WorldWideScience

Sample records for atomic power laboratory

  1. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the three KAPL Sites [Knolls Site, Niskayuna, New York; Kesselring Site, West Milton, New York; S1C Site, Windsor, Connecticut] during calendar year 1999 resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations.

  2. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The principal function at KAPL sites (Knolls, Kesselring, and Windsor) is research and development in the design and operation of Naval nuclear propulsion plants. The Kesselring Site is also used for the training of personnel in the operation of these plants. The Naval nuclear propulsion plant at the Windsor Site is currently being dismantled. Operations at the three KAPL sites resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.

  3. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls and Kesselring Sites and Site closure activities at the S1C Site (also known as the KAPL Windsor Site) continue to have no adverse effect on human health and the quality of the environment. The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations. The environmental monitoring program for the S1C Site continues to be reduced in scope from previous years due to the completion of Site dismantlement activities during 1999 and a return to green field conditions during 2000.

  4. Knolls Atomic Power Laboratory environmental monitoring report, calendar year 2000

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-12-01

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) Sites are summarized and assessed in this report. Operations at the Knolls Site, Niskayuna, New York and the Kesselring Site, West Milton, New York and site closure activities at the S1C Site, Windsor, Connecticut, continued to have no adverse effect on human health and the quality of the environment during calendar year 2000. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each Site and at off-site background locations. Monitoring programs at the S1C Site were reduced in scope during calendar year 2000 due to completion of site dismantlement activities during 1999.

  5. Atomic Power

    African Journals Online (AJOL)

    Atomic Power. By Denis Taylor: Dr. Taylor was formerly Chief UNESCO Advisor at the University. College, Nairobi, Kenya and is now Professor of Electrical Engineering in the Uni- versity of ... method of producing radioactive isotopes, which are materials .... the sealing and the pressure balancing, all can be carried out ...

  6. Knolls Atomic Power Laboratory annual environmental monitoring report, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations.

  7. Analysis of 2016 Meteorological Data from the Knolls Atomic Power Laboratory and Kesselring Site Operations Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aluzzi, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-16

    Both the Knolls Atomic Power Laboratory (KAPL) in Schenectady, N.Y. and the Kesselring Site Operations (KSO) facility near Ballston Spa, N.Y. are required to estimate the effects of hypothetical emissions of radiological material from their respective facilities by the U.S. Environmental Protection Agency (EPA), which regulates both sites. An atmospheric dispersion model known as CAP88, which was developed and approved by the EPA for such purposes, is used by KAPL and KSO to meet this requirement. CAP88 calculations over a given time period are based on statistical data on the meteorological conditions for that period. Both KAPL and KSO have on-site meteorological towers which take atmospheric measurements at a frequency ideal for EPA regulatory model input. However, an independent analysis and processing of the meteorological data from each tower is required to derive a data set appropriate for use in the CAP88 model. The National Atmospheric Release Advisory Center (NARAC) was contracted to process the meteorological tower data for the 2016 calendar year from both on-site meteorological towers.

  8. Knolls Atomic Power Laboratory annual environmental monitoring report. Calendar Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The results of the effluent and environmental monitoring programs at the three Knolls Atomic Power Laboratory (KAPL) sites are summarized and assessed in this report. Operations at the three KAPL sites resulted in no significant release of hazardous substances or radioactivity to the environment. The effluent and environmental monitoring programs conducted by KAPL are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as monitoring of environmental air, water, sediment, and fish. Radiation measurements are also made around the perimeter of each site and at off-site background locations. KAPL environmental controls are subject to applicable state and federal regulations governing use, emission, treatment, storage and/or disposal of solid, liquid and gaseous materials. Some non-radiological water and air emissions are generated and treated on-site prior to discharge to the environment. Liquid effluents and air emissions are controlled and monitored in accordance with permits issued by the Connecticut Department of Environmental Protection (CTDEP) for the Windsor Site and by the New York State Department of Environmental Conservation (NYSDEC) for the Knolls and Kesselring Sites. The liquid effluent monitoring data show that KAPL has maintained a high degree of compliance with permit requirements. Where required, radionuclide air emission sources are authorized by the US Environmental Protection Agency (EPA). The non-radiological air emissions, with the exception of opacity for the boilers, are not required to be monitored.

  9. Hazardous Waste Cleanup: USDOE Knolls Atomic Power Laboratory in Niskayuna, New York

    Science.gov (United States)

    The Knolls site is located at 2401 River Road in the Town of Niskayuna, Schenectady County, New York, on the south bank of the Mohawk River. Construction of the site began in 1948 and laboratory operations began in 1949. The site consists of 170 acres of

  10. FINAL REPORT – CHARACTERIZATION SURVEY OF THE SPRU LOWER LEVEL HILLSIDE AREA AT THE KNOLLS ATOMIC POWER LABORATORY, NISKAYUNA, NEW YORK DCN 5146-SR-01-0

    Energy Technology Data Exchange (ETDEWEB)

    Evan Harpenau

    2011-08-29

    The Separations Process Research Unit (SPRU) is located within the boundary of Knolls Atomic Power Laboratory (KAPL) at 2425 River Road, Niskayuna, Schenectady County, New York (Figure A-1). SPRU was designed and developed to research an efficient process to chemically separate plutonium and uranium from processed fuel. Buildings H2 and G2 were the primary research and process facilities. SPRU operated between February 1950 and October 1953 at which time the research was successful in developing useable reduction oxidation and plutonium uranium extraction processes. These processes were subsequently moved to the Hanford and the Savannah River sites for full-scale operations. Building H2 was used by KAPL after the SPRU process ceased until the late 1990s for radioactive wastewater processing and Building G2 was utilized for offices. Process areas and equipment were maintained in a safe condition under a surveillance and maintenance program.

  11. Atomic Power | Taylor | Zede Journal

    African Journals Online (AJOL)

    Zede Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 3 (1968) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Atomic Power. D Taylor. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT ...

  12. Frederick National Laboratory's Contribution to ATOM | FNLCR

    Science.gov (United States)

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  13. Atomic Power in Space: A History

    Science.gov (United States)

    1987-03-01

    "Atomic Power in Space," a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. Interplanetary space exploration successes and achievements have been made possible by this technology, for which there is no known substitue.

  14. Atomic power in space: A history

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    ''Atomic Power in Space,'' a history of the Space Isotope Power Program of the United States, covers the period from the program's inception in the mid-1950s through 1982. Written in non-technical language, the history is addressed to both the general public and those more specialized in nuclear and space technologies. 19 figs., 3 tabs.

  15. Essen and the National Physical Laboratory's atomic clock

    Science.gov (United States)

    Henderson, Dale

    2005-06-01

    To commemorate the fiftieth anniversary of the development of the first atomic frequency standard, we present some notes about the work of Louis Essen at the National Physical Laboratory. In addition, we publish below some personal recollections of Essen on his work, which have previously been available only on the Internet (http://www.btinternet.com/~time.lord/TheAtomicClock.htm).

  16. Results from the Cold Atom Laboratory's ground test bed

    Science.gov (United States)

    Elliott, Ethan; CAL Team

    2017-04-01

    We describe validation and development of critical technologies in the Cold Atom Laboratory's (CAL) ground test bed, including the demonstration of the first microwave evaporation and generation of dual-species quantum gas mixtures on an atom chip. CAL is a multi-user facility developed by NASA's Jet Propulsion Laboratory (JPL) to provide the first persistent quantum gas platform in the microgravity environment of space. The CAL instrument will be operated aboard the International Space Station (ISS) and utilize a compact atom chip trap loaded from a dual-species magneto optical trap of rubidium and potassium. In the unique environment of microgravity, the confining potentials necessary to the process of cooling atoms can be arbitrarily relaxed, enabling production of gases down to pikoKelvin temperatures and ultra-low densities. Complete removal of the confining potential allows for ultracold clouds that can float virtually fixed relative to the CAL apparatus. This new parameter regime enables ultracold atom research with broad applications in fundamental physics and inertial sensing. Results from the Cold Atom Laboratory's ground testbed.

  17. Economical Alternatives for High Sensitivity in Atomic Spectrometry Laboratory

    Directory of Open Access Journals (Sweden)

    O. Yavuz Ataman

    2007-12-01

    Full Text Available The most commonly used analytical tools for determination of elements at trace levels are atomic absorption spectrometry (AAS, inductively coupled plasma, optical emission and mass spectrometry (ICP-OES and ICP-MS and atomic fluorescence spectrometry (AFS. Although sensitive plasma techniques are becoming predominant in most of the western laboratories, AAS keeps its importance in developing countries. Simple and inexpensive ways of enhancing sensitivity will be described for laboratories equipped with only a flame AA spectrometer. Although there are many chemical preconcentration procedures to improve sensitivity of flame AAS, only some atom trapping techniques will be included here. One kind of atom trapping device is a slotted quartz tube (SQT used for in situ preconcentration of analyte species followed by a rapid revolatilization cycle to obtain an enhanced signal. These devices provide limits of detection at a level of µg L-1. Another kind of atom trapping involves use of vapor generation technique and quartz or tungsten atom trapping surfaces. The analytical steps consist of the generation of volatile species, usually by hydride formation using NaBH4, trapping these species at the surface of an atom trap held at an optimized temperature and finally re-volatilizing analyte species by rapid heating of trap. These species are transported using a carrier gas to an externally heated quartz tube as commonly used in hydride generation AAS systems; a transient signal is formed and measured. These traps have limits of detection in the order of ng L-1.

  18. Rotary-atomizer electric power generator

    NARCIS (Netherlands)

    Nguyen, Trieu; Tran, Tuan; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.

    2015-01-01

    We report experimental and theoretical results on a ballistic energy-conversion method based on a rotary atomizer working with a droplet acceleration-deceleration cycle. In a rotary atomizer, liquid is fed onto the center of a rotating flat surface, where it spreads out under the action of the

  19. Laboratory investigations involving high-velocity oxygen atoms

    Science.gov (United States)

    Leger, Lubert J.; Koontz, Steven L.; Visentine, James T.; Cross, Jon B.

    1989-01-01

    Facilities for measuring material reactive characteristics have been under development for several years and span the atom energy range from thermal to 5 eV, the orbital collision energy. One of the high-atom energy facilities (The High Intensity/Energy Atomic Oxygen Source) capable of simulating the reactive part of LEO is described, along with results of beam characterization and preliminary material studies. The oxygen atom beam source was a continuous wave plasma produced by focusing a high-power CO2 laser through a lens system into a rare gas/molecular oxygen mixture chamber at elevated temperature. Material samples were exposed to the high velocity beam through an external feedthrough. The facility showed good stability in continued operation for more than 100 hours, producing fluences of 10 to the 21st to 10 to the 22nd atoms/sq cm. Reaction efficiencies and surface morphology have been measured for several materials at energies of 1.5 and 2.8 eV, matching with data generated from previous space flights. Activation energies for carbon and Kapton as measured in this facility were 800 cal/mole.

  20. Exploring new frontiers in the pulsed power laboratory: Recent progress

    Directory of Open Access Journals (Sweden)

    S. Adamenko

    2015-01-01

    Full Text Available One of the most fundamental processes in the Universe, nucleosynthesis of elements drives energy production in stars as well as the creation of all atoms heavier than hydrogen. To harness this process and open new ways for energy production, we must recreate some of the extreme conditions in which it occurs. We present results of experiments using a pulsed power facility to induce collective nuclear interactions producing stable nuclei of virtually every element in the periodic table. A high-power electron beam pulse striking a small metallic target is used to create the extreme dynamic environment. Material analysis studies detect an anomalously high presence of new chemical elements in the remnants of the exploded target supporting theoretical conjectures of the experiment. These results provide strong motivation to continue our research looking for additional proofs that heavy element nucleosynthesis is possible in pulsed power laboratory.

  1. Flow of power-law fluids in simplex atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, A. [Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States); Jog, M.A. [Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)], E-mail: Milind.Jog@uc.edu; Xue, J.; Ibrahim, A.A. [Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45221-0072 (United States)

    2008-10-15

    This paper presents a computational analysis of flow of time-independent, purely-viscous, power-law fluids in simplex atomizers using the volume-of-fluid (VOF) method. Flow of shear-thinning (0.4 < n < 1), Newtonian (n = 1) and shear thickening fluids (1 < n < 1.2) has been considered. The effect of power-law index and atomizer geometry on the flow and atomizer performance has been investigated. Three geometry parameters have been considered, viz., the atomizer constant which is the ratio of inlet area to the product of swirl chamber diameter and the exit diameter, the ratio of swirl chamber diameter to exit orifice diameter, and the length-to-diameter ratio of the exit orifice. The dimensionless film thickness at exit, spray cone angle, and the discharge coefficient for different values power-law index as well as those with varying atomizer geometry are reported. The pressure drop across the atomizer has been kept constant in all simulations. A change in the power-law index significantly alters the flow field in the in the swirl chamber of the atomizer. The velocity magnitudes and liquid film thickness at the orifice exit change with the power-law index. With fixed atomizer geometry, the pseudoplastic fluids tend to produce thinner liquid sheet, larger spray cone angle, and have lower discharge coefficient compared to dilatant fluids. Changes in the atomizer geometry have a significant impact on the flow for all values of power-law index. The spray cone angle decreases and the discharge coefficient and the film thickness increase with increasing atomizer constant. With increasing D{sub s}/d{sub o}, the dimensionless film thickness at exit increases whereas the dimensional film thickness decreases monotonically. The discharge coefficient increases and the spray cone angle decreases with increasingD{sub s}/d{sub o}. The discharge coefficient, the spray cone angle, and the film thickness decrease with increasing l{sub o}/d{sub o}. A significant finding is that the

  2. Power Electronics, Energy Harvesting and Renewable Energies Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The research in the Power Electronics, Energy Harvesting and Renewable Energies Laboratory (PEHREL) is mainly focused on investigation, modeling, simulation, design,...

  3. Recirculation of Laser Power in an Atomic Fountain

    Science.gov (United States)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present

  4. High Rydberg atoms: a nanoscale electron collisions laboratory

    Science.gov (United States)

    Dunning, F. Barry

    2000-10-01

    Atoms in which one electron is excited to a state of large principal quantum number n, termed Rydberg atoms, are physically very large. The average separation between the excited electron and core ion is such that, in collisions with neutral targets, they behave not as an atom but rather as a pair of independent particles. Studies of collision processes that are dominated by the electron/target interaction can provide information on electron/molecule scattering at energies that extend down to a few microelectronvolts. Collisions with attaching targets can lead to ion formation through electron capture in a binary interaction between the excited electron and target molecule. Capture leads to creation of transient, excited parent negative ions that may subsequently dissociate, undergo autodetachment, or be "stabilized" by intramolecular vibrational relaxation. New insights into each of these processes, and into the lifetime of the intermediate (on a ps timescale), can be obtained by measuring the angular and velocity distributions of the positive and/or negative ions produced in Rydberg atom collisions. Collisions with Rydberg atoms also provide a novel source of dipole-bound negative ions, and have demonstrated the importance of dipole-supported real and virtual states in superelastic electron scattering from polar targets. These applications of Rydberg atoms will be discussed together with some recent results. Research supported by the National Science Foundation and the Robert A. Welch Foundation.

  5. An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy

    Science.gov (United States)

    Russo, D.; Fagan, R. D.; Hesjedal, T.

    2011-01-01

    The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…

  6. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  7. The expressive power of modal logic with inclusion atoms

    Directory of Open Access Journals (Sweden)

    Lauri Hella

    2015-09-01

    Full Text Available Modal inclusion logic is the extension of basic modal logic with inclusion atoms, and its semantics is defined on Kripke models with teams. A team of a Kripke model is just a subset of its domain. In this paper we give a complete characterisation for the expressive power of modal inclusion logic: a class of Kripke models with teams is definable in modal inclusion logic if and only if it is closed under k-bisimulation for some integer k, it is closed under unions, and it has the empty team property. We also prove that the same expressive power can be obtained by adding a single unary nonemptiness operator to modal logic. Furthermore, we establish an exponential lower bound for the size of the translation from modal inclusion logic to modal logic with the nonemptiness operator.

  8. Results of Laboratory Testing of Advanced Power Strips: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L.; Sparn, B.

    2012-08-01

    This paper describes the results of a laboratory investigation to evaluate the technical performance of advanced power strip (APS) devices when subjected to a range of home entertainment center and home office usage scenarios.

  9. Design and development of a solar powered mobile laboratory

    Science.gov (United States)

    Jiao, L.; Simon, A.; Barrera, H.; Acharya, V.; Repke, W.

    2016-08-01

    This paper describes the design and development of a solar powered mobile laboratory (SPML) system. The SPML provides a mobile platform that schools, universities, and communities can use to give students and staff access to laboratory environments where dedicated laboratories are not available. The lab includes equipment like 3D printers, computers, and soldering stations. The primary power source of the system is solar PV which allows the laboratory to be operated in places where the grid power is not readily available or not sufficient to power all the equipment. The main system components include PV panels, junction box, battery, charge controller, and inverter. Not only is it used to teach students and staff how to use the lab equipment, but it is also a great tool to educate the public about solar PV technologies.

  10. Atomic spectrometry and trends in clinical laboratory medicine

    Science.gov (United States)

    Parsons, Patrick J.; Barbosa, Fernando

    2007-09-01

    Increasing numbers of clinical laboratories are transitioning away from flame and electrothermal AAS methods to those based on ICP-MS. Still, for many laboratories, the choice of instrumentation is based upon (a) the element(s) to be determined, (b) the matrix/matrices to be analyzed, and (c) the expected concentration(s) of the analytes in the matrix. Most clinical laboratories specialize in measuring Se, Zn, Cu, and Al in serum, and/or Pb, Cd, Hg, As, and Cr in blood and/or urine, while other trace elements (e.g., Pt, Au etc.) are measured for therapeutic purposes. Quantitative measurement of elemental species is becoming more widely accepted for nutritional and/or toxicological screening purposes, and ICP-MS interfaced with separation techniques, such as liquid chromatography or capillary electrophoresis, offers the advantage of on-line species determination coupled with very low detection limits. Polyatomic interferences for some key elements such as Se, As, and Cr require instrumentation equipped with dynamic reaction cell or collision cell technologies, or might even necessitate the use of sector field ICP-MS, to assure accurate results. Nonetheless, whatever analytical method is selected for the task, careful consideration must be given both to specimen collection procedures and to the control of pre-analytical variables. Finally, all methods benefit from access to reliable certified reference materials (CRMs). While a variety of reference materials (RMs) are available for trace element measurements in clinical matrices, not all can be classified as CRMs. The major metrological organizations (e.g., NIST, IRMM, NIES) provide a limited number of clinical CRMs, however, secondary reference materials are readily available from commercial organizations and organizers of external quality assessment schemes.

  11. Laboratory Astrophysics on High Power Lasers and Pulsed Power Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Remington, B A

    2002-02-05

    Over the past decade a new genre of laboratory astrophysics has emerged, made possible by the new high energy density (HED) experimental facilities, such as large lasers, z-pinch generators, and high current particle accelerators. (Remington, 1999; 2000; Drake, 1998; Takabe, 2001) On these facilities, macroscopic collections of matter can be created in astrophysically relevant conditions, and its collective properties measured. Examples of processes and issues that can be experimentally addressed include compressible hydrodynamic mixing, strong shock phenomena, radiative shocks, radiation flow, high Mach-number jets, complex opacities, photoionized plasmas, equations of state of highly compressed matter, and relativistic plasmas. These processes are relevant to a wide range of astrophysical phenomena, such as supernovae and supernova remnants, astrophysical jets, radiatively driven molecular clouds, accreting black holes, planetary interiors, and gamma-ray bursts. These phenomena will be discussed in the context of laboratory astrophysics experiments possible on existing and future HED facilities.

  12. Knolls Atomic Power Laboratory Environmental Monitoring Report, Calendar Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-12-31

    The effluent and environmental monitoring programs conducted by KAPL at the Knolls and Kesselring Sites are designed to determine the effectiveness of treatment and control methods, to provide measurement of the concentrations in effluents for comparison with applicable standards, and to assess resultant concentrations in the environment. The monitoring programs include analyses of samples of liquid and gaseous effluents for chemical constituents and radioactivity as well as environmental monitoring of air, water, sediment, and fish. Radiation measurements are also made around the perimeter of the Knolls and Kesselring Sites and at off-site background locations.

  13. Prospects for Using Atomic Power Microscopic Methods in Reanimatology

    Directory of Open Access Journals (Sweden)

    V. V. Moroz

    2008-01-01

    Full Text Available Objective: to obtain an image of pores in the membrane of an erythrocyte after its electroporation, by using an atomic power microscope (APM, to evaluate the parameters of the obtained pores, and to discuss the prospects for using an APM in reanimatology. Human whole venous blood was exposed to a pulsed electric field, by inducing erythrocytic membrane elec-troporation. Blood smears were obtained by the standard method. Images of the form and surface of individual erythrocytes and their enlarged fragments were obtained by means of a Femto Scan APM. The diameters, depths, and configuration of some pores were analyzed. This example and others were used to show a wide field and prospects for using an APM in reanimatology.

  14. High power VCSEL devices for atomic clock applications

    Science.gov (United States)

    Watkins, L. S.; Ghosh, C.; Seurin, J.-F.; Zhou, D.; Xu, G.; Xu, B.; Miglo, A.

    2015-09-01

    We are developing VCSEL technology producing >100mW in single frequency at wavelengths 780nm, 795nm and 850nm. Small aperture VCSELs with few mW output have found major applications in atomic clock experiments. Using an external cavity three-mirror configuration we have been able to operate larger aperture VCSELs and obtain >70mW power in single frequency operation. The VCSEL has been mounted in a fiber pigtailed package with the external mirror mounted on a shear piezo. The package incorporates a miniature Rb cell locker to lock the VCSEL wavelength. This VCSEL operates in single frequency and is tuned by a combination of piezo actuator, temperature and current. Mode-hop free tuning over >30GHz frequency span is obtained. The VCSEL has been locked to the Rb D2 line and feedback control used to obtain line-widths of <100kHz.

  15. Development of a solar charged laboratory bench power supply

    Science.gov (United States)

    Ayara, W. A.; Omotosho, T. V.; Usikalu, M. R.; Singh, M. S. J.; Suparta, W.

    2017-05-01

    This product is an improvement on available DC laboratory bench power supply. It is capable of delivering low voltage Alternating Current (AC) and Direct Current (DC) to carry out basic laboratory experiment for both secondary schools and also at higher education institutions. The power supply is capable of delivering fixed DC voltages of 5V, 9V, 12V, variable voltage of between 1.25-30V and a 12V AC voltage. Also Incorporated is a USB port that allows for charging cell phones and other mobile devices, and a dedicated 12V DC output to power 5-7 Watt LED bulb to provide illumination in the laboratory for the instructor who may need to work at night in the absence of utility power.

  16. Atomic Information Technology Safety and Economy of Nuclear Power Plants

    CERN Document Server

    Woo, Taeho

    2012-01-01

    Atomic Information Technology revaluates current conceptions of the information technology aspects of the nuclear industry. Economic and safety research in the nuclear energy sector are explored, considering statistical methods which incorporate Monte-Carlo simulations for practical applications. Divided into three sections, Atomic Information Technology covers: • Atomic economics and management, • Atomic safety and reliability, and • Atomic safeguarding and security. Either as a standalone volume or as a companion to conventional nuclear safety and reliability books, Atomic Information Technology acts as a concise and thorough reference on statistical assessment technology in the nuclear industry. Students and industry professionals alike will find this a key tool in expanding and updating their understanding of this industry and the applications of information technology within it.

  17. 75 FR 20867 - DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1

    Science.gov (United States)

    2010-04-21

    ... COMMISSION DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1 Environmental Assessment and Finding of No... Operating License No. DPR-9 issued to DTE Energy (DTE or the licensee), for the Enrico Fermi Atomic Power Plant Unit 1, (Fermi-1) located in Monroe County, Michigan. Environmental Assessment Identification of...

  18. Results of Laboratory Testing of Advanced Power Strips

    Energy Technology Data Exchange (ETDEWEB)

    Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    Presented at the ACEEE Summer Study on Energy Efficiency in Buildings on August 12-17, 2012, this presentation reports on laboratory tests of 20 currently available advanced power strip products, which reduce wasteful electricity use of miscellaneous electric loads in buildings.

  19. Laboratory modeling of big bang nucleosynthesis using powerful laser facilities

    Science.gov (United States)

    Belyaev, V. S.; Zagreev, B. V.; Kedrov, A. Yu; Kovkov, D. V.; Lobanov, A. V.; Matafonov, A. P.; Savel'ev, A. B.; Mordvincev, I. M.; Tsymbalov, I. N.; Shulyapov, S. A.; Paskhalov, A. A.; Eremin, N. V.; Krainov, V. P.

    2017-06-01

    The processes and problems of big bang nucleosynthesis are considered. Powerful laser pulses allow us to obtain high energy density in matter. Thus, laboratory modeling of big bang nucleosynthesis becomes feasible. Results of experiments on the picosecond laser facility ‘Neodymium’ and on the femtosecond terawatt laser are reported. Further investigations of this topic are discussed.

  20. Degradation of fast electrons energy and atomic hydrogen generation in an emission plume from atomic power stations

    Science.gov (United States)

    Kolotkov, G. A.; Penin, S. T.; Chistyakova, L. K.

    2006-02-01

    The problem of remote detecting of a radioactivity in emissions from atomic power stations (APS) is devoted. The basic radionuclides contained in emissions of nuclear energy stations with various types of reactors have been analyzed. The total power spectrum of electrons is determined taking into account their multiplication. Physical and chemical reactions reducing to generation of atomic hydrogen are considered. For definition of the radiating volume in the emission from APS, the spatial distribution of atomic hydrogen concentration has been calculated with the use Pasquill- Gifford model. Power radiating by the emission plume from the APS with the BWR (Boiling Water Reactor) is estimated. It has been shown, that for estimation of radiation effect on the atmosphere, it is necessary to take into account many generations of electrons, because they have average energies exceeding considerably the ionization potentials for atoms and molecules of the atmospheric components. The area of the maximum concentration of atomic hydrogen in an emission plume can be determined by modelling the transport processes of admixture. The power radiated at frequency 1420 MHz by the volume 1 km from the APS emissions can amount to ~10 -13 W that allows one to detect the total level of activity confidently. The possible configuration of an emission plume has been calculated for various atmospheric stratification and underlying surfaces.

  1. 78 FR 45984 - Yankee Atomic Electric Company, Yankee Nuclear Power Station

    Science.gov (United States)

    2013-07-30

    ... COMMISSION Yankee Atomic Electric Company, Yankee Nuclear Power Station AGENCY: Nuclear Regulatory Commission... on the site of any nuclear power reactor. In its Statement of Considerations (SOC) for the Final Rule... the site of a nuclear power reactor licensed for operation by the Commission, the emergency plan...

  2. Power and energy research at the Army Research Laboratory

    Science.gov (United States)

    Shaffer, Edward C.; Wood, Mark C.

    2012-06-01

    The requirement for power and energy in a modernized, highly digital and network-centric Army is growing exponentially. In addition to the ongoing demand for improved soldier portable power sources, the need for more electric capabilities for combat and unmanned platforms and the requirements of emerging Operational Energy doctrine are driving development of high density, energy efficient power technologies. The Army Research Laboratory (ARL) is addressing these needs through developing a number of underpinning power and energy component technologies at the fundamental research level. ARL is leveraging core expertise in microelectronics and micro-electro-mechanical systems (MEMS), energy conversion, energy storage, and wideband gap materials and devices to advance selected niche areas that address military demands beyond commercial needs in partnership with the Army Research, Development and Engineering centers (RDECs), other services, other agencies, industry, and academia. The technologies under development can be broadly characterized under power generation and energy conversion, energy storage, power distribution, and thermal management. This discussion outlines progress, approach and the way ahead for ARL efforts.

  3. DEVELOPMENT OF A COMPUTER LABORATORY WORK ON ATOMIC FORCE MICROSCOPY OF BIOOBJECTS

    Directory of Open Access Journals (Sweden)

    T. A. Kuchmenko

    2015-01-01

    Full Text Available Innovations in Education are based on the use of new effective educational and information technologies, introduction of progressive forms of organization of educational process, active learning methods. The significant role in the educational system is the development and implementation of virtual labs. For the development of the contemporary science section as bioinformatics, it is necessary to extend the possibility of using computers for processing the information received with the use of modern devices. These research methods include atomic force microscopy. For Students of the specialty 06.05.01 "Bioengineering and Bioinformatics" in the SD "Basics of Nanobiotechnology" it has been developed a virtual laboratory work on "Processing of nanostructured images of biomolecules." The basis for the development of laboratory work was the handbook modified for affordable performance. Laboratory workshop allows you to briefly find out the theory of atomic force microscopy, the organization and the principle of operation of the device. It allows Students to quickly learn the using the program at the AFM image processing Nova 1.0.26.1443. In the laboratory work for the tasks solution the biological objects are selected from the images catalog, and to study and describe of these objects the software is used. Students work with images of biomolecules in the program: change them (increasing, selection of separate areas, evaluate the geometrical parameters, work with 3D-image, writing a description and compare objects with each other. The results are summarized in a table and conclusion. The effectiveness and usefulness of the created laboratory work are proved by the results of Student’s survey and tested in the final and interim certification. This kind of work is suitable for distance learning, to provide a laboratory practicum in SD "Nanotechnology", "Modern methods of analysis" for other specialties as an educational and methodological materials.

  4. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    Science.gov (United States)

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  5. Power and Scour: Laboratory simulations of tsunami-induced scour

    Science.gov (United States)

    Todd, David; McGovern, David; Whitehouse, Richard; Harris, John; Rossetto, Tiziana

    2017-04-01

    The world's coastal regions are becoming increasingly urbanised and densely populated. Recent major tsunami events in regions such as Samoa (2007), Indonesia (2004, 2006, 2010), and Japan (2011) have starkly highlighted this effect, resulting in catastrophic loss of both life and property, with much of the damage to buildings being reported in EEFIT mission reports following each of these events. The URBANWAVES project, led by UCL in collaboration with HR Wallingford, brings the power of the tsunami to the laboratory for the first time. The Pneumatic Tsunami Simulator is capable of tsimulating both idealised and real-world tsunami traces at a scale of 1:50. Experiments undertaken in the Fast Flow Facility at HR Wallingford using square and rectangular buildings placed on a sediment bed have allow us to measure, for the first time under laboratory conditions, the variations in the flow field around buildings produced by tsunami waves as a result of the scour process. The results of these tests are presented, providing insight into the process of scour development under different types of tsunami, giving a glimpse into the power of tsunamis that have already occurred, and helping us to inform the designs of future buildings so that we can be better prepared to analyse and design against these failure modes in the future. Additional supporting abstracts include Foster et al., on tsunami induced building loads; Chandler et al., on the tsunami simulation concept and McGovern et al., on the simulation of tsunami-driven scour and flow fields.

  6. Influence of electron motion in target atom on stopping power for low-energetic ions

    Directory of Open Access Journals (Sweden)

    Stevanović Nenad

    2012-01-01

    Full Text Available In this paper the stopping power was calculated, representing the electrons of the target atom as an assembly of quantum oscillators. It was considered that the electrons in the atoms have some velocity before interaction with the projectile, which is the main contribution of this paper. The influence of electron velocity on stopping power for different projectiles and targets was investigated. It was found that the velocity of the electron stopping power has the greatest influence at low energies of the projectile.

  7. The Mighty Atom? The Development of Nuclear Power Technology

    Science.gov (United States)

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of…

  8. Power-law load dependence of atomic friction

    OpenAIRE

    Fusco, C.; Fasolino, A.

    2004-01-01

    We present a theoretical study of the dynamics of a tip scanning a graphite surface as a function of the applied load. From the analysis of the lateral forces, we extract the friction force and the corrugation of the effective tip-surface interaction potential. We find both the friction force and potential amplitude to have a power-law dependence on applied load with exponent similar to1.6. We interpret these results as characteristic of sharp undeformable tips in contrast to the case of macr...

  9. A Circuit to Improve Power Amplitude Stability in Miniature Rubidium Atomic Frequency Standard

    Directory of Open Access Journals (Sweden)

    LUO Qi

    2017-12-01

    Full Text Available The radiofrequency circuit of traditional miniature rubidium atomic frequency standard (RAFS uses saturated output, which can stabilize the amplitude, but not the waveform, of the radiofrequency signal. This would lead to insufficient microwave power stability. In this study, an improved circuit for stabilizing power amplitude in miniature rubidium atomic frequency standard was described. The circuit took the bias voltage of step recovery diode (SRD as a reference to achieve automatic gain control (AGC through controlling the gain of the variable gain amplifier (VGA. This scheme controlled both the amplitude and the waveform of the radiofrequency signal. The results showed that this scheme can effectively improve power stability of the microwave signal in miniature rubidium atomic frequency standard.

  10. An Educational Laboratory for Digital Control and Rapid Prototyping of Power Electronic Circuits

    Science.gov (United States)

    Choi, Sanghun; Saeedifard, M.

    2012-01-01

    This paper describes a new educational power electronics laboratory that was developed primarily to reinforce experimentally the fundamental concepts presented in a power electronics course. The developed laboratory combines theoretical design, simulation studies, digital control, fabrication, and verification of power-electronic circuits based on…

  11. Atomic Power

    African Journals Online (AJOL)

    controls the electrons around it, and like a strong spring pushes other nuclei away. Later experiments ... 6Cl 2, because its mass number (A) = 12 and its nucleus contains 6 protons and 6 neutrons. However, ... gamma-radiation. Enrico Fermi, the Italian physicist made impor- tant contributions here. It occurred to him to use.

  12. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    Science.gov (United States)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  13. Use of a PhET Interactive Simulation in General Chemistry Laboratory: Models of the Hydrogen Atom

    Science.gov (United States)

    Clark, Ted M.; Chamberlain, Julia M.

    2014-01-01

    An activity supporting the PhET interactive simulation, Models of the Hydrogen Atom, has been designed and used in the laboratory portion of a general chemistry course. This article describes the framework used to successfully accomplish implementation on a large scale. The activity guides students through a comparison and analysis of the six…

  14. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  15. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  16. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  17. 2015 Key Water Power Program and National Laboratory Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Office of Energy Efficiency and Renewable Energy

    2016-01-01

    The U.S. Department of Energy Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the United States.

  18. DSP-Based Hands-On Laboratory Experiments for Photovoltaic Power Systems

    Science.gov (United States)

    Muoka, Polycarp I.; Haque, Md. Enamul; Gargoom, Ameen; Negnetvitsky, Michael

    2015-01-01

    This paper presents a new photovoltaic (PV) power systems laboratory module that was developed to experimentally reinforce students' understanding of design principles, operation, and control of photovoltaic power conversion systems. The laboratory module is project-based and is designed to support a renewable energy course. By using MATLAB…

  19. An attempt for modeling the atmospheric transport of 3H around Kakrapar Atomic Power Station.

    Science.gov (United States)

    Patra, A K; Nankar, D P; Joshi, C P; Venkataraman, S; Sundar, D; Hegde, A G

    2008-01-01

    Prediction of downwind tritium air concentrations in the environment around Kakrapar Atomic Power Station (KAPS) was studied on the basis of Gaussian plume dispersion model. The tritium air concentration by field measurement [measured tritium air concentrations in the areas adjacent to KAPS] were compared with the theoretically calculated values (predicted) to validate the model. This approach will be useful in evaluating environmental radiological impacts due to pressurised heavy water reactors.

  20. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  1. Atomic Absorption Spectrometry in Wilson's Disease and Its Comparison with Other Laboratory Tests and Paraclinical Findings.

    Science.gov (United States)

    Mahjoub, Fatemeh; Fereiduni, Rana; Jahanzad, Isa; Farahmand, Fatemeh; Monajemzadeh, Maryam; Najafi, Mehri

    2012-03-01

    Wilson's disease (WD) is an autosomal recessive disease with genetic abnormality on chromosome 13 causing defect in copper metabolism and increased copper concentration in liver, central nervous system and other organs, which causes different clinical manifestations. The aim of this study was to determine the sensitivity of different clinical and paraclinical tests for diagnosis of Wilson's disease. Paraffin blocks of liver biopsy from 41 children suspicious of WD were collected. Hepatic copper concentrations were examined with atomic absorption spectrophotometry (Australian GBC, model: PAL 3000). Fifteen specimens had hepatic copper concentration (dry weight) more than 250μg/g. Clinical and laboratory data and histologic slides of liver biopsies of these 15 children were reviewed retrospectively. Liver tissue was examined for staging and grading of hepatic involvement and also stained with rubeonic acid method for copper. Patients were 5-15 years old (mean age=9.3 years, standard deviation=2.6) with slight male predominance (9/15=60%). Five (33%) patients were 10 years old. Three (20%) of them were referred for icterus, 8 (54%) because of positive family history, 2 (13%) due to abdominal pain and 2 (13%) because of hepatosplenomegaly and ascites. Serum AST and ALT levels were elevated at the time of presentation in all patients. In liver biopsy, histological grade and stage was 0-8 and 0-6 respectively, 2 (13%) had cirrhosis, 1 (7%) had normal biopsy and 12 (80%) showed chronic hepatitis. Hepatic copper concentrations were between 250 and 1595 μg/g dry weight. The sensitivity of various tests were 85% for serum copper, 83% for serum ceruloplasmin, 53% for urinary copper excretion, 44% for presence of KF ring and 40% for rubeonic acid staining on liver biopsies. None of the tests stated in the article were highly sensitive for diagnosis of WD, so we suggest that diagnosis should be based on combination of family history, physical examination and different tests.

  2. Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter

    Science.gov (United States)

    Radhakrishnan, Rugmini; Karthika, S.

    2010-01-01

    A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…

  3. Emission of fast non-Maxwellian hydrogen atoms in low-density laboratory plasma

    Science.gov (United States)

    Brandt, Christian; Marchuk, Oleksandr; Pospieszczyk, Albrecht; Dickheuer, Sven

    2017-03-01

    The source of strong and broad emission of the Balmer-α line in mixed plasmas of hydrogen (or deuterium) and noble gases in front of metallic surfaces is a subject of controversial discussion of many plasma types. In this work the excitation source of the Balmer lines is investigated by means of optical emission spectroscopy in the plasma device PSI-2. Neutral fast non-Maxwellian hydrogen atoms are produced by acceleration of hydrogen ions towards an electrode immersed into the plasma. By variation of the electrode potential the energy of ions and in turn of reflected fast atoms can be varied in the range of 40-300 eV. The fast atoms in front of the electrode are observed simultaneously by an Echelle spectrometer (0.001 nm/channel) and by an imaging spectrometer (0.01 nm/channel) up to few cm in the plasma. Intense excitation channels of the Balmer lines are observed when hydrogen is mixed with argon or with krypton. Especially in Ar-H and Ar-D mixed plasmas the emission of fast hydrogen atoms is very strong. Intermixing hydrogen with other noble gases (He, Ne or Xe) one observes the same effect however the emission is one order of magnitude less compared to Kr-H or Kr-D plasmas. It is shown, that the key process, impacting this emission, is the binary collision between the fast neutral hydrogen atom and the noble gas atom. Two possible sources of excitation are discussed in details: one is the excitation of hydrogen atoms by argon atoms in the ground state and the second one is the process of the so-called excitation transfer between the metastable states of noble gases and hydrogen. In the latter case the atomic data for excitation of Balmer lines are still not available in literature. Further experimental investigations are required to conclude on the source process of fast atom emission.

  4. Tape transfer atomization patterning of liquid alloys for microfluidic stretchable wireless power transfer.

    Science.gov (United States)

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-02-12

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

  5. Tape Transfer Atomization Patterning of Liquid Alloys for Microfluidic Stretchable Wireless Power Transfer

    Science.gov (United States)

    Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang

    2015-02-01

    Stretchable electronics offers unsurpassed mechanical compliance on complex or soft surfaces like the human skin and organs. To fully exploit this great advantage, an autonomous system with a self-powered energy source has been sought for. Here, we present a new technology to pattern liquid alloys on soft substrates, targeting at fabrication of a hybrid-integrated power source in microfluidic stretchable electronics. By atomized spraying of a liquid alloy onto a soft surface with a tape transferred adhesive mask, a universal fabrication process is provided for high quality patterns of liquid conductors in a meter scale. With the developed multilayer fabrication technique, a microfluidic stretchable wireless power transfer device with an integrated LED was demonstrated, which could survive cycling between 0% and 25% strain over 1,000 times.

  6. Boiling water reactor in a prestressed reinforced concrete vessel for an atomic central heating-and-power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tokarev, Yu.I.; Sokolov, I.N.; Skvortsov, S.A.; Sidorov, A.M.; Krauze, L.V.

    1978-04-01

    The possibility of using a boiling water reactor in a prestressed reinforced concrete vessel for an atomic central heating-and-power plant (CHPP) was considered, with design features of the reactor intended for a two-purpose plant. A prestressed reinforced concrete vessel and integral arrangement of the primary circuit ensured reliability of the atomic CHPP using various CHPP flowsheets.

  7. ORNL (Oak Ridge National Laboratory) Controlled Fusion Atomic Data Center: Thirty years later

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Phaneuf, R.A.; Kirkpatrick, M.I.

    1990-08-01

    The ORNL Controlled Fusion Atomic Data Center (CFADC) handles requests for information and data on fusion processes, maintains a comprehensive bibliographical database, and publishes recommended atomic collision data in what have been popularly called Redbooks,'' to support the fusion community's current atomic and molecular data needs. A recent improvement in the efficiency and operation of the data center has been the addition of a customized database management system implemented on a personal computer system in 1988, and a desktop publishing station in 1989. This paper will describe the present scheme for handling numerical and bibliographic data and emphasize how they facilitate the mission of the CFADC. 1 ref.

  8. Atomic and molecular physics and data activities for astrophysics at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, D.J.; Kristic, P.S.; Liu, W.; Schultz, D.R.; Stancil, P.C.

    1998-04-01

    The atomic astrophysics group at ORNL produces, collects, evaluates, and disseminates atomic and molecular data relevant to astrophysics and actively models various astrophysical environments utilizing this information. With the advent of the World Wide Web, these data are also being placed on-line to facilitate their use by end-users. In this brief report, the group`s recent activities in data production and in modeling are highlighted. For example, the authors describe recent calculations of elastic and transport cross sections relevant to ionospheric and heliospheric studies, charge transfer between metal ions and metal atoms and novel supernova nebular spectra modeling, ion-molecule collision data relevant to planetary atmospheres and comets, and data for early universe modeling.

  9. FOREWORD: The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

    Science.gov (United States)

    Tchang-Brillet, Wad Lydia; Wyart, Jean-François; Zeippen, Claude

    1996-01-01

    The 5th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas was held in Meudon, France, from August 28 to 31 1995. It was the fifth in a series started by the Atomic Spectroscopic Group at the University of Lund, Sweden, in 1983. Then followed the meetings in Toledo, USA, Amsterdam, The Nether- lands and Gaithersburg, USA, with a three year period. The original title of the series ended with "... for Astrophysics and Fusion Research" and became more general with the 4th colloquium in Gaithersburg. The purpose of the present meeting was, in line with tradition, to bring together "producers" and "users" of atomic data so as to ensure optimal coordination. Atomic physicists who study the structure of atoms and their radiative and collisional properties were invited to explain the development of their work, emphasizing the possibilities of producing precise transition wavelengths and relative line intensities. Astrophysicists and laboratory plasma physicists were invited to review their present research interests and the context in which atomic data are needed. The number of participants was about 70 for the first three meetings, then exploded to 170 at Gaithersburg. About 140 participants, coming from 13 countries, attended the colloquium in Meudon. This large gathering was partly due to a number of participants from Eastern Europe larger than in the past, and it certainly showed a steady interest for interdisciplinary exchanges between different communities of scientists. This volume includes all the invited papers given at the conference and, in the appendix, practical information on access to some databases. All invited speakers presented their talks aiming at good communication between scientists from different backgrounds. A separate bound volume containing extended abstracts of the poster papers has been published by the Publications de l'Observatoire de Paris, (Meudon 1996), under the responsibility of

  10. A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories

    Science.gov (United States)

    Jones, C. N.; Goncalves, J.

    2010-01-01

    This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…

  11. Laboratory Measurements of Charge Transfer on Atomic Hydrogen at Thermal Energies

    Science.gov (United States)

    Havener, C. C.; Vane, C. R.; Krause, H. F.; Stancil, P. C.; Mroczkowski, T.; Savin, D. W.

    2002-01-01

    We describe our ongoing program to measure velocity dependent charge transfer (CT) cross sections for selected ions on atomic hydrogen using the ion-aloin merged-beams apparatus at Oak Ridge Natioiial Laboralory. Our focus is on those ions for which CT plays an important role in determining the ionization structure, line emis sion, and thermal structure of observed cosmic photoionized plasmas.

  12. Recommended practices for in-space and ground laboratory. Atomic oxygen exposure and analysis

    Science.gov (United States)

    Banks, Bruce; Koontz, Steve; McCargo, Matt; Pippin, Gary; Rutledge, Sharon

    A detailed guide to testing materials for atomic oxygen durability in earth orbit environments is presented. The steps covered include sample preparation, including masking of the sample, dehydration, weighing, and handling; effective fluence prediction, including the use of witness samples (notably Kapton); plasma facility and operational considerations, involving such matters as avoidance of silicone contamination, the use of continuous versus incremental ashing, and temperature of operation; and erosion yield measurement, with calculation methods and protective coating performance indices provided.

  13. Book analysis: the absolute weapon: atomic power and world order. Student report

    Energy Technology Data Exchange (ETDEWEB)

    Homrig, M.A.

    1988-04-01

    Bernard Brodie is one of the leading theorists from the golden age of nuclear strategy. His farsighted theories stated in The Absolute Weapon: Atomic Power and World Order, are as fresh today as when he wrote and edited the book in 1945. This paper scrutinizes four of the book's theories in relation to the historical record to confirm whether they continue to have merit as a guide for US nuclear policy. First, he clearly understood the need for a nuclear retaliatory force. Second, he believed low-intensity conflict forces would be required. Third, Brodie thought the superpowers could negotiate arms reductions but believed an arms race was just as likely. Fourth, he did not believe the Soviets would ever launch a surprise attack against the US.

  14. Low-phase noise and high-power laser for Bragg atom interferometer

    Science.gov (United States)

    Cheng, Yuan; Zhang, Ke; Chen, Le-Le; Xu, Wen-Jie; Luo, Qin; Zhou, Min-Kang; Hu, Zhong-Kun

    2017-09-01

    We present a laser system with low-phase noise and an output power up to 8.8 W at 780 nm for driving Bragg transitions in a 87Rb fountain. An optical phase-locked loop (OPLL) is employed to restrain the phase noise that arises from the spatial separation of the two Bragg beams at low frequencies. The residual phase variance is suppressed by two orders around 400 Hz. A Mach-Zehnder Bragg atom interferometer, based on the four-photon recoil scheme, has been realized using this laser system. This interferometer shows a resolution of 5 ×1 0-9g at an integration time of 1200 s for gravity measurements.

  15. Low-phase noise and high-power laser for Bragg atom interferometer

    Directory of Open Access Journals (Sweden)

    Yuan Cheng

    2017-09-01

    Full Text Available We present a laser system with low-phase noise and an output power up to 8.8 W at 780 nm for driving Bragg transitions in a   87Rb fountain. An optical phase-locked loop (OPLL is employed to restrain the phase noise that arises from the spatial separation of the two Bragg beams at low frequencies. The residual phase variance is suppressed by two orders around 400 Hz. A Mach-Zehnder Bragg atom interferometer, based on the four-photon recoil scheme, has been realized using this laser system. This interferometer shows a resolution of 5×10−9g at an integration time of 1200 s for gravity measurements.

  16. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  17. VUV absorption spectroscopy measurements of the role of fast neutral atoms in a high-power gap breakdown

    Science.gov (United States)

    Filuk; Bailey; Cuneo; Lake; Nash; Noack; Maron

    2000-12-01

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. We describe a newly developed diagnostic tool that provides a direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1-mm spatial resolution in the 10-mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO2 gas fills confirm the reliability of the diagnostic technique. Throughout the 50-100 ns ion diode pulses no measurable neutral absorption was seen, setting upper limits of (0.12-1.5)x10(14) cm(-3) for ground-state fast neutral atom densities of H, C, N, O, and F. The absence of molecular absorption bands also sets upper limits of (0.16-1.2)x10(15) cm(-3) for common simple molecules. These limits are low enough to rule out ionization of fast neutral atoms as a breakdown mechanism. Breakdown due to ionization of molecules is also found to be unlikely. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  18. Lawrence Livermore National Laboratory selects Intel Itanium 2 processors for world's most powerful Linux cluster

    CERN Multimedia

    2003-01-01

    "Intel Corporation, system manufacturer California Digital and the University of California at Lawrence Livermore National Laboratory (LLNL) today announced they are building one of the world's most powerful supercomputers. The supercomputer project, codenamed "Thunder," uses nearly 4,000 Intel® Itanium® 2 processors... is expected to be complete in January 2004" (1 page).

  19. FOREWORD: The 9th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS 9)

    Science.gov (United States)

    Wahlgren, Glenn M.; Wiese, Wolfgang L.; Beiersdorfer, Peter

    2008-07-01

    For the first time since its inaugural meeting in Lund in 1983, the triennial international conference on Atomic Spectroscopy and Oscillator Strengths for Astrophysical and Laboratory Plasmas (ASOS) returned to Lund, Sweden. Lund has been a home to atomic spectroscopy since the time of Janne Rydberg, and included the pioneering work in laboratory and solar spectroscopy of Bengt Edlén, who presented the initial ASOS talk in 1983. The ninth ASOS was hosted by the Lund Observatory and the Physics Department of Lund University during from 8 to 10 August 2007 and was attended by nearly 100 registrants. An encouraging sign for the field was the number of young researchers in attendance. This volume contains the submitted contributions from the poster presentations of the conference, and represents approximately forty percent of the presented posters. A complementary volume of Physica Scripta provides the written transactions of the ASOS9 invited presentations. With these two volumes the character of ASOS9 is more fully evident, and they serve as a review of the state of atomic spectroscopy for spectrum analysis and the determination of oscillator strengths and their applications. The goal of ASOS is to be a forum for atomic spectroscopy where both the providers and users of atomic data, which includes wavelengths, energy levels, lifetimes, oscillator strengths, and line shape parameters, can meet to discuss recent advances in experimental and theoretical techniques and their application to understanding the physical processes that are responsible for producing observed spectra. The applications mainly originate from the fields of astrophysics and plasma physics, the latter including fusion energy and lighting research. As a part of ASOS9 we were honored to celebrate the retirement of Professor Sveneric Johansson. At a special session on the spectroscopy of iron, which was conducted in his honor, he presented his insights into the Fe II term system and his most recent

  20. 77 FR 36300 - In the Matter of Connecticut Yankee Atomic Power Company; Haddam Neck Plant; Confirmatory Order...

    Science.gov (United States)

    2012-06-18

    ... ownership of any registered classes of Connecticut Yankee Atomic Power Company stock. V In accordance with... system does not support unlisted software, and the NRC Meta System Help Desk will not be able to offer... adjudicatory E- Filing system may seek assistance by contacting the NRC Meta System Help Desk through the...

  1. 75 FR 24755 - DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste...

    Science.gov (United States)

    2010-05-05

    ... COMMISSION DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste Shipment Tracking Requirements In 10 CFR Part 20 Appendix G 1.0 Background DTE Energy (DTE) is the licensee.... DTE is in the process of decommissioning Fermi-1 and radioactive waste shipments from the site are...

  2. Study of atmospheric stagnation, recirculation and ventilation potential at Narora Atomic Power Station NPP site.

    Science.gov (United States)

    Kumar, Deepak; Kumar, Avinash; Kumar, Vimal; Kumar, Jaivender; Ravi, P M

    2013-04-01

    The atmosphere is an important pathway to be considered in assessment of the environmental impact of radioactivity releases from nuclear facilities. The estimation of concentration of released effluents in air and possible ground contamination needs an understanding of relevant atmospheric dispersion. This paper describes the meteorological characteristics of Narora Atomic Power Station (NAPS) Nuclear Power Project site by using the integral parameters developed by Allwine and Whiteman (Atmospheric Environment 28(4):713-721, 1994). Meteorological data measured during the period 2006-2010 were analysed. The integral quantities related to the occurrence of stagnation, recirculation and ventilation characteristics were studied for the NAPS site to assess the dilution potential of the atmosphere. Wind run and recirculation factors were calculated for a 24-h transport time using 5 years of hourly surface measurements of wind speed and direction. The occurrence of stagnation, recirculation and ventilation characteristics during 2006-2010 at the NAPS site is observed to be 33.8, 19.5 and 34.7 % of the time, respectively. The presence of strong winds with predominant wind direction NW and WNW during winter and summer seasons leads to higher ventilation (48.1 and 44.3 %) and recirculation (32.6 % of the summer season). The presence of more dispersed light winds during pre-winter season with predominant wind directions W and WNW results in more stagnation (59.7 % of the pre-winter season). Thus, this study will serve as an essential meteorological tool to understand the transport mechanism of atmospheric radioactive effluent release from any nuclear industry during the pre-operational as well as operational phase.

  3. 2003 Environmental Monitoring Report for the Bettis Atomic Power Laboratory Pittsburgh Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-12-31

    The 2003 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 2003 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates that current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the U.S. Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that any potential risk posed by these residues in much less than the risks encountered in normal everyday life.

  4. 2001 environmental monitoring report for the Bettis Atomic Power Laboratory, West Mifflin Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    The 2001 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 2001 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates that current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the U.S. Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that any potential risk posed by these residues is much less than the risks encountered in normal everyday life.

  5. 1999 environmental monitoring report for the Bettis Atomic Power Laboratory, Pittsburgh Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-12-01

    The 1999 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 1999 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates that current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the US Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that these residues do not pose any significant risk to human health or the environment.

  6. 1997 environmental monitoring report for the Bettis Atomic Power Laboratory, Pittsburgh Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The 1997 results for the Bettis-Pittsburgh radiological and nonradiological environmental monitoring programs are presented. The results demonstrate that the existing procedures ensured that releases to the environment during 1997 were in accordance with applicable Federal, State, County, and local regulations. Evaluation of the environmental data indicates tat current operations at the Site continue to have no adverse effect on human health and the quality of the environment. A conservative assessment of radiation exposure to the general public as a result of Site operations demonstrates that the dose received by any member of the public was well below the most restrictive dose limits established by the Environmental Protection Agency, the Nuclear Regulatory Commission, and the US Department of Energy. A risk assessment of potentially exposed populations to chemical residues in the environment at the Site demonstrates that these residues do not pose any significant risk to human health or the environment.

  7. Peach Bottom Atomic Power Station recirc pipe dose rates with zinc injection and condenser replacement

    Energy Technology Data Exchange (ETDEWEB)

    DiCello, D.C.; Odell, A.D.; Jackson, T.J. [PECO Energy Co., Delta, PA (United States)

    1995-03-01

    Peach Bottom Atomic Power Station (PBAPS) is located near the town of Delta, Pennsylvania, on the west bank of the Susquehanna River. It is situated approximately 20 miles south of Lancaster, Pennsylvania. The site contains two boiling water reactors of General Electric design and each rated at 3,293 megawatts thermal. The units are BWR 4s and went commercial in 1977. There is also a decommissioned high temperature gas-cooled reactor on site, Unit 1. PBAPS Unit 2 recirc pipe was replaced in 1985 and Unit 3 recirc pipes replaced in 1988 with 326 NGSS. The Unit 2 replacement pipe was electropolished, and the Unit 3 pipe was electropolished and passivated. The Unit 2 brass condenser was replaced with a Titanium condenser in the first quarter of 1991, and the Unit 3 condenser was replaced in the fourth quarter of 1991. The admiralty brass condensers were the source of natural zinc in both units. Zinc injection was initiated in Unit 2 in May 1991, and in Unit 3 in May 1992. Contact dose rate measurements were made in standard locations on the 28-inch recirc suction and discharge lines to determine the effectiveness of zinc injection and to monitor radiation build-up in the pipe. Additionally, HPGe gamma scans were performed to determine the isotopic composition of the oxide layer inside the pipe. In particular, the specific ({mu}Ci/cm{sup 2}) of Co-60 and Zn-65 were analyzed.

  8. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    Energy Technology Data Exchange (ETDEWEB)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle W.; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  9. Characteristics of The Narrow Spectrum Beams Used in the Secondary Standard Dosimetry Laboratory at the Lebanese Atomic Energy Commission.

    Science.gov (United States)

    Melhem, N; El Balaa, H; Younes, G; Al Kattar, Z

    2017-06-15

    The Secondary Standard Dosimetry Laboratory at the Lebanese Atomic Energy Commission has different calibration methods for various types of dosimeters used in industrial, military and medical fields. The calibration is performed using different beams of X-rays (low and medium energy) and Gamma radiation delivered by a Cesium 137 source. The Secondary Standard Dosimetry laboratory in charge of calibration services uses different protocols for the determination of high and low air kerma rate and for narrow and wide series. In order to perform this calibration work, it is very important to identify all the beam characteristics for the different types of sources and qualities of radiation. The following work describes the methods used for the determination of different beam characteristics and calibration coefficients with their uncertainties in order to enhance the radiation protection of workers and patient applications in the fields of medical diagnosis and industrial X-ray. All the characteristics of the X-ray beams are determined for the narrow spectrum series in the 40 and 200 keV range where the inherent filtration, the current intensity, the high voltage, the beam profile and the total uncertainty are the specific characteristics of these X-ray beams. An X-ray software was developed in order to visualize the reference values according to the characteristics of each beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. High power laser source for atom cooling based on reliable telecoms technology with all fibre frequency stabilisation

    Science.gov (United States)

    Legg, Thomas; Farries, Mark

    2017-02-01

    Cold atom interferometers are emerging as important tools for metrology. Designed into gravimeters they can measure extremely small changes in the local gravitational field strength and be used for underground surveying to detect buried utilities, mineshafts and sinkholes prior to civil works. To create a cold atom interferometer narrow linewidth, frequency stabilised lasers are required to cool the atoms and to setup and measure the atom interferometer. These lasers are commonly either GaAs diodes, Ti Sapphire lasers or frequency doubled InGaAsP diodes and fibre lasers. The InGaAsP DFB lasers are attractive because they are very reliable, mass-produced, frequency controlled by injection current and simply amplified to high powers with fibre amplifiers. In this paper a laser system suitable for Rb atom cooling, based on a 1560nm DFB laser and erbium doped fibre amplifier, is described. The laser output is frequency doubled with fibre coupled periodically poled LiNbO3 to a wavelength of 780nm. The output power exceeds 1 W at 780nm. The laser is stabilised at 1560nm against a fibre Bragg resonator that is passively temperature compensated. Frequency tuning over a range of 1 GHz is achieved by locking the laser to sidebands of the resonator that are generated by a phase modulator. This laser design is attractive for field deployable rugged systems because it uses all fibre coupled components with long term proven reliability.

  11. Validity and Reliability of the Garmin Vector Power Meter in Laboratory and Field Cycling.

    Science.gov (United States)

    Nimmerichter, Alfred; Schnitzer, Lukas; Prinz, Bernhard; Simon, Dieter; Wirth, Klaus

    2017-06-01

    To assess the validity and reliability of the Garmin Vector against the SRM power meter, 6 cyclists completed 3 continuous trials at power outputs from 100-300 W at 50-90 rev·min-1 and a 5-min time trial in laboratory and field conditions. In field conditions only, a 30-s sprint was performed. Data were compared with paired samples t-tests, with the 95% limits of agreement (LoA) and the typical error. Reliability was calculated as the coefficient of variation (CV). There was no significant difference between the devices in power output in laboratory (p=0.245) and field conditions (p=0.312). 1-s peak power was significantly different between the devices (p=0.043). The LoA were ~1.0±5.0 W and ~0.5±0.5 rev·min-1 in both conditions. The LoA during the 30-s sprint was 6.3±38.9 W and for 1-s peak power it was 18.8±17.1 W. The typical error for power output was 2.9%, while during sprint cycling it was 7.4% for 30-s and 2.7% for 1-s peak power. For cadence, the typical error was below 1.0%. The mean CVs were ~1.0% and ~3.0% for the SRM and Garmin, respectively. These findings suggest, that the Garmin Vector is a valid alternative for training. However, during sprint cycling there is lower agreement with the SRM power meter. Both devices provide good reliability (CV<3.0%). © Georg Thieme Verlag KG Stuttgart · New York.

  12. Fiber laser beam combining and power scaling progress: Air Force Research Laboratory Laser Division

    Science.gov (United States)

    Wagner, T. J.

    2012-02-01

    Numerous achievements have been made recently by researchers in the areas of fiber laser beam combining and power scaling. Industry has demonstrated multi-kW power from a single fiber amplifier, and a US national laboratory has coherently combined eight fiber amplifiers totaling 4 kW. This paper will survey the recent literature and then focus on fiber laser results from the Laser Division, Directed Energy Directorate of the Air Force Research Laboratory (AFRL). Progress has been made in the power scaling of narrow-linewidth fiber amplifiers, and we are transitioning lessons learned from PCF power scaling into monolithic architectures. SBS suppression has been achieved using a variety of techniques to lower the Brillioun gain, including acoustically tailored fiber, laser gain competition resulting from multitone seeding and inducing a longitudinal thermal gradient. We recently demonstrated a 32-channel coherent beam combination result using AFRL's phaselocking technique and are focused on exploring the limitations of this technique including linewidth broadening, kW-induced phase nonlinearities and auto-tuning methods for large channel counts. Additionally, we have recently refurbished our High Energy Laser Joint Technology Office-sponsored 16-amplifier fiber testbed to meet strict PER, spatial drift, power stability and beam quality requirements.

  13. Discourse, Power, and Knowledge in the Management of "Big Science": The Production of Consensus in a Nuclear Fusion Research Laboratory.

    Science.gov (United States)

    Kinsella, William J.

    1999-01-01

    Extends a Foucauldian view of power/knowledge to the archetypical knowledge-intensive organization, the scientific research laboratory. Describes the discursive production of power/knowledge at the "big science" laboratory conducting nuclear fusion research and illuminates a critical incident in which the fusion research…

  14. Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL; Miller, John M [ORNL; Campbell, Steven L [ORNL; Coomer, Chester [ORNL; White, Cliff P [ORNL; Seiber, Larry Eugene [ORNL

    2013-01-01

    Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

  15. Nanolithography with metastable helium atoms in a high-power standing-wave light field

    NARCIS (Netherlands)

    Petra, S.J.H.; Feenstra, L.; Hogervorst, W.; Vassen, W.

    2004-01-01

    We have created periodic nanoscale structures in a gold substrate with a lithography process using metastable triplet helium atoms that damage a hydrophobic resist layer on top of the substrate. A beam of metastable helium atoms is transversely collimated and guided through an intense standing-wave

  16. Laboratory Investigation of High Temperature Corrosion in Straw fired Power Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie

    1998-01-01

    Corrosion in straw-fired power plants has been studied in the laboratory for Sandvik 8LR30 and Sanicro 28. The influence of HCl and SO2 was investigated at 600C metal temperature for upto 300 hours.In addition the corrosion behaviour of the same materials was examined in ash taken from a straw......-fired boiler. The corrosive potential of the individual components were thus evaluated...

  17. The Definition Method and Optimization of Atomic Strain Tensors for Nuclear Power Engineering Materials

    Directory of Open Access Journals (Sweden)

    Xiangguo Zeng

    2016-01-01

    Full Text Available A common measure of deformation between atomic scale simulations and the continuum framework is provided and the strain tensors for multiscale simulations are defined in this paper. In order to compute the deformation gradient of any atom m, the weight function is proposed to eliminate the different contributions within the neighbor atoms which have different distances to atom m, and the weighted least squares error optimization model is established to seek the optimal coefficients of the weight function and the optimal local deformation gradient of each atom. The optimization model involves more than 9 parameters. To guarantee the reliability of subsequent parameters identification result and lighten the calculation workload of parameters identification, an overall analysis method of parameter sensitivity and an advanced genetic algorithm are also developed.

  18. Determination of Fe Content of Some Food Items by Flame Atomic Absorption Spectroscopy (FAAS): A Guided-Inquiry Learning Experience in Instrumental Analysis Laboratory

    Science.gov (United States)

    Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.

    2012-01-01

    This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…

  19. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  20. Promising lines of investigations in the realms of laboratory astrophysics with the aid of powerful lasers

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Batishchev, P. A.; Bolshakov, V. V.; Elkin, K. S.; Karabadzhak, G. F.; Kovkov, D. V.; Matafonov, A. P.; Raykunov, G. G.; Yakhin, R. A. [Russian Space Agency, Central Research Institute of Machine Building (TsNIIMash) (Russian Federation); Pikuz, S. A.; Skobelev, I. Yu.; Faenov, A. Ya.; Fortov, V. E. [Russian Academy of Sciences (IVTAN), Joint Institute for High Temperatures (Russian Federation); Krainov, V. P. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Rozanov, V. B. [Russian Academy of Sciences, Lebedev Institute of Physics (Russian Federation)

    2013-04-15

    The results of work on choosing and substantiating promising lines of research in the realms of laboratory astrophysics with the aid of powerful lasers are presented. These lines of research are determined by the possibility of simulating, under laboratory conditions, problematic processes of presentday astrophysics, such as (i) the generation and evolution of electromagnetic fields in cosmic space and the role of magnetic fields there at various spatial scales; (ii) the mechanisms of formation and evolution of cosmic gamma-ray bursts and relativistic jets; (iii) plasma instabilities in cosmic space and astrophysical objects, plasma jets, and shock waves; (iv) supernova explosions and mechanisms of the explosion of supernovae featuring a collapsing core; (v) nuclear processes in astrophysical objects; (vi) cosmic rays and mechanisms of their production and acceleration to high energies; and (vii) astrophysical sources of x-ray radiation. It is shown that the use of existing powerful lasers characterized by an intensity in the range of 10{sup 18}-10{sup 22} W/cm{sup 2} and a pulse duration of 0.1 to 1 ps and high-energy lasers characterized by an energy in excess of 1 kJ and a pulse duration of 1 to 10 ns makes it possible to perform investigations in laboratory astrophysics along all of the chosen promising lines. The results obtained by experimentally investigating laser plasma with the aid of the laser facility created at Central Research Institute of Machine Building (TsNIIMash) and characterized by a power level of 10 TW demonstrate the potential of such facilities for performing a number of experiments in the realms of laboratory astrophysics.

  1. Inter-laboratory comparison of HITU power measurement methods and capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Jenderka, K V [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Durando, G [Istituto Nazionale di Ricerca Metrologica (INRIM), Strada delle Cacce 91, 10135 Torino (Italy); Karaboece, B [Tuebitak Ulusal Metroloji Enstituesue (UME), P.K. 54 41470 Gebze-Kocaeli (Turkey); Rajagopal, S; Shaw, A, E-mail: kvjend@ieee.org [National Physical Laboratory (NPL), Hampton Road, Teddington, TW11 0LW (United Kingdom)

    2011-02-01

    High Intensity Therapeutic Ultrasound (HITU) is gaining in importance among the spectrum of therapeutic options to combat cancer. HITU has already been approved and is in clinical use for the treatment of organs like the prostate, the liver and the uterus. Nevertheless, the metrology of the applied high power ultrasound fields, and in consequence, reliable treatment planning and monitoring, is still a challenge. As part of a European Metrology Research Programme project, the four National Metrology Institutes from the UK, Germany, Italy and Turkey conducted an inter-laboratory comparison of their power measurement capabilities at power levels of 5, 25, 75 and 150 W each at frequencies of 1.1, 1.5 and 3.3 MHz. The task was to measure the total, time-averaged ultrasonic output power, emitted by the circulated transducers under specified electrical excitation conditions into an anechoic water load, and the actual rms transducer input voltage. The output value to be reported was the electro-acoustic radiation conductance including the associated standard and expanded uncertainties. Several different measurement techniques were applied to gain further insight into HITU power measurement. The deviations from the calculated comparison reference value found for the different techniques are discussed and conclusions for the further improvement of measuring procedures are drawn.

  2. An Experimental Study of Laboratory Hybrid Power System with the Hydrogen Technologies

    Directory of Open Access Journals (Sweden)

    Daniel Minarik

    2014-01-01

    Full Text Available This paper presents very small laboratory hybrid photovoltaic-hydrogen power system. The system was primarily assembled to verify the operability of the control algorithms and practical deployment of available commercial hydrogen technologies that are directly usable for storage of electricity produced from renewable energy sources in a small island system. This energetic system was installed and tested in Laboratory of fuel cells that is located in the university campus of VSB-Technical University of Ostrava. The energetic system consists of several basic components: a photovoltaic field, accumulators bank, water commercial electrolyzer and compact fuel cell system. The weather conditions recorded in two different weeks as model weather and solar conditions are used as case studies to test the energetic system and the results for two different cases are compared each other. The results show and illustrate selected behaviour curves of the power system and also average energy storage efficiency for accumulation subsystem based on hydrogen technologies or at the energetic system embedded components. On the basis of real measurement and its evaluation the ideal parameters of the photovoltaic field were calculated as well as the hydrogen technologies for supposed purpose and the power requirements.

  3. 77 FR 36302 - Yankee Atomic Electric Company, Yankee Nuclear Power Station, Confirmatory Order Modifying...

    Science.gov (United States)

    2012-06-18

    ... classes of Yankee Atomic Electric Company stock. V In accordance with 10 CFR 2.202, any person adversely... Meta System Help Desk will not be able to offer assistance in using unlisted software. If a participant... assistance by contacting the NRC Meta System Help Desk through the ``Contact Us'' link located on the NRC Web...

  4. A 3D Laboratory Test-Platform for Overhead Power Line Inspection

    Directory of Open Access Journals (Sweden)

    Chang-An Liu

    2016-04-01

    Full Text Available Using unmanned aerial vehicles (UAVs for performing automatic inspection of overhead power lines instead of foot patrols is an attractive option, since doing so is safer and have considerable cost savings, among other advantages. The purpose of this paper is to design a 3D laboratory test-platform to simulate UAVs' inspection of transmission lines and secondly, proposing an automated inspection strategy for UAVs in order to follow transmission lines. The construction and system architecture of our 3D test-platform is described in this paper. The inspection strategy contributes to knowledge pertaining to an automated inspection procedure and includes two steps: flight path planning for UAVs and visual tracking of the transmission lines. The 3D laboratory test-platform is applied to test the performance of the proposed strategy and the tracking results of our inspection strategy are subsequently presented. The availability of the 3D laboratory test-platform and the efficiency of our tracking algorithm are verified by experiments.

  5. Randomized block experimental designs can increase the power and reproducibility of laboratory animal experiments.

    Science.gov (United States)

    Festing, Michael F W

    2014-01-01

    Randomized block experimental designs have been widely used in agricultural and industrial research for many decades. Usually they are more powerful, have higher external validity, are less subject to bias, and produce more reproducible results than the completely randomized designs typically used in research involving laboratory animals. Reproducibility can be further increased by using time as a blocking factor. These benefits can be achieved at no extra cost. A small experiment investigating the effect of an antioxidant on the activity of a liver enzyme in four inbred mouse strains, which had two replications (blocks) separated by a period of two months, illustrates this approach. The widespread failure to use these designs more widely in research involving laboratory animals has probably led to a substantial waste of animals, money, and scientific resources and slowed down the development of new treatments for human and animal diseases. © The Author 2014. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Train of high-power femtosecond pulses: Probe wave in a gas of prepared atoms

    Science.gov (United States)

    Muradyan, Gevorg; Muradyan, Atom Zh.

    2009-09-01

    We present a method for generating a regular train of ultrashort optical pulses in a prepared two-level medium. The train develops from incident monochromatic probe radiation traveling in a medium of atoms, which are in a quantum mechanical superposition of dressed internal states. In the frame of linear theory for the probe radiation, the energy of individual pulses is an exponentially growing function of atom density and of interaction cross section. Pulse repetition rate is determined by the pump field’s generalized Rabi frequency and can be around 1 THz and greater. We also show that the terms, extra to the dipole approximation, endow the gas by a new property: nonsaturating dependence of refractive index on dressing monochromatic field intensity. Contribution of these nonsaturating terms can be compatible with the main dipole approximation term contribution in the wavelength region of about ten micrometers (the range of CO2 laser) or larger.

  7. Efficiency at maximum power of a heat engine working with a two-level atomic system.

    Science.gov (United States)

    Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli

    2013-04-01

    We consider the finite-time operation of a quantum heat engine whose working substance is composed of a two-level atomic system. The engine cycle, consisting of two quantum adiabatic and two quantum isochoric (constant-frequency) processes and working between two heat reservoirs at temperatures T(h) and T(c)(engine model based on a mesoscopic or macroscopic system. If the internal friction is included, we find that the EMP decreases as the friction coefficient increases.

  8. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp [Graduate School of Information Science and Technology, Hokkaido University, Kita-ku N14 W9, Sapporo 060-0814 (Japan)

    2015-10-26

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained in force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.

  9. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M., E-mail: Masaki.Hori@mpq.mpg.de [Max-Planck-Institut fuer Quantenoptik (Germany); Dax, A. [University of Tokyo, Department of Physics (Japan); Soter, A. [Max-Planck-Institut fuer Quantenoptik (Germany)

    2012-12-15

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth {Gamma}{sub pl} {approx} 6 MHz, pulse energy 50-100 mJ, and output wavelength {lambda} = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth {Gamma}{sub pl} {approx} 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  10. High-power Ti:sapphire lasers for spectroscopy of antiprotonic atoms and radioactive ions

    Science.gov (United States)

    Hori, M.; Dax, A.; Soter, A.

    The ASACUSA collaboration has developed injection-seeded Ti:sapphire lasers of linewidth Γpl ˜ 6 MHz, pulse energy 50-100 mJ, and output wavelength λ = 726-941 nm. They are being used in two-photon spectroscopy experiments of antiprotonic helium atoms at the Antiproton Decelerator (AD) of CERN. Ti:sapphire lasers of larger linewidth Γpl ˜ 100 MHz but more robust design will also be used in collinear resonance ionization spectroscopy (CRIS) experiments of neutron-deficient francium ions at the ISOLDE facility.

  11. 76 FR 48184 - Exelon Nuclear, Peach Bottom Atomic Power Station, Unit 1; Exemption From Certain Security...

    Science.gov (United States)

    2011-08-08

    ... special nuclear material at fixed sites and in transit and of plants in which special nuclear material is... National Engineering and Environmental Laboratory (INEEL) for reprocessing was completed on February 17... transit, and records and reports, contained in these or other sections of Part 73 continue to apply. To...

  12. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering.

    Science.gov (United States)

    Marrese, Marica; Guarino, Vincenzo; Ambrosio, Luigi

    2017-02-13

    Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM) are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles).

  13. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Marica Marrese

    2017-02-01

    Full Text Available Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles.

  14. Laboratory, clinical, and kindergarten test of a new eccentric infrared photorefractor (PowerRefractor).

    Science.gov (United States)

    Choi, M; Weiss, S; Schaeffel, F; Seidemann, A; Howland, H C; Wilhelm, B; Wilhelm, H

    2000-10-01

    Photorefraction is a convenient way to determine refractive state from a distance. It is, therefore, useful for measuring infants and noncooperative subjects. However, its reliability (or precision) and accuracy (or validity) has been questioned. In a study in subjects without cycloplegia, we have tested whether, after complete automatization, eccentric photorefraction at a 1-m distance can be as reliable as a common autorefractor. In a laboratory study of 15 student subjects without the use of cycloplegia (30 eyes, refractive errors ranging from -6 D to +6 D), age 25 to 31 years, the photorefractive measurements were compared with spectacle prescriptions. In a clinical study, photorefraction, autorefraction, and subjective refraction were performed in 40 patients without cycloplegia (refractive errors ranging from -4 D to +4 D), most of them with various ocular pathologies. Subjective refractions were obtained by an experienced clinical ophthalmologist but were not accessible to the examiner who used the two refractors. Visual acuity was 20/20 or better except for five subjects. Ages ranged from 6 to 75 years. In the kindergarten screening study, 108 children aged 3 to 6 years were screened for refractive errors. In the laboratory study, it was found that the mean difference between spectacle prescription and PowerRefractor measurements was current autorefractors in that it is faster, measures both eyes at once, and gives interpupillary distance, pupil size, and information on the alignment of the eyes at the same time.

  15. A Physicist in the Corridors of Power: P. M. S. Blackett's Opposition to Atomic Weapons Following the War

    Science.gov (United States)

    Nye, M. J.

    1999-06-01

    . Blackett had been a naval officer during the First World War, a veteran of Ernest Rutherford's Cavendish Laboratory and head of the physics department at Manchester in the interwar years, and he was a founder of operational research during the Second World War. Vilified in the British and American press in the 1940s and 1950s, he continued to contest prevailing nuclear weapons strategy, finding a more favorable reception for his arguments by the early 1960s. This paper examines the publication and reception of Blackett's views on atomic weapons, analyzing the risks to a physicist who writes about a subject other than physics, as well as the circumstances that might compel one to do so.

  16. Challenges and practical experiences in power quality and electrical connection of distributed energy resources for certification laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Perea, E.; De Muro, G.; Zabala, E. [LABEIN-Tecnalia, Derio (Spain)

    2007-07-01

    New standards in power quality and connection requirements for distributed energy resources in electrical networks are now being established in relation to wind farm interconnections, voltage dips, flickers, and harmonics emissions. New harmonic and interharmonic measuring equipment is now needed to evaluate power quality and voltage variations immunity. This paper discussed laboratory specification, design and investment methods used by certification entities and provided laboratory specifications and details of experimental tests conducted to evaluate the capabilities of laboratories in relation to new standards. International research, development and innovation projects designed to address distributed generation and network disturbances were discussed. The accreditation process was described. It was concluded that the publication of new standards will require compliance and innovation in order to ensure that adequate testing procedures are used. Communication with testing laboratories is required in order to develop new testing strategies. 12 refs., 1 fig.

  17. High Power Laser Laboratory at the Institute of Plasma Physics and Laser Microfusion: equipment and preliminary research

    Directory of Open Access Journals (Sweden)

    Zaraś-Szydłowska Agnieszka

    2015-06-01

    Full Text Available The purpose of this paper is to present the newly-opened High Power Laser Laboratory (HPLL at the Institute of Plasma Physics and Laser Microfusion (IPPLM. This article describes the laser, the main laboratory accessories and the diagnostic instruments. We also present preliminary results of the first experiment on ion and X-ray generation from laser-produced plasma that has been already performed at the HPLL.

  18. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2009-11-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle

  19. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    2008-10-15

    system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.

  20. Plasma enhanced ultrastable self-powered visible-blind deep ultraviolet photodetector based on atomically thin boron nitride sheets

    Science.gov (United States)

    Feng, Peter Xianping; Rivera, Manuel; Velazquez, Rafael; Aldalbahi, Ali

    We extend our work on the use of digitally controlled plasma deposition technique to synthesize high quality boron nitride nanosheets (BNNSs). The nanoscale morphologies and layered growth characteristics of the BNNSs were characterized using scanning electron microscope, transmission electron microscopy, and atomic force microscopy. The experimental data indicated each sample consists of multiple atomically thin, highly transparent BNNSs that overlap one another with certain orientations. Purity and structural properties were characterized by Raman scattering, XRD, FTIR and XPS. Based on these characterizations, 2D BNNSs based self-powered, visible blind deep UV detectors were designed, fabricated, and tested. The bias, temperature, and humidity effects on the photocurrent strength were investigated. A significant increase of signal-to-noise ratio after plasma treatment was observed. The fabricated photodetectors presented exceptional properties: a very stable baseline and a high sensitivity to weak intensities of radiation in both UVC and UVB range while remaining visible-blind, a high signal-to-noise ratio, and excellent repeatability even when the operating temperature was up to 400 0C. The shift in cutoff wavelength was also observed. This work is supported by the Army Research Office/DoD Grant (62826-RT-REP) and the ISPP#0058 at King Saud University.

  1. Relevance of reliable, geotechnical laboratory examinations to opencast mining operations at RWE Power AG; Bedeutung zuverlaessiger geotechnischer Laboruntersuchungen fuer die Tagebaubetriebe der RWE Power AG

    Energy Technology Data Exchange (ETDEWEB)

    Gaertner, Dieter [RWE Power AG, Bergheim (Germany). Sparte Tagebaue; Dahmen, Dieter [RWE Power AG, Bergheim (Germany). Abt. fuer Gebirgs- und Bodenmechanik

    2013-01-15

    Geotechnical laboratory tests lay the foundation for performing stability examinations on opencast-mine slopes. The determined shear strength values directly affect the result of stability calculations and are therefore crucial to the reliable and adequate, i.e. safe and cost-efficient, dimensioning of opencast-mine rime slopes. Special laboratory examinations for great opencast mine depths as in the Rhenish mining area are not offered on the market. In addition, RWE Power considers it necessary to have the competencies and equipment required for these essential tasks available in-house and to be able to perform these tasks on its own responsibility and according to its own reproducibility and accuracy standards to ensure economic efficiency in view of the substantial time and effort required. Our aim is to combine all responsibilities for laboratory and stability examinations under one roof for this is the only approach enabling proper coordination between laboratory examination (implementation, underlying conditions, assessment) and stability examinations (calculation procedures, use of parameters, assessment) and an adequate dimensioning of the large opencast-mine slope systems in the Rhenish area without additional safety margins. The present article underlines how important reliable and trustworthy laboratory results are to RWE Power in order to guarantee the 'geotechnical safety' of opencast mines and their surrounding area as well as cost-efficient and smooth mining operations. With its opencast mines, RWE Power is therefore demonstrating the energy to lead in geotechnics with regard to slope depths, slope creation, and mass movement. (orig.)

  2. LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    SEIDEL CM; JAIN J; OWENS JW

    2009-02-23

    This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

  3. Development of a method for reliable power input measurements in conventional and single-use stirred bioreactors at laboratory scale.

    Science.gov (United States)

    Kaiser, Stephan C; Werner, Sören; Jossen, Valentin; Kraume, Matthias; Eibl, Dieter

    2017-05-01

    Power input is an important engineering and scale-up/down criterion in stirred bioreactors. However, reliably measuring power input in laboratory-scale systems is still challenging. Even though torque measurements have proven to be suitable in pilot scale systems, sensor accuracy, resolution, and errors from relatively high levels of friction inside bearings can become limiting factors at smaller scales. An experimental setup for power input measurements was developed in this study by focusing on stainless steel and single-use bioreactors in the single-digit volume range. The friction losses inside the air bearings were effectively reduced to less than 0.5% of the measurement range of the torque meter. A comparison of dimensionless power numbers determined for a reference Rushton turbine stirrer ( N P = 4.17 ± 0.14 for fully turbulent conditions) revealed good agreement with literature data. Hence, the power numbers of several reusable and single-use bioreactors could be determined over a wide range of Reynolds numbers between 100 and >10 4 . Power numbers of between 0.3 and 4.5 (for Re = 10 4 ) were determined for the different systems. The rigid plastic vessels showed similar power characteristics to their reusable counterparts. Thus, it was demonstrated that the torque-based technique can be used to reliably measure power input in stirred reusable and single-use bioreactors at the laboratory scale.

  4. A Flexible Experimental Laboratory for Distributed Generation Networks Based on Power Inverters

    Directory of Open Access Journals (Sweden)

    Jaume Miret

    2017-10-01

    Full Text Available In the recently deregulated electricity market, distributed generation based on renewable sources is becoming more and more relevant. In this area, two main distributed scenarios are focusing the attention of recent research: grid-connected mode, where the generation sources are connected to a grid mainly supplied by big power plants, and islanded mode, where the distributed sources, energy storage devices, and loads compose an autonomous entity that in its general form can be named a microgrid. To conduct a successful research in these two scenarios, it is essential to have a flexible experimental setup. This work deals with the description of a real laboratory setup composed of four nodes that can emulate both scenarios of a distributed generation network. A comprehensive description of the hardware and software setup will be done, focusing especially in the dual-core DSP used for control purposes, which is next to the industry standards and able to emulate real complexities. A complete experimental section will show the main features of the system.

  5. Inhibitory and bactericidal power of mangosteen rind extract towards Porphyromonas Gingivalis and Actinobacillus Actinomycetemcomitans (Laboratory test

    Directory of Open Access Journals (Sweden)

    Ina Hendiani

    2017-08-01

    Full Text Available Introduction: The bacteria that cause the occurrence of pathogens of periodontal disease are gram negative anaerobes. These bacteria include Pophyromonas Gingivalis and Actinobacillus Actinomycetemcomitans. Mangosteen skin extract is known to have anti-inflammatory, anti microbial, and anti oxidant properties. The extract of the mangosteen peel is altered in gel preparation in order to streamline its clinical application in periodontal disease. The purpose of this study was to examine the antibacterial power of the ginger mangosteen tree extract gel against Pophyromonas gingivalis and Actinobacillus Actinomycetemcomitans (Aggregatibacter Actinomycetemcomitans. Methods: This research was conducted by experimental laboratory. Mangosteen fruit extract gel with concentration of 100%, 50%, 25%, 12,5%, 6,25%, 3,125% and 0,78% were tested against Pophyromonas Gingivalis and Aggregatibacter Actinomycetemcomitans with agar diffusion method. Results and Discussion: The results of this study indicate that for Actinobacilus Aggregatibacter bacteria minimal inhibitory concentration at a concentration of 6.25% with a diameter of 13,5mm inhibition. Minimal bactericidal concentration at 12,5% concentration with 14,7mm inhibitory diameter. In the test of Pophyromonas Gingivalis bacteria, minimal inhibitory concentrations were obtained at a concentration of 1.56% and a minimum bactericidal concentration was obtained at a concentration of 3.125%. Conclusion: The conclusion that mangosteen peel skin gel extract can inhibit bacterial growth and is bactericidal against Pophyromonas Gingivalis and Actinobacillus Actinomycetemcomitans (Aggregatibacter Actinomycetecomitans.

  6. Decontamination and deactivation of the power burst facility at the Idaho National Laboratory.

    Science.gov (United States)

    Greene, Christy Jo

    2007-05-01

    Successful decontamination and deactivation of the Power Burst Facility located at the Idaho National Laboratory was accomplished through the use of extensive planning, job sequencing, engineering controls, continuous radiological support, and the use of a dedicated group of experienced workers. Activities included the removal and disposal of irradiated fuel, miscellaneous reactor components and debris stored in the canal, removal and disposition of a 15.6 curie Pu:Be start-up source, removal of an irradiated in-pile tube, and the removal of approximately 220,000 pounds of lead that was used as shielding primarily in Cubicle 13. The canal and reactor vessel were drained and water was transferred to an evaporation tank adjacent to the facility. The canal was decontaminated using underwater divers, and epoxy was affixed to the interior surfaces of the canal to contain loose contamination. The support structures and concrete or steel frame walls that form the confinement were left in place. The reactor core was left in place and a carbon steel shielding plate was placed over the reactor core to reduce radiation levels. All low-level waste and mixed low level waste generated as a result of the work activities was characterized and disposed.

  7. The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics

    Energy Technology Data Exchange (ETDEWEB)

    Chesler, Elissa J [ORNL; Branstetter, Lisa R [ORNL; Churchill, Gary A [Jackson Laboratory, The, Bar Harbor, ME; Culiat, Cymbeline T [ORNL; Galloway, Leslie D [ORNL; Jackson, Barbara L [ORNL; Johnson, Dabney K [ORNL; Miller, Darla R [ORNL; Philip, Vivek M [ORNL; Threadgill, David [University of North Carolina, Chapel Hill; Voy, Brynn H [ORNL; Williams, Robert [University of Tennessee Health Science Center, Memphis; Manly, Kenneth [University of Tennessee Health Science Center, Memphis

    2008-01-01

    Complex traits and disease co-morbidity in humans and in model organisms are the result of naturally occurring polymorphisms that interact with each other and with the environment. To ensure the availability of the resources needed to investigate biomolecular networks and ultimately systems level phenotypes, we have initiated breeding of a new genetic reference population of mice, the Collaborative Cross. This population has been designed to optimally support systems genetics analysis. Its novel and important features include high levels of genetic diversity, a large population size to ensure sufficient power in high-dimensional studies, and high mapping precision through accumulation of independent recombination events. Implementation of the Collaborative Cross has been in progress at the Oak Ridge National Laboratory (ORNL) since May 2005. This is achieved through a software assisted breeding program with fully traceable lineages, performed in a uniform environment. Currently, there are 650 lines in production with almost 200 lines over seven generations of inbreeding. Retired breeders enter a high-throughput phenotyping protocol and DNA samples are banked for analysis of recombination history, allele loss, and population structure. Herein we present a progress report of the Collaborative Cross breeding program at ORNL and a description of the kinds of investigations that this resource will support.

  8. Design of Biomass Gasification and Combined Heat and Power Plant Based on Laboratory Experiments

    Science.gov (United States)

    Haydary, Juma; Jelemenský, Ľudovít

    Three types of wooden biomass were characterized by calorimetric measurements, proximate and elemental analysis, thermogravimetry, kinetics of thermal decomposition and gas composition. Using the Aspen steady state simulation, a plant with the processing capacity of 18 ton/h of biomass was modelled based on the experimental data obtained under laboratory conditions. The gasification process has been modelled in two steps. The first step of the model describes the thermal decomposition of the biomass based on a kinetic model and in the second step, the equilibrium composition of syngas is calculated by the Gibbs free energy of the expected components. The computer model of the plant besides the reactor model includes also a simulation of other plant facilities such as: feed drying employing the energy from the process, ash and tar separation, gas-steam cycle, and hot water production heat exchangers. The effect of the steam to air ratio on the conversion, syngas composition, and reactor temperature was analyzed. Employment of oxygen and air for partial combustion was compared. The designed computer model using all Aspen simulation facilities can be applied to study different aspects of biomass gasification in a Combined Heat and Power plant.

  9. Real time Intelligent Control Laboratory (RT-ICL) of PowerLabDK for smart grid technology development

    DEFF Research Database (Denmark)

    Ostergaard, Jacob; Wu, Qiuwei; Garcia-Valle, Rodrigo

    2012-01-01

    simulation platform with real power system data and distributed energy resources (DER) hardware makes the ICL a very well-suited test platform for smart grid technology development and validation. The ongoing research work with the ICL illustrates the capability and feasibility of using it as a platform...... for smart grid technology development....... with the Electric Laboratory through a 4-quardrant power amplifier with 150 kW continuous power supply capability, Omicron and Doble amplifiers, relays, an electric vehicle with vehicle-to-grid (V2G) capability, LabCell boards, photovoltaic (PV) panels, and micro combined heat plant (μCHP) units. The interactive...

  10. Magnetospheric effects of ion and atom injections by the satellite power system

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Y.T.; Luhmann, J.G.; Schulz, M.; Cornwall, J.M.

    1980-07-01

    This is the final report of a two-year assessment of magnetospheric effects of the construction and operation of a satellite power system. This assessment effort is based on application of present scientific knowledge rather than on original scientific research. As such, it appears that mass and energy injections of the system are sufficient to modify the magnetosphere substantially, to the extent of possibly requiring mitigation measures for space systems but not to the extent of causing major redirection of efforts and concepts. The scale of the SPS is so unprecedentedly large, however, that these impressions require verification (or rejection) by in-depth assessment based on original scientific treatment of the principal issues. Indeed, it is perhaps appropriate to state that present ignorance far exceeds present knowledge in regard to SPS magnetospheric effects, even though we only seek to define the approximate limits of magnetospheric modifications here. Modifications of the space radiation environment, of the atmospheric airglow background, of the auroral response to solar activity and of the fluctuations in space plasma density are identified to be the principal impacts.

  11. Atomic Energy of Canada study says nuclear cheaper power for oilsands

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2003-07-01

    The Canadian Energy Research Institute, an independent research organization, reports in a study sponsored by AECL, a federal Crown corporation, that nuclear power is cheaper than gas in creating steam if prices for natural gas remain above $US 3.50 per million BTU. Oil sands producers use natural gas to create steam, which is injected into the ground to melt the bitumen; gas is also used in parts of the oilsands upgrading process. According to reliable estimates some $50 billion of future oilsands investment is now on the drawing board; all of that could be jeopardized by high gas prices. AECL, which has sold only three nuclear reactors since 1996, hopes that the prospect of a continuing high price of natural gas will put it in a favorable position to displace natural gas with nuclear energy as the energy source for creating steam. Environmentalists consider AECL's suggestion of building a nuclear reactor for generating steam for oilsands production as unrealistic, and one that is based on 'nothing but a hope and a prayer'.

  12. Capabilities for high explosive pulsed power research at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goforth, James H [Los Alamos National Laboratory; Oona, Henn [Los Alamos National Laboratory; Tasker, Douglas G [Los Alamos National Laboratory; Kaul, A M [Los Alamos National Laboratory

    2008-01-01

    Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclear Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.

  13. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M.

    2006-10-31

    technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE

  14. Control the fear atomic

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Gwan [I and Book, Seoul (Korea, Republic of)

    2003-04-15

    This book has a lot of explanation of nuclear energy with articles. Their titles are the bad man likes atomic, the secret of atom, nuclear explosion, NPT?, the secret of uranium fuel rod, nuclear power plant vs nuclear bomb, I hate atomic, keep plutonium in control, atomic in peace and find out alternative energy.

  15. Field Programmable Gate Array Control of Power Systems in Graduate Student Laboratories

    National Research Council Canada - National Science Library

    O'Connor, Joseph E

    2008-01-01

    ...) control of power electronics. Utilizing Mathworks(trademark) and XILINX(trademark) software to interface the FPGA with power converters, students gain experience with digital design, simulation, and hardware testing...

  16. Fundamental Characteristics of Laboratory Scale Model DC Microgrid to Exchange Electric Power from Distributed Generations installed in Residential Houses

    Science.gov (United States)

    Kakigano, Hiroaki; Hashimoto, Takuya; Matsumura, Yohei; Kurotani, Takashi; Iwamoto, Wataru; Miura, Yushi; Ise, Toshifumi; Momose, Toshinari; Hayakawa, Hideki

    DC microgrid is a novel power system using dc distribution in order to provide a super high quality power. This dc system is suitable for dc output type distributed generations and energy storages. In this research, we assumed one type of the dc microgrids for residential houses (apartment house or housing complex). Each residence has a distributed generation such as gas engine or fuel cell. Those cogenerations are connected to the dc power line, and the electricity from the generations can be shared among the residences. The hot water from the cogeneration is used in each residence. We constructed an experimental system based on this concept in our laboratory. We have studied the fundamental characteristics and the quality of the supplied power to the loads against several fluctuations or faults. Experimental results demonstrated that the system could supply high quality power to the loads against a sudden load variation and a voltage sag of the utility grid. Afterwards, we moved the experimental system to an experimental apartment house (NEXT21). We studied the quality of the supplying power by using practical power line, and confirmed that the system was also able to supply a power to home appliances stably.

  17. Single Atomically Sharp Lateral Monolayer p-n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency.

    Science.gov (United States)

    Tsai, Meng-Lin; Li, Ming-Yang; Retamal, José Ramón Durán; Lam, Kai-Tak; Lin, Yung-Chang; Suenaga, Kazu; Chen, Lih-Juann; Liang, Gengchiau; Li, Lain-Jong; He, Jr-Hau

    2017-08-01

    The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe2 -MoS2 lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Single Atomically Sharp Lateral Monolayer p-n Heterojunction Solar Cells with Extraordinarily High Power Conversion Efficiency

    KAUST Repository

    Tsai, Meng-Lin

    2017-06-26

    The recent development of 2D monolayer lateral semiconductor has created new paradigm to develop p-n heterojunctions. Albeit, the growth methods of these heterostructures typically result in alloy structures at the interface, limiting the development for high-efficiency photovoltaic (PV) devices. Here, the PV properties of sequentially grown alloy-free 2D monolayer WSe-MoS lateral p-n heterojunction are explores. The PV devices show an extraordinary power conversion efficiency of 2.56% under AM 1.5G illumination. The large surface active area enables the full exposure of the depletion region, leading to excellent omnidirectional light harvesting characteristic with only 5% reduction of efficiency at incident angles up to 75°. Modeling studies demonstrate the PV devices comply with typical principles, increasing the feasibility for further development. Furthermore, the appropriate electrode-spacing design can lead to environment-independent PV properties. These robust PV properties deriving from the atomically sharp lateral p-n interface can help develop the next-generation photovoltaics.

  19. Atom for peace, code for war. The technology policy of the atomic power solution in Finland between 1955-1970; Rauhan atomi, sodan koodi. Suomalaisen atomivoimaratkaisun teknopolitiikka 1955-1970

    Energy Technology Data Exchange (ETDEWEB)

    Sarkikoski, T.

    2011-07-01

    This dissertation investigates the atomic power solution in Finland between 1955 - 1970. During these years a national arrangement for atomic energy technology evolved. The foundations of the Finnish atomic energy policy; the creation of basic legislation and the first governmental bodies, were laid between 1955 - 1965. In the late 1960's, the necessary technological and political decisions were made in order to purchase the first commercial nuclear reactor. A historical narration of this process is seen in the international context of 'atoms for peace' policies and Cold War history in general. The geopolitical position of Finland made it necessary to become involved in the balanced participation in international scientific-technical exchange and assistive nuclear programs. The Paris Peace Treaty of 1947 categorically denied Finland acquisition of nuclear weapons. Accordingly, from the 'Geneva year' of 1955, the emphasis was placed on peaceful purposes for atomic energy as well as on the education of national professionals in Finland. An initiative for the governmental atomic energy commission came from academia but the ultimate motive behind it was an anticipated structural change in the supply of national energy. Economically exploitable hydro power resources were expected to be built within ten years and atomic power was seen as a promising and complementing new energy technology. While importing fuels like coal was out of the question, because of scarce foreign currency, domestic uranium mineral deposits were considered as a potential source of nuclear fuel. Nevertheless, even then nuclear energy was regarded as just one of the possible future energy options. In the mid-1960 s a bandwagon effect of light water reactor orders was witnessed in the United States and soon elsewhere in the world. In Finland, two separate invitations for bids for nuclear reactors were initiated. This study explores at length both their preceding grounds and

  20. Cost Comparison in 2015 Dollars for Radioisotope Power Systems -- Cassini and Mars Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Werner, James Elmer [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Stephen Guy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dwight, Carla Chelan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lively, Kelly Lynn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-01

    Radioisotope power systems (RPSs) have enabled missions requiring reliable, long-lasting power in remote, harsh environments such as space since the early 1960s. Costs for RPSs are high, but are often misrepresented due to the complexity of space missions and inconsistent charging practices among the many and changing participant organizations over the years. This paper examines historical documentation associated with two past successful flight missions, each with a different RPS design, to provide a realistic cost basis for RPS production and deployment. The missions and their respective RPSs are Cassini, launched in 1997, that uses the general purpose heat source (GPHS) radioisotope thermoelectric generator (RTG), and Mars Science Laboratory (MSL), launched in 2011, that uses the multi-mission RTG (MMRTG). Actual costs in their respective years are discussed for each of the two RTG designs and the missions they enabled, and then present day values to 2015 are computed to compare the costs. Costs for this analysis were categorized into two areas: development of the specific RTG technology, and production and deployment of an RTG. This latter category includes material costs for the flight components (including Pu-238 and fine weave pierced fabric (FWPF)); manufacturing of flight components; assembly, testing, and transport of the flight RTG(s); ground operations involving the RTG(s) through launch; nuclear safety analyses for the launch and for the facilities housing the RTG(s) during all phases of ground operations; DOE’s support for NEPA analyses; and radiological contingency planning. This analysis results in a fairly similar 2015 normalized cost for the production and deployment of an RTG—approximately $118M for the GPHS-RTG and $109M for the MMRTG. In addition to these two successful flight missions, the costs for development of the MMRTG are included to serve as a future reference. Note that development costs included herein for the MMRTG do not include

  1. Unique insights into the nanoworld. A unique highest-power microscope provides access to the world of atoms; Einzigartige Einblicke in die Nanowelt

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2012-07-01

    With the best electron microscopes of our time in the Ernst Ruska center (ER-C) researchers can map the arrangement of atoms in a material and study very detailedly. This is for the progress in material science and nanotechnology deciding, then the interplay of the atoms determines the properties of materials and components. The ER-C, which is operated commonly by the Juelich Research Center and by the RWTH Aachen, has now supplemented its device park by an Europe-widely unique highest-power microscope: PICO corrects beside the spherical aberration yet a further lens error - the chromatic aberration - and reaches so a record resolution of 50 billionth millimeters.

  2. Laboratory manual for pulse-width modulated DC-DC power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2015-01-01

    Designed to complement a range of power electronics study resources, this unique lab manual helps students to gain a deep understanding of the operation, modeling, analysis, design, and performance of pulse-width modulated (PWM) DC-DC power converters.  Exercises focus on three essential areas of power electronics: open-loop power stages; small-signal modeling, design of feedback loops and PWM DC-DC converter control schemes; and semiconductor devices such as silicon, silicon carbide and gallium nitride. Meeting the standards required by industrial employers, the lab manual combines program

  3. Power Electronics Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Waye, Scot

    2015-06-10

    Presentation containing an update for the Power Electronics Thermal Management project in the Electric Drive Train task funded by the Vehicle Technology Office of DOE. This presentation outlines the purpose, plan, and results of research thus far for cooling and material selection strategies to manage heat in power electronic assemblies such as inverters, converters, and chargers.

  4. Power Electronics Design Laboratory Exercise for Final-Year M.Sc. Students

    Science.gov (United States)

    Max, L.; Thiringer, T.; Undeland, T.; Karlsson, R.

    2009-01-01

    This paper presents experiences and results from a project task in power electronics for students at Chalmers University of Technology, Goteborg, Sweden, based on a flyback test board. The board is used in the course Power Electronic Devices and Applications. In the project task, the students design snubber circuits, improve the control of the…

  5. INDEPENDENT VERIFICATION SURVEY OF THE SPRU LOWER LEVEL HILLSIDE AREA AT THE KNOLLS ATOMIC POWER LABORATORY NISKAYUNA, NEW YORK

    Energy Technology Data Exchange (ETDEWEB)

    Harpenau, Evan M.; Weaver, Phyllis C.

    2012-06-06

    During August 10, 2011 through August 19, 2011, and October 23, 2011 through November 4, 2011, ORAU/ORISE conducted verification survey activities at the Separations Process Research Unit (SPRU) site that included in-process inspections, surface scans, and soil sampling of the Lower Level Hillside Area. According to the Type-B Investigation Report, Sr-90 was the primary contributor to the majority of the activity (60 times greater than the Cs-137 activity). The evaluation of the scan data and sample results obtained during verification activities determined that the primary radionuclide of concern, Sr-90, was well below the agreed upon soil cleanup objective (SCO) of 30 pCi/g for the site. However, the concentration of Cs-137 in the four judgmental samples collected in final status survey (FSS) Units A and B was greater than the SCO. Both ORAU and aRc surveys identified higher Cs-137 concentrations in FSS Units A and B; the greatest concentrations were indentified in FSS Unit A.

  6. CAS - CERN Accelerator School and CLRC Daresbury Laboratory : Specialised CAS Course on Power Converters

    CERN Document Server

    CAS - CERN Accelerator School : Intermediate Accelerator Physics

    2006-01-01

    These proceedings contain the lectures given at the eighteenth specialized course organized by the CERN Accelerator School (CAS), the topic being ‘Power Converters for Particle Accelerators’. The course was held in Warrington, UK, from 12 to 18 May 2004. A similar course took place in Montreux, Switzerland in 1990, with proceedings published as CERN 90-07. After an interval of fourteen years, the aim of this course was to present a review of the actual state of the art and highlight the latest developments in the field. The course started with a basic recapitulation on accelerators, the required performance for the power converters, and the classification of converter topologies. Following this introductory section, more detailed aspects of active and passive components, converter topology analysis and simulations were presented. Based on these building blocks, the main power converter topologies were covered such as thyristor rectifiers, 1-quadrant and 4-quadrant switched-mode power converters. The impor...

  7. Strategy for designing stable and powerful nitrogen-rich high-energy materials by introducing boron atoms.

    Science.gov (United States)

    Wu, Wen-Jie; Chi, Wei-Jie; Li, Quan-Song; Li, Ze-Sheng

    2017-06-01

    One of the most important aims in the development of high-energy materials is to improve their stability and thus ensure that they are safe to manufacture and transport. In this work, we theoretically investigated open-chain N 4 B 2 isomers using density functional theory in order to find the best way of stabilizing nitrogen-rich molecules. The results show that the boron atoms in these isomers are aligned linearly with their neighboring atoms, which facilitates close packing in the crystals of these materials. Upon comparing the energies of nine N 4 B 2 isomers, we found that the structure with alternating N and B atoms had the lowest energy. Structures with more than one nitrogen atom between two boron atoms had higher energies. The energy of N 4 B 2 increases by about 50 kcal/mol each time it is rearranged to include an extra nitrogen atom between the two boron atoms. More importantly, our results also show that boron atoms stabilize nitrogen-rich molecules more efficiently than carbon atoms do. Also, the combustion of any isomer of N 4 B 2 releases more heat than the corresponding isomer of N 4 C 2 does under well-oxygenated conditions. Our study suggests that the three most stable N 4 B 2 isomers (BN13, BN24, and BN34) are good candidates for high-energy molecules, and it outlines a new strategy for designing stable boron-containing high-energy materials. Graphical abstract The structural characteristics, thermodynamic stabilities, and exothermic properties of nitrogen-rich N 4 B 2 isomers were investigated by means of density functional theory.

  8. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  9. Optimization of the Promega PowerSeq™ Auto/Y system for efficient integration within a forensic DNA laboratory.

    Science.gov (United States)

    Montano, E A; Bush, J M; Garver, A M; Larijani, M M; Wiechman, S M; Baker, C H; Wilson, M R; Guerrieri, R A; Benzinger, E A; Gehres, D N; Dickens, M L

    2018-01-01

    The application of massively parallel sequencing (MPS) is growing in the forensic DNA field, as forensic DNA laboratories are continuously seeking methods to gain information from a limited or degraded forensic sample. However, the laborious nature of current MPS methodologies required for successful library preparation and sequencing leave opportunities for improvement to make MPS a practical option for processing forensic casework. In this study, the Promega PowerSeq™ Auto/Y System Prototype, a MPS laboratory workflow that incorporates multiplex amplification, was selected for optimization with the objectives to introduce automation for relieving manual processing, and to reduce the number of steps recommended by the standard protocol. Successful changes in the optimized workflow included a switch from column-based PCR purification to automatable bead-based purification, adoption of the library preparation procedures by a liquid handling robot platform, and removal of various time-consuming quality checks. All data in this study were found to be concordant with capillary electrophoresis (CE) data and previously-generated MPS results from this workflow. Read abundance and allele balance, metrics related to sample interpretation reliability, were not significantly different when compared to samples processed with the manufacturer's protocol. All the modifications implemented resulted in increased laboratory efficiency, reduced the protocol steps associated with risk of contamination and human error events, and decreased manual processing time by approximately 12h. These findings provide forensic DNA laboratories a more streamlined option when considering implementation of a MPS workflow. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Laboratory evaluation of extrinsic stain removal by a specially engineered sonic powered toothbrush with unique sensing and control technologies.

    Science.gov (United States)

    Maloney, Venda P; Kemp, James; Panagakos, Fotinos; Mateo, Luis R

    2012-01-01

    The purpose of this laboratory study was to evaluate extrinsic stain removal from teeth by a specially engineered sonic powered toothbrush with unique sensing and control technologies, using the Triple Clean and the Sensitive refill brush heads, in comparison to a manual flat-trim toothbrush. Twelve (12) artificially stained bovine teeth were tested with each product. The percentage of stain removed by each product was calculated by taking the ratio of the amount of stain removed by brushing for 800 strokes to the total amount of stain removed by subsequent application of a dental prophylaxis. The stain was quantified by measuring the light reflected by the stained teeth with a spectrophotometer. Data were reported as L*, lightness of the stain, and as W*, a whiteness index comprising the lightness, hue, and chroma of reflected light. Statistical analyses were performed separately for the AL* and AW* scores. Comparisons of the toothbrushes with respect to baseline-adjusted deltaL* and deltaW* scores were performed using an analysis of covariance (ANCOVA). Post-ANCOVA pair-wise comparisons of the study toothbrushes were performed using Tukey's test for multiple comparisons. All statistical tests of hypotheses were two-sided, and employed a minimum level of significance of 0.05. The percentage of stain removed by the sonic powered toothbrush, using either the Triple Clean brush head or the Sensitive brush head under laboratory test conditions, is superior (p brush head, 49.01 for the power toothbrush with the Sensitive brush head, and 30.56 for the manual flat-trim toothbrush when calculated using deltaL* scores. The mean percentage of stain removed was 59.89 for the power toothbrush with the Triple Clean brush head, 46.83 for the power toothbrush with the Sensitive brush head, and 29.25 for the manual flat-trim toothbrush when calculated using deltaW* scores. This new specially engineered sonic powered toothbrush with unique sensing and control technologies

  11. Extraordinary Cosmic Laboratory Helps Unravel Mysteries of a Galaxy's Powerful Central "Engine"

    Science.gov (United States)

    An extraordinary cosmic laboratory 21 million light-years away is providing radio astronomers their best opportunity yet to decipher the mysteries of the ultra-powerful "engines" at the hearts of many galaxies and quasars. An international research team using the National Science Foundation's Very Long Baseline Array (VLBA) and Very Large Array (VLA) radio telescopes has peered deeply into the core of the galaxy NGC 4258, learning important new information about the mysterious region from which high-speed jets of subatomic particles are ejected. The scientists announced their findings today at the American Astronomical Society meeting in Toronto, Ontario. The new research provides significant quantitative support for a theoretical model for the origin of such jets first proposed in 1979. NGC 4258 is the galaxy in which a warped disk of water molecules was discovered in 1994. That disk, observed in detail with the VLBA, was shown to be orbiting a central mass some 35 million times more massive than the Sun. That central mass, the astronomers believe, is a black hole. More recent studies of the disk and its surroundings have given astronomers their most detailed look yet at the heart of an active galactic nucleus (AGN), including the ability to pinpoint the exact center of the system, where the black hole resides. The 1994 observations provided the best evidence to date for the existence of a black hole at the heart of a galaxy. Black holes, so dense that not even light can escape their gravitational fields, have long been suspected as the driving force behind the energetic central engines of AGNs. The fortuitous existence of the molecular disk in NGC 4258 has helped astronomers use the ultrasharp radio "vision" of the continent-wide VLBA to probe with unprecedented clarity into the heart of that galaxy's central engine. The researchers are: James Herrnstein, James Moran, and Lincoln Greenhill of the Harvard-Smithsonian Center for Astrophysics; Philip Diamond of the

  12. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical

  13. Laboratory Testing of Velocity Sensing in a Magnetorheological Damper with Power Generation

    Directory of Open Access Journals (Sweden)

    Sapiński Bogdan

    2017-09-01

    Full Text Available The study summarises the results of experimental examination of velocity sensing capability in a prototype of a magnetorheological damper with power generation (MRD. The device has two main components: an electromagnetic power generator and an MR damper. The study outlines the structure of the device with the main focus on the generator part, and provides results of tests performed under the idle run. The discussion of demonstrates the potentials of MRD action as a velocity-sign sensor and presents key issues which need to be addressed to enable its real life applications.

  14. Distributed Energy Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Distributed Energy Technologies Laboratory (DETL) is an extension of the power electronics testing capabilities of the Photovoltaic System Evaluation Laboratory...

  15. Isotopic power supplies for space and terrestrial systems: quality assurance by Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hannigan, R.L.; Harnar, R.R.

    1981-09-01

    The Sandia National Laboratories participation in Quality Assurance (QA) programs for Radioisotopic Thermoelectric Generators which have been used in space and terrestrial systems over the past 15 years is summarized. Basic elements of the program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are also presented. In addition, the outlook for Sandia participation in RTG programs for the next several years is noted.

  16. Laboratory-scale evaluation of various sampling and analytical methods for determining mercury emissions from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Agbede, R.O.; Bochan, A.J.; Clements, J.L. [Advanced Technology Systems, Inc., Monroeville, PA (United States)] [and others

    1995-11-01

    Comparative bench-scale mercury sampling method tests were performed at the Advanced Technology Systems, Inc. (ATS) laboratories for EPA Method 101A, EPA Method 29 and the Ontario Hydro Method. Both blank and impinger spiking experiments were performed. The experimental results show that the ambient level of mercury in the ATS laboratory is at or below the detection limit (10 ng Hg) as measured by a cold vapor atomic absorption spectrophotometer (CVAAS) which was used to analyze the mercury samples. From the mercury spike studies, the following observations and findings were made. (a) The recovery of mercury spikes using EPA Method 101A was 104%. (b) The Ontario Hydro Method retains about 90% of mercury spikes in the first absorbing solution but has a total spike retention of 106%. As a result, the test data shows possible migration of spiked mercury from the first impinger solution (KCI) to the permanganate impingers. (c) For the EPA Method 29 solutions, when only the peroxide impingers were spiked, mercury recoveries were 65.6% for the peroxide impingers, 0.1% for the knockout impinger and 32.8% for the permanganate impingers with an average total mercury recovery of 98.4%. At press time, data was still being obtained for both the peroxide and permanganate impinger solution spikes. This and other data will be available at the presentation.

  17. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  18. Promising lines of research in the realms of laboratory nuclear astrophysics by means of powerful lasers

    Energy Technology Data Exchange (ETDEWEB)

    Belyaev, V. S., E-mail: belyaev@tsniimash.ru; Zagreev, B. V.; Kedrov, A. Yu.; Lobanov, A. V.; Matafonov, A. P. [Russian Space Agency, Pionerskaya, Central Research Institute for Machine Building (TsNIIMash) (Russian Federation); Bolshakov, V. V.; Savel’ev, A. B.; Mordvintsev, I. M.; Tsymbalov, I. N.; Shulyapov, S. A. [Moscow State University, International Laser Center (Russian Federation); Pikuz, S. A.; Skobelev, I. Yu.; Filippov, E. D.; Faenov, A. Ya. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Krainov, V. P. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2016-09-15

    Basic nuclear-astrophysics problems that can be studied under laboratory conditions at a laserradiation intensity of 10{sup 18} W/cm{sup 2} or more are specified. These are the lithium problem, the problem of determining neutron sources for s-processes of heavy-element formation, the formation of bypassed stable p-nuclei, and nuclear reactions involving isotopes used by astronomers for diagnostics purposes. The results of experiments at the Neodym laser facility are presented, and proposals for further studies in these realms are formulated.

  19. Wind Power Siting: Public Acceptance and Land Use; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2015-06-17

    Suzanne Tegen presented this information as part of the June 17, 2015 WINDExchange webinar: Overcoming Wind Siting Challenges III: Public Acceptance and Land Use. This presentation provides an overview of current NREL research related to wind energy deployment considerations, the DOE Wind Vision as it relates to public acceptance and land use, why public acceptance of wind power matters, where the U.S. wind resource is best, and how those rich resource areas overlay with population centers.

  20. Laboratory constraints on chameleon dark energy and power-law fields

    OpenAIRE

    Steffen, Jason H.; Upadhye, Amol; Baumbaugh, Al; Chou, Aaron S.; Mazur, Peter O.; Tomlin, Ray; Weltman, Amanda; Wester, William

    2010-01-01

    We report results from the GammeV Chameleon Afterglow Search---a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude betw...

  1. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.

    2015-06-05

    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  2. Laser Technology in Commercial Atomic Clocks

    Science.gov (United States)

    Lutwak, R.

    2006-05-01

    Commercial atomic frequency standards (AFS) are deployed in diverse civilian, military, and aerospace applications, ranging from high-precision measurement and calibration to navigation, communications and, of course, timekeeping. Currently, commercially available AFS include magnetically-selected cesium beam frequency standards and hydrogen masers and lamp-pumped rubidium oscillators. Despite the revolution in atomic physics and laboratory-scale AFS brought about by the advent of the tunable laser in the early 1970s, commercial AFS invariably rely on more conventional atomic physics technology developed in the 1950s. The reason for this lack of advancement of commercial AFS technology is the relatively poor reliability and environmental sensitivity of narrow-linewidth single-mode laser sources at atomic resonance wavelengths. Over the past 8 years, Symmetricom, in collaboration with laser manufacturers, has developed specialized laser sources for commercial AFS applications. These laser devices, optimized for high spectral purity and long-term reliability, will enable a new generation of commercial AFS. This talk will briefly describe two laser-based atomic frequency standard development programs at Symmetricom. The Chip-Scale Atomic Clock, two orders of magnitude smaller and lower power than any commercial AFS, will enable atomic timing accuracy in portable battery-powered applications. The Optically-Pumped Cesium Beam Frequency Standard, under development for deployment onboard the GPS-III satellite constellation, will provide enhanced short-term stability and longer lifetime compared to magnetically-selected cesium beam AFS.

  3. Laboratory Study of High Temperature Corrosion in Straw-fired Power Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel

    1997-01-01

    The components contributing to corrosion, HCl(g)SO2(g), KCl and K2SO4 were studied in the laboratory for Sandvik 8LR30 and Sanicro 28. The influence of HCl and SO2 was investigated at 600C material temperature and 600/800C flue gas temperature at time intervals up to 300 hours. The influence of ash...... deposits in air was examined at 525C-700C. Finally exposures were undertaken combining the aforementioned aggressive gas environment with the ash deposits. Thus the corrosion potential of individual components were evaluated and also whether they had a synergistic, antagonistic or additive effect on one...... another to influence the overall corrosion rate....

  4. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  5. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  6. Autler-Townes splitting via frequency upconversion at ultra-low power levels in cold $^{87}$Rb atoms using an optical nanofiber

    CERN Document Server

    Kumar, Ravi; Deasy, Kieran; Chormaic, Síle Nic

    2015-01-01

    The tight confinement of the evanescent light field around the waist of an optical nanofiber makes it a suitable tool for studying nonlinear optics in atomic media. Here, we use an optical nanofiber embedded in a cloud of laser-cooled 87Rb for near-infrared frequency upconversion via a resonant two-photon process. Sub-nW powers of the two-photon beams, at 780 nm and 776 nm, co-propagate through the optical nanofiber and generation of 420 nm photons is observed. A measurement of the Autler-Townes splitting provides a direct measurement of the Rabi frequency of the 780 nm transition. Through this method, dephasings of the system can be studied. In this work, the optical nanofiber is used as an excitation and detection tool simultaneously, and it highlights some of the advantages of using fully fibered systems for nonlinear optics with atoms.

  7. The Atomic Papers: A citizen's guide to selected books and articles on the bomb, the arms race, nuclear power, the peace movement, and related issues

    Energy Technology Data Exchange (ETDEWEB)

    Burns, G.

    1984-01-01

    The Atomic Papers annotates over 800 books published since 1945 and approximately 300 periodical articles since 1980 on every facet of the nuclear dilemma: the development and effects of the bomb, the arms race, nuclear proliferation, and the peace movement. Work on both sides of the nuclear power controversy also receives substantial attention. All references are to English-language material, and nearly half are to work published since 1980. The concluding chapter, ''The Art of Fission,'' describes over one hundred novels and stories with nuclear themes published since 1945--and, in a few cases, before that date.

  8. Power-Law Stress and Creep Relaxations of Single Cells Measured by Colloidal Probe Atomic Force Microscopy

    OpenAIRE

    Hiratsuka, Shinichiro; Mizutani, Yusuke; Toda, Akitoshi; Fukushima, Norichika; Kawahara, Koichi; Tokumoto, Hiroshi; Okajima, Takaharu

    2009-01-01

    We measured stress and creep relaxations of mouse fibroblast cells arranged and cultured on a microarray, by colloidal probe atomic force microscopy (AFM). A hydrophobic monolayer coating of perfluorodecyltrichlorosilane (FDTS) on the surface of colloidal silica beads significantly reduced the adhesion force of live cells, compared with untreated beads. The rheological behaviors of cells were estimated by averaging several relaxation curves of cells measured by the AFM. Longer-time tailing of...

  9. Power

    OpenAIRE

    Bowles, Samuel; Gintis, Herbert

    2007-01-01

    We consider the exercise of power in competitive markets for goods, labour and credit. We offer a definition of power and show that if contracts are incomplete it may be exercised either in Pareto-improving ways or to the disadvantage of those without power. Contrasting conceptions of power including bargaining power, market power, and consumer sovereignty are considered. Because the exercise of power may alter prices and other aspects of exchanges, abstracting from power may miss essential a...

  10. Laboratory and Field Test of Movable Conduction-Cooled High-Temperature SMES for Power System Stability Enhancement

    DEFF Research Database (Denmark)

    Fang, Jiakun; Wen, J.; Wang, S.

    2013-01-01

    This paper introduces the first movable conduction-cooled high temperature superconducting magnetic energy storage (SMES) system developed in China. The SMES is rated at 380 V / 35 kJ / 7 kW, consisting of the high temperature magnet confined in a dewar, the cryogenic unit, the converter......, the monitoring and control unit, and the container, etc. The proposed SMES can be loaded onto a truck to move to a desired location and put into operation with easy connection. Laboratory and field tests have been carried out to investigate the operational characteristics and to demonstrate the SMES......’ effectiveness on improvements of system voltage stability and on the oscillation damping. Test results indicate that the SMES system has the features of fast response and four-quadrant power operation. The accessories for the movability of the SEMS system are well designed. The system is feasible to be used...

  11. Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-03-09

    The ''National Environmental Policy Act of 1969'' (NEPA) requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the United States (U.S.) Department of Energy (DOE) follows the Council on Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an Environmental Assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact. In this case, the DOE decision to be made is whether to construct and operate a 19.5-mile (mi) (31-kilometer [km]) electric transmission line (power line) reaching from the Norton Substation, west across the Rio Grande, to locations within the Los Alamos National Laboratory (LANL) Technical Areas (TAs) 3 and 5 at Los Alamos, New Mexico. The construction of one electric substation at LANL would be included in the project as would the construction of two line segments less than 1,200 feet (ft) (366 meters [m]) long that would allow for the uncrossing of a portion of two existing power lines. Additionally, a fiber optics communications line would be included and installed concurrently as part of the required overhead ground conductor for the power line. The new power line would improve the reliability of electric service in the LANL and Los Aktrnos County areas as would the uncrossing of the crossed segments of the existing lines. Additionally, installation of the new power line would enable the LANL and the Los Alamos County electric grid, which is a shared resource, to be adapted to accommodate the future import of increased power when additional power service becomes available in the northern New Mexico area. Similarly, the fiber optics line would allow DOE to take advantage of

  12. Laboratory and clinical data on wound healing by low-power laser from the Medical Institute of Vilafortuny, Spain

    Science.gov (United States)

    Trelles, Mario A.; Mayayo, E.; Resa, A. M.; Rigau, Josepa; Calvo, G.

    1991-05-01

    Low power laser has been claimed, both at laboratory and for clinical treatment to activate wound healing. Chronic ulcers respond very positively to laser treatment when particular rules of irradiation are take into account. The multiple etiology of chronic ulcers is not conductive to treatment selection, including laser treatment, if the associated illness is not taken into consideration. For more than 14 years our clinical experience have been significantly positive using lasers in the treatment of chronic ulcers. Our causistic, based on 242 cases treated from 1975 through 1983, has kept in many cases very close follow-up for an extended time periods of up to six years after healing. By controlling photographically and microscopically a chronic venous ulcer submitted to low density laser irradiation, as well as by studying the process of reparation of experimental ulcers and burns, produce on laboratory animal, the healing effects of laser radiation can be followed. Statistically, it is possible to estimate that low intensity laser irradiation produces faster reparation of damage tissue.

  13. System for vibroacoustic inspection of equipment in the first loop of an atomic electric power plant. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Samarin, A.A.; Krasyuk, V.Ya.; Ivanov, Yu.S.; Pospelko, A.A.

    1975-11-01

    A system is described for vibroacoustic inspection of equipment in the first loop of a nuclear power plant with water-moderated water-cooled power reactors. This monitoring system is now in operation at the Novovoronezh Power Plant. The installation performs the following functions: measurement and registration of effective and peak levels of structural noise and vibrations of the main technological equipment in the first loop; amplitude-frequency analysis of structural noises and vibration of equipment; (sound and light) signaling when the current noise level and vibration level exceed the present level; provides facilities for an operator to listen to structural noise of running equipment.

  14. Market power in tradable emission markets. A laboratory testbed for emission trading in Port Phillip Bay, Victoria

    Energy Technology Data Exchange (ETDEWEB)

    Cason, Timothy N. [Department of Economics, Krannert School of Management, Purdue University, West Lafayette, IN 47907-1310 (United States); Gangadharan, Lata [Department of Economics, University of Melbourne, Melbourne, Vic. 3010 (Australia); Duke, Charlotte [Economics Branch, Natural Resources and the Environment, Level 13, 8 Nicholson St, East Melbourne, Vic. 3002 (Australia)

    2003-10-01

    In theory, competitive emission permit markets minimize total abatement costs. Permit markets are often imperfectly competitive, however, and may be thin and dominated by large firms. The dominant firm(s) could exercise market power and increase other firms' costs of pollution control, while reducing their own emission control costs. This paper reports a testbed laboratory experiment to examine whether a dominant firm can exercise market power in a permit market organized using the double auction trading institution. Our parameters approximate the abatement costs of sources in a proposed tradable emissions market for the reduction of nitrogen in the Port Phillip Watershed in Victoria, Australia. We vary across treatments the initial allocation of permits to sources, so that in one treatment the seller of permits is a monopolist and in another treatment the market is duopolistic. We also vary the information that subjects have about the number and abatement costs of their competitors. We find that prices and seller profits are higher and efficiency is lower on average in the monopoly sessions compared with the duopoly sessions, but the differences are not substantial and are not statistically significant due to pronounced variation across sessions. Moreover, prices, profits and transaction volumes are usually much closer to the competitive equilibrium (CE) than the monopoly equilibrium.

  15. Development of a laboratory model to assess the removal of biofilm from interproximal spaces by powered tooth brushing.

    Science.gov (United States)

    Adams, Heather; Winston, Matthew T; Heersink, Joanna; Buckingham-Meyer, Kelli A; Costerton, J William; Stoodley, Paul

    2002-11-01

    To develop an interproximal laboratory model to compare the potential effectiveness of powered brushing to remove biofilm plaque from interproximal spaces beyond the reach of bristles. Streptococcus mutans biofilms were first grown on glass microscope slides in a drip-flow reactor. The slides were removed and positioned in the interproximal model. Each slide was exposed to 15 seconds powered brushing with either the Sonicare Elite or the Braun Oral-B 3D Excel. The thickness of the biofilm was measured with confocal microscopy at various distances from the bristle tips. The Sonicare Elite reduced the thickness of biofilm by 57% at a distance of 0-5 mm from the bristle tips, 53% at 5-10 mm and 43% at 10-15 mm, relative to biofilm in areas unexposed to brushing. All reductions in thickness were statistically significant (P Excel reduced the biofilm thickness by 16%, 13%, and 19% at the same distances respectively, but the thickness reductions were not statistically significant from those in the unexposed areas (P > 0.1).

  16. Solid state NMR of isotope labelled murine fur: a powerful tool to study atomic level keratin structure and treatment effects

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Wai Ching Veronica; Narkevicius, Aurimas; Chow, Wing Ying; Reid, David G.; Rajan, Rakesh [University of Cambridge, Department of Chemistry (United Kingdom); Brooks, Roger A. [University of Cambridge, Department of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital (United Kingdom); Green, Maggie [University of Cambridge, Central Biomedical Resources, School of Clinical Medicine (United Kingdom); Duer, Melinda J., E-mail: mjd13@cam.ac.uk [University of Cambridge, Department of Chemistry (United Kingdom)

    2016-10-15

    We have prepared mouse fur extensively {sup 13}C,{sup 15}N-labelled in all amino acid types enabling application of 2D solid state NMR techniques which establish covalent and spatial proximities within, and in favorable cases between, residues. {sup 13}C double quantum–single quantum correlation and proton driven spin diffusion techniques are particularly useful for resolving certain amino acid types. Unlike 1D experiments on isotopically normal material, the 2D methods allow the chemical shifts of entire spin systems of numerous residue types to be determined, particularly those with one or more distinctively shifted atoms such as Gly, Ser, Thr, Tyr, Phe, Val, Leu, Ile and Pro. Also the partial resolution of the amide signals into two signal envelopes comprising of α-helical, and β-sheet/random coil components, enables resolution of otherwise overlapped α-carbon signals into two distinct cross peak families corresponding to these respective secondary structural regions. The increase in resolution conferred by extensive labelling offers new opportunities to study the chemical fate and structural environments of specific atom and amino acid types under the influence of commercial processes, and therapeutic or cosmetic treatments.

  17. FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004)

    Energy Technology Data Exchange (ETDEWEB)

    Erika Bailey

    2011-07-07

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.

  18. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2007-10-01

    as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in

  19. On the transferability of atomic contributions to the optical rotatory power of hydrogen peroxide, methyl hydroperoxide and dimethyl peroxide

    DEFF Research Database (Denmark)

    Sánchez, Marina; Alkorta, Ibon; Elguero, José

    2014-01-01

    The chirality of molecules expresses itself, for example, in the fact that a solution of a chiral molecule rotates the plane of linear polarised light. The underlying molecular property is the optical rotatory power (ORP) tensor, which according to time-dependent perturbation theory can be calcul...

  20. 76 FR 29277 - Exelon Generation Company, LLC; Peach Bottom Atomic Power Station Unit Nos. 2 and 3...

    Science.gov (United States)

    2011-05-20

    ... Reports for Nuclear Power Plants,'' Revision 3, March 2007, was also reviewed and assessed with respect to... proposed action does not involve a change to plant buildings or land areas on the PBAPS site. The proposed... and 3, ``Generic Environmental Impact Statement for License Renewal of Nuclear Plants,'' (NUREG-1437...

  1. 76 FR 19476 - Exelon Generation Company, LLC, Peach Bottom Atomic Power Station, Unit Nos. 2 and 3; Exemption

    Science.gov (United States)

    2011-04-07

    ... carts containing new resins in paper or plastic bags. The total weight of the plastic bags is estimated.... Standard-383, ``IEEE Standard For Qualifying Class 1E Electrical Cables And Field Splices for Nuclear Power Generating Stations'' (IEEE 383), or equivalent. Detection, Control, and Extinguishment The licensee stated...

  2. Oak Ridge National Laboratory (ORNL) Superconducting Technology Program for electric power systems. Annual report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The three major elements of this program are conductor development, applications development, and the Superconductivity Partnership Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1994 Annual Program Review held July 19--20, 2994. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  3. Laboratory Load Model Based on 150 kVA Power Frequency Converter and Simulink Real-Time – Concept, Implementation, Experiments

    Directory of Open Access Journals (Sweden)

    Robert Małkowski

    2016-09-01

    Full Text Available First section of the paper provides technical specification of laboratory load model basing on 150 kVA power frequency converter and Simulink Real-Time platform. Assumptions, as well as control algorithm structure is presented. Theoretical considerations based on criteria which load types may be simulated using discussed laboratory setup, are described. As described model contains transformer with thyristor-controlled tap changer, wider scope of device capabilities is presented. Paper lists and describes tunable parameters, both: tunable during device operation and changed only before starting the experiment. Implementation details are given in second section of paper. Hardware structure is presented and described. Information about used communication interface, data maintenance and storage solution, as well as used Simulink real-time features are presented. List and description of all measurements is provided. Potential of laboratory setup modifications is evaluated. Third section describes performed laboratory tests. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule. Different operation modes of control algorithm are described: apparent power control, active and reactive power control, active and reactive current RMS value control.

  4. Critical evaluation of the nonradiological environmental technical specifications. Volume 3. Peach Bottom Atomic Power Station Units 2 and 3

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Cunningham, P.A.; Gray, D.D.; Kumar, K.D.; Witten, A.J.

    1976-08-10

    A comprehensive study of the data collected as part of the environmental Technical Specifications program for Units 2 and 3 of the Peach Bottom Nuclear Power Plant was conducted for the Office of Regulatory Research of the U.S. Nuclear Regulatory Commission. The program included an analysis of both the hydrothermal and ecological monitoring data collected from 1967 through 1976. Specific recommendations are made for improving both the present hydrothermal and ecological monitoring programs. Hydrothermal monitoring would be improved by more complete reporting of in-plant operating parameters. In addition, the present boat surveys could be discontinued, and monitoring efforts could be directed toward expanding the present thermograph network. Ecological monitoring programs were judged to be of high quality because standardized collection techniques, consistent reporting formats, and statistical analyses were performed on all of the data and were presented in an annual report. Sampling for all trophic groups was adequate for the purposes of assessing power plant induced perturbations. Considering the extensive period of preoperational data (six years) and operational data (three years) available for analysis, consideration could be given to reducing monitoring effort after data have been collected for a period when both units are operating at full capacity. In this way, an assessment of the potential ecological impact of the Peach Bottom facility can be made under conditions of maximum plant induced perturbations.

  5. The nuclear power stations of the French atomic energy programme (1960); Les centrales nucleaires de puissance du programme francais (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Leduc, C. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Roux, J.P. [Electricite de France (EDF), 75 - Paris (France)

    1960-07-01

    After recalling the entry of nuclear energy into energy production in France, the paper emphasizes the evolution of techniques applied in the designing of French nuclear power plants and describes the means employed for reducing costs per kWh of EDF2 and EDF3 compared with EDF1: the electric power per ton of uranium varies from 493 kW/t for EDF1 to 970 kW/t for EDF3. For this purpose the thermal power and electric power of units are changed respectively from 290 MWt for EDF1 to 1200 or 1600 MWt for EDF3 and from 28 to 250 MW. The results are obtained by an improvement in neutronic characteristics, developments in nuclear fuel technology, and simplification of the system of charging the reactor, whose means of maintenance are increased; the EDF2 heat-exchangers have been so designed as to increase the unit power of the elements, which will attain 9 MWt, as against 3 for EDF1. For EDF3 an advance project forecasts a thermodynamic layout with only one pressure stage. The paper ends with a description of the burst-slug detection systems, and an appendix gives a detailed comparative table of EDF1, EDF2 and EDF3 plant characteristics. (author) [French] Apres avoir rappele l'integration de l'energie nucleaire parmi les moyens de production de l'energie en France, les auteurs se penchent surtout sur l'evolution des techniques appliquees dans l'equipement des centrales nucleaires francaises et decrivent les moyens mis en oeuvre pour reduire les prix de revient du kWh d'EDF2 et d'EDF3 par rapport a EDF1: la puissance electrique par tonne d'uranium varie de 493 kW/t pour EDF1 a 970 kW/t pour EDF3. C'est dans ce but que les puissances thermiques et la puissance unitaire des groupes turbo-alternateurs passent respectivement de 290 MWt pour EDF1 a 1200 ou 1600 MWt pour EDF3 et de 82 a 250 MW. Les resultats sont obtenus par une amelioration des caracteristiques neutroniques, des progres realises sur la technologie des elements

  6. Optical atomic phase reference and timing

    Science.gov (United States)

    Hollberg, L.; Cornell, E. H.; Abdelrahmann, A.

    2017-06-01

    Atomic clocks based on laser-cooled atoms have made tremendous advances in both accuracy and stability. However, advanced clocks have not found their way into widespread use because there has been little need for such high performance in real-world/commercial applications. The drive in the commercial world favours smaller, lower-power, more robust compact atomic clocks that function well in real-world non-laboratory environments. Although the high-performance atomic frequency references are useful to test Einstein's special relativity more precisely, there are not compelling scientific arguments to expect a breakdown in special relativity. On the other hand, the dynamics of gravity, evidenced by the recent spectacular results in experimental detection of gravity waves by the LIGO Scientific Collaboration, shows dramatically that there is new physics to be seen and understood in space-time science. Those systems require strain measurements at less than or equal to 10-20. As we discuss here, cold atom optical frequency references are still many orders of magnitude away from the frequency stability that should be achievable with narrow-linewidth quantum transitions and large numbers of very cold atoms, and they may be able to achieve levels of phase stability, ΔΦ/Φtotal ≤ 10-20, that could make an important impact in gravity wave science. This article is part of the themed issue 'Quantum technology for the 21st century'.

  7. Power

    DEFF Research Database (Denmark)

    Elmholdt, Claus Westergård; Fogsgaard, Morten

    2016-01-01

    In this chapter, we will explore the dynamics of power in processes of creativity, and show its paradoxical nature as both a bridge and a barrier to creativity in organisations. Recent social psychological experimental research (Slighte, de Dreu & Nijstad, 2011) on the relation between power...... and creativity suggests that when managers give people the opportunity to gain power and explicate that there is reason to be more creative, people will show a boost in creative behaviour. Moreover, this process works best in unstable power hierarchies, which implies that power is treated as a negotiable...... and floating source for empowering people in the organisation. We will explore and discuss here the potentials, challenges and pitfalls of power in relation to creativity in the life of organisations today. The aim is to demonstrate that power struggles may be utilised as constructive sources of creativity...

  8. Market power and the sale of Ontario residential natural gas: An institutional analysis and a laboratory experiment

    Science.gov (United States)

    Bloemhof, Barbara Lynn

    2005-11-01

    The Ontario residential natural gas market underwent a significant institutional change in 1986, after the federal government decontrolled natural gas prices. Currently, consumers may sign up for fixed-cost natural gas from a broker, or they may continue to be served by the regulated distribution company. This thesis examines the economic effects on consumers of the institutional change, and particularly whether or not market power was enhanced by the change. In the thesis, I first present the industrial organization of the residential natural gas sector, and explain the institutional evolution using an institutional economic approach. I then construct a model of the market environment, with sellers acting as middlemen in a well-defined Bertrand oligopoly setting with no production constraints and single-unit consumer demands. In this model, the only Nash equilibrium in the one-period game is the joint profit maximizing price, and its likelihood of obtaining depends on the nature of the cost of signing up new customers. I then take a version of this model into the laboratory with human subject sellers and simulated buyers and run six replications each of a balanced treatment design under a unique information mechanism that parallels individual customer canvassing used by sellers in the naturally-occurring market. Treatment variables are: number of sellers, number of simulated at-cost sellers present, and presence of input cost uncertainty for sellers. I find that adding any seller to the market has about the same impact on market price, irrespective of whether it is a human subject or a simulated at-cost seller. Although increasing the number of sellers does decrease the market price somewhat, it does not bring about the competitive outcome predicted by the benchmark microeconomic model. This research contributes to the literature on policy making and energy market design, as well as to experimental methodology aimed at policy evaluation.

  9. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, M

    2005-11-22

    appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its

  10. Atomic pair distribution function at the Brazilian Synchrotron Light Laboratory: application to the Pb1-xLaxZr0.40Ti0.60O3 ferroelectric system.

    Science.gov (United States)

    Saleta, M E; Eleotério, M; Mesquita, A; Mastelaro, V R; Granado, E

    2017-09-01

    This work reports the setting up of the X-ray diffraction and spectroscopy beamline at the Brazilian Synchrotron Light Laboratory for performing total scattering experiments to be analyzed by atomic pair distribution function (PDF) studies. The results of a PDF refinement for Al2O3 standard are presented and compared with data acquired at a beamline of the Advanced Photon Source, where it is common to perform this type of experiment. A preliminary characterization of the Pb1-xLaxZr0.40Ti0.60O3 ferroelectric system, with x = 0.11, 0.12 and 0.15, is also shown.

  11. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of antimony by automated-hydride atomic absorption spectrophotometry

    Science.gov (United States)

    Brown, G.E.; McLain, B.J.

    1994-01-01

    The analysis of natural-water samples for antimony by automated-hydride atomic absorption spectrophotometry is described. Samples are prepared for analysis by addition of potassium and hydrochloric acid followed by an autoclave digestion. After the digestion, potassium iodide and sodium borohydride are added automatically. Antimony hydride (stibine) gas is generated, then swept into a heated quartz cell for determination of antimony by atomic absorption spectrophotometry. Precision and accuracy data are presented. Results obtained on standard reference water samples agree with means established by interlaboratory studies. Spike recoveries for actual samples range from 90 to 114 percent. Replicate analyses of water samples of varying matrices give relative standard deviations from 3 to 10 percent.

  12. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2010-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems

  13. Comparison of serum copper determination by colorimetric and atomic absorption spectrometric methods in seven different laboratories. The S.F.B.C. (Société Française de Biologie Clinique) Trace Element Group.

    Science.gov (United States)

    Arnaud, J; Chappuis, P; Zawislak, R; Houot, O; Jaudon, M C; Bienvenu, F; Bureau, F

    1993-02-01

    An interlaboratory collaborative trial was conducted on the determination of serum copper using two different methods, based on colorimetry (test combination Copper, Boehringer Mannheim, Mannheim, Germany) and flame atomic absorption spectrometry (FAAS). The general performance of the colorimetric method was below that of FAAS, except for sensitivity and linear range, as assessed by detection limit (0.44 versus 1.32 mumol/L) and upper limit of linearity (150 versus 50 mumol/L). The range of the between-run CVs and the recovery of standard additions were, respectively, 2.3-11.9% and 92-127% for the colorimetric method and 1.1-6.0% and 93-101% for the FAAS method. Interferences were minimal with both methods. The two techniques correlated satisfactorily (the correlation coefficients ranged from 0.945-0.970 among laboratories) but the colorimetric assay exhibited slightly higher results than the FAAS method. Each method was transferable among laboratories.

  14. Power

    OpenAIRE

    Hafford-Letchfield, Trish

    2015-01-01

    This chapter looks at the concept of power in social work by focusing on what this means as a ‘professional’ and theorizes competing discourses of empowerment in social work and its key concepts, drawing in particular on the explanatory powers of critical theorist Michel Foucault (1991). The chapter problematizes the concept of power by explicitly drawing on both users’ and carers’ accounts from the literature to demonstrate different external and internal influences on the root causes of dis...

  15. Atomization characteristics of a prefilming airblast atomizer

    Science.gov (United States)

    Hayashi, Shigeru; Koito, Atsushi; Hishiki, Manabu

    1992-01-01

    The size distribution of water test sprays generated by a prefilming airblast atomizer used for aeroengines was measured in swirling and non-swirling flows with the well established laser scattering particle sizing technique. Atomizing air velocity (or pressure difference) was varied in a range wider than the conditions of actual engines. The Sauter Mean Diameter (SMD) decreased at approximately a 1.5 power of the atomizing air velocity, being a higher velocity index than the previously reported values of 1 to 1.2. It was unexpectedly found that the effect of the liquid/air flow ratio was small. Since swirling flow increased the SMD at lower air velocities yet decreased it at higher ones, it is suggested that the reverse flow near the nozzle pintle adversely affects atomization.

  16. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    Energy Technology Data Exchange (ETDEWEB)

    Olszewski, Mitchell [ORNL

    2011-10-01

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry

  17. The Power of Exercise and the Exercise of Power: The Harvard Fatigue Laboratory, Distance Running, and the Disappearance of Work, 1919-1947.

    Science.gov (United States)

    Scheffler, Robin Wolfe

    2015-08-01

    In the early twentieth century, fatigue research marked an area of conflicting scientific, industrial, and cultural understandings of working bodies. These different understandings of the working body marked a key site of political conflict during the growth of industrial capitalism. Many fatigue researchers understood fatigue to be a physiological fact and allied themselves with Progressive-era reformers in urging industrial regulation. Opposed to these researchers were advocates of Taylorism and scientific management, who held that fatigue was a mental event and that productivity could be perpetually increased through managerial efficiency. Histories of this conflict typically cease with the end of the First World War, when it is assumed that industrial fatigue research withered away. This article extends the history of fatigue research through examining the activities of the Harvard Fatigue Laboratory in the 1920s and 1930s. The Laboratory developed sophisticated biochemical techniques to study the blood of exercising individuals. In particular, it found that exercising individuals could attain a biochemically "steady state," or equilibrium, and extrapolated from this to assert that fatigue was psychological, not physiological, in nature. In contrast to Progressive-era research, the Laboratory reached this conclusion through laboratory examination, not of industrial workers, but of Laboratory staff members and champion marathon runners. The translation of laboratory research to industrial settings, and the eventual erasure of physiological fatigue from discussions of labor, was a complex function of institutional settings, scientific innovation, and the cultural meanings of work and sport.

  18. Steam oxidation of X20CrMoV121: Comparison of laboratory exposures and in situ exposure in power plants

    DEFF Research Database (Denmark)

    Montgomery, M.; Hansson, A. N.; Vilhelmsen, T.

    2012-01-01

    X20CrMoV121 is a 12% Cr martensitic steel which has been used in power plants in Europe for many decades. Specimens have been removed from superheater tubes to investigate long‐term exposure with respect to steam oxidation. These tubes have been exposed for various durations up to 135 000 h...... in power plants in Denmark at steam temperatures varying from 450–565 °C. This paper collates the data, compares oxide morphologies and assesses to what extent parabolic kinetics can be used to describe the oxidation rate. The steam oxidation behaviour has been investigated in the laboratory in an Ar‐46%H2...

  19. Determination of Mercury in Fish: A Low-Cost Implementation of Cold-Vapor Atomic Absorbance for the Undergraduate Environmental Chemistry Laboratory

    Science.gov (United States)

    Niece, Brian K.; Hauri, James F.

    2013-01-01

    Mercury is a known neurotoxin that is particularly harmful to children and unborn fetuses. Consumption of contaminated fish is one major route of mercury exposure. This laboratory experiment gives students an opportunity to measure mercury concentrations in store-bought seafood and compare the results to suggested exposure limits. The U.S.…

  20. Release of radionuclides and chelating agents from cement-solidified decontamination low-level radioactive waste collected from the Peach Bottom Atomic Power Station Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Kraft, N.C.; Mandler, J.W. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-03-01

    As part of a study being performed for the Nuclear Regulatory Commission (NRC), small-scale waste-form specimens were collected during a low oxidation-state transition-metal ion (LOMI)-nitric permanganate (NP)-LOMI solidification performed in October 1989 at the Peach Bottom Atomic Power Station Unit 3. The purpose of this program was to evaluate the performance of cement-solidified decontamination waste to meet the low-level waste stability requirements defined in the NRC`s ``Technical Position on Waste Form,`` Revision 1. The samples were acquired and tested because little data have been obtained on the physical stability of actual cement-solidified decontamination ion-exchange resin waste forms and on the leachability of radionuclides and chelating agents from those waste forms. The Peach Bottom waste-form specimens were subjected to compressive strength, immersion, and leach testing in accordance with the NRC`s ``Technical Position on Waste Form,`` Revision 1. Results of this study indicate that the specimens withstood the compression tests (>500 psi) before and after immersion testing and leaching, and that the leachability indexes for all radionuclides, including {sup 14}C, {sup 99}{Tc}, and {sup 129}I, are well above the leachability index requirement of 6.0, required by the NRC`s ``Technical Position on Waste Form,`` Revision 1.

  1. Teaching Sustainable Energy and Power Electronics to Engineering Students in a Laboratory Environment Using Industry-Standard Tools

    Science.gov (United States)

    Ochs, David S.; Miller, Ruth Douglas

    2015-01-01

    Power electronics and renewable energy are two important topics for today's power engineering students. In many cases, the two topics are inextricably intertwined. As the renewable energy sector grows, the need for engineers qualified to design such systems grows as well. In order to train such engineers, new courses are needed that highlight the…

  2. Atomic Power | Taylor | Zede Journal

    African Journals Online (AJOL)

    The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

  3. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  4. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  5. Atomic Force Microscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  6. Ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Krüger, Peter; Hofferberth, S.; Haller, E.

    2005-01-01

    Miniaturized potentials near the surface of atom chips can be used as flexible and versatile tools for the manipulation of ultracold atoms on a microscale. The full scope of possibilities is only accessible if atom-surface distances can be reduced to microns. We discuss experiments in this regime...

  7. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 28). April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1994 (April 1, 1994 - March 31, 1995) are described. The research activities were conducted under two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented as reviews on the following subjects: laser-induced chemical transformation, laser-induced reaction of polymer surface, microprocessing by radiation-induced polymerization, preparation of fine metal particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author).

  8. Feature articles, thermal power and atomic power. Design and construction of the cargo unloading jetty of Misumi power station. Karyoku, genshiryoku. Misumi hatsudensho butsuyo sanbashi no sekkei/seko ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, I.; Ishimoto, M.; Ichinose, Y. (Chugoku Electric Power Co. Inc., Hiroshima (Japan))

    1994-05-31

    The Chugoku Electric Power Co., Ltd. is now constructing a cargo unloading jetty for bringing in materials and machines for the construction of the power station together with the coal unloading quay and the oil unloading quay at the east berth of the power station, as a part of the land reclamation work for Misumi power station in Shimane Prefecture. In this article, the design and construction of this jetty are to make the normal lines of these quays and the jetty aligned straight in order to allow a ship to lay alongside the two adjoining piers across their boundary, and to make its revetment portion with a water intake recede in the concave manner and adopt the flat slab structure supported with steel pipe piles to this portion in order to let this jetty function also as the deep water intaking facility for the condenser cooling water. Since the uplift pressure of the incident waves work on the slabs structurally, this effect has been reflected in the design after conducting an experiment using a hydromodel. Concerning steel pipe piles, driving of these piles into the bottom rock bed with the uniaxial compression pressure of 1,500kgf/cm[sup 2] in maximum has been conducted. On the front face of the above jetty, a curtain wall has been installed for intaking the deep water. It planned to complete the construction work in the end of 1994. 7 refs., 19 figs., 7 tabs.

  9. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant.

    Science.gov (United States)

    Veerman, Joost; Saakes, Michel; Metz, Sybrand J; Harmsen, G Jan

    2010-12-01

    Electricity can be produced directly with reverse electrodialysis (RED) from the reversible mixing of two solutions of different salinity, for example, sea and river water. The literature published so far on RED was based on experiments with relatively small stacks with cell dimensions less than 10 × 10 cm(2). For the implementation of the RED technique, it is necessary to know the challenges associated with a larger system. In the present study we show the performance of a scaled-up RED stack, equipped with 50 cells, each measuring 25 × 75 cm(2). A single cell consists of an AEM (anion exchange membrane) and a CEM (cation exchange membrane) and therefore, the total active membrane area in the stack is 18.75 m(2). This is the largest dimension of a reverse electrodialysis stack published so far. By comparing the performance of this stack with a small stack (10 × 10 cm(2), 50 cells) it was found that the key performance parameter to maximal power density is the hydrodynamic design of the stack. The power densities of the different stacks depend on the residence time of the fluids in the stack. For the large stack this was negatively affected by the increased hydrodynamic losses due to the longer flow path. It was also found that the large stack generated more power when the sea and river water were flowing in co-current operation. Co-current flow has other advantages, the local pressure differences between sea and river water compartments are low, hence preventing leakage around the internal manifolds and through pinholes in the membranes. Low pressure differences also enable the use of very thin membranes (with low electrical resistance) as well as very open spacers (with low hydrodynamic losses) in the future. Moreover, we showed that the use of segmented electrodes increase the power output by 11%.

  10. Drivers for the Value of Demand Response under Increased Levels of Wind and Solar Power; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Elaine

    2015-07-30

    Demand response may be a valuable flexible resource for low-carbon electric power grids. However, there are as many types of possible demand response as there are ways to use electricity, making demand response difficult to study at scale in realistic settings. This talk reviews our state of knowledge regarding the potential value of demand response in several example systems as a function of increasing levels of wind and solar power, sometimes drawing on the analogy between demand response and storage. Overall, we find demand response to be promising, but its potential value is very system dependent. Furthermore, demand response, like storage, can easily saturate ancillary service markets.

  11. Attosecond science in atomic, molecular, and condensed matter physics.

    Science.gov (United States)

    Leone, Stephen R; Neumark, Daniel M

    2016-12-16

    Attosecond science represents a new frontier in atomic, molecular, and condensed matter physics, enabling one to probe the exceedingly fast dynamics associated with purely electronic dynamics in a wide range of systems. This paper presents a brief discussion of the technology required to generate attosecond light pulses and gives representative examples of attosecond science carried out in several laboratories. Attosecond transient absorption, a very powerful method in attosecond science, is then reviewed and several examples of gas phase and condensed phase experiments that have been carried out in the Leone/Neumark laboratories are described.

  12. Status of Switched-Power Linac studies at BNL (Brookhaven National Laboratory) and CERN (European Organization for Nuclear Research)

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, S.

    1986-10-31

    The switched-power linac (SPL) concepts are reviewed briefly, and recent work on computer-modelling of the photoemission process at the photocathode and the experimental study of the process are discussed. Work on rf-modelling of the properties of the radial transmission line is outlined. (LEW)

  13. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  14. Mechanical Components and Tribology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory evaluates fundamental friction, wear, and lubrication technologies for improved, robust, and power-dense vehicle transmissions. The facility explores...

  15. Atomic physics

    CERN Document Server

    Born, Max

    1969-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  16. Early Atomism

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/reso/015/10/0905-0925. Keywords. Atomic theory; Avogadro's hypothesis; atomic weights; periodic table; valence; molecular weights; molecular formula; isomerism. Author Affiliations. S Ramasesha1. Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, ...

  17. How to analyse a Big Bang of data: the mammoth project at the Cern physics laboratory in Geneva to recreate the conditions immediately after the universe began requires computing power on an unprecedented scale

    CERN Multimedia

    Thomas, Kim

    2005-01-01

    How to analyse a Big Bang of data: the mammoth project at the Cern physics laboratory in Geneva to recreate the conditions immediately after the universe began requires computing power on an unprecedented scale

  18. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  19. Stormwater Pollution Prevention Plan for the TA-03-22 Power and Steam Plant, Los Alamos National Laboratory, Revision 3, January 2018

    Energy Technology Data Exchange (ETDEWEB)

    Burgin, Jillian Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-01

    This Storm Water Pollution Prevention Plan (SWPPP) was developed in accordance with the provisions of the Clean Water Act (33 U.S.C. §§1251 et seq., as amended), and the Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activity (U.S. EPA, June 2015) issued by the U.S. Environmental Protection Agency (EPA) for the National Pollutant Discharge Elimination System (NPDES) and using the industry specific permit requirements for Sector O-Steam Electric Generating Facilities as a guide. This SWPPP applies to discharges of stormwater from the operational areas of the TA-03-22 Power and Steam Plant at Los Alamos National Laboratory. Los Alamos National Laboratory (also referred to as LANL or the “Laboratory”) is owned by the Department of Energy (DOE), and is operated by Los Alamos National Security, LLC (LANS). Throughout this document, the term “facility” refers to the TA-03-22 Power and Steam Plant and associated areas. The current permit expires at midnight on June 4, 2020.

  20. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  1. A legacy of the ""megagoule committee,"" thirty years of explosive pulsed power research and development at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goforth, James H [Los Alamos National Laboratory; Oona, Henn [Los Alamos National Laboratory; Herrera, Dennis H [Los Alamos National Laboratory; Torres, David T [Los Alamos National Laboratory; Tasker, D. G. [Los Alamos National Laboratory; Meyer, R. K. [Los Alamos National Laboratory; Atchison, W. L. [Los Alamos National Laboratory; Rousculp, C. L. [Los Alamos National Laboratory; Reinovsky, R. E. [Los Alamos National Laboratory; Sheppard, M. [Los Alamos National Laboratory; Turchi, P. J. [Los Alamos National Laboratory; Watt, R. G. [Los Alamos National Laboratory

    2010-10-29

    In 1980, Los Alamos formed the 'Megajoule Committee' with the expressed goal of developing a one Megajoule plasma radiation source. The ensuing research and development has given rise to a wide variety of high explosive pulsed power accomplishments, and there is a continuous stream of work that continues to the present. A variety of flux compression generators (FCGs or generators) have been designed and tested, and a number of pulse shortening schemes have been investigated. Supporting computational tools have been developed in parallel with experiments. No fewer that six unique systems have been developed and used for experiments. This paper attempts to pull together the technical details, achievements, and wisdom amassed during the intervening thirty years, and notes how we would push for increased performance in the future.

  2. Mechanical power, thrust power

    OpenAIRE

    Gatta, Giorgio; Cortesi, Matteo; Swaine, Ian; Zamparo, Paola

    2017-01-01

    The purpose of this study was to explore the relationships between mechanical power, thrust power, propelling efficiency and sprint performance in elite swimmers. Mechanical power was measured in 12 elite sprint male swimmers: i) in the laboratory, by using a whole body swimming ergometer (W’TOT); and ii) in the pool, by measuring full tethered swimming force (FT) and maximal swimming velocity (Vmax): W’T = FT .Vmax. Propelling efficiency ( P) was estimated based on the “paddle wheel model“ a...

  3. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, Burak [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-11-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  4. Co-firing Bosnian coals with woody biomass: Experimental studies on a laboratory-scale furnace and 110 MWe power unit

    Directory of Open Access Journals (Sweden)

    Smajevic Izet

    2012-01-01

    Full Text Available This paper presents the findings of research into cofiring two Bosnian cola types, brown coal and lignite, with woody biomass, in this case spruce sawdust. The aim of the research was to find the optimal blend of coal and sawdust that may be substituted for 100% coal in large coal-fired power stations in Bosnia and Herzegovina. Two groups of experimental tests were performed in this study: laboratory testing of co-firing and trial runs on a large-scale plant based on the laboratory research results. A laboratory experiment was carried out in an electrically heated and entrained pulverized-fuel flow furnace. Coal-sawdust blends of 93:7% by weight and 80:20% by weight were tested. Co-firing trials were conducted over a range of the following process variables: process temperature, excess air ratio and air distribution. Neither of the two coal-sawdust blends used produced any significant ash-related problems provided the blend volume was 7% by weight sawdust and the process temperature did not exceed 1250ºC. It was observed that in addition to the nitrogen content in the co-fired blend, the volatile content and particle size distribution of the mixture also influenced the level of NOx emissions. The brown coal-sawdust blend generated a further reduction of SO2 due to the higher sulphur capture rate than for coal alone. Based on and following the laboratory research findings, a trial run was carried out in a large-scale utility - the Kakanj power station, Unit 5 (110 MWe, using two mixtures; one in which 5%/wt and one in which 7%/wt of brown coal was replaced with sawdust. Compared to a reference firing process with 100% coal, these co-firing trials produced a more intensive redistribution of the alkaline components in the slag in the melting chamber, with a consequential beneficial effect on the deposition of ash on the superheater surfaces of the boiler. The outcome of the tests confirms the feasibility of using 7%wt of sawdust in combination

  5. Fusion Power Program. Quarterly progress report, January-March 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    This quarterly report summarizes the Argonne National Laboratory work performed for the Office of Fusion Energy during the January-March 1979 quarter in the following research and development areas: materials; energy storage and transfer; tritium containment, recovery and control; advanced reactor design; atomic data; reactor safety; fusion-fission hybrid systems; alternate applications of fusion energy; and other work related to fusion power.

  6. General Atomic Laboratories. San Diego - California

    Directory of Open Access Journals (Sweden)

    Luckman, Charles

    1962-07-01

    Full Text Available El edificio está emplazado en un espacioso solar de Torrey Pines Mesa, situado en la parte norte de la ciudad de San Diego (California. Los servicios fundamentales comprenden un bloque administrativo; una gran construcción experimental; dos edificios de forma semicilíndrica, en los que se encuentran los laboratorios particulares y las oficinas correspondientes; y otro edificio, de planta circular, en el que está la biblioteca y que, además, sirve para centro de reuniones, conferencias e información técnica. También existe un edificio en el que se encuentra el acelerador lineal de partículas, otros dos que sirven para la investigación de la fisión nuclear y el salón de reuniones. El complejo de los laboratorios, incluyendo los edificios auxiliares y de servicio, ocupa aproximadamente 24.000 m2 y es uno de los mayores y mejor acondicionados para la investigación nuclear privada del mundo.

  7. Atomic theories

    CERN Document Server

    Loring, FH

    2014-01-01

    Summarising the most novel facts and theories which were coming into prominence at the time, particularly those which had not yet been incorporated into standard textbooks, this important work was first published in 1921. The subjects treated cover a wide range of research that was being conducted into the atom, and include Quantum Theory, the Bohr Theory, the Sommerfield extension of Bohr's work, the Octet Theory and Isotopes, as well as Ionisation Potentials and Solar Phenomena. Because much of the material of Atomic Theories lies on the boundary between experimentally verified fact and spec

  8. Compact atom interferometer using single laser

    Science.gov (United States)

    Chiow, Sheng-Wey; Yu, Nan

    2017-04-01

    Atom interferometer (AI) based sensors exhibit precision and accuracy unattainable with classical sensors, thanks to the inherent stability of atomic properties. The complexity of required laser system and the size of vacuum chamber driven by optical access requirement limit the applicability of such technology in size, weight, and power (SWaP) challenging environments, such as in space. For instance, a typical physics package of AI includes six viewports for laser cooling and trapping, two for AI beams, and two more for detection and a vacuum pump. Similarly, a typical laser system for an AI includes two lasers for cooling and repumping, and two for Raman transitions as AI beam splitters. In this presentation, we report our efforts in developing a miniaturized atomic accelerometer for planetary exploration. We will describe a physics package configuration having minimum optical access (thus small volume), and a laser and optics system utilizing a single laser for the sensor operation. Preliminary results on acceleration sensitivity will be discussed. We will also illustrate a path for further packaging and integration based on the demonstrated concepts. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  9. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  10. Fundamentals in hadronic atom theory

    CERN Document Server

    Deloff, A

    2003-01-01

    Hadronic atoms provide a unique laboratory for studying hadronic interactions essentially at threshold. This text is the first book-form exposition of hadronic atom theory with emphasis on recent developments, both theoretical and experimental. Since the underlying Hamiltonian is a non-self-adjoined operator, the theory goes beyond traditional quantum mechanics and this book covers topics that are often glossed over in standard texts on nuclear physics. The material contained here is intended for the advanced student and researcher in nuclear, atomic or elementary-particle physics. A good know

  11. Plasma heating power dissipation in low temperature hydrogen plasmas

    CERN Document Server

    Komppula, J

    2015-01-01

    Theoretical framework for power dissipation in low temperature plasmas in corona equilibrium is developed. The framework is based on fundamental conservation laws and reaction cross sections and is only weakly sensitive to plasma parameters, e.g. electron temperature and density. The theory is applied to low temperature atomic and molecular hydrogen laboratory plasmas for which the plasma heating power dissipation to photon emission, ionization and chemical potential is calculated. The calculated photon emission is compared to recent experimental results.

  12. Atomic arias

    Science.gov (United States)

    Crease, Robert P.

    2009-01-01

    The American composer John Adams uses opera to dramatize controversial current events. His 1987 work Nixon in China was about the landmark meeting in 1972 between US President Richard Nixon and Chairman Mao Zedong of China; The Death of Klinghoffer (1991) was a musical re-enactment of an incident in 1985 when Palestinian terrorists kidnapped and murdered a wheelchair-bound Jewish tourist on a cruise ship. Adams's latest opera, Doctor Atomic, is also tied to a controversial event: the first atomic-bomb test in Alamogordo, New Mexico, on 16 June 1945. The opera premièred in San Francisco in 2005, had a highly publicized debut at the Metropolitan Opera in New York in 2008, and will have another debut on 25 February - with essentially the same cast - at the English National Opera in London.

  13. Atomic rivals

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, B.

    1990-01-01

    This book is a memoir of rivalries among the Allies over the bomb, by a participant and observer. Nuclear proliferation began in the uneasy wartime collaboration of the United States, England, Canada, and Free France to produce the atom bomb. Through the changes of history, a young French chemist had a role in almost every act of this international drama. This memoir is based on Goldschmidt's own recollections, interviews with other leading figures, and 3,000 pages of newly declassified documents in Allied archives. From his own start as Marie Curie's lab assistant, Goldschmidt's career was closely intertwined with Frances complicated rise to membership in the nuclear club. As a refugee from the Nazis, he became part of the wartime nuclear energy project in Canada and found himself the only French scientist to work (although briefly) on the American atom bomb project.

  14. Atomic energy - Bombs and nuclear power. Drivers and controversies during 65 years; Atomenergi - Bomber och kaernkraft. Drivkrafter och kontroverser under 65 aar

    Energy Technology Data Exchange (ETDEWEB)

    Kaerrmarck, Urban

    2010-10-15

    Over the years, written books, scientific papers, conducted parliamentary inquiries and public discussions have been published to describe and explain the Swedish nuclear power program. There is probably no other more thoroughly debated area. Still question marks are piling up. The report provides a broad illumination over the subject and fills in a number of explanations. No new unknown facts are presented, however, a number of factors are highlighted, whose importance has not received attention. One such factor is the well known link between a Swedish nuclear weapons program and the nuclear power program. By combining the information, especially from the last 15 years on nuclear weapons development with the nuclear power program, a new and largely unknown picture emerges. This issue is only superficially touched upon earlier. The ambition to develop Swedish nuclear weapons was the basis for all development until Sweden ratified the CTBT. The handling of the nuclear issue especially during the 1960s created a crisis of confidence which still affects the decisions and attitude toward nuclear power. The report finds it likely that the over-sized nuclear program was not the result of a forecast failure, but a deliberate effort by the power industry to get a hegemony in the heating sector by replacing oil with electricity. The report also shows that the only practical, working tool for an early phase-out of nuclear power was to financially compensate the plant owners. A massive increase of renewable electricity generation or a program for raising the energy use efficiency was not sufficient to compete with the reactors. However, seen in a longer perspective, renewable electricity can compete with nuclear power. With the current ambitious expansion rate, conditions are right for such a competition. Parliament's decision in June 2010 authorizing the replacement of the present 10 reactors does not necessarily mean that the nuclear debate is terminated

  15. Power Service Shops

    Data.gov (United States)

    Federal Laboratory Consortium — TVA's Power Service Shops provides expert repair and maintenance of power system components and large industrial equipment. With world-class maintenance facilities...

  16. Design of a dual species atom interferometer for space

    Science.gov (United States)

    Schuldt, Thilo; Schubert, Christian; Krutzik, Markus; Bote, Lluis Gesa; Gaaloul, Naceur; Hartwig, Jonas; Ahlers, Holger; Herr, Waldemar; Posso-Trujillo, Katerine; Rudolph, Jan; Seidel, Stephan; Wendrich, Thijs; Ertmer, Wolfgang; Herrmann, Sven; Kubelka-Lange, André; Milke, Alexander; Rievers, Benny; Rocco, Emanuele; Hinton, Andrew; Bongs, Kai; Oswald, Markus; Franz, Matthias; Hauth, Matthias; Peters, Achim; Bawamia, Ahmad; Wicht, Andreas; Battelier, Baptiste; Bertoldi, Andrea; Bouyer, Philippe; Landragin, Arnaud; Massonnet, Didier; Lévèque, Thomas; Wenzlawski, Andre; Hellmig, Ortwin; Windpassinger, Patrick; Sengstock, Klaus; von Klitzing, Wolf; Chaloner, Chris; Summers, David; Ireland, Philip; Mateos, Ignacio; Sopuerta, Carlos F.; Sorrentino, Fiodor; Tino, Guglielmo M.; Williams, Michael; Trenkel, Christian; Gerardi, Domenico; Chwalla, Michael; Burkhardt, Johannes; Johann, Ulrich; Heske, Astrid; Wille, Eric; Gehler, Martin; Cacciapuoti, Luigi; Gürlebeck, Norman; Braxmaier, Claus; Rasel, Ernst

    2015-06-01

    Atom interferometers have a multitude of proposed applications in space including precise measurements of the Earth's gravitational field, in navigation & ranging, and in fundamental physics such as tests of the weak equivalence principle (WEP) and gravitational wave detection. While atom interferometers are realized routinely in ground-based laboratories, current efforts aim at the development of a space compatible design optimized with respect to dimensions, weight, power consumption, mechanical robustness and radiation hardness. In this paper, we present a design of a high-sensitivity differential dual species 85Rb/87Rb atom interferometer for space, including physics package, laser system, electronics and software. The physics package comprises the atom source consisting of dispensers and a 2D magneto-optical trap (MOT), the science chamber with a 3D-MOT, a magnetic trap based on an atom chip and an optical dipole trap (ODT) used for Bose-Einstein condensate (BEC) creation and interferometry, the detection unit, the vacuum system for 10-11 mbar ultra-high vacuum generation, and the high-suppression factor magnetic shielding as well as the thermal control system. The laser system is based on a hybrid approach using fiber-based telecom components and high-power laser diode technology and includes all laser sources for 2D-MOT, 3D-MOT, ODT, interferometry and detection. Manipulation and switching of the laser beams is carried out on an optical bench using Zerodur bonding technology. The instrument consists of 9 units with an overall mass of 221 kg, an average power consumption of 608 W (814 W peak), and a volume of 470 liters which would well fit on a satellite to be launched with a Soyuz rocket, as system studies have shown.

  17. A study of power diode failure mechanisms in the US Army research laboratory 30-mm solid propellant electrothermal-chemical (SPETC) gun facility

    Science.gov (United States)

    Katulka, Gary L.; White, Kevin J.

    1995-02-01

    Experiments have been performed with a 100-kJ Pulse Forming Network (PFN) at the U.S. Army Research Laboratory (ARL) for the purpose of characterizing semiconductor diodes which serve as capacitor-protecting crowbar devices. These devices are viewed as critical electronic power components required for electric gun research that is currently in progress within the U.S. Army and elsewhere. As part of this study, computer techniques were used to refine and develop the understanding of the dynamic, or switching, behavior of PFN diodes. In combination with experimental results, the computer simulations helped to define particular conditions within a given electric gun system that can cause vulnerable or stressful situations for the semiconductor devices under test. It was determined from analyses of the various data collected, that when operated in a PFN under specific loading conditions (simulated here with fixed resistive loads), diodes are subject to transient or high frequency voltage peaks. In some experimental cases at the ARL, the magnitude of the rate of change in voltage (dV/dt) across the devices was such that catastrophic failure was observed. The details of the boundary conditions necessary for device failure are described and several solutions that will circumvent operational problems including device grouping, choice of diode reverse recovery time, and selection of capacitive and inductive circuit parameters are discussed in detail. Background information describing some fundamental physics of semiconductor diodes and their role in electrothermal-chemical (ETC) propulsion technology is provided first.

  18. Atomic Activities.

    Science.gov (United States)

    Daniel, Trent K.

    1997-01-01

    Presents a unit on the periodic table that focuses on the concept of patterns and is designed to reach students with different learning styles. Describes seven laboratory stations, each focusing on a different learning style including bodily-kinesthetic, logical-mathematical, linguistic-verbal, visual-spatial, musical, intrapersonal, and…

  19. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics LaboratoryThe Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose of...

  20. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  1. Evaluation of AlGaN/GaN metal-oxide-semicondutor high-electron mobility transistors with plasma-enhanced atomic layer deposition HfO2/AlN date dielectric for RF power applications

    Science.gov (United States)

    Chiu, Yu Sheng; Luc, Quang Ho; Lin, Yueh Chin; Chien Huang, Jui; Dee, Chang Fu; Yeop Majlis, Burhanuddin; Chang, Edward Yi

    2017-09-01

    A plasma enhanced atomic layer deposition (PEALD) HfO2/AlN dielectric stack was used as the gate dielectric for AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) for high-frequency power device applications. The capacitance-voltage (C-V) curves of the HfO2/AlN/GaN MOS capacitor (MOSCAP) showed a small frequency dispersion along with a very small hysteresis (˜50 mV). Moreover, the interface trap density (D it) was calculated to be 2.7 × 1011 cm-2 V-1 s-1 at 150 °C. Using PEALD-AlN as the interfacial passivation layer (IPL), the drain current of the HfO2/AlN MOS-HEMTs increased by about 46% and the gate leakage current decreased by six orders of magnitude as compared with those of the conventional Schottky gate AlGaN/GaN HEMTs processed using the same epitaxial wafer. The 0.3-µm-gate-length HfO2/AlN/AlGaN/GaN MOS-HEMTs demonstrated a 2.88 W/mm output power, a 23 dB power gain, a 30.2% power-added efficiency at 2.4 GHz, and an improved device linearity as compared with the conventional AlGaN/GaN HEMTs. The third-order intercept point at the output (OIP3) of the MOS-HEMTs was 28.4 as compared with that of 26.5 for the conventional GaN HEMTs. Overall, the MOS-HEMTs with a HfO2/AlN gate stack showed good potential for high-linearity RF power device applications.

  2. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  3. Mobil laboratory for the evaluation on site of the power electric equipment, second generation; Laboratorio movil para la evaluacion en sitio del equipo electrico de potencia, segunda generacion

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo C, Jaime; Escorsa M, Oscar; Estrada G, Javier A; Iturbe F, Marlene; Robles P, Edgar [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-07-01

    To the interior of the Generation of Electrical Equipment (GEE) of the Instituto de Investigaciones Electricas, one of the main activities is the diagnosis of the electrical equipment in service. It is well known that the power equipment represents a strong investment that requires the guarantee that it has been manufactured, installed and operated satisfactorily. The life expectancy of these devices is of thirty years, however, many of them already have surpassed that expectation. The rehabilitation or substitution of the equipment implies new investments that are needed for an evaluation of the real condition of the equipment to carry out such rehabilitation. One of the tools necessary to carry out the diagnosis, is a movable laboratory that facilitates all the necessary tools to perform a meticulous analysis that would allow, the client, to make high cost decisions. The application of the movable laboratory is advisable from the inauguration of the equipment. The electrical mechanisms are factory tested in accordance with standardized protocols; it guarantees the fulfillment of the necessary requirements for a correct operation. Nevertheless, when taking them to the assembly site, these are subjected to a series of processes and mechanical stresses that could alter the equipment conditions and its integrity. [Spanish] Al interior de la Generacion de Equipos Electricos (GEE) del Instituto de Investigaciones Electricas, una de las principales actividades es el diagnostico del equipo electrico en servicio. Es bien sabido que los equipos de potencia representan una fuerte inversion que requiere la garantia de que se ha fabricado, instalado y operado satisfactoriamente. La esperanza de vida de estos dispositivos es de treinta anos, no obstante, muchos de ellos ya han superado esa expectativa. La rehabilitacion o sustitucion de equipos, implica nuevas inversiones que precisan un conocimiento del estado real del equipo para llevarla a cabo. Una de las herramientas

  4. Optical lattice on an atom chip

    DEFF Research Database (Denmark)

    Gallego, D.; Hofferberth, S.; Schumm, Thorsten

    2009-01-01

    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....

  5. Cubic-phase zirconia nano-island growth using atomic layer deposition and application in low-power charge-trapping nonvolatile-memory devices

    Science.gov (United States)

    El-Atab, Nazek; Gamze Ulusoy, Turkan; Ghobadi, Amir; Suh, Junkyo; Islam, Raisul; Okyay, Ali K.; Saraswat, Krishna; Nayfeh, Ammar

    2017-11-01

    The manipulation of matter at the nanoscale enables the generation of properties in a material that would otherwise be challenging or impossible to realize in the bulk state. Here, we demonstrate growth of zirconia nano-islands using atomic layer deposition on different substrate terminations. Transmission electron microscopy and Raman measurements indicate that the nano-islands consist of nano-crystallites of the cubic-crystalline phase, which results in a higher dielectric constant (κ ∼ 35) than the amorphous phase case (κ ∼ 20). X-ray photoelectron spectroscopy measurements show that a deep quantum well is formed in the Al2O3/ZrO2/Al2O3 system, which is substantially different to that in the bulk state of zirconia and is more favorable for memory application. Finally, a memory device with a ZrO2 nano-island charge-trapping layer is fabricated, and a wide memory window of 4.5 V is obtained at a low programming voltage of 5 V due to the large dielectric constant of the islands in addition to excellent endurance and retention characteristics.

  6. Environmental-Friendly Solid Synthesis of Fe-N-C Electrocatalyst with Fe Exclusively in Atomically Dispersed Fe-N4 Moieties for High-Power Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Liu, Qingtao; Liu, Xiaofang; Zheng, Lirong; Shui, Jianglan

    2017-12-05

    Environmental-friendly synthesis of highly active Fe-N-C electrocatalyst for proton exchange membrane fuel cells (PEMFCs) is desirable but remains challenging. Herein, we report a green, simple and scalable method to fabricate Fe(II)-doped ZIF-8, which can be further pyrolyzed into Fe-N-C with 3 wt.% of Fe exclusively in Fe-N4 active moieties. Significantly, this Fe-N-C derived acidic PEMFC exhibits an unprecedented current density of 1.65 A cm-2 at 0.6 V and the highest power density of 1.14 W cm-2 compared with previously reported NPMCs. The excellent PEMFC performance can be attributed to the densely and atomically dispersed Fe-N4 active moieties on the small and uniform catalyst nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  8. Report on the atom what you should know about atomic energy

    CERN Document Server

    Dean, Gordon

    1954-01-01

    The American approach to the atom ; Uranium is where you find it ; the production line: ore to bombs ; the expanding programme ; the headaches ; the pay-off: weapons ; the military and the atoms ; power: the peaceful goals, first phase ; power: the peaceful goals, second goals ; radioisotopes: servants of man ; the quest for knowledge ; secrecy, security and spies ; the international atom ; behind the Iron Curtain ; the way ahead.

  9. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer componentsThe Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  10. High Atom Number in Microsized Atom Traps

    Science.gov (United States)

    2015-12-14

    Final Performance Report on ONR Grant N00014-12-1-0608 High atom number in microsized atom traps for the period 15 May 2012 through 14 September...TYPE Final Technical Report 3. DATES COVERED (From - To) 05/15/2012-09/14/2012 4. TITLE AND SUBTITLE High atom number in microsized atom traps...forces for implementing a small-footprint, large-number atom -chip instrument. Bichromatic forces rely on absorption and stimulated emission to produce

  11. Atomic horror deal; Atom-Deal des Grauens

    Energy Technology Data Exchange (ETDEWEB)

    May, Hanne

    2010-10-15

    The German government is opting out of the decided nuclear phaseout and will ensure good profits for operators of nuclear power plants. Complex contracts and the disregard of safety regulations will result in a continued atomic energy policy, even beyond the next elections and in disrespect of democratic procedures and bodies. (orig.)

  12. Nuclear Power Plants. Revised.

    Science.gov (United States)

    Lyerly, Ray L.; Mitchell, Walter, III

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: Why Use Nuclear Power?; From Atoms to Electricity; Reactor Types; Typical Plant Design Features; The Cost of Nuclear Power; Plants in the United States; Developments in Foreign…

  13. The Future of Atomic Energy

    Science.gov (United States)

    Fermi, E.

    1946-05-27

    There is definitely a technical possibility that atomic power may gradually develop into one of the principal sources of useful power. If this expectation will prove correct, great advantages can be expected to come from the fact that the weight of the fuel is almost negligible. This feature may be particularly valuable for making power available to regions of difficult access and far from deposits of coal. It also may prove a great asset in mobile power units for example in a power plant for ship propulsion. On the negative side there are some technical limitations to be applicability of atomic power of which perhaps the most serious is the impossibility of constructing light power units; also there will be some peculiar difficulties in operating atomic plants, as for example the necessity of handling highly radioactive substances which will necessitate, at least for some considerable period, the use of specially skilled personnel for the operation. But the chief obstacle in the way of developing atomic power will be the difficulty of organizing a large scale industrial development in an internationally safe way. This presents actually problems much more difficult to solve than any of the technical developments that are necessary, It will require an unusual amount of statesmanship to balance properly the necessity of allaying the international suspicion that arises from withholding technical secrets against the obvious danger of dumping the details of the procedures for an extremely dangerous new method of warfare on a world that may not yet be prepared to renounce war. Furthermore, the proper balance should be found in the relatively short time that will elapse before the 'secrets' will naturally become open knowledge by rediscovery on part of the scientists and engineers of other countries.

  14. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  15. Atoms for peace and war, 1953-1961

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, R.G.; Holl, J.M.

    1989-01-01

    This paper reports on nuclear power for the marketplace, pursuit of the peaceful atom, safeguards, EORATOM, and the international agency. Nuclear issues include the presidential campaign of 1956, politics of the peaceful atom and a nuclear test moratorium.

  16. [The pathomorphological characteristics of duodenal peptic ulcer in the victims of the accident at the Chernobyl Atomic Electric Power Station: changes in the gastric mucosa].

    Science.gov (United States)

    Degtiareva, L V; Moroz, G Z

    1998-01-01

    Gastrobiopsies were studied from patients with duodenal ulcer, 62 of whom took part in the elimination of the effects of the Chernobyl Nuclear Power Plant breakdown, 33 were permanent residents in the territories affected by radioactive contamination, and 36 formed the control group. Several distinguishing features were noted in chronic Helicobacter gastritis in victims of Chernobyl accident versus control, such as higher degree and activity of the inflammatory process spreading over large tissue areas, with Helicobacter pylori being recordable in the gastric mucosa in highly increased numbers, and more frequent occurrence of atrophic changes. Incorporation of radionuclides and external irradiation at dose levels exceeding 25 cause most significant disturbances in regeneration of epithelium, with its enterolyzation and dysplasia going on, which fact makes the risk of neoplastic transformations higher.

  17. Microfluidics, Chromatography, and Atomic-Force Microscopy

    Science.gov (United States)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  18. Revised FINAL–REPORT NO. 2: INDEPENDENT CONFIRMATORY SURVEY SUMMARY AND RESULTS FOR THE ENRICO FERMI ATOMIC POWER PLANT, UNIT 1, NEWPORT, MICHIGAN (DOCKET NO. 50 16; RFTA 10-004) 2018-SR-02-1

    Energy Technology Data Exchange (ETDEWEB)

    Erika Bailey

    2011-10-27

    The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education

  19. Atomic Beam Merging and Suppression of Alkali Contaminants in Multi Body High Power Targets: Design and Test of Target and Ion Source Prototypes at ISOLDE

    CERN Document Server

    Bouquerel, Elian J A; Lettry, J; Stora, T

    2009-01-01

    The next generation of high power ISOL-facilities will deliver intense and pure radioactive ion beams. Two key issues of developments mandatory for the forthcoming generation of ISOL target-ion source units are assessed and demonstrated in this thesis. The design and production of target and ion-source prototypes is described and dedicated measurements at ISOLDE-CERN of their radioisotope yields are analyzed. The purity of short lived or rare radioisotopes suffer from isobaric contaminants, notably alkalis which are highly volatile and easily ionized elements. Therefore, relying on their chemical nature, temperature controlled transfer lines were equipped with a tube of quartz that aimed at trapping these unwanted elements before they reached the ion source. The successful application yields high alkali-suppression factors for several elements (ie: 80, 82mRb, 126, 142Cs, 8Li, 46K, 25Na, 114In, 77Ga, 95, 96Sr) for quartz temperatures between 300ºC and 1100ºC. The enthalpies of adsorption on quartz were measu...

  20. A nine-atom rhodium-aluminum oxide cluster oxidizes five carbon monoxide molecules

    National Research Council Canada - National Science Library

    Li, Xiao-Na; Zhang, Hua-Min; Yuan, Zhen; He, Sheng-Gui

    2016-01-01

    ... catalysis is elusive. Here we report that a single atom of rhodium, a powerful noble metal catalyst, can promote the transfer of five oxygen atoms to oxidize carbon monoxide from a nine-atom rhodium-aluminum oxide cluster...

  1. "Bohr's Atomic Model."

    Science.gov (United States)

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  2. Giant atom smasher on hunt for "Sparticles"

    CERN Multimedia

    Moskowitz, Clara

    2008-01-01

    "Squarks, photinos, selectrons, neutralinos: these are just a few types of supersymmetrice particles, a special brand of particle that may be created when the world's most powerful atom smasher goes online this spring." (1 page)

  3. R. Lynette & Associates and Pacific Northwest Laboratory staff exchange: Analysis and evaluation of the application of the Pulse Amplitude Synthesis and Control (PASC) converter in a wind power plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The main objective of staff exchanges is to facilitate cooperative activities between PNL staff and U.S. private industry. Funding for the projects is provided by the DOE Office of Energy Research Laboratory Technology Transfer Program. Dr. Matthew Donnelly, a Research Engineer in the Applied Physics Center, Initiated a PNL disclosure for Pulse Amplitude Synthesis and Control (PASC) converter intellectual property protection in 1993. PASC converter research at the Pacific Northwest Laboratory (PNL) has been funded through the ETDI LDRD program. Recent work has centered on building the three-phase 20kW laboratory unit, the development of control algorithms and the study of the application of PASC converters in a 25MW wind power plant (through the staff exchange with RLA reported on here). An overview and description of the PASC converter is included as Appendix A.

  4. Blackroom Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables evaluation and characterization of materials ranging from the ultraviolet to the longwave infrared (LWIR).DESCRIPTION: The Blackroom Laboratory is...

  5. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  6. Target Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — [Part of the ATLAS user facility.] The Physics Division operates a target development laboratory that produces targets and foils of various thickness and substrates,...

  7. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    Science.gov (United States)

    2015-09-01

    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  8. Teach us atom structure

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Suh Yeon

    2006-08-15

    This book is written to teach atom structure in very easy way. It is divided into nine chapters, which indicates what is the components of matter? when we divide matter continuously, it becomes atom, what did atom look like? particles comprised of matter is not only atom, discover of particles comprised of atom, symbol of element, various radiation, form alchemy to nuclear transmutation, shape of atom is evolving. It also has various pictures in each chapters to explain easily.

  9. Playing pinball with atoms.

    Science.gov (United States)

    Saedi, Amirmehdi; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Harold J W

    2009-05-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely controlling the tip current and distance we make two atom pairs behave like the flippers of an atomic-sized pinball machine. This atomic scale mechanical device exhibits six different configurations.

  10. Fusion Power Program. Quarterly progress report, October--December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    This quarterly report summarizes the Argonne National Laboratory work performed for the Office of Fusion Energy during the October--December 1978 quarter in the following research and development areas: materials; energy storage and transfer; tritium containment, recovery and control; advanced reactor design; atomic data; reactor safety; fusion-fission hybrid systems; alternate applications of fusion energy; and other work related to fusion power. Three separate abstracts were prepared for the included sections. (MOW)

  11. Observation of relativistic antihydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  12. Atom-specific surface magnetometry

    Science.gov (United States)

    Sirotti, Fausto; Panaccione, Giancarlo; Rossi, Giorgio

    1995-12-01

    A powerful atom-specific surface magnetometry can be based on efficient measurements of magnetic dichroism in l>~0 core level photoemission. The temperature dependence M(T) of the Fe(100) surface magnetization was obtained from the photoemission magnetic asymmetry of 3p core levels, providing the measure of the surface exchange coupling via the spin-wave stiffness and of the surface critical exponent. Beyond the magnetic order the photoemission dichroism allows us to derive the energy splitting of the magnetic sublevels of the photoexcited core hole. Fe 3p photoemission dichroism probes directly the magnetic moment changes of iron atoms at Fe(100) surfaces as a function of structural disorder or sulfur segregation. The appearance of dichroism in the 2p photoemission of segregated sulfur atoms in the c(2×2)S/Fe(100) superstructure measures the magnetic-moment transfer and shows the possibility of investigating surface magnetochemistry in a very direct way.

  13. Ex Vacuo Atom Chip Bose-Einstein Condensate (BEC)

    CERN Document Server

    Squires, Matthew B; Kasch, Brian; Stickney, James A; Erickson, Christopher J; Crow, Jonathan A R; Carlson, Evan J; Burke, John H

    2016-01-01

    Ex vacuo atom chips, used in conjunction with a custom thin walled vacuum chamber, have enabled the rapid replacement of atom chips for magnetically trapped cold atom experiments. Atoms were trapped in $>2$ kHz magnetic traps created using high power atom chips. The thin walled vacuum chamber allowed the atoms to be trapped $\\lesssim1$ mm from the atom chip conductors which were located outside of the vacuum system. Placing the atom chip outside of the vacuum simplified the electrical connections and improved thermal management. Using a multi-lead Z-wire chip design, a Bose-Einstein condensate was produced with an external atom chip. Vacuum and optical conditions were maintained while replacing the Z-wire chip with a newly designed cross-wire chip. The atom chips were exchanged and an initial magnetic trap was achieved in less than three hours.

  14. The Atoms for Peace USIS Films: Spreading the Gospel of the "Blessing" of Atomic Energy in the Early Cold War Era

    Directory of Open Access Journals (Sweden)

    Yuka Tsuchiya

    2014-08-01

    Full Text Available In 1955, the U.S. Information Service (USIS Tokyo produced a thirty-minute documentary film Blessing of Atomic Energy in commemoration of the tenth anniversary of the Atomic bombing of Hiroshima and Nagasaki. The film introduced how the Japanese government, researchers, and companies were using radioisotopes offered by the U.S. Argonne National Laboratory for the “peaceful” purposes in agriculture, medicine, hygiene, industry, and disaster prevention. The film also showed the mechanism of atomic power generation, and explained that it was already put into practice in the U.S. and Europe. The images of Japanese people enjoying the “blessing” of the “peaceful” use of atomic energy, ten years after the traumatic experience of A-bombs, were not only shown all over Japan, but also translated into different languages and shown in many countries, including the UK, Finland, Indonesia, Sudan, and Venezuela. The film was part of some fifty educational and documentary films produced for President Eisenhower’s “Atoms for Peace” campaign – a global information dissemination programs on the U.S. leadership in the civilian use of nuclear energy. This paper will explore the roles USIS films played in disseminating information on the “peaceful” use of nuclear energy in the early Cold War era.

  15. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  16. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent

  17. Efficient transfer of francium atoms

    Science.gov (United States)

    Aubin, Seth; Behr, John; Gorelov, Alexander; Pearson, Matt; Tandecki, Michael; Collister, Robert; Gwinner, Gerald; Shiells, Kyle; Gomez, Eduardo; Orozco, Luis; Zhang, Jiehang; Zhao, Yanting; FrPNC Collaboration

    2016-05-01

    We report on the progress of the FrPNC collaboration towards Parity Non Conservation Measurements (PNC) using francium atoms at the TRIUMF accelerator. We demonstrate efficient transfer (higher than 40%) to the science vacuum chamber where the PNC measurements will be performed. The transfer uses a downward resonant push beam from the high-efficiency capture magneto optical trap (MOT) towards the science chamber where the atoms are recaptured in a second MOT. The transfer is very robust with respect to variations in the parameters (laser power, detuning, alignment, etc.). We accumulate a growing number of atoms at each transfer pulse (limited by the lifetime of the MOT) since the push beam does not eliminate the atoms already trapped in the science MOT. The number of atoms in the science MOT is on track to meet the requirements for competitive PNC measurements when high francium rates (previously demonstrated) are delivered to our apparatus. The catcher/neutralizer for the ion beam has been tested reliably to 100,000 heating/motion cycles. We present initial tests on the direct microwave excitation of the ground hyperfine transition at 45 GHz. Support from NSERC and NRC from Canada, NSF and Fulbright from USA, and CONACYT from Mexico.

  18. Overview of atomic layer etching in the semiconductor industry

    Energy Technology Data Exchange (ETDEWEB)

    Kanarik, Keren J., E-mail: keren.kanarik@lamresearch.com; Lill, Thorsten; Hudson, Eric A.; Sriraman, Saravanapriyan; Tan, Samantha; Marks, Jeffrey; Vahedi, Vahid; Gottscho, Richard A. [Lam Research Corporation, 4400 Cushing Parkway, Fremont, California 94538 (United States)

    2015-03-15

    Atomic layer etching (ALE) is a technique for removing thin layers of material using sequential reaction steps that are self-limiting. ALE has been studied in the laboratory for more than 25 years. Today, it is being driven by the semiconductor industry as an alternative to continuous etching and is viewed as an essential counterpart to atomic layer deposition. As we enter the era of atomic-scale dimensions, there is need to unify the ALE field through increased effectiveness of collaboration between academia and industry, and to help enable the transition from lab to fab. With this in mind, this article provides defining criteria for ALE, along with clarification of some of the terminology and assumptions of this field. To increase understanding of the process, the mechanistic understanding is described for the silicon ALE case study, including the advantages of plasma-assisted processing. A historical overview spanning more than 25 years is provided for silicon, as well as ALE studies on oxides, III–V compounds, and other materials. Together, these processes encompass a variety of implementations, all following the same ALE principles. While the focus is on directional etching, isotropic ALE is also included. As part of this review, the authors also address the role of power pulsing as a predecessor to ALE and examine the outlook of ALE in the manufacturing of advanced semiconductor devices.

  19. Geomechanics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Geomechanics Laboratory allows its users to measure rock properties under a wide range of simulated service conditions up to very high pressures and complex load...

  20. Computational Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains a number of commercial off-the-shelf and in-house software packages allowing for both statistical analysis as well as mathematical modeling...

  1. Quantificação laboratorial de cobre sérico por espectrofotometria Vis comparável à espectrometria de absorção atômica com chama Laboratorial quantification of serum copper by Vis spectrophotometry in comparison to flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Angela Maria Moro

    2007-08-01

    Full Text Available INTRODUÇÃO: O cobre é um nutriente essencial para os humanos, e a manutenção dos seus níveis é importante, uma vez que seu metabolismo está envolvido com estresse oxidativo e patologias, como a Doença de Wilson. Neste trabalho, um método de espectrofotometria visível (espectrofotometria Vis foi validado, aplicado em indivíduos jovens e comparado com espectrometria de absorção atômica com chama (EAA-chama. MÉTODOS: Concentrações séricas de cobre foram medidas por EAA-chama e por espectrofotometria Vis, através da reação de cobre com batocuproína, l = 484 nm. Curvas analíticas em solução aquosa e com adição de padrão foram efetuadas para verificar linearidade, recuperação e precisão do método espectrofotométrico. Amostras de sangue de 12 indivíduos (média de idade 22 anos foram analisadas por ambos os métodos e comparadas entre si. Os resultados foram expressos em média ± desvio-padrão. RESULTADOS: As curvas com adição de padrão e aquosa (n = 5 apresentaram coeficientes de regressão superiores a 0,99 e de variação inter e intradia inferiores a 15%. Os valores de cobre sérico encontrados para o método espectrofotométrico foram 1,17 ± 0,39 e 0,73 ± 0,14 mg/l para mulheres e homens, respectivamente. Para EAA-chama foram encontrados 1,13 ± 0,43 e 0,59 ± 0,13 mg/l para mulheres e homens, respectivamente. Os resultados mostraram correlação de Pearson significativa (r = 0,946; p BACKGROUND: Copper is an essential nutrient for humans and maintenance of its adequate levels is important, since its metabolism is involved with oxidative stress and patolologies, such as Wilson's disease. In this work, a visible spectrophotometric method was validated, applied in young subjects and compared to flame atomic absorption spectrometry (FAAS in serum copper levels determination. METHODS: Serum copper concentrations were measured by FAAS and by spectrophotometry, through copper reaction with bathocuproine, l = 484

  2. 1984 Bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howard, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1985-04-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  3. 1985 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howald, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1986-06-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  4. 1982 bibliography of atomic and molecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-05-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  5. Bibliography of atomic and molecular processes, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-10-01

    This annotated bibliography includes papers on atomic and molecular processes published during 1983. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  6. The Manhattan Project: Making the atomic bomb

    Energy Technology Data Exchange (ETDEWEB)

    Gosling, F.G.

    1994-09-01

    This article is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of US government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  7. HOM damping properties of fundamental power couplers in the superconducting electron gun of the energy recovery LINAC at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, L.; Hahn, H.

    2011-03-28

    Among the accelerator projects under construction at the Relativistic Heavy Ion Collider (RHIC) is an R and D energy recovery LINAC (ERL) test facility. The ERL includes both a five-cell superconducting cavity as well as a superconducting, photoinjector electron gun. Because of the high-charge and high-current demands, effective higher-order mode (HOM) damping is essential, and several strategies are being pursued. Among these is the use of the fundamental power couplers as a means for damping some HOMs. Simulation studies have shown that the power couplers can play a substantial role in damping certain HOMs, and this presentation discusses these studies along with measurements.

  8. Thermal Fluid Analysis of the Heat Sink and Chip Carrier Assembly for a US Army Research Laboratory Liquid-Fueled Thermophotovoltaic Power Source Demonstrator

    Science.gov (United States)

    2016-09-01

    The photovoltaic cell(s) then converts the thermal radiation to electrical energy, which can be delivered to a load or conditioning circuitry...isolation, and leverage thermal performance. This analysis was completed using Solid Works Flow Simulation, which can calculate either the steady...ARL-TR-7829 ● SEP 2016 US Army Research Laboratory Thermal Fluid Analysis of the Heat Sink and Chip Carrier Assembly for a US

  9. Atomic and molecular manipulation

    CERN Document Server

    Mayne, Andrew J

    2011-01-01

    Work with individual atoms and molecules aims to demonstrate that miniaturized electronic, optical, magnetic, and mechanical devices can operate ultimately even at the level of a single atom or molecule. As such, atomic and molecular manipulation has played an emblematic role in the development of the field of nanoscience. New methods based on the use of the scanning tunnelling microscope (STM) have been developed to characterize and manipulate all the degrees of freedom of individual atoms and molecules with an unprecedented precision. In the meantime, new concepts have emerged to design molecules and substrates having specific optical, mechanical and electronic functions, thus opening the way to the fabrication of real nano-machines. Manipulation of individual atoms and molecules has also opened up completely new areas of research and knowledge, raising fundamental questions of "Optics at the atomic scale", "Mechanics at the atomic scale", Electronics at the atomic scale", "Quantum physics at the atomic sca...

  10. Characterization of Yellow Seahorse Hippocampus kuda feeding click sound signals in a laboratory environment: an application of probability density function and power spectral density analyses

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Saran, A.K.; Kuncolienker, D.S.; Sreepada, R.A.; Haris, K.; Fernandes, W.A

    an important behavior from nature and human endeavor, especially when long / heavy tailed distributions are dominant (Levy and Solomon 1997). Under this condition, PSD functions analyses with respect to the frequencies and curve fitting using power law... background fiberglass reinforced plastic (FRP) tanks (capacity, 100 L) at a juvenile density of 2 fish L−1 until they attained settlement phase. Thereafter, juveniles were reared in large FRP tanks (capacity, 500 L) secured with different types and sizes...

  11. Pacific Northwest National Laboratory Catalysis Highlights for FY2007

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C.

    2007-11-15

    To reduce the nation’s dependence on imported oil, the U.S. Department of Energy (DOE) and other federal and private agencies are investing in understanding catalysis. This report focuses on catalysis research conducted by Pacific Northwest National Laboratory (PNNL) and its collaborators. Using sophisticated instruments in DOE’s Environmental Molecular Sciences Laboratory, a national scientific user facility, research was conducted to answer key questions related to the nation’s use of automotive fuels. Research teams investigated how hydrogen can be safely stored and efficiently released, critical questions to use this alternative fuel. Further, they are answering key questions to design molecular catalysts to control the transfer of hydrogen atoms, hydrides, and protons important to hydrogen production. In dealing with today’s fuels, researchers examined adsorption of noxious nitrous oxides in automotive exhaust. Beyond automotive fuel, researchers worked on catalysts to harness solar power. These catalysts include the rutile and anatase forms of titanium dioxide. Basic research was conducted on designing catalysts for these and other applications. Our scientists examined how to build catalysts with the desired properties atom by atom and molecule by molecule. In addition, this report contains brief descriptions of the outstanding accomplishments of catalysis experts at PNNL.

  12. Atomic vapor density monitor

    Energy Technology Data Exchange (ETDEWEB)

    Sewall, N.; Harris, W.; Beeler, R.; Wooldridge, J.; Chen, H.L.

    1986-09-01

    This report presents information on the Atomic Vapor Density Monitor (AVDM) system that measures the density of a vapor by measuring the absorption of light from a swept-wavelength laser that passes through an atomic vapor stream.

  13. Laser controlled atom source for optical clocks

    Science.gov (United States)

    Kock, Ole; He, Wei; Świerad, Dariusz; Smith, Lyndsie; Hughes, Joshua; Bongs, Kai; Singh, Yeshpal

    2016-11-01

    Precision timekeeping has been a driving force in innovation, from defining agricultural seasons to atomic clocks enabling satellite navigation, broadband communication and high-speed trading. We are on the verge of a revolution in atomic timekeeping, where optical clocks promise an over thousand-fold improvement in stability and accuracy. However, complex setups and sensitivity to thermal radiation pose limitations to progress. Here we report on an atom source for a strontium optical lattice clock which circumvents these limitations. We demonstrate fast (sub 100 ms), cold and controlled emission of strontium atomic vapours from bulk strontium oxide irradiated by a simple low power diode laser. Our results demonstrate that millions of strontium atoms from the vapour can be captured in a magneto-optical trap (MOT). Our method enables over an order of magnitude reduction in scale of the apparatus. Future applications range from satellite clocks testing general relativity to portable clocks for inertial navigation systems and relativistic geodesy.

  14. What is nuclear power in Japan?

    Science.gov (United States)

    Suzuki, Toshikazu

    2011-03-01

    The aggressive use of such non-fossil energy as the atomic energy with high power density and energy production efficiency is an indispensable choice aiming at the low-carbon society. There is a trial calculation that the carbon dioxide emission of 40000 ton can be suppressed by nuclear power generation by one ton of uranium. The basis of nuclear research after the Second World War in Japan was established by the researchers learnt in Argonne National Laboratory. In 2010, NPPs under operation are 54 units and the total electric generating power is 48.85GW. The amount of nuclear power generation per person of the people is 0.38kW in Japan, and it is near 0.34kW of the United States. However, the TMI accident and the Chernobyl disaster should have greatly stagnated the nuclear industry of Japan although it is not more serious than the United States. A lot of Japanese unconsciously associate a nuclear accident with the atomic bomb. According to the investigation which Science and Technology Agency carried out to the specialist in 1999, ``What will be the field where talent should be emphatically sent in the future?'' the rank of nuclear technology was the lowest in 32 fields. The influence of the nuclear industry stagnation was remarkable in the education. The subject related to the atomic energy of a university existed 19 in 1985 that was the previous year of the Chernobyl disaster decreased to 7 in 2003. In such a situation, we have to rely on the atomic energy because Japan depends for 96% of energy resources on import. The development of the fuel reprocessing and the fast breeder reactor has been continued in spite of a heavy failure. That is the only means left behind for Japan to be released from both fossil fuel and carbon dioxide.

  15. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Felicia Angelica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.; Waymire, Russell L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  16. Atomic and molecular processes in fusion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janev, R.K. [International Atomic Energy Agency, Vienna (Austria)

    1997-01-01

    The role of atomic and molecular processes in achieving and maintaining the conditions for thermonuclear burn in a magnetically confined fusion plasma is described. Emphasis is given to the energy balance and power and particle exhaust issues. The most important atomic and molecular processes which affect the radiation losses and impurity transport in the core plasma, the neutral particle transport in the plasma edge and the radiative cooling of divertor plasmas are discussed in greater detail. (author)

  17. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  18. Playing Pinball with Atoms

    NARCIS (Netherlands)

    Saedi, A.; van Houselt, Arie; van Gastel, Raoul; Poelsema, Bene; Zandvliet, Henricus J.W.

    2009-01-01

    We demonstrate the feasibility of controlling an atomic scale mechanical device by an external electrical signal. On a germanium substrate, a switching motion of pairs of atoms is induced by electrons that are directly injected into the atoms with a scanning tunneling microscope tip. By precisely

  19. Laboratory for Radiokrypton Dating

    Science.gov (United States)

    Lu, Z.; Bailey, K.; Jiang, W.; Müller, P.; O'Connor, T. P.; Zappala, J. C.

    2013-12-01

    Due to its simple production and transport processes in the terrestrial environment, the long-lived noble-gas isotope 81Kr (half-life = 230 kyr) is the ideal tracer for studying old water and ice in the age range of 10^5-10^6 years, a range beyond the reach of 14C. 81Kr dating, a concept pursued in the past four decades by numerous laboratories employing a variety of techniques, is now available for the first time to the earth science community at large. This is made possible by the development of ATTA-3 (Jiang et al., GCA 91, 1-6; 2012), an efficient and selective atom counter based on the Atom Trap Trace Analysis method (Chen et al., Science 286, 1139-1141; 1999). The instrument is capable of measuring both 81Kr/Kr and 85Kr/Kr ratios of environmental samples in the range of 10^-14-10^-10. For 81Kr-dating in the age range of 150 - 1,500 kyr, the required sample size is 5 - 10 micro-L STP of krypton gas, which can be extracted from approximately 100 - 200 kg of water or 40 - 80 kg of ice. For 85Kr/Kr analysis, the required sample size is generally smaller by an order of magnitude because of the isotope's higher initial abundance in the atmosphere. The Laboratory for Radiokrypton Dating is currently equipped to analyze up to 120 samples per year. With future equipment upgrades, this limit can be increased as demand grows. In the period since November 2011, the Laboratory has measured both 81Kr/Kr and 85Kr/Kr ratios in over 50 samples that had been extracted by collaborators from six different continents. The samples were from groundwater wells in the Great Artesian Basin (Australia), Guarani Aquifer (Brazil), and Locust Grove (Maryland); from brine wells of the Waste Isolation Pilot Plant (New Mexico); from geothermal steam vents in Yellowstone National Park; from near-surface ice at Taylor Glacier, Antarctica; and from deep mines in South Africa. Sample collection and purification was performed by groups including the University of Illinois at Chicago, University

  20. Let us learn nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Wan Sang

    2006-08-15

    This book teach us nuclear power through nine chapters with recommendation and a prolog. The contents of this book are how did Formi become a scientist? what does atom look like? discover of neutron, what is an isotope?, power in the nuclear, various radiation, artificial nuclear transformation, nuclear fission and clinging atomic nucleus. It also has an appendix on SF story ; an atom bomb war. It explains basic nuclear physic in easy way with pictures.

  1. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  2. Laboratory Microcomputing

    Science.gov (United States)

    York, William B.

    1984-01-01

    Microcomputers will play a major role in the laboratory, not only in the calculation and interpretation of clinical test data, but also will have an increasing place of importance in the management of laboratory resources in the face of the transition from revenue generating to the cost center era. We will give you a glimpse of what can be accomplished with the management data already collected by many laboratories today when the data are processed into meaningful reports.

  3. Atom Wavelike Nature Solved Mathematically

    Science.gov (United States)

    Sven, Charles

    2010-03-01

    Like N/S poles of a magnet the strong force field surrounding, confining the nucleus exerts an equal force [noted by this author] driving electrons away from the attraction of positively charged protons force fields in nucleus -- the mechanics for wavelike nature of electron. Powerful forces corral closely packed protons within atomic nucleus with a force that is at least a million times stronger than proton's electrical attraction that binds electrons. This then accounts for the ease of electron manipulation in that electron is already pushed away by the very strong atomic N/S force field; allowing electrons to drive photons when I strike a match. Ageless atom's electron requirements, used to drive light/photons or atom bomb, without batteries, must be supplied from a huge, external, super high frequency, super-cooled source, undetected by current technology, one that could exist 14+ billion years without degradation -- filling a limitless space prior to Big Bang. Using only replicable physics, I show how our Universe emanated from that event.

  4. Psychology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides testing stations for computer-based assessment of cognitive and behavioral Warfighter performance. This 500 square foot configurable space can...

  5. Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: To conduct fundamental studies of highway materials aimed at understanding both failure mechanisms and superior performance. New standard test methods are...

  6. Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Dynamics Lab replicates vibration environments for every Navy platform. Testing performed includes: Flight Clearance, Component Improvement, Qualification, Life...

  7. Propulsion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Propulsion Lab simulates field test conditions in a controlled environment, using standardized or customized test procedures. The Propulsion Lab's 11 cells can...

  8. Visualization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Evaluates and improves the operational effectiveness of existing and emerging electronic warfare systems. By analyzing and visualizing simulation results...

  9. Montlake Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NWFSC conducts critical fisheries science research at its headquarters in Seattle, WA and at five research stations throughout Washington and Oregon. The unique...

  10. PULSAR: A High-Repetition-Rate, High-Power, CE Phase-Locked Laser for the J.R. Macdonald Laboratory at Kansas State University

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Itzhak, Itzik [Kansas State Univ., Manhattan, KS (United States). Physics Dept. J.R. Macdonald Lab.; Carnes, Kevin D. [Kansas State Univ., Manhattan, KS (United States). Physics Dept. J.R. Macdonald Lab.; Cocke, C. Lew [Kansas State Univ., Manhattan, KS (United States). Physics Dept. J.R. Macdonald Lab.; Fehrenbach, Charles W. [Kansas State Univ., Manhattan, KS (United States). Physics Dept. J.R. Macdonald Lab.; Kumarappan, Vinod [Kansas State Univ., Manhattan, KS (United States). Physics Dept. J.R. Macdonald Lab.; Rudenko, Artem [Kansas State Univ., Manhattan, KS (United States). Physics Dept. J.R. Macdonald Lab.; Trallero, Carlos [Kansas State Univ., Manhattan, KS (United States). Physics Dept. J.R. Macdonald Lab.

    2014-05-09

    This instrumentation grant funded the development and installation of a state-of-the-art laser system to be used for the DOE funded research at the J.R. Macdonald Laboratory at Kansas State University. Specifically, we purchased a laser based on the KMLABs Red-Dragon design, which has a high repetition rate of 10-20 kHz crucial for multi-parameter coincidence measurements conducted in our lab. This laser system is carrier-envelope phase (CEP) locked and provides pulses as short as 21 fs directly from the amplifier (see details below). In addition, we have developed a pulse compression setup that provides sub 5 fs pulses and a CEP tagging capability that allows for long measurements of CEP dependent processes.

  11. Peace and the Atomic Bomb

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    1948-12-02

    A little over three years after assuming the directorship of the Los Alamos Scientific Laboratory, Norris Bradbury returned to his alma mater, Pomona College, and delivered one of his first extended speeches regarding the atomic bomb. Bradbury noted that although the atomic bomb had brought a “peace of kind,” ending World War II, the bomb also had become, without much thought, a “factor in the political, military, and diplomatic thinking of the world.” Bradbury hoped his speech, given to both the faculty and student body of Pomona, would give his audience a foundation on which to assess and understand the new world the bomb had ushered into existence. Bradbury’s talk was quickly printed an distributed by Pomona College and, later, reprinted in The Physical Review (Volume 75, No. 8, 1154-1160, April 15, 1949). It is reprinted here, for a third time, as a reminder of the early days of Los Alamos and its role in international affairs. "Slightly more that three years ago, this country brought to an end the most catastrophic war in history. The conflict had been characterized by an unremitting application of science to the technology of destruction. The final use of the atomic bomb, however, provided a climax so striking that the inevitable nature of future wars was illustrated with the utmost clarity. Peace of a kind followed the first military use of atomic weapons, but international understanding did not, and the atomic bomb became a factor in the political, military, and diplomatic thinking of the world. Where do we now stand in all this? What are the costs and the rewards? Where are we going? These are some of the things that I would like to discuss with you this morning."

  12. Multiplicity of atomic reconfigurations in an electrochemical Pb single-atom transistor

    Science.gov (United States)

    Xie, F.-Q.; Lin, X.-H.; Gross, A.; Evers, F.; Pauly, F.; Schimmel, Th.

    2017-05-01

    One focus of nanoelectronics research is to exploit the physical limits in size and energy efficiency. Here, we demonstrate a device in the form of a fully metallic atomic-scale transistor based on a lead (Pb) single-atom quantum point contact. The atomic configuration of the point contact determines the conductance of the Pb atomic-scale transistor. The conductance multiplicity of the Pb single-atom transistor has been confirmed by performing switching between an electrically nonconducting "off-state" and conducting "on-states" at 1 G0( G0=2 e2/h , where e is the electron charge, and h Planck's constant), 2.0 G0, 3.0 G0, 1.5 G0, 2.4 G0, 2.7 G0, 2.8 G0, and 5.4 G0, respectively. Our density-functional calculations for various ideal Pb single-atom contacts explain the atomic-configuration-related conductance multiplicity of the Pb single-atom transistor. The performance of the Pb single-atom transistors indicates that both the signatures of atomic valence and conductance quantization play roles in electron transport and bistable reconfiguration. The bistable reconfiguration of the electrode tips is an underlying mechanism in the switching of the Pb atomic-scale transistors. The absolute value of the electrochemical potential applied to the gate electrode is less than 30 mV. This merit suggests Pb [besides silver (Ag)] atomic-scale transistors as potential candidates for the development of electronic circuits with low power consumption. The dimension of the switching unit in the Pb single-atom transistor is in the range of 1 nm, which is much smaller than the projected scaling limit of the gate lengths in silicon transistors (5 nm). Therefore, the metallic single-atom transistors may provide perspectives for electronic applications beyond silicon.

  13. Project Increase of infrastructure: 'Establishment of a laboratory for studies of pollutants in air, water and soil through atomic and nuclear techniques; Proyecto Incremento de infraestructura: 'Establecimiento de un laboratorio para estudios de contaminantes en aire, agua y suelo mediante tecnicas atomicas y nucleares'

    Energy Technology Data Exchange (ETDEWEB)

    Aldape U, F. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1993-10-15

    In this report there are the guidelines of this project as well as the goals, activities and costs. The general objectives were: 1. A laboratory that allows to analyze with efficiency samples of air, water and soil pollutants using atomic and nuclear origin techniques as PIXE (Proton Induced X-ray Emission, NRA (Nuclear Reaction Analysis) and RBS (Rutherford Backscattering) as well as auxiliary and/or complementary techniques. 2. To obtain indicators of the influence of the pollution of the Valley of Mexico about the ecology and the health of the inhabitants of Mexico City with perspectives of carrying out studies in other cities. 3. To develop an appropriate technology for the realization of those studies and to generate human resources in this area. (Author)

  14. Atomic pair distribution function at the Brazilian Synchrotron Light Laboratory: application to the Pb1–x LaxZr 0.40Ti0.60O3 ferroelectric system

    Energy Technology Data Exchange (ETDEWEB)

    Saleta, M. E.; Eleotério, M.; Mesquita, A.; Mastelaro, V. R.; Granado, E.

    2017-07-29

    This work reports the setting up of the X-ray diffraction and spectroscopy beamline at the Brazilian Synchrotron Light Laboratory for performing total scattering experiments to be analyzed by atomic pair distribution function (PDF) studies. The results of a PDF refinement for Al2O3 standard are presented and compared with data acquired at a beamline of the Advanced Photon Source, where it is common to perform this type of experiment. A preliminary characterization of the Pb1–xLaxZr0.40Ti0.60O3 ferroelectric system, withx= 0.11, 0.12 and 0.15, is also shown.

  15. Single atom electrochemical and atomic analytics

    Science.gov (United States)

    Vasudevan, Rama

    In the past decade, advances in electron and scanning-probe based microscopies have led to a wealth of imaging and spectroscopic data with atomic resolution, yielding substantial insight into local physics and chemistry in a diverse range of systems such as oxide catalysts, multiferroics, manganites, and 2D materials. However, typical analysis of atomically resolved images is limited, despite the fact that image intensities and distortions of the atoms from their idealized positions contain unique information on the physical and chemical properties inherent to the system. Here, we present approaches to data mine atomically resolved images in oxides, specifically in the hole-doped manganite La5/8Ca3/8MnO3, on epitaxial films studied by in-situ scanning tunnelling microscopy (STM). Through application of bias to the STM tip, atomic-scale electrochemistry is demonstrated on the manganite surface. STM images are then further analyzed through a suite of algorithms including 2D autocorrelations, sliding window Fourier transforms, and others, and can be combined with basic thermodynamic modelling to reveal relevant physical and chemical descriptors including segregation energies, existence and strength of atomic-scale diffusion barriers, surface energies and sub-surface chemical species identification. These approaches promise to provide tremendous insights from atomically resolved functional imaging, can provide relevant thermodynamic parameters, and auger well for use with first-principles calculations to yield quantitative atomic-level chemical identification and structure-property relations. This research was sponsored by the Division of Materials Sciences and Engineering, BES, DOE. Research was conducted at the Center for Nanophase Materials Sciences, which also provided support and is a DOE Office of Science User Facility.

  16. Scientific Research Program for Power, Energy, and Thermal Technologies. Task Order 0002: Power, Thermal and Control Technologies and Processes Experimental Research. Subtask: Laboratory Test Set-up to Evaluate Electromechanical Actuation Systems for Aircraft Flight Control

    Science.gov (United States)

    2015-08-01

    for maneuvering [4]. The linkage evolved from manually operated direct mechanical rods, levers, cables, and pulleys to fully power operated...10]. Wing warping involved a system of pulleys and cables affixed to the trailing edges of the wing that would twist each end of the wing in...used push rods, tension cables, pulleys , counterweights, and sometimes chains to transmit the forces applied by the pilot from the yoke directly to

  17. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy.

    Science.gov (United States)

    Krivanek, Ondrej L; Chisholm, Matthew F; Nicolosi, Valeria; Pennycook, Timothy J; Corbin, George J; Dellby, Niklas; Murfitt, Matthew F; Own, Christopher S; Szilagyi, Zoltan S; Oxley, Mark P; Pantelides, Sokrates T; Pennycook, Stephen J

    2010-03-25

    Direct imaging and chemical identification of all the atoms in a material with unknown three-dimensional structure would constitute a very powerful general analysis tool. Transmission electron microscopy should in principle be able to fulfil this role, as many scientists including Feynman realized early on. It images matter with electrons that scatter strongly from individual atoms and whose wavelengths are about 50 times smaller than an atom. Recently the technique has advanced greatly owing to the introduction of aberration-corrected optics. However, neither electron microscopy nor any other experimental technique has yet been able to resolve and identify all the atoms in a non-periodic material consisting of several atomic species. Here we show that annular dark-field imaging in an aberration-corrected scanning transmission electron microscope optimized for low voltage operation can resolve and identify the chemical type of every atom in monolayer hexagonal boron nitride that contains substitutional defects. Three types of atomic substitutions were found and identified: carbon substituting for boron, carbon substituting for nitrogen, and oxygen substituting for nitrogen. The substitutions caused in-plane distortions in the boron nitride monolayer of about 0.1 A magnitude, which were directly resolved, and verified by density functional theory calculations. The results demonstrate that atom-by-atom structural and chemical analysis of all radiation-damage-resistant atoms present in, and on top of, ultra-thin sheets has now become possible.

  18. Multilevel Atomic Coherent States and Atomic Holomorphic Representation

    Science.gov (United States)

    Cao, Chang-Qi; Haake, Fritz

    1996-01-01

    The notion of atomic coherent states is extended to the case of multilevel atom collective. Based on atomic coherent states, a holomorphic representation for atom collective states and operators is defined. An example is given to illustrate its application.

  19. Programmable solid state atom sources for nanofabrication

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Stark, Thomas; Del Corro, Pablo G.; Pardo, Flavio; Bolle, Cristian A.; Lally, Richard W.; Bishop, David J.

    2015-06-01

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ~1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques. Electronic supplementary information (ESI) available: A document containing further information about device characterization

  20. Hanford Atomic Products Operation monthly report, January 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-02-24

    This is the monthly report for the Hanford Atomic Laboratories Products Operation, February, 1956. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  1. Alkali deposits found in biomass boilers: The behavior of inorganic material in biomass-fired power boilers -- Field and laboratory experiences. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Miles, T.R.; Miles, T.R. Jr. [Miles (Thomas R.), Portland, OR (United States); Jenkins, B.M. [California Univ., Davis, CA (United States); Dayton, D.C.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States); Bryers, R.W. [Foster Wheeler Development Corp., Livingston, NJ (United States); Oden, L.L. [Bureau of Mines, Albany, OR (United States). Albany Research Center

    1996-03-01

    This report documents the major findings of the Alkali Deposits Investigation, a collaborative effort to understand the causes of unmanageable ash deposits in biomass-fired electric power boilers. Volume 1 of this report provide an overview of the project, with selected highlights. This volume provides more detail and discussion of the data and implications. This document includes six sections. The first, the introduction, provides the motivation, context, and focus for the investigation. The remaining sections discuss fuel properties, bench-scale combustion tests, a framework for considering ash deposition processes, pilot-scale tests of biomass fuels, and field tests in commercially operating biomass power generation stations. Detailed chemical analyses of eleven biomass fuels representing a broad cross-section of commercially available fuels reveal their properties that relate to ash deposition tendencies. The fuels fall into three broad categories: (1) straws and grasses (herbaceous materials); (2) pits, shells, hulls and other agricultural byproducts of a generally ligneous nature; and (3) woods and waste fuels of commercial interest. This report presents a systematic and reasonably detailed analysis of fuel property, operating condition, and boiler design issues that dictate ash deposit formation and property development. The span of investigations from bench-top experiments to commercial operation and observations including both practical illustrations and theoretical background provide a self-consistent and reasonably robust basis to understand the qualitative nature of ash deposit formation in biomass boilers. While there remain many quantitative details to be pursued, this project encapsulates essentially all of the conceptual aspects of the issue. It provides a basis for understanding and potentially resolving the technical and environmental issues associated with ash deposition during biomass combustion. 81 refs., 124 figs., 76 tabs.

  2. Polymeric Materials Resistant to Erosion by Atomic Oxygen

    Science.gov (United States)

    Kiefer, Richard L.; Thibeault, Sheila A.

    2004-01-01

    Polymer-matrix composites are ideally suited for space vehicles because of high strength to weight ratios. The principal component of the low earth orbit (LEO) is atomic oxygen. Atomic oxygen causes surface erosion to polymeric materials. Polymer films with an organometallic additive showed greater resistance to atomic oxygen than the pure polymer in laboratory experiments and in the OPM/MIR experiment. In MISSE, the film with the organometallic additive was still intact after the pure film had completely eroded.

  3. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  4. Atomic clock ensemble in space

    Science.gov (United States)

    Cacciapuoti, L.; Salomon, C.

    2011-12-01

    Atomic Clock Ensemble in Space (ACES) is a mission using high-performance clocks and links to test fundamental laws of physics in space. Operated in the microgravity environment of the International Space Station, the ACES clocks, PHARAO and SHM, will generate a frequency reference reaching instability and inaccuracy at the 1 · 10-16 level. A link in the microwave domain (MWL) and an optical link (ELT) will make the ACES clock signal available to ground laboratories equipped with atomic clocks. Space-to-ground and ground-to-ground comparisons of atomic frequency standards will be used to test Einstein's theory of general relativity including a precision measurement of the gravitational red-shift, a search for time variations of fundamental constants, and Lorentz Invariance tests. Applications in geodesy, optical time transfer, and ranging will also be supported. ACES has now reached an advanced technology maturity, with engineering models completed and successfully tested and flight hardware under development. This paper presents the ACES mission concept and the status of its main instruments.

  5. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant

    2015-01-01

    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  6. Single atom microscopy.

    Science.gov (United States)

    Zhou, Wu; Oxley, Mark P; Lupini, Andrew R; Krivanek, Ondrej L; Pennycook, Stephen J; Idrobo, Juan-Carlos

    2012-12-01

    We show that aberration-corrected scanning transmission electron microscopy operating at low accelerating voltages is able to analyze, simultaneously and with single atom resolution and sensitivity, the local atomic configuration, chemical identities, and optical response at point defect sites in monolayer graphene. Sequential fast-scan annular dark-field (ADF) imaging provides direct visualization of point defect diffusion within the graphene lattice, with all atoms clearly resolved and identified via quantitative image analysis. Summing multiple ADF frames of stationary defects produce images with minimized statistical noise and reduced distortions of atomic positions. Electron energy-loss spectrum imaging of single atoms allows the delocalization of inelastic scattering to be quantified, and full quantum mechanical calculations are able to describe the delocalization effect with good accuracy. These capabilities open new opportunities to probe the defect structure, defect dynamics, and local optical properties in 2D materials with single atom sensitivity.

  7. Audio Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides an environment and facilities for auditory display research. A primary focus is the performance use of binaurally rendered 3D sound in conjunction...

  8. Elastomers Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Primary capabilities include: elastomer compounding in various sizes (micro, 3x5, 8x12, 8x15 rubber mills); elastomer curing and post curing (two 50-ton presses, one...

  9. Laboratory Tests

    Science.gov (United States)

    ... age and race What you eat and drink Medicines you take How well you followed pre-test instructions Your doctor may also compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  10. Solar Spectroscopy: Atomic Processes

    Science.gov (United States)

    Mason, H.; Murdin, P.

    2000-11-01

    A Greek philosopher called DEMOCRITUS (c. 460-370 BC) first introduced the concept of atoms (which means indivisible). His atoms do not precisely correspond to our atoms of today, which are not indivisible, but made up of a nucleus (protons with positive charge and neutrons which have no charge) and orbiting electrons (with negative charge). Indeed, in the solar atmosphere, the temperature is suc...

  11. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  12. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  13. Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers.

    Science.gov (United States)

    Hasegawa, Tsuyoshi; Terabe, Kazuya; Tsuruoka, Tohru; Aono, Masakazu

    2012-01-10

    An atomic switch is a nanoionic device that controls the diffusion of metal ions/atoms and their reduction/oxidation processes in the switching operation to form/annihilate a conductive path. Since metal atoms can provide a highly conductive channel even if their cluster size is in the nanometer scale, atomic switches may enable downscaling to smaller than the 11 nm technology node, which is a great challenge for semiconductor devices. Atomic switches also possess novel characteristics, such as high on/off ratios, very low power consumption and non-volatility. The unique operating mechanisms of these devices have enabled the development of various types of atomic switch, such as gap-type and gapless-type two-terminal atomic switches and three-terminal atomic switches. Novel functions, such as selective volatile/nonvolatile, synaptic, memristive, and photo-assisted operations have been demonstrated. Such atomic switch characteristics can not only improve the performance of present-day electronic systems, but also enable development of new types of electronic systems, such as beyond von- Neumann computers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Quantum Chemical Topology: Knowledgeable atoms in peptides

    Science.gov (United States)

    Popelier, Paul L. A.

    2012-06-01

    The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.

  15. Power theories for improved power quality

    CERN Document Server

    Pasko, Marian

    2012-01-01

    Power quality describes a set of parameters of electric power and the load’s ability to function properly under specific conditions. It is estimated that problems relating to power quality costs the European industry hundreds of billions of Euros annually. In contrast, financing for the prevention of these problems amount to fragments of these costs. Power Theories for Improved Power Quality addresses this imbalance by presenting and assessing a range of methods and problems related to improving the quality of electric power supply. Focusing particularly on active compensators and the DSP based control algorithms, Power Theories for Improved Power Quality introduces the fundamental problems of electrical power. This introduction is followed by chapters which discuss: •‘Power theories’ including their historical development and application to practical problems, •operational principles of active compensator’s DSP control based algorithms using examples and results from laboratory research, and •t...

  16. A Compact Microchip-Based Atomic Clock Based on Ultracold Trapped Rb Atoms

    CERN Document Server

    Farkas, Daniel M; Anderson, Dana Z

    2009-01-01

    We propose a compact atomic clock based on ultracold Rb atoms that are magnetically trapped near the surface of an atom microchip. An interrogation scheme that combines electromagnetically-induced transparency (EIT) with Ramsey's method of separated oscillatory fields can achieve atomic shot-noise level performance of 10^{-13}/sqrt(tau) for 10^6 atoms. The EIT signal can be detected with a heterodyne technique that provides noiseless gain; with this technique the optical phase shift of a 100 pW probe beam can be detected at the photon shot-noise level. Numerical calculations of the density matrix equations are used to identify realistic operating parameters at which AC Stark shifts are eliminated. By considering fluctuations in these parameters, we estimate that AC Stark shifts can be canceled to a level better than 2*10^{-14}. An overview of the apparatus is presented with estimates of duty cycle and power consumption.

  17. Atom-specific surface magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Sirotti, F.; Panaccione, G. [Laboratoire pour l`Utilisation du Rayonnement Electromagnetique, Centre National de la Recherche Scientifique, Commissariat a l`Energie Atomique, MESR, F-91405 Orsay (France); Rossi, G. [Laboratorium fuer Festkoerperphysik, Eidgenossische Technische Hochschule-Zuerich, Zuerich CH-8093 (Switzerland)

    1995-12-15

    A powerful atom-specific surface magnetometry can be based on efficient measurements of magnetic dichroism in {ital l}{gt}0 core level photoemission. The temperature dependence M({ital T}) of the Fe(100) surface magnetization was obtained from the photoemission magnetic asymmetry of 3{ital p} core levels, providing the measure of the surface exchange coupling via the spin-wave stiffness and of the surface critical exponent. Beyond the magnetic order {l_angle}M{r_angle} the photoemission dichroism allows us to derive the energy splitting of the magnetic sublevels of the photoexcited core hole. Fe 3{ital p} photoemission dichroism probes directly the magnetic moment changes of iron atoms at Fe(100) surfaces as a function of structural disorder or sulfur segregation. The appearance of dichroism in the 2{ital p} photoemission of segregated sulfur atoms in the {ital c}(2{times}2)S/Fe(100) superstructure measures the magnetic-moment transfer and shows the possibility of investigating surface magnetochemistry in a very direct way.

  18. A portable laser system for high precision atom interferometry experiments

    CERN Document Server

    Schmidt, Malte; Giorgini, Antonio; Tino, Guglielmo M; Peters, Achim

    2010-01-01

    We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for the portable gravimeter GAIN, an atom interferometer that will be capable of performing high precision gravity measurements directly at sites of geophysical interest. This laser system is designed to be compact, mobile and robust, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19" rack and emits light at five different wavelengths simultaneously on up to 12 fibre ports at a total output power of 800 mW. These wavelengths can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked Raman lasers with a phase noise spectral density of less than 1 \\mu rad/sqrt(Hz) in the frequency range in which our gravimeter is most sensitive to noise. We characterize this laser system and evaluate the performance limits it imposes on an interferometer.

  19. 78 FR 42556 - Maine Yankee Atomic Power Company; Maine Yankee Atomic Power Plant Issuance of Environmental...

    Science.gov (United States)

    2013-07-16

    ... corresponding emergency plan: (1) Is authorized by law; (2) will not present an undue risk to the public health... adequate protection of public health and safety and common defense and security.'' 3.0 Regulatory... 23, 2011, the U.S. Nuclear Regulatory Commission (NRC) issued a final rule amending certain emergency...

  20. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  1. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Applications of Quantum Mechanics to 'Atoms, Molecules and Radiation' will be held at the Indian Academy of Sciences, Bangalore from December 8 to 20. 2014. The Course is primarily aimed at teachers teaching quantum mechanics and/ or atomic and molecular physics at the UG / PG level.

  2. When Atoms Want

    Science.gov (United States)

    Talanquer, Vicente

    2013-01-01

    Chemistry students and teachers often explain the chemical reactivity of atoms, molecules, and chemical substances in terms of purposes or needs (e.g., atoms want or need to gain, lose, or share electrons in order to become more stable). These teleological explanations seem to have pedagogical value as they help students understand and use…

  3. Atomicity in Electronic Commerce,

    Science.gov (United States)

    1996-01-01

    Atomicity in Electronic Commerce J. D. Tygar January 1996 CMU-CS-96-112 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213...other research sponsor. Keywords: electronic commerce , atomicity, NetBill, IBIP, cryptography, transaction pro- cessing, ACID, franking, electronic ...goods over networks. Electronic commerce has inspired a large variety of work. Unfortunately, much of that work ignores traditional transaction

  4. The Manhattan Project: Making the Atomic Bomb. 1999 edition.

    Science.gov (United States)

    Gosling, F. G.

    1999-01-01

    "The Manhattan Project: Making the Atomic Bomb" is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  5. The Manhattan Project: Making the Atomic Bomb. 1999 edition.

    Energy Technology Data Exchange (ETDEWEB)

    Gosling, F.G.

    1999-01-01

    ``The Manhattan Project: Making the Atomic Bomb`` is a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  6. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  7. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  8. Maximally Atomic Languages

    Directory of Open Access Journals (Sweden)

    Janusz Brzozowski

    2014-05-01

    Full Text Available The atoms of a regular language are non-empty intersections of complemented and uncomplemented quotients of the language. Tight upper bounds on the number of atoms of a language and on the quotient complexities of atoms are known. We introduce a new class of regular languages, called the maximally atomic languages, consisting of all languages meeting these bounds. We prove the following result: If L is a regular language of quotient complexity n and G is the subgroup of permutations in the transition semigroup T of the minimal DFA of L, then L is maximally atomic if and only if G is transitive on k-subsets of 1,...,n for 0 <= k <= n and T contains a transformation of rank n-1.

  9. Optical Atomic Clock for Fundamental Physics and Precision Metrology in Space

    Science.gov (United States)

    Williams, Jason; Le, Thanh; Kulas, Sascha; Yu, Nan

    2017-04-01

    The maturity of optical atomic clocks (OC), which operate at optical frequencies for higher quality-factor as compared to their microwave counterparts, has rapidly progressed to the point where lab-based systems now outperform the record cesium clocks by orders of magnitude in both accuracy and stability. We will present our efforts to develop a strontium optical clock testbed at JPL, aimed towards extending the exceptional performance demonstrated by OCs from state-of-the-art laboratory designs to a transportable instrument that can fit within the space and power constraints of e.g. a single express rack onboard the International Space Station. The overall technology will find applications for future fundamental physics research, both on ground and in space, precision time keeping, and NASA/JPL time and frequency test capabilities. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  10. 78 FR 58571 - Maine Yankee Atomic Power Company, Connecticut Yankee Atomic Power Company, and The Yankee Atomic...

    Science.gov (United States)

    2013-09-24

    ... the foreign ownership, control, or domination (FOCD) requirements. ADDRESSES: Please refer to Docket... document. You may access publicly-available information related to this action by the following methods... Search.'' For problems with ADAMS, please contact the NRC's Public Document Room (PDR) reference staff at...

  11. Atom Probe Tomography of Geomaterials

    Science.gov (United States)

    Parman, S. W.; Diercks, D.; Gorman, B.; Cooper, R. F.

    2013-12-01

    From the electron microprobe to the secondary ion microprobe to laser-ablation ICP-MS, steady improvements in the spatial resolution and detection limits of geochemical micro-analysis have been central to generating new discoveries. Atom probe tomography (APT) is a relatively new technology that promises nm-scale spatial resolution (in three dimensions) with ppm level detection limits. The method is substantially different from traditional beam-based (electron, ion, laser) methods. In APT, the sample is shaped (usually with a dual-beam FIB) into a needle with typical dimensions of 1-2 μm height and 100-200 nm diameter. Within the atom probe, the needle is evaporated one atom (ideally) at a time by a high electric field (ten's of V per square nm at the needle tip). A femtosecond laser (12 ps pulse width) is used to assist in evaporating non-conducting samples. The two-dimensional detector locates where the atom was released from the needle's surface and so can reconstruct the positions of all detected atoms in three dimensions. It also records the time of flight of the ion, which is used to calculate the mass/charge ratio of the ion. We will discuss our results analyzing a range of geologic materials. In one case, naturally occurring platinum group alloys (PGA) from the Josephine Ophiolite have been imaged. Such alloys are of interest as recorders of the Os heterogeneity of the mantle [1,2]. Optimal ablation was achieved with a laser power of 120-240 pJ and laser pulse rates 500 kHz. Runs were stopped after 10 million atoms were imaged. An example analysis is: Pt 61(1), Fe 26.1(9), Rh 1.20(4), Ir 7.0(7), Ni 2.65(8), Ru 0.20(9), Cu 1.22(8), Co 0.00029(5). Values are in atomic %; values in parentheses are one-sigma standard deviations on five separate needles from the same FIB lift-out, which was 30 μm long. Assuming the sample is homogenous over the 30 μm from which the needle was extracted, the analyses suggest relative errors for major elements below 5% and for

  12. 21 CFR 862.2850 - Atomic absorption spectrophotometer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Atomic absorption spectrophotometer for clinical... Laboratory Instruments § 862.2850 Atomic absorption spectrophotometer for clinical use. (a) Identification. An atomic absorption spectrophotometer for clinical use is a device intended to identify and measure...

  13. Laser Source for Atomic Gravity Wave Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop an Atom Interferometry-based gravity wave detector (vs Optical Interferometry). Characterize a high power laser. Use Goddard Space Flight Center Mission...

  14. Solar and Geothermal Energy: New Competition for the Atom

    Science.gov (United States)

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  15. In situ detection of atomic and molecular iodine using Resonance and Off-Resonance Fluorescence by Lamp Excitation: ROFLEX

    Science.gov (United States)

    Gómez Martín, J. C.; Blahins, J.; Gross, U.; Ingham, T.; Goddard, A.; Mahajan, A. S.; Ubelis, A.; Saiz-Lopez, A.

    2011-01-01

    We demonstrate a new instrument for in situ detection of atmospheric iodine atoms and molecules based on atomic and molecular resonance and off-resonance ultraviolet fluorescence excited by lamp emission. The instrument combines the robustness, light weight, low power consumption and efficient excitation of radio-frequency discharge light sources with the high sensitivity of the photon counting technique. Calibration of I2 fluorescence is achieved via quantitative detection of the molecule by Incoherent Broad Band Cavity-enhanced Absorption Spectroscopy. Atomic iodine fluorescence signal is calibrated by controlled broad band photolysis of known I2 concentrations in the visible spectral range at atmospheric pressure. The instrument has been optimised in laboratory experiments to reach detection limits of 1.2 pptv for I atoms and 13 pptv for I2, for S/N = 1 and 10 min of integration time. The ROFLEX system has been deployed in a field campaign in northern Spain, representing the first concurrent observation of ambient mixing ratios of iodine atoms and molecules in the 1-350 pptv range.

  16. The Postwar Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    Recent discussion of project policy has met with a widespread feeling that important alternatives were not being properly considered. These alternatives will be discussed here from the point of view of research personnel concerned with formulation a laboratory policy based on the wartime experience of Los Alamos. This policy is discussed on the primary assumption that the national investment here in facilities, in tradition, and in the existence of an going research and development laboratory organization ought not to be lightly discarded, but also ought not to be wholly continued without reexamination under the new conditions of peace. Others will discuss this policy more broadly, and others will make the decision of continuation; but the purpose of the present document is to suggest a policy which might help answer the question of what to do with Los Alamos.It is the thesis of this document that fundamental research in fields underlying the military utilization of atomic energy ought to be separated from all development testing and production. It still remains to argue which of these separate functions this mesa should carry out. In the next sections it is proposed to describe what this laboratory can do and what it should stop trying to do, and on this detailed basis a general program is proposed.

  17. The Atomic Energy Commission's Annual Report to Congress for 1961. Major Activities in the Atomic Energy Programs, January - December 1961

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1962-01-31

    The document represents the 1961 Annual Report of the Atomic Energy Commission (AEC) to Congress. This year's report consists of four parts: Part One, The Atomic Energy Industry for 1961 and Related Activities; Part Two, Nuclear Power Programs for 1961; Part Three, Major Activities in Atomic Energy Programs; and Part Four, Regulatory Activities. Sixteen appendices are also included.

  18. Mining information from atom probe data

    Energy Technology Data Exchange (ETDEWEB)

    Cairney, Julie M., E-mail: julie.cairney@sydney.edu.au [School of Aerospace, Mechanical, Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Rajan, Krishna [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Haley, Daniel [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Max Planck Institut für Eisenforschung GmbH, Max-Planck Straße 1, 40237 Düsseldorf (Germany); Gault, Baptiste; Bagot, Paul A.J. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Choi, Pyuck-Pa [Max Planck Institut für Eisenforschung GmbH, Max-Planck Straße 1, 40237 Düsseldorf (Germany); Felfer, Peter J.; Ringer, Simon P. [School of Aerospace, Mechanical, Mechatronic Engineering, The University of Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006 (Australia); Marceau, Ross K.W. [Institute for Frontier Materials, Deakin University, Geelong Technology Precinct, 75 Pigdons Road, Waurn Ponds, Victoria 3216 (Australia); Moody, Michael P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-12-15

    Whilst atom probe tomography (APT) is a powerful technique with the capacity to gather information containing hundreds of millions of atoms from a single specimen, the ability to effectively use this information creates significant challenges. The main technological bottleneck lies in handling the extremely large amounts of data on spatial–chemical correlations, as well as developing new quantitative computational foundations for image reconstruction that target critical and transformative problems in materials science. The power to explore materials at the atomic scale with the extraordinary level of sensitivity of detection offered by atom probe tomography has not been not fully harnessed due to the challenges of dealing with missing, sparse and often noisy data. Hence there is a profound need to couple the analytical tools to deal with the data challenges with the experimental issues associated with this instrument. In this paper we provide a summary of some key issues associated with the challenges, and solutions to extract or “mine” fundamental materials science information from that data. - Highlights: • Overview of the newest developments in techniques to extract information from atom probe data. • As well as reviewing existing approaches, improvements and new approaches are presented. • Techniques covered include tests for randomness, short range order and crystallography. • Methods for interfacial excess mapping and spectral decomposition are also covered.

  19. Single-atom nanoelectronics

    CERN Document Server

    Prati, Enrico

    2013-01-01

    Single-Atom Nanoelectronics covers the fabrication of single-atom devices and related technology, as well as the relevant electronic equipment and the intriguing new phenomena related to single-atom and single-electron effects in quantum devices. It also covers the alternative approaches related to both silicon- and carbon-based technologies, also from the point of view of large-scale industrial production. The publication provides a comprehensive picture of the state of the art at the cutting edge and constitutes a milestone in the emerging field of beyond-CMOS technology. Although there are

  20. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  1. Atomic frequency standard relativistic Doppler shift experiment

    Science.gov (United States)

    Peters, H. E.; Reinhardt, V. S.

    1974-01-01

    An experiment has been performed to measure possible space anisotropy as it would effect the frequency of a cesium atomic beam standard clock in a laboratory on earth due to motion relative to external coordinate frames. The cesium frequency was measured as a function of orientation with respect to an atomic hydrogen maser standard. Over a period of 34 days 101 measurements were made. The results are consistent with a conclusion that no general orientation dependance attributable to spacial anisotropy was observed. It is shown that both the airplane clock results, and the null results for the atomic beam clock, are consistent with Einstein general or special relativity, or with the Lorentz transformations alone.

  2. Geothermal research and development program of the US Atomic Energy Commission

    Science.gov (United States)

    Werner, L. B.

    1974-01-01

    Within the overall federal geothermal program, the Atomic Energy Commission has chosen to concentrate on development of resource utilization and advanced research and technology as the areas most suitable to the expertise of its staff and that of the National Laboratories. The Commission's work in geothermal energy is coordinated with that of other agencies by the National Science Foundation, which has been assigned lead agency by the Office of Management and Budget. The objective of the Commission's program, consistent with the goals of the total federal program is to facilitate, through technological advancement and pilot plant operations, achievement of substantial commercial production of electrical power and utilization of geothermal heat by the year 1985. This will hopefully be accomplished by providing, in conjunction with industry, credible information on the economic operation and technological reliability of geothermal power and use of geothermal heat.

  3. Adiabatic Quantum Computation with Neutral Atoms

    Science.gov (United States)

    Biedermann, Grant

    2013-03-01

    We are implementing a new platform for adiabatic quantum computation (AQC)[2] based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,[3,4] thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. In collaboration with Lambert Parazzoli, Sandia National Laboratories; Aaron Hankin, Center for Quantum Information and Control (CQuIC), University of New Mexico; James Chin-Wen Chou, Yuan-Yu Jau, Peter Schwindt, Cort Johnson, and George Burns, Sandia National Laboratories; Tyler Keating, Krittika Goyal, and Ivan Deutsch, Center for Quantum Information and Control (CQuIC), University of New Mexico; and Andrew Landahl, Sandia National Laboratories. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories

  4. Lunar laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.; Duke, M.B.

    1986-01-01

    An international research laboratory can be established on the Moon in the early years of the 21st Century. It can be built using the transportation system now envisioned by NASA, which includes a space station for Earth orbital logistics and orbital transfer vehicles for Earth-Moon transportation. A scientific laboratory on the Moon would permit extended surface and subsurface geological exploration; long-duration experiments defining the lunar environment and its modification by surface activity; new classes of observations in astronomy; space plasma and fundamental physics experiments; and lunar resource development. The discovery of a lunar source for propellants may reduce the cost of constructing large permanent facilities in space and enhance other space programs such as Mars exploration. 29 refs.

  5. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  6. Atomic & Molecular Interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-07-12

    The Gordon Research Conference (GRC) on Atomic & Molecular Interactions was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  7. The Casimir atomic pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Razmi, H. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: razmi@qom.ac.ir; Abdollahi, M. [Department of Physics, University of Qom, Qom 37185-359 (Iran, Islamic Republic of)], E-mail: mah.abdollahi@gmail.com

    2008-11-10

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock{exclamation_point}.

  8. The Casimir atomic pendulum

    Science.gov (United States)

    Razmi, H.; Abdollahi, M.

    2008-11-01

    We want to introduce an atomic pendulum whose driving force (torque) is due to the quantum vacuum fluctuations. Applying the well-known Casimir-Polder effect to a special configuration (a combined structure of an atomic nanostring and a conducting plate), an atomic pendulum (Casimir atomic pendulum) is designed. Using practically acceptable data corresponding to the already known world of nanotechnology and based on reasonable/reliable numerical estimates, the period of oscillation for the pendulum is computed. This pendulum can be considered as both a new micro(nano)-electromechanical system and a new simple vacuum machine. Its design may be considered as a first step towards realizing the visualized vacuum (Casimir) clock!

  9. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  10. Dalton's Atomic Theory

    National Research Council Canada - National Science Library

    DOBBIN, LEONARD

    1896-01-01

    WITH reference to the communications from the authors and from the reviewer of the "New View of the Origin of Dalton's Atomic Theory," published in NATURE for May 14, I beg leave to offer the following remarks...

  11. Atomic Interferometry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Vertical cavity surface emitting lasers (VCSELs) is a new technology which can be used for developing high performance laser components for atom-based sensors...

  12. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  13. Zeeman atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given. (WHK)

  14. Laboratory Measurements for Deuterated Astrochemistry

    Science.gov (United States)

    Hillenbrand, Pierre-Michel; Bowen, Kyle Patrick; Miller, Kenneth A.; De Ruette, Nathalie; Urbain, Xavier; Savin, Daniel Wolf

    2017-06-01

    Deuterated molecules are powerful probes of the cold interstellar medium (ISM). Observations of D-bearing molecules are used to infer the chemistry of the ISM and to trace out physical conditions such as density, ionization fraction, and thermal history. The chemistry of the cold ISM results from a complicated interplay between gas-phase processes, reactions on dust grain surfaces, and chemistry occurring both in and on the icy mantles of dust grains. Our focus here is on an improved understanding of the relevant deuterated gas-phase chemistry. At the low temperatures and densities typical of the cold ISM, much of this chemistry is driven by binary ion-neutral reactions, which are typically barrierless and exoergic (as compared to neutral-neutral reactions which often have significant activation energies).One of the biggest challenges in generating a reliable deuterated gas-phase astrochemical network is the uncertainty of the necessary rate coefficients. The vast majority of available chemical kinetic data are for fully hydrogenated species. For those D-bearing reactions where no laboratory data are available, two approaches have been adopted for converting the fully hydrogenated data into partial- and fully-deuterated species. The first approach simply “clones” the H-bearing reactions into D-bearing reactions and assumes that the rate coefficients are the same. The second approach uses a simple mass scaling relationship based on the Langevin formalism.We have initiated a series of laboratory measurements aimed at resolving this issue. For this we use our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and charged molecules. Using co-propagating beams enables us to achieve collision energies corresponding to temperatures as low as 25 K, limited only by the divergences of the two beams. Recently we have measured the reaction C + H2+(D2+) forming CH+(CD+) + H(D). We are now studying D + H3+(D2H+) forming H2D

  15. Atomic Clocks Research - An Overview.

    Science.gov (United States)

    1987-08-15

    magnet. Since atomic deflection in an inhomogeneous magnetic field is inversely proportional to the square of the atomic speed, the atomic velocity...purifier and controlled leak; an atomic source (i.e., the dissociator under 39 study); a dipole electromagnetic with pole pieces shaped to produce an...34Relaxation Magnetique d’Atomes de Rubidium sur des Parois Paraffines," J. Phys. (Paris) 24, 379 (1963). 21. S. Wexler, "Deposition of Atomic Beams

  16. Atomic nanoscale technology in the nuclear industry

    CERN Document Server

    Woo, Taeho

    2011-01-01

    Developments at the nanoscale are leading to new possibilities and challenges for nuclear applications in areas ranging from medicine to international commerce to atomic power production/waste treatment. Progress in nanotech is helping the nuclear industry slash the cost of energy production. It also continues to improve application reliability and safety measures, which remain a critical concern, especially since the reactor disasters in Japan. Exploring the new wide-ranging landscape of nuclear function, Atomic Nanoscale Technology in the Nuclear Industry details the breakthroughs in nanosca

  17. Applied atomic and collision physics special topics

    CERN Document Server

    Massey, H S W; Bederson, Benjamin

    1982-01-01

    Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p

  18. Wave Atom Based Watermarking

    OpenAIRE

    Bukhari, Ijaz; Nuhman-ul-Haq; Hyat, Khizar

    2013-01-01

    Watermarking helps in ensuring originality, ownership and copyrights of a digital image. This paper aims at embedding a Watermark in an image using Wave Atom Transform. Preference of Wave Atoms on other transformations has been due to its sparser expansion, adaptability to the direction of local pattern, and sharp frequency localization. In this scheme, we had tried to spread the watermark in an image so that the information at one place is very small and undetectable. In order to extract the...

  19. Hirshfeld atom refinement.

    Science.gov (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan

    2014-09-01

    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  20. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  1. Atomic Bomb Health Benefits

    OpenAIRE

    Luckey, T. D.

    2008-01-01

    Media reports of deaths and devastation produced by atomic bombs convinced people around the world that all ionizing radiation is harmful. This concentrated attention on fear of miniscule doses of radiation. Soon the linear no threshold (LNT) paradigm was converted into laws. Scientifically valid information about the health benefits from low dose irradiation was ignored. Here are studies which show increased health in Japanese survivors of atomic bombs. Parameters include decreased mutation,...

  2. Atomic interferometry; Interferometrie atomique

    Energy Technology Data Exchange (ETDEWEB)

    Baudon, J.; Robert, J. [Paris-13 Univ., 93 - Saint-Denis (France)

    2004-07-01

    Since the theoretical works of L. De Broglie (1924) and the famous experiment of Davisson and Germer (1927), we know that a wave is linked with any particle of mass m by the relation {lambda} = h/(mv), where {lambda} is the wavelength, v the particle velocity and h is the Planck constant. The basic principle of the interferometry of any material particle, atom, molecule or aggregate is simple: using a simple incident wave, several mutually consistent waves (with well-defined relative phases) are generated and controllable phase-shifts are introduced between them in order to generate a wave which is the sum of the previous waves. An interference figure is obtained which consists in a succession of dark and bright fringes. The atomic interferometry is based on the same principle but involves different techniques, different wave equations, but also different beams, sources and correlations which are described in this book. Because of the small possible wavelengths and the wide range of possible atomic interactions, atomic interferometers can be used in many domains from the sub-micron lithography to the construction of sensors like: inertial sensors, gravity-meters, accelerometers, gyro-meters etc. The first chapter is a preliminary study of the space and time diffraction of atoms. The next chapters is devoted to the description of slit, light separation and polarization interferometers, and the last chapter treats of the properties of Bose-Einstein condensates which are interesting in atomic interferometry. (J.S.)

  3. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, M.; Tomonaga, M.; Amenomori, T.; Matsuo, T. (Nagasaki Univ. (Japan). School of Medicine)

    1991-12-01

    Characteristic features of the leukemia among atomic bomb survivors were studied. Dose estimates of atomic bomb radiation were based on T65D, but the new dosimetry system DS86 was used for some analyses. The ratio of a single leukemia type to all leukemias was highest for chronic myelogenous leukemia (CML) in Hiroshima, and the occurrence of CML was thought to be most characteristic to atomic bomb radiation induced leukemia. The threshold of CML occurrence in Hiroshima is likely to be between 0.5{approx}0.09 Gy. However, the threshold of acute leukemia appears to be nearly 1 Gy. In the distribution of acute myeloid leukemia (AML) subtypes by French-American-British classification, there was no M3 case in 1 Gy or more group, although several atypical AML cases of survivors were observed. Although aplastic anemia has not increased as a late effect of the atomic bomb radiation exposure, many atypical leukemia or other myeloproliferative diseases who had been diagnosed as aplastic anemia or its related diseases have been experienced among atomic bomb survivors. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral T-cells in several atomic bomb survivors. (author).

  4. Life atomic a history of radioisotopes in science and medicine

    CERN Document Server

    Creager, Angela N H

    2013-01-01

    After World War II, the US Atomic Energy Commission (AEC) began mass-producing radioisotopes, sending out nearly 64,000 shipments of radioactive materials to scientists and physicians by 1955. Even as the atomic bomb became the focus of Cold War anxiety, radioisotopes represented the government's efforts to harness the power of the atom for peace-advancing medicine, domestic energy, and foreign relations.             In Life Atomic, Angela N. H. Creager tells the story of how these radioisotopes, which were simultaneously scientific tools and political icons, transformed biomedicine and ecolog

  5. The infancy of atomic physics Hercules in his cradle

    CERN Document Server

    Keller, Alex

    1983-01-01

    Atomic physics is a mighty Hercules that dominates modern civilization, promising immense reserves of power but threatening catastrophic war and radioactive pollution. The story of the atom's discovery and the development of techniques to harness its energy offers fascinating insights into the forces behind twenty-first-century technology. This compelling history portrays the human faces and lives behind the beginnings of atomic science.The Infancy of Atomic Physics ranges from experiments in the 1880s by William Crookes and others to the era just after the First World War, when Rutherford's f

  6. Tutorial on Atomic Oxygen Effects and Contamination

    Science.gov (United States)

    Miller, Sharon K.

    2017-01-01

    Atomic oxygen is the most predominant specie in low Earth orbit (LEO) and is contained in the upper atmosphere of many other planetary bodies. Formed by photo-dissociation of molecular oxygen, it is highly reactive and energetic enough to break chemical bonds on the surface of many materials and react with them to form either stable or volatile oxides. The extent of the damage for spacecraft depends a lot on how much atomic oxygen arrives at the surface, the energy of the atoms, and the reactivity of the material that is exposed to it. Oxide formation can result in shrinkage, cracking, or erosion which can also result in changes in optical, thermal, or mechanical properties of the materials exposed. The extent of the reaction can be affected by mechanical loading, temperature, and other environmental components such as ultraviolet radiation or charged particles. Atomic oxygen generally causes a surface reaction, but it can scatter under coatings and into crevices causing oxidation much farther into a spacecraft surface or structure than would be expected. Contamination can also affect system performance. Contamination is generally caused by arrival of volatile species that condense on spacecraft surfaces. The volatiles are typically a result of outgassing of materials that are on the spacecraft. Once the volatiles are condensed on a surface, they can then be fixed on the surface by ultraviolet radiation andor atomic oxygen reaction to form stable surface contaminants that can change optical and thermal properties of materials in power systems, thermal systems, and sensors. This tutorial discusses atomic oxygen erosion and contaminate formation, and the effect they have on typical spacecraft materials. Scattering of atomic oxygen, some effects of combined environments and examples of effects of atomic oxygen and contamination on spacecraft systems and components will also be presented.

  7. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Parsons, Gregory [North Carolina State Univ., Raleigh, NC (United States); Williams, Philip [North Carolina State Univ., Raleigh, NC (United States); Oldham, Christopher [North Carolina State Univ., Raleigh, NC (United States); Mundy, Zach [North Carolina State Univ., Raleigh, NC (United States); Dolgashev, Valery [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  8. Smart Grid Integration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Troxell, Wade [Colorado State Univ., Fort Collins, CO (United States)

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3

  9. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  10. An atomic empire a technical history of the rise and fall of the British atomic energy programme

    CERN Document Server

    Hill, C N

    2013-01-01

    Britain was the first country to exploit atomic energy on a large scale, and at its peak in the mid-1960s, it had generated more electricity from nuclear power than the rest of the world combined.The civil atomic energy programme grew out of the military programme which produced plutonium for atomic weapons. In 1956, Calder Hall power station was opened by the Queen. The very next year, one of the early Windscale reactors caught fire and the world's first major nuclear accident occurred.The civil programme ran into further difficulty in the mid-1960s and as a consequence of procrastination in

  11. Ultrafast Rabi oscillation of a Gaussian atom ensemble

    CERN Document Server

    Lee, Han-gyeol; Ahn, Jaewook

    2014-01-01

    We investigate Rabi oscillation of an atom ensemble in Gaussian spatial distribution. By using the ultrafast laser interaction with the cold atomic rubidium vapor spatially confined in a magneto-optical trap, the oscillatory behavior of the atom excitation is probed as a function of the laser pulse power. Theoretical model calculation predicts that the oscillation peaks of the ensemble-atom Rabi flopping fall on the simple Rabi oscillation curve of a single atom and the experimental result shows good agreement with the prediction. We also test the the three-pulse composite interaction $R_x(\\pi/2)R_y(\\pi)R_x(\\pi/2)$ to develop a robust method to achieve a higher fidelity population inversion of the atom ensemble.

  12. Universal bosonic tetramers of dimer-atom-atom structure

    OpenAIRE

    Deltuva, A.

    2012-01-01

    Unstable four-boson states having an approximate dimer-atom-atom structure are studied using momentum-space integral equations for the four-particle transition operators. For a given Efimov trimer the universal properties of the lowest associated tetramer are determined. The impact of this tetramer on the atom-trimer and dimer-dimer collisions is analyzed. The reliability of the three-body dimer-atom-atom model is studied.

  13. The Atomic Simulation Environment - A Python library for working with atoms

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth; Mortensen, Jens Jørgen; Blomqvist, Jakob

    2017-01-01

    The Atomic Simulation Environment (ASE) is a software package written in the Python programming language with the aim of setting up, steering, and analyzing atomistic simula- tions. In ASE, tasks are fully scripted in Python. The powerful syntax of Python combined with the NumPy array library make...

  14. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    Evan Harpeneau

    2011-06-24

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  15. Development of a laser system of the laboratory AVLIS complex for producing isotopes and radionuclides

    Science.gov (United States)

    D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya; Firsov, V. A.; Tsvetkov, G. O.

    2018-01-01

    The use of atomic vapour laser isotope separation (AVLIS) for solving a number of urgent problems (formation of 177Lu radionuclides for medical applications, 63Ni radionuclides for betavoltaic power supplies and 150Nd isotope for searching for neutrinoless double β decay and neutrino mass) is considered. An efficient threestep scheme of photoionisation of neodymium atoms through the 50474-cm-1 autoionising state with radiation wavelengths of the corresponding stages of λ1 = 6289.7 Å, λ2 = 5609.4 Å and λ3 = 5972.1 Å is developed. The average saturation intensity of the autoionising transition is ~6 W cm-2, a value consistent with the characteristics of the previously developed photoionisation schemes for lutetium and nickel. A compact laser system for the technological AVLIS complex, designed to produce radionuclides and isotopes under laboratory conditions, is developed based on the experimental results.

  16. Sampling the Hydrogen Atom

    Directory of Open Access Journals (Sweden)

    Graves N.

    2013-01-01

    Full Text Available A model is proposed for the hydrogen atom in which the electron is an objectively real particle orbiting at very near to light speed. The model is based on the postulate that certain velocity terms associated with orbiting bodies can be considered as being af- fected by relativity. This leads to a model for the atom in which the stable electron orbits are associated with orbital velocities where Gamma is n /α , leading to the idea that it is Gamma that is quantized and not angular momentum as in the Bohr and other models. The model provides a mechanism which leads to quantization of energy levels within the atom and also provides a simple mechanical explanation for the Fine Struc- ture Constant. The mechanism is closely associated with the Sampling theorem and the related phenomenon of aliasing developed in the mid-20th century by engineers at Bell labs.

  17. Hirshfeld atom refinement

    Directory of Open Access Journals (Sweden)

    Silvia C. Capelli

    2014-09-01

    Full Text Available Hirshfeld atom refinement (HAR is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's, all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules, the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  18. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  19. Atoms in Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, Thomas S. [University of Tennessee

    1965-01-01

    Agriculture benefits from the applications of research. Radioactive techniques have been used to study soils, plants, microbes, insects, farm animals, and new ways to use and preserve foodstuffs. Radioactive atoms are not used directly by farmers but are used in research directed by the U. S. Department of Agriculture and Atomic Energy Commission, by the agricultural experiment stations of the various states, and by numerous public and private research institutions. From such research come improved materials and methods which are used on the farm.

  20. From Atoms to Solids

    Science.gov (United States)

    1999-01-31

    Honea. M.L. Homer, J.L. Persson, R.L. Whetten , Chem. atoms Phys. Lett. 171 (1990) 147. [17] M.R. Hoare, Adv. Chem. Phys. 40 (1979) 49. Two types of...Persson, M.E. LaVilla, R.L. tal conditions, the clusters become rigid. Thereafter, Whetten , J. Phys. Chem. 93 (1989) 2869. each newly added atom condenses...106 (1981) 265. M. Broyer, Phys. Rev. A 39 (1989) 6056. [9] W. Ekardt, Ber. Bunsenges. Phys. Chem. 88 (1984) 289. [38] R.L. Whetten , private

  1. Korean atomic bomb victims.

    Science.gov (United States)

    Sasamoto, Yukuo

    2009-01-01

    After colonizing Korea, Japan invaded China, and subsequently initiated the Pacific War against the United States, Britain, and their allies. Towards the end of the war, U.S. warplanes dropped atomic bombs on Hiroshima and Nagasaki, which resulted in a large number of Koreans who lived in Hiroshima and Nagasaki suffering from the effects of the bombs. The objective of this paper is to examine the history of Korea atomic bomb victims who were caught in between the U.S., Japan, the Republic of Korea (South Korea) and the Democratic People's Republic of Korea (North Korea).

  2. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, Michito; Tomonaga, Masao; Amenomori, Tatsuhiko; Matsuo, Tatsuki (Nagasaki Univ. (Japan). School of Medicine)

    1991-03-01

    Characteristic features of leukemia among atomic bomb survivors were studied. The ratio of a single leukemia type to all leukemias was highest for CML in Hiroshima, and the occurrence of CML was thought to be most characteristic for atomic bomb radiation induced leukemia. In the distribution of AML subtypes of FAB classification, there was no M3 cases in 1 Gy or more group, although several atypical AML cases of survivors were observed. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral blood of proximal survivors. (author).

  3. A magneto-optical trap for radioactive atoms

    Science.gov (United States)

    Mariotti, E.; Khanbekyan, K.; Marinelli, C.; Marmugi, L.; Moi, L.; Corradi, L.; Dainelli, A.; Calabrese, R.; Mazzocca, G.; Tomassetti, L.; Minguzzi, P.

    2013-03-01

    This paper presents the recent results of the TrapRad/Francium collaboration whose final aim is the measurement of the Atomic Parity Non-Conservation effect (APNC) in Francium atoms stored in a Magneto - Optical Trap (MOT) built at the Laboratori Nazionali di Legnaro (LNL) of the National Institute for Nuclear Physics (INFN). Current developments and new strategies to enhance the trapping efficiency of Francium isotopes and to detect new spectroscopic features are reported.

  4. A single-atom heat engine.

    Science.gov (United States)

    Roßnagel, Johannes; Dawkins, Samuel T; Tolazzi, Karl N; Abah, Obinna; Lutz, Eric; Schmidt-Kaler, Ferdinand; Singer, Kilian

    2016-04-15

    Heat engines convert thermal energy into mechanical work and generally involve a large number of particles. We report the experimental realization of a single-atom heat engine. An ion is confined in a linear Paul trap with tapered geometry and driven thermally by coupling it alternately to hot and cold reservoirs. The output power of the engine is used to drive a harmonic oscillation. From direct measurements of the ion dynamics, we were able to determine the thermodynamic cycles for various temperature differences of the reservoirs. We then used these cycles to evaluate the power P and efficiency η of the engine, obtaining values up to P = 3.4 × 10(-22)joules per second and η = 0.28%, consistent with analytical estimations. Our results demonstrate that thermal machines can be reduced to the limit of single atoms. Copyright © 2016, American Association for the Advancement of Science.

  5. Elusive antimatter formed in laboratory scientists testing nature's deepest secrets

    CERN Multimedia

    Boyd, R S

    2002-01-01

    A team of European physicists reported the creation in a Swiss laboratory of at least 50,000 atoms of antihydrogen, the first time a significant quantity of antimatter has been produced on earth (1 page).

  6. Continuous Fluid Atomization of Materials in a Rapidly Spinning Cup.

    Science.gov (United States)

    1996-06-14

    128. The shaft enters a housing 132 containing power delivery components. These components are a ferrofluidic seal 134 whose axial shaft connects to a...162 via ferrofluidic seal 164 to pulley 168 5 which is connected by belts to a motor, not shown, to power the impact atomizer. Again, during

  7. Reports within the area of nuclear power plant instrumentation: Part 1: Laboratory test of analogue and digital instrument components. Part 2: Dynamic deviations in reactor pressure water level signals caused by sensing lines

    Energy Technology Data Exchange (ETDEWEB)

    Bergdahl, Bengt-Goeran [GSE Power Systems AB, Nykoeping (Sweden)

    2004-11-01

    Reliable measurement signals are of great importance for the safety of a nuclear power plant. The measurement signals are used as input signals to the automatic control systems, they have influence on the reactor protection system and they are the input to the information presented in the control room. Measurement signals are also the basis for analysis of sampled signals after an event. These facts imply that it is important that the measurement data represent physical magnitudes in a correct manner. This holds true both for the static and the dynamic part of the signal. Mainly depending on the fact that the Swedish BWRs were constructed m the seventies and eighties, the instrument systems were originally designed with analogue technique. This is valid for transmitters as well as density converters, isolation amplifiers and controllers. Right now there is an ongoing modernization of the instrument systems in many plants. Old analogue components are in many cases replaced by new digital ones. The delay time is the critical dynamic deviation between an analogue and a digital transmitter. A delay time of up to 200 ms has been observed for a digital transmitter (Hartmann and Braun ASK800) in comparison with an analogue one (Fujii). A long delay time is of course undesirable when the transmitter is a part of the reactor protection system. It is therefore important to pay attention to the delay in response when an analogue transmitter is replaced by a digital one. The laboratory tests also included a comparison between an old analogue density converter (Hartmann and Braun TZA2) and a new digital one (Hartmann and Braun TZA4). These results prove that the analogue unit is faster than the digital. The response time from differential pressure to level signal was 50 ms for TZA2 and 250 ms for TZA4. Corresponding times with pressure as input and level as output was 50 ms for TZA2 and 900 ms for TZA4. The report also includes an investigation of pressure transmitters of the

  8. NATO Advanced Study Institute on Laser Interactions with Atoms, Solids,and Plasmas

    CERN Document Server

    1994-01-01

    The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include ...

  9. Atomic Particle Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1970-01-01

    This booklet tells how scientists observe the particles and electromagnetic radiation that emerges from an atomic nucleus. The equipment used falls into two general categories: counters which count each particle as it passes by, and track detectors, which make a photographic record of the particle's track.

  10. FAC: Flexible Atomic Code

    Science.gov (United States)

    Gu, Ming Feng

    2018-02-01

    FAC calculates various atomic radiative and collisional processes, including radiative transition rates, collisional excitation and ionization by electron impact, energy levels, photoionization, and autoionization, and their inverse processes radiative recombination and dielectronic capture. The package also includes a collisional radiative model to construct synthetic spectra for plasmas under different physical conditions.

  11. Atomic physics and reality

    CERN Multimedia

    1985-01-01

    An account of the long standing debate between Niels Bohr and Albert Einstein regarding the validity of the quantum mechanical description of atomic phenomena.With physicts, John Wheeler (Texas), John Bell (CERN), David Rohm (London), Abner Shimony (Boston), Alain Aspect (Paris)

  12. Ludwig Boltzmann: Atomic genius

    Energy Technology Data Exchange (ETDEWEB)

    Cercignani, C. [Department of Mathematics, Politecnico di Milano (Italy)]. E-mail: carcer@mate.polimi.it

    2006-09-15

    On the centenary of the death of Ludwig Boltzmann, Carlo Cercignani examines the immense contributions of the man who pioneered our understanding of the atomic nature of matter. The man who first gave a convincing explanation of the irreversibility of the macroscopic world and the symmetry of the laws of physics was the Austrian physicist Ludwig Boltzmann, who tragically committed suicide 100 years ago this month. One of the key figures in the development of the atomic theory of matter, Boltzmann's fame will be forever linked to two fundamental contributions to science. The first was his interpretation of 'entropy' as a mathematically well-defined measure of the disorder of atoms. The second was his derivation of what is now known as the Boltzmann equation, which describes the statistical properties of a gas as made up of molecules. The equation, which described for the first time how a probability can evolve with time, allowed Boltzmann to explain why macroscopic phenomena are irreversible. The key point is that while microscopic objects like atoms can behave reversibly, we never see broken coffee cups reforming because it would involve a long series of highly improbable interactions - and not because it is forbidden by the laws of physics. (U.K.)

  13. Observational Evidence for Atoms.

    Science.gov (United States)

    Jones, Edwin R., Jr.; Childers, Richard L.

    1984-01-01

    Discusses the development of the concept of atomicity and some of the many which can be used to establish its validity. Chemical evidence, evidence from crystals, Faraday's law of electrolysis, and Avogadro's number are among the areas which show how the concept originally developed from a purely philosophical idea. (JN)

  14. 1979 bibliography of atomic and molecular processes. [Bibliography

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-08-01

    This annotated bibliography lists 2146 works on atomic and molecular processes reported in publications dated 1979. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory, to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing are indexes of reactants and authors.

  15. The Manhattan Project: Making the Atomic Bomb. 2010 edition.

    Energy Technology Data Exchange (ETDEWEB)

    Gosling, F. G.

    2010-01-15

    This historical document is part of a planned 3-volume series. This volume, volume 1, provides a short history of the origins and development of the American atomic bomb program during World War II. Beginning with the scientific developments of the pre-war years, the monograph details the role of the United States government in conducting a secret, nationwide enterprise that took science from the laboratory and into combat with an entirely new type of weapon. The monograph concludes with a discussion of the immediate postwar period, the debate over the Atomic Energy Act of 1946, and the founding of the Atomic Energy Commission.

  16. General Relativistic Effects in Atom Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, Savas; /Stanford U., Phys. Dept.; Graham, Peter W.; /SLAC /Stanford U., Phys. Dept.; Hogan, Jason M.; Kasevich, Mark A.; /Stanford U., Phys. Dept.

    2008-03-17

    Atom interferometry is now reaching sufficient precision to motivate laboratory tests of general relativity. We begin by explaining the non-relativistic calculation of the phase shift in an atom interferometer and deriving its range of validity. From this we develop a method for calculating the phase shift in general relativity. This formalism is then used to find the relativistic effects in an atom interferometer in a weak gravitational field for application to laboratory tests of general relativity. The potentially testable relativistic effects include the non-linear three-graviton coupling, the gravity of kinetic energy, and the falling of light. We propose experiments, one currently under construction, that could provide a test of the principle of equivalence to 1 part in 10{sup 15} (300 times better than the present limit), and general relativity at the 10% level, with many potential future improvements. We also consider applications to other metrics including the Lense-Thirring effect, the expansion of the universe, and preferred frame and location effects.

  17. Engineering Water Analysis Laboratory Activity.

    Science.gov (United States)

    Schlenker, Richard M.

    The purposes of water treatment in a marine steam power plant are to prevent damage to boilers, steam-operated equipment, and steam and condensate lives, and to keep all equipment operating at the highest level of efficiency. This laboratory exercise is designed to provide students with experiences in making accurate boiler water tests and to…

  18. FOOTWEAR PERFORMANCE LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory provides biomechanical and physical analyses for both military and commercial footwear. The laboratory contains equipment that is integral to the us...

  19. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  20. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  1. Nanotechnology Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanotechnology Characterization Laboratory (NCL) at the Frederick National Laboratory for Cancer Research performs preclinical characterization of nanomaterials...

  2. Modelling the Energetics of Encapsulation of Atoms and Atomic ...

    Indian Academy of Sciences (India)

    user

    2015-07-04

    Jul 4, 2015 ... Modelling the Energetics of Encapsulation of. Atoms and Atomic Clusters into Carbon. Nanotubes: Insights from Analytical Approaches. R. S. Swathi. School of Chemistry. Indian Institute of Science Education and Research. Thiruvananthapuram, Kerala, India ...

  3. Role of atoms in atomic gravitational-wave detectors

    Science.gov (United States)

    Norcia, Matthew A.; Cline, Julia R. K.; Thompson, James K.

    2017-10-01

    Recently, it has been proposed that space-based atomic sensors may be used to detect gravitational waves. These proposals describe the sensors either as clocks or as atom interferometers. Here, we seek to explore the fundamental similarities and differences between the two types of proposals. We present a framework in which the fundamental mechanism for sensitivity is identical for clock and atom interferometer proposals, with the key difference being whether or not the atoms are tightly confined by an external potential. With this interpretation in mind, we propose two major enhancements to detectors using confined atoms, which allow for an enhanced sensitivity analogous to large momentum transfer used in atom interferometry (though with no transfer of momentum to the atoms), and a way to extend the useful coherence time of the sensor beyond the atom's excited-state lifetime.

  4. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian

    2011-01-01

    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  5. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  6. A Compact, High-Flux Cold Atom Beam Source

    Science.gov (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  7. Revealing and exploiting hierarchical material structure through complex atomic networks

    Science.gov (United States)

    Ahnert, Sebastian E.; Grant, William P.; Pickard, Chris J.

    2017-08-01

    One of the great challenges of modern science is to faithfully model, and understand, matter at a wide range of scales. Starting with atoms, the vastness of the space of possible configurations poses a formidable challenge to any simulation of complex atomic and molecular systems. We introduce a computational method to reduce the complexity of atomic configuration space by systematically recognising hierarchical levels of atomic structure, and identifying the individual components. Given a list of atomic coordinates, a network is generated based on the distances between the atoms. Using the technique of modularity optimisation, the network is decomposed into modules. This procedure can be performed at different resolution levels, leading to a decomposition of the system at different scales, from which hierarchical structure can be identified. By considering the amount of information required to represent a given modular decomposition we can furthermore find the most succinct descriptions of a given atomic ensemble. Our straightforward, automatic and general approach is applied to complex crystal structures. We show that modular decomposition of these structures considerably simplifies configuration space, which in turn can be used in discovery of novel crystal structures, and opens up a pathway towards accelerated molecular dynamics of complex atomic ensembles. The power of this approach is demonstrated by the identification of a possible allotrope of boron containing 56 atoms in the primitive unit cell, which we uncover using an accelerated structure search, based on a modular decomposition of a known dense phase of boron, γ-B28.

  8. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  9. Cavity enhanced atomic magnetometry.

    Science.gov (United States)

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-10-20

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  10. Cavity enhanced atomic magnetometry

    CERN Document Server

    Crepaz, Herbert; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations.

  11. Atomes et rayonnement

    OpenAIRE

    Dalibard, Jean; Haroche, Serge

    2013-01-01

    Matière et lumière sont intimement liées dans notre modélisation du monde physique. De l’élaboration de la théorie quantique à l’invention du laser, l’interaction entre atomes et rayonnement a joué un rôle central dans le développement de la science et de la technologie d’aujourd’hui. La maîtrise de cette interaction permet désormais d’atteindre les plus basses températures jamais mesurées. Le refroidissement de gaz d’atomes par la lumière d’un laser conduit à une « matière quantique » aux pr...

  12. Atom Interferometer Gyroscope with Spin-Dependent Phase Shifts Induced by Light near a Tune-Out Wavelength

    CERN Document Server

    Trubko, Raisa; Germaine, Michael T St; Gregoire, Maxwell D; Holmgren, William F; Hromada, Ivan; Cronin, Alexander D

    2015-01-01

    Tune-out wavelengths measured with an atom interferometer are sensitive to laboratory rotation rates because of the Sagnac effect, vector polarizability, and dispersion compensation. We observed shifts in measured tune-out wavelengths as large as 213 pm with a potassium atom beam interferometer, and we explore how these shifts can be used for an atom interferometer gyroscope.

  13. High intensity laser interactions with atomic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, T

    2000-08-07

    The development of ultrashort pulse table top lasers with peak pulse powers in excess of 1 TW has permitted an access to studies of matter subject to unprecedented light intensities. Such interactions have accessed exotic regimes of multiphoton atomic and high energy-density plasma physics. Very recently, the nature of the interactions between these very high intensity laser pulses and atomic clusters of a few hundred to a few thousand atoms has come under study. Such studies have found some rather unexpected results, including the striking finding that these interactions appear to be more energetic than interactions with either single atoms or solid density plasmas. Recent experiments have shown that the explosion of such clusters upon intense irradiation can expel ions from the cluster with energies from a few keV to nearly 1 MeV. This phenomenon has recently been exploited to produce DD fusion neutrons in a gas of exploding deuterium clusters. Under this project, we have undertaken a general study of the intense femtosecond laser cluster interaction. Our goal is to understand the macroscopic and microscopic coupling between the laser and the clusters with the aim of optimizing high flux fusion neutron production from the exploding deuterium clusters or the x-ray yield in the hot plasmas that are produced in this interaction. In particular, we are studying the physics governing the cluster explosions. The interplay between a traditional Coulomb explosion description of the cluster disassembly and a plasma-like hydrodynamic explosion is not entirely understood, particularly for small to medium sized clusters (<1000 atoms) and clusters composed of low-Z atoms. We are focusing on experimental studies of the ion and electron energies resulting from such explosions through various experimental techniques. We are also examining how an intense laser pulse propagates through a dense medium containing these clusters.

  14. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  15. Navigation with Atom Interferometers

    Science.gov (United States)

    2017-03-20

    stability of the design and will be measured at a future time. Angle random walk can be calculated from first principles from the shot-noise limited...interferometer cannot distinguish between the two sources of phase shifts. We describe a design for a dual atom interferometer to simultaneously...stability. This paper is organized as follows: we first describe the basic building blocks of the interferometer: beam splitters and mirrors. We then

  16. Free-space power transmission

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    NASA Lewis Research Center organized a workshop on technology availability for free-space power transmission (beam power). This document contains a collection of viewgraph presentations that describes the effort by academia, industry, and the national laboratories in the area of high-frequency, high-power technology applicable to free-space power transmission systems. The areas covered were rectenna technology, high-frequency, high-power generation (gyrotrons, solar pumped lasers, and free electron lasers), and antenna technology.

  17. Into the atom and beyond

    CERN Document Server

    1989-01-01

    Magnifying an atom to football pitch size. The dense nucleus, carrying almost all the atomic mass, is much smaller than the ball. The players (the electrons) would see something about the size of a marble!

  18. Nuclear effects in atomic transitions

    CERN Document Server

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects that can be identified in atomic structure data. An introduction to the theory of isotope shifts and hyperfine splitting of atomic spectra is given, together with an overview of the typical experimental techniques used in high-precision atomic spectroscopy. More exotic effects at the borderline between atomic and nuclear physics, such as parity violation in atomic transitions due to the weak interaction, or nuclear polarization and nuclear excitation by electron capture, are also addressed.

  19. Prospects for Precise Measurements with Echo Atom Interferometry

    Science.gov (United States)

    Barrett, Brynle; Carew, Adam; Beica, Hermina; Vorozcovs, Andrejs; Pouliot, Alexander; Kumarakrishnan, A.

    2016-06-01

    Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration $g$ and the determination of the atomic fine structure through measurements of the atomic recoil frequency $\\omega_q$. Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure $\\omega_q$ with a statistical uncertainty of 37 parts per billion (ppb) on a time scale of $\\sim 50$ ms and $g$ with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

  20. Prospects for Precise Measurements with Echo Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Brynle Barrett

    2016-06-01

    Full Text Available Echo atom interferometers have emerged as interesting alternatives to Raman interferometers for the realization of precise measurements of the gravitational acceleration g and the determination of the atomic fine structure through measurements of the atomic recoil frequency ω q . Here we review the development of different configurations of echo interferometers that are best suited to achieve these goals. We describe experiments that utilize near-resonant excitation of laser-cooled rubidium atoms by a sequence of standing wave pulses to measure ω q with a statistical uncertainty of 37 parts per billion (ppb on a time scale of ∼50 ms and g with a statistical precision of 75 ppb. Related coherent transient techniques that have achieved the most statistically precise measurements of atomic g-factor ratios are also outlined. We discuss the reduction of prominent systematic effects in these experiments using off-resonant excitation by low-cost, high-power lasers.

  1. Fiber-Optic Optical-Microwave Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Used to conduct programs of basic science and applied research in the development of laser sources, high-power fiber amplifiers, photonic control of phased...

  2. Atomic and Molecular Physics Program

    Science.gov (United States)

    2013-03-05

    Atomic Quantum Memories in Nano-Scale Optical Circuits: Jeff Kimble, Oskar Painter (CalTech) • Demonstration of a nanofiber atom trap: A. Goban...et al, Phys. Rev. Lett. 109, 033603 (2012) • Cavity QED with atomic mirrors: D. Chang, et al, N. J. Phys. 14, 063003 (2012) • Fiber -coupled chip... PMMA -diamond hybrid cavities, coupling stable NV centers • Cavity Optomechanics with Cold Atoms: Dan Stamper-Kurn (UC Berkeley) • Squeezed light

  3. Environmental Durability Issues for Solar Power Systems in Low Earth Orbit

    Science.gov (United States)

    Degroh, Kim K.; Banks, Bruce A.; Smith, Daniela C.

    1994-01-01

    Space solar power systems for use in the low Earth orbit (LEO) environment experience a variety of harsh environmental conditions. Materials used for solar power generation in LEO need to be durable to environmental threats such as atomic oxygen, ultraviolet (UV) radiation, thermal cycling, and micrometeoroid and debris impact. Another threat to LEO solar power performance is due to contamination from other spacecraft components. This paper gives an overview of these LEO environmental issues as they relate to space solar power system materials. Issues addressed include atomic oxygen erosion of organic materials, atomic oxygen undercutting of protective coatings, UV darkening of ceramics, UV embrittlement of Teflon, effects of thermal cycling on organic composites, and contamination due to silicone and organic materials. Specific examples of samples from the Long Duration Exposure Facility (LDEF) and materials returned from the first servicing mission of the Hubble Space Telescope (HST) are presented. Issues concerning ground laboratory facilities which simulate the LEO environment are discussed along with ground-to-space correlation issues.

  4. Atomic Data for UV Astronomy

    Science.gov (United States)

    Nave, Gillian

    2017-06-01

    Spectral lines of iron-group elements are observed in a wide variety of astrophysical objects including A- and B- type stars, the interstellar medium, quasi-stellar objects, and absorption spectra from quasi-stellar objects. Although lines of Fe II, Cr II and Ni II often dominate these spectra, even relatively low abundance elements such as Sc II can be important as their abundance can be significantly higher in some objects. In order to understand these spectra it is necessary to obtain and analyze high-resolution, high signal-to-noise ratio laboratory spectra to obtain accurate wavelengths and energy levels for all of the singly-ionized elements from scandium through nickel. For many years, the atomic spectroscopy groups at the National Institute of Standards and Technology (NIST), USA and Imperial College London, UK, have been recording high-resolution spectra of iron-group elements using Fourier transform (FT) and grating spectroscopy in order to complete their analyses. This has resulted comprehensive analyses of Fe II and Cr II from below 100 nm to 5000 nm, covering almost all of the region in which allowed lines of these spectra are typically observed in astronomical objects. Analysis of spectra of V II, Ti II and Co II recorded in less comprehensive regions using FT spectroscopy have also been published. I shall present our current work to extend the observations and analysis of Co II and Ti II to shorter wavelengths, and our comprehensive analyses of Mn II, Ni II, and Sc II.

  5. Lasers, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school science teachers and their students. Basic information for understanding the laser is provided including discussion of the electromagnetic spectrum, radio waves, light and the atom, coherent light, controlled…

  6. Breaking the atom with Samson

    NARCIS (Netherlands)

    Väänänen, J.; Coecke, B.; Ong, L.; Panangaden, P.

    2013-01-01

    The dependence atom =(x,y) was introduced in [11]. Here x and y are finite sets of attributes (or variables) and the intuitive meaning of =(x,y) is that the attributes x completely (functionally) determine the attributes y. One may wonder, whether the dependence atom is truly an atom or whether it

  7. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  8. Bohmian picture of Rydberg atoms

    Indian Academy of Sciences (India)

    lished the nearly elliptical shapes for the centre-of-mass motion in Rydberg atoms using numerical simulations, we show analytically that the Bohmian trajectories in Rydberg atoms are nearly ellipti- cal. Keywords. Rydberg atom; quantum trajectory. PACS No. 03.65.Ge. 1. Introduction. Ever since the advent of quantum ...

  9. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level.

    Science.gov (United States)

    Jiang, Wenge; Pan, Haihua; Cai, Yurong; Tao, Jinhui; Liu, Peng; Xu, Xurong; Tang, Ruikang

    2008-11-04

    An approach to organic-inorganic interfacial structure at the atomic level is a great challenge in the studies of biomineralization. We demonstrate that atomic force microscopy (AFM) is powerful tool to discover the biomineral interface in detail. By using a model system of (100) hydroxyapatite (HAP) face and citrate, it reveals experimentally that only a side carboxylate and a surface calcium ion are involved in the binding effect during the citrate adsorption, which is against the previous understandings by using Langmuir adsorption and computer simulation. Furthermore, the adsorbed citrate molecules can use their free carboxylate and hydroxyl groups to be self-assembled on the HAP surface. AFM examination also finds that the presence of citrate molecules on the HAP crystal faces can enhance the adhesion force of the HAP surface. We suggest that the established AFM method can be used for a precise and direct understanding of biointerfaces at the atomic level.

  10. Compact magneto-optical sources of slow atoms

    OpenAIRE

    Ovchinnikov, Yuri B.

    2004-01-01

    Three different configurations of compact magneto-optical sources of slow Rb atoms(LVIS, 2D(+)-MOT and 2D-MOT) were compared with each other at fixed geometry of cooling laser beams. A precise control of the intensity balances between the four separate transverse cooling laser beams provided a total continuous flux of cold atoms from the LVIS and 2D(+)-MOT sources about 8x10^9 atoms/s at total laser power of 60 mW. The flux was measured directly from the loading rate of a 3D-MOT, placed 34 cm...

  11. High Energy Density Laboratory Astrophysics

    CERN Document Server

    Lebedev, Sergey V

    2007-01-01

    During the past decade, research teams around the world have developed astrophysics-relevant research utilizing high energy-density facilities such as intense lasers and z-pinches. Every two years, at the International conference on High Energy Density Laboratory Astrophysics, scientists interested in this emerging field discuss the progress in topics covering: - Stellar evolution, stellar envelopes, opacities, radiation transport - Planetary Interiors, high-pressure EOS, dense plasma atomic physics - Supernovae, gamma-ray bursts, exploding systems, strong shocks, turbulent mixing - Supernova remnants, shock processing, radiative shocks - Astrophysical jets, high-Mach-number flows, magnetized radiative jets, magnetic reconnection - Compact object accretion disks, x-ray photoionized plasmas - Ultrastrong fields, particle acceleration, collisionless shocks. These proceedings cover many of the invited and contributed papers presented at the 6th International Conference on High Energy Density Laboratory Astrophys...

  12. Computer Model Of Fragmentation Of Atomic Nuclei

    Science.gov (United States)

    Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.

    1995-01-01

    High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.

  13. Atoms to electricity. [Booklet

    Energy Technology Data Exchange (ETDEWEB)

    1987-11-01

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for over 16 percent of the US electric energy supply in 1986 and was second only to coal as a source of our electric power. In the 1990s, nuclear energy is expected to provide almost 20 percent of the Nation's electricity. 38 figs., 5 tabs.

  14. Atoms to electricity

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    This booklet explains the basic technology of nuclear fission power reactors, the nuclear fuel cycle and the role of nuclear energy as one of the domestic energy resources being developed to help meet our national energy demand. Nuclear power accounted for some 12 percent of the US electric energy supply in 1982. In the 1990's, it is expected to become second only to coal as a source of our electric power, almost doubling its present contribution to our national electricity supply. 14 references, 40 figures, 5 tables.

  15. Quantum Repeaters and Atomic Ensembles

    DEFF Research Database (Denmark)

    Borregaard, Johannes

    During the last couple of decades, quantum mechanics has moved from being primarily a theory describing the behaviour of microscopical particles in advanced experiments to being the foundation of a novel technology. One of the cornerstones in this new quantum technology is the strong correlations...... that can exist between remote quantum systems called entanglement. These correlations are exploited to detect eavesdroppers and construct unconditionally secure communication channels, enhance the sensitivity in various metrology schemes and construct powerful quantum computers, which can solve extremely...... hard problems. Quantum technology is, however, still premature, which is partly due to the fragile nature of these quantum correlations to noise. Extended research is therefore taking place to find robust quantum systems and protocols, which can move quantum technology from the specialized laboratories...

  16. Espectroscopia de fotoelétrons de limiares de átomos e moléculas Atomic and molecular threshold photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Cristina Andreolli Lopes

    2006-02-01

    Full Text Available A threshold photoelectron spectrometer applied to the study of atomic and molecular threshold photoionization processes is described. The spectrometer has been used in conjunction with a toroidal grating monochromator at the National Synchrotron Radiation Laboratory (LNLS, Brazil. It can be tuned to accept threshold electrons (< 20 meV and work with a power resolution of 716 (~18 meV at 12 eV with a high signal/noise ratio. The performance of this apparatus and some characteristics of the TGM (Toroidal Grating Monochromator beam line of LNLS are described and discussed by means of argon, O2 and N2 threshold photoelectron spectra.

  17. Cold atoms close to surfaces

    DEFF Research Database (Denmark)

    Krüger, Peter; Wildermuth, Stephan; Hofferberth, Sebastian

    2005-01-01

    Microscopic atom optical devices integrated on atom chips allow to precisely control and manipulate ultra-cold (T atoms and Bose-Einstein condensates (BECs) close to surfaces. The relevant energy scale of a BEC is extremely small (down to ... be utilized as a sensor for variations of the potential energy of the atoms close to the surface. Here we describe how to use trapped atoms as a measurement device and analyze the performance and flexibility of the field sensor. We demonstrate microscopic magnetic imaging with simultaneous high spatial...

  18. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  19. Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry

    Science.gov (United States)

    Bernon, S.; Vanderbruggen, T.; Kohlhaas, R.; Bertoldi, A.; Landragin, A.; Bouyer, P.

    2011-06-01

    We report on a novel experiment to generate non-classical atomic states via quantum non-demolition (QND) measurements on cold atomic samples prepared in a high-finesse ring cavity. The heterodyne technique developed for QND detection exhibits an optical shot-noise limited behavior for local oscillator optical power of a few hundred μW, and a detection bandwidth of several GHz. This detection tool is used in a single pass to follow non-destructively the internal state evolution of an atomic sample when subjected to Rabi oscillations or a spin-echo interferometric sequence.

  20. Heterodyne non-demolition measurements on cold atomic samples: towards the preparation of non-classical states for atom interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Bernon, S; Vanderbruggen, T; Kohlhaas, R; Bertoldi, A; Bouyer, P [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud Campus Polytechnique, RD 128, F-91127 Palaiseau cedex (France); Landragin, A, E-mail: simon.bernon@institutoptique.fr [LNE-SYRTE, Observatoire de Paris, CNRS and UPMC 61 avenue de l' Observatoire, F-75014 Paris (France)

    2011-06-15

    We report on a novel experiment to generate non-classical atomic states via quantum non-demolition (QND) measurements on cold atomic samples prepared in a high-finesse ring cavity. The heterodyne technique developed for QND detection exhibits an optical shot-noise limited behavior for local oscillator optical power of a few hundred {mu}W, and a detection bandwidth of several GHz. This detection tool is used in a single pass to follow non-destructively the internal state evolution of an atomic sample when subjected to Rabi oscillations or a spin-echo interferometric sequence.

  1. The site selection law and the anti-atom movement; Das Standortauswahlgesetz und die Anti-Atom-Bewegung

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, Daniel

    2015-07-01

    The anti atom movement has reached many of their political claims with the German nuclear power phaseout. At the same time the government has regained the interpretive dominance with the in radioactive waste management with the new search for possible final repository sites. He anti-atom movement refuses most parts of the actual law but cannot abdicate from the responsibility of the process of site selection. The contribution shows using three actual research approaches that such a convergence is probable to occur in the future. A cooperation of anti-atom movement and the government is of high probability in the long term, but is not necessarily identical to a political acceptance.

  2. Lifetime measurement of excited atomic and ionic states of some ...

    Indian Academy of Sciences (India)

    Abstract. High-frequency deflection (HFD) technique with a delayed coincidence single photon counting arrangement is an efficient technique for radiative lifetime measurement. An apparatus for measurement of the radiative lifetime of atoms and molecules has been developed in our laboratory and measurements have ...

  3. Lifetime measurement of excited atomic and ionic states of some ...

    Indian Academy of Sciences (India)

    High-frequency deflection (HFD) technique with a delayed coincidence single photon counting arrangement is an efficient technique for radiative lifetime measurement. An apparatus for measurement of the radiative lifetime of atoms and molecules has been developed in our laboratory and measurements have been ...

  4. European scientists produce - and measure - atoms of antihydrogen

    CERN Multimedia

    Koppel, N

    2002-01-01

    "Scientists working on an experiment called ATRAP at the European Particle Physics Laboratory, or CERN, said Tuesday that they were able to register the creation of antihydrogen atoms at the moment when they were destroyed again. The results are to be published in the journal Physical Review Letters" (1 page).

  5. Cavity QED with atomic mirrors

    Science.gov (United States)

    Chang, D. E.; Jiang, L.; Gorshkov, A. V.; Kimble, H. J.

    2012-06-01

    A promising approach to merge atomic systems with scalable photonics has emerged recently, which consists of trapping cold atoms near tapered nanofibers. Here, we describe a novel technique to achieve strong, coherent coupling between a single atom and photon in such a system. Our approach makes use of collective enhancement effects, which allow a lattice of atoms to form a high-finesse cavity within the fiber. We show that a specially designated ‘impurity’ atom within the cavity can experience strongly enhanced interactions with single photons in the fiber. Under realistic conditions, a ‘strong coupling’ regime can be reached, wherein it becomes feasible to observe vacuum Rabi oscillations between the excited impurity atom and a single cavity quantum. This technique can form the basis for a scalable quantum information network using atom-nanofiber systems.

  6. Chameleon Induced Atomic Afterglow

    CERN Document Server

    Brax, Philippe

    2010-01-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  7. Atomic mechanics of solids

    CERN Document Server

    MacPherson, A K

    1990-01-01

    This volume brings together some of the presently available theoretical techniques which will be useful in the design of solid-state materials. At present, it is impossible to specify the atomic composition of a material and its macroscopic physical properties. However, the future possibilities for such a science are being laid today. This is coming about due to the development of fast, cheap computers which will be able to undertake the calculations which are necessary.Since this field of science is fairly new, it is not yet quite clear which direction of analysis will eventually prov

  8. Electroless atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  9. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  10. Ultra-Short-Pulse Laser Effects Research and Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables research into advanced laser countermeasure techniques.DESCRIPTION: This laser facility has a capability to produce very high peak power levels of...

  11. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.

    Science.gov (United States)

    Zamani, Reza R; Hage, Fredrik S; Lehmann, Sebastian; Ramasse, Quentin M; Dick, Kimberly A

    2017-11-13

    Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.

  12. A thermoelectric heat engine with ultracold atoms.

    Science.gov (United States)

    Brantut, Jean-Philippe; Grenier, Charles; Meineke, Jakob; Stadler, David; Krinner, Sebastian; Kollath, Corinna; Esslinger, Tilman; Georges, Antoine

    2013-11-08

    Thermoelectric effects, such as the generation of a particle current by a temperature gradient, have their origin in a reversible coupling between heat and particle flows. These effects are fundamental probes for materials and have applications to cooling and power generation. Here, we demonstrate thermoelectricity in a fermionic cold atoms channel in the ballistic and diffusive regimes, connected to two reservoirs. We show that the magnitude of the effect and the efficiency of energy conversion can be optimized by controlling the geometry or disorder strength. Our observations are in quantitative agreement with a theoretical model based on the Landauer-Büttiker formalism. Our device provides a controllable model system to explore mechanisms of energy conversion and realizes a cold atom-based heat engine.

  13. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  14. Lawrence Livermore National Laboratory Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2007-05-24

    simulations performed on NNSA's Advanced Simulation and Computing (ASC) Program supercomputers at Livermore. ASC Purple and BlueGene/L, the world's fastest computer, together provide nearly a half petaflop (500 trillion operations per second) of computer power for use by the three NNSA national laboratories. Livermore-led teams were awarded the Gordon Bell Prize for Peak Performance in both 2005 and 2006. The winning simulations, run on BlueGene/L, investigated the properties of materials at the length and time scales of atomic interactions. The computing power that makes possible such detailed simulations provides unprecedented opportunities for scientific discovery. Laboratory scientists are meeting the extraordinary challenge of creating experimental capabilities to match the resolution of supercomputer simulations. Working with a wide range of collaborators, we are developing experimental tools that gather better data at the nanometer and subnanosecond scales. Applications range from imaging biomolecules to studying matter at extreme conditions of pressure and temperature. The premier high-energy-density experimental physics facility in the world will be the National Ignition Facility (NIF) when construction is completed in 2009. We are leading the national effort to perform the first fusion ignition experiments using NIF's 192-beam laser and prepare to explore some of the remaining important issues in weapons physics. With scientific colleagues from throughout the nation, we are also designing revolutionary experiments on NIF to advance the fields of astrophysics, planetary physics, and materials science. Mission-directed, multidisciplinary science and technology at Livermore is also focused on reducing the threat posed by the proliferation of weapons of mass destruction as well as their acquisition and use by terrorists. The Laboratory helps this important national effort by providing its unique expertise, integration analyses, and operational support to

  15. Neuromorphic atomic switch networks.

    Directory of Open Access Journals (Sweden)

    Audrius V Avizienis

    Full Text Available Efforts to emulate the formidable information processing capabilities of the brain through neuromorphic engineering have been bolstered by recent progress in the fabrication of nonlinear, nanoscale circuit elements that exhibit synapse-like operational characteristics. However, conventional fabrication techniques are unable to efficiently generate structures with the highly complex interconnectivity found in biological neuronal networks. Here we demonstrate the physical realization of a self-assembled neuromorphic device which implements basic concepts of systems neuroscience through a hardware-based platform comprised of over a billion interconnected atomic-switch inorganic synapses embedded in a complex network of silver nanowires. Observations of network activation and passive harmonic generation demonstrate a collective response to input stimulus in agreement with recent theoretical predictions. Further, emergent behaviors unique to the complex network of atomic switches and akin to brain function are observed, namely spatially distributed memory, recurrent dynamics and the activation of feedforward subnetworks. These devices display the functional characteristics required for implementing unconventional, biologically and neurally inspired computational methodologies in a synthetic experimental system.

  16. Delay in atomic photoionization

    CERN Document Server

    Kheifets, A S

    2010-01-01

    We analyze the time delay between emission of photoelectrons from the outer valence $ns$ and $np$ sub-shells in noble gas atoms following absorption of an attosecond XUV pulse. By solving the time dependent Schr\\"odinger equation and carefully examining the time evolution of the photoelectron wave packet, we establish the apparent "time zero" when the photoelectron leaves the atom. Various processes such as elastic scattering of the photoelectron on the parent ion and many-electron correlation affect the quantum phase of the dipole transition matrix element, the energy dependence of which defines the emission timing. This qualitatively explains the time delay between photoemission from the $2s$ and $2p$ sub-shells of Ne as determined experimentally by attosecond streaking [{\\em Science} {\\bf 328}, 1658 (2010)]. However, with our extensive numerical modeling, we were only able to account for less than a half of the measured time delay of $21\\pm5$~as. We argue that the XUV pulse alone cannot produce such a larg...

  17. Time-of-Flight Experiments in Molecular Motion and Electron-Atom Collision Kinematics

    Science.gov (United States)

    Donnelly, Denis P.; And Others

    1971-01-01

    Describes a set of experiments for an undergraduate laboratory which demonstrates the relationship between velocity, mass, and temperature in a gas. The experimental method involves time-of-flight measurements on atoms excited to metastable states by electron impact. Effects resulting from recoil in the electron-atom collision can also be…

  18. Purdue Hydrogen Systems Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up

  19. Use of atomic hydrogen source in collision: technological challenges

    Science.gov (United States)

    Hovey, R. T.; Vargas, E. L.; Panchenko, D. I.; Rivas, D. A.; Andrianarijaona, V. M.

    2015-03-01

    Atomic hydrogen was extensively studied in the past due to its obvious fundamental aspect. Also, quite few investigations were dedicated to atomic hydrogen sources because the results of experimental investigations on systems involving H would provide very rigorous tests for theoretical models. But even if atomic hydrogen sources are currently widespread in experimental physics, their uses in experiments on collisions are still very challenging mainly due to threefold problem. First, there is the difficulty to create H in the laboratory in sufficiently large number densities. Second, there is the strain to adjust the velocities of the produced atomic hydrogens. And third, there is the toil to control the internal energies of these atomic hydrogens. We will present an outline of different techniques using atomic hydrogen sources in collisions, which could be found in the literatures, such as merged-beam technique, gas cell technique, and trap, and propose an experiment scheme using a turn-key atomic hydrogen source that experiments such as charge transfer could benefit from. This work is supported by the National Science Foundation under Grant No. PHY-1068877.

  20. ENergy and Power Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    In the late 1970s, national and international attention began to focus on energy issues. Efforts were initiated to design and test analytical tools that could be used to assist energy planners in evaluating energy systems, particularly in developing countries. In 1984, the United States Department of Energy (DOE) commissioned Argonne National Laboratory`s Decision and Information Sciences Division (DIS) to incorporate a set of analytical tools into a personal computer-based package for distribution in developing countries. The package developed by DIS staff, the ENergy and Power Evaluation Program (ENPEP), covers the range of issues that energy planners must face: economic development, energy demand projections, supply-and-demand balancing, energy system expansion, and environmental impact analysis. Following the original DOE-supported development effort, the International Atomic Energy Agency (IAEA), with the assistance from the US Department of State (DOS) and the US Department of Energy (DOE), provided ENPEP training, distribution, and technical support to many countries. ENPEP is now in use in over 60 countries and is an international standard for energy planning tools. More than 500 energy experts have been trained in the use of the entire ENPEP package or some of its modules during the international training courses organized by the IAEA in collaboration with Argonne`s Decision and Information Sciences (DIS) Division and the Division of Educational Programs (DEP). This report contains the ENPEP program which can be download from the internet. Described in this report is the description of ENPEP Program, news, forums, online support and contacts.

  1. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    DEFF Research Database (Denmark)

    van der Heijden, Nadine J.; Smith, Daniel; Calogero, Gaetano

    2016-01-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images...... as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Delta f(z) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene...

  2. Can atom-surface potential measurements test atomic structure models?

    Science.gov (United States)

    Lonij, Vincent P A; Klauss, Catherine E; Holmgren, William F; Cronin, Alexander D

    2011-06-30

    van der Waals (vdW) atom-surface potentials can be excellent benchmarks for atomic structure calculations. This is especially true if measurements are made with two different types of atoms interacting with the same surface sample. Here we show theoretically how ratios of vdW potential strengths (e.g., C₃(K)/C₃(Na)) depend sensitively on the properties of each atom, yet these ratios are relatively insensitive to properties of the surface. We discuss how C₃ ratios depend on atomic core electrons by using a two-oscillator model to represent the contribution from atomic valence electrons and core electrons separately. We explain why certain pairs of atoms are preferable to study for future experimental tests of atomic structure calculations. A well chosen pair of atoms (e.g., K and Na) will have a C₃ ratio that is insensitive to the permittivity of the surface, whereas a poorly chosen pair (e.g., K and He) will have a ratio of C₃ values that depends more strongly on the permittivity of the surface.

  3. Atom optics with Rydberg states in inhomogeneous electric fields

    Science.gov (United States)

    Kritsun, Oleg Anton

    Atom optics has become subject of intense investigation in recent years. Control of atomic motion is of great importance in atomic physics and applications like lithography or nanofabrication. Neutral atoms are not affected greatly by magnetic or electric field as they don't have a charge or large magnetic and electric moments. But by exciting a neutral atom to a high Rydberg state it is possible to increase its electric moment considerably. The purpose of this thesis is to demonstrate experimentally and theoretically the possibility of creating atom optical elements for the beam of neutral atoms based on the polarizability of highly excited states in an electric field. First this work will present a review of the basic concepts that are used for atom optics and also a discussion of the progress to date in realizations of the neutral atom manipulation techniques. In our earlier experiments deflection and beam-splitting was demonstrated for a beam of neutral Lithium atoms excited in a three-step scheme [3.5, 3.6]. In later experiments, metastable Helium was excited from 23S state to the 33P state using lambda = 389 nm light, and then to the 25--30 S or D states using lambda = 785--815 nm light. Because this was a two-step excitation and it had the higher laser power in the last step, this method increased the percentage of excited atoms by a factor close to 103 compared to the Lithium experiment. Furthermore coherent excitation technique, Stimulated Raman Adiabatic Population Transfer (STIRAP), is investigated in this system, which allows a complete transfer of the atoms from 23S to the Rydberg states. STIRAP is also very tolerant of experimental imperfections such as intensity and frequency fluctuations, Doppler shifts, etc. and can be done with modest laser power. Efficient excitation enables us to do the following atom manipulations in inhomogeneous electric field [3.6, 4.42]. (1) Deflection and reflection; (2) Beam-splitting; (3) Collimation and focusing. Since

  4. NASA Space Radiation Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory is a NASA funded facility, delivering heavy ion beams to a target area where scientists...

  5. Lincoln Laboratory Grid

    Data.gov (United States)

    Federal Laboratory Consortium — The Lincoln Laboratory Grid (LLGrid) is an interactive, on-demand parallel computing system that uses a large computing cluster to enable Laboratory researchers to...

  6. Gun Dynamics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Gun Dynamics Laboratory is a research multi-task facility, which includes two firing bays, a high bay area and a second floor laboratory space. The high bay area...

  7. Denver District Laboratory (DEN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDEN-DO Laboratory is a multi-functional laboratory capable of analyzing most chemical analytes and pathogenic/non-pathogenic microorganisms found...

  8. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  9. Optical angular momentum and atoms.

    Science.gov (United States)

    Franke-Arnold, Sonja

    2017-02-28

    Any coherent interaction of light and atoms needs to conserve energy, linear momentum and angular momentum. What happens to an atom's angular momentum if it encounters light that carries orbital angular momentum (OAM)? This is a particularly intriguing question as the angular momentum of atoms is quantized, incorporating the intrinsic spin angular momentum of the individual electrons as well as the OAM associated with their spatial distribution. In addition, a mechanical angular momentum can arise from the rotation of the entire atom, which for very cold atoms is also quantized. Atoms therefore allow us to probe and access the quantum properties of light's OAM, aiding our fundamental understanding of light-matter interactions, and moreover, allowing us to construct OAM-based applications, including quantum memories, frequency converters for shaped light and OAM-based sensors.This article is part of the themed issue 'Optical orbital angular momentum'. © 2017 The Author(s).

  10. Optical nanofibres and neutral atoms

    CERN Document Server

    Nieddu, Thomas; Chormaic, Sile Nic

    2015-01-01

    Optical nanofibres are increasingly being used in cold atom experiments due to their versatility and the clear advantages they have when developing all-fibred systems for quantum technologies. They provide researchers with a method of overcoming the Rayleigh range for achieving high intensities in a focussed beam over a relatively long distance, and can act as a noninvasive tool for probing cold atoms. In this review article, we will briefly introduce the theory of mode propagation in an ultrathin optical fibre and highlight some of the more significant theoretical and experimental progresses to date, including the early work on atom probing, manipulation and trapping, the study of atom-dielectric surface interactions, and the more recent observation of nanofibre-mediated nonlinear optics phenomena in atomic media. The functionality of optical nanofibres in relation to the realisation of atom-photon hybrid quantum systems is also becoming more evident as some of the earlier technical challenges are surpassed ...

  11. Atomic iodine laser

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, G.A.; Gusinow, M.A.; Hays, A.K.; Padrick, T.D.; Palmer, R.E.; Rice, J.K.; Truby, F.K.; Riley, M.E.

    1978-05-01

    The atomic iodine photodissociation laser has been under intensive study for a number of years. The physics associated with this system is now well understood and it is possible to produce a 0.1 nsec (or longer) near-diffraction-limited laser pulse which can be amplified with negligible temporal distortion and little spatial deformation. The output of either a saturated or unsaturated amplifier consists of a high-fidelity near-diffraction-limited, energetic laser pulse. The report is divided into three chapters. Chapter 1 is a survey of the important areas affecting efficient laser operation and summarizes the findings of Chap. 2. Chapter 2 presents detailed discussions and evaluations pertinent to pumps, chemical regeneration, and other elements in the overall laser system. Chapter 3 briefly discusses those areas that require further work and the nature of the work required to complete the full-scale evaluation of the applicability of the iodine photodissociation laser to the inertial confinement program.

  12. A Transportable Gravity Gradiometer Based on Atom Interferometry

    Science.gov (United States)

    Yu, Nan; Thompson, Robert J.; Kellogg, James R.; Aveline, David C.; Maleki, Lute; Kohel, James M.

    2010-01-01

    A transportable atom interferometer-based gravity gradiometer has been developed at JPL to carry out measurements of Earth's gravity field at ever finer spatial resolutions, and to facilitate high-resolution monitoring of temporal variations in the gravity field from ground- and flight-based platforms. Existing satellite-based gravity missions such as CHAMP and GRACE measure the gravity field via precise monitoring of the motion of the satellites; i.e. the satellites themselves function as test masses. JPL's quantum gravity gradiometer employs a quantum phase measurement technique, similar to that employed in atomic clocks, made possible by recent advances in laser cooling and manipulation of atoms. This measurement technique is based on atomwave interferometry, and individual laser-cooled atoms are used as drag-free test masses. The quantum gravity gradiometer employs two identical atom interferometers as precision accelerometers to measure the difference in gravitational acceleration between two points (Figure 1). By using the same lasers for the manipulation of atoms in both interferometers, the accelerometers have a common reference frame and non-inertial accelerations are effectively rejected as common mode noise in the differential measurement of the gravity gradient. As a result, the dual atom interferometer-based gravity gradiometer allows gravity measurements on a moving platform, while achieving the same long-term stability of the best atomic clocks. In the laboratory-based prototype (Figure 2), the cesium atoms used in each atom interferometer are initially collected and cooled in two separate magneto-optic traps (MOTs). Each MOT, consisting of three orthogonal pairs of counter-propagating laser beams centered on a quadrupole magnetic field, collects up to 10(exp 9) atoms. These atoms are then launched vertically as in an atom fountain by switching off the magnetic field and introducing a slight frequency shift between pairs of lasers to create a moving

  13. Laboratory-acquired brucellosis

    DEFF Research Database (Denmark)

    Fabiansen, C.; Knudsen, J.D.; Lebech, A.M.

    2008-01-01

    Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9......Brucellosis is a rare disease in Denmark. We describe one case of laboratory-acquired brucellosis from an index patient to a laboratory technician following exposure to an infected blood culture in a clinical microbiology laboratory Udgivelsesdato: 2008/6/9...

  14. Life with Four Billion Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Thomas [Ginkgo Bioworks, Inc.

    2013-04-10

    Today it is commonplace to design and construct single silicon chips with billions of transistors. These are complex systems, difficult (but possible) to design, test, and fabricate. Remarkably, simple living systems can be assembled from a similar number of atoms, most of them in water molecules. In this talk I will present the current status of our attempts at full understanding and complexity reduction of one of the simplest living systems, the free-living bacterial species Mesoplasma florum. This 400 nm diameter cell thrives and replicates every 40 minutes with a genome of only 800 kilobases. Our recent experiments using transposon gene knockouts identified 354 of 683 annotated genes as inessential in laboratory culture when inactivated individually. While a functional redesigned genome will certainly not remove all of those genes, this suggests that roughly half the genome can be removed in an intentional redesign. I will discuss our recent knockout results and methodology, and our future plans for Genome re-engineering using targeted knock-in/knock-out double recombination; whole cell metabolic models; comprehensive whole cell metabolite measurement techniques; creation of plug-and-play metabolic modules for the simplified organism; inherent and engineered biosafety control mechanisms. This redesign is part of a comprehensive plan to lay the foundations for a new discipline of engineering biology. Engineering biological systems requires a fundamentally different viewpoint from that taken by the science of biology. Key engineering principles of modularity, simplicity, separation of concerns, abstraction, flexibility, hierarchical design, isolation, and standardization are of critical importance. The essence of engineering is the ability to imagine, design, model, build, and characterize novel systems to achieve specific goals. Current tools and components for these tasks are primitive. Our approach is to create and distribute standard biological parts

  15. Gaseous Electronics Tables, Atoms, and Molecules

    CERN Document Server

    Raju, Gorur Govinda

    2011-01-01

    With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most--if not all--of the properly classified experimental results that scientists, researchers,

  16. Atomic force microscopy in biomaterials surface science.

    Science.gov (United States)

    Variola, Fabio

    2015-02-07

    Recent progress in surface science, nanotechnology and biophysics has cast new light on the correlation between the physicochemical properties of biomaterials and the resulting biological response. One experimental tool that promises to generate an increasingly more sophisticated knowledge of how proteins, cells and bacteria interact with nanostructured surfaces is the atomic force microscope (AFM). This unique instrument permits to close in on interfacial events at the scale at which they occur, the nanoscale. This perspective covers recent developments in the exploitation of the AFM, and suggests insights on future opportunities that can arise from the exploitation of this powerful technique.

  17. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues.Sandia National Laboratories...

  18. FOOD SAFETY TESTING LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory develops screening assays, tests and modifies biosensor equipment, and optimizes food safety testing protocols for the military and civilian sector...

  19. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  20. Advanced Manufacturing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Manufacturing Laboratory at the University of Maryland provides the state of the art facilities for realizing next generation products and educating the...