requires the large-scale production of functional building-blocks (meta-atoms) bearing a strong magnetic optical response. We propose in this paper a few tracks that lead to the large scale synthesis of magnetic metamaterials operating in visible or near IR light.

  15. Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

    International Nuclear Information System (INIS)

    Yang, Han; Wei, Wu; Chun-Wang, Wu; Hong-Yi, Dai; Cheng-Zu, Li

    2008-01-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given

  16. Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED

    Science.gov (United States)

    Han, Yang; Wu, Wei; Wu, Chun-Wang; Dai, Hong-Yi; Li, Cheng-Zu

    2008-12-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given.

  17. Production and detection of atomic hexadecapole at Earth's magnetic field.

    Science.gov (United States)

    Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D

    2008-07-21

    Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.

  18. Realization of arbitrary positive-operator-value measurement of single atomic qubit via cavity QED

    International Nuclear Information System (INIS)

    Han Yang; Wu Wei; Wu Chunwang; Dai Hongyi; Li Chengzu

    2008-01-01

    Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given. (authors)

  19. Operating room management and operating room productivity: the case of Germany.

    Science.gov (United States)

    Berry, Maresi; Berry-Stölzle, Thomas; Schleppers, Alexander

    2008-09-01

    We examine operating room productivity on the example of hospitals in Germany with independent anesthesiology departments. Linked to anesthesiology group literature, we use the ln(Total Surgical Time/Total Anesthesiologists Salary) as a proxy for operating room productivity. We test the association between operating room productivity and different structural, organizational and management characteristics based on survey data from 87 hospitals. Our empirical analysis links improved operating room productivity to greater operating room capacity, appropriate scheduling behavior and management methods to realign interests. From this analysis, the enforcing jurisdiction and avoiding advance over-scheduling appear to be the implementable tools for improving operating room productivity.

  20. Simulation of N-atom production in dielectric-barrier discharge in nitrogen at atmospheric pressure

    International Nuclear Information System (INIS)

    Tsyganov, Dmitry; Pancheshnyi, Sergey

    2012-01-01

    A plasma-chemical model of atomic nitrogen production in a Townsend dielectric-barrier discharge in nitrogen at atmospheric pressure is presented. On the basis of the comparison with measured densities, a significant discrepancy between the calculated and the measured production rate of nitrogen atoms is observed and discussed. (paper)

  1. Production of antihydrogen at reduced magnetic field for anti-atom trapping

    CERN Document Server

    Andresen, G.B.; Boston, A.; Bowe, P.D.; Cesar, C.L.; Chapman, S.; Charlton, M.; Chartier, M.; Deutsch, A.; Fajans, J.; Fujiwara, M.C.; Funakoshi, R.; Gill, D.R.; Gomberoff, K.; Hangst, J.S.; Hayano, R.S.; Hydomako, R.; Jenkins, M.J.; Jorgensen, L.V.; Kurchaninov, L.; Madsen, N.; Nolan, P.; Olchanski, K.; Olin, A.; Page, R.D.; Povilus, A.; Robicheaux, F.; Sarid, E.; Silveira, D.M.; Storey, J.W.; Thompson, R.I.; van der Werf, D.P.; Wurtele, J.S.; Yamazaki, Y.

    2008-01-01

    We have demonstrated production of antihydrogen in a 1$,$T solenoidal magnetic field. This field strength is significantly smaller than that used in the first generation experiments ATHENA (3$,$T) and ATRAP (5$,$T). The motivation for using a smaller magnetic field is to facilitate trapping of antihydrogen atoms in a neutral atom trap surrounding the production region. We report the results of measurements with the ALPHA (Antihydrogen Laser PHysics Apparatus) device, which can capture and cool antiprotons at 3$,$T, and then mix the antiprotons with positrons at 1$,$T. We infer antihydrogen production from the time structure of antiproton annihilations during mixing, using mixing with heated positrons as the null experiment, as demonstrated in ATHENA. Implications for antihydrogen trapping are discussed.

  2. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    International Nuclear Information System (INIS)

    Teramoto, Yoshiyuki; Ono, Ryo; Oda, Tetsuji

    2012-01-01

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N 2 discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N 2 discharge pulse is estimated to be 2.9 - 9.8 × 10 13 atoms and the energy efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 × 10 16 atoms/J. The energy efficiency of atomic nitrogen production in N 2 discharge is constant against the discharge energy, while that in N 2 /O 2 discharge increases with discharge energy. In the N 2 /O 2 discharge, two-step process of N 2 dissociation plays significant role for atomic nitrogen production.

  3. Approximation by max-product type operators

    CERN Document Server

    Bede, Barnabás; Gal, Sorin G

    2016-01-01

    This monograph presents a broad treatment of developments in an area of constructive approximation involving the so-called "max-product" type operators. The exposition highlights the max-product operators as those which allow one to obtain, in many cases, more valuable estimates than those obtained by classical approaches. The text considers a wide variety of operators which are studied for a number of interesting problems such as quantitative estimates, convergence, saturation results, localization, to name several. Additionally, the book discusses the perfect analogies between the probabilistic approaches of the classical Bernstein type operators and of the classical convolution operators (non-periodic and periodic cases), and the possibilistic approaches of the max-product variants of these operators. These approaches allow for two natural interpretations of the max-product Bernstein type operators and convolution type operators: firstly, as possibilistic expectations of some fuzzy variables, and secondly,...

  4. Product Operations Status Summary Metrics

    Science.gov (United States)

    Takagi, Atsuya; Toole, Nicholas

    2010-01-01

    The Product Operations Status Summary Metrics (POSSUM) computer program provides a readable view into the state of the Phoenix Operations Product Generation Subsystem (OPGS) data pipeline. POSSUM provides a user interface that can search the data store, collect product metadata, and display the results in an easily-readable layout. It was designed with flexibility in mind for support in future missions. Flexibility over various data store hierarchies is provided through the disk-searching facilities of Marsviewer. This is a proven program that has been in operational use since the first day of the Phoenix mission.

  5. 8 December 1953 - 8 December 1963. Atomic co-operation in the United Nations

    International Nuclear Information System (INIS)

    1964-01-01

    Full text: Ten years ago, on 8 December 1953, President Eisenhower proposed to the General Assembly of the United Nations measures to build 'a new avenue to peace'. This was the beginning of the idea that international understanding can be fostered through peaceful atomic co-operation in an international organization. Re-reading the President's statement ten years later, one is impressed by the continued urgency of his message. What he said in fact was that the nations of the world were living in the shadow of an overwhelming atomic threat and that steps were necessary, even though modest and untried, to break the impasse between the East and the West in the very field which caused the most profound concern - atomic energy. The International Atomic Energy Agency became an institutional reality in 1957, when the first General Conference met with 56 members. It now has 83 members, and a further five nations will become members as soon as statutory formalities are completed. The activity on the part of the Agency during these six years has gradually expanded, although it has fallen short of earlier hopes in certain areas. Time and patience, however, have been required and 1963 foreshadows further progress. Ten years after the proposal of the idea, scientists and statesmen can look back and be gratified that a contribution has been made to international understanding. Scientists and statesmen can look ahead, hopefully, to a future of increasing activity in this special agency to develop co-operation and agreement in the field of atomic energy. (author)

  6. Nonlinear effects in defect production by atomic and molecular ion implantation

    International Nuclear Information System (INIS)

    David, C.; Dholakia, Manan; Chandra, Sharat; Nair, K. G. M.; Panigrahi, B. K.; Amirthapandian, S.; Amarendra, G.; Varghese Anto, C.; Santhana Raman, P.; Kennedy, John

    2015-01-01

    This report deals with studies concerning vacancy related defects created in silicon due to implantation of 200 keV per atom aluminium and its molecular ions up to a plurality of 4. The depth profiles of vacancy defects in samples in their as implanted condition are carried out by Doppler broadening spectroscopy using low energy positron beams. In contrast to studies in the literature reporting a progressive increase in damage with plurality, implantation of aluminium atomic and molecular ions up to Al 3 , resulted in production of similar concentration of vacancy defects. However, a drastic increase in vacancy defects is observed due to Al 4 implantation. The observed behavioural trend with respect to plurality has even translated to the number of vacancies locked in vacancy clusters, as determined through gold labelling experiments. The impact of aluminium atomic and molecular ions simulated using MD showed a monotonic increase in production of vacancy defects for cluster sizes up to 4. The trend in damage production with plurality has been explained on the basis of a defect evolution scheme in which for medium defect concentrations, there is a saturation of the as-implanted damage and an increase for higher defect concentrations

  7. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    Science.gov (United States)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  8. Rate Constants and H-Atom Product Yields for the Reactions of O(1D) Atoms with Ethane and Acetylene from 50 to 296 K.

    Science.gov (United States)

    Nunez-Reyes, Dianailys; Hickson, Kevin M

    2018-05-01

    The gas phase reactions of atomic oxygen in its first excited state with ethane and acetylene have been investigated in a continuous supersonic flow reactor over the temperature range 50 K to 296 K. O(1D) atoms were produced by pulsed laser photolysis of ozone at 266 nm. Two different types of experiments, kinetics measurements and H-atom product yield determinations, were performed by detecting O(1D) atoms and H(2S) atoms respectively by vacuum ultraviolet laser induced fluorescence. The measured rate constants are in agreement with previous work at room temperature and little or no temperature dependence was observed as the temperature is decreased to 50 K. H-atoms yields were found to be independent of temperature for the reaction of O(1D) with ethane. These product yields are discussed in the context of earlier dynamics measurements at higher temperature. Due to the influence of secondary reactions, no H-atom yields could be obtained for the reaction of O(1D) with acetylene.

  9. Production of dimeson atoms in high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Afanasyev, L.; Gevorkyan, S.; Voskresenskaya, O. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2017-04-15

    The production of two-meson electromagnetic bound states and free meson pairs π{sup +}π{sup -}, K{sup +}K{sup -}, π{sup +}K{sup -+} in relativistic collisions has been considered. It is shown that using of exact Coulomb wave functions for dimeson atom (DMA) allows one to calculate the yield of discrete states with the desired accuracy. The relative probabilities of production of DMA and meson pairs in the free state are estimated. The amplitude of DMA transition from 1S to 2P state, which is essential for the pionium Lamb shift measurements, has been obtained. (orig.)

  10. Tables of Products of Tensor Operators and Stevens Operators

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1975-01-01

    Numerical tables of products of tensor (Racah) operators, Rl,m(J), and Stevens operators Olm(J), working within a J-multiplet are given as a function of X=J(J+1). Examples of the use of the tables, such as the calculation of commutation relations and thermal averages are given.......Numerical tables of products of tensor (Racah) operators, Rl,m(J), and Stevens operators Olm(J), working within a J-multiplet are given as a function of X=J(J+1). Examples of the use of the tables, such as the calculation of commutation relations and thermal averages are given....

  11. Operational accidents and radiation exposure experience within the United States Atomic Energy Commission, 1943--1975

    International Nuclear Information System (INIS)

    1975-01-01

    The occupational injury and fatality experience during 32 years of the development of the atomic energy industry under the direction of the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineering District, is reviewed. Data are included on the cause of all accidents, including fires and transportation accidents, and the cost of AEC property damage. Fatalities of AEC and contractor personnel from all causes during the 32-year period totaled 321, of which 184 occurred in construction; 121 in AEC operations such as production, research, and services; and 16 in Government functions. There were 19,225 lost-time injuries attributable to all accidental causes, or a 32-year frequency rate of 2.75 based on the number of injuries per million man-hours. There were six deaths attributable to nuclear causes, thee of which were due to blast and flying missiles and three caused by whole-body radiation exposure. Forty-one workers were involved in lost-time radiation accidents, of whom 26 showed clinical manifestations attributable to radiation, resulting in permanent partial-disability of three workers and the loss of a digit by four workers, while the others did not develop evidence of radiation injury

  12. Atomic x-ray production by relativistic heavy ions

    International Nuclear Information System (INIS)

    Ioannou, J.G.

    1977-12-01

    The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protons and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z 1 2 for the cross section of the heavy ion with atomic number Z 1 to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z 2 of the target of the form (Z 1 - αZ 2 ) 2 , instead of Z 1 2 , is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology

  13. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    International Nuclear Information System (INIS)

    Wu, Xia; Wu, Genhua

    2014-01-01

    Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag 61 cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag 61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron

  14. Operation with monosequences in ASEA-ATOM BWR. A way of reducing the impact of PCI

    International Nuclear Information System (INIS)

    Olsson, S.

    1981-01-01

    The energy loss due to PCI restrictions for a start-up after refuelling (or after sequence exchange) is about 18 EFPH (Effective Full Power Hours). All ASEA-ATOM BWRs are equipped with fine motion control rod drives (FMCRD), which makes it possible to withdraw control rods at full power in acceptably small steps (1.8 cm) from the PCI point of view. Thus burnup compensation can always be done without any energy loss due to PCI-restrictions. The ASEA-ATOM PCI-related operating restrictions are described and their implication on the operations of an ASEA-ATOM BWR is discussed. It was shown how the energy generation losses due to PCI-restrictions could be reduced to a minimum, by proper use of continuous motion screw-type control rod drives and high-capacity recirculation pumps, together with advanced use of burnable absorber, and refined refuelling schemes. Monosequence Operation (MSO) has reduced energy generation losses due to PCI-restrictions from about 1% to about 0.4%. MSO has been in routine use in Swedish BWRs since 1977 and during 1980 the fourteenth successful MSO-cycle has been completed

  15. Computer programs in BASIC language for atomic absorption flame spectroscopy. Part 1. Operating instructions

    International Nuclear Information System (INIS)

    Boyle, W.G. Jr.

    1977-01-01

    These instructions describe how to use three BASIC language programs to process data from atomic absorption spectrophotometers operated in the flame mode. These programs will also control an automatic sampler if desired. The instructions cover loading the programs, responding to computer prompts, choosing among various options for processing the data, operating the automatic sampler, and producing reports. How the programs differ is also explained. Examples of computer/operator dialogue are presented for typical cases

  16. Relations and Utilities Operation monthly report, September, 1956

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.M.

    1956-10-24

    This document contains the September 1956 management and operations statistics of the Hanford Atomic Products Operation (HAPO) for their ``Relations and Utilities Operations.`` This is a monthly report. (BN)

  17. Role of atom--atom inelastic collisions in two-temperature nonequilibrium plasmas

    International Nuclear Information System (INIS)

    Kunc, J.A.

    1987-01-01

    The contribution of inelastic atom--atom collisions to the production of electrons and excited atoms in two-temperature (with electron temperature T/sub e/, atomic temperature T/sub a/, and atomic density N/sub a/), steady-state, nonequilibrium atomic hydrogen plasma is investigated. The results are valid for plasmas having large amounts of atomic hydrogen as one of the plasma components, so that e--H and H--H inelastic collisions and interaction of these atoms with radiation dominate the production of electrons and excited hydrogen atoms. Densities of electrons and excited atoms are calculated in low-temperature plasma, with T/sub e/ and T/sub a/≤8000 K and 10 16 cm -3 ≤N/sub a/≤10 18 cm -3 , and with different degrees of the reabsorption of radiation. The results indicate that inelastic atom--atom collisions are important for production of electrons and excited atoms in partially ionized plasmas with medium and high atomic density and temperatures below 8000 K

  18. Configurable memory system and method for providing atomic counting operations in a memory device

    Science.gov (United States)

    Bellofatto, Ralph E.; Gara, Alan G.; Giampapa, Mark E.; Ohmacht, Martin

    2010-09-14

    A memory system and method for providing atomic memory-based counter operations to operating systems and applications that make most efficient use of counter-backing memory and virtual and physical address space, while simplifying operating system memory management, and enabling the counter-backing memory to be used for purposes other than counter-backing storage when desired. The encoding and address decoding enabled by the invention provides all this functionality through a combination of software and hardware.

  19. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zagorski, J. F.

    1980-01-01

    At the beginning of the third quarter of 1980, the Shippingport Atomic Power Station was operating with the 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops in service. During the quarter, the Station was operated for Duquesne Light Company System grid including base load and swing load operation. Twelve (12) planned swing load operations were performed on the LWBR Core this quarter to complete the LWBR operating plan of fifty (50) during this operating phase. The Station was shutdown on September 12 for the Fall 1980 Shutdown and remained in this mode through the end of the quarter. The LWBR Core has generated 18,297.98 EFPH from start-up through the end of the quarter. There were no radioactive liquid discharges from the Radioactive Waste Processing System to the river this quarter. The radioactive liquid waste effluent line to the river remained blanked off to prevent inadvertent radioactive liquid waste discharges. During the quarter, approximately 0.001 curies of Xe 133 activity were released from the station. The radioactivity released from Shippingport Station is far too small to have any measurable effect on the general background environmental radioactivity outside the plant.

  20. Improved production of Br atoms near zero speed by photodissociating laser aligned Br2 molecules.

    Science.gov (United States)

    Deng, L Z; Yin, J P

    2014-10-28

    We theoretically investigated the improvement on the production rate of the decelerated bromine (Br) atoms near zero speed by photodissociating laser aligned Br2 precursors. Adiabatic alignment of Br2 precursors exposed to long laser pulses with duration on the order of nanoseconds was investigated by solving the time-dependent Schrödinger equation. The dynamical fragmentation of adiabatically aligned Br2 precursors was simulated and velocity distribution of the Br atoms produced was analyzed. Our study shows that the larger the degree of the precursor alignment, ⟨cos(2) θ⟩, the higher the production rate of the decelerated Br atoms near zero speed. For Br2 molecules with an initial rotational temperature of ~1 K, a ⟨cos(2) θ⟩ value of ~0.88 can result in an improvement factor of over ~20 on the production rate of the decelerated Br atoms near zero speed, requiring a laser intensity of only ~1 × 10(12) W/cm(2) for alignment.

  1. How do strategic decisions and operative practices affect operating room productivity?

    Science.gov (United States)

    Peltokorpi, Antti

    2011-12-01

    Surgical operating rooms are cost-intensive parts of health service production. Managing operating units efficiently is essential when hospitals and healthcare systems aim to maximize health outcomes with limited resources. Previous research about operating room management has focused on studying the effect of management practices and decisions on efficiency by utilizing mainly modeling approach or before-after analysis in single hospital case. The purpose of this research is to analyze the synergic effect of strategic decisions and operative management practices on operating room productivity and to use a multiple case study method enabling statistical hypothesis testing with empirical data. 11 hypotheses that propose connections between the use of strategic and operative practices and productivity were tested in a multi-hospital study that included 26 units. The results indicate that operative practices, such as personnel management, case scheduling and performance measurement, affect productivity more remarkably than do strategic decisions that relate to, e.g., units' size, scope or academic status. Units with different strategic positions should apply different operative practices: Focused hospital units benefit most from sophisticated case scheduling and parallel processing whereas central and ambulatory units should apply flexible working hours, incentives and multi-skilled personnel. Operating units should be more active in applying management practices which are adequate for their strategic orientation.

  2. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms

    International Nuclear Information System (INIS)

    Haas, M.

    2007-01-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m f =2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m f =1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m f =4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The last chapter

  3. Quality of worklife and productivity in drilling in Atomic Minerals Division

    International Nuclear Information System (INIS)

    Singh, Rajendra.

    1992-01-01

    The existing trend of drilling output in Atomic Minerals Division has been briefly discussed and human resources and its bearing on productivity in our drilling efforts emphasised. Remedial measures concerning the human resources development including creation of cells at regional and zonal levels have been suggested to give effective shape to all aspects of quality of worklife and productivity. (author)

  4. Mechanism of pulse discharge production of iodine atoms from CF3I molecules for a chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2009-01-01

    The pulsed chemical oxygen-iodine laser (COIL) development is aimed at many new applications. Pulsed electric discharge is most effective in turning COIL operation into the pulse mode by instant production of iodine atoms. A numerical model is developed for simulations of the pulsed COIL initiated by an electric discharge. The model comprises a system of kinetic equations for neutral and charged species, electric circuit equation, gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are found by solving the electron Boltzmann equation, which is re-calculated in a course of computations when plasma parameters changed. The processes accounted for in the Boltzmann equation include excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions, second-kind collisions and stepwise excitation of molecules. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. Results of numerical simulations are compared with experimental laser pulse waveforms. It is concluded that there is satisfactory agreement between theory and the experiment. The prevailing mechanism of iodine atom formation from the CF 3 I donor in a very complex kinetic system of the COIL medium under pulse discharge conditions, based on their detailed numerical modelling and by comparing these results both with experimental results of other authors and their own experiments, is established. The dominant iodine atom production mechanism for conditions under study is the electron-impact dissociation of CF 3 I molecules. It was proved that in the conditions of the experiment the secondary chemical reactions with O atoms play an insignificant role.

  5. Considerations on post-production obligations in terms of Atomic Energy Law

    International Nuclear Information System (INIS)

    Rebentisch, M.

    1992-01-01

    The article describes and evaluates the laws concerning the decommissioning and dismantling of nuclear power plants and offers suggestions for possible new regulations. The contribution examines fundamental legal aspects, the instrumentalization of post-production obligations in terms of atomic energy laws, especially the question as to how to bring the Atomic Energy Law into accord with the Federal Emission Control Law within the realm of decommissioning laws, licences for safe confinement and dismantling of a plant, and in addition questions on making financial provisions for decommissioning. (orig./HSCH) [de

  6. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    Science.gov (United States)

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Atomic absorption determination of vanadium in products of metallurgical production and mineral feed stock

    International Nuclear Information System (INIS)

    Polikarpova, N.V.; Panteleeva, E.Yu.

    1983-01-01

    Rapid and selective method of atomic absorption determination of vanadium in metallurgical process products and numerical feed stock is suggested. Buffering mixture of aluminium and phosphoric acid is used to suppress the effect of sample composition on the value of vanadium atomic absorption. The concentration of buffer components can vary from 400 up to 2000 μg/ml Al and from 2 up to 5% vol. H 3 PO 4 . The suggested mixture completely eli-- minates the strong chromium effect. The developed method was used for analyzing steels, alloys based on Mo, Ni, Ti, Cr, as well as titanium magnetite ores and concentrates. The method enables to determine from 0.05 up to 10% vanadium with 0.05-0.01 relative standard deviation, respectively

  8. Advances in the production of isotopes and radiopharmaceuticals at the Atomic Energy Corporation of South Africa

    International Nuclear Information System (INIS)

    Louw, P.A.; De Villiers, W.Y.Z.; Jarvis, N.V.

    1997-01-01

    The Atomic Energy Corporation of South Africa Ltd (AEC) owns and operates the 20 MW research reactor, SAFARI-1. Utilisation of the reactor has in recent years changed from research and materials testing to the production of isotopes. The most important breakthrough achieved in recent years is the production of high quality fission 99Mo. This has been produced routinely since April 1993 and supplied to clients across the world. A capability for the reliable production of 1000 Ci of 99Mo per week (calibrated for six days after production) has been proven. The AEC has also established facilities to produce its own 99mTc generators together with a most of radiopharmaceutical kits for diagnostic nuclear medicine purposes. The production of 153 Sm and 131 I (tellurium oxide route) has been operational for many years. Applications include therapeutic radiopharmaceuticals such as 153 Sm-EDTMP for bone cancer pain palliation, 13' I-Lipiodol for liver cancer and 131 I capsules for thyroid treatment. Facilities for the production of other isotopes such as 131 I (from fission), 32 P and 35 S are in various stages of completion. Extensive analytical methods and equipment have been developed and are routinely used to certify the quality of exported isotopes. Irradiation and encapsulation of 192 Ir is also performed routinely at the AEC. Modern facilities allow for the production of isotopes such as 131 Ba and 140 La on an ad hoc basis. Quality assurance procedures based on ISO9000 were developed for all aspects of the production of the various isotopes. Documentation, such as Drug Master Files, required by authorities in various countries has also been submitted and accepted

  9. Annual progress report for atomic and nuclear research with accelerators and fusion related atomic physics. Reporting period, October 1, 1974--September 30, 1975

    International Nuclear Information System (INIS)

    1975-10-01

    Topics covered include: laboratory operation and development; atomic collision cross sections in gases; ionization cross sections in thin solid materials; experimental impact-parameter dependent probabilities for k-shell vacancy production by fast heavy-ion projectiles; x-ray spectroscopy with high energy ions; atomic lifetime measurements; polarization studies of ion-induced x rays; theoretical spectra in ion-induced reactions; theoretical atomic cross section calculations; search for heavy-ion resonances; lifetimes of low energy states in 21 Ne; nuclear scattering and reactions; and trace element analysis

  10. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  11. An Atmospheric Atomic Oxygen Source for Cleaning Smoke Damaged Art Objects

    Science.gov (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Norris, Mary Jo

    1998-01-01

    Soot and other carbonaceous combustion products deposited on the surfaces of porous ceramic, stone, ivory and paper can be difficult to remove and can have potentially unsatisfactory results using wet chemical and/or abrasive cleaning techniques. An atomic oxygen source which operates in air at atmospheric pressure, using a mixture of oxygen and helium, has been developed to produce an atomic oxygen beam which is highly effective in oxidizing soot deposited on surfaces by burning candles made of paraffin, oil or rendered animal fat. Atomic oxygen source operating conditions and the results of cleaning soot from paper, gesso, ivory, limestone and water color-painted limestone are presented,

  12. Dairy operation management practices and herd milk production.

    Science.gov (United States)

    Losinger, W C; Heinrichs, A J

    1996-03-01

    A national US survey collected data on herd milk production and management of Holstein herds. Step-wise selection identified management practices that were related to herd milk production using only operations that calculated herd milk production as well as using data from all operations. Results were similar. Milk production was highest in the West. Operations with 25% registered cattle had higher production than operations with no registered cattle. Dairy operations that reported a mean BW > 545 kg at first calving had higher mean milk production than operations with a mean BW or = 27 mo at first calving. In addition, use of the following management practices was associated with higher rolling herd average milk production: calves born in individual areas in buildings, calves hand-fed first colostrum, starter grain fed to preweaned calves, ionophores fed to heifers from birth to first calving, DHIA record-keeping system used, computerized records, and no new cattle introduced in the previous 12 mo.

  13. Reaction studies of hot silicon, germanium and carbon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  14. Japan and atomic co-operation

    International Nuclear Information System (INIS)

    1965-01-01

    Japan, which is host country for the Ninth Regular Session of the Agency General Conference, has an important programme of nuclear power development to meet future needs. In addition, Japan is active in other applications of atomic energy and is building up a domestic nuclear engineering industry. Japan has profited by the Agency as a channel of international cooperation, and was a party to the first bilateral agreement in which the responsibility for administering safeguards against the diversion of materials to military purposes, was transferred to the Agency. Japan has also lent support to Agency programmes by gifts, training courses, research, and the loan of experts. In 1961, the Japan Atomic Energy Commission (AEC) formulated the 'Long-Range Programme for Development and Utilization of Atomic Energy', on the basis of the economic prospects of nuclear power generation, and the conditions necessary to meet the ever-increasing domestic energy demands. According to this programme, in the light of power reactor development trends overseas, it is expected that nuclear power costs will compete with those of oil burning stations by 1970. On this basis, total nuclear power generating capacity of 1000 MW(e) will be attained by 1970, and 7000 - 9 500M(e) by 1980. As a prelude to the above programme the Japan Atomic Power Company (JAPCO) began construction in 1959 of a graphite-moderated gas-cooled nuclear power station (Improved Calder Hall type) of 165 MW(e) gross capacity. This is now progressing smoothly, and reached criticality in May 1965; it is expected to supply commercial power by the end of this year. The second nuclear power station will be built by the same company on the coast of the Japan Sea, with a light water-moderated reactor of 250 - 300 MW(e) capacity. The construction plan i s currently being pushed forward for completion in 1970. Thereafter three private utility companies - Tokyo, Kansai and Chubu Electric Companies - are doing preparatory work for

  15. User cognition in product operation

    NARCIS (Netherlands)

    Gelderblom, G.J.

    2001-01-01

    Daily a large number of everyday consumer products are being used. Unfortunately part of this usage is not successful. One of the causes of failure lies in the cognitive aspects of product use, users do not know how to operate the product or try to use it in a way which is not successful. Ideally,

  16. Chemical reactions of recoil atoms and thermal atoms of tritium with haloid benzenes

    International Nuclear Information System (INIS)

    Simirskij, Yu.N.; Firsova, L.P.

    1978-01-01

    Radiochemical yields have been determined for the products of substitution of hydrogen atoms and halides in Cl-, Br-, and I-benzenes with tritium atoms obtained during thermal dissociation of T 2 and with recoil atoms T arising in nuclear reaction 6 Li(n, P)T. It is shown that in the series of Cl-, Br-, and I-benzenes yields of the products of substitution of halides atoms with tritium grow, whereas those of hydrogen atom substitution change only little. The correlation nature of the yields of substitution products of halide atoms with tritium remains constant in a wide range of the initial kinetic energies of T atoms for the recoil atoms with E 0 =2.7 MeV and for the completely thermolized atoms during thermal dissociation of T 2

  17. Production and transport chemistry of atomic fluorine in remote plasma source and cylindrical reaction chamber

    International Nuclear Information System (INIS)

    Gangoli, S P; Johnson, A D; Fridman, A A; Pearce, R V; Gutsol, A F; Dolgopolsky, A

    2007-01-01

    Increasingly, NF 3 -based plasmas are being used in semiconductor manufacturing to clean chemical vapour deposition (CVD) chambers. With advantages such as faster clean times, substantially lower emissions of gases having high global warming potentials, and reduced chamber damage, NF 3 plasmas are now favoured over fluorocarbon-based processes. Typically, a remote plasma source (RPS) is used to dissociate the NF 3 gas and produce atomic fluorine that etches the CVD residues from the chamber surfaces. However, it is important to efficiently transport F atoms from the plasma source into the process chamber. The current work is aimed at understanding and improving the key processes involved in the production and transport of atomic fluorine atoms. A zero-dimensional model of NF 3 dissociation and F production chemistry in the RPS is developed based on various known and derived plasma parameters. Additionally, a model describing the transport of atomic fluorine is proposed that includes both physical (diffusion, adsorption and desorption) and chemical processes (surface and three-body volume recombination). The kinetic model provides an understanding of the impact of chamber geometry, gas flow rates, pressure and temperature on fluorine recombination. The plasma-kinetic model is validated by comparing model predictions (percentage F atom density) with experimental results (etch rates)

  18. Atomic Energy of Canada Limited annual report 1987-88

    International Nuclear Information System (INIS)

    1988-01-01

    The annual report of Atomic Energy of Canada Limited for the fiscal year ended March 31, 1988 covers: Research Company; CANDU Operations; Radiochemical Company; Medical Products Division; The Future; Financial Sections; Board of Directors and Officers; and AECL locations

  19. Operation and maintenance experience at the General Atomic Company's TRIGA reactor facility at San Diego, California

    International Nuclear Information System (INIS)

    Whittemore, W.L.; Stout, W.A.; Shoptaugh, J.R.; Chesworth, R.H.

    1982-01-01

    Since the startup of the original 250 kW TRIGA Mark I reactor in 1958, General Atomic Company has accumulated nearly 24 years of operation and maintenance experience with this type of reactor. In addition to the nearly 24 years of experience gained on the Mark I, GA has operated the 1.5 MW Advanced Prototype Test Reactor (Mark F) for 22 years and operated a 2 MW below-ground TRIGA Mark III for five years. Information obtained from normal and abnormal operation are presented. (author)

  20. President Johnson's statement;8 December 1953 - 8 December 1963. Atomic co-operation in the United Nations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-01-15

    Fill text: On the tenth anniversary of President Eisenhower's proposal. President Johnson reaffirmed support for that policy. He said: Ten years ago today. President Eisenhower appeared before the General Assembly of the United Nations and made the following pledge: 'The coming months will be fraught with fateful decisions. to the making of these fateful decisions the United States pledges before you - and therefore before the world - its determination to help solve the fearful atomic dilemma - to devote its entire heart and mind to find the way by which the miraculous inventiveness of man shall not be dedicated to his death, but consecrated to his life.' In his address President Eisenhower also proposed the establishment of an international atomic The International Atomic Energy Agency became an institutional reality in 1957, when the first General Conference met with 56 members. It now has 83 members, and a further five nations will become members as soon as statutory formalities are completed. The activity on the part of the Agency during these six years has gradually expanded, although it has fallen short of earlier hopes in certain areas. Time and patience, however, have been required and 1963 foreshadows further progress. Ten years after the proposal of the idea, scientists and statesmen can look back and be gratified that a contribution has been made to international understanding. Scientists and statesmen can look ahead, hopefully, to a future of increasing activity in this special agency to develop co-operation and agreement in the field of atomic energy agency which would help channel into peaceful pursuits the scientific and material resources which had been created primarily for military purposes, and noted that such an agency could serve as a vehicle to advance the use of the atom for the peaceful pursuits of mankind. The International Atomic Energy Agency has assumed an essential and natural role in the international development of atomic energy. In

  1. Product variety, product complexity and manufacturing operational performance: A systematic literature review

    DEFF Research Database (Denmark)

    Trattner, Alexandria Lee; Hvam, Lars; Herbert-Hansen, Zaza Nadja Lee

    Manufacturing in the twenty-first century has been wrought with the struggle to satisfy the rising demand for greater product variety and more complex products while still maintaining efficient manufacturing operations. However, the literature lacks an overview of which operational performance...... measures are most affected by increased variety and complexity. This study presents a systematic literature review of the recent scholarly literature on variety, complexity and manufacturing operational performance (MOP). Results show that product variety has a consistently negative relationship with MOP...... across different time, cost, quality and flexibility measures while product complexity lacks evidence of strong relationships with MOP measures....

  2. Optimal mode of operation for biomass production

    NARCIS (Netherlands)

    Betlem, Ben H.L.; Roffel, Brian; Mulder, P.

    2002-01-01

    The rate of biomass production is optimised for a predefined feed exhaustion using the residue ratio as a degree of freedom. Three modes of operation are considered: continuous, repeated batch, and repeated fed-batch operation. By means of the Production Curve, the transition points of the optimal

  3. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  4. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    Science.gov (United States)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  5. Graduate Student Project: Operations Management Product Plan

    Science.gov (United States)

    Fish, Lynn

    2007-01-01

    An operations management product project is an effective instructional technique that fills a void in current operations management literature in product planning. More than 94.1% of 286 graduates favored the project as a learning tool, and results demonstrate the significant impact the project had in predicting student performance. The author…

  6. Natural product-like virtual libraries: recursive atom-based enumeration.

    Science.gov (United States)

    Yu, Melvin J

    2011-03-28

    A new molecular enumerator is described that allows chemically and architecturally diverse sets of natural product-like and drug-like structures to be generated from a core structure as simple as a single carbon atom or as complex as a polycyclic ring system. Integrated with a rudimentary machine-learning algorithm, the enumerator has the ability to assemble biased virtual libraries enriched in compounds predicted to meet target criteria. The ability to dynamically generate relatively small focused libraries in a recursive manner could reduce the computational time and infrastructure necessary to construct and manage extremely large static libraries. Depending on enumeration conditions, natural product-like structures can be produced with a wide range of heterocyclic and alicyclic ring assemblies. Because natural products represent a proven source of validated structures for identifying and designing new drug candidates, mimicking the structural and topological diversity found in nature with a dynamic set of virtual natural product-like compounds may facilitate the creation of new ideas for novel, biologically relevant lead structures in areas of uncharted chemical space.

  7. The design and characteristics of direct current glow discharge atomic emission source operated with plain and hollow cathodes

    International Nuclear Information System (INIS)

    Qayyum, A.; Mahmood, M.I.

    2008-01-01

    A compact direct current glow discharge atomic emission source has been designed and constructed for analytical applications. This atomic emission source works very efficiently at a low-input electrical power. The design has some features that make it distinct from that of the conventional Grimm glow discharge source. The peculiar cathode design offered greater flexibility on size and shape of the sample. As a result the source can be easily adopted to operate in Plain or Hollow Cathode configuration. I-V and spectroscopic characteristics of the source were compared while operating it with plain and hollow copper cathodes. It was observed that with hollow cathode, the source can be operated at a less input power and generates greater Cu I and Cu II line intensities. Also, the intensity of Cu II line rise faster than Cu I line with argon pressure for both cathodes. But the influence of pressure on Cu II lines was more significant when the source is operated with hollow cathode

  8. Enantioselective H-atom transfer reaction: a strategy to synthesize formaldehyde aldol products.

    Science.gov (United States)

    Sibi, Mukund P; Patil, Kalyani

    2005-04-14

    [reaction: see text] Enantioselective radical alkylation of Baylis-Hillman adducts furnished aldol products in good yield and selectivity. The results illustrate that the selectivity in the hydrogen atom transfer is dependent on the size of the ester substituent, with smaller substituents providing better enantioselectivity.

  9. (Shippingport Atomic Power Station). Quarterly operating report, fourth quarter 1980

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    At the beginning of the fourth quarter of 1980, the Shippingport Atomic Power Station remained shutdown for the normally planned semiannual maintenance and testing program, initiated September 12, 1980. Operational testing began on November 7. Maximum power was achieved November 28 and was maintained throughout the remainder of the quarter except as noted. The LWBR Core has generated 19,046.07 EFPH from start-up through the end of the quarter. During this quarter, approximately 0.000025 curies of Xe 133 activity were released from the station. During the fourth quarter of 1980, 1081 cubic feet of radioactive solid waste was shipped out of state for burial. These shipments contained 0.037 curies of radioactivity.

  10. A consideration of the operation of automatic production machines.

    Science.gov (United States)

    Hoshi, Toshiro; Sugimoto, Noboru

    2015-01-01

    At worksites, various automatic production machines are in use to release workers from muscular labor or labor in the detrimental environment. On the other hand, a large number of industrial accidents have been caused by automatic production machines. In view of this, this paper considers the operation of automatic production machines from the viewpoint of accident prevention, and points out two types of machine operation - operation for which quick performance is required (operation that is not permitted to be delayed) - and operation for which composed performance is required (operation that is not permitted to be performed in haste). These operations are distinguished by operation buttons of suitable colors and shapes. This paper shows that these characteristics are evaluated as "asymmetric on the time-axis". Here, in order for workers to accept the risk of automatic production machines, it is preconditioned in general that harm should be sufficiently small or avoidance of harm is easy. In this connection, this paper shows the possibility of facilitating the acceptance of the risk of automatic production machines by enhancing the asymmetric on the time-axis.

  11. Coherent anti-Stokes Raman scattering (CARS) detection or hot atom reaction product internal energy distributions

    International Nuclear Information System (INIS)

    Quick, C.R. Jr.; Moore, D.S.

    1983-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is being utilized to investigate the rovibrational energy distributions produced by reactive and nonreactive collisions of translationally hot atoms with simple molecules. Translationally hot H atoms are produced by ArF laser photolysis of HBr. Using CARS we have monitored, in a state-specific and time-resolved manner, rotational excitation of HBr (v = 0), vibrational excitation of HBr and H 2 , rovibrational excitation of H 2 produced by the reaction H + HBr → H 2 + Br, and Br atom production by photolysis of HBr

  12. Atomic inner-shell physics

    International Nuclear Information System (INIS)

    Crasemann, B.

    1985-01-01

    This book discusses: relativistic and quantum electrodynamic effects on atomic inner shells; relativistic calculation of atomic transition probabilities; many-body effects in energetic atomic transitions; Auger Electron spectrometry of core levels of atoms; experimental evaluation of inner-vacancy level energies for comparison with theory; mechanisms for energy shifts of atomic K-X rays; atomic physics research with synchrotron radiation; investigations of inner-shell states by the electron energy-loss technique at high resolution; coherence effects in electron emission by atoms; inelastic X-ray scattering including resonance phenomena; Rayleigh scattering: elastic photon scattering by bound electrons; electron-atom bremsstrahlung; X-ray and bremsstrahlung production in nuclear reactions; positron production in heavy-ion collisions, and X-ray processes in heavy-ion collisions

  13. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  14. Experience of remote under water handling operations at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Agarwal, S.K.

    1990-01-01

    Each Refuelling outage of Tarapur Atomic Power Station Reactors involves a great deal of remote underwater handling operations using special remote handling tools, working deep down in the reactor vessel under about sixty feet of water and in the narrow confines of highly radioactive core. The remote underwater handling operations include incore and out of core sipping operations, fuel reloading or shuffling, uncoupling of control rod drives, replacement and shuffling of control blades, replacement of local power range monitors, spent fuel shipment in casks, retrieval of fallen or displaced fuel top guide spacers, orifices and their installation, underwater CCTV inspection of reactor internals, core verification, channelling and dechannelling of fuel bundles, inspection of fuel bundles and channels, unbolting and removal of old racks, installation of high density racks, removal and reinstallation of fuel support plugs and guide tubes, underwater cutting of irradiated hardware material and their disposal, fuel reconstitution, removal and reinstallation of system dryer separator etc.. The paper describes in brief the salient experience of remote underwater handling operations at TAPS especially the unusual problems faced and solved, by using special tools, employing specific techniques and by repeated efforts, patience, ingenuity and skills. (author). 10 figs

  15. Development of indigenous laboratory scale gas atomizer for producing metal powders

    International Nuclear Information System (INIS)

    Khan, K.K.; Qasim, A.M.; Ahmed, P.

    2011-01-01

    Gas atomization is one of the methods for production of clean metal powders at relatively moderate cost. A laboratory scale gas atomizer was designed and fabricated indigenously to produce metal powders with a batch capacity of 500 g of copper (Cu). The design includes several features regarding fabrication and operation to provide optimum conditions for atomization. The inner diameter of atomizing chamber is 440 mm and its height is 1200 mm. The atomizing nozzle is of annular confined convergent type with an angle of 25 degree. Argon gas at desired pressure has been used for atomizing the metals to produce relatively clean powders. A provision has also been made to view the atomization process. The indigenous laboratory scale gas atomizer was used to produce tin (Sn) and copper (Cu) powders with different atomizing gas pressures ranging from 2 to 10 bar. The particle size of different powders produced ranges from 40 to 400 im. (author)

  16. Robust operation and performance of integrated carbon nanotubes atomic force microscopy probes

    International Nuclear Information System (INIS)

    Rius, G; Clark, I T; Yoshimura, M

    2013-01-01

    We present a complete characterization of carbon nanotubes-atomic force microscopy (CNT-AFM) probes to evaluate the cantilever operation and advanced properties originating from the CNTs. The fabrication consists of silicon probes tip-functionalized with multiwalled CNTs by microwave plasma enhanced chemical vapor deposition. A dedicated methodology has been defined to evaluate the effect of CNT integration into the Si cantilevers. The presence of the CNTs provides enhanced capability for sensing and durability, as demonstrated using dynamic and static modes, e.g. imaging, indentation and force/current characterization.

  17. A non-perturbative operator product expansion

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.; Goeckeler, M.

    2009-10-01

    Nucleon structure functions can be observed in Deep Inelastic Scattering experiments, but it is an outstanding challenge to confront them with fully non-perturbative QCD results. For this purpose we investigate the product of electromagnetic currents (with large photonmomenta) between quark states (of low momenta). By means of an Operator Product Expansion the structure function can be decomposed into matrix elements of local operators, and Wilson coefficients. For consistency both have to be computed non-perturbatively. Here we present precision results for a set of Wilson coefficients. They are evaluated from propagators for numerous quark momenta on the lattice, where the use of chiral fermions suppresses undesired operator mixing. This overdetermines the Wilson coefficients, but reliable results can be extracted by means of a Singular Value Decomposition. (orig.)

  18. Molecular Ions in Ion Upflows and their Effects on Hot Atomic Oxygen Production

    Science.gov (United States)

    Foss, V.; Yau, A. W.; Shizgal, B.

    2017-12-01

    We present new direct ion composition observations of molecular ions in auroral ion upflows from the CASSIOPE Enhanced Polar Outflow Probe (e-POP). These observed molecular ions are N2+, NO+, and possibly O2+, and are found to occur at all e-POP altitudes starting at about 400 km, during auroral substorms and the different phases of magnetic storms, sometimes with upflow velocities exceeding a few hundred meters per second and abundances of 5-10%. The dissociative recombination of both O2+ and NO+ was previously proposed as an important source of hot oxygen atoms in the topside thermosphere [Hickey et al., 1995]. We investigate the possible effect of the observed molecular ions on the production of hot oxygen atoms in the storm and substorm-time auroral thermosphere. We present numerical solutions of the Boltzmann equation for the steady-state oxygen energy distribution function, taking into account both the production of the hot atoms and their subsequent collisional relaxation. Our result suggests the formation of a hot oxygen population with a characteristic temperature on the order of 0.3 eV and constituting 1-5% of the oxygen density near the exobase. We discuss the implication of this result in the context of magnetosphere-ionosphere-thermosphere coupling.

  19. ASEA-ATOM's URANUS system for production control, economic control and safeguards

    International Nuclear Information System (INIS)

    Mattson, J.C.

    1983-01-01

    ASEA-ATOM needs a system for production and economic control because: (1) the uranium is the valuable property of the customer; (2) short delivery times are a prime means of competition; (3) the manufacture of fuel necessitates frequent enrichment changes and much enrichment blending; (4) minimizing uranium stock reduces interest costs. A system which meets the above needs will with minor modifications meet safeguard requirements. URANUS is an integrated man/computer system with manual input and automatic data treatment and reporting of information. The man/computer interface is monitored by the automatic checking for plausibility of all input. An item is a quantity of material which is treated as a unit in production. Each item receives a unique identification number which may be used only once. If the qualitative properties of an item are changed a new item number is issued. Items are reported on forms and fed into URANUS by authorized personnel using personal passwords or are directly reported by terminal from certain operations. Pertinent information is entered for each project. The URANUS computer system consists of terminal activated on-line and batch modules which are briefly described. Output is information for planning, economic control and safeguards. Safeguards information consists of the following. For flow and blending control: delivery information; change of nominal enrichment; enrichment blending; internal transactions that change an enrichment/origin account; material status report (MSR); item inventory per MBA; general ledger. For physical inventory: material balance report (MBR); book item inventory per MBA; physical item inventory per MBA; uranium balance per origin and enrichment

  20. Semicrossed products of operator algebras by semigroups

    CERN Document Server

    Davidson, Kenneth R; Kakariadis, Evgenios T A

    2017-01-01

    The authors examine the semicrossed products of a semigroup action by *-endomorphisms on a C*-algebra, or more generally of an action on an arbitrary operator algebra by completely contractive endomorphisms. The choice of allowable representations affects the corresponding universal algebra. The authors seek quite general conditions which will allow them to show that the C*-envelope of the semicrossed product is (a full corner of) a crossed product of an auxiliary C*-algebra by a group action. Their analysis concerns a case-by-case dilation theory on covariant pairs. In the process we determine the C*-envelope for various semicrossed products of (possibly nonselfadjoint) operator algebras by spanning cones and lattice-ordered abelian semigroups.

  1. Giant atoms for the production of nuclear fuel

    International Nuclear Information System (INIS)

    Fahr, H.J.

    1980-01-01

    Neutral atoms can be blown up to the size of a football, if the electrons of the atomic shell are appropriately excited by photons just below the ionization energy. Such atoms, called Rydberg atoms, behave very differently to the usual ones in multiple respects. The fact that they can very easily be ionized by conventional electrostatic fields is being investigated as a method of isotope separation, for instance in the very important case of U 235 and U 238 . (orig.) [de

  2. Investigations on the production of labelled organic compounds by recoil labelling with gamma,n-produced 11-C-atoms

    International Nuclear Information System (INIS)

    Wagenbach, U.

    1981-01-01

    ''Hot'' 11 C atoms are produced from 12 C(γ,n) 11 C nuclear reactions by bremsstrahlung at the 65 MeV electron linear accelerator in Giessen. The relative retention in various C-atoms of the amino acid, methionine, is determined by splitting of the terminal C-atoms of the molecule and by independent determination of the content of 11 C in the isolated and derived fragments. The terminal groups (thiomethyl or carboxyl groups) each carry approx. 25% of the total retained radioactivity, the remaining 50% being spread over the three inner carbon atoms. The activation of alkylamines, crystallised as hydrochlorides, hydrofluorides, oxalates and sulphates, leads to similar yields of direct labelling from 5 to 15%. Amines activated in the liquid state show a retention of less than 5%. The yields for labelled synthetic products are between 10 and 15% for amino acids and are often higher for crystallised amines. Amines activated in the liquid state produced greater yields of synthesis products but at the same time an increase in the product range. The labelled synthesis products can be separated faster by suitable methods such as preparative HPLC and are then available for carrier-free studies in the life sciences. (orig./EF) [de

  3. Atomic Weapons Establishment Bill [Money

    International Nuclear Information System (INIS)

    Bennett, A.F.; Cryer, Bob; Carlisle, Kenneth; Dean, Paul.

    1990-01-01

    The debate concerns the authorisation of payment of the money required to reorganise the atomic weapons establishment in the United Kingdom provided for in the Atomic Weapons Establishment Bill in progress through Parliament. In the Bill the contractorisation of the establishment is recommended and some sort of Government owned company operated scheme set up. The debate lasted about half an hour and is reported verbatim. The issues raised concerned the actual sums likely to be incurred in the formation of a Company to carry out the designated activities of the Bill. These are connected with the research, development, production or maintenance of nuclear devices and the premises needed. The government spokesman suggested the sums required to support the Bill would not be large and the resolution was agreed to without a vote. (UK)

  4. Atomic risk insurance. Risk policy, safety production and expertise in Germany and the USA 1945 - 1986

    International Nuclear Information System (INIS)

    Wehner, Christoph

    2017-01-01

    The book covers the following chapters: (I) Between threat and promise: Political change and the corporate perception, the burden of the atomic bomb, promise of nuclear energy risk criticism in the pre-ecological phase, nuclear risk as investment restraint; (II) Risk policy at the insurability limit: hazard knowledge, safety production and insurance expertise in the German nuclear policy (1955-1962); (III) Risk policy beyond the catastrophe, insurability interpretation, concepts and conflicts (1957-1968); (IV) Scandalization of risk policy: safety production, confidence and expertise in the nuclear controversial debate (1969 - 1979); (V) Nuclear risk policy and the challenge of the ''risk society'' (1975-1986); (VI) From safety production to hazard probe: atomic energy And the change of insurance.

  5. On τ-Compactness of Products of τ-Measurable Operators

    Science.gov (United States)

    Bikchentaev, Airat M.

    2017-12-01

    Let M be a von Neumann algebra of operators on a Hilbert space H, τ be a faithful normal semifinite trace on M. We obtain some new inequalities for rearrangements of τ-measurable operators products. We also establish some sufficient τ-compactness conditions for products of selfadjoint τ-measurable operators. Next we obtain a τ-compactness criterion for product of a nonnegative τ-measurable operator with an arbitrary τ-measurable operator. We construct an example that shows importance of nonnegativity for one of the factors. The similar results are obtained also for elementary operators from M. We apply our results to symmetric spaces on (M, τ ). The results are new even for the *-algebra B(H) of all linear bounded operators on H endowed with the canonical trace τ = tr.

  6. Atomic reactor thermal engineering

    International Nuclear Information System (INIS)

    Kim, Gwang Ryong

    1983-02-01

    This book starts the introduction of atomic reactor thermal engineering including atomic reaction, chemical reaction, nuclear reaction neutron energy and soon. It explains heat transfer, heat production in the atomic reactor, heat transfer of fuel element in atomic reactor, heat transfer and flow of cooler, thermal design of atomic reactor, design of thermodynamics of atomic reactor and various. This deals with the basic knowledge of thermal engineering for atomic reactor.

  7. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  8. Managing Variety in Configure-to-Order Products - An Operational Method

    DEFF Research Database (Denmark)

    Myrodia, Anna; Hvam, Lars

    2014-01-01

    is to develop an operational method to analyze profitability of Configure-To-Order (CTO) products. The operational method consists of a four-step: analysis of product assortment, profitability analysis on configured products, market and competitor analysis and, product assortment scenarios analysis....... The proposed operational method is firstly developed based on both available literature and practitioners experience and subsequently tested on a company that produces CTO products. The results from this application are further discussed and opportunities for further research identified....

  9. Culture, Product Advertising, and Advertising Agency Operations ...

    African Journals Online (AJOL)

    Culture, Product Advertising, and Advertising Agency Operations. ... As a means of telling the market about a new product, advertising persuades and reminds the audience of their continuous support of the ... AJOL African Journals Online.

  10. Dynamic Modeling for the Design and Cyclic Operation of an Atomic Layer Deposition (ALD Reactor

    Directory of Open Access Journals (Sweden)

    Curtisha D. Travis

    2013-08-01

    Full Text Available A laboratory-scale atomic layer deposition (ALD reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous definition of film growth-per-cycle (gpc. A key finding of this study is that unintended chemical vapor deposition conditions can mask regions of operation that would otherwise correspond to ideal saturating ALD operation. The use of the simulator for assisting in process design decisions is presented.

  11. Calcium Atom Trap for Atom Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kwang Hoon; Park, Hyun Min; Han, Jae Min; Kim, Taek Soo; Cha, Yong Ho; Lim, Gwon; Jeong, Do Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Trace isotope analysis has been an important role in science, archaeological dating, geology, biology and nuclear industry. Artificially produced fission products such as Sr-90, Cs-135 and Kr-85 can be released to the environment when nuclear accident occurs and the reprocessing factory operates. Thus, the analysis of them has been of interest in nuclear industry. But it is difficult to detect them due to low natural abundance less then 10-10. The ultra-trace radio isotopes have been analyzed by the radio-chemical method, accelerator mass spectrometer, and laser based method. The radiochemical method has been used in the nuclear industry. But this method has disadvantages of long measurement time for long lived radioisotopes and toxic chemical process for the purification. The accelerator mass spectrometer has high isotope selectivity, but the system is huge and it has the isobar effects. The laser based method, such as RIMS (Resonance Ionization Mass Spectrometry) is a basically isobar-effect free method. Recently, ATTA (Atom Trap Trace Analysis), one of the laser based method, has been successfully demonstrated sufficient isotope selectivity with small system size. It has been applied for the detection of Kr-81 and Kr-85. However, it is not suitable for real sample detection, because it requires steady atomic beam generation during detection and is not allowed simultaneous detection of other isotopes. Therefore, we proposed the coupled method of Atom Trap and Mass Spectrometer. It consists of three parts, neutral atom trap, ionization and mass spectrometer. In this paper, we present the demonstration of the magneto-optical trap of neutral calcium. We discuss the isotope selective characteristics of the MOT (Magneto Optical Trap) of calcium by the fluorescence measurement. In addition, the frequency stabilization of the trap beam will be presented

  12. OPERATING STABILITY OF MINERAL WOOL PRODUCTS

    Directory of Open Access Journals (Sweden)

    Perfilov Vladimir Aleksandrovich

    2016-03-01

    Full Text Available Creating an effective insulation envelope of the building is possible only using high-quality materials, preserving their characteristics both in the early stages of operation, and for the whole billing period. It is an important opportunity to assess the thermal insulation properties and predict its changes over time directly in the conditions of the construction site. The products based on mineral fibers (rock and glass wool, basalt fiber are the most widely used type of insulating materials in the domestic construction. Therefore, the operational stability valuation methods must be primarily created for this group of products. The methodology for assessing the thermal insulation properties includes two main components: testing equipment and methodology for assessing the operational stability. The authors tested the methodology of the accelerated testing and prediction of durability for mineral wool products of laminated, corrugated and volume-oriented structures. The test results give good convergence with the methods recommended by the building regulations. Application of thermal insulation materials are an effective way to form the thermal envelope of the building, reducing energy costs and increasing the durability of building structures. The material properties are determined by their structure, which is formed during the technological impacts.

  13. Operating experience and performance at Narora Atomic Power Station

    International Nuclear Information System (INIS)

    Mittal, Subhash; Gupta, J.P.

    1998-01-01

    Narora Atomic Power Station consists of two units of 220 MWe capacity each. These are Pressurized Heavy Water Reactors, fuelled by natural uranium, moderated and cooled by heavy water. The Station is owned by Nuclear Power Corporation of India Ltd., which is responsible for design, construction, commissioning, and operation of all nuclear power stations in the country. NAPS was the first opportunity to apply operating experiences in design, keeping in view the evolving safety and seismicity requirements, ease of maintenance, inservice inspection needs, improved construction ability and standardization. Both the units of NAPS are having improved safety standards of current international levels. All the equipment are indigenous with improved quality and reliability. The first unit of the station went critical in March 1989 and synchronized to the grid in July 1989. The second units followed with its criticality in October 1991 and synchronization in January 1992. Considering the initial stabilizing period, the performance of both units of NAPS has progressively improved over the years. The annual capacity factor for NAPS - 1 was 90.01% and for NAPS - 2 was 89.01% for the financial year 1997-1998. This paper presents an analysis of the performance during the last three years and measures taken to improve it. The stated enhanced performance could be achieved by improvement in human performance by training/re-training, scrupulous monitoring and review of equipment/systems, institution of adequate procedure and ensuring their adherence. (authors)

  14. Operational costs induced by fluctuating wind power production in Germany and Scandinavia

    Energy Technology Data Exchange (ETDEWEB)

    Meibom, P. [Risoe National Lab., DTU, System Analysis Dept., Roskilde (Denmark); Weber, C. [Univ. Duisburg-Essen, Chai og Energy Management (Germany); Barth, R.; Brand, H. [Univ. of Stuttgart, Inst. of Energy Economics and the Rational Use of Energy (Germany)

    2007-05-15

    Adding wind power generation in a power system changes the operational patterns of the existing units due to the variability and unpredictability of wind power production. For large amounts of wind power production the expectation is that the operational costs of the other power plants will increase due to more operation time in part-load and more start-ups. The change in operational costs induced by the wind power production can only be calculated by comparing the operational costs in two power system configurations: with wind power production and with alternative production having properties like conventional production, i.e. being predictable and less variable. The choice of the characteristics of the alternative production is not straight forward and will therefore influence the operational costs induced by wind power production. This paper presents a method for calculating the change in operational costs due to wind power production using a stochastic optimization model covering the power systems in Germany and the Nordic countries. Two cases of alternative production are used to calculate the change in operational costs namely perfectly predictable wind power production enabling calculation of the costs connected to unpredictability, and constant wind power production enabling calculation of the operational costs connected to variability of wind power production. A 2010 case with three different wind power production penetration levels is analysed in the paper. (au)

  15. Electric- and magnetic-dipole contributions to a theory of radiation reaction field and atom self-energy: An operator reaction field

    International Nuclear Information System (INIS)

    Obada, A.S.F.; Mahran, M.H.

    1982-08-01

    The consequences of including magnetic-dipole contributions, besides the electric-dipole, are considered in the operators for the radiation field. The Bloch equations which describe the two-level atom operators are modified. These equations together with the field operators are discussed, and the contributions are manifested. The spectrum for spontaneous emission and a generalized dynamical Stark effect are obtained. Rabi frequency is modified. (author)

  16. FAO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-15

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  17. FAO and atomic energy

    International Nuclear Information System (INIS)

    1960-01-01

    During the past six years FAO has become more engaged in work concerned with atomic energy. In 1957 it established an Atomic Energy Branch. The new forces and new tools which have become available for use in the fight against poverty, disease and malnutrition can be of the greatest assistance in FAO's work in nearly all phases of the production, storage and distribution of food and other agricultural products. The Organization promotes their use to improve the standards of feeding, clothing and housing throughout the world. Another side of work related to atomic energy is concerned with combating contamination from the use of atomic energy for power production and other purposes. This raises considerable problems for food and agriculture, so that FAO also has a responsibility for assisting Governments in safeguarding their food and food-producing resources from contamination. FAO is essentially concerned with fostering wider knowledge of the many contributions that atomic science can make to agriculture, forestry, fisheries and nutrition. It is also concerned in assisting governments to establish sound programmes for applying atomic science in food and agriculture. One way of spreading such knowledge is through the publication of documents and reports

  18. Assessing the engagement, learning, and overall experience of students operating an atomic absorption spectrophotometer with remote access technology.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of engagement, learning, and overall experience. Feedback from students suggests that the use of remote access technology is effective in teaching students the principles of chemical analysis by atomic absorption spectroscopy. © 2014 The International Union of Biochemistry and Molecular Biology.

  19. Dynamics of production of iodine atoms by dissociation of iodides in a pulsed self-sustained discharge

    International Nuclear Information System (INIS)

    Vagin, Nikolai P; Kochetov, Igor' V; Napartovich, A P; Yuryshev, Nikolai N

    2013-01-01

    Absorption at the laser transition has been used for the first time to assess the evolution of concentration of iodine atoms in a pulsed self-sustained discharge in mixtures of iodides with a buffer gas such as molecular nitrogen and helium. Dynamics of the iodine atom production is studied by the method of absorption spectroscopy. The dissociation of C n F 2n+1 I and CnH 2n+1 I (n = 1, 2) iodides is investigated. The energy required to produce atomic iodine is evaluated. The experimental data obtained for CF 3 I are compared with the results of numerical simulations, their reasonable agreement being demonstrated. (active media)

  20. Atomic Energy of Canada Limited, annual report, 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The 1996 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of Parliament, Minister of Natural Resources. Included in this report are messages from Marketing and Commercial Operation, Product Development, i e.CANDU and Research Reactors, CANDU research, Waste Management, Environmental Management, Financial Review and also included are copies of the financial statements.

  1. Atomic Energy of Canada Limited, annual report, 1995-1996

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 Annual Report of Atomic Energy of Canada Ltd. (AECL) is published and submitted to the Honourable member of Parliament, Minister of Natural Resources. Included in this report are messages from Marketing and Commercial Operation, Product Development, i e.CANDU and Research Reactors, CANDU research, Waste Management, Environmental Management, Financial Review and also included are copies of the financial statements

  2. The hydrogen atom-deuterium molecule reaction: Experimental determination of product quantum state distributions

    International Nuclear Information System (INIS)

    Rinnen, K.

    1989-01-01

    The H + H 2 atom exchange reaction (and its isotopic analogs) is the simplest neutral bimolecular chemical reaction because of the small number of electrons in the system and the lightness of the nuclei. The H 3 potential energy surface (PES) is the most accurately known reactive surface (LSTH surface); there have been both quasiclassical trajectory (QCT) and quantal calculations performed on it. This is one of the few systems for which theory is ahead of experiment, and many theoretical predictions await experimental comparison. The H + D 2 → HD + D reaction is studied using thermal D 2 (∼298 K) and translationally hot hydrogen atoms. Photolysis of HI at 266 nm generates H atoms with center-of-mass collision energies of 1.3 and 0.55 eV, both of which are above the classical reaction barrier of 0.42 eV. The rovibrational population distribution of the molecular product is measured by (2+1) resonance-enhanced multiphoton ionization (REMPI). A major effort has been directed toward calibrating the (2+1) REMPI detection procedure, to determine quantitatively the relationship between ion signals and relative quantum state populations for HD. An effusive, high-temperature nozzle has been constructed to populate thermally the high rovibrational levels observed in the reaction. The results are compared to theoretical calculations of the E,F 1 Σ g + - X 1 Σ g + two-photon transition moments. For the H + D 2 reaction, the populations of all energetically accessible HD product levels are measured. Specifically, the following levels are observed: HD(v = 0, J = 0-15), HD(v = 1, J = 0-12), and HD(v = 2, J = 0-8). Of the available energy, 73% is partitioned into product translation, 18% into HD rotation, and 9% into HD vibration

  3. CP violation in atoms

    International Nuclear Information System (INIS)

    Barr, S.M.

    1992-01-01

    Electric dipole moments of large atoms are an excellent tool to search for CP violation beyond the Standard Model. These tell us about the electron EDM but also about CP-violating electron-nucleon dimension-6 operators that arise from Higgs-exchange. Rapid strides are being made in searches for atomic EDMs. Limits on the electron EDM approaching the values which would be expected from Higgs-exchange mediated CP violation have been achieved. It is pointed out that in this same kind of model if tan β is large the effects in atoms of the dimension-6 e - n operators may outweigh the effect of the electron EDM. (author) 21 refs

  4. IAEA advisory group meeting on nuclear and atomic data for radiotherapy and related radiobiology in co-operation with the Radiobiological Institute of the Division for Health Research TNO, 16-20 September 1985, Rijswijk, the Netherlands

    International Nuclear Information System (INIS)

    Okamoto, K.

    1985-11-01

    The IAEA Advisory Group Meeting on ''Nuclear and Atomic Data for Radiotherapy and Related Radiobiology'' was held at Rijswijk, the Netherlands, from 16 to 20 September 1985, in co-operation with the Radiobiological Institute TNO. The meeting participants reviewed the current and future requirements on nuclear and atomic data for radiotherapy and radiobiology, identified data requirements and their priorities, and issued a number of specific recommendations for future technical work in nuclear and atomic data required to establish a more solid nuclear physics foundation of radiotherapy and related radiobiology. The recommendations in this report are directed to three areas, namely beam production and field description, dosimetry, and interpretation and optimization of biological effects. The final proceedings will be issued as an IAEA publication in 1986. (author)

  5. 30 CFR 250.1628 - Design, installation, and operation of production systems.

    Science.gov (United States)

    2010-07-01

    ... Operations § 250.1628 Design, installation, and operation of production systems. (a) General. All production... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Design, installation, and operation of production systems. 250.1628 Section 250.1628 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF...

  6. Diode laser operating on an atomic transition limited by an isotope ⁸⁷Rb Faraday filter at 780 nm.

    Science.gov (United States)

    Tao, Zhiming; Hong, Yelong; Luo, Bin; Chen, Jingbiao; Guo, Hong

    2015-09-15

    We demonstrate an extended cavity Faraday laser system using an antireflection-coated laser diode as the gain medium and the isotope (87)Rb Faraday anomalous dispersion optical filter (FADOF) as the frequency selective device. Using this method, the laser wavelength works stably at the highest transmission peak of the isotope (87)Rb FADOF over the laser diode current from 55 to 140 mA and the temperature from 15°C to 35°C. Neither the current nor the temperature of the laser diode has significant influence on the output frequency. Compared with previous extended cavity laser systems operating at frequencies irrelevant to spectacular atomic transition lines, the laser system realized here provides a stable laser source with the frequency operating on atomic transitions for many practical applications.

  7. The production and escape of nitrogen atoms on Mars

    Science.gov (United States)

    Fox, J. L.

    1993-01-01

    Updated rate coefficients and a revised ionosphere-thermosphere model are used to compute the production rates and densities of odd nitrogen species in the Martian atmosphere. Computed density profiles for N(4S), N(2D), N(2P), and NO are presented. The model NO densities are found to be about a factor of 2-3 less than those measured by the Viking 1 mass spectrometer. Revised values for the escape rates of N atoms from dissociative recombination and ionospheric reactions are also computed. Dissociative recombination is found to be comparable in importance to photodissociation at low solar activity, but it is still the most important escape mechanism for N-14 at high solar activity.

  8. Glove box operations for transplutonium element production

    International Nuclear Information System (INIS)

    Knauer, J.B.; Alexander, C.W.; Wiggins, J.T.

    1986-01-01

    Glove boxes are used in the Transuranium Processing Plant (TRU) at Oak Ridge National Laboratory for (1) completing the final chemical processing steps to isolate and purify the transplutonium elements, (2) packaging transplutonium elements for shipment, (3) preirradiation and postirradiation processing of samples used to produce special transplutonium isotopes in the High Flux Isotope Reactor (HFIR), and (4) conducting special projects, which include providing highly purified transplutonium products in special chemical forms and/or in experimental devices as requested by researchers. During 20 years of operation, the quantities of transplutonium elements produced, and thus the amount of radioactivity handled, have continually increased. At the same time, substantial effort has been expended to reduce personnel radiation exposures. Equipment and techniques have been developed to maintain the desired operational capabilities in the glove boxes while keeping radiation exposures to operating personnel as low as reasonably achievable. Developments have included the design and fabrication of product handling and collection devices, product storage containers, and laminated exterior shields of lead glass, lead acrylic, acrylic sheets, polyethylene, and lead

  9. Annual report of the Japan Atomic Energy Research Institute for fiscal 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Japan Atomic Energy Research Institute has promoted the research on high temperature engineering, the research and development of nuclear fusion, the research on radiation utilization and the research and development of nuclear powered ships as the advanced project researches which bring about the breakthrough of atomic energy technology as well as the research on the safety, following the long term plan of atomic energy development and utilization which was decided in 1987, as the general research institute in Japanese atomic energy field. The progress of the above mentioned researches in fiscal 1992 is reported. The operation of JRR-2, JRR-3M, JRR-4 and JMTR was carried out as scheduled. 9 cases of the medical irradiation on brain tumors were performed at JRR-2. As to the practical test of the disassembling of JPDR, the machinery and equipment in the reactor containment vessel were removed, and the development of a high performance decontamination testing device and others was advanced. The efficient operation of the large computer system, the production and sales of radioisotopes and radioactive waste business were continued. (K.I.)

  10. IAEA Leads Operational Safety Mission to Rajasthan Atomic Power Station 3 and 4

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency (IAEA) today completed a review of safety practices at Units 3 and 4 of the Rajasthan Atomic Power Station in Rawatbhata. The team noted a series of good practices and made recommendations and suggestions to reinforce safety practices. The IAEA assembled the Operational Safety Review Team (OSART) at the request of the Government of India. Led by the IAEA's Division of Nuclear Installation Safety, the team performed an in-depth operational safety review from 29 October to 14 November 2012. The team was comprised of experts from Canada, Belgium, Finland, Germany, Romania, Slovakia, Slovenia, Sweden and the IAEA. The team conducted an in-depth review of the aspects essential to the safe operation of the Power Plant. The conclusions of the review are based on the IAEA's Safety Standards and good international practices. The review covered the areas of Management, Organization and Administration; Training; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry; Emergency Planning and Preparedness; and Severe Accident Management. The OSART team identified a number of good practices of the plant. These will be shared in due course by the IAEA with the global nuclear industry for consideration. Examples include the following: - The Power Plant's safety culture cultivates a constructive work environment and a sense of accountability among the Power Plant personnel, and gives its staff the opportunity to expand skills and training; - The Power Plant's Public Awareness Programme provides educational opportunities to the local community about nuclear and radiation safety; - The Power Plant has a Management of Training and Authorization system for effective management of training activities; and - The Power Plant uses testing facilities and mockups to improve the quality of maintenance work and to reduce radiation doses. The OSART

  11. Accelerators for atomic energy research

    International Nuclear Information System (INIS)

    Shibata, Tokushi

    1999-01-01

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  12. Experimental research on the contrast production of the chemical elements with the atomic numbers 1-83 in a computer-totalbody-tomogram

    International Nuclear Information System (INIS)

    Kirschner, H.; Burmester, U.; Stringaris, K.

    1979-01-01

    The contrast production for the chemical elements with the atomic numbers Z=1-83 were determined by computer-tomography. With the formula relation of the Δ-number and the atomic number can one compute the contrast production of any chosen chemical compound. Iodine-free and inorganic iodine-containing contrast media are examined for their contrast production and compared with presently used organic iodine-containing contrast media. The contrast enhancement of organic contrast media in tissue are discussed. (orig.) [de

  13. Atom chip gravimeter

    Science.gov (United States)

    Schubert, Christian; Abend, Sven; Gebbe, Martina; Gersemann, Matthias; Ahlers, Holger; Müntinga, Hauke; Matthias, Jonas; Sahelgozin, Maral; Herr, Waldemar; Lämmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst

    2016-04-01

    Atom interferometry has developed into a tool for measuring rotations [1], accelerations [2], and testing fundamental physics [3]. Gravimeters based on laser cooled atoms demonstrated residual uncertainties of few microgal [2,4] and were simplified for field applications [5]. Atomic gravimeters rely on the interference of matter waves which are coherently manipulated by laser light fields. The latter can be interpreted as rulers to which the position of the atoms is compared. At three points in time separated by a free evolution, the light fields are pulsed onto the atoms. First, a coherent superposition of two momentum states is produced, then the momentum is inverted, and finally the two trajectories are recombined. Depending on the acceleration the atoms experienced, the number of atoms detected in the output ports will change. Consequently, the acceleration can be determined from the output signal. The laser cooled atoms with microkelvin temperatures used in state-of-the-art gravimeters impose limits on the accuracy [4]. Therefore, ultra-cold atoms generated by Bose-Einstein condensation and delta-kick collimation [6,7] are expected to be the key for further improvements. These sources suffered from a low flux implying an incompatible noise floor, but a competitive performance was demonstrated recently with atom chips [8]. In the compact and robust setup constructed for operation in the drop tower [6] we demonstrated all steps necessary for an atom chip gravimeter with Bose-Einstein condensates in a ground based operation. We will discuss the principle of operation, the current performance, and the perspectives to supersede the state of the art. The authors thank the QUANTUS cooperation for contributions to the drop tower project in the earlier stages. This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50WM

  14. Agricultural Productivity, Co-Operatives and Organisational ...

    African Journals Online (AJOL)

    Huria: Journal of the Open University of Tanzania ... can enhance productivity and increase farmers' income by bringing financial services closer. ... of Kimuli Agricultural Marketing Co-operative Society (AMCOS) and Muungano Savings and ...

  15. Production and quality control of concrete for the Rajasthan Atomic Power Station - [Part 1

    International Nuclear Information System (INIS)

    Singha Roy, P.K.; Sukhtankar, K.D.; Prasad, K.

    1975-01-01

    The production and quality control of concrete and concrete materials for the construction of the twin-reactor Rajasthan Atomic Power Station with its 400 MW net capacity posed many challenges since many of the requirements for the properties of concrete were new and were being laid down for the first time in India. Some of the conditions for the concrete included leak-tightness against gas pressure, total absence of shrinkage in the containment even when the ambient temperature during concreting was as high as 45degC, placing concrete at a temperature as low as 8degC, the use of non-shrink and high strength grout, absolute impermeability against water, high density for radiation shielding, controlled modulus of elasticity for large machine foundations, high strength with high slump for the prestressed concrete dome, etc. Though the total quantity of concrete was not very much compared with a large river valley or steel plant project, (e.g., about 1.2 X 10 6 m 3 for a 2-million tonne steel plant) it was quite significant, being about 70,000 m 3 of normal density and 2,100 m 3 of high density concrete. The production of these quantities entailed intensive material study and investigation, development of new mixes with additives not tried out before in the country, and design and quality control techniques which were unique in many respects. The paper deals with the production and quality control of concrete, including grouts used in the projects, but the actual concreting and construction operations are not discussed. (author)

  16. Solidification analysis of a centrifugal atomizer using the Al-32.7wt.% Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Matthew G. [Iowa State Univ., Ames, IA (United States)

    1998-02-23

    A centrifugal atomizer (spinning disk variety) was designed and constructed for the production of spherical metal powders, 100-1,000 microns in diameter in an inert atmosphere. Initial atomization experiments revealed the need for a better understanding of how the liquid metal was atomized and how the liquid droplets solidified. To investigate particle atomization, Ag was atomized in air and the process recorded on high-speed film. To investigate particle solidification, Al-32.7 wt.% Cu was atomized under inert atmosphere and the subsequent particles were examined microscopically to determine solidification structure and rate. This dissertation details the experimental procedures used in producing the Al-Cu eutectic alloy particles, examination of the particle microstructures, and determination of the solidification characteristics (e.g., solidification rate) of various phases. Finally, correlations are proposed between the operation of the centrifugal atomizer and the observed solidification spacings.

  17. Atom electron scattering

    International Nuclear Information System (INIS)

    Santoso, B.

    1976-01-01

    Green Lippmann-Schwinger functions operator representations, derivation of perturbation method using Green function and atom electron scattering, are discussed. It is concluded that by using complex coordinate places where resonances occur, can be accurately identified. The resonance can be processed further for practical purposes, for example for the separation of atom. (RUW)

  18. An important atomic process in the CVD growth of graphene: Sinking and up-floating of carbon atom on copper surface

    International Nuclear Information System (INIS)

    Li, Yingfeng; Li, Meicheng; Gu, TianSheng; Bai, Fan; Yu, Yue; Trevor, Mwenya; Yu, Yangxin

    2013-01-01

    By density functional theory (DFT) calculations, the early stages of the growth of graphene on copper (1 1 1) surface are investigated. At the very first time of graphene growth, the carbon atom sinks into subsurface. As more carbon atoms are adsorbed nearby the site, the sunken carbon atom will spontaneously form a dimer with one of the newly adsorbed carbon atoms, and the formed dimer will up-float on the top of the surface. We emphasize the role of the co-operative relaxation of the co-adsorbed carbon atoms in facilitating the sinking and up-floating of carbon atoms. In detail: when two carbon atoms are co-adsorbed, their co-operative relaxation will result in different carbon–copper interactions for the co-adsorbed carbon atoms. This difference facilitates the sinking of a single carbon atom into the subsurface. As a third carbon atom is co-adsorbed nearby, it draws the sunken carbon atom on top of the surface, forming a dimer. Co-operative relaxations of the surface involving all adsorbed carbon atoms and their copper neighbors facilitate these sinking and up-floating processes. This investigation is helpful for the deeper understanding of graphene synthesis and the choosing of optimal carbon sources or process.

  19. Role of N2 molecules in pulse discharge production of I atoms for a pulsed chemical oxygen-iodine laser

    International Nuclear Information System (INIS)

    Kochetov, I V; Napartovich, A P; Vagin, N P; Yuryshev, N N

    2011-01-01

    A pulsed electric discharge is the most effective means to turn chemical oxygen-iodine laser (COIL) operation into the pulse mode by fast production of iodine atoms. Experimental studies and numerical simulations are performed on a pulsed COIL initiated by an electric discharge in a mixture CF 3 I : N 2 : O 2 ( 3 X) : O 2 (a 1 Δ g ) flowing out of a chemical singlet oxygen generator. A transverse pulsed discharge is realized at various iodide pressures. The model comprises a system of kinetic equations for neutral and charged species, the electric circuit equation, the gas thermal balance equation and the photon balance equation. Reaction rate coefficients for processes involving electrons are repeatedly re-calculated by the electron Boltzmann equation solver when the plasma parameters are changed. The processes accounted for in the Boltzmann equation include direct and stepwise excitation and ionization of atoms and molecules, dissociation of molecules, electron attachment processes, electron-ion recombination, electron-electron collisions and second-kind collisions. The last processes are particularly important because of a high singlet oxygen concentration in gas flow from the singlet oxygen chemical generator. A conclusion is drawn about satisfactory agreement between the theory and the experiment.

  20. Fermionic effective operators and Higgs production at a linear collider

    International Nuclear Information System (INIS)

    Kile, Jennifer; Ramsey-Musolf, Michael J.

    2007-01-01

    We study the possible contributions of dimension six operators containing fermion fields to Higgs production at a 500 GeV or 1 TeV e + e - linear collider. We show that--depending on the production mechanism--the effects of such operators can be kinematically enhanced relative to standard model (SM) contributions. We determine constraints on the operator coefficients implied by existing precision electroweak measurements and the scale of neutrino mass. We find that even in the presence of such constraints, substantial deviations from SM Higgs production cross sections are possible. We compare the effects of fermionic operators with those associated with purely bosonic operators that have been previously discussed in the literature

  1. LEGO firm devices for atomic industry

    International Nuclear Information System (INIS)

    Makarov, P.V.; Egunova, E.M.

    2007-01-01

    Analytical problems of atomic industry enterprises are considered. Possibilities of LECO firm devices for following analysis kinds: 1) ore materials under ore processing; 2) chemical composition analysis and properties of metals and oxides under implementation of production manufacturing for nuclear industry; 3) spectral analysis; 4) structure analysis and properties of metallic materials - are shown. All above-listed analysis methods are applying at quality control operation. Examples of LECO device application at different nuclear energy enterprises of Russia, Kazakhstan, and other CIS and Baltic countries are cited

  2. Improved productivity justifies world record underbalanced perforating operation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. M.; Bakker, E. R. [NAM B.V. (Netherlands); Hungerford, K.

    1998-12-31

    To achieve vertical connectivity with all the layers, and thus long term sustained productivity in a highly stratified reservoir, a one run underbalanced perforating operation was considered necessary. Due to coiled tube limitations in this deep (5136 m along hole, 3700 m true vertical depth, with a maximum deviation of 89 degrees), high pressure well a hydraulic workover unit (HWU) was selected to deploy and retrieve the guns. The operation is considered a world record since this is the longest section (total gross interval of 1026 m perforated) of guns conveyed, fired underbalanced and deployed out of a live well. It is concluded that the improved productivity more than justified the additional time, effort and expenditure; considering the full life cycle of the well it is readily apparent that the operation was an economic and technical success. Details of the considerations leading to the perforating technique selection, the planning and the execution of the operation, and the validation of the technique in terms of productivity gains, are provided. 13 refs., 7 figs.

  3. Metal atom oxidation laser

    International Nuclear Information System (INIS)

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-01-01

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides

  4. Operational costs induced by fluctuating wind power production in Germany and Scandinavia

    DEFF Research Database (Denmark)

    Meibom, Peter; Weber, C.; Barth, R.

    2009-01-01

    Adding wind power generation in a power system changes the operational patterns of the existing units due to the variability and partial predictability of wind power production. For large amounts of wind power production, the expectation is that the specific operational costs (fuel costs, start......-up costs, variable operation and maintenance costs, costs of consuming CO2 emission permits) of the other power plants will increase due to more operation time in part-load and more start-ups. The change in operational costs induced by the wind power production can only be calculated by comparing...... the operational costs in two power system configurations: with wind power production and with alternative wind production having properties such as conventional production, that is, being predictable and less variable. The choice of the characteristics of the alternative production is not straightforward...

  5. Application of wire electrodes in electric discharge machining of metal samples of reactor blocks of the operative atomic power station

    International Nuclear Information System (INIS)

    Gozhenko, S.V.

    2007-01-01

    Features of application of electroerosive methods are considered during the process of direct definition of properties of metal of the equipment of power units of the atomic power station. Results of development of a complex of the equipment for wire electric discharge machining of metal templet and its use are presented at the control of the basic metal of the main circulating pipelines over blocks of the atomic power station of Ukraine over long terms of operation

  6. Report on the atom what you should know about atomic energy

    CERN Document Server

    Dean, Gordon

    1954-01-01

    The American approach to the atom ; Uranium is where you find it ; the production line: ore to bombs ; the expanding programme ; the headaches ; the pay-off: weapons ; the military and the atoms ; power: the peaceful goals, first phase ; power: the peaceful goals, second goals ; radioisotopes: servants of man ; the quest for knowledge ; secrecy, security and spies ; the international atom ; behind the Iron Curtain ; the way ahead.

  7. Computer programs in BASIC language for graphite furnace atomic absorption using the method of additions. Part 1. Operating instructions

    International Nuclear Information System (INIS)

    Boyle, W.G. Jr.; Ryan, D.P.

    1979-01-01

    These instructions describe how to use BASIC language programs to process data from atomic absorption spectrophotometers using the graphite furnace and the method of additions calibration technique. The instructions cover loading the programs, responding to computer prompts, choosing among various options for processing the data, performing operations with an automatic sampler, and producing reports. How the programs interact with each other is also explained. Examples of computer/operator dialogue are presented for typical cases. In addition, a concise set of operating instructions is included as an appendix

  8. A survey on the application of robot techniques to an atomic power plant

    International Nuclear Information System (INIS)

    Hasegawa, Tsutomu; Sato, Tomomasa; Hirai, Shigeoki; Suehiro, Takashi; Okada, Tokuji

    1982-01-01

    Tasks of workers in atomic power plants have been surveyed from the viewpoint of necessity and possibility of their robotization. The daily tasks are classified into the following: (1) plant operation; (2) periodical examination; (3) patrol and inspection; (4) in-service inspection; (5) maintenance and repaire; (6) examination and production of the fuel; (7) waste disposal; (8) decommission of the plant. The necessity and present status of the robotization in atomic power plants are investigated according to the following classification: (1) inspection robots; (2) patrol inspection/maintenance robots; (3) hot cell robots; (4) plant decommission robots. The following have been made clear through the survey: (1) Various kinds of tasks are necessary for an atomic power plant: (2) Because of most of the tasks taking place in intense radiation environments, it is necessary to introduce robots into atomic power plants: (3) In application of robots in atomic power plant systems, it is necessary to take account of various severe conditions concerning spatial restrictions, radioactive endurance and reliability. Lastly wide applicability of the techniques of knowledge robots, which operate interactively with men, has been confirmed as a result of the survey. (author)

  9. AtomPy: A Cloud Atomic-data Service for Astrophysical Applications

    Science.gov (United States)

    Mendoza, Claudio; Boswell, J. S.; Bautista, M.

    2013-06-01

    Apart from our long-term commitment to the computing of accurate atomic data for astrophysical applications, we have also been interested in the problems of data access and dissemination. In this respect, one of us took part in the developments of TIPTOPbase [1, 2, 3], the astrophysical opacity server referred to as OPserver [4, 5], and, more recently, of the Virtual Atomic and Molecular Data Center [6, 7]. Our present effort is now with the establishment of a cloud atomic data web service, AtomPy, implemented by means of SOAP web services, Google Drive spreadsheets and Python modules. In the present poster we will describe the outline of this ambitious project, illustrated with some prototypes that are already operational.

  10. Atomic hydrogen reactor

    International Nuclear Information System (INIS)

    Massip de Turville, C.M.D.

    1982-01-01

    Methods are discussed of generating heat in an atomic hydrogen reactor which involve; the production of atomic hydrogen by an electrical discharge, the capture of nascent neutrons from atomic hydrogen in a number of surrounding steel alloy tubes having a high manganese content to produce 56 Mn, the irradiation of atomic hydrogen by the high energy antineutrinos from the beta decay of 56 Mn to yield nascent neutrons, and the removal of the heat generated by the capture of nascent neutrons by 55 Mn and the beta decay of 56 Mn. (U.K.)

  11. Kinetics and Products of the Reactions of Fluorine Atoms with ClNO and Br2 from 295 to 950 K.

    Science.gov (United States)

    Bedjanian, Yuri

    2017-11-09

    The kinetics and products of the reactions of F atoms with Br 2 and ClNO have been studied in a flow reactor coupled with an electron impact ionization mass spectrometer at nearly 2 Torr total pressure of helium and over a wide temperature range, T = 295-950 K. The rate constant of the reaction F + ClNO → products (1) was determined under pseudo-first order conditions, monitoring the kinetics of F atom consumption in excess of ClNO. The measured temperature independent rate constant, k 1 = (1.29 ± 0.13) × 10 -10 cm 3 molecule -1 s -1 (T = 299-950 K), was found to be in excellent agreement with the only previous low temperature study which allowed to recommend the value of k 1 in an extended temperature range, 228-950 K. FCl and Cl atoms were observed as the reactions products (corresponding to two reaction pathways: Cl-atom abstraction and replacement with fluorine atom, respectively) with the independent of temperature, in the range 295-948 K, yields of 0.68 ± 0.10 and 0.32 ± 0.05, respectively. Rate constant of the reaction F + Br 2 (2), k 2 = (1.28 ± 0.20) × 10 -10 cm 3 molecule -1 s -1 , determined using both absolute and relative rate methods, was found to be independent of temperature at T = 299-940 K.

  12. Novel operation mode for eliminating influence of inclination angle and friction in atomic force microscopy

    International Nuclear Information System (INIS)

    Wang, Fei; Wang, Yueyu; Zhou, Faquan; Zhao, Xuezeng

    2010-01-01

    The accuracy of topography imaging in contact force mode of atomic force microscopy (AFM) depends on the one-to-one corresponding relationship between the cantilever deflection and the tip-sample distance, whereas such a relationship cannot be always achieved in the presence of friction and incline angle of sample surface. Recently, we have developed a novel operation mode in which we keep the van der Waals force as constant instead of the applied normal force, to eliminate the effect of inclination angle and friction on topography imaging in the contact force mode. We have improved our AFM to enable the new operation mode for validation. Comparative experiments have been performed and the results have shown that the effect of friction and inclination angle on topography imaging in contact mode of AFM can be eliminated or at least decreased effectively by working in the new operation mode we present.

  13. Design and Construction of an Atomic Clock on an Atom Chip

    International Nuclear Information System (INIS)

    Reinhard, Friedemann

    2009-01-01

    We describe the design and construction of an atomic clock on an atom chip, intended as a secondary standard, with a stability in the range of few 10 -13 at 1 s. This clock is based on a two-photon transition between the hyperfine states |F = 1; m F = -1> and |2; 1> of the electronic ground state of the 87 Rb atom. This transition is interrogated using a Ramsey scheme, operating on either a cloud of thermal atoms or a Bose-Einstein condensate. In contrast to atomic fountain clocks, this clock is magnetically trapped on an atom chip. We describe a theoretical model of the clock stability and the design and construction of a dedicated apparatus. It is able to control the magnetic field at the relative 10 -5 level and features a hybrid atom chip, containing DC conductors as well as a microwave transmission line for the clock interrogation. (author)

  14. Relationship Between Lean Production and Operational Performance in the Manufacturing Industry

    Science.gov (United States)

    Rasi, Raja Zuraidah R. M.; Syamsyul Rakiman, Umol; Ahmad, Md Fauzi Bin

    2015-05-01

    Nowadays, more and more manufacturing firms have started to implement lean production system in their operations. Lean production viewed as one of the mechanism to maintain the organisation's position and to compete globally. However, many fail to apply the lean concepts successfully in their operations. Based on previous studies, implementation of lean production in the manufacturing industry is more focused on the relationship between Lean and Operational Performance of one dimension only. Therefore, this study attempted to examine the relationship between Lean Production (LP) and Operational Performance in 4 dimensions which are quality, delivery, cost and flexibility. This study employed quantitative study using questionnaires. Data was collected from 50 manufacturing industries. The data was analysed using Statistical Package for Social Science (SPSS) 22.0. This study is hoped to shed new understanding on the concept of Lean Production (LP) in regards of Operational Performance covering the 4 dimensions.

  15. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    Energy Technology Data Exchange (ETDEWEB)

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top

  16. Antiprotonic-hydrogen atoms

    International Nuclear Information System (INIS)

    Batty, C.J.

    1989-07-01

    Experimental studies of antiprotonic-hydrogen atoms have recently made great progress following the commissioning of the low energy antiproton facility (LEAR) at CERN in 1983. At the same time our understanding of the atomic cascade has increased considerably through measurements of the X-ray spectra. The life history of the p-bar-p atom is considered in some detail, from the initial capture of the antiproton when stopping in hydrogen, through the atomic cascade with the emission of X-rays, to the final antiproton annihilation and production of mesons. The experiments carried out at LEAR are described and the results compared with atomic cascade calculations and predictions of strong interaction effects. (author)

  17. Multicriteria analysis of product operational effectiveness at design stages

    Science.gov (United States)

    Irzaev, G. Kh

    2018-03-01

    The multicriteria rapid assessment method of techno-economic parameters of new products is developed. It avoids expensive engineering changes during the operational stages through the analysis of external and internal factors at an early stage in the design that affect the maintainability and manufacturability of the product. The expert selection of the initial multitude of indicators from the five enlarged criteria groups and their subsequent pairwise comparison allow one to distinguish the complex compliance criteria of product design with the average and optimum values of the operational effectiveness. The values comparison provides an opportunity to decide on the continuation of the process for designing and preparation of the product manufacture.

  18. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  19. Data-driven architectural production and operation

    NARCIS (Netherlands)

    Bier, H.H.; Mostafavi, S.

    2014-01-01

    Data-driven architectural production and operation as explored within Hyperbody rely heavily on system thinking implying that all parts of a system are to be understood in relation to each other. These relations are increasingly established bi-directionally so that data-driven architecture is not

  20. Development of the process for production of UO2 powder by atomization of uranyl nitrate

    International Nuclear Information System (INIS)

    Oliveira Lainetti, P.E. de.

    1991-01-01

    A method of direct conversion of uranyl nitrate hexahydrate (UNH) solution to ceramic grade uranium dioxide powders by thermal denitration in a furnace that combines atomization nozzle and a gas stirred bed is described. The main purpose of this work is to show that this alternative process is technically viable, specially if the recovery of the scrap generated in the nuclear fuel pellet production is required, without further generation of new liquid wastes. The steps for the development of the denitration unit as well as the characteristics of the final powders are described. Powder production experiments have been carried out for different atomization gas pressures and furnace upper section temperatures. Determination of impurity content, specific surface area, particle size and pore size distribution, density, U content, and O/U rate of uranium dioxide powders have been done; phase identification and morphology studies have also been performed. Sintered pellets have been studied by hydrostatic density determination and microstructure analyses. (author)

  1. Universal Four-Boson System: Dimer-Atom-Atom Efimov Effect and Recombination Reactions

    International Nuclear Information System (INIS)

    Deltuva, A.

    2013-01-01

    Recent theoretical developments in the four-boson system with resonant interactions are described. Momentum-space scattering equations for the four-particle transition operators are used. The properties of unstable tetramers with approximate dimer-atom-atom structure are determined. In addition, the three- and four-cluster recombination processes in the four-boson system are studied. (author)

  2. Tracking of fission products release during refueling operations

    International Nuclear Information System (INIS)

    Agarwal, Sharad; Prajapat, M.K.; Vyas, Shyam; Hussain, S.A.

    2001-01-01

    It has been always observed that the release of fission products increase during refueling operations. At RAPP-3 and 4 an attempt has been made to follow-up the change in fission products activity release at each stage of refueling operation and quantification of concentrations of various radionuclides. This exercise was also extended to refueling operation of the channels containing suspected failed fuel. A level of FPNG ( 133 Xe) was observed to increase by a factor of about 10-40 during refueling of failed channel as compared to healthy channel. It can be concluded that by monitoring FPNG levels in exhaust status of the healthiness of spent fuel can be found out. This report discusses in detail the experiment conducted for this purpose. (author)

  3. Assessing the Engagement, Learning, and Overall Experience of Students Operating an Atomic Absorption Spectrophotometer with Remote Access Technology

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    The use of internet-based technologies in the teaching of laboratories has emerged as a promising education tool. This study evaluated the effectiveness of using remote access technology to operate an atomic absorption spectrophotometer in analyzing the iron content in a crude myoglobin extract. Sixty-two students were surveyed on their level of…

  4. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen

    Science.gov (United States)

    Palaszewski, Bryan

    2000-01-01

    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  5. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  6. Design and operation of radiation facilities

    International Nuclear Information System (INIS)

    Gay, H.G.

    1983-01-01

    The design, manufacture, and operation of Cobalt-60 Radiation Processing Facilities is a well established technology. However, the products requiring radiation processing are constantly increasing. Product and dose variations create different requirements in the irradiator design. Several basic design concepts which have been developed and installed by Atomic Energy of Canada Limited are discussed. Irradiators are most efficient when designed to handle a limited product density range at an established dose. Requirements for irradiators to process a multitude of different products at different doses leads to a reduction of irradiator efficiency with resultant increase in processing costs

  7. On approximation of functions by product operators

    Directory of Open Access Journals (Sweden)

    Hare Krishna Nigam

    2013-12-01

    Full Text Available In the present paper, two quite new reults on the degree of approximation of a function f belonging to the class Lip(α,r, 1≤ r <∞ and the weighted class W(Lr,ξ(t, 1≤ r <∞ by (C,2(E,1 product operators have been obtained. The results obtained in the present paper generalize various known results on single operators.

  8. German atomic low meeting 2004

    International Nuclear Information System (INIS)

    Ossenbuehl, F.

    2005-01-01

    The conference report on the German atomic law meeting 2004 contains 14 contributions on the German atomic legislation within four parts: Damage precaution in the operational phase; Legal general requirements for the final disposal - considerations ''de lege lata'' and ''de lege ferenda''. Financing of the site searching by a statutory company (''Verbandsmodell''). Atomic supervision authority - federal executive administration or federal self administration?

  9. Operational Monitoring of Data Production at KNMI

    Science.gov (United States)

    van de Vegte, John; Kwidama, Anecita; van Moosel, Wim; Oosterhof, Rijk; de Wit de Wit, Ronny; Klein Ikkink, Henk Jan; Som de Cerff, Wim; Verhoef, Hans; Koutek, Michal; Duin, Frank; van der Neut, Ian; verhagen, Robert; Wollerich, Rene

    2016-04-01

    Within KNMI a new fully automated system for monitoring the KNMI operational data production systems is being developed: PRISMA (PRocessflow Infrastructure Surveillance and Monitoring Application). Currently the KNMI operational (24/7) production systems consist of over 60 applications, running on different hardware systems and platforms. They are interlinked for the production of numerous data products, which are delivered to internal and external customers. Traditionally these applications are individually monitored by different applications or not at all; complicating root cause and impact analysis. Also, the underlying hardware and network is monitored via an isolated application. Goal of the PRISMA system is to enable production chain monitoring, which enables root cause analysis (what is the root cause of the disruption) and impact analysis (what downstream products/customers will be effected). The PRISMA system will make it possible to reduce existing monitoring applications and provides one interface for monitoring the data production. For modeling and storing the state of the production chains a graph database is used. The model is automatically updated by the applications and systems which are to be monitored. The graph models enables root cause and impact analysis. In the PRISMA web interface interaction with the graph model is accomplished via a graphical representation. The presentation will focus on aspects of: • Modeling real world computers, applications, products to a conceptual model; • Architecture of the system; • Configuration information and (real world) event handling of the to be monitored objects; • Implementation rules for root cause and impact analysis. • How PRISMA was developed (methodology, facts, results) • Presentation of the PRISMA system as it now looks and works

  10. Absorption properties of identical atoms

    International Nuclear Information System (INIS)

    Sancho, Pedro

    2013-01-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions

  11. Positron production in heavy ion-atom collisions

    International Nuclear Information System (INIS)

    Kienle, P.

    1985-08-01

    Following an introduction into the concept of an atom with an overcritical field, established by a nucleus with a charge larger than 173, the spontaneous positron emission from such an atom with an 1s binding energy exceeding 2mc 2 is presented. Such a process, in which an electron is bound and a monoenergetic positron emitted turns the neutral into a charged vacuum. In a U-U di-nuclear system (Z=184) the spontaneous positron emission proceeds with an energy of about 300 keV corresponding to a decay time of 3x10 -19 sec. (orig./WL)

  12. Atomic switches: atomic-movement-controlled nanodevices for new types of computing

    International Nuclear Information System (INIS)

    Hino, Takami; Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Nayak, Alpana; Ohno, Takeo; Aono, Masakazu

    2011-01-01

    Atomic switches are nanoionic devices that control the diffusion of metal cations and their reduction/oxidation processes in the switching operation to form/annihilate a metal atomic bridge, which is a conductive path between two electrodes in the on-state. In contrast to conventional semiconductor devices, atomic switches can provide a highly conductive channel even if their size is of nanometer order. In addition to their small size and low on-resistance, their nonvolatility has enabled the development of new types of programmable devices, which may achieve all the required functions on a single chip. Three-terminal atomic switches have also been developed, in which the formation and annihilation of a metal atomic bridge between a source electrode and a drain electrode are controlled by a third (gate) electrode. Three-terminal atomic switches are expected to enhance the development of new types of logic circuits, such as nonvolatile logic. The recent development of atomic switches that use a metal oxide as the ionic conductive material has enabled the integration of atomic switches with complementary metal-oxide-semiconductor (CMOS) devices, which will facilitate the commercialization of atomic switches. The novel characteristics of atomic switches, such as their learning and photosensing abilities, are also introduced in the latter part of this review. (topical review)

  13. Optimum operation of a small power production facility

    Energy Technology Data Exchange (ETDEWEB)

    Capehart, B.L.; Mahoney, J.F.; Sivazlian, B.D.

    1983-09-01

    To help reduce the U.S.A.'s dependence on imported oil for electrical power generation, the 1978 National Energy Act established regulations to promote construction and operation of cogeneration and small power production facilities. Many of these facilities are presently under construction, with a great number planned. This paper examines the operation of a small power production facility with on-site generation and storage, on-site use, and connection to an electric utility grid system for the purpose of both selling excess power and buying power. It is assumed that the buying and selling price of electricity varies frequently during the day and that the relevant price and demand data may be accurately projected into the near future. With this system description, a mathematical model is formulated and solved by linear programming to obtain a series of periodic buy and sell decisions so as to maximize the profit from operating the small power production facility. Results are presented to illustrate the methodology for determining potential profits.

  14. Polarized atomic beams for targets

    International Nuclear Information System (INIS)

    Grueebler, W.

    1984-01-01

    The basic principle of the production of polarized atomic hydrogen and deuterium beams are reviewed. The status of the present available polarization, density and intensity are presented. The improvement of atomic beam density by cooling the hydrogen atoms to low velocity is discussed. The possible use of polarized atomic beams as targets in storage rings is shown. It is proposed that polarized atomic beams can be used to produce polarized gas targets with high polarization and greatly improved density

  15. Unlimited productivity: your operation can achieve it

    Energy Technology Data Exchange (ETDEWEB)

    Bovino, V R

    1986-10-01

    Most mines substantially underestimate their real potential. The market for coal is global and people consider the problems are caused by uncontrolled production of foreign coal, however part of the problem is productivity, that is the ability to produce tons of coal in a cost-effective way, rather than production. Any operation can deliver unlimited productivity by developing the resource within their employees. This paper discusses the areas where the industry has gone wrong, including bureaucracy, blind faith in price rises, wages, adversaries; tradition, narrow job characteristics, conformance over performance for employees, management, money, self-limitations and benefit plans. It also describes three basic ways of improving productivity. These are positive management practices, employee participation and shared rewards.

  16. Enhanced efficiency in the excitation of higher modes for atomic force microscopy and mechanical sensors operated in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Penedo, M., E-mail: mapenedo@imm.cnm.csic.es; Hormeño, S.; Fernández-Martínez, I.; Luna, M.; Briones, F. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Raman, A. [Birck Nanotechnology Center and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47904 (United States)

    2014-10-27

    Recent developments in dynamic Atomic Force Microscopy where several eigenmodes are simultaneously excited in liquid media are proving to be an excellent tool in biological studies. Despite its relevance, the search for a reliable, efficient, and strong cantilever excitation method is still in progress. Herein, we present a theoretical modeling and experimental results of different actuation methods compatible with the operation of Atomic Force Microscopy in liquid environments: ideal acoustic, homogeneously distributed force, distributed applied torque (MAC Mode™), photothermal and magnetostrictive excitation. From the analysis of the results, it can be concluded that magnetostriction is the strongest and most efficient technique for higher eigenmode excitation when using soft cantilevers in liquid media.

  17. Shippingport Atomic Power Station Operating Experience, Developments and Future Plans

    International Nuclear Information System (INIS)

    Feinroth, H.; Oldham, G.M.; Stiefel, J.T.

    1963-01-01

    This paper describes and evaluates five years of operation and test of the Shippingport Atomic Power Station and discusses the current technical developments and future plans of the Shippingport programme. This programme is directed towards development of the basic technology of light-water reactors to provide the basis for potential reduction in the costs of nuclear power. The Shippingport reactor plant has operated for over five years and has been found to integrate readily into a utility system either as a base load or peak load unit. Plant component performance has been reliable. There have been no problems in contamination or waste disposal. Access to primary coolant components for maintenance has been good, demonstrating the integrity of fuel elements. Each of the three refuelling operations performed since start-up of Shippingport has required successively less time to accomplish. Recently, the third seed was refuelled in 32 working days, about one quarter the time required for the first refuelling. The formal requirements of personnel training, written administrative procedures, power plant manuals, etc., which have been a vital factor in the successful implementation of the Shippingport programme, are described. The results obtained from the comprehensive test programme carried out at Shippingport are compared with calculations, and good agreement has been obtained. Reactor core performance, plant stability, and response to load changes, fuel element and control rod performance, long-term effects such as corrosion and radiation level build-up, component performance, etc., are discussed in this paper. The principal objective of the current and future programmes of the Shippingport Project in advancing the basic technology of water-cooled reactors is discussed. This programme includes the continued operation of the Shippingport plant, and the development, design, manufacture and test operation of a long-life, highpower density second core - Core 2. At its

  18. Study of the productivity evolution in the operation of CLAB

    International Nuclear Information System (INIS)

    Lundberg, H.

    2000-07-01

    SKB shall every year, on behalf of the power companies, send SKI a cost calculation for spent fuel handling and dismantling of the Swedish nuclear power plants. SKI has tried to investigate the future impact which the growth of money in the Nuclear Waste Fund might give in relation to the change of consumer price index, CPI. The long term yield of the Fund has been related to the change of CPI, as the bigger part of the fund money has been invested in real interest rate bonds. The cost development has been studied by SKI with an index named 'KBS-3-index', which is a basket of weighted factor price indexes made out of the SKB programme. Since 1986 and up to 1998, the KBS-3-index has increased about 14% more than CPI. If this discrepancy should continue during the whole period when Fund money should be available, the Fund would be insufficient. But the difference between KBS-3-index and CPI might be eliminated due to a future productivity development. At the moment, SKI has no knowledge about future productivity development in the SKB programme. A closer analysis of the facilities operated by SKB is therefore important. Nearest to study is the productivity at the operation of CLAB, Central Interim Storage Facility for Spent Nuclear Fuel. The work in CLAB is receiving and storing of spent nuclear fuel and core components and reloading from normal to compact cassettes. The consumption of all production factors can be measured in money. Here the total production factors are defined as the sum of the annual operation costs and the sum of annuities for reinvestments during the year. The development for total productivity is slightly increasing. Normal for a new business is that the productivity rises sharply in the beginning. Here the productivity is slightly decreasing in the beginning, and then rising, sinking and at last a sharp rising. Project compact storing was finished in 1992, and relocation to compact cassettes started in 1993. This is said to be the reason for

  19. Conformal four point functions and the operator product expansion

    International Nuclear Information System (INIS)

    Dolan, F.A.; Osborn, H.

    2001-01-01

    Various aspects of the four point function for scalar fields in conformally invariant theories are analysed. This depends on an arbitrary function of two conformal invariants u,v. A recurrence relation for the function corresponding to the contribution of an arbitrary spin field in the operator product expansion to the four point function is derived. This is solved explicitly in two and four dimensions in terms of ordinary hypergeometric functions of variables z,x which are simply related to u,v. The operator product expansion analysis is applied to the explicit expressions for the four point function found for free scalar, fermion and vector field theories in four dimensions. The results for four point functions obtained by using the AdS/CFT correspondence are also analysed in terms of functions related to those appearing in the operator product discussion

  20. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1977-01-01

    The law establishes the Japan Atomic Energy Research Institute in accordance with the Basic Act on Atomic Energy as a government corporation for the purpose of promoting R and D and utilizations of atomic energy (first chapter). The second chapter concerns the directors, advisers and personnel of the institute, namely a chairman of the board of directors, a vice-chairman, directors not more than seven persons, and auditors not more than two persons. The chairman represents and supervises the intitute, whom the prime minister appoints with the agreement of Atomic Energy Commission. The vice-chairman and other directors are nominated by the chairman with the approval of the prime minister, while the auditors are appointed by the prime minister with the advice of the Atomic Energy Commission. Their terms of office are 4 years for directors and 2 years for auditors. The third chapter defines the scope of activities of the institute as follows: basic and applied researches on atomic energy; design, construction and operation of nuclear reactors; training of researchers and technicians; and import, production and distribution of radioisotopes. Those activities should be done in accordance with the basic development and utilization plans of atomic energy established by the prime minister with the determination of Atomic Energy Commission. The fourth chapter provides for the finance and accounting of the institute, and the fifth chapter requires the supervision of the institute by the prime minister. (Matsushima, A.)

  1. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    Science.gov (United States)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  2. The electrostatic atomization of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, A J

    1984-06-01

    Exploitation of the unique and potentially beneficial characteristics of electrostatic atomization in combustion systems has foundered upon the inability of two element, diode devices to operate at flow rates that are larger than a fraction of a millilitre per second. This restriction has been attributed to the high innate electrical resistivity of hydrocarbon fuels. A discussion of proposed electrostatic fuel atomizers and their limitations is presented from the vantage of a recently developed theory of electrostatic spraying. Comparison of theory and experiment reveals the existence of a 'constant of spraying' and the presence of an operational regime in which low charge density droplet development is possible. Operation with hydrocarbons in this regime occurs when the mean droplet size is greater than or equal to 10 ..mu..m and fluid viscosity is below about 250 cp. The resulting spray has a mean droplet size that is functionally dependent only upon the free charge density level of the fluid. Consequently there is no theoretical impediment to the attainment of high flow rate electrostatic atomization with fluids of arbitrary conductivity. Implementation is achieved by a general class of electrostatic spray devices which employ direct charge injection. The Spray Triode, a submerged field-emission electron gun, represents a particularly simple member of this new class of atomizer. Among the Spray Triode operational characteristics to be discussed is insensitivity to spray fluid properties and flow rate.

  3. Operational symmetries basic operations in physics

    CERN Document Server

    Saller, Heinrich

    2017-01-01

    This book describes the endeavour to relate the particle spectrum with representations of operational electroweak spacetime, in analogy to the atomic spectrum as characterizing representations of hyperbolic space. The spectrum of hyperbolic position space explains the properties of the nonrelativistic atoms; the spectrum of electroweak spacetime is hoped to explain those of the basic interactions and elementary particles. In this book, the theory of operational symmetries is developed from the numbers, from Plato’s and Kepler’s symmetries over the simple Lie groups to their applications in nonrelativistic, special relativistic and general relativistic quantum theories with the atomic spectrum for hyperbolic position and, in first attempts, the particle spectrum for electroweak spacetime. The standard model of elementary particles and interactions is characterized by a symmetry group. In general, as initiated by Weyl and stressed by Heisenberg, quantum theory can be built as a theory of operation groups an...

  4. Production optimization of remotely operated gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Juell, Aleksander

    2012-07-01

    From the introduction: The Remote Operations in Oklahoma Intended for Education (ROOKIE) project is a remote field laboratory constructed as a part of this research project. ROOKIE was initiated to provide data in research on production optimization of low productivity gas wells. In addition to this, ROOKIE is used as a teaching tool. Much of the remote operations technology used in the ROOKIE project has been used by the industry for several decades. The first use of remote data acquisition in Oklahoma was in 1989, as described by Luppens [7]. Even though this, for the most part, is old technology, the ROOKIE project is the first remote operations project set up with research and teaching as the main focus. This chapter will discuss the process of establishing the remote field laboratory and the data storage facilities. Results from the project will also be discussed. All testing, instrumentation installation, and modifications to the wells discussed in this chapter was performed by the author. The communication system between the well and NTNU, and the storage database was installed and configured by the author.(Author)

  5. Experience relevant to safety obtained from reactor decommissioning operations in the French Atomic Energy Commission

    International Nuclear Information System (INIS)

    Giraudel, B.; Langlois, G.

    1979-01-01

    From among the nuclear facilities constructed in France the authors cite eight large reactors, ranging from critical assemblies to power reactors, that have been finally shut-down since 1965. A brief account is given of the way in which the various operations were carried out after the final control rod drop, a distinction being drawn between the shut-down proper and the containment and dismantling work. A description is also given, from the technical and regulatory standpoint, of the final stage attained, and mention is made of French safety arrangements and of the part played by the safety services during decommissioning operations. Among the lessons derived from French experience, the authors mention the completion of operations without any serious safety problems, and with guarantees for the protection of personnel and the population as a whole, by conventional techniques; the advantage of planning decommissioning operations from the very beginning of construction of the facilities; and the importance of filing descriptive documents. In view of the experience gained, the French Atomic Energy Commission has devised internal procedures for facilitating the application of regulations governing the shut-down and decommissioning phases, which are aimed at preserving surveillance procedures similar to those in force during normal operation. (author)

  6. Management systems in production operations

    International Nuclear Information System (INIS)

    Walters, K.B.; Henderson, G.

    1993-01-01

    The Cullen Enquiry into the Piper Alpha disaster in the U.K. North Sea recommended that an operator should formally present it's company Management System and demonstrate how safety is achieved throughout the life cycle of a platform, from design through operation to abandonment. Brunei Shell Petroleum has prepared a corporate level Safety Management System. As part of Safety Case work, the corporate system is being extended to include the development of specific Management Systems with particular emphasis on offshore production operations involving integrated oil and gas facilities. This paper will describe the development of Management Systems, which includes an intensive Business Process Analysis and will comment upon it's applicability and relationship to ISO 9000. The paper will further describe the applicability and benefits of Management Systems and offer guidance on required effort. The paper will conclude that development of structured Management Systems for safety critical business processes is worthwhile but prioritization of effort will be necessary. As such the full adoption of Management Systems will be directional in nature

  7. Commissioning and operation of distillation column at Madras Atomic Power Station (Paper No. 1.10)

    International Nuclear Information System (INIS)

    Neelakrishnan, G.; Subramanian, N.

    1992-01-01

    In Madras Atomic Power Station (MAPS), an upgrading plant based on vacuum distillation was constructed to upgrade the downgraded heavy water collected in vapor recovery dryers. There are two distillation columns and each having a capacity of 77.5 tonne per annum of reactor grade heavy water with average feed concentration of 30% IP. The performance of the distillation columns has been very good. The column I and column II have achieved an operating factor of 92% and 90% respectively. The commissioning activities, and subsequent improvements carried out in the distillation columns are described. (author)

  8. Algebraic theory of Stark-Zeeman dynamic effect in hydrogen-like atom

    International Nuclear Information System (INIS)

    Fursa, D.V.; Yudin, G.L.

    1990-01-01

    The problems of calculating time evolution operator within the given n-shell (here n is main quantum number) for the hydrogen atom located in non-stationary electric and magnetic fields is under investigation. Making use of the Fock SO(4) group reduces this problem to the set of problems with linear realization of the dynamic symmetry group for which the evolution operator is the operator of corresponding groups representation. The types of evolution operator parametrization in the form of exponents product (the Wei-Norman method) any by means of D-functions connected with Euler angles and Cayley-Klein parameters are discussed. It is shown that the problem of evolution operator calculation can be reduced to investigation of a pair of two-level systems. 35 refs

  9. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    OpenAIRE

    RYU, HO JIN; KIM, CHANG KYU; SIM, MOONSOO; PARK, JONG MAN; LEE, JONG HYUN

    2013-01-01

    Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compou...

  10. Recent Enhancements in NOAA's JPSS Land Product Suite and Key Operational Applications

    Science.gov (United States)

    Csiszar, I. A.; Yu, Y.; Zhan, X.; Vargas, M.; Ek, M. B.; Zheng, W.; Wu, Y.; Smirnova, T. G.; Benjamin, S.; Ahmadov, R.; James, E.; Grell, G. A.

    2017-12-01

    A suite of operational land products has been produced as part of NOAA's Joint Polar Satellite System (JPSS) program to support a wide range of operational applications in environmental monitoring, prediction, disaster management and mitigation, and decision support. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (NPP) and the operational JPSS satellite series forms the basis of six fundamental and multiple additional added-value environmental data records (EDRs). A major recent improvement in the land-based VIIRS EDRs has been the development of global gridded products, providing a format and science content suitable for ingest into NOAA's operational land surface and coupled numerical weather prediction models. VIIRS near-real-time Green Vegetation Fraction is now in the process of testing for full operational use, while land surface temperature and albedo are under testing and evaluation. The operational 750m VIIRS active fire product, including fire radiative power, is used to support emission modeling and air quality applications. Testing the evaluation for operational NOAA implementation of the improved 375m VIIRS active fire product is also underway. Added-value and emerging VIIRS land products include vegetation health, phenology, near-real-time surface type and surface condition change, and other biogeophysical variables. As part of the JPSS program, a global soil moisture data product has also been generated from the Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor on the GCOM-W1 (Global Change Observation Mission - Water 1) satellite since July 2012. This product is included in the blended NESDIS Soil Moisture Operational Products System, providing soil moisture data as a critical input for land surface modeling.

  11. Utilization and cost of log production from animal loging operations

    Science.gov (United States)

    Suraj P. Shrestha; Bobby L. Lanford; Robert B. Rummer; Mark Dubois

    2006-01-01

    Forest harvesting with animals is a labor-intensive operation. It is expensive to use machines on smaller woodlots, which require frequent moves if mechanically logged. So, small logging systems using animals may be more cost effective. In this study, work sampling was used for five animal logging operations in Alabama to measure productive and non-productive time...

  12. Operating room nursing directors' influence on anesthesia group operating room productivity.

    Science.gov (United States)

    Masursky, Danielle; Dexter, Franklin; Nussmeier, Nancy A

    2008-12-01

    Implementation of initiatives to increase anesthesia group productivity depends not just on anesthesia groups, but on operating room (OR) nursing administration. OR nursing directors may encourage organizational change based on the needs of their hospitals and nurses. These changes may differ from those that would increase the anesthesia group's productivity. We assessed reward structures using (A) letters of nomination for the "OR Manager of the Year" award offered annually by the publication OR Manager, and (B) data from a salary/career survey of OR directors by the same publication. (A) There were 164 nomination letters submitted from 2004 through 2007 for 45 nominees. The letters contained n = 2659 full sentences and n = 50,821 words. We systematically created a list of 36 terms related to finance, profit, and productivity. We also analyzed the frequency of use of these terms relative to the use of the 15 most common relationship-oriented terms (e.g., compassion, encourage, mentor, and respect). (B) The salary/career survey's questions relevant to anesthesia group productivity had responses from 303 US OR directors, 97% of whom were nurses. We tested the strength of the relationship between the budget responsibility of the OR nursing director and his or her annual salary. (A) 2.6% of sentences in the nomination letters included at least one term related to profit and productivity (95% confidence interval 2.0%-3.2%). Relationship-oriented terms were 9.0 times more prevalent (95% confidence interval 7.1-11.4). (B) There was statistically significant positive proportionality between the OR nursing director's operational budget (including personnel) and his or her salary (Pearson r = 0.64, P time and OR nursing labor costs. Resulting decisions can differ from those that would increase the productivity (profit) of the anesthesia group. Anesthesia groups need to champion initiatives to increase anesthesia productivity, while being sensitive to institutional

  13. General Atomic Reprocessing Pilot Plant: engineering-scale dissolution system description

    International Nuclear Information System (INIS)

    Yip, H.H.

    1979-04-01

    In February 1978, a dissolver-centrifuge system was added to the cold reprocessing pilot plant at General Atomic Company, which completed the installation of an HTGR fuel head-end reprocessing pilot plant. This report describes the engineering-scale equipment in the pilot plant and summarizes the design features derived from development work performed in the last few years. The dissolver operating cycles for both thorium containing BISO and uranium containinng WAR fissile fuels are included. A continuous vertical centrifuge is used to clarify the resultant dissolver product solution. Process instrumentation and controls for the system reflect design philosophy suitable for remote operation

  14. K-Vacancy Production in the Collision of Highly Charged Relativistic Ions With Heavy Atoms

    OpenAIRE

    KHABIBULLAEV, P. K.

    2014-01-01

    A general expression for the cross section of the inelastic collision of relativistic highly charged ion with heavy (relativistic) atoms is obtained using the generalized eikonal approximation. In the ultrarelativistic limit, the obtained formula coincides with a known exact one. As an application of the obtained result, probability and cross section of the K-vacany production in the U92+ - U91+ collision are calculated.

  15. Evaluation of a hydride generation-atomic fluorescence system for the determination of arsenic using a dielectric barrier discharge atomizer

    International Nuclear Information System (INIS)

    Zhu Zhenli; Liu Jixin; Zhang Sichun; Na Xing; Zhang Xinrong

    2008-01-01

    A new atomizer based on atmospheric pressure dielectric barrier discharge (DBD) plasma was specially designed for atomic fluorescence spectrometry (AFS) in order to be applied to the measurement of arsenic. The characteristics of the DBD atomizer and the effects of different parameters (power, discharge gas, gas flow rate, and KBH 4 concentration) were discussed in the paper. The DBD atomizer shows the following features: (1) low operation temperature (between 44 and 70 deg. C, depending on the operation conditions); (2) low power consumption; (3) operation at atmospheric pressure. The detection limit of As(III) using hydride generation (HG) with the proposed DBD-AFS was 0.04 μg L -1 . The analytical results obtained by the present method for total arsenic in reference materials, orchard leaves (SRM 1571) and water samples GBW(E) 080390, agree well with the certified values. The present HG-DBD-AFS is more sensitive and reliable for the determination of arsenic. It is a very promising technique allowing for field arsenic analysis based on atomic spectrometry

  16. Influence of operating conditions and atomizer design on circumferential liquid distribution from small pressure-swirl atomizer

    Science.gov (United States)

    Malý, Milan; Janáčková, Lada; Jedelský, Jan; Jícha, Miroslav

    The spray symmetry is an important aspect in most practical applications. However, it is often an overlooked parameter. A measurement of circumferential distribution was carried out by a circular-sectored vessel on several pressure-swirl atomizers with spill-line over a wide range of injection pressure. The obtained results show that the spray uniformity improves markedly with the injection pressure. The increase in a number of tangential entry ports has only a minor effect on the spray uniformity. Even a small mechanical corruption of the atomizer internal parts negatively affects the spray patternation.

  17. Antimatter atoms

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    In january 1996, CERN broadcasted the information of the creation of nine anti-hydrogen atoms, observed through disintegration products. The experimental facility was CERN LEAR ring. An antiproton beam scattered a xenon jet, and the resulting antimatter was first selected by its insensitivity to beam bending magnets. Their disintegration was detected in thin NaI detectors, in which the anti-atoms are at once deprived from their positron. Then, magnetic and time-of-flight spectrometers are used. (D.L.)

  18. Internal conversion theory of gamma radiation in unfilled atomic shells

    International Nuclear Information System (INIS)

    Anderson, Eh.M.; Trusov, V.F.; Ehglajs, M.O.

    1980-01-01

    The internal conversion theory of gamma radiation in unfilled shells, when the atom is in a state with certain energy and momentum, is considered. A formula for the conversion coefficient between the atom and ion levels is obtained. This coefficient turns to be dependent on genealogic characteristics of the atom. It is discussed when the conversion coefficients are proportional to the numbers of filling subshells in the atom. Exact calculations have been carried out in the multiconfigurational approximation taking into account intermediate coupling for the d-shell of the Fe atom Single-electron radial wave functions have been calculated on the basis of the relativistic method of the Hartree-Fock-Dirak self-consistent field. Conversion coefficients on certain subshells as well as submatrix elements of the production operator are calculated. The electric coefficient of internal conversion (CIC) in the calculation for one electron does not depend on spin orientation. That is why the electric CIC from the level will not depend on filling number distribution by subshells. For magnetic CIC the dependence on the atom state is significant. Using multiconfiguration basis for calculating energy matrix and its succeeding diagonalization means the account of the intermediate coupling type, which takes place for the unfilled shells

  19. ACR-1000: Operator - based development

    International Nuclear Information System (INIS)

    Shalaby, B.; Alizadeh, A.

    2007-01-01

    Atomic Energy of Canada Limited (AECL) has adapted the successful features of CANDU * reactors to establish Generation III + Advanced CANDU Reactor T M (ACR T M) technology. The ACR-1000 T M nuclear power plant is an evolutionary product, starting with the strong base of CANDU reactor technology, coupled with thoroughly-demonstrated innovative features to enhance economics, safety, operability and maintainability. The ACR-1000 benefits from AECL's continuous-improvement approach to design, that enabled the traditional CANDU 6 product to compile an exceptional track record of on-time, on budget product delivery, and also reliable, high capacity-factor operation. The ACR-1000 engineering program has completed the basic plant design and has entered detailed pre-project engineering and formal safety analysis to prepare the preliminary (non-project-specific) safety case. The engineering program is strongly operator-based, and encompasses much more than traditional pre-project design elements. A team of utility-experienced operations and maintenance experts is embedded in the engineering team, to ensure that all design decisions, at the system and the component level, are taken with the owner-operator interest in mind. The design program emphasizes formal review of operating feedback, along with extensive operator participation in program management and execution. Design attention is paid to layout and access of equipment, to component and material selection, and to ensuring maximum ability for on-line maintenance. This enables the ACR-1000 to offer a three-year interval between scheduled maintenance outages, with a standard 21-day outage duration. SMART CANDU T M technology allows on-line monitoring and diagnostics to further enhance plant operation. Modules of the Advanced CANDU SMART technologies are already being back-fitted to current CANDU plants. As well as reviewing the ACR-1000 design features and their supporting background, the paper describes the status of

  20. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  1. Tau electron atoms at RHIC

    International Nuclear Information System (INIS)

    Weiss, M.S.

    1985-01-01

    An amusement ancillary to the proposed quark-gluon plasma production hypothesized from a relativistic heavy ion collider (RHIC is a sufficient quantity of tau electrons to potentially admit the study of its exotic atoms. In this paper the given wealth of nuclear phenomena is derived from muonic atoms assume a tau atom is more forthcoming of information due to the lower orbits entirely contained within the nucleus. It is the purpose of this brief note to discuss the production mechanism at a RHIC and to delineate some of the more obvious properties of the tau atom. As in the case of the mu, more exotic phenomena derived from resonance ''accidents'' with nuclear transitions takes place, but it would be presumptions to discuss them at this time. Given the complete containment in nuclear matter of the tau lepton in its innermost atomic orbits. An experiment performed with such an exotic species results in the measurement of its lifetime

  2. Atomic absorption spectrophotometry in perspective

    International Nuclear Information System (INIS)

    Soffiantini, V.

    1981-01-01

    Atomic absorption spectrophotometry is essentially an analytical technique used for quantitative trace metal analysis in a variety of materials. The speed and specificity of the technique is its greatest advantage over other analytical techniques. What atomic absorption spectrophotometry can and cannot do and its advantages and disadvantages are discussed, a summary of operating instructions are given, as well as a summary of analytical interferences. The applications of atomic absorption spectrophotometry are also shortly discussed

  3. High data-rate atom interferometers through high recapture efficiency

    Science.gov (United States)

    Biedermann, Grant; Rakholia, Akash Vrijal; McGuinness, Hayden

    2015-01-27

    An inertial sensing system includes a magneto-optical trap (MOT) that traps atoms within a specified trapping region. The system also includes a cooling laser that cools the trapped atoms so that the atoms remain within the specified region for a specified amount of time. The system further includes a light-pulse atom interferometer (LPAI) that performs an interferometric interrogation of the atoms to determine phase changes in the atoms. The system includes a controller that controls the timing of MOT and cooling laser operations, and controls the timing of interferometric operations to substantially recapture the atoms in the specified trapping region. The system includes a processor that determines the amount inertial movement of the inertial sensing system based on the determined phase changes in the atoms. Also, a method of inertial sensing using this inertial sensing system includes recapture of atoms within the MOT following interferometric interrogation by the LPAI.

  4. Atmospheric reactions of methylcyclohexanes with Cl atoms and OH radicals: determination of rate coefficients and degradation products.

    Science.gov (United States)

    Ballesteros, Bernabé; Ceacero-Vega, Antonio A; Jiménez, Elena; Albaladejo, José

    2015-04-01

    As the result of biogenic and anthropogenic activities, large quantities of chemical compounds are emitted into the troposphere. Alkanes, in general, and cycloalkanes are an important chemical class of hydrocarbons found in diesel, jet and gasoline, vehicle exhaust emissions, and ambient air in urban areas. In general, the primary atmospheric fate of organic compounds in the gas phase is the reaction with hydroxyl radicals (OH). The oxidation by Cl atoms has gained importance in the study of atmospheric reactions because they may exert some influence in the boundary layer, particularly in marine and coastal environments, and in the Arctic troposphere. The aim of this paper is to study of the atmospheric reactivity of methylcylohexanes with Cl atoms and OH radicals under atmospheric conditions (in air at room temperature and pressure). Relative kinetic techniques have been used to determine the rate coefficients for the reaction of Cl atoms and OH radicals with methylcyclohexane, cis-1,4-dimethylcyclohexane, trans-1,4-dimethylcyclohexane, and 1,3,5-trimethylcyclohexane at 298 ± 2 K and 720 ± 5 Torr of air by Fourier transform infrared) spectroscopy and gas chromatography-mass spectrometry (GC-MS) in two atmospheric simulation chambers. The products formed in the reaction under atmospheric conditions were investigated using a 200-L Teflon bag and employing the technique of solid-phase microextraction coupled to a GC-MS. The rate coefficients obtained for the reaction of Cl atoms with the studied compounds are the following ones (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.11 ± 0.16), (2.89 ± 0.16), (2.89 ± 0.26), and (2.61 ± 0.42), respectively. For the reactions with OH radicals the determined rate coefficients are (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.18 ± 0.12), (1.49 ± 0.16), (1.41 ± 0.15), and (1.77 ± 0.23), respectively. The reported error is twice the standard deviation. A detailed

  5. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    International Nuclear Information System (INIS)

    Johnson, B.M.; Meron, M.; Agagu, A.; Jones, K.W.

    1986-01-01

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab

  6. Production of excited nitrogen atoms and ions by electron impact on nitrogen molecules

    International Nuclear Information System (INIS)

    Rall, D.L.A.; Anderson, L.W.; Lin, C.C.; Sharpton, F.A.

    1984-01-01

    Emission lines of the N atoms and N ions are produced by electron-beam dissociative excitation of N 2 molecules. The ns→3 /sub p/ (n=5 to 9), np→3s (n=3 to 7), nd→3 /sub p/ (n=4 to 8), nf→3d (n=4,5) transitions of N and the 3 /sub p/ →3s, 3d→3p, 4s→3p, 4p→3d, 4f→3d transitions of N + have been observed and optical emission cross sections at various incident electron energies have been measured. The energy dependence of the cross sections of the N emission lines is similar to that of the N + lines at high incident electron energies, but the low-energy behaviors are quite different. These features are explained by the mechanisms involved in the production of the excited N atoms and N + ions. Absolute optical emission cross sections for the N and N + lines are presented

  7. Influence of operating conditions and atomizer design on circumferential liquid distribution from small pressure-swirl atomizer

    Directory of Open Access Journals (Sweden)

    Malý Milan

    2017-01-01

    Full Text Available The spray symmetry is an important aspect in most practical applications. However, it is often an overlooked parameter. A measurement of circumferential distribution was carried out by a circular-sectored vessel on several pressure-swirl atomizers with spill-line over a wide range of injection pressure. The obtained results show that the spray uniformity improves markedly with the injection pressure. The increase in a number of tangential entry ports has only a minor effect on the spray uniformity. Even a small mechanical corruption of the atomizer internal parts negatively affects the spray patternation.

  8. Urgent problems of radioecology concerned with the problems of the Atomic Energy production

    International Nuclear Information System (INIS)

    Aleksakhin, R.M.; Polikarpov, G.G.

    1982-11-01

    Fundamentals tasks of contemporary radioecology concerning migration of natural and artificial radionuclides and the effect of ionizing radiation on natural biogeocenosis are expounded which arose from the developing production and uses of atomic energy. The authors discuss the problems of ecological control over radiation affection of ecosystems and present the classification of natural areas according to their ecological condition. The authors also stress the urgency of studies of migration in the biosphere of radionuclides of the complete nuclear fuel turnover [fr

  9. TRIGA International - History of Training Research Isotope production General Atomics

    International Nuclear Information System (INIS)

    2008-01-01

    TRIGA conceived at GA in 1956 by a distinguished group of scientists including Edward Teller and Freeman Dyson. First TRIGA reactor Mk-1 was commissioned on 3 may 1958 at G.A. Characteristic feature of TRIGA reactors is inherent safety: Sitting can be confinement or conventional building. TRIGA reactors are the most prevalent in the world: 67 reactors in 24 countries. Steady state powers up to 14 MWt, pulsing up to 22,000 MWt. To enlarge the scope of its manufactured products, CERCA engaged in a Joint Venture with General Atomics, and in July 1995 a new Company was founded: TRIGA INTERNATIONAL SAS (50% GA, 50% CERCA; Head Office: Paris (France); Sales offices: GA San Diego (Ca, USA) and CERCA Lyon (France); Manufacturing plant: CERCA Romans. General Atomics ID: founded in 1955 at San Diego, California, by General Dynamics; status: Privately held corporation; owners: Neal and Linden Blue; business: High technology research, design, manufacturing, and production for industry and Government in the U.S. and overseas; locations: U.S., Germany, Japan, Australia, Thailand, Morocco; employees: 5,000. TRIGA's ID: CERCA is a subsidiary of AREVA, born in November 05, 1957. Activities: fuel manufacture for research reactor, equipment and components for high-energy physics, radioactive sources and reference sources; plants locations: Romans and Pierrelatte (France); total strength: 180. Since the last five years TRIGA has manufactured and delivered more than 800 fuel elements with a door to door service. TRIGA International has the experience to manufacture all types of TRIGA fuel: standard fuel elements, instrumented fuel elements, fuel followed control rods, geometry: 37.3 mm (1.47 in.), 35.8 mm (1.4 in), 13 mm (0.5 in), chemical Composition: U w% 8.5, 12, 20, 30 and 45 w/o, erbium and no erbium. TRIGA International is on INL's approved vendor list (ISO 9000/NQA) and is ready to meet any TRIGA fuel needs either in the US or worldwide

  10. Products of composite operators in the exact renormalization group formalism

    Science.gov (United States)

    Pagani, C.; Sonoda, H.

    2018-02-01

    We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.

  11. A new hydride generator for the determination of volatile elements by atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Kersabiec, A.M. de

    1979-01-01

    The production of hydrides in order to use them for analysis by atomic absorption spectrophotometry depends on many parameters. A new apparatus has been designed for this specific operation. It is characterized by a reaction chamber with variable size and by appliances for regulation and control of the physical conditions of operation. Properties are both methodological studies and utilization in large scale analysis. The entire description of the apparatus is completed by an analytical study [fr

  12. Safety evaluation report related to the operation of Enrico Fermi Atomic Power Plant, Unit No. 2. Docket No. 50-341

    International Nuclear Information System (INIS)

    1983-01-01

    Supplement No. 3 to the Safety Evaluation Report related to the operation of the Enrico Fermi Atomic Power Plant, Unit 2, provides the staff's evaluation of additional information submitted by the applicant regarding outstanding review issues identified in Supplement No. 2 to the Safety Evaluation Report, dated January 1982

  13. Atomic Energy Act 1953-1966

    International Nuclear Information System (INIS)

    1970-01-01

    The Atomic Energy Act 1953-1966 establishes the Australian Atomic Energy Commission and lays down its powers, duties, rules of procedure and financing. The members of the Commission are appointed by the Governor-General. It is responsible, inter alia, for all activities covering uranium research, mining and trading as well as for atomic energy development and nuclear plant construction and operation. Its duties also include training of scientific research workers and collection and dissemination of information on atomic energy. For purposes of security, the Act further-more prescribes sanctions in relation to unauthorised acquisition or communication of information on this subject. Finally, the Act repeals the Atomic Energy (Control of Materials) Act 1946 and 1952. (NEA) [fr

  14. Numerical and Experimental Investigation on the Spray Coating Process Using a Pneumatic Atomizer: Influences of Operating Conditions and Target Geometries

    Directory of Open Access Journals (Sweden)

    Qiaoyan Ye

    2017-01-01

    Full Text Available This paper presents a numerical simulation of the spray painting process using a pneumatic atomizer with the help of a computational fluid dynamics code. The droplet characteristics that are necessary for the droplet trajectory calculation were experimentally investigated using different shaping air flow rates. It was found that the droplet size distribution depends on both the atomizing and the shaping air flow rate. An injection model for creating the initial droplet conditions is necessary for the spray painting simulation. An approach for creating these initial conditions has been proposed, which takes different operating conditions into account and is suitable for practical applications of spray coating simulation using spray guns. Further, tests on complicated targets and complex alignments of the atomizer have been carried out to verify this numerical approach. The results confirm the applicability and reliability of the chosen method for the painting process.

  15. Gulf operators resuming production

    International Nuclear Information System (INIS)

    Koen, A.D.

    1992-01-01

    This paper reports that Gulf of Mexico operators last week were gradually restoring production at installations struck by Hurricane Andrew. The Minerals Management Service continued receiving reports of more damage. By the end of the day Sept. 8, MMS had received reports of damage to 83 pipeline segments and 193 platforms and satellite installations. Damage reports listed 112 installations with structural damage, 13 platforms toppled and five leaning, and 30 satellite platforms toppled and 33 leaning. But despite the extent of damage the storm inflicted on oil and gas installations in the gulf, it pales in comparison to the misery and suffering the storm caused in Florida and Louisiana, an oil company official said

  16. Process to produce excited states of atomic nuclei

    International Nuclear Information System (INIS)

    Morita, M.; Morita, R.

    The claims of a patented process which relates to the production of excited states of atomic nuclei are outlined. Among these are (1) production of nuclear excited states by bombarding the atoms with x rays or electrons under given conditions, (2) production of radioactive substances by nuclear excitation with x rays or electrons, (3) separation of specific isotopes from a mixture of isotopes of the same element by means of nuclear excitation followed by chemical treatment. The invention allows production of excited states of atomic nuclei in a relatively simple manner without the need of large apparatus and equipment

  17. Intelligent decision-making models for production and retail operations

    CERN Document Server

    Guo, Zhaoxia

    2016-01-01

    This book provides an overview of intelligent decision-making techniques and discusses their application in production and retail operations. Manufacturing and retail enterprises have stringent standards for using advanced and reliable techniques to improve decision-making processes, since these processes have significant effects on the performance of relevant operations and the entire supply chain. In recent years, researchers have been increasingly focusing attention on using intelligent techniques to solve various decision-making problems. The opening chapters provide an introduction to several commonly used intelligent techniques, such as genetic algorithm, harmony search, neural network and extreme learning machine. The book then explores the use of these techniques for handling various production and retail decision-making problems, such as production planning and scheduling, assembly line balancing, and sales forecasting.

  18. Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms

    International Nuclear Information System (INIS)

    Nakajima, Takashi; Yonekura, Nobuaki; Matsuo, Yukari; Kobayashi, Tohru; Fukuyama, Yoshimitsu

    2003-01-01

    We demonstrate the simultaneous production of spin-polarized ions/electrons using two-color, two-photon ionization of laser-ablated metallic atoms. Specifically, we have applied the developed technique to laser-ablated Sr atoms, and found that the electron-spin polarization of Sr + ions, and accordingly, the spin polarization of photoelectrons is 64%±9%, which is in good agreement with the theoretical prediction we have recently reported [T. Nakajima and N. Yonekura, J. Chem. Phys. 117, 2112 (2002)]. Our experimental results open up a simple way toward the construction of a spin-polarized dual ion/electron source

  19. BIM-Integrated Construction Operation Simulation for Just-In-Time Production Management

    Directory of Open Access Journals (Sweden)

    WoonSeong Jeong

    2016-10-01

    Full Text Available Traditional construction planning, which depends on historical data and heuristic modification, prevents the integration of managerial details such as productivity dynamics. Specifically, the distance between planning and execution brings cost overruns and duration extensions. To minimize variations, this research presents a Building Information Modeling (BIM-integrated simulation framework for predicting productivity dynamics at the construction planning phase. To develop this framework, we examined critical factors affecting productivity at the operational level, and then forecast the productivity dynamics. The resulting plan includes specific commands for retrieving the required information from BIM and executing operation simulations. It consists of the following steps: (1 preparing a BIM model to produce input data; (2 composing a construction simulation at the operational level; and (3 obtaining productivity dynamics from the BIM-integrated simulation. To validate our framework, we applied it to a structural steel model; this was due to the significance of steel erections. By integrating BIM with construction operation simulations, we were able to create reliable construction plans that adapted to project changes. Our results show that the developed framework facilitates the reliable prediction of productivity dynamics, and can contribute to improved schedule reliability, optimized resource allocation, cost savings associated with buffers, and reduced material waste.

  20. A Study of Digging Productivity of an Electric Rope Shovel for Different Operators

    Directory of Open Access Journals (Sweden)

    Mohammad Babaei Khorzoughi

    2016-05-01

    Full Text Available A performance monitoring study of an electric rope shovel operating in an open pit coal mine was conducted. As the mining industry moves toward higher productivity, profitability and predictability, the need for more reliable, productive and efficient mining shovels increases. Consequently, it is critical to study the productivity of these machines and to understand the effect of different operational parameters on that. In this paper a clustering analysis is performed to classify shovel digging effort and behaviour based on digging energy, dig time and payload per pass. Then the influence of the operator on the digging efficiency and productivity of the machine is analyzed with a focus on operator technique during digging. A statistical analysis is conducted on different cycle time components (dig time, swing time, return time for different operators. In addition to time components, swing and return angles as well as loading rate and mucking rate are observed and analyzed. The results of this study help to understand the effect of different operators on the digging productivity of the shovel and then to set the best operator practice.

  1. The ORNL Controlled Fusion Atomic Data Center: Overview of Activities 2011

    International Nuclear Information System (INIS)

    Schultz, D.R.

    2011-01-01

    The Controlled Fusion Atomic Data Center (CFADC) of the Oak Ridge National Laboratory continued operation aimed at collecting, evaluating, and disseminating atomic, molecular, and particle-surface interaction (AM and PSI) data needed by both the U.S. and international plasma science communities. This work has been carried out within an overarching atomic physics research group which produces much of the required data through an active experimental and theoretical science program. The production of an annotated bibliography of AM and PSI literature relevant to plasma science continues to be among the most important activities of the data center, forming the basis for the CFADC on-line bibliographic search engine and a significant part of the IAEA A+M Data Unit's 'International Bulletin on Atomic and Molecular Data for Fusion.' Also chief among the data center's activities are responses to specific data requests from the plasma science community, leading to either rapid feedback using existing data resources or long term data production projects, as well as participation in IAEA Coordinated Research Programs including recently 'Data for Surface Composition Dynamics Relevant to Erosion Processes' and 'Atomic and Molecular Data for Plasma Modeling.' Highlights of recent data production projects include the following: Experimental and theoretical data for inelastic electron-hydrocarbon reactions, large scale computational results for particle reflection from surfaces, measurements of chemical sputtering from carbon, inaugural experiments considering molecular ion collisions with neutral hydrogen, and expansion of the database of elastic and related transport cross sections calculated for intrinsic and extrinsic impurities in hydrogen plasmas. Progress is being hampered owing to news from the US Department of Energy that it plans to close out the program after a ramp down of funding in 2012, following a distinguished 52 year history of contributions to the US and

  2. Factors affecting research productivity of production and operations management groups: An empirical study

    OpenAIRE

    George C. Hadjinicola; Andreas C. Soteriou

    2006-01-01

    This paper identifies factors that promote research productivity of production and operations management (POM) groups of researchers in US business schools. In this study, research productivity of a POM group is defined as the number of articles published per POM professor in a specific period of time. The paper also examines factors that affect research quality, as measured by the number of articles published per POM professor in journals, which have been recognized in the POM literature as ...

  3. Product quality, service reliability and management of operations at ...

    African Journals Online (AJOL)

    High product quality, service reliability, and management of operations are key factors in business growth and sustainability. Analyzing “The Starbucks Experience” is a pedagogical approach to reinforcing the concepts of control and management of quality, service reliability, and efficient operations in action. The objective ...

  4. Fission product behaviour during operation of the second Peach Bottom core

    International Nuclear Information System (INIS)

    Malinauskas, A.P.; Nordwall, H.J. de; Dyer, F.F.; Wichner, R.P.; Martin, W.J.; Kolb, J.O.

    1976-01-01

    The Peach Bottom high-temperature, gas-cooled reactor began operation on 1 June 1967 and continued power production until 9 October 1969, accumulating 452 equivalent full power days (EFPD) operation. After reload, power production with Core 2 began 14 July 1970 and terminated 31 October 1974 after 897 EFPD operation. Surveillance of fission product release and behaviour was intensified during Core 2 operation to permit a wider range of measurements to be made. In addition to monitoring the noble gas content of the fuel element purge system and the coolant circuit, the programme was extended to include measurements of radioactive and other condensible species (including dust) entering or exiting the core and steam generator, and of surface concentrations of gamma-emitting nuclides deposited on the primary coolant surfaces. These data, which were obtained over the operating period April 1971 - October 1974, are summarized and discussed. The data demonstrate that caesium behaviour in the coolant circuit during the first two-thirds of Core 2 life was primarily governed by caesium released during Core 1 operation. The data also indicate that whereas the steam generator surfaces attenuate molecular caesium concentrations in the coolant, the dust-borne component is remarkably persistent. Driver fuel elements were removed from the reactor after 385 EFPD, 701 EFPD, and at end-of-life. These fuel elements are at various stages of an intensive post-irradiation examination. Some of the axial and radial concentration profiles of fission products which have been obtained are likewise presented. Although these profiles indicate varied fission product behaviour, the observations can in general be qualitatively described on the basis of the operational histories of the fuel elements. (author)

  5. Comparison of twin-fluid atomizers using a phase Doppler analyser

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, Matouš, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz; Malý, Milan, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz; Jedelský, Jan, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz; Jícha, Miroslav, E-mail: y116215@stud.fme.vutbr.cz, E-mail: y145527@stud.fme.vutbr.cz, E-mail: jedelsky@fme.vutbr.cz, E-mail: jicha@fme.vutbr.cz [Brno University of technology, Technická 2896/2, 616 69 Brno (Czech Republic)

    2014-08-06

    The quality of atomization is crucial in combustion processes, especially in cases of highly viscous fuels. Twin-fluid atomizers have been developed for atomizing heavy and waste fuels and they have undergone significant development in the last decades. Nevertheless, in order to design an atomizer for a given industrial application, a comparison of different atomizers at similar operating conditions is required. This paper focuses on the description and comparison of two internally mixed twin-fluid atomizers at the same operating regime. The Y-jet and the Inverse-effervescent atomizers were examined. The phase-Doppler analyzer was used to measure the velocity and size of droplets in a radial profile in the spray. Data were sorted out into classes with respect to the droplet size and the motion analysis was done for both atomizers.

  6. Report of fact finding survey on atomic energy industries in FY1989

    International Nuclear Information System (INIS)

    1991-01-01

    Japan Atomic Industrial Forum, Inc. summarized the results of 31st fact finding survey on atomic energy industries, which investigated and analyzed the actual status and future perspective of the expenditure, sales and personnel related to atomic energy in electric power, mining and manufacture and trading companies in FY1989. As to the state of activities of atomic energy industries, the expenditure related to atomic energy of electric power companies was 1633.7 billion yen, decrease by 7 % as compared with the previous fiscal year. The main factors are that the construction works of nuclear power stations came to temporary pause, and the operation and maintenance expenses for power stations turned to decrease due to the mechanization of inspection and the decrease of expendables. The sales related to atomic energy of mining and manufacturing companies was 1728.3 billion yen, which is the highest so far, and is increase by 18 % as compared with the previous fiscal year. Due to the diversification of atomic energy market, the manufacture for service field and others grew by 64 %, and the mechanization of production seemed to advance. The backlog of mining and manufacturing companies which is the index of future market trend was as high as 3526 billion yen. (K.I.)

  7. Experiments with cold hydrogen atoms

    International Nuclear Information System (INIS)

    Leonas, V.B.

    1981-01-01

    Numerous investigations of atomic processes in Waseous phase on the surface with participation of ''cold'' hydrogen atoms, made during the last years, are considered. The term ''cold atom'' means the range of relative collision energies E<10 MeV (respectively 'ultracold ' atoms at E< or approximately 1 MeV) which corresponds to the range of temperatures in tens (units) of K degrees. Three main ranges of investigations where extensive experimental programs are realized are considered: study of collisional processes with hydrogen atom participation, hydrogen atoms being of astrophysical interest; study of elastic atom-molecular scattering at superlow energies and studies on the problem of condensed hydrogen. Hydrogen atoms production is realized at dissociation in non-electrode high-frequency or superhigh-frequency discharge. A method of hydrogen quantum generator and of its modifications appeared to be rather an effective means to study collisional changes of spin state of hydrogen atoms. First important results on storage and stabilization of the gas of polarized hydrogen atoms are received

  8. Cold experiment of slag centrifugal granulation by rotary atomizer: Effect of atomizer configuration

    International Nuclear Information System (INIS)

    Wu, Jun-Jun; Wang, Hong; Zhu, Xun; Liao, Qiang; Li, Kai

    2017-01-01

    Centrifugal granulation has recently been employed to produce small blast furnace slag particles, so as to recover the waste heat from the high-temperature molten blast furnace slag. An appropriate atomizer enables centrifugal granulation to become a better cost-effective process for particle production. Thus, increasing emphasis has been placed on influence of atomizer configuration on granulation. In present study, three groups of atomizers were specially designed and the granulation performance of each atomizer was experimentally tested during cold experiments. The influences of atomizer configuration on granulation modes and droplet characteristics were investigated visually. Two modified correlations were proposed to predict the granulating droplet size by means of data fitting. The results indicated that the rotary cup atomizers can inhibit the film formation in contrast to rotary disc atomizer. Moreover, atomizers with outer angle of 90° was capable of producing smaller droplets. The revised correlation as well as the newly-developed correlation including the influence of atomizer configurations, presented in good agreement with the experiment data. In addition, an analysis on atomizer design was conducted to provide a good insight for industrialization. It was recommended to adopt cup-like atomizer in granulation for its ability to produce fine particles with smaller atomizer size.

  9. TESS Ground System Operations and Data Products

    Science.gov (United States)

    Glidden, Ana; Guerrero, Natalia; Fausnaugh, Michael; TESS Team

    2018-01-01

    We describe the ground system operations for processing data from the Transiting Exoplanet Survey Satellite (TESS), highlighting the role of the Science Operations Center (SOC). TESS is a spaced-based (nearly) all-sky mission, designed to find small planets around nearby bright stars using the transit method. We detail the flow of data from pixel measurements on the instrument to final products available at the Mikulski Archive for Space Telescopes (MAST). The ground system relies on a host of players to process the data, including the Payload Operations Center at MIT, the Science Processing Operation Center at NASA Ames, and the TESS Science Office, led by the Harvard-Smithsonian Center for Astrophysics and MIT. Together, these groups will deliver TESS Input Catalog, instrument calibration models, calibrated target pixels and full frame images, threshold crossing event reports, two-minute light curves, and the TESS Objects of Interest List.

  10. Production and detection of cold anti-hydrogen atoms A first step towards high precision CPT test

    CERN Document Server

    Variola, A; Bonomi, G; Boutcha, A; Bowe, P; Carraro, C; Cesar, C L; Charlton, M; Doser, Michael; Filippini, V; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Lagomarsino, V; Landua, Rolf; Lindelöf, D; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Montagna, P; Pruys, H S; Regenfus, C; Rotondi, A; Riedler, P; Testera, G; Van der Werf, D P

    2003-01-01

    Observations of anti-hydrogen in small quantities have been reported at CERN and at FermiLab, but these experiments were not suited to spectroscopy experiments. In 2002 the ATHENA collaboration reported the production and detection of very low energy anti-hydrogen atoms produced in cryogenic environment. This is the first major step in the study of antiatom's internal structure and it can lead to a high precision test of the CPT fundamental symmetry. The method of production and detection of cold anti-hydrogen will be introduced. The absolute rate of anti-hydrogen production and the signal to background ratio in the ATHENA experiment will be discussed. (7 refs) .

  11. Atomic Ferris wheel beams

    Science.gov (United States)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  12. Chemical generation of iodine atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hewett, Kevin B. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)]. E-mail: kevin.hewett@kirtland.af.mil; Hager, Gordon D. [Directed Energy Directorate, Air Force Research Laboratory, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States); Crowell, Peter G. [Northrup Grumman Information Technology, Science and Technology Operating Unit, Advanced Technology Division, P.O. Box 9377, Albuquerque, NM 87119-9377 (United States)

    2005-01-10

    The chemical generation of atomic iodine using a chemical combustor to generate the atomic fluorine intermediate, from the reaction of F{sub 2} + H{sub 2}, followed by the production of atomic iodine, from the reaction of F + HI, was investigated. The maximum conversion efficiency of HI into atomic iodine was observed to be approximately 75%, which is in good agreement with the theoretical model. The conversion efficiency is limited by the formation of iodine monofluoride at the walls of the combustor where the gas phase temperature is insufficient to dissociate the IF.

  13. Present status and future plans of the National Atomic Research Center of Malaysia

    International Nuclear Information System (INIS)

    Rashid, N.K.

    1980-01-01

    The Malaysian Atomic Research Center (PUSPATI) was established in 1972 and operates under the Ministry of Science, Technology and the Environment. It is the first research center of this kind in Malaysia. Some of the objectives of this center are: operation and maintenance of the research reactor; research and development in reactor science and technology; production of short-lived radioisotopes for use in medicine, agriculture and industry; coordination of the utilization of the reactor and its experimental facilities among the various research institutes and universities; training in nuclear radiation field; personnel monitoring and environmental surveillance

  14. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2014. Operation, Utilization and Technical Development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Osa, Akihiko; Imahashi, Masaki; Hirane, Nobuhiko; Motome, Yuiko; Tayama, Hidekazu; Tamura, Itaru; Harada, Yuko; Sakata, Mami; Kadokura, Masakazu; Takita, Chiharu

    2017-02-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3 (Japan Research Reactor No.3), JRR-4 (Japan Research Reactor No.4), NSRR (Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2014. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration, and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on. (author)

  15. Annual report of Department of Research Reactor and Tandem Accelerator, JFY2013. Operation, Utilization and Technical Development of JRR-3, JRR-4, NSRR, Tandem Accelerator and RI Production Facility

    International Nuclear Information System (INIS)

    Kashima, Yoichi; Murayama, Yoji; Nakamura, Kiyoshi; Uno, Yuki; Hirane, Nobuhiko; Ohuchi, Hitoshi; Ishizaki, Nobuhiro; Matsumura, Taichi; Nagahori, Kazuhisa; Harada, Yuko; Kadokura, Masakazu; Machi, Sumire; Takita, Chiharu

    2015-02-01

    The Department of Research Reactor and Tandem Accelerator is in charge of the operation, utilization and technical development of JRR-3(Japan Research Reactor No.3), JRR-4(Japan Research Reactor No.4), NSRR(Nuclear Safety Research Reactor), Tandem Accelerator and RI Production Facility. This annual report describes the activities of our department in fiscal year of 2013. We carried out the operation and maintenance, utilization, upgrading of utilization techniques, safety administration and international cooperation. Also contained are lists of publications, meetings, granted permissions on laws and regulations concerning atomic energy, outcomes in service and technical developments and so on. (author)

  16. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry (GFAAS) and hydride generation atomic absorption spectrometry (HGAAS) for trace analysis of arsenic (As) in natural herbal products (NHPs). Method: Arsenic analysis in natural herbal products and standard reference ...

  17. Fundamentals in hadronic atom theory

    CERN Document Server

    Deloff, A

    2003-01-01

    Hadronic atoms provide a unique laboratory for studying hadronic interactions essentially at threshold. This text is the first book-form exposition of hadronic atom theory with emphasis on recent developments, both theoretical and experimental. Since the underlying Hamiltonian is a non-self-adjoined operator, the theory goes beyond traditional quantum mechanics and this book covers topics that are often glossed over in standard texts on nuclear physics. The material contained here is intended for the advanced student and researcher in nuclear, atomic or elementary-particle physics. A good know

  18. Operator product expansion in QCD at short distance. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S

    1984-03-19

    We describe a simple momentum-space method of evaluating Wilson coefficients of gluon operators in an operator product expansion (OPE). This extends an earlier configuration-space method suitable for calculating the coefficients for light quarks. The method is illustrated by calculating the coefficients of the Lorentz scalar gluon operator of dimension four appearing in different two-point functions.

  19. Atomistic simulation of damage production by atomic and molecular ion irradiation in GaN

    International Nuclear Information System (INIS)

    Ullah, M. W.; Kuronen, A.; Nordlund, K.; Djurabekova, F.; Karaseov, P. A.; Titov, A. I.

    2012-01-01

    We have studied defect production during single atomic and molecular ion irradiation having an energy of 50 eV/amu in GaN by molecular dynamics simulations. Enhanced defect recombination is found in GaN, in accordance with experimental data. Instantaneous damage shows non-linearity with different molecular projectile and increasing molecular mass. Number of instantaneous defects produced by the PF 4 molecule close to target surface is four times higher than that for PF 2 molecule and three times higher than that calculated as a sum of the damage produced by one P and four F ion irradiation (P+4×F). We explain this non-linearity by energy spike due to molecular effects. On the contrary, final damage created by PF 4 and PF 2 shows a linear pattern when the sample cools down. Total numbers of defects produced by Ag and PF 4 having similar atomic masses are comparable. However, defect-depth distributions produced by these species are quite different, also indicating molecular effect.

  20. Continuous production of nanostructured particles using spatial atomic layer deposition

    International Nuclear Information System (INIS)

    Ommen, J. Ruud van; Kooijman, Dirkjan; Niet, Mark de; Talebi, Mojgan; Goulas, Aristeidis

    2015-01-01

    In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ∼1 nm diameter are deposited onto titania (TiO 2 ) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.12–0.31 wt. % of Pt) at a rate of about 1 g min −1 . Tuning the precursor injection velocity (10–40 m s −1 ) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100 °C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of core–shell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications

  1. Development of an inpatient operational pharmacy productivity model.

    Science.gov (United States)

    Naseman, Ryan W; Lopez, Ben R; Forrey, Ryan A; Weber, Robert J; Kipp, Kris M

    2015-02-01

    An innovative model for measuring the operational productivity of medication order management in inpatient settings is described. Order verification within a computerized prescriber order-entry system was chosen as the pharmacy workload driver. To account for inherent variability in the tasks involved in processing different types of orders, pharmaceutical products were grouped by class, and each class was assigned a time standard, or "medication complexity weight" reflecting the intensity of pharmacist and technician activities (verification of drug indication, verification of appropriate dosing, adverse-event prevention and monitoring, medication preparation, product checking, product delivery, returns processing, nurse/provider education, and problem-order resolution). The resulting "weighted verifications" (WV) model allows productivity monitoring by job function (pharmacist versus technician) to guide hiring and staffing decisions. A 9-month historical sample of verified medication orders was analyzed using the WV model, and the calculations were compared with values derived from two established models—one based on the Case Mix Index (CMI) and the other based on the proprietary Pharmacy Intensity Score (PIS). Evaluation of Pearson correlation coefficients indicated that values calculated using the WV model were highly correlated with those derived from the CMI-and PIS-based models (r = 0.845 and 0.886, respectively). Relative to the comparator models, the WV model offered the advantage of less period-to-period variability. The WV model yielded productivity data that correlated closely with values calculated using two validated workload management models. The model may be used as an alternative measure of pharmacy operational productivity. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  2. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  3. Measurement of product rotational alignment in associative-ionization collisions between polarized Na(3p) atoms

    International Nuclear Information System (INIS)

    Wang, M.; de Vries, M.S.; Weiner, J.

    1986-01-01

    We have studied the effect of reactant Na(3p) polarization on the rotational angular momentum alignment of product Na 2 + ions arising from associative-ionization (AI) collisions. Our results show that sensitivity of the AI rate constant to initial atomic polarization persists even when all hyperfine states are populated with broadband (3 cm -1 ) pulsed laser excitation of Na( 2 P/sub 3/2/) and that the spatial distribution of product rotational angular momentum vectors is anisotropic. We discuss a qualitative description of the collision process consistent with our measurements which indicates that sigma-orbital symmetry is preferred to π-orbital symmetry as the colliding partners approach

  4. Multimode quantum model of a cw atom laser

    International Nuclear Information System (INIS)

    Hope, J.J.; Haine, S.A.; Savage, C.M.

    2002-01-01

    Full text: Laser cooling allows dilute atomic gases to be cooled to within K of absolute zero. Ultracold gases were first achieved twenty years ago and have since found applications in areas such as spectroscopy, time standards, frequency standards, quantum information processing and atom optics. The atomic analogue of the lasing mode in optical lasers is Bose-Einstein Condensation (BEC), in which a cooled sample of atoms condense into the lowest energy quantum state. This new state of matter was recently achieved in dilute Bose gases in 1995. Atoms coupled out of a BEC exhibit long-range spatial coherence, and provide the coldest atomic source currently available. These atomic sources are called 'atom lasers' because the BEC is analogous to the lasing mode of an optical laser. The high spectral flux from optical lasers is caused by a process called gain-narrowing, which requires continuous wave (cw) operation. Coupling a BEC quickly into an untrapped state forms a coherent atomic beam but it has a spread in momentum as large as the trapped BEC. Coupling the atoms out more slowly reduces the output linewidth at the expense of reducing the overall flux. These atom lasers are equivalent to Q-switched optical lasers. A cw atom laser with gain-narrowing would produce an increasingly monoenergetic output as the flux increased, dramatically improving the spectral flux. A cw atom laser is therefore a major goal of the atom optics community, but there are several theoretical and practical obstacles to understanding the complexities of such a system. The main obstacle to the production of a cw atom laser is the technical difficulties involved in continuously pumping the lasing mode. No complete theory exists which describes a cw atom laser. Complete cw atom laser models require a quantum field description due to their non-Markovian dynamics, significant spatial effects and the dependence of the output on the quantum statistics of the lasing mode. The extreme dimensionality

  5. Reaction of hydrogen atoms with acrylaldehyde

    International Nuclear Information System (INIS)

    Koda, Seiichiro; Nakamura, Kazumoto; Hoshino, Takashi; Hikita, Tsutomu

    1978-01-01

    The reaction of hydrogen atoms with acrylaldehyde was investigated in a fast flow reactor equipped with a time-of-flight type mass spectrometer under reduced pressure. Main reaction products were carbon monoxide, ethylene, ethane, methane, and propanal. Consideration of the distributions of the reaction products under various reaction conditions showed that hydrogen atoms attacked the C=C double bond, especially its inner carbon side under reduced pressure. Resulting hot radicals caused subsequent reactions. The relative value of the apparent bimolecular rate constant of the reaction against that of trans-2-butene with hydrogen atoms was 1.6+-0.2, which supported the above-mentioned initial reaction. (auth.)

  6. Recent experiments involving highly excited atoms

    International Nuclear Information System (INIS)

    Latimer, C.J.

    1979-01-01

    Very large and fragile atoms may be produced by exciting normal atoms with light or by collisions with other atomic particles. Atoms as large as 10 -6 m are now routinely produced in the laboratory and their properties studied. In this review some of the simpler experimental methods available for the production and detection of such atoms are described including tunable dye laser-excitation and field ionization. A few recent experiments which illustrate the collision properties and the effects of electric and and magnetic fields are also described. The relevance of highly excited atoms in other areas of research including radioastronomy and isotope separation are discussed. (author)

  7. Design and operation of a continuous integrated monoclonal antibody production process.

    Science.gov (United States)

    Steinebach, Fabian; Ulmer, Nicole; Wolf, Moritz; Decker, Lara; Schneider, Veronika; Wälchli, Ruben; Karst, Daniel; Souquet, Jonathan; Morbidelli, Massimo

    2017-09-01

    The realization of an end-to-end integrated continuous lab-scale process for monoclonal antibody manufacturing is described. For this, a continuous cultivation with filter-based cell-retention, a continuous two column capture process, a virus inactivation step, a semi-continuous polishing step (twin-column MCSGP), and a batch-wise flow-through polishing step were integrated and operated together. In each unit, the implementation of internal recycle loops allows to improve the performance: (a) in the bioreactor, to simultaneously increase the cell density and volumetric productivity, (b) in the capture process, to achieve improved capacity utilization at high productivity and yield, and (c) in the MCSGP process, to overcome the purity-yield trade-off of classical batch-wise bind-elute polishing steps. Furthermore, the design principles, which allow the direct connection of these steps, some at steady state and some at cyclic steady state, as well as straight-through processing, are discussed. The setup was operated for the continuous production of a commercial monoclonal antibody, resulting in stable operation and uniform product quality over the 17 cycles of the end-to-end integration. The steady-state operation was fully characterized by analyzing at the outlet of each unit at steady state the product titer as well as the process (HCP, DNA, leached Protein A) and product (aggregates, fragments) related impurities. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1303-1313, 2017. © 2017 American Institute of Chemical Engineers.

  8. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  9. Production of pulsed atomic oxygen beams via laser vaporization methods

    International Nuclear Information System (INIS)

    Brinza, D.E.; Coulter, D.R.; Liang, R.H.; Gupta, A.

    1987-01-01

    Energetic pulsed atomic oxygen beams were generated by laser-driven evaporation of cryogenically frozen ozone/oxygen films and thin films of indium-tin oxide (ITO). Mass and energy characterization of beams from the ozone/oxygen films were carried out by mass spectrometry. The peak flux, found to occur at 10 eV, is estimated from this data to be 3 x 10(20) m(-2) s(-1). Analysis of the time-of-flight data indicates a number of processes contribute to the formation of the atomic oxygen beam. The absence of metastable states such as the 2p(3) 3s(1) (5S) level of atomic oxygen blown off from ITO films is supported by the failure to observe emission at 777.3 nm from the 2p(3) 3p(1) (5P/sub J/) levels. Reactive scattering experiments with polymer film targets for atomic oxygen bombardment are planned using a universal crossed molecular beam apparatus

  10. The su(1, 1) dynamical algebra from the Schroedinger ladder operators for N-dimensional systems: hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator

    International Nuclear Information System (INIS)

    Martinez, D; Flores-Urbina, J C; Mota, R D; Granados, V D

    2010-01-01

    We apply the Schroedinger factorization to construct the ladder operators for the hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator in arbitrary dimensions. By generalizing these operators we show that the dynamical algebra for these problems is the su(1, 1) Lie algebra.

  11. Perfect pattern formation of neutral atoms in an addressable optical lattice

    International Nuclear Information System (INIS)

    Vala, J.; Whaley, K.B.; Thapliyal, A.V.; Vazirani, U.; Myrgren, S.; Weiss, D.S.

    2005-01-01

    We propose a physical scheme for formation of an arbitrary pattern of neutral atoms in an addressable optical lattice. We focus specifically on the generation of a perfect optical lattice of simple orthorhombic structure with unit occupancy, as required for initialization of a neutral atom quantum computer. The scheme employs a compacting process that is accomplished by sequential application of two types of operations: a flip operator that changes the internal state of the atoms, and a shift operator that selectively moves the atoms in one internal state along the lattice principal axis. Realizations of these elementary operations and their physical limitations are analyzed. The complexity of the compacting scheme is analyzed and we show that this scales linearly with the number of lattice sites per row of the lattice

  12. Photostop of iodine atoms from electrically oriented ICl molecules

    International Nuclear Information System (INIS)

    Bao Da-Xiao; Lian-Zhong Deng; Xu Liang; Yin Jian-Ping

    2015-01-01

    The dynamics of photostopping iodine atoms from electrically oriented ICl molecules was numerically studied based on their orientational probability distribution functions. Velocity distributions of the iodine atoms and their production rates were investigated for orienting electrical fields of various intensities. For the ICl precursor beams with an initial rotational temperature of ∼ 1 K, the production of the iodine atoms near zero speed will be improved by about ∼ 5 times when an orienting electrical field of ∼ 200 kV/cm is present. A production rate of ∼ 0.5‰ is obtained for photostopped iodine atoms with speeds less than 10 m/s, which are suitable for magnetic trapping. The electrical orientation of ICl precursors and magnetic trapping of photostopped iodine atoms in situ can be conveniently realized with a pair of charged ring magnets. With the maximal value of the trapping field being ∼ 0.28 T, the largest trapping speed is ∼ 7.0 m/s for the iodine atom. (paper)

  13. Coherent matter wave optics on an atom chip

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Schumm, Thorsten

    2006-01-01

    Coherent manipulation of matter waves in microscopic trapping potentials facilitates both fundamental and technological applications. Here we focus on experiments with a microscopic integrated interferometer that demonstrate coherent operation on an atom chip.......Coherent manipulation of matter waves in microscopic trapping potentials facilitates both fundamental and technological applications. Here we focus on experiments with a microscopic integrated interferometer that demonstrate coherent operation on an atom chip....

  14. Gravitational Wave Detection with Single-Laser Atom Interferometers

    Science.gov (United States)

    Yu, Nan; Tinto, Massimo

    2011-01-01

    A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.

  15. Push-Pull Laser-Atomic Oscillator

    International Nuclear Information System (INIS)

    Jau, Y.-Y.; Happer, W.

    2007-01-01

    A vapor of alkali-metal atoms in the external cavity of a semiconductor laser, pumped with a time-independent injection current, can cause the laser to self-modulate at the 'field-independent 0-0 frequency' of the atoms. Push-pull optical pumping by the modulated light drives most of the atoms into a coherent superposition of the two atomic sublevels with an azimuthal quantum number m=0. The atoms modulate the optical loss of the cavity at the sharply defined 0-0 hyperfine frequency. As in a maser, the system is not driven by an external source of microwaves, but a very stable microwave signal can be recovered from the modulated light or from the modulated voltage drop across the laser diode. Potential applications for this new phenomenon include atomic clocks, the production of long-lived coherent atomic states, and the generation of coherent optical combs

  16. Interaction of complex atoms with radiation

    International Nuclear Information System (INIS)

    Amus'ya, M.Ya.

    1984-01-01

    Different manifestations of multielectron atomic structure under photoionization are discussed. Collectivization of external electron shells essential both in production cross section and in angular distribution as well as in photoelectron polarization are noted. In a wide range of quantum energies (of the order of ionization potential) an incident electron scattering on the atom irradiates quite differently than on the potential. It polarizes atoms mainly dipolarly, and virtually excited atom emits ''bremsstrahlung'' quantum. With energy growth of the incident electron at small momentum transferred to it by the atom the role of the second mechanism turns to be determinant

  17. Magnetic field modulation spectroscopy of rubidium atoms

    Indian Academy of Sciences (India)

    the atomic line centre for the easy operation of the servo-loop as required for .... It has been established that the atomic resonances in SAS can be shifted in a control .... from the conventional Faraday rotation observed in the presence of static ...

  18. Safety precautions in atomic pile control (1962)

    International Nuclear Information System (INIS)

    Furet, J.

    1962-01-01

    We have been led to study the problem of safety in atomic pile control as a result of our participation on the one hand in the planning of C.E.A. atomic piles, and on the other hand in the pile safety sub omission considering atomic pile safety of operational or planned C.E.A. piles. We have thus had to consider the wishes occurring in piles during their operation and also their behaviour in the dynamic state The present work deals mainly with the importance of intrinsic safety devices, with the influence of reactivity variations on the power fluctuations during accidental operation, and with the development of robust and reliable safety appliances. The starting p accident has been especially studied both for low-flux piles where a compromise is necessary between the response time of the safety appliances and the statistical fluctuations and for high lux piles where xenon poisoning has an effect on the lower limit of the velocity of reactivity liberation. The desirability has been stressed of automation as a safety factor in atomic pile control. The details required for an understanding of the diagrams of the apparatus are given. (author) [fr

  19. Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    Science.gov (United States)

    Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor

    2017-12-01

    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.

  20. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    Science.gov (United States)

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  1. A cost prediction model for machine operation in multi-field production systems

    Directory of Open Access Journals (Sweden)

    Alessandro Sopegno

    Full Text Available ABSTRACT Capacity planning in agricultural field operations needs to give consideration to the operational system design which involves the selection and dimensioning of production components, such as machinery and equipment. Capacity planning models currently onstream are generally based on average norm data and not on specific farm data which may vary from year to year. In this paper a model is presented for predicting the cost of in-field and transport operations for multiple-field and multiple-crop production systems. A case study from a real production system is presented in order to demonstrate the model’s functionalities and its sensitivity to parameters known to be somewhat imprecise. It was shown that the proposed model can provide operation cost predictions for complex cropping systems where labor and machinery are shared between the various operations which can be individually formulated for each individual crop. By so doing, the model can be used as a decision support system at the strategic level of management of agricultural production systems and specifically for the mid-term design process of systems in terms of labor/machinery and crop selection conforming to the criterion of profitability.

  2. Dynamics of atoms-ions transformation processes in the radioactive ion production systems ISOL

    International Nuclear Information System (INIS)

    Jardin, Pascal

    2013-01-01

    The aims of this work were 1)to study the effect of diffusion, effusion and ionization processes in the atom-ion transformation, 2)to better understand the temporal behaviour of ISOL devices and to apply it to the developments of the ISOL production systems. These aims were partially reached: the results obtained with 'ECS ECR' of SPIRAL 1 and SPIRAL 2 and their confrontation have allowed to analytically described their temporal behaviour and to reveal under which conditions it is possible to consider the processes of diffusion, effusion and ionization as separable processes and consequently to consider them as consecutive. (O.M.) [fr

  3. Annual report 1984-85 [of the Department of Atomic Energy, of the Government of India

    International Nuclear Information System (INIS)

    1985-01-01

    Research and Development (R and D) activities of the research establishments of the Department of Atomic Energy (DAE), performance of various production units and public sector undertakings of DAE and progress of various projects underway are reported. The report covers the period of the financial year 1984-85. The research establishments of DAE are the Bhabha Atomic Research Centre at Bombay and the Reactor Research Centre at Kalpakkam. DAE production units include atomic power stations for electricity generation at Tarapur, Kota and Kalpakkam; heavy water plants around the country and the Nuclear Fuel Complex at Hyderabad. Public sector undertaking of the Department are Indian Rare Earths Ltd., Electronic Corporation of India Ltd., and Uranium Corporation of India Ltd. The Atomic Minerals Division of the Department is mainly engaged in the R and D activities pertaining to exploration, prospecting and development of mineral resources needed for nuclear power programme. The Department's objective is to achieve the target of 10,000 MWe of nuclear power generating capacity by the year 2000. The Department's Nuclear Power Board operates the atomic power stations and is charged with the responsibility of design, construction and commissioning of atomic power projects at Narora and Kakrapar. The Department also financially supports the Tata Institute of Fundamental Research, the Tata Memorial Centre, both at Bombay and the Saha Institute of Nuclear Physics at Calcutta. The R and D activities of these institutions are also described in brief in this report. (M.G.B.)

  4. Production of irradiated bone derivatives for odontology and traumatology

    International Nuclear Information System (INIS)

    Martin, Hugo R.; Murature, D.A.

    2004-01-01

    In 2003, the National Atomic Energy Commission (CNEA), the Industrial Human Tissue Processing Plant of the Cordoba University and the Cordoba Science Agency analyzed the joint installation and operation of a Gamma Radiosterilization Module for the production of sterile human bone tissues as allografts for odontology and traumatology. The irradiation procedures were developed at the CNEA's Ezeiza Atomic Center. The irradiated bone tissues are being used in odontology with an excellent clinical behaviour. (author)

  5. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  6. Progress in atomizing high melting intermetallic titanium based alloys by means of a novel plasma melting induction guiding gas atomization facility (PIGA)

    Energy Technology Data Exchange (ETDEWEB)

    Gerling, R.; Schimansky, F.P.; Wagner, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1994-12-31

    For the production of intermetallic titanium based alloy powders a novel gas atomization facility has been put into operation: By means of a plasma torch the alloy is melted in a water cooled copper crucible in skull melting technique. To the tap hole of the crucible, a novel transfer system is mounted which forms a thin melt stream and guides it into the gas nozzle. This transfer system consists of a ceramic free induction heated water cooled copper funnel. Gas atomization of {gamma}-TiAl (melting temperature 1400 C) and Ti{sub 5}Si{sub 3} (2130 C) proved the possibility to produce ceramic free pre-alloyed powders with this novel facility. The TiAl powder particles are spherical; about 20 wt.% are smaller than 45 {mu}m. The oxygen and copper pick up during atomization do not exceed 250 and 35 {mu}g/g respectively. The Ti{sub 5}Si{sub 3} powder particles are almost spherical. Only about 10 wt.% are <45 {mu}m whereas the O{sub 2} and Cu contamination is also kept at a very low level (250 and 20 {mu}g/g respectively). (orig.)

  7. Exotic objects of atomic physics

    Science.gov (United States)

    Eletskii, A. V.

    2017-11-01

    There has been presented a short survey of physical properties, methods of production and exploration as well as directions of practical usage of the objects of atomic physics which are not yet described in detail in modern textbooks and manuals intended for students of technical universities. The family of these objects includes negative and multicharged ions, Rydberg atoms, excimer molecules, clusters. Besides of that, in recent decades this family was supplemented with new nanocarbon structures such as fullerenes, carbon nanotubes and graphene. The textbook “Exotic objects of atomic physics” [1] edited recently contains some information on the above-listed objects of the atomic physics. This textbook can be considered as a supplement to classic courses of atomic physics teaching in technical universities.

  8. Detecting device of atomic probe

    International Nuclear Information System (INIS)

    Nikonenkov, N.V.

    1979-01-01

    Operation of an atomic-probe recording device is discussed in detail and its flowsheet is given. The basic elements of the atomic-probe recording device intented for microanalysis of metals and alloys in an atomic level are the storage oscillograph with a raster-sweep unit, a two-channel timer using frequency meters, a digital printer, and a control unit. The digital printer records information supplied by four digital devices (two frequency meters and two digital voltmeters) in a four-digit binary-decimal code. The described device provides simultaneous recording of two ions produced per one vaporation event

  9. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    Science.gov (United States)

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  10. Amendment of Atomic Energy Basic Law and the development of Atomic Energy Administration

    International Nuclear Information System (INIS)

    Ochi, Kenji

    1978-01-01

    This article explains the key points of the major development of Atomic Energy Administration recently made by amendments of Atomic Energy Basic Law and other two relating laws. These amendments passed through the Diet and were enacted on 7th, June, 1978. The aim of them is focussed on reinforcement and rearrangement of safety controls on nuclear reactors. Previously, although the approval of the installation plan with basic designs of a nuclear reactor has been done by Prime Minister, further approvals of detailed designs and process of construction works, as well as inspections before and after operation have been conducted by each responsible minister, respectively. That is, those controls for power reactors have been within jurisdiction of minister of Trade and Industry, and for nuclear ships' reactors minister of Transportation has been responsible. Under the new system, above mentioned ministers continue to exercise almost same controls over reactors within their jurisdiction respectively, however the new laws have established so-called ''double check'' principle in that: when each responsible minister approves the installation, detailed designs and further stages of construction and operation of the reactor, he should hear and pay a great regard for opinions of Atomic Energy Commission and Atomic Energy Safety Commission. The latter is newly established organization which has similar status and authority to the former. (J.P.N.)

  11. Hadronic wave functions at short distances and the operator product expansion

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Lepage, G.P.

    1980-01-01

    The operator product expansion, of appropriate products of quark fields, is used to find the anamalous dimensions which control the short distance behavior of hadronic wave functions. This vehavior in turn controls the high-Q 2 limit of hadronic form factors. In particular, we relate each anamalous dimension of the nonsinglet structure functions to a corresponding logarithmic correction factor to the nominal αsub(s)(Q 2 )/Q 2 fall off of meson form factors. Unlike the case of deep inelastic lepton-hadron scattering, the operator product necessary here involves extra terms which do not contribute to forward matrix elements. (orig.)

  12. On the renormalization of operator products: the scalar gluonic case

    International Nuclear Information System (INIS)

    Zoller, Max F.

    2016-01-01

    In this paper we study the renormalization of the product of two operators O 1 =−(1/4)G μν G μν in QCD. An insertion of two such operators O 1 (x)O 1 (0) into a Greens function produces divergent contact terms for x→0. In the course of the computation of the operator product expansion (OPE) of the correlator of two such operators i∫ d 4 x e iqx T{ O 1 (x)O 1 (0)} to three-loop order http://dx.doi.org/10.1007/JHEP12(2012)119; http://dx.doi.org/10.1007/JHEP10(2014)169 we discovered that divergent contact terms remain not only in the leading Wilson coefficient C 0 , which is just the VEV of the correlator, but also in the Wilson coefficient C 1 in front of O 1 . As this correlator plays an important role for example in QCD sum rules a full understanding of its renormalization is desireable. This work explains how the divergences encountered in higher orders of an OPE of this correlator should be absorbed in counterterms and derives an additive renormalization constant for C 1 from first principles and to all orders in perturnbation theory. The method to derive the renormalization of this operator product is an extension of the ideas of V. Spiridonov, Anomalous dimension of g μν 2 and β-function, Preprint IYAI-P-0378 (1984). and can be generalized to other cases.

  13. Human factors in atomic power plant

    International Nuclear Information System (INIS)

    Kawano, Ryutaro

    1997-01-01

    To ensure safety should have priority over all other things in atomic power plants. In Chernobyl accident, however, various human factors including the systems for bulb check after inspection and communication, troubles in the interface between hardwares such as warning speakers and instruments, and their operators, those in education and training for operators and those in the general management of the plant have been pointed out. Therefore, the principles and the practical measures from the aspect of human factors in atomic power plants were discussed here. The word, ''human factor'' was given a definition in terms of the direct cause and the intellectual system. An explanatory model for human factors, model SHEL constructed by The Tokyo Electric Power Co., Ltd., Inc. was presented; the four letter mean software(S), hardware(H), environment(E) and liveware(L). In the plants of the company, systemic measures for human error factors are taken now in all steps not only for design, operation and repairing but also the step for safety culture. Further, the level required for the safety against atomic power is higher in the company than those in other fields. Thus, the central principle in atomic power plants is changing from the previous views that technology is paid greater importance to a view regarding human as most importance. (M.N.)

  14. Chemical atomization of graphite by H+ ions

    International Nuclear Information System (INIS)

    Busharov, I.P.; Gorbatov, E.A.; Gusev, V.M.; Guseva, M.I.; Martynenko, Yu.V.

    A simple model of the mechanism of chemical atomization is given, on whose basis a decrease in chemical atomization is qualitatively predicted for high temperatures. Mass spectrometric investigations of the atomization products cited, which found CH 4 and CH 3 molecules during the irradiation of graphite and H + ions thereby confirmed the presence of chemical atomization. A relationship of S and temperature of graphite T during irradiation was obtained which showed a decrease in the coefficient of atomization of a high temperature. (U.S.)

  15. The method of atomic absorption spectrophotometry for determining of cadmium in fruit and vegetable products

    International Nuclear Information System (INIS)

    Brzozowska, B.

    1977-01-01

    The method of atomic absorption with the technique of standard addition was used for determination of cadmium in the following tinned products: green peas, cut bean pods, sorel, stewed black currants, greengage plums, orange juice. The products were dry mineralized. Each mineralizate was divided into three portions, known amounts of cadmium were added to two portions and all portions were supplemented to a defined volume. Determinations were performed using a Pye Unicam SP 90 A spectrophotometer and they served as a base for plotting a curve in the system: absorbance - concentration of added metal. The curve was extrapolated to zero absorbance for reading directly the content of the metal in the product. This content was in the range from 10 to 80 μg/kg at variance coefficient 5-15% and the recovery was 80-130%. (author)

  16. Whispering galleries and the control of artificial atoms.

    Science.gov (United States)

    Forrester, Derek Michael; Kusmartsev, Feodor V

    2016-04-28

    Quantum computation using artificial-atoms, such as novel superconducting circuits, can be sensitively controlled by external electromagnetic fields. These fields and the self-fields attributable to the coupled artificial-atoms influence the amount of quantum correlation in the system. However, control elements that can operate without complete destruction of the entanglement of the quantum-bits are difficult to engineer. Here we investigate the possibility of using closely-spaced-linear arrays of metallic-elliptical discs as whispering gallery waveguides to control artificial-atoms. The discs confine and guide radiation through the array with small notches etched into their sides that act as scatterers. We focus on π-ring artificial-atoms, which can generate their own spontaneous fluxes. We find that the micro-discs of the waveguides can be excited by terahertz frequency fields to exhibit whispering-modes and that a quantum-phase-gate composed of π-rings can be operated under their influence. Furthermore, we gauge the level of entanglement through the concurrence measure and show that under certain magnetic conditions a series of entanglement sudden-deaths and revivals occur between the two qubits. This is important for understanding the stability and life-time of qubit operations using, for example, a phase gate in a hybrid of quantum technologies composed of control elements and artificial-atoms.

  17. Pellet cladding interaction (PCI) fuel duty during normal operation of ASEA-ATOM BWRs

    International Nuclear Information System (INIS)

    Vaernild, O.; Olsson, S.

    1983-01-01

    Local power changes may under special conditions cause PCI fuel failures in a power reactor. By restricting the local power increase rate in certain situations it is possible to prevent PCI failures. Fine motion control rod drives, large operating range of the main recirculation pumps and an advanced burnable absorber design have minimized the impact of the PCI restrictions. With current ICFM schemes the power of an assembly is due to the burnup of the gadolinia gradually increasing during the first cycle of operation. After this the power is essentially decreasing monotonously during the remaining life of the assembly. Some assemblies are for short burnup intervals operated at very low power in control cells. The control rods in these cells may however be withdrawn without restrictions leading to energy production losses. Base load operation would in the normal case lead to very minor PCI loads on the fuel regardless of any PCI related operating restrictions. At the return to full power after a short shutdown or in connection with load follow operation, the xenon transient may cause PCI loads on the fuel. To avoid this a few hoursholdtime before going back to full power is recommended. (author)

  18. Pellet-cladding interaction (PCI) fuel duty during normal operation of ASEA-ATOM BWRs

    International Nuclear Information System (INIS)

    Vaernild, O.; Olsson, S.

    1985-01-01

    Local power changes may, under special conditions, cause PCI fuel failures in a power reactor. By restricting the local power increase rate in certain situations it is possible to prevent PCI failures. Fine motion control rod drives, large operating range of the main recirculation pumps and an advanced burnable absorber design have minimized the impact of the PCI restrictions. With current ICFM schemes the power of an assembly is due to the burnup of the gadolinia gradually increasing during the first cycle of operation. After this the power is essentially decreasing monotonously during the remaining life of the assembly. Some assemblies are for short burnup intervals operated at very low power in control cells. The control rods in these cells may, however, be withdrawn without restrictions leading to energy production losses. Base load operation would in the normal case lead to very minor PCI loads on the fuel regardless of any PCI-related operating restrictions. At the return to full power after a short shutdown or in connection with load follow operation, the xenon transient may cause PCI loads on the fuel. To avoid this a few hours hold-time before going back to full power is recommended. (author)

  19. Production of 131 Iodine in research reactors from elementary tellurium

    International Nuclear Information System (INIS)

    Silva, Constancia Pagano Goncalves da

    1970-01-01

    Presents the history of the production of iodine-131 in the Institute of Atomic Energy (IEA), SP, Brazil), the preliminary works for the development of the method, which were done in small scale and it was not necessary protection for the operators, the evolution of these operations until the final assembling of the equipment in shielded cells, the efficiency of operations and product purity. The problems linked to the presence of iodate in the preparations and the changes made for elimination of that ion, harmful to many types and use of iodine-131 are examined. The quality of the product delivered today, an average of 140 departures per month, and the number of departures, per year since the beginning of iodine-131 production were indicated

  20. Education for Production and Operations Management

    Directory of Open Access Journals (Sweden)

    M. Kavan

    2002-01-01

    Full Text Available The Department of Mechanical Engineering Enterprise Management at the Faculty of Mechanical Engineering of the Czech Technical University in Prague has its own doctoral programme, and runs postgraduate and master's courses. The Department is engaged in a great deal of research in the field of marketing, financial and mainly operations management. A new Production and Operations Management programme was started in 1997. The programme consists of: Management of Change and the Importance of Innovations, Forecasting and Operations Strategy, Design of Work Systems, Total Quality Management and Inventory Control, Material Requirements Planning and Just-In-Time Systems, Logistics and Practical exercises. The study programme is organised in two stages, winter and summer semesters. The study programme has a strong international orientation. The teaching goal is to prepare students for dealing with real-world settings and implementing the most effective up-to-date practices. The Department aspires to lead in research, and in developing modern concepts and tools. Research is being conducted in the mechanical engineering industry under a grant from the EU LEONARDO programme. We invite you to email with questions or to schedule a visit to the Department at any time.

  1. Mechanism of single atom switch on silicon

    DEFF Research Database (Denmark)

    Quaade, Ulrich; Stokbro, Kurt; Thirstrup, C.

    1998-01-01

    We demonstrate single atom switch on silicon which operates by displacement of a hydrogen atom on the silicon (100) surface at room temperature. We find two principal effects by which the switch is controlled: a pronounced maximum of the switching probability as function of sample bias...

  2. Data-driven architectural design to production and operation

    NARCIS (Netherlands)

    Bier, H.H.; Mostafavi, S.

    2015-01-01

    Data-driven architectural production and operation explored within Hyperbody rely heavily on system thinking implying that all parts of a system are to be understood in relation to each other. These relations are established bi-directionally so that data-driven architecture is not only produced

  3. Probabilistic Cloning of two Single-Atom States via Thermal Cavity

    Science.gov (United States)

    Rui, Pin-Shu; Liu, Dao-Jun

    2016-12-01

    We propose a cavity QED scheme for implementing the 1 → 2 probabilistic quantum cloning (PQC) of two single-atom states. In our scheme, after the to-be-cloned atom and the assistant atom passing through the first cavity, a measurement is carried out on the assistant atom. Based on the measurement outcome we can judge whether the PQC should be continued. If the cloning fails, the other operations are omitted. This makes our scheme economical. If the PQC is continued (with the optimal probability) according to the measurement outcome, two more cavities and some unitary operations are used for achieving the PQC in a deterministic way. Our scheme is insensitive to the decays of the cavities and the atoms.

  4. The projects for heavy water production of the Argentine National Atomic Energy Commission

    International Nuclear Information System (INIS)

    Garcia Bourg, J.M.; Garcia, E.E.

    1982-01-01

    The bases and scope of the projects for heavy water production that are being currently developed by the Argentine National Atomic Energy Commission (CNEA) are described. As an introduction, the following points are presented: a) the fundamentals of heavy water utilization in a nuclear reactor, with a mention of its properties and uses, b) a review of the physicochemical bases of the principal methods for heavy water production: chemical exchange (monothermal and bithermal processes), distillation and electrolysis, with tables summarizing the fundamental characteristics of the first two ones, and an evaluation of the different production methods from the viewpoint of their application in an industrial scale; and c) a synthetic information, in the form of tables, about the world's heavy water production. The subject of heavy water production in Argentina is treated in the principal section, describing the scope, location, main characteristics and chemical processes corresponding to the projects being developed by CNEA, which currently are the installation of an Industrial Plant in Arroyito (Province of Neuquen), purchased on a turnkey basis and using the NH 3 /H 2 isotopic exchange method; the installation of an Experimental Plant in Atucha (Province of Buenos Aires), for the development of the domestic technology of heavy-water production by the SH 2 /H 2 O isotopic exchange method, and the development of the engineering of an industrial plant (''Module 80''), based on the Experimental Plant's technology. (M.E.L.) [es

  5. Interim safety evaluation report related to operation of Enrico Fermi Atomic Power Plant, Unit 2, Detroit Edison Company

    International Nuclear Information System (INIS)

    1977-09-01

    This interim report summarizes the scope and results of the radiological safety review performed to date by the NRC staff with respect to the operating license phase for the Enrico Fermi Atomic Power Plant, Unit 2. The major effort was the review of the facility design and proposed operating procedures described in applicant's Final Safety Analysis Report. In the course of the review, several meetings were held with representatives of the applicant to discuss plant design, construction and proposed operation. Additional information was requested, which the applicant provided through Amendment 7 to the Final Safety Analysis Report. A chronology of the principal actions relating to the review of the application is attached as Appendix A to the report. The Final Safety Analysis Report and amendments thereto are available for public inspection at the Nuclear Regulatory Commission Public Document Room, 1717 H Street, N. W., Washington, D.C. and at Monroe County Library System, 3700 South Custer Road, Monroe, Michigan 48161

  6. Nucleon structure functions from lattice operator product expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). CSSM, Dept. of Physics; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-03-15

    Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

  7. Nucleon structure functions from lattice operator product expansion

    International Nuclear Information System (INIS)

    Chambers, A.J.; Somfleth, K.; Young, R.D.; Zanotti, J.M.; Perlt, H.; Schiller, A.

    2017-03-01

    Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

  8. ASPECTS REGARDING THE SETTING OF TIME STANDARDS FOR THE PRODUCTION AND SEWING OPERATIONS

    Directory of Open Access Journals (Sweden)

    SECAN Cristina

    2014-05-01

    Full Text Available This paper presents the technological process of manufacture of a shoe for women in IL system in order to establish the time and the production norm in the processing-sewing procedure. The sequence of operations is presented in a case study that analyzed how can be obtained the upper assembly of a footwear product that later becomes integral part into the finished product. Drawing up the technological process is done considering both the manual operations and the manual-mechanical operations for processing and assembling the parts that make the whole upper assembly by gluing the parts, by seaming and securing the joints. The type of equipment chosen to carry out operations is influencing through its productivity the necessary material calculated and hence the labour force required. The amount of time consists of time needed for preparation-finishing time, operative time, time of working place service and time of regulated interruptions. These periods of times were determined basically by timing assistance of the manufacturing process throughout its development. Production norm is calculated on the basis of the standard time, taking into account that it represents the amount of products manufactured in a work shift In order to improve the process by reducing the time of production and the number of workers engaged we are considering the automation of the manufacturing process by using modern methods using laser cutting or cutting under running water, automatic sewing machines, strip conveyor belts with pace imposed etc.

  9. Products and mechanism of the reaction of Cl atoms with unsaturated alcohols

    Science.gov (United States)

    Rodríguez, Ana; Rodríguez, Diana; Soto, Amparo; Bravo, Iván; Diaz-de-Mera, Yolanda; Notario, Alberto; Aranda, Alfonso

    2012-04-01

    The products of the chlorine atom initiated oxidation of different unsaturated alcohols were determined at atmospheric pressure and ambient temperature, in a 400 L teflon reaction chamber using GC-FID and GC-MS for the analysis. The major products detected (with molar yields in brackets) are: chloroacetaldehyde (50 ± 8%) and acrolein (27 ± 2%) from allyl alcohol; acetaldehyde (77 ± 11%), chloroacetaldehyde (75 ± 18%), and methyl vinyl ketone (17 ± 2%) from 3-buten-2-ol; acetone (55 ± 4%) and chloroacetaldehyde (59 ± 8%) from 2-methyl-3-buten-2-ol; chloroacetone (18 ± 1%) and methacrolein (8 ± 1%) from 2-methyl-2-propen-1-ol; acetaldehyde (20 ± 1%), crotonaldehyde (6 ± 3%), 3-choloro-4-hydroxy-2-butanone (2 ± 2%) and 2-chloro-propanal (4 ± 5%) from crotyl alcohol; and acetone (24 ± 3%) from 3-methyl-2-buten-1-ol. The experimental data suggests that addition of Cl to the double bond of the unsaturated alcohol is the dominant reaction pathway compared to the H-abstraction channel.

  10. A polarized atomic-beam target for COSY-Juelich

    International Nuclear Information System (INIS)

    Eversheim, P. D.; Altmeier, M.; Felden, O.; Glende, M.; Walker, M.; Hiemer, A.; Gebel, R.

    1998-01-01

    An atomic-beam target (ABT) for the EDDA experiment has been built in Bonn and was tested for the very first time at the cooler synchrotron COSY. The ABT differs from the polarized colliding-beams ion source for COSY in the DC-operation of the dissociator and the use of permanent 6-pole magnets. At present the beam optics of the ABT is set-up for maximum density in the interaction zone, but for target-cell operation it can be modified to give maximum intensity. The modular concept of this atomic ground-state target allows to provide all vector- (and tensor) polarizations for protons and deuterons, respectively. Up to now the polarization of the atomic-beam could be verified by the EDDA experiment to be > or approx. 80% with a density in the interaction zone of > or approx. 10 11 atoms/cm 2

  11. Atom-by-atom assembly

    International Nuclear Information System (INIS)

    Hla, Saw Wai

    2014-01-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed. (review article)

  12. Research on the performance evaluation of agricultural products supply chain integrated operation

    Science.gov (United States)

    Jiang, Jiake; Wang, Xifu; Liu, Yang

    2017-04-01

    The agricultural product supply chain integrated operation can ensure the quality and efficiency of agricultural products, and achieve the optimal goal of low cost and high service. This paper establishes a performance evaluation index system of agricultural products supply chain integration operation based on the development status of agricultural products and SCOR, BSC and KPI model. And then, we constructing rough set theory and BP neural network comprehensive evaluation model with the aid of Rosetta and MATLAB tools and the case study is about the development of agricultural products integrated supply chain in Jing-Jin-Ji region. And finally, we obtain the corresponding performance results, and give some improvement measures and management recommendations to the managers.

  13. Cost of Maple Sap Production for Various Size Tubing Operations

    Science.gov (United States)

    Niel K. Huyler

    2000-01-01

    Reports sap production costs for small (500 to 1,000 taps), medium (1,000 to 5,000), and large (5,000 to 15,000) maple syrup operations that use plastic tubing with vacuum pumping. The average annual operating cost per tap ranged from $4.64 for a 500-tap sugarbush operation to $1.84 for a sugarbush with 10,000 taps. The weighted average was $2.87 per tap or $11.48 per...

  14. Atomic Energy Act 1946

    International Nuclear Information System (INIS)

    1946-01-01

    This Act provides for the development of atomic energy in the United Kingdom and for its control. It details the duties and powers of the competent Minister, in particular his powers to obtain information on and to inspect materials, plant and processes, to control production and use of atomic energy and publication of information thereon. Also specified is the power to search for and work minerals and to acquire property. (NEA) [fr

  15. Entangling two transportable neutral atoms via local spin exchange.

    Science.gov (United States)

    Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-11-12

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  16. Laser-induced fluorescence of se, as, and sb in an electrothermal atomizer.

    Science.gov (United States)

    Swart, D J; Ezer, M; Pacquette, H L; Simeonsson, J B

    1998-04-01

    Trace detection of Se, As, and Sb atoms has been performed by electrothermal atomization laser-induced fluorescence (ETA-LIF) approaches. Production of far-UV radiation necessary for excitation of As atoms at 193.696 nm and Se atoms at 196.026 nm was accomplished by stimulated Raman shifting (SRS) of the output of a frequency-doubled dye laser operating near 230 nm. Both wavelengths were obtained as second-order anti-Stokes shifts of the dye laser radiation and provided up to 10 μJ/pulse, which was shown through power dependence studies to be sufficient for saturation in the ETA. An excited-state direct line fluorescence approach using excitation at 206.279 nm was also investigated for the LIF detection of Se. High-sensitivity LIF of Sb atoms was accomplished using 206.833-nm excitation and detection at 259.805 nm. The accuracy of the ETA-LIF approaches was demonstrated by determining the As and Se content of aqueous reference samples. The limits of detection (absolute mass) were 200 fg by ground-state LIF and 150 fg by excited-state direct line fluorescence for Se, 200 fg for As, and 10 fg for Sb; these LODs compare favorably with results reported previously in the literature for ETA-LIF, GFAAS, and ICP-MS methods.

  17. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    The methodology of simultaneous multi-element electrothermal atomic absorption spectrometry (ETAAS-Electrothermal Atomic Absorption Spectrometry) stipulates rigid requirements to the design and operation of the atomizer. It must provide high degree of atomization for the group of analytes, invariant respective to the vaporization kinetics and heating ramp residence time of atoms in the absorption volume and absence of memory effects from major sample components. For the low resolution spectrometer with a continuum radiation source the reduced compared to traditional ETAAS (Electrothermal Atomic Absorption Spectrometry) sensitivity should be, at least partially, compensated by creating high density of atomic vapor in the absorption pulse. The sought-for characteristics were obtained for the 18 mm in length and 2.5 mm in internal diameter longitudinally heated graphite tube atomizer furnished with 2-4.5 mg of ring shaped carbon fiber yarn collector. The collector located next to the sampling port provides large substrate area that helps to keep the sample and its residue in the central part of the tube after drying. The collector also provides a 'platform' effect that delays the vaporization and stipulates vapor release into absorption volume having already stabilized gas temperature. Due to the shape of external surface of the tube, presence of collector and rapid (about 10 {sup o}C/ms) heating, an inverse temperature distribution along the tube is attained at the beginnings of the atomization and cleaning steps. The effect is employed for cleaning of the atomizer using the set of short maximum power heating pulses. Preparation, optimal maintenance of the atomizer and its compliance to the multi-element determination requirements are evaluated and discussed. The experimental setup provides direct simultaneous determination of large group of element within 3-4 order concentration range. Limits of detection are close to those for sequential single element

  18. Analysis of nuclear grade uranium oxides by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.; Pazos, A.L.

    1986-01-01

    The application of atomic absorption spectrometry for the determination of five trace impurities in nuclear grade uranium oxides is described. The elements were separated from the uranium matrix by extraction chromatography and determined in 5.5 M nitric acid by electrothermal atomization using pyrolytic graphite coated tubes. Two elements, cadmium and chromium, with different volatility characteristics were employed to investigate the operating conditions. Drying and ashing conditions were studied for both elements. Ramp and constant potential (step) heating modes have also been studied and compared. Good reproducibility and a longer life of graphite tubes were obtained with ramp atomization. Detection limits (in micrograms per gram of uranium) were: Cd 0.01; Cr 0.1; Cu 0.4; Mn 0.04 and Ni 0.2. (author) [es

  19. Spectroscopy of two-electron atoms

    International Nuclear Information System (INIS)

    Desesquelles, J.

    1988-01-01

    Spectroscopy of heliumlike ions is discussed putting emphasis on mid and high Z atoms. Experimental aspects of ion charge, excitation production, clean spectra, and precise wavelength measurement are detailed. Recent results obtained at several laboratories including Lyon, Argonne, Notre-Dame, Oxford, Berkeley, Darmstadt, Paris, are used to test the QED contributions and higher order relativistic corrections to two-electron atom energies. (orig.)

  20. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  1. The Dante pulse sequence description by product operators formalism

    International Nuclear Information System (INIS)

    Velloso, Marcia Helena Rodrigues; Villar, Daniel Figueroa

    1999-01-01

    The objective of this work is to supply a didactic example of the application of the product operators formalism for the description of the DANTE (delays alternating with mutation for tailored excitation) pulse sequence

  2. Atoms and cavities: Explorations of quantum entanglement

    International Nuclear Information System (INIS)

    Raimond, J. M.; Hagley, E.; Maitre, X.; Nogues, G.; Wunderlich, C.; Brune, M.; Haroche, S.

    1999-01-01

    The interaction of circular Rydberg atoms with a high-quality microwave cavity makes it possible to realize complex quantum state manipulations. The state of an atom can be 'copied' onto the cavity. Reversing this operation at a later time with a second atom, we realize an elementary 'quantum memory' holding an atomic quantum coherence for a while in a cavity mode. We have also generated two-atom entangled states of the Einstein-Podolsky-Rosen type. At variance with previous experiments, this one implies massive particles in a completely controlled process. These entanglement manipulations can be generalized to more complex or to mesoscopic systems and open the way to new tests of fundamental aspects of the quantum world

  3. Pulsed-laser atom-probe field-ion microscopy

    International Nuclear Information System (INIS)

    Kellogg, G.L.; Tsong, T.T.

    1980-01-01

    A time-of-flight atom-probe field-ion microscope has been developed which uses nanosecond laser pulses to field evaporate surface species. The ability to operate an atom-probe without using high-voltage pulses is advantageous for several reasons. The spread in energy arising from the desorption of surface species prior to the voltage pulse attaining its maximum amplitude is eliminated, resulting in increased mass resolution. Semiconductor and insulator samples, for which the electrical resistivity is too high to transmit a short-duration voltage pulse, can be examined using pulsed-laser assisted field desorption. Since the electric field at the surface can be significantly smaller, the dissociation of molecular adsorbates by the field can be reduced or eliminated, permitting well-defined studies of surface chemical reactions. In addition to atom-probe operation, pulsed-laser heating of field emitters can be used to study surface diffusion of adatoms and vacancies over a wide range of temperatures. Examples demonstrating each of these advantages are presented, including the first pulsed-laser atom-probe (PLAP) mass spectra for both metals (W, Mo, Rh) and semiconductors (Si). Molecular hydrogen, which desorbs exclusively as atomic hydrogen in the conventional atom probe, is shown to desorb undissociatively in the PLAP. Field-ion microscope observations of the diffusion and dissociation of atomic clusters, the migration of adatoms, and the formation of vacancies resulting from heating with a 7-ns laser pulse are also presented

  4. High atomic weight isotope separator

    International Nuclear Information System (INIS)

    Book, D.L.

    1978-01-01

    A continuously operating device is described which separates one isotopic species of a given element from a mixture. The given element is vaporized and formed into a neutral beam containing the isotopes desired to be separated. The plasma is accelerated through a laser beam which is formed by two separate lasers which operate in the continuous wave mode in which the beams are as nearly as possible in the same beam path. The two laser output beams excite and ionize the isotope of interest while leaving the remaining atoms unaffected. The ionized isotopes are then separated from the beam by an electrostatic deflection technique and the unaffected atoms continue on in their path and are directed to a recovery device

  5. From USA operation experience of industrial uranium-graphite reactors

    International Nuclear Information System (INIS)

    Burdakov, N.S.

    1996-01-01

    The review on materials, presented by a group of the USA specialists at the seminar in Moscow on October 9-11, 1995 is considered. The above specialists shared their experience in operation of the Hanford industrial reactors, aimed at plutonium production for atomic bombs. The purpose of the above visit consisted in providing assistance to the Russian specialists by evaluation and modernization of operational conditions safety improvement of the RBMK type reactors. Special attention is paid to the behaviour of the graphite lining and channel tubes with an account of possible channel power interaction with the reactor structural units. The information on the experience of the Hanford reactor operation may be useful for specialists, operating the RBMK type reactors

  6. Operational Space Weather Products at IPS

    Science.gov (United States)

    Neudegg, D.; Steward, G.; Marshall, R.; Terkildsen, M.; Kennewell, J.; Patterson, G.; Panwar, R.

    2008-12-01

    IPS Radio and Space Services operates an extensive network (IPSNET) of monitoring stations and observatories within the Australasian and Antarctic regions to gather information on the space environment. This includes ionosondes, magnetometers, GPS-ISM, oblique HF sounding, riometers, and solar radio and optical telescopes. IPS exchanges this information with similar organisations world-wide. The Regional Warning Centre (RWC) is the Australian Space Forecast Centre (ASFC) and it utilizes this data to provide products and services to support customer operations. A wide range of customers use IPS services including; defence force and emergency services using HF radio communications and surveillance systems, organisations involved in geophysical exploration and pipeline cathodic protection, GPS users in aviation. Subscriptions to the alerts, warnings, forecasts and reports regarding the solar, geophysical and ionospheric conditions are distributed by email and Special Message Service (SMS). IPS also develops and markets widely used PC software prediction tools for HF radio skywave and surface wave (ASAPS/GWPS) and provides consultancy services for system planning.

  7. Nonclassical Effects of a Four-Level Excited-Doublet Atom Model

    International Nuclear Information System (INIS)

    Zhang Jiansong; Xu Jingbo

    2006-01-01

    We adopt a dynamical algebraic method to study a four-level excited-doublet atom model and obtain the explicit expressions of the time-evolution operator and the density operator for the system. The nonclassical effects of the system, such as collapses and revivals of the atomic inversion and squeezing of the radiation field, are also discussed.

  8. Annual Report to Congress of the Atomic Energy Commission for 1965

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1966-01-31

    The document represents the 1965 Annual Report of the Atomic Energy Commission (AEC) to Congress. The report opens with a Foreword - a letter from President Lyndon B. Johnson. The main portion is divided into 3 major sections for 1965, plus 10 appendices and the index. Section names and chapters are as follows. Part One reports on Developmental and Promotional Activities with the following chapters: (1) The Atomic Energy Program - 1965; (2) The Industrial Base ; (3) Industrial Relations; (4) Operational Safety; (5) Source and Special Nuclear Materials Production; (6) The Nuclear Defense Effort; (7) Civilian Nuclear Power; (8) Nuclear Space Applications; (9) Auxiliary Electrical Power for Land and Sea; (10) Military Reactors; (11) Advanced Reactor Technology and Nuclear Safety Research; (12) The Plowshare Program; (13) Isotopes and Radiation Development; (14) Facilities and Projects for Basic Research; (15) International Cooperation; and, (16) Nuclear Education and Information. Part Two reports on Regulatory Activities with the following chapters: (1) Licensing and Regulating the Atom; (2) Reactors and other Nuclear Facilities; and, (3) Control of Radioactive Materials. Part Three reports on Adjudicatory Activities.

  9. A=225 implantation for $^{221}$Fr source for TRIUMF atom trap

    CERN Multimedia

    The FrPNC Collaboration is mounting an atom trap for parity violation experiments and precision spectroscopy on francium atoms at TRIUMF's ISAC facility. We would like to use ISOLDE's capability of simultaneously implanting A=225 (while another experiment runs online) to make a long-lived source feeding $^{221}$Fr for tests of the trap. $^{225}$Ra $\\beta$-decays to $^{225}$Ac, which then $\\alpha$-decays, producing 100 keV $^{221}$Fr t$_{1/2}$= 4.8 minute recoils. The implanted A=225 source would be shipped to TRIUMF, where it would be held for several minutes at a time a few mm from the same yttrium foil that normally receives the ISAC beam. SRIM calculations imply that 20% of the $^{221}$Fr will be implanted in a 1 cm diameter spot on the yttrium. Then the yttrium foil is moved to the trap and heated to release the Fr atoms, just as in normal ISAC online operation. A test implantation will be done at 10$^{7}$/sec production for 1 day, testing whether carbon cracking on the implantation foil in the mass separ...

  10. The situation of Chinese atomic energy and cooperation

    International Nuclear Information System (INIS)

    Nagasaki, Takao

    2003-01-01

    China will have 8.7 million kW atomic energy in 2005. Japan will complete with China in a sale war of international atomic energy and domestic power source. The position, development and situation of Chinese atomic energy and the future nuclear fuel cycle are reported. 5.4 million kW of 7 atomic power plants in China and 45.9 million kW of 53 plants in Japan are running. 3.3 million kW of 4 plants in China and 4 million kW of 4 plants in Japan are building. New type reactor, the fast breeder and high temperature gas-cooled reactor are developing. Radiation exposure to food, radiation therapy, Radio-pharmaceuticals, polymerization and treatment of sewage and smoke are carried out. The situation of atomic energy co-operation between China and Japan and other countries are stated. Japan has to change to advance mutual interests type co-operation with China. Construction of the nuclear community in Asia area and development of the international long big project are proposed. (S.Y.)

  11. Artificial Atoms: from Quantum Physics to Applications

    International Nuclear Information System (INIS)

    2014-01-01

    The primary objective of this workshop is to survey the most recent advances of technologies enabling single atom- and artificial atom-based devices. These include the assembly of artificial molecular structures with magnetic dipole and optical interactions between engineered atoms embedded in solid-state lattices. The ability to control single atoms in diamond or similar solids under ambient operating conditions opens new perspectives for technologies based on nanoelectronics and nanophotonics. The scope of the workshop is extended towards the physics of strong coupling between atoms and radiation field modes. Beyond the traditional atom-cavity systems, artificial dipoles coupled to microwave radiation in circuit quantum electrodynamics is considered. All these technologies mutually influence each other in developing novel devices for sensing at the quantum level and for quantum information processing.

  12. Safety Evaluation Report related to the operation of Enrico Fermi Atomic Power Plant, Unit No. 2 (Docket No. 50-341). Supplement No. 4

    International Nuclear Information System (INIS)

    1984-09-01

    Supplement No. 4 to the Safety Evaluation Report related to the operation of the Enrico Fermi Atomic Power Plant, Unit 2, provides the staff's evaluation of additional information submitted by the applicant regarding outstanding review issues identified in Supplement No. 3 to the Safety Evaluation Report, dated January 1983

  13. Automated atomic absorption spectrophotometer, utilizing a programmable desk calculator

    International Nuclear Information System (INIS)

    Futrell, T.L.; Morrow, R.W.

    1977-01-01

    A commercial, double-beam atomic absorption spectrophotometer has been interfaced with a sample changer and a Hewlett-Packard 9810A calculator to yield a completely automated analysis system. The interface electronics can be easily constructed and should be adaptable to any double-beam atomic absorption instrument. The calculator is easily programmed and can be used for general laboratory purposes when not operating the instrument. The automated system has been shown to perform very satisfactorily when operated unattended to analyze a large number of samples. Performance statistics agree well with a manually operated instrument

  14. Long-distance quantum communication with neutral atoms

    International Nuclear Information System (INIS)

    Razavi, Mohsen; Shapiro, Jeffrey H.

    2006-01-01

    The architecture proposed by Duan, Lukin, Cirac, and Zoller (DLCZ) for long-distance quantum communication with atomic ensembles is analyzed. Its fidelity and throughput in entanglement distribution, entanglement swapping, and quantum teleportation is derived within a framework that accounts for multiple excitations in the ensembles as well as loss and asymmetries in the channel. The DLCZ performance metrics that are obtained are compared to the corresponding results for the trapped-atom quantum communication architecture that has been proposed by a team from the Massachusetts Institute of Technology and Northwestern University (MIT and NU). Both systems are found to be capable of high-fidelity entanglement distribution. However, the DLCZ scheme only provides conditional teleportation and repeater operation, whereas the MIT-NU architecture affords full Bell-state measurements on its trapped atoms. Moreover, it is shown that achieving unity conditional fidelity in DLCZ teleportation and repeater operation requires ideal photon-number resolving detectors. The maximum conditional fidelities for DLCZ teleportation and repeater operation that can be realized with nonresolving detectors are 1/2 and 2/3, respectively

  15. Problem-Based Learning for Production and Operations Management

    Science.gov (United States)

    Kanet, John J.; Barut, Mehmet

    2003-01-01

    In this paper, we describe our application of "problem-based learning" in the teaching of production/operations management. We describe a study of the effectiveness of this approach and present the results and analysis of this study. We provide a collection of our experiences in using this method and conclude with some general…

  16. The productive operating theatre and lean thinking systems.

    Science.gov (United States)

    Kasivisvanathan, R; Chekairi, A

    2014-11-01

    The concept of 'lean thinking' first originated in the manufacturing industry as a means of improving productivity whilst maintaining quality through eliminating wasteful processes. The purpose of this article is to demonstrate how the principles of 'lean thinking' are relevant to healthcare and the operating theatre, with reference to our own institutional experience.

  17. Atomic transport properties

    International Nuclear Information System (INIS)

    Freyss, M.

    2015-01-01

    As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)

  18. Production and quality control of concrete for the Rajasthan Atomic Power Station - [Part 2

    International Nuclear Information System (INIS)

    Singh Roy, P.K.; Sukhtankar, K.D.; Prasad, K.

    1975-01-01

    The following aspects of the production and quality control of concrete and concrete materials used in the construction of twin-reactor Rajasthan Atomic Power Station are discussed : (1) relationship between strength of cubes and cylinders made of concrete used for the prestressed dome (2) temperature control during pouring of concrete (3) thermal conductivity of heavy concrete (4) various types of grouting procedures used for different structures forming part of reactors (5) quality control of normal and heavy concrete and (6) leakage through form ties. Typical concrete mixes used for grouts are also given. (M.G.B.)

  19. Atomic frequency-time-length standards

    International Nuclear Information System (INIS)

    Gheorghiu, O.C.; Mandache, C.

    1987-01-01

    The principles of operative of atomic frequency-time-length standards and their principle characteristics are described. The role of quartz crystal oscillators which are sloved to active or passive standards is presented. (authors)

  20. Interfase y software de control para operar en sincronismo un automuestreador y un atomizador electrotérmico por filamento de tungsteno en espectrofotometría de absorción atómica Development of interface and software for synchronous operation of an autosampler and a tungsten coil electrothermal atomizer coupled to an atomic absorption spectophotometer

    Directory of Open Access Journals (Sweden)

    J. Neira

    1998-07-01

    Full Text Available The interface and software for synchronous control of an autosampler and an electrothermal tungsten coil atomizer in atomic absorption spectrophotometry were developed. The control of the power supply, the trigger of the Read function of the spectrophotometer and the automatic operation of the autosampler was performed by software written in "TurboBasic". The system was evaluated by comparison of the repeatability of peak-height absorbances obtained in the atomization of lead by consecutive 10-µl injections of solutions (prepared in 0.2% v/v HNO3 using autosampler and manual sample introduction, and also by long term operation.

  1. Sympathetic cooling in a rubidium cesium mixture: Production of ultracold cesium atoms; Sympathetisches Kuehlen in einer Rubidium-Caesium-Mischung: Erzeugung ultrakalter Caesiumatome

    Energy Technology Data Exchange (ETDEWEB)

    Haas, M.

    2007-07-01

    This thesis presents experiments for the production of ultracold rubidium cesium mixture in a magnetic trap. The long-termed aim of the experiment is the study of the interaction of few cesium atoms with a Bose-Einstein condensate of rubidium atoms. Especially by controlled variation of the cesium atom number the transition in the description of the interaction by concepts of the one-particle physics to the description by concepts of the many-particle physics shall be studied. The rubidium atoms are trapped in a magneto-optical trap (MOT) and from there reloaded into a magnetic trap. In this the rubidium atoms are stored in the state vertical stroke f=2,m{sub f}=2 right angle of the electronic ground state and evaporatively cooled by means of microwave-induced transitions into the state vertical stroke f=1,m{sub f}=1] (microwave cooling). The cesium atoms are also trppaed in a MOT and into the same magnetic trap reloaded, in which they are stored in the state vertical stroke f=4,m{sub f}=4 right angle of the electronic ground state together with rubidium. Because of the different hyperfine splitting only rubidium is evaporatively cooled, while cesium is cooled jointly sympathetically - i.e. by theramal contact via elastic collisions with rubidium atoms. The first two chapters contain a description of interatomic interactions in ultracold gases as well as a short summary of theoretical concepts in the description of Bose-Einstein condensates. The chapters 3 and 4 contain a short presentation of the methods applied in the experiment for the production of ultracold gases as well as the experimental arrangement; especially in the framework of this thesis a new coil system has been designed, which offers in view of future experiments additionally optical access for an optical trap. Additionally the fourth chapter contains an extensive description of the experimental cycle, which is applied in order to store rubidium and cesium atoms together into the magnetic trap. The

  2. Observation of relativistic antihydrogen atoms

    International Nuclear Information System (INIS)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure

  3. Case studies in atomic collision physics

    CERN Document Server

    McDaniel, E W

    1974-01-01

    Case Studies in Atomic Physics III focuses on case studies on atomic and molecular physics, including atomic collisions, transport properties of electrons, ions, molecules, and photons, interaction potentials, spectroscopy, and surface phenomena. The selection first discusses detailed balancing in the time-dependent impact parameter method, as well as time-reversal in the impact parameter method and coupled state approximation. The text also examines the mechanisms of electron production in ion. Topics include measurement of doubly differential cross sections and electron spectra, direct Coul

  4. Assessment of biogas production from MBT waste under different operating conditions

    DEFF Research Database (Denmark)

    Pantini, Sara; Verginelli, Jason; Lombardi, Francesco

    2015-01-01

    In this work, the influence of different operating conditions on the biogas production from mechanically-. biologically treated (MBT) wastes is investigated. Specifically, different lab-scale anaerobic tests varying the water content (26-43% w/w up to 75% w/w), the temperature (from 20 to 25......, the obtained results highlighted that the operative conditions can drastically affect the gas production from MET wastes. This suggests that particular caution should be paid when using the results of lab-scale tests for the evaluation of long-term behaviour expected in the field where the boundary conditions...

  5. Radioactivity of food products in the region of the ''Kozloduj'' atomic power station in the pre-exploitation period

    International Nuclear Information System (INIS)

    Jotov, M.; Petkov, T.; Zlatanova, R.; Boyadzhiev, A.

    1976-01-01

    The pre-exploitation status of the region of the ''Kozloduj'' atomic power stationand its torch zone, regarding the concentration of the biologically most dangerous artificial isotopes in the basic food products was determined. The tested foods were milk, meat, wheat, fish and grapes produced at the most important and basic production regions in the controled region. The radioactive isotope concentrations in the analyzed food produxts are reported. They will serve as a basis in assessing any eventual additional contamination of the region as a result of the work of the ''Kozloduj'' electric power station. (author)

  6. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    Science.gov (United States)

    Lopaev, D. V.; Malykhin, E. M.; Zyryanov, S. M.

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature TV was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O(3P), O2, O2(1Δg) and O3 molecules in different vibrational states. The agreement of O3 and O(3P) density profiles and TV calculated in the model with observed ones was reached by varying the single model parameter—ozone production probability (\\gamma_{O_{3}}) on the quartz tube surface on the assumption that O3 production occurs mainly in the surface recombination of physisorbed O(3P) and O2. The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse \\gamma_{O_{3}} data obtained in the kinetic model. A good agreement between the experimental data and the data of both models—the kinetic 1D model and the phenomenological surface model—was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up the

  7. Surface recombination of oxygen atoms in O2 plasma at increased pressure: II. Vibrational temperature and surface production of ozone

    International Nuclear Information System (INIS)

    Lopaev, D V; Malykhin, E M; Zyryanov, S M

    2011-01-01

    Ozone production in an oxygen glow discharge in a quartz tube was studied in the pressure range of 10-50 Torr. The O 3 density distribution along the tube diameter was measured by UV absorption spectroscopy, and ozone vibrational temperature T V was found comparing the calculated ab initio absorption spectra with the experimental ones. It has been shown that the O 3 production mainly occurs on a tube surface whereas ozone is lost in the tube centre where in contrast the electron and oxygen atom densities are maximal. Two models were used to analyse the obtained results. The first one is a kinetic 1D model for the processes occurring near the tube walls with the participation of the main particles: O( 3 P), O 2 , O 2 ( 1 Δ g ) and O 3 molecules in different vibrational states. The agreement of O 3 and O( 3 P) density profiles and T V calculated in the model with observed ones was reached by varying the single model parameter-ozone production probability (γ O 3 ) on the quartz tube surface on the assumption that O 3 production occurs mainly in the surface recombination of physisorbed O( 3 P) and O 2 . The phenomenological model of the surface processes with the participation of oxygen atoms and molecules including singlet oxygen molecules was also considered to analyse γ O 3 data obtained in the kinetic model. A good agreement between the experimental data and the data of both models-the kinetic 1D model and the phenomenological surface model-was obtained in the full range of the studied conditions that allowed consideration of the ozone surface production mechanism in more detail. The important role of singlet oxygen in ozone surface production was shown. The O 3 surface production rate directly depends on the density of physisorbed oxygen atoms and molecules and can be high with increasing pressure and energy inputted into plasma while simultaneously keeping the surface temperature low enough. Using the special discharge cell design, such an approach opens up

  8. DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

    Directory of Open Access Journals (Sweden)

    HO JIN RYU

    2013-12-01

    Full Text Available Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99 production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 g-U/cm3 were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compounds by a chemical reaction of the uranium particles and aluminum matrix. Thus, these target plates can be treated with the same alkaline dissolution process that is used for conventional UAlx dispersion targets, while increasing the uranium density in the target plates

  9. Single-Atom Mn Active Site in a Triol-Stabilized β-Anderson Manganohexamolybdate for Enhanced Catalytic Activity towards Adipic Acid Production

    Directory of Open Access Journals (Sweden)

    Jianhui Luo

    2018-03-01

    Full Text Available Adipic acid is an important raw chemical for the commercial production of polyamides and polyesters. The traditional industrial adipic acid production utilizes nitric acid to oxidize KA oil (mixtures of cyclohexanone and cyclohexanol, leading to the emission of N2O and thus causing ozone depletion, global warming, and acid rain. Herein, we reported an organically functionalized β-isomer of Anderson polyoxometalates (POMs nanocluster with single-atom Mn, β-{[H3NC(CH2O3]2MnMo6O18}− (1, as a highly active catalyst to selectively catalyze the oxidation of cyclohexanone, cyclohexanol, or KA oil with atom economy use of 30% H2O2 for the eco-friendly synthesis of adipic acid. The catalyst has been characterized by single crystal and powder XRD, XPS, ESI-MS, FT-IR, and NMR. A cyclohexanone (cyclohexanol conversion of >99.9% with an adipic acid selectivity of ~97.1% (~85.3% could be achieved over catalyst 1 with high turnover frequency of 2427.5 h−1 (2132.5 h−1. It has been demonstrated that the existence of Mn3+ atom active site in catalyst 1 and the special butterfly-shaped topology of POMs both play vital roles in the enhancement of catalytic activity.

  10. Atomic energy control board. History backgrounder

    International Nuclear Information System (INIS)

    1986-10-01

    The Atomic Energy Control Board (AECB) is a regulatory agency set up by the Government of Canada under the Atomic Energy Control Act of 1946 to assist the Government in its efforts to make provision for the control and supervision of the development, application and use of atomic energy and to enable Canada to participate effectively in measures of international control of atomic energy. It is also responsible for the administration of the Nuclear Liability Act, including the designation of nuclear installations and the prescription of basic insurance to be carried by the operators of such nuclear installations. An overview is presented of the AECB's evolution in chronological form, its major current activities, and some of the challenges expected in the next decade

  11. Experimental atomic physics

    International Nuclear Information System (INIS)

    Sellin, I.A.; Elston, S.B.; Forester, J.P.; Liao, K.H.; Pegg, D.J.; Peterson, R.S.; Thoe, R.S.; Hayden, H.C.; Griffin, P.M.

    1976-01-01

    The atomic structure and collision phenomena of highly stripped ions in the range Z = 6 to 35 were studied. Charge-transfer and multiple-electron-loss cross sections were determined. Absolute x-ray-production cross sections for incident heavy ions were measured. 10 figures, 1 table

  12. Hanford Atomic Products Operation monthly report, March 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-04-23

    This document presents a summary of work and progress at the Hanford Engineer Works for March 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.

  13. Hanford Atomic Products Operation monthly report, December 1954

    Energy Technology Data Exchange (ETDEWEB)

    1955-01-25

    This document presents a summary of work and progress at the Hanford Engineer Works for December 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  14. Hanford Atomic Products Operation monthly report, April 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-05-21

    This document presents a summary of work and progress at the Hanford Engineer Works for April 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the technical, design and project sections. Costs for the various departments are presented in the financial department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.

  15. Hanford Atomic Products Operation monthly report, August 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-09-28

    This document presents a summary of work and progress at the Hanford Engineer Works for August 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Sciences, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  16. Hanford Atomic Products Operation monthly report, June 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-07-26

    This document presents a summary of work and progress at the Hanford Engineer Works for June 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  17. Hanford Atomic Products Operation monthly report, August 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-09-17

    This document presents a summary of work and progress at the Hanford Engineer Works for August 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department report plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities, and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  18. Hanford Atomic Products Operation monthly report, January 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-02-21

    This document presents a summary of work and progress at the Hanford Engineer Works for January 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical Design, and Project Sections. Costs for the various departments are presented in the Financial department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  19. Hanford Atomic Products Operation monthly report, July 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-08-26

    This document presents a summary of work and progress at the Hanford Engineer Works for July 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and services departments have sections presenting their monthly statistics, work, progress, and summaries.

  20. Hanford Atomic Products Operation monthly report, October 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-11-30

    This document presents a summary of work and progress at the Hanford Engineer works for October, 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  1. Hanford Atomic Products Operation monthly report, May 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-06-23

    This document presents a summary of work and progress at the Hanford Engineer Works for May 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  2. Hanford Atomic Products Operation monthly report, May 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-06-22

    This document presents a summary of work and progress at the Hanford Engineer Works for May 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Science, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  3. Hanford Atomic Products Operation monthly report, September 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-10-27

    This document presents a summary of work and progress at the Hanford Engineer Works for September 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  4. Hanford Atomic Products Operation monthly report, October 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-11-24

    This document presents a summary of work and progress at the Hanford Engineer Works for October 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  5. Hanford Atomic Products Operation monthly report, June 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-07-22

    This document presents a summary of work and progress at the Hanford Engineer Works for June 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  6. Hanford Atomic Products Operation monthly report, August 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-09-18

    This document presents a summary of work and progress at the Hanford Engineer Works for August, 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  7. Monthly report Hanford Atomic Products Operation, July 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-08-20

    This document presents a summary of work and progress at the Hanford Engineer Works for July 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services Departments have sections presenting their monthly statistics, work, progress, and summaries.

  8. Hanford Atomic Products Operation monthly report, August 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-09-27

    This document presents a summary of work and progress at the Hanford Engineer Works for August 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Sciences, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  9. Hanford Atomic Products Operation monthly report, May 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-06-19

    This document presents a summary of work and progress at the Hanford Engineer Works for May 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  10. Hanford Atomic Products Operation monthly report, March 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-04-20

    This document presents a summary of work and progress at the Hanford Engineer Works for March 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  11. Hanford Atomic Products Operation monthly report, November 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-12-30

    This document presents a summary of work and progress at the Hanford Engineer Works for November 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  12. Hanford Atomic Products Operation, monthly report, July 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-08-23

    This document presents a summary of work and progress at the Hanford Engineer Works for July, 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  13. Hanford Atomic Products Operation monthly report, July 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-08-20

    This document presents a summary of work and progress at the Hanford Engineer Works for July 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  14. Hanford Atomic Products Operation monthly report, October 1953

    Energy Technology Data Exchange (ETDEWEB)

    1953-11-20

    This document presents a summary of work and progress at the Hanford Engineer Works for October 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services. Employee and Public Relations, and Community Real Estate and Service departments have sections presenting their monthly statistics, work, progress, and summaries.

  15. Hanford Atomic Products Operation monthly report, December 1953

    Energy Technology Data Exchange (ETDEWEB)

    1954-01-22

    This document presents a summary of work and progress at the Hanford Engineer Works for December 1953. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  16. Deep Atomic Binding (DAB) Hypothesis: A New Approach of Fission Product Chemistry

    International Nuclear Information System (INIS)

    Ajlouni, Abdul-Wali M.S.

    2006-01-01

    Former studies assumed that, after fission process occurs, the highly ionized new born atoms (20-22 positive charge), ionize the media in which they pass through before becoming stable atoms in a manner similar to 4-MeV ?-particles. Via ordinary chemical reactions with the surroundings, each stable atom has a probability to form chemical compound. Since there are about 35 different elemental atoms created through fission processes, a large number of chemical species were suggested to be formed. But, these suggested chemical species were not found in the environment after actual releases of FP during accidents like TMI (USA, 1979), and Chernobyl (former USSR, 1986), also the models based on these suggested reactions and species could not interpret the behavior of these actual species. It is assumed here that the ionization states of the new born atoms and the long term high temperature were not dealt with in an appropriate way and they were the reasons of former models failure. Our new approach of Deep Atomic Binding (DAB) based on the following: 1-The new born atoms which are highly ionized, 10-12 electrons associated with each nucleus, having a large probability to create bonds between them to form molecules. These bonds are at the L, or M shells, and we call it DAB. 2-The molecules stay in the reactor at high temperatures for long periods, so they undergo many stages of composition and decomposition to form giant molecules. By applying DAB approach, field data from Chernobyl, TMI and nuclear detonations could be interpreted with a wide coincidence resulted. (author)

  17. The elimination of waste emissions from oil and gas production operations

    International Nuclear Information System (INIS)

    Callaghan, D.

    1991-01-01

    This paper reports on the principal waste streams that have been identified from the production operations of all Shell Exploration and Production (E and P) companies. A phased approach has been identified to meet their target of eliminating over time all emissions, effluents and discharges that have a negative impact on the environment. In the short/medium term changes in operational procedures, together with end of pipe technology will be used to reduce emissions. In the longer term, fundamental changes to the production process will be required to eliminate the problem as far as possible at source, to re-use waste streams within the process and return any remaining unwanted material to the producing reservoir, without additional contamination. Carbon dioxide is currently regarded as a special case and will be reduced by minimizing the amount of energy consumed and/or wasted in the production process

  18. Recycling production designs: the value of coordination and flexibility in aluminum recycling operations

    Science.gov (United States)

    Brommer, Tracey H.

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an intermediate recycling facility that can reprocess the secondary materials into a liquid product Two downstream aluminum remelters will incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges persist because of the energy cost to maintain the liquid. Further coordination challenges result from the necessity to establish a long term recycling production plan in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses? A methodology is presented to calculate the optimal recycling center production parameters including 1) the number of recycled products, 2) the volume of recycled products, 3) allocation of recycled materials across recycled products, 4) allocation of recycled products across finished alloys, 4) the level of flexibility for the recycling center to operate. The methods implemented include, 1) an optimization model to describe the long term operations of the recycling center, 2) an uncertainty simulation tool, 3) a simulation optimization method, 4) a dynamic simulation tool with four embedded daily production optimization models of varying degrees of flexibility. This methodology is used to quantify the performance of several recycling center production designs of varying levels of coordination and flexibility. This analysis allowed the identification of the optimal recycling

  19. Atomic Mass Dependence of $\\Xi^{-}$ Baryon and $\\bar \\Xi^+$ Baryon Production in Central 250-GeV/c $\\pi^-$ - Nucleon Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dagenhart, William David [Tufts U.

    2000-02-01

    We present the first measurement of the atomic mass dependence of central $\\Xi^-$ and $\\overline{\\Xi}^+$ production. It is measured using a sample of 22,459 $\\Xi^-$'s and $\\overline{\\Xi}^+$'s produced in collisions between a 250 GeV/c $\\pi^-$ beam and targets of beryllium, aluminum, copper, and tungsten. The relative cross sections are fit to the two parameter function $\\sigma_0 A^{\\alpha}$, where A is the atomic mass. We measure $\\alpha$ = 0:924 $\\pm$ 0:020 $\\pm$ 0:025, for Feynman-x in the range $\\pm$ 0:09 < $x_F$ < 0:15.

  20. Biogas production and distribution. Operators' health and safety. Extended abstract

    International Nuclear Information System (INIS)

    Gardeur-Algros, E.; Chesnot, T.; Charissou, A.M.; Paris, T.; Bronner, C.

    2013-06-01

    Production and recovery of biogas from different substrates of agricultural, urban and industrial issues are at the heart of sustainable development for the production of renewable energy, reducing greenhouse gases and waste treatment. In 2011, in France, about 200 biogas plants were operational. Moreover, about 300 ISDND (nonhazardous waste storage or landfill sites) also produce biogas, about 90 that of them valorize it. Because of regulatory contexts and favorable measures to bolster the economy, the number of sites is growing and anaerobic pathways are diversifying in terms of substrate / treated waste, anaerobic digestion processes and ways of valorization. So it seems appropriate to focus on the health and safety of workers potentially exposed to various hazards during operations of monitoring, maintenance or malfunction of facilities. First, through a literature search and a query of experts, data such as substrate, digestate and biogas composition, information feedback on reported incidents / accidents or accidents at work and illnesses of operators have been sought. Then, critical points concerning the health and safety of operators in these sectors were identified by implementing some steps of HACCP (Hazard Analysis - Critical Control Points). Five sectors (agricultural methanization in farms and in centralized plants - methanization of urban sewage sludge - methanization of household garbage - industrial methanization in sectors like food industry, stationery and chemistry - biogas production from landfill sites) have been studied and led to dedicated syntheses. They summarize the collected information and present an operating diagram indicating the different stages of biogas production and recovery. On this diagram, critical points are identified, assessed according to their importance and are associated with phases of maintenance operation, or malfunction. The results are intended to educate the actors to potential risks and attention they need to

  1. Dynamical Disentangling and Cooling of Atoms in Bilayer Optical Lattices

    Science.gov (United States)

    Kantian, A.; Langer, S.; Daley, A. J.

    2018-02-01

    We show how experimentally available bilayer lattice systems can be used to prepare quantum many-body states with exceptionally low entropy in one layer, by dynamically disentangling the two layers. This disentangling operation moves one layer—subsystem A —into a regime where excitations in A develop a single-particle gap. As a result, this operation maps directly to cooling for subsystem A , with entropy being shuttled to the other layer. For both bosonic and fermionic atoms, we study the corresponding dynamics showing that disentangling can be realized cleanly in ongoing experiments. The corresponding entanglement entropies are directly measurable with quantum gas microscopes, and, as a tool for producing lower-entropy states, this technique opens a range of applications beginning with simplifying production of magnetically ordered states of bosons and fermions.

  2. Quantum Repeaters and Atomic Ensembles

    DEFF Research Database (Denmark)

    Borregaard, Johannes

    a previous protocol, thereby enabling fast local processing, which greatly enhances the distribution rate. We then move on to describe our work on improving the stability of atomic clocks using entanglement. Entanglement can potentially push the stability of atomic clocks to the so-called Heisenberg limit...... and allows for near-Heisenberg limited stability of atomic clocks. Furthermore, we describe how the operation of a clock can be altered to gain an exponential improvement of the stability even without entanglement. In the next part of the thesis, we describe our work on a novel type of heralded quantum gates...... temperature quantum memories and single photon sources. We have introduced a novel concept of motional averaging, which can be used in room-temperature systems, where fluctuations due to thermal motion is an issue. In particular, we have considered a system based on microcells filled with Cs-atoms, which can...

  3. Forward electron production in heavy ion-atom and ion-solid collisions

    International Nuclear Information System (INIS)

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table

  4. Building reactor operator sustain expert system with C language integrated production system

    International Nuclear Information System (INIS)

    Ouyang Qin; Hu Shouyin; Wang Ruipian

    2002-01-01

    The development of the reactor operator sustain expert system is introduced, the capability of building reactor operator sustain expert system is discussed with C Language Integrated Production System (Clips), and a simple antitype of expert system is illustrated. The limitation of building reactor operator sustain expert system with Clips is also discussed

  5. Arrangement between the International Atomic Energy Agency and the World Health Organization concerning the establishment and operation of a network of Secondary Standard Dosimetry Laboratories

    International Nuclear Information System (INIS)

    1986-01-01

    The International Atomic Energy Agency (IAEA) and the World Health Organization (WHO), recognizing that they have been co-operating in the operation of a network of Secondary Standard Dosimetry Laboratories (the Network), established pursuant to a Working Arrangement, dated 5 April 1976; and desiring to continue this co-operation in accordance with Article V of the relationship agreement concluded by IAEA and WHO in 1959; hereby enter a new arrangement to guide their work in operating the Network and providing assistance, when needed, to individual Secondary Standard Dosimetry Laboratories (SSDLs). The purpose of this Arrangement is to set forth responsibilities of IAEA and WHO in the operation and support of the Network and to establish criteria for SSDLs

  6. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  7. Atomic politics

    International Nuclear Information System (INIS)

    Skogmar, G.

    1979-01-01

    The authors basic point is that the military and civil sides of atomic energy cannot be separated. The general aim of the book is to analyze both the military and civil branches, and the interdependence between them, of American foreign policy in the atomic field. Atomic policy is seen as one of the most important imstruments of foreign policy which, in turn, is seen against the background of American imperialism in general. Firstly, the book investigates the most important means by which the United States has controlled the development in the nuclear field in other countries. These means include influencing the conditions of access to nuclear resources of various kinds, influencing the flow of technical-economic information and influencing international organizations and treaties bearing on atomic energy. The time period treated is 1945-1973. 1973 is chosen as the end-year of the study mainly because of the new conditions in the whole energy field initiated by the oil crisis in that year. The sources of the empirical work are mainly hearings before the Joint Committee on Atomic Energy of the U.S. Congress and legal material of various kinds. Secondly, the goals of the American policy are analyzed. The goals identified are armament effect, non-proliferation (horizontal), sales, and energy dependence. The relation between the main goals is discussed.The discussion is centered on the interdependence between the military and the civil aspects, conflict and coincidence of various goals, the relation between short-term and long-term goals, and the possibilities of using one goal as pretext for another. Thirdly, some causes of the changes in the atomic policy around 1953 and 1963 are identified. These are the strategic balance, the competitive situation, the capacity (of the American atomic productive apparatus), and the nuclear technological stage. The specific composition of these four factors at the two time-points can explain the changes of policy. (author)

  8. The design of system for operative planning of blast furnace production process

    Directory of Open Access Journals (Sweden)

    Malindžák Dušan

    1996-12-01

    Full Text Available A system for operative planning of blast furnace production process is described in the paper. The suggested system is based on the use of a new hierarchy of operative plans, consisting of one-month plan, (7+3 days plan, and 24-hour plan. The system allows smoothing of production process at the blast furnace plant, and at the same time satisfies all requirements of the steel plant regarding to the amount of pig iron.

  9. MOPITT Near Real-Time Data for LANCE: Automatic Quality Assurance and Comparison to Operational Products

    Science.gov (United States)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Ziskin, D.

    2017-12-01

    Terra-MOPITT (the Measurements of Pollution in the Troposphere instrument) near real-time (NRT) carbon monoxide (CO) products have been selected for distribution through NASA's LANCE (the Land, Atmosphere Near Real-Time Capability for EOS). MOPITT version 7 NRT data will be made publicly available within 3 hours from observation. The retrieval process is the same for both MOPITT NRT and operational products, albeit for the former it is constrained to use ancillary data available within the latency time. Among other requirements, LANCE NRT products must be examined for quality assurance (QA) purposes and relative errors between NRT and operational products must be quantified. Here we present an algorithm for automatic MOPITT NRT QA aimed to identify artifacts and separate those from anomalously high but real CO values. The algorithm is based on a comparison to the statistics of MOPITT operational products. We discuss the algorithm's performance when tested by applying it to three MOPITT datasets: a known (and corrected) artifact in version 4 operational data, anomalously high CO values in operational data during the 2015 Indonesia fires, and actual NRT data. Last, we describe results from a quantitative comparison between MOPITT NRT data and their operational counterparts.

  10. UNESCO and atomic energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    Atomic energy has been of particular concern to UNESCO virtually since the founding of this United Nations agency with the mission of promoting the advancement of science along with education and culture. UNESCO has been involved in the scientific aspects of nuclear physics - notably prior to the creation of the International Atomic Energy Agency - but it has also focussed its attention upon the educational and cultural problems of the atomic age. UNESCO's sphere of action was laid down by its 1954 General Conference which authorized its Director-General to extend full co-operation to the United Nations in atomic energy matters, with special reference to 'the urgent study of technical questions such as those involved in the effects of radioactivity on life in general, and to the dissemination of objective information concerning all aspects of the peaceful utilization of atomic energy; to study, and if necessary, to propose measures of international scope to facilitate the use of radioisotopes in research and industry'. UNESCO's first action under this resolution was to call a meeting of a committee of experts from twelve nations to study the establishment of a system of standards and regulations for the preparation, distribution, transport and utilization of radioactive isotopes and tracer molecules

  11. Electron microscopy at atomic resolution

    Energy Technology Data Exchange (ETDEWEB)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40/sup 0/ biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals.

  12. Electron microscopy at atomic resolution

    International Nuclear Information System (INIS)

    Gronsky, R.

    1983-11-01

    The direct imaging of atomic structure in solids has become increasingly easier to accomplish with modern transmission electron microscopes, many of which have an information retrieval limit near 0.2 nm point resolution. Achieving better resolution, particularly with any useful range of specimen tilting, requires a major design effort. This presentation describes the new Atomic Resolution Microscope (ARM), recently put into operation at the Lawrence Berkeley Laboratory. Capable of 0.18 nm or better interpretable resolution over a voltage range of 400 kV to 1000 kV with +- 40 0 biaxial specimen tilting, the ARM features a number of new electron-optical and microprocessor-control designs. These are highlighted, and its atomic resolution performance demonstrated for a selection of inorganic crystals

  13. High-intensity, thin-target He-jet production source

    International Nuclear Information System (INIS)

    Bai, Y.; Vieira, D.J.; Wouters, J.M.; Butler, G.W.; Rosenauer, Dk; Loebner, K.E.G.; Lind, V.G.; Phillips, D.R.

    1996-01-01

    A thin-target He-jet system suited to the production and rapid transport of non-volatile radioactive species has been successfully operated with proton beam intensities of up to 700 μA. The system consists of a water-cooled, thin-target chamber, capillary gas transport system, moving tape/Ge detection system, and an aerosol generator/gas recirculator. The yields for a wide variety of uranium fission and deep spallation products have been measured and robust operation of the system demonstrated for several weeks. He-jet transport and collection efficiencies ranged between 15 and 25% with collection rates of 10 7 to 10 8 atoms/sec/isotope. The high-intensity, thin-target He-jet approach represents a robust production source for nonvolatile radioactive heavy ion beams

  14. New elements in production technology and operations

    International Nuclear Information System (INIS)

    Melberg, O.

    1995-01-01

    The title of this presentation embraces quite a wide scope, however, focus will be on Mobile Production Systems (MPSs) and in particular on Floating Production, Storage and Offloading Units (FPSOs), for which there is presently a remarkable boost in interest particularly in the North Sea area. Over the last 20 years, pioneered by the Argyll TW 58 in 1975, 11 mobile systems have been/are active in the North Sea, i.e. a growth of one for each second year. In 1994 alone a number of eight mobile production systems were contracted of which seven were FPSOs. This boost is following nine years of successful operation of the Petrojarl 1 and is also clearly linked to the success of the Kerr-McGee's Gryphon A project. The title of this presentation reflects new elements in this business; the upturn in interest for FPSOs introduces new ways of thinking and acting. In this paper, the new elements are divided into the general trends; new commercial elements and new technological elements

  15. Present status and future perspective of development of atomic energy

    International Nuclear Information System (INIS)

    Takuma, Masao

    1990-01-01

    The last year was the 50th year from the discovery of the nuclear fission of uranium in 1939. The utilization of atomic energy made the unfortunate start as atomic bombs, but after the 'Atoms for Peace' declaration of President Eisenhauer, it has become to contribute to the development of mankind as nuclear power generation and radiation utilization. In Japan, the Atomic Energy Act was instituted in 1955, and the utilization of atomic energy has been eagerly promoted. As to nuclear power generation, as of the end of June, 1989, 423 power plants were in operation in the world, which generated 333 million kW, equivalent to 17 % of the total generated electric power. The nuclear power plants under construction and at planning stage were 199 with 190 million kW capacity, in this way, the development is advanced actively. At present in Japan, 38 nuclear power plants are in operation, generating 29.46 million kW, which has reached 30 % of the total generated electric power. The social environment surrounding atomic energy and the basic way of thinking on atomic energy development are discussed. The demand and supply of electric power in 21st century and atomic energy, and the policy of electric power companies to cope with it are explained. (K.I.)

  16. Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air

    Science.gov (United States)

    Porter, H. S.; Jackman, C. H.; Green, A. E. S.

    1976-01-01

    Relativistic electron and proton impact cross sections are obtained and represented by analytic forms which span the energy range from threshold to 1 GeV. For ionization processes, the Massey-Mohr continuum generalized oscillator strength surface is parameterized. Parameters are determined by simultaneous fitting to (1) empirical data, (2) the Bethe sum rule, and (3) doubly differential cross sections for ionization. Branching ratios for dissociation and predissociation from important states of N2 and O2 are determined. The efficiency for the production of atomic nitrogen and oxygen by protons with kinetic energy less than 1 GeV is determined using these branching ratio and cross section assignments.

  17. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    Science.gov (United States)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  18. Heralded entanglement of two remote atoms

    Science.gov (United States)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  19. The detection of cold antihydrogen atoms

    International Nuclear Information System (INIS)

    Zhang, Zhongdong

    2007-01-01

    The ATRAP experiment at CERN's antiproton decelerator (AD) aims for a test of CPT violation and Lorentz invariance by a comparison of hydrogen to antihydrogen atom spectroscopy and a measurement of the gravitational force on antimatter atoms. The experiment is divided into two parts: ATRAP-I, where successfully antihydrogen atoms were produced and intensive studies on the charged clouds of positrons and antiprotons were performed, and ATRAP-II which was commissioned during the beam-time 2006. ATRAP-II includes a much larger superconducting solenoid bore allowing the installation of an extended detection system as well as an optimized combined Penning-Ioffe trap. Another essential part is a new positron accumulator and delivery system which will increase the ATRAP-II efficiency drastically. Thus ATRAP-II now allows for much larger flexibility, increased performance, higher robustness, and better efficiency for the production and storage of cold antihydrogen atoms. A general overview of the experimental setup for the second phase of the ATRAP experiment will be presented in this thesis. The antiproton annihilation detector system, consisting of several layers of scintillating fibers, counts the antihydrogen atoms and determines the annihilation vertex of the atoms. This diagnostic element will allow to optimize the production of cold antihydrogen sufficiently to permit optical observations and measurements. Extensive Monte Carlo simulations concerning the track fitting and vertex reconstruction have been developed during the planned interruption of antiproton production at AD in the year 2005. Different event generators, magnetic field distributions as well as data reconstruction algorithms on simulated data were established and the results were compared to data in 2006. To improve the detector position resolution, a constraint-fit procedure was adopted. Further possible improvements, by applying certain cuts on the data, were investigated. Real-time measurements

  20. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  1. Rutherford-Bohr atom

    Science.gov (United States)

    Heilbron, J. L.

    1981-03-01

    Bohr used to introduce his attempts to explain clearly the principles of the quantum theory of the atom with an historical sketch, beginning invariably with the nuclear model proposed by Rutherford. That was sound pedagogy but bad history. The Rutherford-Bohr atom stands in the middle of a line of work initiated by J.J. Thomson and concluded by the invention of quantum mechanics. Thompson's program derived its inspiration from the peculiar emphasis on models characteristic of British physics of the 19th century. Rutherford's atom was a late product of the goals and conceptions of Victorian science. Bohr's modifications, although ultimately fatal to Thomson's program, initially gave further impetus to it. In the early 1920s the most promising approach to an adequate theory of the atom appeared to be the literal and detailed elaboration of the classical mechanics of multiply periodic orbits. The approach succeeded, demonstrating in an unexpected way the force of an argument often advanced by Thomson: because a mechanical model is richer in implications than the considerations for which it was advanced, it can suggest new directions of research that may lead to important discoveries.

  2. The method of waste liquid atomization/incineration by using ultrasonic industrial burners

    International Nuclear Information System (INIS)

    Bartonek, Thomas

    1999-01-01

    The problem of burning a fuel is closely related to distributing that fuel and mixing it with the combustion air within a pre-designated space, the combustion chamber. For fuel engineers, the rule of thumb is unchanged: mix it and it will burn. That is why the burner designer focuses his attention on incorporating the best possible atomization and mixing, equipment, i.c. in the end, on the construction of the atomizer nozzle and the control of the combustion air. It was these considerations plus the inability of conventional burners to meet the tough demands of today's applications that led DUMAG to undertake an intensive program of research which has now been crowned with success. Below, basic points drawn from the fundamental knowledge of all fuel engineers have been included to bring into sharper focus the operating principles of the DUMAG Ultrasonic Industrial Burner, a world class Austrian product. This paper describes a plant which has been operating without incident since October 1977. Its level of operational effectiveness is at least equivalent to that of a standard oil burner plant. The plant is also in full compliance with current environmental standards following the installation of additional safety equipment such as pre-combustion chambers, sensors to monitor pre-combustion chamber temperatures, cut-off valves for reaction water and solvents to block their flow if no heating oil is being fed in, flue gas density monitor, and finer atomization and better mixing by means of an ultrasonic system - even with fluctuations in the viscosity. By eliminating disposal costs and recovering power from liquid waste materials, the entire plant pays for itself within one year. (Original)

  3. A (201)Hg+ Comagnetometer for (199)Hg+ Trapped Ion Space Atomic Clocks

    Science.gov (United States)

    Burt, Eric A.; Taghavi, Shervin; Tjoelker, Robert L.

    2011-01-01

    A method has been developed for unambiguously measuring the exact magnetic field experienced by trapped mercury ions contained within an atomic clock intended for space applications. In general, atomic clocks are insensitive to external perturbations that would change the frequency at which the clocks operate. On a space platform, these perturbative effects can be much larger than they would be on the ground, especially in dealing with the magnetic field environment. The solution is to use a different isotope of mercury held within the same trap as the clock isotope. The magnetic field can be very accurately measured with a magnetic-field-sensitive atomic transition in the added isotope. Further, this measurement can be made simultaneously with normal clock operation, thereby not degrading clock performance. Instead of using a conventional magnetometer to measure ambient fields, which would necessarily be placed some distance away from the clock atoms, first order field-sensitive atomic transition frequency changes in the atoms themselves determine the variations in the magnetic field. As a result, all ambiguity over the exact field value experienced by the atoms is removed. Atoms used in atomic clocks always have an atomic transition (often referred to as the clock transition) that is sensitive to magnetic fields only in second order, and usually have one or more transitions that are first-order field sensitive. For operating parameters used in the (199)Hg(+) clock, the latter can be five orders of magnitude or more sensitive to field fluctuations than the clock transition, thereby providing an unambiguous probe of the magnetic field strength.

  4. Atomization of JP-10/B4C gelled slurry fuel

    OpenAIRE

    Guglielmi, John David

    1992-01-01

    The atomization of a gelled boron slurry fuel using two commercially available airblast atomizers was studied at atmospheric pressure in non-reacting flow. The atomization of water was also characterized for comparison. Each atomizer was operated at two different liquid mass flow rates and several air/ fuel ratios. Drop size distribution was measured using a Malvern 2600 HSD Laser Diffraction Particle Sizer, Drop sizes acceptable for use in ramjet combustors could be obtained f...

  5. Atomic Energy Amendment Act 1987 - No 5 of 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This Act modifies substantially the Atomic Energy Act 1953 as already amended. It repeals almost all of the existing Atomic Energy Act, including the provisions establishing the Australian Atomic Energy Commission and the security provisions. A new authority is created under separate legislation to replace the Commission: the Australian Nuclear Science and Technology Organization. The only parts of the Act which remain are the sections covering the authorization of the Ranger Project and the Commonwealth title to uranium in the Northern Territory; and the requirement for reporting of discoveries of prescribed substances (uranium, thorium, i.e. any substance which may be used for production of atomic energy) and information on their production. Certain definitions have also been kept. (NEA) [fr

  6. Metal screen retention for thoron daughter free atoms and atoms attached to condensation nuclei

    International Nuclear Information System (INIS)

    Cash, W.; Webb, J.; Fitts, D.; Skrable, K.W.; Chabot, G.E.

    1978-01-01

    Metal support screens available in a 47 mm commercial filter holder (model F3052-4, available from Scientific Products, Bedford, MA) assembly were tested for retention of thoron daughter atoms and atoms attached to condensation nuclei as a function of the flow rate of the carrier air stream. Sources of Pb-212 were generated on the surface of a metal disk by exposing the disk to thoron emanation generated from a special preparation of Th-228. This source of Pb-212, in transient equilibrium with its daughters, was placed in a flow through chamber connected in series to two of the metal screens backed by a glass fiber filter. Most of the recoil product radioactivity emitted from the Pb-212 source and collected on the screens was due to single atoms of Tl-208, which is born by alpha decay of Bi-212 with a recoil energy of 116 keV. Some free atoms of Bi-212 were also observed. Alpha autoradiographs of Filter samples placed on the downstream side of the two metal screens gave proof of the existence of Pb-212 aggregates through their alpha star images. These aggregate recoil particles were found to have a much higher penetration through the screens than free atoms of Tl-208 and Bi-212. Penetration of Tl-208 atoms and ions decreased exponentially as the inverse of the carrier air flow rate. Penetration varied from 0.047 at 0.088 cfm to 0.661 at 2.47 cfm. Atoms of Pb-212 attached to condensation nuclei were obtained by passing thoron into a reaction chamber containing naturally occurring condensation nuclei from the laboratory. The retention for these attached species varied both as a function of the flow rate and the age of the aerosol. The maximum retention varied from 0.525% at 6.38 cfm to 3.5% at 0.636 cfm for respective delay times of 120 and 30 minutes post the introduction of the thoron into the reaction chamber. A system consisting of a single screen backed by a glass fiber filter may be used to obtain the numbers of radon or thoron daughter free atoms and attached

  7. On the atomic shell structure calculation (1)

    International Nuclear Information System (INIS)

    Choe Sun Chol

    1986-01-01

    We have considered the problem of atomic shell structure calculation using operator technique. We introduce reduced matrix elements of annihilation operators according to eg. (4). The normalized basis function is denoted as || ...>. The reduced matrix elements of the pair annihilation operators are expressed throw one-electron matrix elements. Some numerical results are represented and the problem of sign assignment is discussed. (author)

  8. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  9. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  10. AMS data production facilities at science operations center at CERN

    Science.gov (United States)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  11. An Active Learning Exercise for Product Design from an Operations Perspective

    Science.gov (United States)

    Hill, Stephen; Baker, Elizabeth

    2016-01-01

    Product design is a topic that is regularly covered in introductory operations management courses. However, a pedagogical challenge exists related to the presentation of introductory-level product design in a way that promotes active learning. The hands-on exercise presented in this article provides instructors with an activity that gives students…

  12. Operational Excellence through Schedule Optimization and Production Simulation of Application Specific Integrated Circuits.

    Energy Technology Data Exchange (ETDEWEB)

    Flory, John Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Padilla, Denise D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gauthier, John H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zwerneman, April Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Steven P [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    Upcoming weapon programs require an aggressive increase in Application Specific Integrated Circuit (ASIC) production at Sandia National Laboratories (SNL). SNL has developed unique modeling and optimization tools that have been instrumental in improving ASIC production productivity and efficiency, identifying optimal operational and tactical execution plans under resource constraints, and providing confidence in successful mission execution. With ten products and unprecedented levels of demand, a single set of shared resources, highly variable processes, and the need for external supplier task synchronization, scheduling is an integral part of successful manufacturing. The scheduler uses an iterative multi-objective genetic algorithm and a multi-dimensional performance evaluator. Schedule feasibility is assessed using a discrete event simulation (DES) that incorporates operational uncertainty, variability, and resource availability. The tools provide rapid scenario assessments and responses to variances in the operational environment, and have been used to inform major equipment investments and workforce planning decisions in multiple SNL facilities.

  13. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Berenyi, D.

    1983-01-01

    Investigations in atomic physics by high-energy heavy ions are discussed. The main attention is paid to collision mechanisms (direct Coulomb interaction, quasi-molecular collision mechanism and other models) and the structure of highly ionized and excited atoms. Some problems of fundamental issues (Lamb shift of H-like heavy ions, the superheavy quasi-atoms and the position production in supercritical fields) are conside-- red in detail

  14. Method and apparatus for quantum information processing using entangled neutral-atom qubits

    Science.gov (United States)

    Jau, Yuan Yu; Biedermann, Grant; Deutsch, Ivan

    2018-04-03

    A method for preparing an entangled quantum state of an atomic ensemble is provided. The method includes loading each atom of the atomic ensemble into a respective optical trap; placing each atom of the atomic ensemble into a same first atomic quantum state by impingement of pump radiation; approaching the atoms of the atomic ensemble to within a dipole-dipole interaction length of each other; Rydberg-dressing the atomic ensemble; during the Rydberg-dressing operation, exciting the atomic ensemble with a Raman pulse tuned to stimulate a ground-state hyperfine transition from the first atomic quantum state to a second atomic quantum state; and separating the atoms of the atomic ensemble by more than a dipole-dipole interaction length.

  15. Atomic resolution images of graphite in air

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, D.A.; Shedd, G.M.; Griffis, D.; Russell, P.E.

    1988-12-01

    One sample used for proof of operation for atomic resolution in STM is highly oriented pyrolytic graphite (HOPG). This sample has been imaged with many different STM`s obtaining similar results. Atomic resolution images of HOPG have now been obtained using an STM designed and built at the Precision Engineering Center. This paper discusses the theoretical predictions and experimental results obtained in imaging of HOPG.

  16. Quantized fields and operators on a partial inner product space

    International Nuclear Information System (INIS)

    Shabani, J.

    1985-11-01

    We investigate the connection between the space OpV of all operators on a partial inner product space V and the weak sequential completion of the * algebra L + (Vsup(no.)) of all operators X such that Vsup(no.) is contained in D(X) intersection D(X*) and both X and its adjoint X* leave Vsup(no.) invariant. This connection gives a mathematical description of quantized fields in terms of elements of OpV. (author)

  17. Process optimization of atomized melt deposition for the production of dispersion strengthened Al-8.5%Fe-1.2%V-1.7%Si alloys

    International Nuclear Information System (INIS)

    Hariprasad, S.; Sastry, S.M.L.; Jerina, K.L.

    1995-01-01

    Atomized melt deposition is a low cost manufacturing process with the microstructural control achieved through rapid solidification. In this process the liquid metal is disintegrated into fine droplets by gas atomization and the droplets are deposited on a substrate producing near net shape products. In the present investigation Al-8.5%Fe-1.2%V-1.7%Si alloy was produced using atomized melt deposition process to study the evolution of microstructure and assess the cooling rates and the undercooling achieved during the process. The size, morphology and the composition of second phase particles in the alloy are strong functions of the cooling rate and the undercooling and hence microstructural changes with the variation in process parameters were quantified. To define optimum conditions for the atomized melt deposition process, a mathematical model was developed. The model determines the temperature distribution of the liquid droplets during gas atomization and during the deposition stages. The model predicts the velocity distribution, cooling rates and the fraction solid, during the flight for different droplet sizes. The solidification heat transfer phenomena taking place during the atomized melt deposition process was analyzed using a finite difference method based on the enthalpy formulation

  18. The importance of production standard operating procedure in a family business company

    Science.gov (United States)

    Hongdiyanto, C.

    2017-12-01

    Plastic industry is a growing sector, therefore UD X which engage in this business has a great potential to grow as well. The problem faced by this family business company is that no standard operating procedure is used and it lead to problem in the quality and quantity produced. This research is aim to create a production standard operating procedure for UD X. Semistructure interview is used to gather information from respondent to help writer create the SOP. There are four SOP’s created, namely: classifying SOP, sorting SOP, milling SOP and packing SOP. Having SOP will improve the effectiveness of production because employees already know how to work in each stages of production process.

  19. A Production Approach to Performance of Banks with Microfinance Operations

    OpenAIRE

    Emilyn Cabanda; Eleanor C. Domingo

    2014-01-01

    Banking institutions, nowadays, serve as intermediaries of funds to a variety of clients, including the micro enterprisers. This study analyzes and measures the performance of rural and thrift banks with microfinance operations in the Philippines, using combined measures of data envelopment analysis and traditional financial performance indicators. Data envelopment analysis (DEA) method is employed to measure the productive efficiency of these banks under the production approach. The variable...

  20. Operations on N-varieties of regular ω-languages and products on regular ω-languages

    International Nuclear Information System (INIS)

    Phan Trung Huy; Do Long Van

    1995-12-01

    In an earlier paper (1986) we have shown the existence of an Eilenberg correspondence between varieties of regular ω-languages (N-varieties, for short) and varieties of finite monoids (M-varieties) not being a variety of groups. The aim of this paper is to establish the correspondence in the connection with some operations on languages and on M-varieties. For this, some operations on N-varieties concerning with the shuffle product on ω-languages are studied, explicit forms of some N-varieties closed under shuffle product are given. In particular, a new product on ω-language and a new operation on N-varieties are introduced and considered. (author). 17 refs

  1. The 2002 amendment to the German atomic energy act concerning the phase-out of nuclear power

    International Nuclear Information System (INIS)

    Vorwerk, A.

    2002-01-01

    The phase-out of the use of nuclear power for electricity production has now been legally regulated by the 2002 Atomic Energy Act, based on the Agreement between the German Government and the energy utilities. The provisions of this Act comply with constitutional and European law, and take account of Germany's international commitments. The new 2002 Atomic Energy Act is supplemented by additional steps towards the phase-out, in particular in the area of nuclear disposal. These steps are being taken primarily within the framework of a planned national disposal plan and a procedure to be enveloped for the selection of a location for a final disposal site for radioactive wastes. The key task for the Laender authorities and the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety continues to be to ensure that operators of nuclear power plants comply with a high standard of safety during the residual operating periods of their plants. (author)

  2. Optical lattice clock with strontium atoms: a second generation of cold atom clocks

    International Nuclear Information System (INIS)

    Le Targat, R.

    2007-07-01

    Atomic fountains, based on a microwave transition of Cesium or Rubidium, constitute the state of the art atomic clocks, with a relative accuracy close to 10 -16 . It nevertheless appears today that it will be difficult to go significantly beyond this level with this kind of device. The use of an optical transition, the other parameters being unchanged, gives hope for a 4 or 5 orders of magnitude improvement of the stability and of the relative uncertainty on most systematic effects. As for motional effects on the atoms, they can be controlled on a very different manner if they are trapped in an optical lattice instead of experiencing a free ballistic flight stage, characteristic of fountains. The key point of this approach lies in the fact that the trap can be operated in such a way that a well chosen, weakly allowed, J=0 → J=0 clock transition can be free from light shift effects. In this respect, the strontium atom is one of the most promising candidate, the 1S 0 → 3P 0 transition has a natural width of 1 mHz, and several other easily accessible transitions can be used to efficiently laser cool atoms down to 10 μK. This thesis demonstrates the experimental feasibility of an optical lattice clock based on the strontium atom, and reports on a preliminary evaluation of the relative accuracy with the fermionic isotope 87 Sr, at a level of a few 10 -15 . (author)

  3. Maximization of Egyptian Gas Oil Production Through the Optimal Use of the Operating Parameters

    International Nuclear Information System (INIS)

    Marawan, H.

    2004-01-01

    Gas oil is the major fossil fuel consumed around the world. Global gas oil consumption is rising at a steadily fast pace because of its higher combustion efficiency (versus gasoline). The annual increase rate of gas oil consumption in Egypt is 7 % whereas, the world increase rates range from 1.5 % to 2 % . The main sources for producing gas oil in Egypt refiners is the direct production from the atmospheric distillation process units or it may be produced as a side product from vacuum distillation units . Gas oil is produced through hydrocracking process of vacuum distillation side streams and heavy cocked gas oil. Gas oil production yield can be increased through the existing operation process units. Modifications of the current atmospheric and vacuum tower operations will increase gas oil yield rates to 20 % more than the existing production rates. The modification of the operating conditions and adoption of the optimum catalyst of the existing hydrocracking and mild hydro cracking process units improve gas oil production yield. Operating delayed cocker at high temperatures, low pressure and low cycle ratio also support achieving the maximization of gas oil yield

  4. Simulation of nuclear plant operation into a stochastic energy production model

    International Nuclear Information System (INIS)

    Pacheco, R.L.

    1983-04-01

    A simulation model of nuclear plant operation is developed to fit into a stochastic energy production model. In order to improve the stochastic model used, and also reduce its computational time burdened by the aggregation of the model of nuclear plant operation, a study of tail truncation of the unsupplied demand distribution function has been performed. (E.G.) [pt

  5. Perception of the HACCP system operators on livestock product manufacturers.

    Science.gov (United States)

    Kim, Jung-Hyun; Nam, Ki-Chang; Jo, Cheorun; Lim, Dong-Gyun

    2014-01-01

    The purpose of this study was to investigate crucial factors on HACCP system implementation in domestic livestock product plants, and to offer job satisfaction and the career prospect of HACCP system operators. The survey was carried out by selecting 150 HACCP system operators who implemented HACCP system. The respondents claimed that the most important contents in HACCP system operation were to assemble HACCP team (21.8%), and the second was to monitoring (20.0%). Documentation and recording (16.9%) and verification (11.1%) were followed. The respondents answered the major factor in sanitation management was cleaning/washing/disinfection (18.9%) and inspection (18.4%). The results showed that there were significant differences in the prospect of occupation in HACCP system operator by the gender (p HACCP system operator were satisfied with their job (73%) and also showed optimistic prospect of occupation (82%).

  6. The operable modeling of simultaneous saccharification and fermentation of ethanol production from cellulose.

    Science.gov (United States)

    Shen, Jiacheng; Agblevor, Foster A

    2010-03-01

    An operable batch model of simultaneous saccharification and fermentation (SSF) for ethanol production from cellulose has been developed. The model includes four ordinary differential equations that describe the changes of cellobiose, glucose, yeast, and ethanol concentrations with respect to time. These equations were used to simulate the experimental data of the four main components in the SSF process of ethanol production from microcrystalline cellulose (Avicel PH101). The model parameters at 95% confidence intervals were determined by a MATLAB program based on the batch experimental data of the SSF. Both experimental data and model simulations showed that the cell growth was the rate-controlling step at the initial period in a series of reactions of cellulose to ethanol, and later, the conversion of cellulose to cellobiose controlled the process. The batch model was extended to the continuous and fed-batch operating models. For the continuous operation in the SSF, the ethanol productivities increased with increasing dilution rate, until a maximum value was attained, and rapidly decreased as the dilution rate approached the washout point. The model also predicted a relatively high ethanol mass for the fed-batch operation than the batch operation.

  7. Assessment of productivity and water use efficiency in three maize (zea mays L.) varieties in Kwabenya-Atomic area

    International Nuclear Information System (INIS)

    Frimpong, J. O.

    2010-06-01

    The production of rain-fed maize in the Kwabenya-Atomic area of the coastal savannah environment of Ghana is limited by low and erratic rainfall. Enhancing maize production in the area will require the use of maize varieties efficient in the use of soil moisture. The study was, therefore, conducted to evaluate three recently released maize varieties (Obatanpa, Mamaba, and Golden Crystal) for their efficiency in the use of soil moisture for total dry matter and grain production and consequently identify the maize varieties suitable for rain-fed production in the Kwabenya-Atomic area. Field experiments were conducted m 2008 during the major and minor cropping seasons at Kwabenya-Atomic area in Ghana using three maize varieties grown at a planting distance of 0.4 m within rows and 0.8 m between rows. The experimental design used was the randomised complete block design in four replicates. Plants were sampled every two weeks throughout the maize growing seasons. Access tubes installed in each sub-plot facilitated simultaneous moisture monitoring with the aid of a neutron probe (CPN (R) 503 Hydroprobe) in a 120 cm soil profile. The moisture content values were used for the estimation of actual evapotranspiration of the maize crop using the water balance approach. Grain yield (GY) and its associated water use efficiency (WUE GY ) were significantly different (P ≤ 0.05) among the maize varieties during the major cropping season with Mamaba producing the highest grain yield of 7250.0 kg ha -1 and WUE GY of 13.2 kg ha -1 mm -1 . For the minor cropping season, no significant difference was observed in grain yield, which ranged between 5800.0 and 7200.0 kg ha -1 , with Obatanpa producing the highest grain yield. No significant difference was observed in WUE GY during the minor cropping season which ranged between 14.6 and 19.1 kg ha -1 mm -1 with Obatanpa having the highest WUE GY . The maize genotype produced similar total dry matter (TDM) during each of the cropping

  8. Federal Environmental Regulations Impacting Hydrocarbon Exploration, Drilling, and Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Waste handling and disposal from hydrocarbon exploration, drilling, and production are regulated by the US Environmental Protection Agency (EPA) through federal and state regulations and/or through implementation of federal regulations. Some wastes generated in these operations are exempt under the Resource Conservation and Recovery Act (RCRA) but are not exempt under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Superfund Amendments and Reauthorization Act (SARA), and other federal environmental laws. Exempt wastes remain exempt only if they are not mixed with hazardous wastes or hazardous substances. Once mixture occurs, the waste must be disposed as a hazardous material in an approved hazardous waste disposal facility. Before the Clean Air Act as amended in 1990, air emissions from production, storage, steam generation, and compression facilities associated with hydrocarbon exploration, drilling, and production industry were not regulated. A critical proposed regulatory change which will significantly effect Class II injection wells for disposal of produced brine and injection for enhanced oil recovery is imminent. Federal regulations affecting hydrocarbon exploration, drilling and production, proposed EPA regulatory changes, and a recent significant US Court of Appeals decision are covered in this report. It appears that this industry will, in the future, fall under more stringent environmental regulations leading to increased costs for operators.

  9. A new two-photon mechanism of the formation of a continuous spectrum of photons emitted by secondary emission products of atomic particles

    International Nuclear Information System (INIS)

    Veksler, V.I.

    1986-01-01

    A two-photon mechanism of the formation of a continuous spectrum of photons emitted by products of metal sputtering is considered. The following process of the two-photon mechanism is considered: the continuous spectrum is formed under quadrupole two-photon transitions in sputtered excited atoms having vacancies at the d level in atoms of transition metals or at the of level in lanthanides found against the filled conduction band. It is shown that the suggested mechanism should play an essential role in the formation of the continuous spectrum of optical radiation

  10. Stability of the Markov operator and synchronization of Markovian random products

    Science.gov (United States)

    Díaz, Lorenzo J.; Matias, Edgar

    2018-05-01

    We study Markovian random products on a large class of ‘m-dimensional’ connected compact metric spaces (including products of closed intervals and trees). We introduce a splitting condition, generalizing the classical one by Dubins and Freedman, and prove that this condition implies the asymptotic stability of the corresponding Markov operator and (exponentially fast) synchronization.

  11. 21 CFR 111.135 - What quality control operations are required for product complaints?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What quality control operations are required for... MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Production and Process Control System: Requirements for Quality Control § 111.135 What quality control operations are required for...

  12. Factors affecting research productivity of production and operations management groups: An empirical study

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available This paper identifies factors that promote research productivity of production and operations management (POM groups of researchers in US business schools. In this study, research productivity of a POM group is defined as the number of articles published per POM professor in a specific period of time. The paper also examines factors that affect research quality, as measured by the number of articles published per POM professor in journals, which have been recognized in the POM literature as an elite set. The results show that three factors increase both the research productivity and the quality of the articles published by professors of a POM group. These factors are (a the presence of a POM research center, (b funding received from external sources for research purposes, and (c better library facilities. Doctoral students do assist in improving research quality and productivity, but they are not the driving force. These results have important implications for establishing policy guidelines for business schools. For example, real-world problems are funded by external sources and have a higher probability of publication. Furthermore, schools could place more emphasis on external funding, as most engineering schools do, since groups receiving external funding are more productive in terms of research.

  13. NEACRP thermal fission product benchmark

    International Nuclear Information System (INIS)

    Halsall, M.J.; Taubman, C.J.

    1989-09-01

    The objective of the thermal fission product benchmark was to compare the range of fission product data in use at the present time. A simple homogeneous problem was set with 200 atoms H/1 atom U235, to be burnt up to 1000 days and then decay for 1000 days. The problem was repeated with 200 atoms H/1 atom Pu239, 20 atoms H/1 atom U235 and 20 atoms H/1 atom Pu239. There were ten participants and the submissions received are detailed in this report. (author)

  14. Exposure Control for Operations and Maintenance at the Accelerator Production of Tritium

    International Nuclear Information System (INIS)

    McGuire, D.H.

    1998-09-01

    The APT will be designed and operated to support continuous tritium production. Tritium is an essential ingredient in U.S. nuclear weapons. The APT will be designed and staffed to support continuous production of tritium by trained, qualified, and certified personnel

  15. Danish Atomic Energy Commission 1974/75

    International Nuclear Information System (INIS)

    1975-11-01

    Activities of the Danish Atomic Energy Commission and the Risoe eesearch Establishment for the period April1, 1974 to March 31, 1975 are summarized. The operations of the various facilities at the Research Establishment are revised. Operating staff levels and financial data are tabulated, a selected list of staff publications is given, and the design data on research facilities are presented. (B.P.)

  16. Department of Atomic Energy [India]: Annual report 1979-1980

    International Nuclear Information System (INIS)

    1980-01-01

    The work of the research establishments, projects undertaken and public sector undertakings of the Department of Atomic Energy during the financial year 1979-80 is surveyed. The research and development activities of the Bhabha Atomic Research Centre at Bombay, the Reactor Research Centre at Kalpakkam, the Tata Institute of Fundamental Research at Bombay, the Saha Institute of Nuclear Physics at Calcutta and the Tata Memorial Centre at Bombay are described. An account of the progress of heavy water production plant projects, the Madras and Narora Atomic Power Projects, the MHD project and the 100 MW thermal research reactor R-5 Project at Trombay is given. Performance of the Tarapur and Rajasthan Atomic Power Stations, Nuclear Fuel Complex at Hyderabad, Atomic Minerals Division, ISOMED (the radiation sterilisation plant for medical products) at Bombay, the Indian Rare Earths Ltd., the Uranium Corporation of India Ltd., and the Electronics Corporation of India Ltd., Hyderabad is reported. (M.G.B.)

  17. Teaching Model Innovation of Production Operation Management Engaging in ERP Sandbox Simulation

    Directory of Open Access Journals (Sweden)

    Tinggui Chen

    2014-05-01

    Full Text Available In light of the course of production operation management status, this article proposes the innovation and reform of the teaching model from three aspects of from the curriculum syllabus reform, the simulation of typical teaching organization model, and the enterprise resource process (ERP sandbox application in the course practice. There are an exhaustive implementation procedure and a further discussion on the promotion outcome. The results indicate that the innovation of teaching model and case studying practice in production operation management based on ERP sandbox simulation is feasible.

  18. Exotic atoms. Technical progress report

    International Nuclear Information System (INIS)

    Kunselman, R.

    1994-01-01

    The experiments use a variety of hydrogen isotopic mixtures to form solid targets for muons to produce muonic hydrogen isotope atoms that escape into vacuum. The method relies on transfer of the muon from a proton to either a deuteron or a triton. The resulting muonic deuterium or muonic tritium will not immediately thermalize because of the very low elastic cross sections (RT effect), and are emitted from the surface of the layer. A second solid hydrogen isotopic target is produced downstream on which the muonic hydrogen atom can react. Measurements which detect decay electrons, muonic x-rays, and fusion products have been used to study the processes of energy dependence of transfer, production rates, and muon molecular formation. The processes include muon catalyzed fusion of muonic tritium with deuterium which is the most possible candidate for energy production fusion. Our interest is the nuclear physics reaction rates and to use the muonic hydrogen isotopes in vacuum for energy level measurements. The method uses time of flight and is reminiscent of double scattering experiments. Two other experiments are in the development stages. First to measure the energy dependence of the Ramsauer-Townsend cross section in tritium where it has not been measured. The measurements would be compared to deuterium and calculations. Second, kaonic atoms, hypernuclei, and kaon-nucleon scattering at DAPHNE

  19. Renormalization and operator product expansion in theories with massless particles

    International Nuclear Information System (INIS)

    Anikin, S.A.; Smirnov, V.A.

    1985-01-01

    Renormalization procedure in theories including massless particles is presented. With the help of counterterm formalism the operator product expansion for arbitrary composite fields is derived. The coefficient functions are explicitly expressed in terms of certain Green's functions. (author)

  20. Atomic molecular and optical physics

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Laser-assisted manufacturing and fiber-optics communications are but two of the products of atomic, molecular, and optical physics, (AMO) research. AMO physics provides theoretical and experimental methods and essential data to neighboring areas of science such as chemistry, astrophysics, condensed-matter physics, plasma physics, surface science, biology, and medicine. This book addresses advances in atomic, molecular, and optical fields and provides recommendations for further research. It also looks at scientific applications in national security, manufacturing, medicine, and other fields

  1. Influences of environmental and operational factors on dark fermentative hydrogen production: a review

    International Nuclear Information System (INIS)

    Mohammadi, Parviz; Ibrahim, Shaliza; Ghafari, Shahin; Annuar, Mohamad Suffian Mohamad; Vikineswary, Sabaratnam; Zinatizadeh, Ali Akbar

    2012-01-01

    Hydrogen (H 2 ) is one of renewable energy sources known for its non-polluting and environmentally friendly nature, as its end combustion product is water (H 2 O). The biological production of H 2 is a less energy intensive alternative where processes can be operated at ambient temperature and pressure. Dark fermentation by bacterial biomass is one of multitude of approaches to produce hydrogen which is known as the cleanest renewable energy and is thus receiving increasing attention worldwide. The present study briefly reviews the biohydrogen production process with special attention on the effects of several environmental and operational factors towards the process. Factors such as organic loading rate, hydraulic retention time, temperature, and pH studied in published reports were compared and their influences are discussed in this work. This review highlights the variations in examined operating ranges for the factors as well as their reported optimum values. Divergent values observed for the environmental/operational factors merit further exploration in this field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Influences of environmental and operational factors on dark fermentative hydrogen production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Parviz [Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ibrahim, Shaliza; Ghafari, Shahin [Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Annuar, Mohamad Suffian Mohamad; Vikineswary, Sabaratnam [Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur (Malaysia); Zinatizadeh, Ali Akbar [Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Water and Wastewater Research Center (WWRC), Razi University, Kermanshah (Iran, Islamic Republic of)

    2012-11-15

    Hydrogen (H{sub 2}) is one of renewable energy sources known for its non-polluting and environmentally friendly nature, as its end combustion product is water (H{sub 2}O). The biological production of H{sub 2} is a less energy intensive alternative where processes can be operated at ambient temperature and pressure. Dark fermentation by bacterial biomass is one of multitude of approaches to produce hydrogen which is known as the cleanest renewable energy and is thus receiving increasing attention worldwide. The present study briefly reviews the biohydrogen production process with special attention on the effects of several environmental and operational factors towards the process. Factors such as organic loading rate, hydraulic retention time, temperature, and pH studied in published reports were compared and their influences are discussed in this work. This review highlights the variations in examined operating ranges for the factors as well as their reported optimum values. Divergent values observed for the environmental/operational factors merit further exploration in this field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Improving machine operation management efficiency via improving the vehicle park structure and using the production operation information database

    Science.gov (United States)

    Koptev, V. Yu

    2017-02-01

    The work represents the results of studying basic interconnected criteria of separate equipment units of the transport network machines fleet, depending on production and mining factors to improve the transport systems management. Justifying the selection of a control system necessitates employing new methodologies and models, augmented with stability and transport flow criteria, accounting for mining work development dynamics on mining sites. A necessary condition is the accounting of technical and operating parameters related to vehicle operation. Modern open pit mining dispatching systems must include such kinds of the information database. An algorithm forming a machine fleet is presented based on multi-variation task solution in connection with defining reasonable operating features of a machine working as a part of a complex. Proposals cited in the work may apply to mining machines (drilling equipment, excavators) and construction equipment (bulldozers, cranes, pile-drivers), city transport and other types of production activities using machine fleet.

  4. A program of hydrological studies of the Zarnowieckie lake and the prognosis of the changes resulting from the operation of atomic and pump-storage power stations

    International Nuclear Information System (INIS)

    Zawisza, J.; Kajak, Z.; Pieczynska, E.

    1975-01-01

    Against the background of long-term program of the effect of heat release to the Zarnowieckie Lake and changes in its hydrodynamics the scope of preliminary hydrobiological studies began in 1974 is presented in the paper. The studies included: physical-and-chemical conditions forming the background to the biological processes, the production and destruction processes in pelagial, ground fauna group, and characteristics of some littoral organism groups. The fish group has been given special consideration by making an attempt to evaluate the parameters of the dynamics of the dominant populations as well as spatial distribution (echo depth finder). The status quo description is to be used as a frame of reference to estimate the results of changes in the environment caused by the operation of the atomic and pump-storage power stations. Preliminary hypotheses have been formulated in this connection. Attention has been drawn to the possible solution to ameliorate the negative effects by one-directional and intensive fish planning of the lake. (author)

  5. Diagrammatic technique for calculating matrix elements of collective operators in superradiance

    International Nuclear Information System (INIS)

    Lee, C.T.

    1975-01-01

    Adopting the so-called ''genealogical construction,'' one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) -atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicitly the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes. This clears up the chief difficulty encountered in the Dicke-Schwendimann approach to the problem of N two-level atoms, spread over large regions, interacting with a multimode radiation field

  6. Operability Guidelines For Product Tanker In Heavy Weather In The Adriatic Sea

    Directory of Open Access Journals (Sweden)

    Mudronja Luka

    2014-06-01

    Full Text Available This paper presents operability guidelines for seafarers on a product tanker which navigates in the Adriatic Sea during heavy weather. Tanker route starts from the Otranto strait in the south to the island Krk in the north of Adriatic Sea. Heavy weather is caused by south wind called jugo (blowing from E-SE to SS-E, sirocco family. Operability guidelines are given based on an operability criteria platform for presenting ship seakeeping characteristics. Operability criteria considered in this paper are propeller emergence, deck wetness and bow acceleration of a product tanker. Limiting values of mentioned criteria determine sustainable speed. Heavy weather is described by extreme sea state of 7.5 m wave height. Wave spectrum used in this paper is Tabain spectrum which is developed specifically for Adriatic Sea. Seafarer's approach of decisions making in extreme weather is also shown and servers as a guideline for further research of the authors.

  7. Atomic Layer Deposition to Enable the Production, Optimization and Protection of Spaceflight Hardware

    Data.gov (United States)

    National Aeronautics and Space Administration — Atomic Layer Deposition (ALD) a cost effective nano-manufacturing technique allows for the conformal coating of substrates with atomic control in a benign...

  8. The embedded operating system project

    Science.gov (United States)

    Campbell, R. H.

    1984-01-01

    This progress report describes research towards the design and construction of embedded operating systems for real-time advanced aerospace applications. The applications concerned require reliable operating system support that must accommodate networks of computers. The report addresses the problems of constructing such operating systems, the communications media, reconfiguration, consistency and recovery in a distributed system, and the issues of realtime processing. A discussion is included on suitable theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based systems. In particular, this report addresses: atomic actions, fault tolerance, operating system structure, program development, reliability and availability, and networking issues. This document reports the status of various experiments designed and conducted to investigate embedded operating system design issues.

  9. Time-resolved production and detection of reactive atoms

    International Nuclear Information System (INIS)

    Grossman, L.W.; Hurst, G.S.

    1977-09-01

    Cesium iodide in the presence of a buffer gas was dissociated with a pulsed ultraviolet laser, which will be referred to as the source laser. This created a population of atoms at a well defined time and in a compact, well defined volume. A second pulsed laser, with a beam that completely surrounded that of the first, photoionized the cesium after a known time delay. This laser will be referred to as the detector laser. It was determined that for short time delays, all of the cesium atoms were easily ionized. When focused, the source laser generated an extremely intense fluence. By accounting for the beam intensity profile it was shown that all of the molecules in the central portion of the beam can be dissociated and detected. Besides proving the feasibility of single-molecule detection, this enabled a determination of the absolute photodissociation cross section as a function of wavelength. Initial studies of the time decay of the cesium signal at low argon pressures indicated a non-exponential decay. This was consistent with a diffusion mechanism transporting cesium atoms out of the laser beam. Therefore, it was desired to conduct further experiments using a tightly focused source beam, passing along the axis of the detector beam. The theoretical behavior of this simple geometry accounting for diffusion and reaction is easily calculated. A diffusion coefficient can then be extracted by data fitting. If reactive decay is due to impurities constituting a fixed percentage of the buffer gas, then two-body reaction rates will scale linearly with pressure and three-body reaction rates will scale quadratically. Also, the diffusion coefficient will scale inversely with pressure. At low pressures it is conceivable that decay due to diffusion would be sufficiently rapid that all other processes can be neglected. Extraction of a diffusion coefficient would then be quite direct. Finally, study of the reaction of cesium and oxygen was undertaken

  10. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  11. Non vertical vibronic transitions in atom molecule collisions

    International Nuclear Information System (INIS)

    Klomp, U.C.

    1982-01-01

    This thesis is mainly devoted to an experimental and theoretical study on vibronic transitions which occur in collisions between an alkali atom and several diatomic molecules. An experimental study on electron and ion production in repulsive Cs-CO and Cs-N 2 collisions, and in Cs-NO and Cs-O 2 non-repulsive collisions is presented. The experimental data are discussed in terms of some existing models. It is clear that a new consistent theory on vibronic transitions is needed to explain the experimental data. Such a theory is presented, and it is shown that some existing models are limiting cases of this theory. An experimental study on the relative probabilities for ion and electron production in collisions between a Na, K or Cs atom and an O 2 or NO molecule is also described. These experiments suggest that the incident velocity of the alkali atoms has a predominant influence on the relative probabilities for ion and electron production in these collisions. (Auth.)

  12. Operating the LCG and EGEE Production Grids for HEP

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    In September 2003 the first LCG-1 service was put into production at most of the large Tier 1 sites and was quickly expanded up to 30 Tier 1 and Tier 2 sites by the end of the year. Several software upgrades were made and the LCG-2 service was put into production in time for the experiment data challenges that began in February 2004 and continued for several months. In particular LCG-2 introduced transparent access to mass storage and managed disk-only storage elements, and a first release of the Grid File Access library. Much valuable experience was gained during the data challenges in all aspects from the functionality and use of the middleware, to the deployment, maintenance, and operation of the services at many sites. Based on this experience a program of work to address the functional and operational issues is being implemented. The goal is to focus on essential areas such as data management and to build by the end of 2004 a basic grid system capable of handling the basic needs of LHC c...

  13. Recoil saturation of the self-energy in atomic systems

    International Nuclear Information System (INIS)

    Manson, J.R.; Ritchie, R.H.

    1988-01-01

    Within the framework of the general self-energy problem for the interaction of a projectile with a many-body system, we consider the dispersion force between two atoms or between a charge and an atom. Since the Born-Oppenheimer approximation is not made, this is a useful approach for exhibiting non-adiabatic effects. We find compact expressions in terms of matrix elements of operators in the atomic displacement which are not limited by multipole expansions. 7 refs

  14. Evidence for πK-atoms with DIRAC

    International Nuclear Information System (INIS)

    Adeva, B.; Afanasyev, L.; Allkofer, Y.; Amsler, C.; Anania, A.; Benelli, A.; Brekhovskikh, V.; Caragheorgheopol, G.; Cechak, T.; Chiba, M.; Chliapnikov, P.; Ciocarlan, C.; Constantinescu, S.; Curceanu, C.; Detraz, C.; Dreossi, D.; Drijard, D.; Dudarev, A.; Duma, M.; Dumitriu, D.

    2009-01-01

    We present evidence for the first observation of electromagnetically bound π ± K ± -pairs (πK-atoms) with the DIRAC experiment at the CERN-PS. The πK-atoms are produced by the 24 GeV/c proton beam in a thin Pt-target and the π ± and K ± -mesons from the atom dissociation are analyzed in a two-arm magnetic spectrometer. The observed enhancement at low relative momentum corresponds to the production of 173±54πK-atoms. The mean life of πK-atoms is related to the s-wave πK-scattering lengths, the measurement of which is the goal of the experiment. From these first data we derive a lower limit for the mean life of 0.8 fs at 90% confidence level.

  15. General decoupling procedure for expectation values of four-operator products in electron–phonon quantum kinetics

    International Nuclear Information System (INIS)

    Teeny, Nicolas; Fähnle, Manfred

    2013-01-01

    In the density-matrix formalism of electron–phonon quantum kinetics, the hierarchy of infinitely many coupled equations of motion for the expectation values of products of electron and phonon creation and annihilation operators of arbitrary order is usually terminated on the level of the equations of motion for the expectation values of three-operator products by using decoupling procedures for the four-operator products occurring in these equations. In the literature, decoupling procedures are discussed for special types of electron and phonon states. In the present paper, generalized decoupling procedures are derived for arbitrary electron and phonon states. (paper)

  16. Experimental evidence for πK-atoms

    International Nuclear Information System (INIS)

    Amsler, C.

    2009-01-01

    We present evidence for the first observation of electromagnetically bound pion-kaon pairs (πK- atoms) with the DIRAC-II experiment at the CERN-PS. The mean life of πK-atoms is related to the s-wave πK-scattering lengths, a measurement of which is relevant to low energy QCD, in particular chiral perturbation theories including the s-quarks. The atoms are produced by a 24 GeV/c proton beam in a thin Pt-target and the dissociated pions and kaons analyzed in a two-arm magnetic spectrometer. The observed enhancement at low relative momentum corresponds to the production of 173± 54 πK-atoms. From these first data we derive a lower limit for the mean life of 0.8 fs at the 90 % confidence level. (author)

  17. Rotary-Atomizer Electric Power Generator

    Science.gov (United States)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans; van den Berg, Albert; Eijkel, Jan C. T.

    2015-03-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the centrifugal force and creates "atomized" droplets at its edge. The advantage of using a rotary atomizer is that the centrifugal force exerted on the fluid on a smooth, large surface is not only a robust form of acceleration, as it avoids clogging, but also easily allows high throughput, and produces high electrical power. We successfully demonstrate an output power of 4.9 mW and a high voltage up to 3120 V. At present, the efficiency of the system is still low (0.14%). However, the conversion mechanism of the system is fully interpreted in this paper, permitting a conceptual understanding of system operation and providing a roadmap for system optimization. This observation will open up a road for building power-generation systems in the near future.

  18. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    International Nuclear Information System (INIS)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs

  19. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  20. The embedded operating system project

    Science.gov (United States)

    Campbell, R. H.

    1985-01-01

    The design and construction of embedded operating systems for real-time advanced aerospace applications was investigated. The applications require reliable operating system support that must accommodate computer networks. Problems that arise in the construction of such operating systems, reconfiguration, consistency and recovery in a distributed system, and the issues of real-time processing are reported. A thesis that provides theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based system is included. The following items are addressed: (1) atomic actions and fault-tolerance issues; (2) operating system structure; (3) program development; (4) a reliable compiler for path Pascal; and (5) mediators, a mechanism for scheduling distributed system processes.

  1. Production of sugar and alcohol: financial and operational strategies

    Directory of Open Access Journals (Sweden)

    Celma de Oliveira Ribeiro

    2014-12-01

    Full Text Available This article proposes the construction of an optimization model to define the product portfolio of a sugarcane mill, taking into account operational and financial aspects. It is considered that the revenue earned by a producer comes from the sale of sugar and alcohol in the physical market and the results obtained through hedging in the derivatives market of sugar. Employing CVaR (Conditional Value-at-Risk, as the risk measure, the model allows the construction of an efficient frontier and, according to the producer's risk tolerance, defines the optimal strategy of production (production mix and activity in the derivatives market (hedge ratio. Through the model the article also seeks to analyze the advantage of using the options market in the construction of financial hedging strategies in agricultural commodities markets.

  2. Geometric manipulation of the quantum states of two-level atoms

    International Nuclear Information System (INIS)

    Tian, Mingzhen; Barber, Zeb W.; Fischer, Joe A.; Babbitt, Wm. Randall

    2004-01-01

    Manipulation of the quantum states of two-level atoms has been investigated using laser-controlled geometric phase change, which has the potential to build robust quantum logic gates for quantum computing. For a qubit based on two electronic transition levels of an atom, two basic quantum operations that can make any universal single qubit gate have been designed employing resonant laser pulses. An operation equivalent to a phase gate has been demonstrated using Tm 3+ doped in a yttrium aluminum garnet crystal

  3. Ionization due to the interaction between two Rydberg atoms

    International Nuclear Information System (INIS)

    Robicheaux, F

    2005-01-01

    Using a classical trajectory Monte Carlo method, we have computed the ionization resulting from the interaction between two cold Rydberg atoms. We focus on the products resulting from close interaction between two highly excited atoms. We give information on the distribution of ejected electron energies, the distribution of internal atom energies and the velocity distribution of the atoms and ions after the ionization. If the potential for the atom is not purely Coulombic, the average interaction between two atoms can change from attractive to repulsive giving a Van de Graaff-like mechanism for accelerating atoms. In a small fraction of ionization cases, we find that the ionization leads to a positive molecular ion where all of the distances are larger than 1000 Bohr radii

  4. Continuous operation of a pilot plant for the production of beryllium oxide

    International Nuclear Information System (INIS)

    Costa, T.C.; Amaral, S.; Silveira, C.M.S.; Oliveira, A.P. de

    1975-01-01

    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed [pt

  5. Continuous operation of a pilot plant for the production of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Costa, T C; Amaral, S; Silveira, C M.S.; de Oliveira, A P [Instituto de Tecnologia, Governador Valadares (Brazil)

    1975-12-01

    A method of obtaining beryllium oxide with a purity of 99,2% was developed in a pilot plant with a capacity of 7 tons per month destined to operate continuously. The operation market prospects and control of production with the objective of obtaining internacional technical grade beryllium oxide are discussed.

  6. Momentum diffusion for coupled atom-cavity oscillators

    International Nuclear Information System (INIS)

    Murr, K.; Maunz, P.; Pinkse, P. W. H.; Puppe, T.; Schuster, I.; Rempe, G.; Vitali, D.

    2006-01-01

    It is shown that the momentum diffusion of free-space laser cooling has a natural correspondence in optical cavities when the internal state of the atom is treated as a harmonic oscillator. We derive a general expression for the momentum diffusion, which is valid for most configurations of interest: The atom or the cavity or both can be probed by lasers, with or without the presence of traps inducing local atomic frequency shifts. It is shown that, albeit the (possibly strong) coupling between atom and cavity, it is sufficient for deriving the momentum diffusion to consider that the atom couples to a mean cavity field, which gives a first contribution, and that the cavity mode couples to a mean atomic dipole, giving a second contribution. Both contributions have an intuitive form and present a clear symmetry. The total diffusion is the sum of these two contributions plus the diffusion originating from the fluctuations of the forces due to the coupling to the vacuum modes other than the cavity mode (the so-called spontaneous emission term). Examples are given that help to evaluate the heating rates induced by an optical cavity for experiments operating at low atomic saturation. We also point out intriguing situations where the atom is heated although it cannot scatter light

  7. Interfase y software de control para operar en sincronismo un automuestreador y un atomizador electrotérmico por filamento de tungsteno en espectrofotometría de absorción atómica Development of interface and software for synchronous operation of an autosampler and a tungsten coil electrothermal atomizer coupled to an atomic absorption spectophotometer

    OpenAIRE

    J. Neira; G. Valenzuela; J. Vega; J. Moya; C. G. Bruhn; J. A. Nóbrega

    1998-01-01

    The interface and software for synchronous control of an autosampler and an electrothermal tungsten coil atomizer in atomic absorption spectrophotometry were developed. The control of the power supply, the trigger of the Read function of the spectrophotometer and the automatic operation of the autosampler was performed by software written in "TurboBasic". The system was evaluated by comparison of the repeatability of peak-height absorbances obtained in the atomization of lead by consecutive 1...

  8. Demonstration test operation of Feed Materials Production Center Biodenitrification Facility

    International Nuclear Information System (INIS)

    Benear, A.K.; Patton, J.B.

    1987-01-01

    A fluidized-bed biological denitrification (BDN) system was used to treat high-nitrate wastewater streams from a DOE owned uranium processing plant. A two-column system was used to demonstrate BDN operation on a production scale. In a continuous 200 hour rate determination period, the BDN processed over 1.6 million gallons that contained over 4700 kilograms of nitrate and nitrite nitrogen. The BDN removed an average 97% of the incoming nitrate and nitrite. The BDN effluent was discharged to the FMPC sewage treatment plant where it caused increased levels of TOD, TSS and fecal coliforms in the STP discharge. This indicated the BDN effluent will require treatment prior to discharge to the environment. Preliminary chemical consumption rates and associated costs of operation were determined. Several modifications and additions to the system were identified as necessary for the permanent production facility. 3 refs., 11 figs., 2 tabs

  9. Limits and conditions for permanent operation of the LVR-15 reactor

    International Nuclear Information System (INIS)

    1995-03-01

    The ''Limits and Conditions'' have been set up to demonstrate compliance with all nuclear safety requirements specified by the Decree of the Czechoslovak Atomic Energy Commission No. 9/1985, and to serve as a guide for the reactor operators to respond adequately to deviations from the required values in normal operation conditions. The publications is divided into the following chapters: (1) Safety limits of the LVR-15 reactor; (2) Adjusting the reactor protection and control system parameters; (3) Limiting conditions for normal operation modes; (4) Control requirements; and (5) reactor operation management. A document by the Institute for Research, Production, and Application of Radioisotopes specifying conditions for the acceptance of radioactive wastes to the central repository is appended. (P.A.). 7 tabs

  10. Generalized position-momentum uncertainty products: Inclusion of moments with negative order and application to atoms

    International Nuclear Information System (INIS)

    Angulo, J. C.

    2011-01-01

    Rigorous and universal relationships among radial expectation values of any D-dimensional quantum-mechanical system are obtained, using Renyi-like position-momentum inequalities in an information-theoretical framework. Although the results are expressed in terms of four moments (two in position space and two in the momentum one), especially interesting are the cases that provide expressions of uncertainty in terms of products a > 1/a b > 1/b , widely considered in the literature, including the famous Heisenberg relationship 2 > 2 >≥D 2 /4. Improved bounds for these products have recently been provided, but are always restricted to positive orders a,b>0. The interesting part of this work are the inequalities for negative orders. A study of these relationships is carried out for atomic systems in their ground state. Some results are given in terms of relevant physical quantities, including the kinetic and electron-nucleus attraction energies, the diamagnetic susceptibility, and the height of the peak of the Compton profile, among others.

  11. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    Science.gov (United States)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  12. Formation of molecules in interstellar clouds from singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Langer, W.D.; and NASA, Institute for Space Studies, Goddard Space Flight Center, New York)

    1978-01-01

    Soft X-ray and cosmic rays produce multiply ionized atoms which may initiate molecule production in interstellar clouds. This molecule production can occur via ion-molecule reactions with H 2 , either directly from the multiply ionized atom (e.g.,C ++ + H 2 →CH + + H + ), or indirectly from the singly ionized atoms (e.g., N + + H 2 →NH + + H) that are formed from the recombination or charge transfer of the highly ionized atom (e.g., N ++ + e→N + + hv). We investigate the contribution of these reactions to the abundances of carbon-, nitrogen-, and oxygen-bearing molecules in isobaric models of diffuse clouds. In the presence of the average flux estimated for the diffuse soft X-ray background, multiply ionized atoms contribute only minimally (a few percent) to carbon-bearing molecules such as CH. In the neighborhood of diffuse structures or discrete sources, however, where the X-ray flux is enhanced, multiple ionization is considerably more important for molecule production

  13. Implementing Deutsch-Jozsa algorithm using light shifts and atomic ensembles

    International Nuclear Information System (INIS)

    Dasgupta, Shubhrangshu; Biswas, Asoka; Agarwal, G.S.

    2005-01-01

    We present an optical scheme to implement the Deutsch-Jozsa algorithm using ac Stark shifts. The scheme uses an atomic ensemble consisting of four-level atoms interacting dispersively with a field. This leads to a Hamiltonian in the atom-field basis which is quite suitable for quantum computation. We show how one can implement the algorithm by performing proper one- and two-qubit operations. We emphasize that in our model the decoherence is expected to be minimal due to our usage of atomic ground states and freely propagating photon

  14. Atomic Energy Control Act, c A.19, s.1

    International Nuclear Information System (INIS)

    1985-01-01

    The Revised Statutes of Canada 1985 entered into force on 12 December 1988, revoking the previous Atomic Energy Control Act and replacing it with a new version. The new Act (Chapter A-16 of the Revised Statutes) updates the previous text and makes some linguistic corrections. The Atomic Energy Control Act establishes the Atomic Energy Control Board and sets out its duties and powers which include, in particular, the making of regulations for developing, controlling and licensing the production, application and use of atomic energy [fr

  15. Geothermal research and development program of the US Atomic Energy Commission

    Science.gov (United States)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  16. Modelling atomic scale manipulation with the non-contact atomic force microscope

    International Nuclear Information System (INIS)

    Trevethan, T; Watkins, M; Kantorovich, L N; Shluger, A L; Polesel-Maris, J; Gauthier, S

    2006-01-01

    We present the results of calculations performed to model the process of lateral manipulation of an oxygen vacancy in the MgO(001) surface using the non-contact atomic force microscope (NC-AFM). The potential energy surfaces for the manipulation as a function of tip position are determined from atomistic modelling of the MgO(001) surface interacting with a Mg terminated MgO tip. These energies are then used to model the dynamical evolution of the system as the tip oscillates and at a finite temperature using a kinetic Monte Carlo method. The manipulation process is strongly dependent on the lateral position of the tip and the system temperature. It is also found that the expectation value of the point at which the vacancy jumps depends on the trajectory of the oscillating cantilever as the surface is approached. The effect of the manipulation on the operation of the NC-AFM is modelled with a virtual dynamic AFM, which explicitly simulates the entire experimental instrumentation and control loops. We show how measurable experimental signals can result from a single controlled atomic scale event and suggest the most favourable conditions for achieving successful atomic scale manipulation experimentally

  17. Joint Remote State Preparation of a Single-Atom Qubit State via a GHZ Entangled State

    Science.gov (United States)

    Xiao, Xiao-Qi; Yao, Fengwei; Lin, Xiaochen; Gong, Lihua

    2018-04-01

    We proposed a physical protocol for the joint remote preparation of a single-atom qubit state via a three-atom entangled GHZ-type state previously shared by the two senders and one receiver. Only rotation operations of single-atom, which can be achieved though the resonant interaction between the two-level atom and the classical field, are required in the scheme. It shows that the splitting way of the classical information of the secret qubit not only determines the success of reconstruction of the secret qubit, but also influences the operations of the senders.

  18. Nuclear graphite development, operational problems, and resolution of these problems at the Hanford production reactors

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1996-01-01

    This paper chronicles the history of the Hanford Production Reactor, from the initial design considerations for B, D, and F Reactors through the selection of the agreed method for safe disposal of the decommissioned reactors. The operational problems that challenged the operations and support staff of each new generation of production reactors, the engineering actions an operational changes that alleviated or resolved the immediate problems, the changes in reactor design and design-bases for the next generation of production reactors, and the changes in manufacturing variables that resulted in new ''improved'' grades of nuclear graphites for use in the moderators of the Hanford Production Reactors are reviewed in the context of the existing knowledge-base and the mission-driven priorities on the time. 14 refs, 6 figs, 3 tabs

  19. Atomic and plasma-material interaction data for fusion. Vol.1

    International Nuclear Information System (INIS)

    1991-01-01

    The International Atomic Energy Agency, through its Atomic and Molecular Data Unit, coordinates a wide spectrum of programmes for the compilation, evaluation, and generation of atomic, molecular, and plasma-wall interaction data for fusion research. The present, first, volume of Atomic and Plasma-Material Interaction Data for Fusion, contains extended versions of the reviews presented at the IAEA Advisory Group Meeting on Particle-Surface Interaction Data for Fusion, held 19-21 April 1989 at the IAEA Headquarters in Vienna, The plasma-wall interaction processes covered here are those considered most important for the operational performance of magnetic confinement fusion reactors. In addition to processes due to particle impact under normal operation, plasma-wall interaction effects due to off-normal plasma events (disruptions, electron runaway bombardment) are covered, and a summary of the status of data information on these processes is given from the point of view of magnetic fusion reactor design. Refs, figs and tabs

  20. Nucleon Structure Functions from Operator Product Expansion on the Lattice.

    Science.gov (United States)

    Chambers, A J; Horsley, R; Nakamura, Y; Perlt, H; Rakow, P E L; Schierholz, G; Schiller, A; Somfleth, K; Young, R D; Zanotti, J M

    2017-06-16

    Deep-inelastic scattering, in the laboratory and on the lattice, is most instructive for understanding how the nucleon is built from quarks and gluons. The long-term goal is to compute the associated structure functions from first principles. So far this has been limited to model calculations. In this Letter we propose a new method to compute the structure functions directly from the virtual, all-encompassing Compton amplitude, utilizing the operator product expansion. This overcomes issues of renormalization and operator mixing, which so far have hindered lattice calculations of power corrections and higher moments.

  1. Operations Strategy Development in Project-based Production – a building contractor implements Lean

    DEFF Research Database (Denmark)

    Koch, Christian; Friis, Ole Uhrskov

    2015-01-01

    Purpose: To study how operations strategy innovation occurs in project-based production and organisation. Design/methodology/approach: A longitudinal case study encompassing the processes at the company headquarters and in two projects using Lean. Findings: The operations strategy development com...

  2. Atoms

    International Nuclear Information System (INIS)

    Fuchs, Alain; Villani, Cedric; Guthleben, Denis; Leduc, Michele; Brenner, Anastasios; Pouthas, Joel; Perrin, Jean

    2014-01-01

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  3. Operating procedures for the manufacture of radioactive SYNROC in the actinide laboratory

    International Nuclear Information System (INIS)

    Western, K.F.

    1986-03-01

    The purpose of this manual is to acquaint the operator with the procedures required to manufacture SYNROC-containing radioactive materials in the SYNROC actinide laboratory, Lucas Heights Research Laboratories. The actinide-doped SYNROC production facility is a series of four interconnected glove boxes and one free-standing glove box. The samples of radioactive SYNROC produced in the actinide laboratory are used to carry out physical testing of the product at various laboratories on site, e.g. leach testing, auto-radiographic examination, electron-microscopc examination, atomic absorption spectrophotometry and analysis

  4. Fermi motion versus co-operative effects in subthreshold pion and energetic gamma production

    International Nuclear Information System (INIS)

    Knoll, J.

    1986-06-01

    Various reaction mechanisms proposed to explain the production of pions at 'sub-threshold' energies and of energetic gammas are examined. They range from the nucleon-nucleon single collision mechanism to a co-operative multi-nucleon process. With a shell model prescription for the initial state energies the single collision picture cannot explain the data. The participation of many nucleons in the pion production process appears to be necessary. We present a statistical model which demands the co-operative action of several of the target and projectile nucleons in the pion production process. The formation of composite fragments alongside with the produced pion is seen to be vital to understand the experimental data within this model. (orig.)

  5.  Optimizing relational algebra operations using discrimination-based joins and lazy products

    DEFF Research Database (Denmark)

    Henglein, Fritz

    We show how to implement in-memory execution of the core re- lational algebra operations of projection, selection and cross-product eciently, using discrimination-based joins and lazy products. We introduce the notion of (partitioning) discriminator, which par- titions a list of values according...... to a specied equivalence relation on keys the values are associated with. We show how discriminators can be dened generically, purely functionally, and eciently (worst-case linear time) on top of the array-based basic multiset discrimination algorithm of Cai and Paige (1995). Discriminators provide the basis...... the selection operation to recognize on the y whenever it is applied to a cross-product, in which case it can choose an ecient discrimination-based equijoin implementation. The techniques subsume most of the optimization techniques based on relational algebra equalities, without need for a query preprocessing...

  6. Product reliability and the reliability of its emanating operational processes.

    NARCIS (Netherlands)

    Sonnemans, P.J.M.; Geudens, W.H.J.M.

    1999-01-01

    This paper addresses the problem of proper reliability management in business operations today, facing increasing demands on essential business drivers such as time to market, quality and financial profit. In this paper a general method is described of how to achieve product quality in a highly

  7. Follow-up for the years 2000-2002 of productivity studies for the operation of CLAB

    International Nuclear Information System (INIS)

    Lundberg, Haakan

    2003-04-01

    SKB hands every year over, on behalf of the power companies, to SKI a cost calculation for spent fuel handling and dismantling of the Swedish nuclear power plants. SKI has tried to investigate the future impact which the growth of money in the Nuclear Waste Fund might give in relation to the change of consumer price index, CPI. The long term yield of the Fund has been related to the change of CPI, as the bigger part of the fund money has been invested in real interest rate bonds, issued by the Swedish state. The cost development has been studied with an index named 'KBS-3-index', which is a basket of weighted factor price indexes based on the SKB programme. Since 1986 and up to 2002, the KBS-3-index has increased about 102%, but CPI only about 70%. If this discrepancy should continue during the whole period when Fund money should be available, the Fund would be insufficient. But the difference between KBS-3-index and CPI might be eliminated due to a future productivity development. At the moment, SKI has no knowledge about future productivity development in the SKB programme. A closer analysis of the productivity and efficiency development in the facilities operated by SKB is therefore applicable. Nearest to study is the productivity at the operation of CLAB, Central Interim Storage Facility for Spent Nuclear Fuel. The work in CLAB is receiving and storing of spent nuclear fuel and core components. The consumption of all production factors can be measured in economical means. Here the total production factors are defined as the sum of the annual operation costs and the sum of annuities for reinvestments during the year. The development of total productivity is increasing slightly, but decreasing in the end. Normal for a new business is that the productivity is rising sharply in the beginning. Here the productivity is slightly decreasing in the beginning, and then rising, decreasing, rising and finally decreasing. The project 'compact storing' was finished in 1992

  8. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia

    2002-01-01

    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  9. Productivity and Cost Analysis of Forest Harvesting Operation in Matang Mangrove Forest, Perak, Malaysia

    Directory of Open Access Journals (Sweden)

    Albert Empawi Tindit

    2017-04-01

    Full Text Available Matang Mangrove Forest is under systematic management since 1902 and still considered as the best managed mangrove forest in the world. This research was conducted to measure the time and productivity of forest harvesting operation and also to analyze the cost and revenue of mangrove forest harvesting operation at Matang mangrove forest. This project had been carried out in cooperation with Seri Sepetang Enterprise, one of the harvesting licenses in Kuala Sepetang, Perak. Data collections were taken in every station starting from standing tree until to the Kiln-Drying jetty. The data then calculated by using the formulas of productivity and cost analysis. As the result, the productivity for felling, bucking and debarking, the manual skidding using wheel-barrow and the water transportation are 1.84 tan/hour, 3.82 tan/hour and 4.64 tan/hour respectively. The cost for each operation of 9 tan log volume for felling, bucking and debarking, the manual skidding using wheel-barrow and the water transportation are RM 56.88, RM 10.80 and RM 36.72 respectively. As the revenue, the company paid RM 260 per 9 tan of log for the in-forest operation (felling, manual skidding and loading to the ship and pay RM 80 per 9 tan for the water transportation, and they gained the net profit of RM 192.32 and RM 43.28 respectively. The average of forest harvesting operation is twice operation in a day (equal with 2 x 9-ton volume of log production a day, so they will gain a double profit. In conclusion, the forest harvesting operation is sustainably managed for supplying the raw material of charcoal industries in Matang mangrove forest. Since, they work manually and spend much energy in this forest harvesting operation, so for further study it recommends to conduct the ergonomics evaluation during forest harvesting operation at Matang Mangrove Forest.

  10. Innovation and reliability of atomic standards for PTTI applications

    Science.gov (United States)

    Kern, R.

    1981-01-01

    Innovation and reliability in hyperfine frequency standards and clock systems are discussed. Hyperfine standards are defined as those precision frequency sources and clocks which use a hyperfine atomic transition for frequency control and which have realized significant commercial production and acceptance (cesium, hydrogen, and rubidium atoms). References to other systems such as thallium and ammonia are excluded since these atomic standards have not been commercially exploited in this country.

  11. 78 FR 14361 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Science.gov (United States)

    2013-03-05

    ... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, PA; Notice of Initiation of Investigation To Terminate Certification of Eligibility Pursuant to... Tubular Products, McKeesport Tubular Operations Division, Subsidiary of United States Steel Corporation...

  12. Accelerated ions as a tool in atomic physics

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Some of the aspects of atomic physics which are being brought into focus by the construction and completion of a new generation of heavy-ion accelerators are dealt with. Various types of processes occurring in the overlapping electron clouds are visualised in an elementary way, using among others, some recent observations on the formation of quasi-molecules and quasi-atoms. Phenomena connected with the inner electron shells in superheavy atoms are touched upon, in particular those processes possibly leading to the production of positrons. In such cases the crucial importance of an atomic Coulomb excitation mechanism is stressed. In conclusion the view is emphasized that inner shell ionization phenomena in heavy ion collisions form a bridge between processes originating respectively from nuclear and atomic physics. (Auth.)

  13. Petroleum drilling and production operations in the Gulf of Mexico

    International Nuclear Information System (INIS)

    Fang, C.S.

    1991-01-01

    Decades of offshore and inland petroleum drilling and production in the Gulf of Mexico and on the Gulf Coast have provided the much needed energy and chemical feedstocks to the nation, and also have made an impact on the environment in the area. Our study showed deposits of contaminated sediment on the ocean floor around offshore platforms, old reserve pits, and dump sites next to many surface facilities and compressor stations. The substances found on the ocean floor and in dump sites are simple or emulsified mixtures of silt, hydrocarbons, and water. The cleaning of the ocean floor and pits is an economic and technical challenge. Hydrocarbons are from crude oil and chemical additions fro various operational necessities, including additions of biocides, corrosion inhibitors, antifreezes, and coagulants. When the new government regulations lower the allowable maximum total organic carbon level to the 50 ppm range, these hydrocarbons can no longer be ignored by drilling and production operators

  14. HANARO operation experience in the year 2004

    International Nuclear Information System (INIS)

    Oh, Soo-Youl; Kim, Heonil; Cho, Yeong-Garp; Jun, Byung-Jin

    2006-01-01

    The experiences of the HANARO operation and maintenance in the year 2004 are presented in this article. The operation of HANARO, a 30 MW research reactor operated by the Korea Atomic Energy Research Institute (KAERI), aims at a safe and effective operation to enhance its utilization in various fields of scientific research and industry. Regardless of its importance of the routine operation, this article is devoted to rather unusual matters such as irregular maintenance events and incidents. Since the first criticality in 1995, it has been a long-cherished task to reach the designed power level of 30 MW from the temporarily approved 24 MW. By resolving the concern on the fuel integrity, the designed level could be licensed and, eventually, it was achieved last November. On the other hand, after its 9 years of operation, the mechanical integrity of the heavy water reflector tank was checked. The measurement of the vertical straightness of the tank inner shell indicated its integrity. Meanwhile, the HANARO fuel production facility was completed at the KAERI site, and it will begin to supply centrifugally atomized fuels, instead of conventional comminuted fuels, to HANARO shortly. There were several incidents in 2004, which have all been cleared, including a leak of heavy water, melting of a sample in an irradiation hole for the neutron activation analysis, and a condensation problem in a horizontal beam tube. The progress of and lessons from each incident are presented. The utilization of HANARO is expanding every year and the trend will also continue in 2005. The operation mode has been changed from an 18-day continuous operation and 10-day shutdown (18-10 mode) to the 23-12 mode since the end of 2004, and a further extension is planned to the 30-12 mode. Thanks to this extended operation term, an increased power level and, most importantly, a reliable operation, the HANARO is gaining more and more credit from the end users. (author)

  15. Fast phase stabilization of a low frequency beat note for atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Oh, E.; Horne, R. A.; Sackett, C. A., E-mail: sackett@virginia.edu [Department of Physics, University of Virginia, 382 McCormick Road, Charlottesville, Virginia 22904-4714 (United States)

    2016-06-15

    Atom interferometry experiments rely on the ability to obtain a stable signal that corresponds to an atomic phase. For interferometers that use laser beams to manipulate the atoms, noise in the lasers can lead to errors in the atomic measurement. In particular, it is often necessary to actively stabilize the optical phase between two frequency components of the beams. Typically this is achieved using a time-domain measurement of a beat note between the two frequencies. This becomes challenging when the frequency difference is small and the phase measurement must be made quickly. The method presented here instead uses a spatial interference detection to rapidly measure the optical phase for arbitrary frequency differences. A feedback system operating at a bandwidth of about 10 MHz could then correct the phase in about 3 μs. This time is short enough that the phase correction could be applied at the start of a laser pulse without appreciably degrading the fidelity of the atom interferometer operation. The phase stabilization system was demonstrated in a simple atom interferometer measurement of the {sup 87}Rb recoil frequency.

  16. Accurate atom-mapping computation for biochemical reactions.

    Science.gov (United States)

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  17. Synthesis of antihydrogen atoms in a CUSP trap

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Naofumi, E-mail: kuroda@phys.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Enomoto, Yoshinori [RIKEN Advanced Science Institute (Japan); Michishio, Koji [Tokyo University of Science, Department of Physics (Japan); Kim, Chanhyoun [University of Tokyo, Graduate School of Arts and Sciences (Japan); Higaki, Hiroyuki [Hiroshima University, Graduate School of Advanced Science of Matter (Japan); Nagata, Yugo; Kanai, Yasuyuki [RIKEN Advanced Science Institute (Japan); Torii, Hiroyuki A. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Corradini, Maurizzio; Leali, Marco; Lodi-Rizzini, Evandro; Mascagna, Valerio; Venturelli, Luca; Zurlo, Nicola [Universita di Brescia and Instituto Nazionale di Fisica Nucleare, Dipartimento di Chimica e Fisica per l' Ingegneria e per i Materiali (Italy); Fujii, Koki; Ohtsuka, Miki; Tanaka, Kazuo [University of Tokyo, Graduate School of Arts and Sciences (Japan); Imao, Hiroshi [RIKEN Nishina Center for Accelerator-Based Science (Japan); Nagashima, Yasuyuki [Tokyo University of Science, Department of Physics (Japan); Matsuda, Yasuyuki [University of Tokyo, Graduate School of Arts and Sciences (Japan); and others

    2012-05-15

    ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. Recently, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. It is expected that synthesized antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are not focused, resulting in the formation of a spin-polarized antihydrogen beam. We report the recent results of antihydrogen atom synthesis and beam production developed with the CUSP trap.

  18. Synthesis of antihydrogen atoms in a CUSP trap

    International Nuclear Information System (INIS)

    Kuroda, Naofumi; Enomoto, Yoshinori; Michishio, Koji; Kim, Chanhyoun; Higaki, Hiroyuki; Nagata, Yugo; Kanai, Yasuyuki; Torii, Hiroyuki A.; Corradini, Maurizzio; Leali, Marco; Lodi-Rizzini, Evandro; Mascagna, Valerio; Venturelli, Luca; Zurlo, Nicola; Fujii, Koki; Ohtsuka, Miki; Tanaka, Kazuo; Imao, Hiroshi; Nagashima, Yasuyuki; Matsuda, Yasuyuki

    2012-01-01

    ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. Recently, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. It is expected that synthesized antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are not focused, resulting in the formation of a spin-polarized antihydrogen beam. We report the recent results of antihydrogen atom synthesis and beam production developed with the CUSP trap.

  19. Slow collisions between identical atoms in a laser field: Application of the Born and Markov approximations to the system of moving atoms

    International Nuclear Information System (INIS)

    Trippenbach, M.; Gao, B.; Cooper, J.; Burnett, K.

    1992-01-01

    We have derived reduced-density-matrix equations of motion for a pair of two identical atoms moving in the radiation field as the first step in establishing a theory of collisional redistribution of light from neutral-atom traps. We use the Zwanzig projection-operator technique to average over spontaneous field modes and establish the conditions under which Born and Markov approximations can be applied to the system of moving atoms. It follows from these considerations that when these conditions hold, the reduced-density-matrix equation for moving atoms has the same form as that for the stationary case: time dependence is introduced into the decay rates and interaction potentials by making the substitution R=R(t)

  20. The International Atomic Energy Agency's Laboratories Seibersdorf and Vienna. Meeting the challenges of research and international co-operation in the application of nuclear techniques

    International Nuclear Information System (INIS)

    Krippl, E.

    1999-08-01

    The International Atomic Energy Agency therefore maintains a unique, multidisciplinary, analytical, research and training centre: the IAEA Laboratories, located at Seibersdorf near Vienna and at the Agency's Headquarters in the Vienna International Centre. They are organized in three branches: (i) the FAO/IAEA Agriculture and Biotechnology Laboratory: Soil Science, Plant Breeding, Animal Production and Health, Entomology, Agrochemicals; (ii) the Physics, Chemistry and Instrumentation Laboratory: Chemistry, Instrumentation, Dosimetry, Isotope Hydrology; (iii) the Safeguards Analytical Laboratory: Isotopic Analysis, Chemical Analysis, Clean Laboratory. 'The Mission of the IAEA Laboratories is to contribute to the implementation of the Agency's programmes in food and agriculture, human health, physical and chemical sciences, water resources, industry, environment, radiation protection and safeguards verification'. Together with a General Services and Safety Section, which provides logistics, information, industrial safety and maintenance services and runs a mechanical workshop, the three groups form the 'Seibersdorf Laboratories' and are part of the IAEA Department of Nuclear Sciences and Applications. The Laboratories contribute an important share to projects fostering peaceful applications of radiation and isotopes and radiation protection, and play a significant part in the nuclear verification mechanism. All activities are therefore planned and implemented in close co-operation with relevant divisions and departments of the IAEA. In specific sectors, the Laboratories also operate in conjunction with other organizations in the UN system, such as the Food and Agriculture Organization (FAO), the World Health Organization (WHO) and the World Meteorological Organization (WMO), and with networks of national laboratories in Member States

  1. Use of research reactors in Soviet atomic centres

    International Nuclear Information System (INIS)

    1964-01-01

    The manner of controlling and directing research reactors in the USSR was described in October at the IAEA seminar for atomic energy administrators by Dr. U. V. Archangelski, Department Chief, State Committee for Utilization of Atomic Energy, USSR. He also enumerated the research reactors in operation. In addition to the portions of the paper which are quoted below, he gave details of the scientific work being carried out in these reactors.

  2. Rio Blanco: nuclear operations and chimney reentry

    International Nuclear Information System (INIS)

    Woodruff, W.R.; Guido, R.S.

    1975-01-01

    Rio Blanco was the third experiment in the U.S. Atomic Energy Commission's Plowshare Program to develop technology to stimulate gas production from geologic formations not conducive to production by conventional means. The project was sponsored by CER Geonuclear Corporation, with the Lawrence Livermore Laboratory providing the explosives and several technical programs, such as spall measurement. Three nuclear explosives specifically designed for this application were detonated simultaneously in a minimum-diameter emplacement well using many commercially available but established-reliability components. The explosive system performed properly under extreme temperature and pressure conditions. Emplacement and stemming operations were designed with the aim of simplifying both the emplacement and reentry and fully containing the detonation products. An integrated command and control system was used with communication to all three explosives through a single coaxial cable. Reentry and the initial production testing are completed. To date 98 million standard ft 3 of chimney gas have been produced. (auth)

  3. Kinetics of the processes, plasma parameters, and output characteristics of a UV emitter operating on XeI molecules and iodine molecules and atoms

    Energy Technology Data Exchange (ETDEWEB)

    Shuaibov, A. K.; Grabovaya, I. A.; Minya, A. I.; Homoki, Z. T. [Uzhgorod National University (Ukraine); Kalyuzhnaya, A. G.; Shchedrin, A. I. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)

    2011-03-15

    A kinetic model of the processes occurring in the plasma of a high-power low-pressure gas-discharge lamp is presented, and the output characteristics of the lamp are described. The lamp is excited by a longitudinal glow discharge and emits the I{sub 2}(D Prime -A Prime ) 342-nm and XeI(B-X) 253-nm bands and the 206.2-nm spectral line of atomic iodine. When the emitter operates in a sealed-off mode on the p(He): p(Xe): p(I{sub 2}) = 400: 120: (100-200) Pa mixture, the fractions of the UV radiation power of iodine atoms, exciplex molecules of xenon iodide, and iodine molecules comprise 55, 10, and 35%, respectively. At the optimal partial pressure, the maximum total radiation power of the lamp reaches 37 W, the energy efficiency being about 15%.

  4. Atoms-for-Peace: A Galactic Collision in Action

    Science.gov (United States)

    2010-11-01

    't panic: the distance between stars within a galaxy is vast, so it is unlikely that our Sun will end up in a head-on collision with another star during the merger. The object's curious nickname has an interesting history. In December 1953, President Eisenhower gave a speech that was dubbed Atoms for Peace. The theme was promoting nuclear power for peaceful purposes - a particularly hot topic at the time. This speech and the associated conference made waves in the scientific community and beyond to such an extent that NGC 7252 was named the Atoms-for-Peace galaxy. In many ways, this is oddly appropriate: the curious shape that we can see is the result of two galaxies merging to produce something new and grand, a little like what occurs in nuclear fusion. Furthermore, the giant loops resemble a textbook diagram of electrons orbiting an atomic nucleus. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical

  5. Coupled-channels calculations of excitation and ionization in ion-atom collisions

    International Nuclear Information System (INIS)

    Martir, M.H.

    1981-01-01

    A numerical method has been used to compute excitation and ionization cross sections for ion-atom collisions. The projectile is treated classically and follows a straight line, constant velocity path (unless indicated otherwise). The wave function that describes the atom is expanded about the target in a truncated Hilbert space. The interaction between the projectile and the target atom is treated as a time dependent perturbation. A unitary time development operator, U, propagates the wave function from a time prior to the collision to a time after the collision in small time steps. Contrary to first-order theories, coupling between states is allowed. This method has been improved so that any number of partial waves can be included in the wave function expansion. This method has been applied to study negatively charged projectiles. Cross sections are obtained for collisions of antiprotons on atomic hydrogen (30 keV to 372 keV) and compared with cross sections of protons on atomic hydrogen to explore the Z/sub P/ dependence. The antiproton-hydrogen results were converted into electron-hydrogen values with E/sub e/ = E/sub P/(m/sub e//m/sub P/) (15 eV to 200 eV) and compared to experimental values. The method is then applied to study vacancy production from the L-shell. The partial wave convergence of the cross sections was carefully studied for s through g waves. Collisions between protons (and alpha-particles) and argon are studied to explore the Z/sub P/ dependence of the cross sections. The cross section ratio sigma(α)/(4sigma(p)) is compared to experiment

  6. Atomic oxygen-MoS sub 2 chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.B.; Martin, J.A. (Los Alamos National Lab., NM (USA)); Pope, L.E. (Sandia National Labs., Albuquerque, NM (USA)); Koontz, S.L. (National Aeronautics and Space Administration, Johnson Space Center, Houston, TX (USA))

    1990-10-01

    The present study shows that an O-atom translation energy of 1.5 eV, SO{sub 2} is generated and outgases from an anhydrous MoS{sub 2} surface with an initial reactivity nearly 50% that of kapton. The reaction of atomic oxygen with MoS{sub 2} has little or no translational energy barrier, i.e. thermally generated atomic oxygen reacts as readily as that having 1.5 eV of translational energy. For MoS{sub 2} films sputter-deposited at 50-70deg C, friction measurements showed a high initial friction coefficient (up to 0.25) for MoS{sub 2} surfaces exposed to atomic oxygen, which dropped to the normal low values after several cycles of operation in air and ultrahigh vacuum. For MoS{sub 2} films deposited at 200deg C, the friction coefficient was not affected by the O-atom exposure. (orig.).

  7. Atomic and molecular physics of controlled thermonuclear fusion

    International Nuclear Information System (INIS)

    Joachain, C.J.; Post, D.E.

    1983-01-01

    This book attempts to provide a comprehensive introduction to the atomic and molecular physics of controlled thermonuclear fusion, and also a self-contained source from which to start a systematic study of the field. Presents an overview of fusion energy research, general principles of magnetic confinement, and general principles of inertial confinement. Discusses the calculation and measurement of atomic and molecular processes relevant to fusion, and the atomic and molecular physics of controlled thermonuclear research devices. Topics include recent progress in theoretical methods for atomic collisions; current theoretical techniques for electron-atom and electronion scattering; experimental aspects of electron impact ionization and excitation of positive ions; the theory of charge exchange and ionization by heavy particles; experiments on electron capture and ionization by multiply charged ions; Rydberg states; atomic and molecular processes in high temperature, low-density magnetically confined plasmas; atomic processes in high-density plasmas; the plasma boundary region and the role of atomic and molecular processes; neutral particle beam production and injection; spectroscopic plasma diagnostics; and particle diagnostics for magnetic fusion experiments

  8. Bettis Atomic Power Laboratory

    International Nuclear Information System (INIS)

    1992-01-01

    The Bettis Atomic Power Laboratory (Bettis) is owned by the US Department of Energy (DOE) and has been operated under Government contract by the Westinghouse Electric Corporation since 1949. The Bettis Site in West Mifflin, Pennsylvania conducts research and development work on improved nuclear propulsion plants for US Navy warships and is the headquarters for all of the Laboratory's operations. For many years, environmental monitoring has been performed to demonstrate that the Bettis Site is being operated in accordance with environmental standards. While the annual report describes monitoring practices and results, it does not describe the nature and environmental aspects of work and facilities at the Bettis Site nor give a historical perspective of Bettis' operations. The purpose of this report is to provide this information as well as background information, such as the geologic and hydrologic nature of the Bettis Site, pertinent to understanding the environmental aspects of Bettis operations. Waste management practices are also described

  9. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  10. About the correlation between atomic charge fluctuations in a molecule

    International Nuclear Information System (INIS)

    Pitanga, P.; Giambiagi, M.S. de; Giambiagi, M.

    1987-01-01

    In this note, the features of the correlation between the electronic charge fluctuations of a pair of atoms within a molecule are analised. Through Schwarz's inequality for random operators in the Hilbert space, the softness of an atom in a molecule is related to its valence and to the softness of the other atoms. It is concluded that in the general case this correlation (from which in turn stems the chemical bond) in non-linear. (author) [pt

  11. Spray structure of a pressure-swirl atomizer for combustion applications

    OpenAIRE

    Jicha Miroslav; Jedelsky Jan; Durdina Lukas

    2012-01-01

    In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV) and Phase-Doppler Par...

  12. Issues involved in the atomic layer deposition of metals

    Science.gov (United States)

    Grubbs, Robert Kimes

    Auger Electron Spectroscopy (AES) was used to study the nucleation and growth of tungsten on aluminum oxide surfaces. Tungsten metal was deposited using Atomic Layer Deposition (ALD) techniques. ALD uses sequential surface reactions to deposit material with atomic layer control. W ALD is performed using sequential exposures of WF6 and Si2H6. The step-wise nature of W ALD allows nucleation studies to be performed by analyzing the W surface concentration after each ALD reaction. Nucleation and growth regions can be identified by quantifying the AES signal intensities from both the W surface and the Al2O3 substrate. W nucleation occurred in 3 ALD reaction cycles. The AES results yielded a nucleation rate of 1.0 A/ALD cycle and a growth rate of ≈3 A/ALD cycle. AES studies also explored the nucleation and growth of Al2O3 on W. Al2O3 nucleated in 1 ALD cycle giving a nucleation rate of 3.5 A/ALD cycle and a subsequent growth rate of 1.0 A/ALD cycle. Mass spectrometry was then used to study the ALD reaction chemistry of tungsten deposition. Because of the step-wise nature of the W ALD chemistry, each W ALD reaction could be studied independently. The gaseous mass products were identified from both the WF6 and Si2H6 reactions. H2, HF and SiF4 mass products were observed for the WF6 reaction. The Si2H6 reaction displayed a room temperature reaction and a 200°C reaction. Products from the room temperature Si2H6 reaction were H2 and SiF3H. The reaction at 200°C yielded only H2 as a reaction product. H2 desorption from the surface contributes to the 200°C Si2H6 reaction. AES was used to confirm that the gas phase reaction products are correlated with a change in the surface species. Atomic hydrogen reduction of metal halides and oganometallic compounds provides another method for depositing metals with atomic layer control. The quantity of atomic hydrogen necessary to perform this chemistry is critical to the metal ALD process. A thermocouple probe was constructed to

  13. Single-atom lasing induced atomic self-trapping

    International Nuclear Information System (INIS)

    Salzburger, T.; Ritsch, H.

    2004-01-01

    We study atomic center of mass motion and field dynamics of a single-atom laser consisting of a single incoherently pumped free atom moving in an optical high-Q resonator. For sufficient pumping, the system starts lasing whenever the atom is close to a field antinode. If the field mode eigenfrequency is larger than the atomic transition frequency, the generated laser light attracts the atom to the field antinode and cools its motion. Using quantum Monte Carlo wave function simulations, we investigate this coupled atom-field dynamics including photon recoil and cavity decay. In the regime of strong coupling, the generated field shows strong nonclassical features like photon antibunching, and the atom is spatially confined and cooled to sub-Doppler temperatures. (author)

  14. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  15. Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2016-09-01

    Full Text Available Abstract We characterize the boundedness and compactness of a product-type operator, which, among others, includes all the products of the single composition, multiplication, and differentiation operators, from a general space to Bloch-type spaces. We also give some upper and lower bounds for the norm of the operator.

  16. Development of the Science Data System for the International Space Station Cold Atom Lab

    Science.gov (United States)

    van Harmelen, Chris; Soriano, Melissa A.

    2015-01-01

    Cold Atom Laboratory (CAL) is a facility that will enable scientists to study ultra-cold quantum gases in a microgravity environment on the International Space Station (ISS) beginning in 2016. The primary science data for each experiment consists of two images taken in quick succession. The first image is of the trapped cold atoms and the second image is of the background. The two images are subtracted to obtain optical density. These raw Level 0 atom and background images are processed into the Level 1 optical density data product, and then into the Level 2 data products: atom number, Magneto-Optical Trap (MOT) lifetime, magnetic chip-trap atom lifetime, and condensate fraction. These products can also be used as diagnostics of the instrument health. With experiments being conducted for 8 hours every day, the amount of data being generated poses many technical challenges, such as downlinking and managing the required data volume. A parallel processing design is described, implemented, and benchmarked. In addition to optimizing the data pipeline, accuracy and speed in producing the Level 1 and 2 data products is key. Algorithms for feature recognition are explored, facilitating image cropping and accurate atom number calculations.

  17. Hanford Atomic Products for Operation monthly report, February 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-03-18

    This document presents a summary of work and progress at the Hanford Engineer Works for February 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  18. Hanford Atomic Products Operation monthly report for April 1955

    Energy Technology Data Exchange (ETDEWEB)

    1955-05-23

    This document presents a summary of work and progress at the Hanford Engineer Works for April 1955. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  19. Hanford Atomic Products Operation monthly report for May 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-06-21

    This document presents a summary of work and progress at the Hanford Engineer Works for May, 1956. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summarizes work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.

  20. Hanford Atomic Products Operation monthly report for September 1954

    Energy Technology Data Exchange (ETDEWEB)

    1954-10-25

    This document presents a summary of work and progress at the Hanford Engineer Works for September 1954. The report is divided into sections by department. A plant wide general summary is included at the beginning of the report, after which the departmental summaries begin. The Manufacturing Department reports plant statistics, and summaries for the Metal Preparation, Reactor and Separation sections. The Engineering Department`s section summaries work for the Technical, Design, and Project Sections. Costs for the various departments are presented in the Financial Department`s summary. The Medical, Radiological Sciences, Utilities and General Services, Employee and Public Relations, and Community Real Estate and Services departments have sections presenting their monthly statistics, work, progress, and summaries.