WorldWideScience

Sample records for atomic physics experiments

  1. Atomic physics experiments with cooled stored ions

    Science.gov (United States)

    Schuch, Reinhold

    2004-10-01

    This presentation contains examples of recent atomic physics experiments with stored and cooled ion beams from the CRYRING facility in Stockholm. One of these experiments uses the high luminosity of a cooled MeV proton beam in a He COLTRIMS apparatus (COLd supersonic He gas-jet Target for Recoil Ion Momentum Spectroscopy) for measuring correlation effects in transfer ionization. Another class of experiments exploits the cold electron beam available in the CRYRING electron cooler and cooled heavy-ion beams for recombination experiments. A section concerns the still rather open question of the puzzling recombination enhancement over the radiative recombination theory. Dielectronic resonances at meV-eV energy are measured with a resolution in the order of 10-3-10-2 eV with highly charged ions stored at several hundreds of MeV kinetic energy in the ring. These resonances provide a serious challenge to theories for describing correlation, relativistic, QED effects, and isotope shifts in highly ionized ions. Applications of recombination rates with complex highly charged ions for fusion and astrophysical plasmas are shown.

  2. Atomic physics experiments with cooled stored ions

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, Reinhold E-mail: schuch@physto.se

    2004-10-11

    This presentation contains examples of recent atomic physics experiments with stored and cooled ion beams from the CRYRING facility in Stockholm. One of these experiments uses the high luminosity of a cooled MeV proton beam in a He COLTRIMS apparatus (COLd supersonic He gas-jet Target for Recoil Ion Momentum Spectroscopy) for measuring correlation effects in transfer ionization. Another class of experiments exploits the cold electron beam available in the CRYRING electron cooler and cooled heavy-ion beams for recombination experiments. A section concerns the still rather open question of the puzzling recombination enhancement over the radiative recombination theory. Dielectronic resonances at meV-eV energy are measured with a resolution in the order of 10{sup -3}-10{sup -2} eV with highly charged ions stored at several hundreds of MeV kinetic energy in the ring. These resonances provide a serious challenge to theories for describing correlation, relativistic, QED effects, and isotope shifts in highly ionized ions. Applications of recombination rates with complex highly charged ions for fusion and astrophysical plasmas are shown.

  3. Atomic physics experiments with stored cooled heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.

    1986-01-01

    The wide ranging interest in the development of heavy ion synchrotrons with electron beam cooling is evident from the number of projects presently under way. Although much of the initial motivation for these rings stemmed from nuclear and particle physics, a considerable amount of atomic physics experimentation is planned. This paper surveys some of the new opportunities in atomic physics which may be made available with storage ring systems. 25 refs., 3 tabs.

  4. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  5. Atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, A.E.; Kukla, K.; Cheng, S. [Univ. of Toledo, OH (United States)] [and others

    1995-08-01

    In a collaboration with the Atomic Physics group at Argonne and the University of Toledo, the Atomic Physics group at the University of Notre Dame is measuring the fine structure transition energies in highly-charged lithium-like and helium-like ions using beam-foil spectroscopy. Precise measurements of 2s-2p transition energies in simple (few-electron) atomic systems provide stringent tests of several classes of current atomic- structure calculations. Analyses of measurements in helium-like Ar{sup 16+} have been completed, and the results submitted for publication. A current goal is to measure the 1s2s{sup 3}S{sub 1} - 1s2p{sup 3}P{sub 0} transition wavelength in helium-like Ni{sup 26+}. Measurements of the 1s2s{sup 2}S{sub 1/2} - 1s2p{sup 2}P{sub 1/2,3/2} transition wavelengths in lithium-like Kr{sup 33+} is planned. Wavelength and lifetime measurements in copper-like U{sup 63+} are also expected to be initiated. The group is also participating in measurements of forbidden transitions in helium-like ions. A measurement of the lifetime of the 1s2s{sup 3}S{sub 1} state in Kr{sup 34+} was published recently. In a collaboration including P. Mokler of GSI, Darmstadt, measurements have been made of the spectral distribution of the 2E1 decay continuum in helium-like Kr{sup 34+}. Initial results have been reported and further measurements are planned.

  6. The physics of atoms and quanta introduction to experiments and theory

    CERN Document Server

    Haken, Hermann; Brewer, William D

    2000-01-01

    The Physics of Atoms and Quanta is a thorough introduction to experiments and theory in this field. Every classical and modern aspect is included and discussed in detail. The new edition is completely revised, new sections on atoms in strong electric fields and high magnetic fields complete the comprehensive coverage of all topics related to atoms and quanta. All new developments, such as new experiments on quantum entanglement, the quantum computer, quantum information, the Einstein-Podolsky-Rosen paradoxon, Bell's inequality, Schrödinger's cat, decoherence, Bose-Einstein-Condensation and the atom laser are discussed. Over 170 problems and their solutions help deepen the insight in this subject area and make this book a real study text. The second and more advanced book by the same authors entitled "Molecular Physics and Elements of Quantum Chemistry" is the completion of this unique textbook.

  7. Several atomic-physics issues connected with the use of neutral beams in fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Post, D.E.; Grisham, L.R.; Fonck, R.J.

    1982-08-01

    Energetic neutral beams are used for heating and diagnostics in present magnetic fusion experiments. They are also being considered for use in future large experiments. Atomic physics issues are important for both the production of the neutral beams and the interaction of the beams and the plasma. Interest in neutral beams based on negative hydrogen ions is growing, largely based on advances in producing high current ion sources. An extension of the negative ion approach has been the suggestion to use negative ions of Z > 1 elements, such as carbon and oxygen, to form high power neutral beams for plasma heating.

  8. An open source digital servo for atomic, molecular, and optical physics experiments.

    Science.gov (United States)

    Leibrandt, D R; Heidecker, J

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of (27)Al(+) in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  9. Optical and magnetic properties of a transparent garnet film for atomic physics experiments

    Directory of Open Access Journals (Sweden)

    Mari Saito

    2016-12-01

    Full Text Available We investigated the optical and magnetic properties of a transparent magnetic garnet with a particular focus on its applications to atomic physics experiments. The garnet film used in this study was a magnetically soft material that was originally designed for a Faraday rotator at optical communication wavelengths in the near infrared region. The film had a thickness of 2.1 μm and a small optical loss at a wavelength of λ=780 nm resonant with Rb atoms. The Faraday effect was also small and, thus, barely affected the polarization of light at λ=780 nm. In contrast, large Faraday rotation angles at shorter wavelengths enabled us to visualize magnetic domains, which were perpendicularly magnetized in alternate directions with a period of 3.6 μm. We confirmed the generation of an evanescent wave on the garnet film, which can be used for the optical observation and manipulation of atoms on the surface of the film. Finally, we demonstrated a magnetic mirror for laser-cooled Rb atoms using the garnet film.

  10. Optical and magnetic properties of a transparent garnet film for atomic physics experiments

    Science.gov (United States)

    Saito, Mari; Tajima, Ryoichi; Kiyosawa, Ryota; Nagata, Yugo; Shimada, Hiroyuki; Ishibashi, Takayuki; Hatakeyama, Atsushi

    2016-12-01

    We investigated the optical and magnetic properties of a transparent magnetic garnet with a particular focus on its applications to atomic physics experiments. The garnet film used in this study was a magnetically soft material that was originally designed for a Faraday rotator at optical communication wavelengths in the near infrared region. The film had a thickness of 2.1 μm and a small optical loss at a wavelength of λ =780 nm resonant with Rb atoms. The Faraday effect was also small and, thus, barely affected the polarization of light at λ =780 nm. In contrast, large Faraday rotation angles at shorter wavelengths enabled us to visualize magnetic domains, which were perpendicularly magnetized in alternate directions with a period of 3.6 μm. We confirmed the generation of an evanescent wave on the garnet film, which can be used for the optical observation and manipulation of atoms on the surface of the film. Finally, we demonstrated a magnetic mirror for laser-cooled Rb atoms using the garnet film.

  11. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    Science.gov (United States)

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  12. Physics of the atom

    CERN Document Server

    Wehr, Russell M; Adair, Thomas W

    1984-01-01

    The fourth edition of Physics of the Atom is designed to meet the modern need for a better understanding of the atomic age. It is an introduction suitable for students with a background in university physics and mathematical competence at the level of calculus. This book is designed to be an extension of the introductory university physics course into the realm of atomic physics. It should give students a proficiency in this field comparable to their proficiency in mechanics, heat, sound, light, and electricity.

  13. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  14. Zeeman effect and optical pumping in atomic rubidium: a teaching experiment in quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, R.J.; Adams, S.; Seddon, G.; Golby, J.A.; Massey, D.R.

    1987-01-01

    The authors describe an experiment developed recently in an undergraduate laboratory to measure the Zeeman splitting of the ground state of atomic rubidium. An optical pumping technique is employed and the magnetic field is calibrated by using free-electron spin resonance. Multiphoton absorption and power broadening of transitions are also investigated and a number of quantum principles introduced experimentally.

  15. Experiments with Ξ- atoms

    Science.gov (United States)

    Batty, C. J.; Friedman, E.; Gal, A.

    1999-01-01

    Experiments with Ξ- atoms are proposed in order to study the nuclear interaction of Ξ hyperons. The production of Ξ- in the (K-,K+) reaction, the Ξ- stopping in matter, and its atomic cascade are incorporated within a realistic evaluation of the results expected for Ξ- x-ray spectra across the periodic table, using an assumed Ξ-nucleus optical potential Vopt. Several optimal targets for measuring the strong-interaction shift and width of the x-ray transition to the ``last'' atomic level observed are singled out: F, Cl, I, and Pb. The sensitivity of these observables to the parameters of Vopt is considered. The relevance of such experiments is discussed in the context of strangeness -2 nuclear physics and multistrange nuclear matter. Finally, with particular reference to searches for the H dibaryon, the properties of Ξ-d atoms are also discussed. The role of Stark mixing and its effect on S and P state capture of Ξ- by the deuteron together with estimates of the resulting probability for producing the H dibaryon are considered in detail.

  16. Physics of Atoms and Molecules

    CERN Document Server

    Bransden, B H

    2003-01-01

    New edition of a well-established second and third year textbook for Physics degree students, covering the physical structure and behaviour of atoms and molecules. The aim of this new edition is to provide a unified account of the subject within an undergraduate framework, taking the opportunity to make improvements based on the teaching experience of users of the first edition, and cover important new developments in the subject.

  17. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    Science.gov (United States)

    Johns, H. M.; Lanier, N. E.; Kline, J. L.; Fontes, C. J.; Perry, T. S.; Fryer, C. L.; Brown, C. R. D.; Morton, J. W.; Hager, J. D.; Sherrill, M. E.

    2016-11-01

    We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi6O12 at 75 mg/cm3 density). We have determined that in the 50-200 eV Te range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for Te = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectral sensitivity to Te changes of ˜3 eV.

  18. Physics through the 1990s: Atomic, molecular and optical physics

    Science.gov (United States)

    1986-01-01

    The volume presents a program of research initiatives in atomic, molecular, and optical physics. The current state of atomic, molecular, and optical physics in the US is examined with respect to demographics, education patterns, applications, and the US economy. Recommendations are made for each field, with discussions of their histories and the relevance of the research to government agencies. The section on atomic physics includes atomic theory, structure, and dynamics; accelerator-based atomic physics; and large facilities. The section on molecular physics includes spectroscopy, scattering theory and experiment, and the dynamics of chemical reactions. The section on optical physics discusses lasers, laser spectroscopy, and quantum optics and coherence. A section elucidates interfaces between the three fields and astrophysics, condensed matter physics, surface science, plasma physics, atmospheric physics, and nuclear physics. Another section shows applications of the three fields in ultra-precise measurements, fusion, national security, materials, medicine, and other topics.

  19. Physics of non-steady state diffusion of lightweight atoms in a heavy atom matrix. Introducing an open-source tool for simulated-experiments in fluid mechanics

    CERN Document Server

    Serrano-López, Roberto; Tapia-Júdez, Oscar; Fradera, Jorge

    2013-01-01

    The practice-based learning methodologies offer to undergraduate professors different ways to illustrate certain general physic principles. Traditional experimental workbenches have been extensively used during decades for academic lessons in order to complete theoretical dissertations or lectures, aiming at assuring an adequate understanding. The high cost of materials and laboratory equipment, the excessive preparation time, and the difficulty for carrying out offsite-campus replications by students, are disadvantages that can discourage of trying new kinds of experimental tasks. This paper gives insight of simulated experiment possibilities through an open-source-based computational suite in teaching fluid mechanics. Physics underlying diffusion of a light specie in a heavier atom matrix, as function of time and position, were explained to students as an example to teach them the Fick's Second Law expression. We present a docent step-by-step programme, scheduled in three sessions. The expected solution is ...

  20. Atoms, molecules and optical physics

    CERN Document Server

    Hertel, Ingolf V

    2015-01-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginner...

  1. Contemporary Aspects of Atomic Physics

    Science.gov (United States)

    Knott, R. G. A.

    1972-01-01

    The approach generally used in writing undergraduate textbooks on Atomic and Nuclear Physics presents this branch as historical in nature. Describes the concepts of astrophysics, plasma physics and spectroscopy as contemporary and intriguing for modern scientists. (PS)

  2. Atomic physics and reality

    CERN Multimedia

    1985-01-01

    An account of the long standing debate between Niels Bohr and Albert Einstein regarding the validity of the quantum mechanical description of atomic phenomena.With physicts, John Wheeler (Texas), John Bell (CERN), David Rohm (London), Abner Shimony (Boston), Alain Aspect (Paris)

  3. Quantum Electronics for Atomic Physics

    CERN Document Server

    Nagourney, Warren

    2010-01-01

    Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics. The book covers the usual topics, such as Gaussian beams, cavities, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. It includes such practical matters as the enhancement of nonlinear processes in a build-up cavity, impedance matching into a cavity, laser frequencystabilization (including servomechanism theory), astigmatism in ring cavities, and atomic/molecular spectroscopic techniques

  4. SSPALS for atomic physics with positronium

    CERN Document Server

    Deller, Adam

    2016-01-01

    Single-shot positron annihilation lifetime spectroscopy (SSPALS) has proven an extremely useful tool for atomic physics experiments with positronium (Ps). Using a Monte-Carlo simulation, I examine methods employed to analyze lifetime spectra and explore the advantages and limitations these have in laser spectroscopy experiments, such as resonance-enhance multiphoton ionization (REMPI) or the production of Rydberg Ps.

  5. Physics of atomic nuclei

    CERN Document Server

    Zelevinsky, Vladimir

    2017-01-01

    This advanced textbook presents an extensive and diverse study of low-energy nuclear physics considering the nucleus as a quantum system of strongly interacting constituents. The contents guide students from the basic facts and ideas to more modern topics including important developments over the last 20 years, resulting in a comprehensive collection of major modern-day nuclear models otherwise unavailable in the current literature. The book emphasizes the common features of the nucleus and other many-body mesoscopic systems currently in the center of interest in physics. The authors have also included full problem sets that can be selected by lecturers and adjusted to specific interests for more advanced students, with many chapters containing links to freely available computer code. As a result, readers are equipped for scientific work in mesoscopic physics.

  6. Atoms, molecules and optical physics 1. Atoms and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter

    2015-09-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  7. Atomic Structure Theory Lectures on Atomic Physics

    CERN Document Server

    Johnson, Walter R

    2007-01-01

    Atomic Structure Theory is a textbook for students with a background in quantum mechanics. The text is designed to give hands-on experience with atomic structure calculations. Material covered includes angular momentum methods, the central field Schrödinger and Dirac equations, Hartree-Fock and Dirac-Hartree-Fock equations, multiplet structure, hyperfine structure, the isotope shift, dipole and multipole transitions, basic many-body perturbation theory, configuration interaction, and correlation corrections to matrix elements. Numerical methods for solving the Schrödinger and Dirac eigenvalue problems and the (Dirac)-Hartree-Fock equations are given as well. B-spline basis sets are used to carry out sums arising in higher-order many-body calculations. Illustrative problems are provided, together with solutions. FORTRAN programs implementing the numerical methods in the text are included.

  8. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  9. The Atomic and Nuclear Physics of Atomic EDMs

    Science.gov (United States)

    Chupp, Timothy

    2016-09-01

    Atomic Electric-Dipole-Moment (EDM) measurements employ low-energy atomic and precision-measurement techniques to measure the effects of elementary particle forces that affect the distribution of charge and mass in the nucleus, which is probed by the atomic electrons. Experiments and their interpretation strongly overlap atomic and nuclear physics in the experimental and theoretical problems presented. On the experimental side, the atomic EDM couples to electric fields while the magnetic dipole moment couples to magnetic fields requiring exquisite control and characerization of the magnetic fields. Measuring the tiny frequency shifts requires clock-comparisons and a large signal-to-noise ratio for frequency resolution much smaller than the linewidths, which are lmitied by observation times. To address the experimental challenges, I will discuss systematic effects related to magnetic fields and techniques of magnetometry and co-magntometery as well as optical pumping and related techniques that enhance signal-to-noise. I will also address the interpretation of atomic EDMs in terms of a set of low-energy parameters that relate to effective-field-theory coefficients, and I will empshaize the need for improved calculations from both atomic-theory and nuclear theory.

  10. Applications of Hubble Volume in Atomic Physics, Nuclear Physics, Particle Physics, Quantum Physics and Cosmic Physics

    Directory of Open Access Journals (Sweden)

    U. V. S. Seshavatharam

    2013-08-01

    Full Text Available In this paper an attempt is made to emphasize the major shortcomings of standard cosmology. It can be suggested that, the current cosmological changes can be understood by studying the atom and the atomic nucleus through ground based experiments. If light is coming from the atoms of the gigantic galaxy, then redshift can be interpreted as an index of the galactic atomic ‘light emission mechanism’. In no way it seems to be connected with ‘galaxy receding’. With ‘cosmological increasing (emitted photon energy’, observed cosmic redshift can be considered as a measure of the age difference between our galaxy and any observed galaxy. If it is possible to show that, (from the observer older galaxy’s distance increases with its ‘age’, then ‘galaxy receding’ and ‘accelerating universe’ concepts can be put for a revision at fundamental level. At any given cosmic time, the product of ‘critical density’ and ‘Hubble volume’ gives a characteristic cosmic mass and it can be called as the ‘Hubble mass’. Interesting thing is that, Schwarzschild radius of the ‘Hubble mass’ again matches with the ‘Hubble length’. Most of the cosmologists believe that this is merely a coincidence. At any given cosmic time,’Hubble length’ can be considered as the gravitational or electromagnetic interaction range. If one is willing to think in this direction, by increasing the number of applications of Hubble mass and Hubble volume in other areas of fundamental physics like quantum physics, nuclear physics, atomic physics and particle physics - slowly and gradually - in a progressive way, concepts of ‘Black hole Cosmology’ can be strengthened and can also be confirmed.

  11. Atomic physics and quantum optics using superconducting circuits.

    Science.gov (United States)

    You, J Q; Nori, Franco

    2011-06-29

    Superconducting circuits based on Josephson junctions exhibit macroscopic quantum coherence and can behave like artificial atoms. Recent technological advances have made it possible to implement atomic-physics and quantum-optics experiments on a chip using these artificial atoms. This Review presents a brief overview of the progress achieved so far in this rapidly advancing field. We not only discuss phenomena analogous to those in atomic physics and quantum optics with natural atoms, but also highlight those not occurring in natural atoms. In addition, we summarize several prospective directions in this emerging interdisciplinary field.

  12. Dynamical processes in atomic and molecular physics

    CERN Document Server

    Ogurtsov, Gennadi

    2012-01-01

    Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece

  13. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1993-01-01

    Advances in Atomic, Molecular, and Optical Physics, established in 1965, continues its tradition of excellence with Volume 32, published in honor of Founding Editor Sir David Bates upon his retirement as editorof the series. This volume presents reviews of topics related to the applications of atomic and molecular physics to atmospheric physics and astrophysics.

  14. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  15. The infancy of atomic physics Hercules in his cradle

    CERN Document Server

    Keller, Alex

    2006-01-01

    Atomic physics is a mighty Hercules that dominates modern civilization, promising immense reserves of power but threatening catastrophic war and radioactive pollution. The story of the atom's discovery and the development of techniques to harness its energy offers fascinating insights into the forces behind twenty-first-century technology. This compelling history portrays the human faces and lives behind the beginnings of atomic science.The Infancy of Atomic Physics ranges from experiments in the 1880s by William Crookes and others to the era just after the First World War, when Rutherford's f

  16. Project Physics Tests 5, Models of the Atom.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…

  17. Classical approach in atomic physics

    Science.gov (United States)

    Solov'ev, E. A.

    2011-12-01

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincaré section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormgroup symmetry, criterion of accuracy and so on are reviewed as well.

  18. Classical approach in atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Solov' ev, E.A. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2011-12-15

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)

  19. Atomic physics of relativistic high contrast laser-produced plasmas in experiments on Leopard laser facility at UNR

    Science.gov (United States)

    Safronova, A. S.; Kantsyrev, V. L.; Faenov, A. Y.; Safronova, U. I.; Wiewior, P.; Renard-Le Galloudec, N.; Esaulov, A. A.; Weller, M. E.; Stafford, A.; Wilcox, P.; Shrestha, I.; Ouart, N. D.; Shlyaptseva, V.; Osborne, G. C.; Chalyy, O.; Paudel, Y.

    2012-06-01

    The results of the recent experiments focused on study of x-ray radiation from multicharged plasmas irradiated by relativistic (I > 1019 W/cm2) sub-ps laser pulses on Leopard laser facility at NTF/UNR are presented. These shots were done under different experimental conditions related to laser pulse and contrast. In particular, the duration of the laser pulse was 350 fs or 0.8 ns and the contrast was varied from high (10-7) to moderate (10-5). The thin laser targets (from 4 to 750 μm) made of a broad range of materials (from Teflon to iron and molybden to tungsten and gold) were utilized. Using the x-ray diagnostics including the high-precision spectrometer with resolution R ˜ 3000 and a survey spectrometer, we have observed unique spectral features that are illustrated in this paper. Specifically, the observed L-shell spectra for Fe targets subject to high intensity lasers (˜1019 W/cm2) indicate electron beams, while at lower intensities (˜1016 W/cm2) or for Cu targets there is much less evidence for an electron beam. In addition, K-shell Mg features with dielectronic satellites from high-Rydberg states, and the new K-shell F features with dielectronic satellites including exotic transitions from hollow ions are highlighted.

  20. Atomic physics using large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Datz, S.

    1989-01-01

    This article surveys some areas of atomic physics using large electro-static accelerators. Brief overviews of ion-atom collisions and ion-solid collisions are followed by a classified listing of recent paper. A single line, correlated electron ion recombination, is chosen to show the recent development of techniques to study various aspects of this phenomenon. 21 refs., 11 figs., 1 tab.

  1. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  2. New results in atomic physics at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Schlachter, A.S.

    1995-01-01

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization.

  3. Advances in atomic physics an overview

    CERN Document Server

    Cohen-Tannoudji, Claude

    2011-01-01

    This book presents a comprehensive overview of the spectacular advances seen in atomic physics during the last 50 years. The authors explain how such progress was possible by highlighting connections between developments that occurred at different times. They discuss the new perspectives and the new research fields that look promising. The emphasis is placed, not on detailed calculations, but rather on physical ideas. Combining both theoretical and experimental considerations, the book will be of interest to a wide range of students, teachers and researchers in quantum and atomic physics.

  4. Atomic Physics, Science (Experimental): 5318.42.

    Science.gov (United States)

    Petit, Ralph E.

    Presented is the study of modern and classical concepts of the atom; the structure of the atom as a mass-energy relationship; practical uses of radioactivity; isotopes; and the strange particles. Performance objectives (16) are included as well as a detailed course outline. Experiments, demonstrations, projects and reports to enhance student…

  5. Atomic physics precise measurements and ultracold matter

    CERN Document Server

    Inguscio, Massimo

    2013-01-01

    Atomic Physics provides an expert guide to two spectacular new landscapes in physics: precision measurements, which have been revolutionized by the advent of the optical frequency comb, and atomic physics, which has been revolutionized by laser cooling. These advances are not incremental but transformative: they have generated a consilience between atomic and many-body physics, precipitated an explosion of scientific and technological applications, opened new areas of research, and attracted a brilliant generation of younger scientists. The research is advancing so rapidly, the barrage of applications is so dazzling, that students can be bewildered. For both students and experienced scientists, this book provides an invaluable description of basic principles, experimental methods, and scientific applications.

  6. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  7. Benchmarking Attosecond Physics with Atomic Hydrogen

    Science.gov (United States)

    2015-05-25

    Final 3. DATES COVERED (From - To) 12 Mar 12 – 11 Mar 15 4. TITLE AND SUBTITLE Benchmarking attosecond physics with atomic hydrogen 5a...AND SUBTITLE Benchmarking attosecond physics with atomic hydrogen 5a. CONTRACT NUMBER FA2386-12-1-4025 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Final Report for AOARD Grant FA2386-12-1-4025 “ Benchmarking

  8. Crucial Experiments in Quantum Physics.

    Science.gov (United States)

    Trigg, George L.

    The six experiments included in this monography are titled Blackbody Radiation, Collision of Electrons with Atoms, The Photoelectric Effect, Magnetic Properties of Atoms, The Scattering of X-Rays, and Diffraction of Electrons by a Crystal Lattice. The discussion provides historical background by giving description of the original experiments and…

  9. Essay: Fifty years of atomic, molecular and optical physics in Physical Review Letters.

    Science.gov (United States)

    Haroche, Serge

    2008-10-17

    The fiftieth anniversary of Physical Review Letters is a good opportunity to review the extraordinary progress of atomic, molecular, and optical physics reported in this journal during the past half-century. As both a witness and an actor of this story, I recall personal experiences and reflect about the past, present, and possible future of my field of research.

  10. Atomic, molecular, and optical physics charged particles

    CERN Document Server

    Dunning, F B

    1995-01-01

    With this volume, Methods of Experimental Physics becomes Experimental Methods in the Physical Sciences, a name change which reflects the evolution of todays science. This volume is the first of three which will provide a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics; the three volumes as a set will form an excellent experimental handbook for the field. The wide availability of tunable lasers in the pastseveral years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  11. Applied atomic and collision physics special topics

    CERN Document Server

    Massey, H S W; Bederson, Benjamin

    1982-01-01

    Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p

  12. Atomic-cascade experiment with detection of the recoil atom

    Energy Technology Data Exchange (ETDEWEB)

    Huelga, S.F. (Dept. de Fisica, Univ. de Oviedo (Spain)); Ferrero, M. (Dept. de Fisica, Univ. de Oviedo (Spain)); Santos, E. (Dept. de Fisica Moderna, Univ. de Cantabria (Spain))

    1994-07-20

    Bell's inequalities cannot be violated in atomic-cascade experiments, even with ideal apparatus, due to the three-body character of the atomic decay. Here we propose a new experiment that would block this loophole by means of a suitable selection of an ensemble of photon pairs. A threshold value for the quantum efficiency is found which may allow the discrimination between quantum mechanics and local-hidden-variables theories. Experimental requirements for performing such a test are discussed. (orig.).

  13. The impact of atomic precision measurements in high energy physics

    OpenAIRE

    Casalbuoni, Roberto

    2000-01-01

    In this talk I discuss the relevance of atomic physics in understanding some important questions about elementary particle physics. A particular attention is devoted to atomic parity violation measurements which seem to suggest new physics beyond the Standard Model. Atomic physics might also be relevant in discovering possible violations of the CPT symmetry.

  14. Handbook explaining the fundamentals of nuclear and atomic physics

    Science.gov (United States)

    Hanlen, D. F.; Morse, W. J.

    1969-01-01

    Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.

  15. Bayesian data analysis tools for atomic physics

    CERN Document Server

    Trassinelli, Martino

    2016-01-01

    We present an introduction to some concepts of Bayesian data analysis in the context of atomic physics. Starting from basic rules of probability, we present the Bayes' theorem and its applications. In particular we discuss about how to calculate simple and joint probability distributions and the Bayesian evidence, a model dependent quantity that allows to assign probabilities to different hypotheses from the analysis of a same data set. To give some practical examples, these methods are applied to two concrete cases. In the first example, the presence or not of a satellite line in an atomic spectrum is investigated. In the second example, we determine the most probable model among a set of possible profiles from the analysis of a statistically poor spectrum. We show also how to calculate the probability distribution of the main spectral component without having to determine uniquely the spectrum modeling. For these two studies, we implement the program Nested fit to calculate the different probability distrib...

  16. Precision Atomic Physics Techniques for Nuclear Physics with Radioactive Beams

    CERN Document Server

    Blaum, Klaus; Nörtershäuser, Wilfried

    2012-01-01

    Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins, and electromagnetic moments. Many fields in nuclear physics benefit from these highly accurate numbers. They give insight into details of the nuclear structure for a better understanding of the underlying effective interactions, provide important input for studies of fundamental symmetries in physics, and help to understand the nucleosynthesis processes that are responsible for the observed chemical abundances in the Universe. Penning-trap and and storage-ring mass spectrometry as well as laser spectroscopy of radioactive nuclei have now been used for a long time but significant progress has been achieved in these fields within the last decade. The basic principles of laser spectroscopic investigations, Penning-trap and storage-ring mass measurements of short-lived nuclei are summarized and selected physics results a...

  17. Quantum electronics for atomic physics and telecommunication

    CERN Document Server

    Nagourney, Warren G

    2014-01-01

    Nagourney provides a course in quantum electronics for researchers in atomic physics and other related areas (including telecommunications). The book covers the usual topics, such as Gaussian beams, optical cavities, lasers, non-linear optics, modulation techniques and fibre optics, but also includes a number of areas not usually found in a textbook on quantum electronics, such as the enhancement of non-linear processes in a build-up cavity or periodically poled waveguide, impedance matching into a cavity and astigmatism in ring cavities.

  18. Atomic, molecular, and optical physics electromagnetic radiation

    CERN Document Server

    Dunning, F B; Lucatorto, Thomas

    1997-01-01

    Combined with Volumes 29A and 29B, this volume is a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics, as well as an excellent experimental handbook for the field. Thewide availability of tunable lasers in the past several years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  19. Do atoms and anti-atoms obey the same laws of physics?

    CERN Multimedia

    Jeffrey Hangst

    2010-01-01

    ALPHA physicists have recently succeeded in trapping anti-atoms for the first time. Being able to hold on to the simplest atoms of antimatter is an important step towards the collaboration’s ultimate goal: precision spectroscopic comparison of hydrogen and antihydrogen. The question they are seeking to answer: do atoms and anti-atoms obey the same laws of physics? The Standard Model says that they must.   The ALPHA Collaboration celebrates the successful results. The ALPHA collaboration has taken it up a gear and trapped 38 atoms of antihydrogen for the first time. Antihydrogen atoms have been mass-produced at the Antiproton Decelerator (AD) since 2002, when ATHENA (ALPHA’s predecessor) and ATRAP learned how to mix clouds of antiprotons and positrons at cryogenic temperatures. However, these anti-atoms were not confined, and flew off in a few microseconds to meet their fate: annihilation with matter in the walls of the experiment. ALPHA uses antiprotons produced at...

  20. Atomic and nuclear physics an introduction

    CERN Document Server

    Littlefield, T A

    1979-01-01

    After the death of Dr. Littlefield it was decided that I should undertake the revision ofthe whole of Atomic and Nuclear Physics: an Introduction for the third edition, and it was soon apparent that major changes were necessary. I am confident that these changes would have had Dr. Littlefield's approval. The prime consideration for the present edition has been to modernize at a minimum cost. As much as possible of the second edition has therefore been retained, but where changes have been made they have been fairly drastic. Thus the chapters on fine structure, wave mechanics, the vector model of the atom, Pauli's principle and the Zeeman effect have been completely restructured. The chapters on nuclear models, cosmic rays, fusion systems and fundamental particles have been brought up to date while a new chapter on charm and the latest ideas on quarks has been included. It is hoped that the presentation of the last named will give readers a feeling that physics research can be full of adventure and surprises.

  1. I.I. Rabi Prize in Atomic, Molecular and Optical Physics Talk: Novel Quantum Physics in Few- and Many-body Atomic Systems

    Science.gov (United States)

    Chin, Cheng

    2011-05-01

    Recent cold atom researches are reaching out far beyond the realm that was conventionally viewed as atomic physics. Many long standing issues in other physics disciplines or in Gedanken-experiments are nowadays common targets of cold atom physicists. Two prominent examples will be discussed in this talk: BEC-BCS crossover and Efimov physics. Here, cold atoms are employed to emulate electrons in superconductors, and nucleons in nuclear reactions, respectively. The ability to emulate exotic or thought systems using cold atoms stems from the precisely determined, simple, and tunable interaction properties of cold atoms. New experimental tools have also been devised toward an ultimate goal: a complete control and a complete characterization of a few- or many-body quantum system. We are tantalizingly close to this major milestone, and will soon open new venues to explore new quantum phenomena that may (or may not!) exist in scientists' dreams.

  2. Physically representative atomistic modeling of atomic-scale friction

    Science.gov (United States)

    Dong, Yalin

    interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.

  3. Atomic Hong-Ou-Mandel experiment

    Science.gov (United States)

    Lopes, R.; Imanaliev, A.; Aspect, A.; Cheneau, M.; Boiron, D.; Westbrook, C. I.

    2015-04-01

    Two-particle interference is a fundamental feature of quantum mechanics, and is even less intuitive than wave-particle duality for a single particle. In this duality, classical concepts--wave or particle--are still referred to, and interference happens in ordinary space-time. On the other hand, two-particle interference takes place in a mathematical space that has no classical counterpart. Entanglement lies at the heart of this interference, as it does in the fundamental tests of quantum mechanics involving the violation of Bell's inequalities. The Hong, Ou and Mandel experiment is a conceptually simpler situation, in which the interference between two-photon amplitudes also leads to behaviour impossible to describe using a simple classical model. Here we report the realization of the Hong, Ou and Mandel experiment using atoms instead of photons. We create a source that emits pairs of atoms, and cause one atom of each pair to enter one of the two input channels of a beam-splitter, and the other atom to enter the other input channel. When the atoms are spatially overlapped so that the two inputs are indistinguishable, the atoms always emerge together in one of the output channels. This result opens the way to testing Bell's inequalities involving mechanical observables of massive particles, such as momentum, using methods inspired by quantum optics, and to testing theories of the quantum-to-classical transition. Our work also demonstrates a new way to benchmark non-classical atom sources that may be of interest for quantum information processing and quantum simulation.

  4. Electrostatic atomization--Experiment, theory and industrial applications

    Science.gov (United States)

    Okuda, H.; Kelly, Arnold J.

    1996-05-01

    Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle.

  5. Atomic frequency standard relativistic Doppler shift experiment

    Science.gov (United States)

    Peters, H. E.; Reinhardt, V. S.

    1974-01-01

    An experiment has been performed to measure possible space anisotropy as it would effect the frequency of a cesium atomic beam standard clock in a laboratory on earth due to motion relative to external coordinate frames. The cesium frequency was measured as a function of orientation with respect to an atomic hydrogen maser standard. Over a period of 34 days 101 measurements were made. The results are consistent with a conclusion that no general orientation dependance attributable to spacial anisotropy was observed. It is shown that both the airplane clock results, and the null results for the atomic beam clock, are consistent with Einstein general or special relativity, or with the Lorentz transformations alone.

  6. Materials International Space Station Experiment-6 (MISSE-6) Atomic Oxygen Fluence Monitor Experiment

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K.; Waters, Deborah L.

    2010-01-01

    An atomic oxygen fluence monitor was flown as part of the Materials International Space Station Experiment-6 (MISSE-6). The monitor was designed to measure the accumulation of atomic oxygen fluence with time as it impinged upon the ram surface of the MISSE 6B Passive Experiment Container (PEC). This was an active experiment for which data was to be stored on a battery-powered data logger for post-flight retrieval and analysis. The atomic oxygen fluence measurement was accomplished by allowing atomic oxygen to erode two opposing wedges of pyrolytic graphite that partially covered a photodiode. As the wedges of pyrolytic graphite erode, the area of the photodiode that is illuminated by the Sun increases. The short circuit current, which is proportional to the area of illumination, was to be measured and recorded as a function of time. The short circuit current from a different photodiode, which was oriented in the same direction and had an unobstructed view of the Sun, was also to be recorded as a reference current. The ratio of the two separate recorded currents should bear a linear relationship with the accumulated atomic oxygen fluence and be independent of the intensity of solar illumination. Ground hyperthermal atomic oxygen exposure facilities were used to evaluate the linearity of the ratio of short circuit current to the atomic oxygen fluence. In flight, the current measurement circuitry failed to operate properly, thus the overall atomic oxygen mission fluence could only be estimated based on the physical erosion of the pyrolytic graphite wedges. The atomic oxygen fluence was calculated based on the knowledge of the space atomic oxygen erosion yield of pyrolytic graphite measured from samples on the MISSE 2. The atomic oxygen fluence monitor, the expected result and comparison of mission atomic oxygen fluence based on the erosion of the pyrolytic graphite and Kapton H atomic oxygen fluence witness samples are presented in this paper.

  7. Atomic parity violation as a probe of new physics

    Science.gov (United States)

    Marciano, William J.; Rosner, Jonathan L.

    1990-12-01

    Effects of physics beyond the standard model on electroweak observables ares studied using the Peskin-Takeuchi isospin-conserving, S, and -breaking, T, parametrization of ``new'' quantum loop corrections. Experimental constraints on S and T are presented. Atomic parity-violating experiments are shown to be particularly sensitive to S with existing data giving S=-2.7+/-2.0+/-1.1. That constraint has important implications for generic technicolor models which predict S~=0.1NTND (NT is the number of technicolors, ND is the number of technidoublets).

  8. A Laser Stabilization System for Rydberg Atom Physics

    Science.gov (United States)

    2015-09-06

    A Laser Stabilization System for Rydberg Atom Physics We purchased 2 dual wavelength ultrastable ultralow expansion glass cavities along with optics...term locking could be achieved for 2 photon Rydberg atom excitation. Both systems were offset locked using a high bandwidth resonant electro-optic...Rydberg Atom Physics Report Title We purchased 2 dual wavelength ultrastable ultralow expansion glass cavities along with optics and electronics to

  9. Parity Violation Experiments with Rare Earth Atoms

    Science.gov (United States)

    Budker, Dmitry

    1997-10-01

    Since the first suggestions (V. A. Dzuba, V. V. Flambaum, and I. B. Khriplovich, Z. Phys. D1, 243 (1986).), (A. Gongora and P. G. H. Sandars, J. Phys. B 19, L291 (1986).) to search for parity violation in the rare earth atoms, experiments have been carried out by groups in Novosibirsk, Oxford, Hiroshima and Berkeley with Sm, Yb and Dy. The status of these experiments will be reviewed, with some details given on recent Berkeley Dy results ( A.-T. Nguyen, D. Budker, D. DeMille, and M. Zolotorev, Submitted to Phys. Rev. A.). Progress of the Berkeley Yb experiment ( D. DeMille, Phys. Rev. Lett. 74, 4165 (1995).), ( C.J. Bowers, D. Budker, E.D. Commins, D. DeMille, S.J. Freedman, A.-T. Nguyen, S.-Q. Shang, and M. Zolotorev, Phys. Rev. A 53, 3103-9(1996). ) will be described elsewhere at this meeting by C. J. Bowers et al.

  10. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server

    2013-01-01

    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  11. Atomic physics: A milestone in quantum computing

    Science.gov (United States)

    Bartlett, Stephen D.

    2016-08-01

    Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63

  12. Atomic physics: A strange kind of liquid

    Science.gov (United States)

    Laburthe-Tolra, Bruno

    2016-11-01

    Interactions between the magnetic dipoles of dysprosium atoms in an ultracold gas can produce a 'self-bound' droplet. This provides a useful isolated system for probing the quantum-mechanical properties of ultracold gases. See Letter p.259

  13. Solid Hydrogen Experiments for Atomic Propellants

    Science.gov (United States)

    Palaszewski, Bryan

    2001-01-01

    This paper illustrates experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their molecular structure transitions, and their agglomeration times were estimated. article sizes of 1.8 to 4.6 mm (0.07 to 0. 18 in.) were measured. The particle agglomeration times were 0.5 to 11 min, depending on the loading of particles in the dewar. These experiments are the first step toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  14. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  15. Strong interaction physics from hadronic atoms

    Science.gov (United States)

    Batty, C. J.; Friedman, E.; Gal, A.

    1997-08-01

    Hadronic atoms provide a unique laboratory for studying strong interactions and nuclear medium effects at zero kinetic energy. Previous results from analyses of strong-interaction data consisting of level shifts, widths and yields in π-, K -, p¯ and ∑ - atoms are reviewed. Recent results from fits to comprehensive sets of data in terms of density-dependent optical potentials that respect the low-density limit, where the interaction tends to the free hadron nucleon value, are discussed. The importance of using realistic nuclear density distributions is highlighted. The introduction of density dependence in most cases significantly improves the fit to the data and leads to some novel results. For K - atoms, a substantial attraction of order 200 MeV in nuclear matter is suggested, with interesting repercussions for K¯ condensation and the evolution of strangeness in high-density stars. For p¯ atoms it is found that a reasonable p-wave strength can be accommodated in the fitted optical potential, in agreement with the energy dependence observed for some low-energy p¯N reactions. For ∑ - atoms, the fitted potential becomes repulsive inside the nucleus, implying that Σ hyperons generally do not bind in nuclei in agreement with recent measurements. This repulsion significantly affects calculated masses of neutron stars.

  16. Sustained Spheromak Physics Experiment, SSPX

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B.

    1997-05-15

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T{sub e} = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ``gun`` into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T{sub e} measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T{sub e} of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime.

  17. Atomic physics with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  18. Atoms and molecules interacting with light atomic physics for the laser era

    CERN Document Server

    Straten, Peter van der

    2016-01-01

    This in-depth textbook with a focus on atom-light interactions prepares students for research in a fast-growing and dynamic field. Intended to accompany the laser-induced revolution in atomic physics, it is a comprehensive text for the emerging era in atomic, molecular and optical science. Utilising an intuitive and physical approach, the text describes two-level atom transitions, including appendices on Ramsey spectroscopy, adiabatic rapid passage and entanglement. With a unique focus on optical interactions, the authors present multi-level atomic transitions with dipole selection rules, and M1/E2 and multiphoton transitions. Conventional structure topics are discussed in some detail, beginning with the hydrogen atom and these are interspersed with material rarely found in textbooks such as intuitive descriptions of quantum defects. The final chapters examine modern applications and include many references to current research literature. The numerous exercises and multiple appendices throughout enable advanc...

  19. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  20. Atoms, molecules and photons An introduction to atomic-, molecular- and quantum-physics

    CERN Document Server

    Demtröder, Wolfgang

    2006-01-01

    This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in experimentation.

  1. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1995-01-01

    Praise for Previous Volumes"This volume maintains the authoritative standards of the series...The editors and publishers are to be congratulated"- M.S. CHILD in PHYSICS BULLETIN"Maintains the high standards of earlier volumes in the series...All the series are written by experts in the field, and their summaries are most timely...Strongly recommended."- G. HERZBERG in AMERICAN SCIENTIST

  2. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1997-01-01

    Praise for the Series""This volume maintains the authoritative standards of the series...The editors and publishers are to be congratulated.""--M.S. Child in Physics Bulletin""Maintains the high standards of earlier volumes in the series...All the articles are written by experts in the field, and their summaries are most timely...Strongly recommended.""--G. Herzberg in American Scientist

  3. Atomic Layer Thermopile Materials: Physics and Application

    Directory of Open Access Journals (Sweden)

    P. X. Zhang

    2008-01-01

    Full Text Available New types of thermoelectric materials characterized by highly anisotropic Fermi surfaces and thus anisotropic Seebeck coefficients are reviewed. Early studies revealed that there is an induced voltage in high TC oxide superconductors when the surface of the films is exposed to short light pulses. Subsequent investigations proved that the effect is due to anisotropic components of the Seebeck tensor, and the type of materials is referred to atomic layer thermopile (ALT. Our recent studies indicate that multilayer thin films at the nanoscale demonstrate enhanced ALT properties. This is in agreement with the prediction in seeking the larger figure of merit (ZT thermoelectric materials in nanostructures. The study of ALT materials provides both deep insight of anisotropic transport property of these materials and at the same time potential materials for applications, such as light detector and microcooler. By measuring the ALT properties under various perturbations, it is found that the information on anisotropic transport properties can be provided. The information sometimes is not easily obtained by other tools due to the nanoscale phase coexistence in these materials. Also, some remained open questions and future development in this research direction have been well discussed.

  4. The Common Elements of Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-26

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  5. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  6. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  7. Atoms, Molecules and Photons An Introduction to Atomic-, Molecular- and Quantum Physics

    CERN Document Server

    Demtröder, Wolfgang

    2010-01-01

    This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations. Completely revised new edition with new sections covering all actual developments, like x-ray optics, ion-cyclotron-resonance spectrometer, attosecond lasers, ultraprecission frequency measurement ...

  8. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    Science.gov (United States)

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…

  9. Einstein's physics atoms, quanta, and relativity : derived, explained, and appraised

    CERN Document Server

    Cheng, Ta-Pei

    2013-01-01

    Many regard Albert Einstein as the greatest physicist since Newton. What exactly did he do that is so important in physics? We provide an introduction to his physics at a level accessible to an undergraduate physics student. All equations are worked out in detail from the beginning. Einstein's doctoral thesis and his Brownian motion paper were decisive contributions to our understanding of matter as composed of molecules and atoms. Einstein was one of the founding fathers of quantum theory: his photon proposal through the investigation of blackbody radiation, his quantum theory of photoelectri

  10. Atomic physics with highly charged ions. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  11. Introduction to the physics of matter basic atomic, molecular, and solid-state physics

    CERN Document Server

    Manini, Nicola

    2014-01-01

    This book offers an up-to-date, compact presentation of basic topics in the physics of matter, from atoms to molecules to solids, including elements of statistical mechanics. The adiabatic separation of the motion of electrons and nuclei in matter and its spectroscopic implications are outlined for molecules and recalled regularly in the study of the dynamics of gases and solids. Numerous experiments are described and more than 160 figures give a clear visual impression of the main concepts. Sufficient detail of mathematical derivations is provided to enable students to follow easily. The focus is on present-day understanding and especially on phenomena fitting various independent-particle models. The historical development of this understanding, and phenomena such as magnetism and superconductivity, where interparticle interactions and nonadiabatic effects play a crucial role, are mostly omitted. A final outlook section stimulates the curiosity of the reader to pursue the study of such advanced topics in gra...

  12. Physical Origin of the Universal Three-body Parameter in Atomic Efimov Physics

    OpenAIRE

    2012-01-01

    We address the microscopic origin of the universal three-body parameter that fixes the spectrum of few-atom systems in the Efimov regime. We identify it with a nonadiabatic deformation of the three-atom system which occurs when three atoms come within the distance of the van der Waals length. This deformation explains the universal ratio of the scattering length at the triatomic resonance to the van der Waals length observed in several experiments and confirmed by numerical calculations.

  13. Atomic Force Microscopy: Theory and Experiment

    Science.gov (United States)

    Gould, Scot A. C.

    When the scanning tunnelling microscope (STM) was invented in 1980, it was hoped that all scientists would benefit from a device that could image surfaces with atomic resolution. Unfortunately while conductors and semiconductors could be imaged with the STM, the vast number of non-conductors, for examples, most ceramics, proteins and cells were virtually unobservable. With the invention of a new device, the atomic force microscope (AFM) suddenly scientists could image the topography of all samples, including non-conductors. The basic construction and operation of the AFM consists of placing a small probe at the end of a spring and measuring the deflection of the spring. Along with the STM, the AFM has revolutionized the study of surfaces in air, water and vacuum. This dissertation reports some of the work I have been involved in. Specifically: (1) building an AFM that used an STM to measure the deflection of the cantilever, (2) building an improved AFM that used an optical level to measure the deflection of the cantilever, microfabricated tips and a water cell, (3) adding a force modulation imaging mode for imaging the surface elasticity, (4) the creation of a theoretical model to help explain atomic imaging, and (5) the creation of image processing techniques that filter out noise inherent in the system and enhance the topographical features of the surface. Using these techniques, we have imaged and analyzed (1) the amino acid crystal DL-leucine and noted that the surface represents an extension of the bulk crystal, (2) imaged polyalanine demonstrating the ability of the microscope to image polymers with molecular resolution, (3) observed the process of blood clotting at the molecular level, (4) imaged important samples including germanium and graphite with atomic resolution and large scale objects including red and white blood cells with nanometer resolution, (5) imaged photographic film as an example of industrial quality control, (6) demonstrated through

  14. Introducing many-body physics using atomic spectroscopy

    CERN Document Server

    Krebs, Dietrich; Santra, Robin

    2013-01-01

    Atoms constitute relatively simple many-body systems, making them suitable objects for developing an understanding of basic aspects of many-body physics. Photoabsorption spectroscopy is a prominent method to study the electronic structure of atoms and the inherent many-body interactions. In this article the impact of many-body effects on well-known spectroscopic features such as Rydberg series, Fano resonances, Cooper minima, and giant resonances is studied, and related many-body phenomena in other fields are outlined. To calculate photoabsorption cross sections the time-dependent configuration interaction singles (TDCIS) model is employed. The conceptual clearness of TDCIS in combination with the compactness of atomic systems allows for a pedagogical introduction to many-body phenomena.

  15. Ultimate statistical physics: fluorescence of a single atom

    Science.gov (United States)

    Pomeau, Yves; Le Berre, Martine; Ginibre, Jean

    2016-10-01

    We discuss the statistics of emission of photons by a single atom or ion illuminated by a laser beam at the frequency of quasi-resonance between two energy levels, a situation that corresponds to real experiments. We extend this to the case of two laser beams resonant with the energy differences between two excited levels and the ground state (three level atom in V-configuration). We use a novel approach to this type of problem by considering a Kolmogorov equation for the probability distribution of the atomic state, which takes into account first the deterministic evolution of this state under the effect of the incoming laser beam and second the random emission of photons during the spontaneous decay of the excited state(s) to the ground state. This approach yields solvable equations in the two level atom case. For the three level atom case we set the problem and clearly define its frame. The results obtained are valid in both opposite limits of rare and frequent spontaneous decay, compared to the period of the optical Rabi oscillations due to the interaction between resonant excitation and atomic levels. Our analysis gives access to various statistical properties of the fluorescence light, including one showing that its fluctuations in time are not invariants under time reversal. This result makes evident the fundamentally irreversible character of quantum measurements, represented here by the emission of photons of fluorescence.

  16. Current experiments in particle physics, 1996

    CERN Document Server

    Lawrence Berkeley Nat. Laboratory. Berkeley; Lehár, F; Klioukhine, V I; Ryabov, Yu; Bilak, S V; Illarionova, N S; Khachaturov, B A; Strokovsky, E A; Hoffman, C M; Kettle, P R; Olin, A; Armstrong, F E

    1996-01-01

    Contains more than 1,800 experiments in elementary particle physics from the Experience database. Search and browse by author; title; experiment number or prefix; institution; date approved, started or completed; accelerator or detector; polarization, reaction, final state or particle; or by papers produced. Maintained at SLAC for the Particle Data Group. Supplies the information for Current Experiments in Particle Physics (LBL-91). Print version updated every second year.

  17. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  18. Classical Physics Experiments in the Amusement Park

    Science.gov (United States)

    Bagge, Sara; Pendrill, Ann-Marie

    2002-01-01

    An amusement park is a large physics laboratory, full of rotating and accelerated coordinate systems. The forces are experienced throughout the body and can be studied with simple equipment or with electronics depending on age and experience. In this paper, we propose adaptations of classical physics experiments for use on traditional rides.…

  19. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  20. Ultimate Statistical Physics: fluorescence of a single atom

    CERN Document Server

    Pomeau, Yves; Ginibre, Jean

    2016-01-01

    We discuss the statistics of emission of photons by a single atom or ion illuminated by a laser beam at the frequency of quasi-resonance between two energy levels, a situation that corresponds to real experiments. We extend this to the case of two laser beams resonant with the energy differences between two excited levels and the ground state (three level atom in V-configuration). We use a novel approach of this type of problem by considering Kolmogorov equation for the probability distribution of the atomic state which takes into account first the deterministic evolution of this state under the effect of the incoming laser beam and the random emission of photons during the spontaneous decay of the excited state(s) to the ground state. This approach yields solvable equations in the two level atom case. For the three level atom case we set the problem and define clearly its frame. The results obtained are valid both in the opposite limits of rare and of frequent spontaneous decay, compared to the period of the...

  1. Single atoms on demand for cavity QED experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, I.

    2007-09-06

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the

  2. Physics of the TALE Experiment

    Science.gov (United States)

    Thomson, G. B.

    The Telescope Array Low Energy Extension (TALE) Experiment consists of three detectors which will extend the sensitivity in energy of the Telescope Array (TA) experiment by two orders of magnitude, from 18.5experiment at all energies, and double it at the highest energies. The aim of the experiment is to study the second knee, the ankle, and the galactic/extragalactic transition. The three detectors start with a set of fluorescence detectors deployed in such a way that they are paired with TA fluorescence detectors at a separation of 6 km. These stereo pairs are designed to study the ankle of the cosmic ray spectrum in an optimal way. The second of the three is a "tower" detector, which is a fluorescence detector designed to have increased coverage in elevation angle, up to 71 degrees. This detector is designed to study the second knee of the spectrum. The third detector is an infill array to be added to TA within the aperture of the tower detector. This will make possible hybrid observation with the tower detector, and provide greatly improved reconstruction of lower energy events in purely surface detector mode.

  3. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia

    2002-01-01

    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  4. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  5. Customized Laboratory Experience in Physical Chemistry

    Science.gov (United States)

    Castle, Karen J.; Rink, Stephanie M.

    2010-01-01

    A new physical chemistry laboratory experience has been designed for upper-level undergraduate chemistry majors. Students customize the first 10 weeks of their laboratory experience by choosing their own set of experiments (from a manual of choices) and setting their own laboratory schedule. There are several topics presented in the accompanying…

  6. Landmark experiments in twentieth-century physics

    CERN Document Server

    Trigg, George L

    2011-01-01

    Physics is very much an experimental science, but too often, students at the undergraduate level are not exposed to the reality of experimental physics ― i.e., what was done in a given experiment, why it was done, the background of physics against which the experiment was carried out and the changes in theory and knowledge that resulted. In this hook, the author helps to remedy the situation by presenting a variety of ""landmark"" experiments that have brought about significant alterations in our ideas about some aspect of nature. Among these scientific milestones are discoveries about the wa

  7. Informal proposal for an Atomic Physics Facility at the National Synchrotron Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Johnson, B.M.; Meron, M.

    1986-01-01

    An Atomic Physics Facility (APF) for experiments that will use radiation from a superconducting wiggler on the NSLS X-13 port is described. The scientific justification for the APF is given and the elements of the facility are discussed. It is shown that it will be possible to conduct a uniquely varied set of experiments that can probe most aspects of atomic physics. A major component of the proposal is a heavy-ion storage ring capable of containing ions with energies of about 10 MeV/nucleon. The ring can be filled with heavy ions produced at the BNL MP Tandem Laboratory or from independent ion-source systems. A preliminary cost estimate for the facility is presented.

  8. High-performance laser power feedback control system for cold atom physics

    Institute of Scientific and Technical Information of China (English)

    Bo Lu; Thibault Vogt; Xinxing Liu; Xiaoji Zhou; Xuzong Chen

    2011-01-01

    @@ A laser power feedback control system that features fast response,large-scale performance,low noise,and excellent stability is presented.Some essential points used for optimization are described.Primary optical lattice experiments are given as examples to show the performance of this system.With these performance characteristics,the power control system is useful for applications in cold atom physics and precision measurements.%A laser power feedback control system that features fast response, large-scale performance, low noise, and excellent stability is presented. Some essential points used for optimization are described. Primary optical lattice experiments are given as examples to show the performance of this system. With these performance characteristics, the power control system is useful for applications in cold atom physics and precision measurements.

  9. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  10. Atomic and nuclear physics with stored particles in ion traps

    CERN Document Server

    Kluge, H J; Herfurth, F; Quint, W

    2002-01-01

    Trapping and cooling techniques play an increasingly important role in many areas of science. This review concentrates on recent applications of ion traps installed at accelerator facilities to atomic and nuclear physics such as mass spectrometry of radioactive isotopes, weak interaction studies, symmetry tests, determination of fundamental constants, laser spectroscopy, and spectroscopy of highly-charged ions. In addition, ion traps are proven to be extremely efficient devices for (radioactive) ion beam manipulation as, for example, retardation, accumulation, cooling, beam cleaning, charge-breeding, and bunching.

  11. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    Science.gov (United States)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  12. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  13. Forward Physics at the ATLAS experiment

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    Poster summarize forward physics at the ATLAS experiment. It aims to AFP project which is the project to install forward detectors at 220m (AFP220) and 420m (AFP420) around ATLAS for measurements at high luminosity.

  14. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  15. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  16. Intelsat solar array coupon atomic oxygen flight experiment

    Science.gov (United States)

    Koontz, S.; King, G.; Dunnet, A.; Kirkendahl, T.; Linton, R.; Vaughn, J.

    1994-05-01

    A Hughes communications satellite (INTELSAT series) belonging to the INTELSAT Organization was marooned in low-Earth orbit (LEO) on March 14, 1990, following failure of the Titan launch vehicle third stage to separate properly. The satellite, INTELSAT 6, was designed for service in geosynchronous orbit and contains several materials that are potentially susceptible to attack by atomic oxygen. Analysis showed that direct exposure of the silver interconnects in the satellite photovoltaic array to atomic oxygen in LEO was the key materials issue. Available data on atomic oxygen degradation of silver are limited and show high variance, so solar array configurations of the INTELSAT 6 type and individual interconnects were tested in ground-based facilities and during STS-41 (Space Shuttle Discovery, October 1990) as part of the ISAC flight experiment. Several materials for which little or no flight data exist were also tested for atomic oxygen reactivity. Dry lubricants, elastomers, and polymeric and inorganic materials were exposed to an oxygen atom fluence of 1.1 x 10(exp 20) atoms cm(exp 2). Many of the samples were selected to support Space Station Freedom design and decision making. This paper provides an overview of the ISAC flight experiment and a brief summary of results. In addition to new data on materials not before flown, ISAC provided data supporting the decision to rescue INTELSAT 6, which was successfully undertaken in May 1992.

  17. Computational challenges in atomic, molecular and optical physics.

    Science.gov (United States)

    Taylor, Kenneth T

    2002-06-15

    Six challenges are discussed. These are the laser-driven helium atom; the laser-driven hydrogen molecule and hydrogen molecular ion; electron scattering (with ionization) from one-electron atoms; the vibrational and rotational structure of molecules such as H(3)(+) and water at their dissociation limits; laser-heated clusters; and quantum degeneracy and Bose-Einstein condensation. The first four concern fundamental few-body systems where use of high-performance computing (HPC) is currently making possible accurate modelling from first principles. This leads to reliable predictions and support for laboratory experiment as well as true understanding of the dynamics. Important aspects of these challenges addressable only via a terascale facility are set out. Such a facility makes the last two challenges in the above list meaningfully accessible for the first time, and the scientific interest together with the prospective role for HPC in these is emphasized.

  18. The Physical Conditions of Atomic Gas at High Redshift

    Science.gov (United States)

    Neeleman, Marcel

    In this thesis we provide insight into the chemical composition, physical conditions and cosmic distribution of atomic gas at high redshift. We study this gas in absorption against bright background quasars in absorption systems known as Damped Ly-alpha Systems (DLAs). These systems contain the bulk of the atomic gas at high redshift and are the likely progenitors of modern-day galaxies. In Chapter 2, we find that the atomic gas in DLAs obeys a mass-metallicity relationship that is similar to the mass-metallicity relationship seen in star-forming galaxies. The evolution of this relationship is linear with redshift, allowing for a planar equation to accurately describe this evolution, which provides a more stringent constraint on simulations modeling DLAs. Furthermore, the concomitant evolution of the mass-metallicity relationship of atomic gas and star-forming galaxies suggests an intimate link between the two. We next use a novel way to measure the physical conditions of the gas by using fine-structure line ratios of singly ionized carbon and silicon. By measuring the density of the upper and lower level states, we are able to determine the temperature, hydrogen density and electron density of the gas. We find that the conditions present in this high redshift gas are consistent with the conditions we see in the local interstellar medium (ISM). A few absorbers have higher than expected pressure, which suggests that they probe the ISM of star-forming galaxies. Finally in Chapter 4, we measure the cosmic neutral hydrogen density at redshifts below 1.6. Below this redshift, the Ly-alpha line of hydrogen is absorbed by the atmosphere, making detection difficult. Using the archive of the Hubble Space Telescope, we compile a comprehensive list of quasars for a search of DLAs at redshift below 1.6. We find that the incidence rate of DLAs and the cosmic neutral hydrogen density is smaller than previously measured, but consistent with the values both locally and at

  19. Atomic, Molecular, and Optical Physics Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Jr., Lloyd [University of Southern California

    1997-09-21

    This document contains the final reports from the five panels that comprised a Workshop held to explore future directions, scientific impacts and technological connections of research in Atomic, Molecular and Optical Physics. This workshop was sponsored by the Department of Energy, Office of Basic Energy Sciences, Chemical Sciences Division and was held at the Westfields International Conference Center in Chantilly, Virginia on September 21-24, 1997. The workshop was chaired by Lloyd Armstrong, Jr., University of Southern California and the five panels focused on the following topics: Panel A: Interactions of Atoms and Molecules with Photons - Low Field Daniel Kleppner (Massachusetts Institute of Technology), chair Panel B: Interactions of Atoms and Molecules with Photons - High Field Phil Bucksbaum (University of Michigan), chair Panel C: Surface Interactions with Photons, Electrons, Ions, Atoms and Molecules J. Wayne Rabalais (University of Houston), chair Panel D: Theory of Structure and Dynamics Chris Greene (University of Colorado), chair Panel E: Nano- and Mesocopic Structures Paul Alivisatos (Lawrence Berkeley National Laboratory), chair The choice of focus areas reflects areas of significant interest to DOE/BES but is clearly not intended to span all fields encompassed by the designation of atomic, molecular and optical physics, nor even all areas that would be considered for review and funding under DOE’s AMOP program. In a similar vein, not all research that might be suggested under these topics in this report would be appropriate for consideration by DOE’s AMOP program. The workshop format included overview presentations from each of the panel chairs, followed by an intensive series of panel discussion sessions held over a two-day period. The panels were comprised of scientists from the U. S. and abroad, many of whom are not supported by DOE’s AMOP Program. This workshop was held in lieu of the customary “Contractors Meeting” held annually for

  20. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  1. Current Experiments in Particle Physics (September 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  2. Davisson-Germer Prize in Atomic or Surface Physics Lecture: Exploring Flatland with Cold Atoms

    Science.gov (United States)

    Dalibard, Jean

    2012-06-01

    A two-dimensional Bose fluid is a remarkably rich many-body system, which allows one to revisit several features of quantum statistical physics. Firstly, the role of thermal fluctuations is enhanced compared to the 3D case, which destroys the ordered state associated with Bose-Einstein condensation. However interactions between particles can still cause a superfluid transition, thanks to the Berezinskii-Kosterlitz-Thouless mechanism. Secondly, a weakly interacting Bose fluid in 2D must be scale-invariant, a remarkable feature that manifests itself in the very simple form taken by the equation of state of the fluid. In this talk I will present recent experimental progress in the investigation of 2D atomic gases, which provide a nice illustration of the main features of low dimensional many-body physics.

  3. Miniaturized lab system for future cold atom experiments in microgravity

    CERN Document Server

    Kulas, Sascha; Resch, Andreas; Hartwig, Jonas; Ganske, Sven; Matthias, Jonas; Schlippert, Dennis; Wendrich, Thijs; Ertmer, Wolfgang; Rasel, Ernst Maria; Damjanic, Marcin; Weßels, Peter; Kohfeldt, Anja; Luvsandamdin, Erdenetsetseg; Schiemangk, Max; Grzeschik, Christoph; Krutzik, Markus; Wicht, Andreas; Peters, Achim; Herrmann, Sven; Lämmerzahl, Claus

    2016-01-01

    We present the technical realization of a compact system for performing experiments with cold $^{87}{\\text{Rb}}$ and $^{39}{\\text{K}}$ atoms in microgravity in the future. The whole system fits into a capsule to be used in the drop tower Bremen. One of the advantages of a microgravity environment is long time evolution of atomic clouds which yields higher sensitivities in atom interferometer measurements. We give a full description of the system containing an experimental chamber with ultra-high vacuum conditions, miniaturized laser systems, a high-power thulium-doped fiber laser, the electronics and the power management. In a two-stage magneto-optical trap atoms should be cooled to the low $\\mu$K regime. The thulium-doped fiber laser will create an optical dipole trap which will allow further cooling to sub-$\\mu$K temperatures. The presented system fulfills the demanding requirements on size and power management for cold atom experiments on a microgravity platform, especially with respect to the use of an op...

  4. Miniaturized Lab System for Future Cold Atom Experiments in Microgravity

    Science.gov (United States)

    Kulas, Sascha; Vogt, Christian; Resch, Andreas; Hartwig, Jonas; Ganske, Sven; Matthias, Jonas; Schlippert, Dennis; Wendrich, Thijs; Ertmer, Wolfgang; Maria Rasel, Ernst; Damjanic, Marcin; Weßels, Peter; Kohfeldt, Anja; Luvsandamdin, Erdenetsetseg; Schiemangk, Max; Grzeschik, Christoph; Krutzik, Markus; Wicht, Andreas; Peters, Achim; Herrmann, Sven; Lämmerzahl, Claus

    2016-11-01

    We present the technical realization of a compact system for performing experiments with cold 87Rb and 39K atoms in microgravity in the future. The whole system fits into a capsule to be used in the drop tower Bremen. One of the advantages of a microgravity environment is long time evolution of atomic clouds which yields higher sensitivities in atom interferometer measurements. We give a full description of the system containing an experimental chamber with ultra-high vacuum conditions, miniaturized laser systems, a high-power thulium-doped fiber laser, the electronics and the power management. In a two-stage magneto-optical trap atoms should be cooled to the low μK regime. The thulium-doped fiber laser will create an optical dipole trap which will allow further cooling to sub- μK temperatures. The presented system fulfills the demanding requirements on size and power management for cold atom experiments on a microgravity platform, especially with respect to the use of an optical dipole trap. A first test in microgravity, including the creation of a cold Rb ensemble, shows the functionality of the system.

  5. Miniaturized Lab System for Future Cold Atom Experiments in Microgravity

    Science.gov (United States)

    Kulas, Sascha; Vogt, Christian; Resch, Andreas; Hartwig, Jonas; Ganske, Sven; Matthias, Jonas; Schlippert, Dennis; Wendrich, Thijs; Ertmer, Wolfgang; Maria Rasel, Ernst; Damjanic, Marcin; Weßels, Peter; Kohfeldt, Anja; Luvsandamdin, Erdenetsetseg; Schiemangk, Max; Grzeschik, Christoph; Krutzik, Markus; Wicht, Andreas; Peters, Achim; Herrmann, Sven; Lämmerzahl, Claus

    2017-02-01

    We present the technical realization of a compact system for performing experiments with cold 87Rb and 39K atoms in microgravity in the future. The whole system fits into a capsule to be used in the drop tower Bremen. One of the advantages of a microgravity environment is long time evolution of atomic clouds which yields higher sensitivities in atom interferometer measurements. We give a full description of the system containing an experimental chamber with ultra-high vacuum conditions, miniaturized laser systems, a high-power thulium-doped fiber laser, the electronics and the power management. In a two-stage magneto-optical trap atoms should be cooled to the low μK regime. The thulium-doped fiber laser will create an optical dipole trap which will allow further cooling to sub- μK temperatures. The presented system fulfills the demanding requirements on size and power management for cold atom experiments on a microgravity platform, especially with respect to the use of an optical dipole trap. A first test in microgravity, including the creation of a cold Rb ensemble, shows the functionality of the system.

  6. Status and perspectives of atomic physics research at GSI: The new GSI accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th. E-mail: t.stoehlker@gsi.de; Backe, H.; Beyer, H.F.; Bosch, F.; Braeuning-Demian, A.; Hagmann, S.; Ionescu, D.C.; Jungmann, K.; Kluge, H.-J.; Kozhuharov, C.; Kuehl, Th.; Liesen, D.; Mann, R.; Mokler, P.H.; Quint, W

    2003-05-01

    A short overview on the results of atomic physics research at the storage ring ESR is given followed by a presentation of the envisioned atomic physics program at the planned new GSI facility. The proposed new GSI facility will provide highest intensities of relativistic beams of both stable and unstable heavy nuclei - up to a Lorentz factor of 24. At those relativistic velocities, the energies of optical transitions, such as for lasers, are boosted into the X-ray region and the high-charge state ions generate electric and magnetic fields of exceptional strength. Together with high beam intensities a range of important experiments can be anticipated, for example electronic transitions in relativistic heavy-ion collisions such as dynamically induced e{sup +}e{sup -} pairs, test of quantum electrodynamics (QED) in strong fields, and ions and electrons in ultra-high intensity femtosecond laser fields.

  7. ALPHA experiment : limit on the charge of antihydrogen atom

    CERN Multimedia

    2016-01-01

    Antimatter continues to intrigue physicists due to its apparent absence in the observable universe. Current theory requires that matter and antimatter should have appeared in equal quantities after the Big Bang, but the Stan- dard Model offers no quantitative explanation for the apparent disappearance of half of the universe. It has recently become possible to study trapped atoms1–4 of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter.

  8. Atoms, molecules and optical physics 2. Molecules and photons - Spectroscopy and collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (Germany)

    2015-09-01

    This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  9. Constraints on proton structure from precision atomic physics measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S

    2004-08-10

    The ground-state hyperfine splittings in hydrogen and muonium are extremely well measured. The difference between them, after correcting for the different magnetic moments of the muon and proton and for reduced mass effects, is due solely to the structure of the proton - the large QED contributions for a pointlike nucleus essentially cancel. A major contribution to the rescaled hyperfine difference is proportional to the Zemach radius, a fundamental measure of the proton which can be computed as an integral over the product of the elastic electric and magnetic form factors of the proton. The remaining proton structure corrections, the polarization contribution from inelastic states in the spin-dependent virtual Compton amplitude and the proton size dependence of the relativistic recoil corrections, have small uncertainties. The resulting high precision determination of the Zemach radius (1.013 {+-} 0.016) fm from atomic physics provides an important constraint on fits to accelerator measurements of the proton electric and magnetic form factors. Conversely, the authors use the muonium data to extract an 'experimental' value for the QED corrections to the hyperfine splitting of hydrogenic atoms. There is a significant discrepancy between measurement and theory which is in the same direction as a corresponding discrepancy in positronium.

  10. Probing non-Hermitian physics with flying atoms

    Science.gov (United States)

    Wen, Jianming; Xiao, Yanhong; Peng, Peng; Cao, Wanxia; Shen, Ce; Qu, Weizhi; Jiang, Liang

    2016-05-01

    Non-Hermtian optical systems with parity-time (PT) symmetry provide new means for light manipulation and control. To date, most of experimental demonstrations on PT symmetry rely on advanced nanotechnologies and sophisticated fabrication techniques to manmade solid-state materials. Here, we report the first experimental realization of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, we observe essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold. Moreover, our system allows nonlocal interference of two spatially-separated fields as well as anti-PT assisted four-wave mixing. Besides, another intriguing feature offered by the system is refractionless (or unit-refraction) light propagation. Our results thus represent a significant advance in non-Hermitian physics by bridging a firm connection with the AMO field, where novel phenomena and applications in quantum and nonlinear optics aided by (anti-)PT symmetry can be anticipated.

  11. Constraints on proton structure from precision atomic physics measurements

    CERN Document Server

    Brodsky, S J; Hiller, J R; Hwang, D S

    2004-01-01

    The ground-state hyperfine splittings in hydrogen and muonium are extremely well measured. The difference between them, after correcting for the different magnetic moments of the muon and proton and for reduced mass effects, is due solely to the structure of the proton - the large QED contributions for a pointlike nucleus essentially cancel. A major contribution to the rescaled hyperfine difference is proportional to the Zemach radius, a fundamental measure of the proton which can be computed as an integral over the product of the elastic electric and magnetic form factors of the proton. The remaining proton structure corrections, the polarization contribution from inelastic states in the spin-dependent virtual Compton amplitude and the proton size dependence of the relativistic recoil corrections, have small uncertainties. The resulting high precision determination of the Zemach radius (1.013 +/- 0.016) fm from atomic physics provides an important constraint on fits to accelerator measurements of the proton ...

  12. Efimov Physics in a 6Li-133Cs Atomic Mixture

    Science.gov (United States)

    Johansen, Jacob; Feng, Lei; Parker, Colin; Chin, Cheng; Wang, Yujun

    2015-05-01

    We investigate Efimov physics based on three-body recombination in an atomic mixture of 6Li and 133Cs in the vicinity of interspecies Feshbach resonances at 843 and 889 G. This allows us to compare the loss spectra near different resonances and test the universality of Efimov states. Theoretically the Efimov spectrum near 889 G is expected to be similar to that near 843 G, except that the first resonance is absent near the former Feshbach resonance. This is due to the difference in the Cs-Cs scattering length near the two resonances: At 843 G it is negative, whereas at 889 G it is positive. Although it is primarily the Li-Cs interactions that lead to Efimov resonances, the Cs-Cs scattering length is expected to influence the spectrum. This work is supported by NSF and Chicago MRSEC.

  13. Difference-frequency combs in cold atom physics

    CERN Document Server

    Kliese, Russell; Puppe, Thomas; Rohde, Felix; Sell, Alexander; Zach, Armin; Leisching, Patrick; Kaenders, Wilhelm; Keegan, Niamh C; Bounds, Alistair D; Bridge, Elizabeth M; Leonard, Jack; Adams, Charles S; Cornish, Simon L; Jones, Matthew P A

    2016-01-01

    Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow to measure optical frequencies with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency $f_{\\rm ceo}$ and the pulse repetition-rate $f_{\\rm rep}$. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates $f_{\\rm ceo}$ by design - specifically tailored for applications in cold atom physics. An $f_{\\rm ceo}$-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fiber technology allow generation of multiple wavelength outputs. In this paper we discuss the frequency comb design, characterization, and optical...

  14. Symposium on Highlights from 14 years of LEAR Physics : "Atomic Physics" by E. Uggerhoj

    CERN Multimedia

    1998-01-01

    Symposium on Highlights from 14 years Physics hold at CERN, commemorating the closure of LEAR and giving a topical review of the impact of experiments with low energy antiprotons in their respective fields

  15. The Cold Atom Laboratory: a facility for ultracold atom experiments aboard the International Space Station

    Science.gov (United States)

    Aveline, David; CAL Team

    2016-05-01

    Spread across the globe there are many different experiments in cold quantum gases, enabling the creation and study of novel states of matter, as well as some of the most accurate inertial sensors currently known. The Cold Atom Laboratory (CAL), being built at NASA's Jet Propulsion Laboratory (JPL), will be a multi-user facility that will allow the first study of ultracold quantum gases in the microgravity conditions of the International Space Station (ISS). The microgravity environment offers a wealth of advantages for studies of cold atoms, including expansion into extremely weak traps and achieving unearthly cold temperatures. It will also enable very long interaction times with released samples, thereby enhancing the sensitivity of cold atom interferometry. We will describe the CAL mission objectives and the flight hardware architecture. We will also report our ongoing technology development for the CAL mission, including the first microwave evaporation to Bose-Einstein condensation (BEC) on a miniaturized atom chip system, demonstrated in JPL's CAL Ground Testbed. We will present the design, setup, and operation of two experiments that reliably generate and probe BECs and dual-species mixtures of Rb-87 and K-39 (or K-41). CAL is scheduled to launch to the ISS in 2017. The CAL mission is supported by NASA's SLPS and ISS-PO. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract with the National Aeronautics and Space Administration.

  16. Multifunctional radio-frequency generator for cold atom experiments

    Science.gov (United States)

    Wei, Chun-hua; Yan, Shu-hua

    2016-05-01

    We present a low cost radio-frequency (RF) generator suitable for experiments with cold atoms. The RF source achieves a sub-hertz frequency with tunable resolution from 0 MHz to 400 MHz and a maximum output power of 33 dBm. Based on a direct digital synthesizer (DDS) chip, we implement a ramping capability for frequency, amplitude and phase. The system can also operate as an arbitrary waveform generator. By measuring the stability in a duration of 600 s, we find the presented device performs comparably as Agilent33522A in terms of short-term stability. Due to its excellent performance, the RF generator has been already applied to cold atom trapping experiments.

  17. Thermal Sensitive Foils in Physics Experiments

    Science.gov (United States)

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  18. Physics Achievements from the Belle Experiment

    CERN Document Server

    Brodzicka, Jolanta; Chang, Paoti; Eidelman, Simon; Golob, Bostjan; Hayasaka, Kiyoshi; Hayashii, Hisaki; Iijima, Toru; Inami, Kenji; Kinoshita, Kay; Kwon, Youngjoon; Miyabayashi, Kenkichi; Mohanty, Gagan; Nakao, Mikihiko; Nakazawa, Hideyuki; Olsen, Stephen; Sakai, Yoshihide; Schwanda, Christoph; Schwartz, Alan; Trabelsi, Karim; Uehara, Sadaharu; Uno, Shoji; Watanabe, Yasushi; Zupanc, Anze

    2012-01-01

    The Belle experiment, running at the KEKB e+e- asymmetric energy collider during the first decade of the century, achieved its original objective of measuring precisely differences between particles and anti-particles in the B system. After collecting 1000 fb-1 of data at various Upsilon resonances, Belle also obtained the many other physics results described in this article.

  19. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  20. Diffraction grating characterisation for cold-atom experiments

    CERN Document Server

    McGilligan, James P; Riis, Erling; Arnold, Aidan S

    2016-01-01

    We have studied the optical properties of gratings micro-fabricated into semiconductor wafers, which can be used for simplifying cold-atom experiments. The study entailed characterisation of diffraction efficiency as a function of coating, periodicity, duty cycle and geometry using over 100 distinct gratings. The critical parameters of experimental use, such as diffraction angle and wavelength are also discussed, with an outlook to achieving optimal ultracold experimental conditions.

  1. Nuclear physics experiments with low cost instrumentation

    Science.gov (United States)

    Oliveira Bastos, Rodrigo; Adelar Boff, Cleber; Melquiades, Fábio Luiz

    2016-11-01

    One of the difficulties in modern physics teaching is the limited availability of experimental activities. This is particularly true for teaching nuclear physics in high school or college. The activities suggested in the literature generally symbolise real phenomenon, using simulations. It happens because the experimental practices mostly include some kind of expensive radiation detector and an ionising radiation source that requires special care for handling and storage, being subject to a highly bureaucratic regulation in some countries. This study overcomes these difficulties and proposes three nuclear physics experiments using a low-cost ion chamber which construction is explained: the measurement of 222Rn progeny collected from the indoor air; the measurement of the range of alpha particles emitted by the 232Th progeny, present in lantern mantles and in thoriated welding rods, and by the air filter containing 222Rn progeny; and the measurement of 220Rn half-life collected from the emanation of the lantern mantles. This paper presents the experimental procedures and the expected results, indicating that the experiments may provide support for nuclear physics classes. These practices may outreach wide access to either college or high-school didactic laboratories, and the apparatus has the potential for the development of new teaching activities for nuclear physics.

  2. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  3. Atomic physics with highly-charged heavy ions at the GSI future facility: The scientific program of the SPARC collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Gumberidze, A. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany)]. E-mail: a.gumberidze@gsi.de; Bosch, F. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Braeuning-Demian, A. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Hagmann, S. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Kuehl, Th. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Liesen, D. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden); Stoehlker, Th. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany)

    2005-05-01

    The proposed new international accelerator Facility for Antiproton and Ion Research (FAIR) will open up exciting and far-reaching perspectives for atomic physics research in the realm of highly-charged heavy ions: it will provide the highest intensities of relativistic beams of both stable and unstable heavy nuclei. In combination with the strongest possible electromagnetic fields produced by the nuclear charge of the heaviest nuclei, this will allow to extend atomic spectroscopy up to the virtual limits of atomic matter. Based on the experience and results already achieved at the experimental storage ring (ESR), a substantial progress in atomic physics research has to be expected in this domain, due to a tremendous improvement of intensity, energy and production yield of both stable and unstable nuclei.

  4. ELASR – An electrostatic storage ring for atomic and molecular physics at KACST

    Directory of Open Access Journals (Sweden)

    Mohamed O.A. El Ghazaly

    2015-01-01

    Full Text Available A new ELectrostAtic Storage Ring (ELASR has been designed and built at the King Abdulaziz City for Science and Technology (KACST, in Riyadh, Saudi Arabia. It was developed to be the core of a new storage ring laboratory for atomic and molecular physics at KACST. ELASR follows the standard design of the pioneering storage ring ELISA and it thereby features a racetrack single-bend shaped ring. Complementary simulation code packages were used to work out the design under the requirements of the projected experiments. This paper reports a short description of the ELASR storage ring through an overview of its design and construction.

  5. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Mitchell, Gianna G.; Yi, Grace T.; Guo, Aobo; Ashmeade, Claire C.; Roberts, Lily M.; McCarthy, Catherine E.; Sechkar, Edward A.

    2013-01-01

    Polymers and other oxidizable materials used on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded away by reaction with atomic oxygen (AO). For spacecraft design, it is important to know the LEO AO erosion yield, Ey (volume loss per incident oxygen atom), of materials susceptible to AO erosion. The Stressed Polymers Experiment was developed and flown as part of the Materials International Space Station Experiment 6 (MISSE 6) to compare the AO erosion yields of stressed and non-stressed polymers to determine if erosion is dependent upon stress while in LEO. The experiment contained 36 thin film polymer samples that were exposed to ram AO for 1.45 years. This paper provides an overview of the Stressed Polymers Experiment with details on the polymers flown, the characterization techniques used, the AO fluence, and the erosion yield results. The MISSE 6 data are compared to data for similar samples flown on previous MISSE missions to determine fluence or solar radiation effects on erosion yield.

  6. 2nd International School of Physics of Exotic Atoms "Ettore Majorana"

    CERN Document Server

    Duclos, J; Fiorentini, Giovanni; Torelli, Gabriele; Exotic atoms : fundamental interactions and structure of matter

    1980-01-01

    The second course of the International School on the Physics of Exotic Atoms took place at the "Ettore Majorana" Center for Scien­ tific Culture, Erice, Sicily, during the period from March 25 to April 5, 1979. It was attended by 40 participants from 23 insti­ tutes in 8 countries. The purpose of the course was to review the various aspects of the physics of exotic atoms, with particular emphasis on the re­ sults obtained in the last two years, i.e., after the first course of the School (Erice, April 24-30, 1977). The course dealt with two main topics, A) Exotic atoms and fundamental interactions and B) Applications to the study of the structure of matter. One of the aims of the course was to offer an opportunity for the exchange of experiences between scientists working in the two fields. In view of this, the lectures in the morning discussed the more general arguments in a common session, whereas the more specialized topics were treated in the afternoon, in two parallel sections. Section A was or...

  7. Flavour Physics with High-Luminosity Experiments

    CERN Document Server

    2016-01-01

    With the first dedicated B-factory experiments BaBar (USA) and BELLE (Japan) Flavour Physics has entered the phase of precision physics. LHCb (CERN) and the high luminosity extension of KEK-B together with the state of the art BELLE II detector will further push this precision frontier. Progress in this field always relied on close cooperation between experiment and theory, as extraction of fundamental parameters often is very indirect. To extract the full physics information from existing and future data, this cooperation must be further intensified. This MIAPP programme aims in particular to prepare for this task by joining experimentalists and theorists in the various relevant fields, with the goal to build the necessary tools in face of the challenge of new large data sets. The programme will begin with a focus on physics with non-leptonic final states, continued by semileptonic B meson decays and Tau decays, and on various aspects of CP symmetry violation closer to the end. In addition, in the final ...

  8. Status and perspectives of atomic physics research at GSI : The new GSI accelerator project

    NARCIS (Netherlands)

    Stolker, T; Backe, H; Beyer, HF; Brauning-Demian, A; Hagmann, S; Ionescu, DC; Jungmann, K; Kluge, HJ; Kozhuharov, C; Kuhl, T; Liesen, D; Mann, R; Mokler, PH; Quint, W; Bosch, F.M.

    2003-01-01

    A short overview on the results of atomic physics research at the storage ring ESR is given followed by a presentation of the envisioned atomic physics program at the planned new GSI facility. The proposed new GSI facility will provide highest intensities of relativistic beams of both stable and uns

  9. Laser cooling and trapping of atomic strontium for ultracold atom physics, high-precision spectroscopy and quantum sensors

    OpenAIRE

    Sorrentino, F.; Ferrari, G.; Poli, N.; Drullinger, R. E.; G. M. Tino

    2006-01-01

    This review describes the production of atomic strontium samples at ultra-low temperature and at high phase-space density, and their possible use for physical studies and applications. We describe the process of loading a magneto-optical trap from an atomic beam and preparing the sample for high precision measurements. Particular emphasis is given to the applications of ultracold Sr samples, spanning from optical frequency metrology to force sensing at micrometer scale.

  10. An Atomic Abacus: Trapped ion quantum computing experiments at NIST

    Science.gov (United States)

    Demarco, Brian

    2003-03-01

    Trapped atomic ions are an ideal system for exploring quantum information science because deterministic state preparation and efficient state detection are possible and coherent manipulation of atomic systems is relatively advanced. In our experiment, a few singly charged Be ions are confined by static and radio-frequency electric fields in a micro-machined linear Paul trap. The internal and motional states of the ions are coherently manipulated using applied laser light. Our current work focuses on demonstrating the necessary ingredients to produce a scalable quantum computing scheme and on simplifying and improving quantum logic gates. I will speak about a new set of experiments that was made possible by recent improvements in trap technology. A novel trap with multiple trapping regions was used to demonstrate the first steps towards a fully scalable quantum computing scheme. Single ions were ``shuttled" between trapping regions without disturbing the ion's motional and internal state, and two ions were separated from a single to two different trapping zones. Improvements in the trap manufacturing process has led to a reduction of nearly two orders of magnitude in the ion's motional heating rate, making possible two new improved logic gates. The first gate utilizes the wave-packet nature of the ions to tune the laser-atom interaction and achieve a controlled-NOT gate between a single ion's spin and motional states. The second, a two-ion phase gate, uses phase-space dynamics to produce a state-sensitive geometric phase. I will end with a quick look at experiments using a Mg ion to sympathetically cool a simultaneously trapped Be ion and a glimpse of the next generation of ions traps currently under construction.

  11. Chaotic dynamics and fractal structures in experiments with cold atoms

    Science.gov (United States)

    Daza, Alvar; Georgeot, Bertrand; Guéry-Odelin, David; Wagemakers, Alexandre; Sanjuán, Miguel A. F.

    2017-01-01

    We use tools from nonlinear dynamics for the detailed analysis of cold-atom experiments. A powerful example is provided by the recent concept of basin entropy, which allows us to quantify the final-state unpredictability that results from the complexity of the phase-space geometry. We show here that this enables one to reliably infer the presence of fractal structures in phase space from direct measurements. We illustrate the method with numerical simulations in an experimental configuration made of two crossing laser guides that can be used as a matter-wave splitter.

  12. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, Joseph J [Prism Computational Sciences

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’s PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for

  13. Atomic Spectral Line Broadening Bibliographic Database Physical Reference Data

    CERN Document Server

    Fuhr, J; National Institute of Standards and Technology. Gaithersburg

    This database contains approximately 800 recent references. These papers contain numerical data, general information, comments, and review articles and are part of the collection of the Data Center on Atomic Line Shapes and Shifts at NIST.

  14. Antiprotonic atom formation and spectroscopy-ASACUSA experiment at CERN-AD

    CERN Document Server

    Widmann, E

    1999-01-01

    This talk describes the experiments on atomic spectroscopy and atomic collisions as proposed by the ASACUSA collaboration for the forthcoming AD facility at CERN. They consist of high-precision spectroscopy of antiprotonic atoms, the study of anti-protonic atom formation processes, and stopping power and ionization measurements in low-pressure gases. (18 refs).

  15. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude

    2009-10-28

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  16. Physical scale experiments on torrential filter structures

    Science.gov (United States)

    Chiari, Michael; Moser, Markus; Trojer, Martin; Hübl, Johannes

    2016-04-01

    In the framework of the INTERREG Project "SedAlp" physical scale model experiments are carried out in the hydraulic laboratory of the Institute of Mountain Risk Engineering at the University of Life Sciences in Vienna in order to optimize torrent protection structures. Two different types of check dams are investigated. A screen-dam with inclined vertical beams is compared with a beam-dam with horizontal beams. The experiments evaluate the variation of sediment transport of these structures including the influence of coarse woody debris. Therefore the distance between the steel elements can be adjusted to show their ability to filter sediment. The physical scale of the experiments is 1:30. All experimental runs are Froude scaled. Both dams are tested in elongated and pear-shaped sediment retention basins in order to investigate the shape effect of the deposition area. For a systematic comparison of the two check dams experiments with fluvial bedload transport are made. First a typical hydrograph for an extreme flood with unlimited sediment supply is modelled. A typical torrential sediment mixture with a wide grain-size distribution is fed by a conveyor belt according the transport capacity of the upstream reach. Then the deposition is scanned with a laser-scan device in order to analyse the deposition pattern and the deposited volume. Afterwards a flood with a lower reoccurrence period without sediment transport from upstream is modelled to investigate the ability of the protection structure for self-emptying. To investigate the influence of driftwood on the deposition behaviour experiments with logs are made. Different log diameters and lengths are added upstream the basin. The results show, that the deposition during the experiments was not controlled by sorting-effects at the location of the dam. The deposition always started from upstream, where the transport capacity was reduced due to the milder slope and the widening of the basin. No grain sorting effects

  17. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, C.G. [ed.

    1995-12-31

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper.

  18. Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom

    Science.gov (United States)

    Unlu, Pervin

    2010-01-01

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of…

  19. International research work experience of young females in physics

    OpenAIRE

    Choi, Serene H. -J.; Funk, Maren; Roelofs, Susan H.; Alvarez-Elizondo, Martha B.; Nieminen, Timo A.

    2011-01-01

    International research work for young people is common in physics. However, work experience and career plan of female workers in physics are little studied. We explore them by interviewing three international female workers in physics.

  20. Skylab experiments. Volume 1: Physical science, solar astronomy

    Science.gov (United States)

    1973-01-01

    The basic subject of this volume is the solar astronomy program conducted on Skylab. In addition to descriptions of the individual experiments and the principles involved in their performance, a brief description is included of the sun and the energy characteristics associated with each zone. Wherever possible, related classroom activities have been identified and discussed in some detail. It will be apparent that the relationships rest not only in the field of solar astronomy, but also in the following subjects: (1) physics - optics, electromagnetic spectrum, atomic structure, etc.; (2) chemistry - emission spectra, kinetic theory, X-ray absorption, etc.; (3) biology - radiation and dependence on the sun; (4) electronics - cathode ray tubes, detectors, photomultipliers, etc.; (5) photography; (6) astronomy; and (7) industrial arts.

  1. Physics of leptoquarks in precision experiments and at particle colliders

    CERN Document Server

    Doršner, I; Greljo, A; Kamenik, J F; Košnik, N

    2016-01-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low energy observables such as electric dipole moments, (g-2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on LQ Yukawa interactions to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision mea...

  2. Thermal physics in the introductory physics course: Why and how to teach it from a unified atomic perspective

    Science.gov (United States)

    Reif, Frederick

    1999-12-01

    Heat and thermodynamics are traditionally taught in the introductory physics course from a predominantly macroscopic point of view. However, it is advantageous to adopt a more modern approach that systematically builds on students' knowledge of the atomic structure of matter and of elementary mechanics. By focusing on the essential physics without requiring more than elementary classical mechanics, this approach can be made sufficiently simple to be readily teachable during five or six weeks of an ordinary calculus-based introductory physics course. This approach can be highly unified, using atomic considerations to infer the properties of macroscopic systems while also enabling thermodynamic analyses independent of specific atomic models. Furthermore, this integrated point of view provides a deeper physical understanding of basic concepts (such as internal energy, heat, entropy, and absolute temperature) and of important phenomena (such as equilibrium, fluctuations, and irreversibility).

  3. Hadron Physics at the COMPASS Experiment

    CERN Document Server

    Krinner, Fabian

    2015-01-01

    Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98\\% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The COMPASS experiment at the CERN Super Proton Synchrotron has acquired large da...

  4. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    Science.gov (United States)

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  5. Infrasound Generation from the Source Physics Experiments

    Science.gov (United States)

    Preston, L. A.; Schramm, K. A.; Jones, K. R.

    2015-12-01

    Understanding the acoustic and infrasound source generation mechanisms from underground explosions is of great importance for usage of this unique data type in non-proliferation activities. One of the purposes of the Source Physics Experiments (SPE), a series of underground explosive shots at the Nevada National Security Site (NNSS), is to gain an improved understanding of the generation and propagation of physical signals, such as seismic and infrasound, from the near to far field. Two of the SPE shots (SPE-1 and SPE-4') were designed to be small "Green's Function" sources with minimal spall or permanent surface deformation. We analyze infrasound data collected from these two shots at distances from ~300 m to ~1 km and frequencies up to 20 Hz. Using weather models based upon actual observations at the times of these sources, including 3-D variations in topography, temperatures, pressures, and winds, we synthesized full waveforms using Sandia's moving media acoustic propagation simulation suite. Several source mechanisms were simulated and compared and contrasted with observed waveforms using full waveform source inversion. We will discuss results of these source inversions including the relative roll of spall from these small explosions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Upgrade Physics Prospects with the ATLAS Experiment

    CERN Document Server

    Martin, Victoria Jane; The ATLAS collaboration

    2016-01-01

    The High Luminosity run of the Large Hadron Collider (LHC) will start in 2026 and aims to collect $3000\\;\\mathrm{fb}^{-1}$ of proton-proton collisions by 2037. This enormous dataset will increase the discovery potential of the LHC and allow precision measurements of Standard Model processes. However, the very high instantaneous luminosity of $5-7 \\times 10^{34}\\;\\mathrm{cm^{-}2 s^{-1}}$ poses serious challenges in terms of high “pile-up” of 140 or 200 overlapping proton-proton collisions per bunch crossing inside the ATLAS detector. In this talk, I will summarise the planned ATLAS detector upgrades and the analysis techniques, including pile-up mitigation, for High Luminosity-LHC running. I will also present the physics prospects for the ATLAS experiment, including results for precision measurements of the $125\\;\\mathrm{GeV}$ Higgs boson and the top quark, for vector boson scattering and the physics reach for supersymmetric and other beyond-the-Standard-Models.

  7. A data readout approach for physics experiments

    Institute of Scientific and Technical Information of China (English)

    HUANG Xi-Ru; CAO Ping; GAO Li-Wei; ZHENG Jia-Jun

    2015-01-01

    With increasing physical event rates and the number of electronic channels,traditional readout schemes meet the challenge of improving readout speed caused by the limited bandwidth of the crate backplane.In this paper,a high-speed data readout method based on the Ethernet is presented to make each readout module capable of transmitting data to the DAQ.Features of exPlicitly parallel data transmitting and distributed network architecture give the readout system the advantage of adapting varying requirements of particle physics experiments.Furthermore,to guarantee the readout performance and flexibility,a standalone embedded CPU system is utilized for network protocol stack processing.To receive the customized data format and protocol from front-end electronics,a field programmable gate array (FPGA) is used for logic reconfiguration.To optimize the interface and to improve the data throughput between CPU and FPGA,a sophisticated method based on SRAM is presented in this paper.For the purpose of evaluating this high-speed readout method,a simplified readout module is designed and implemented.Test results show that this module can support up to 70 Mbps data throughput from the readout module to DAQ.

  8. The 'atom-splitting' moment of synthetic biology: Nuclear physics and synthetic biology share common features

    OpenAIRE

    Valentine, Alex J; Kleinert, Aleysia; Verdier, Jerome

    2012-01-01

    Synthetic biology and nuclear physics share many commonalities in terms of public perception and funding. Synthetic biologists could learn valuable lessons from the history of the atomic bomb and nuclear power.

  9. Summary of informal workshop on state of ion beam facilities for atomic physics research

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.

    1984-11-13

    The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

  10. Solid Hydrogen Experiments for Atomic Propellants: Image Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2002-01-01

    This paper presents the results of detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their agglomerates, and the total mass of hydrogen particles were estimated. Particle sizes of 1.9 to 8 mm (0.075 to 0.315 in.) were measured. The particle agglomerate sizes and areas were measured, and the total mass of solid hydrogen was computed. A total mass of from 0.22 to 7.9 grams of hydrogen was frozen. Compaction and expansion of the agglomerate implied that the particles remain independent particles, and can be separated and controlled. These experiment image analyses are one of the first steps toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  11. Physics Experiments at the Agesta Power Station

    Energy Technology Data Exchange (ETDEWEB)

    Apelqvist, G. [State Power Board, Stockholm (Sweden); Bliselius, P. Aa.; Blomberg, P.E.; Jonsson, E.; Aakerhielm, F. [AB Atomenergi, Nykoeping (Sweden)

    1966-09-15

    Part A. Dynamic measurements have been performed at the Aagesta reactor at power levels from 0.3 to 65 MW(th). The purposes of the experiments have been both to develop experimental methods and equipment for the dynamic studies and to measure the dynamic characteristics of the reactor in order to check the dynamic model. The experiments have been performed with four different perturbation functions: trapezoidal and step functions and two types of periodic multifrequency signals. Perturbations were introduced in the reactivity and in the load. The recordings were made of the responses of nuclear power, coolant inlet and outlet temperature and control rod position. The results are presented as step responses and transfer functions (Bode diagrams). Inmost cases the relative accuracy is {+-} 0.5 dB in amplitude and {+-} 5 deg in phase. The results from the experiments in general show rather good agreement with the results obtained from a dynamic model, which successively has been improved. Experience on reactor noise analysis based on measurements in the Agesta power reactor is discussed. It is shown that the noise measurements have given complementary dynamic information of the reactor. Part B. Static measurements of the physics parameters in the Agesta reactor are carried out to confirm theoretical methods for reactor calculations and to form a good basis for safe operation of the reactor. The reactivity worth of groups of control rods are determined with different methods and compared with calculations with the three-dimensional code HETERO. The excess reactivity as a function of burn up is obtained from the control rod positions. The temperature coefficient of the moderator is measured by lowering the moderator temperature at constant power and observing the change in control rod insertion. As burn up increases the experiments are repeated in order to follow the changes in the coefficient. The xenon poisoning effects are measured by changing the power level and

  12. Atomic and molecular physics in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Toburen, L.H.

    1990-09-01

    The spatial and temporal distributions of energy deposition by high-linear-energy-transfer radiation play an important role in the subsequent chemical and biological processes leading to radiation damage. Because the spatial structures of energy deposition events are of the same dimensions as molecular structures in the mammalian cell, direct measurements of energy deposition distributions appropriate to radiation biology are infeasible. This has led to the development of models of energy transport based on a knowledge of atomic and molecular interactions process that enable one to simulate energy transfer on an atomic scale. Such models require a detailed understanding of the interactions of ions and electrons with biologically relevant material. During the past 20 years there has been a great deal of progress in our understanding of these interactions; much of it coming from studies in the gas phase. These studies provide information on the systematics of interaction cross sections leading to a knowledge of the regions of energy deposition where molecular and phase effects are important and that guide developments in appropriate theory. In this report studies of the doubly differential cross sections, crucial to the development of stochastic energy deposition calculations and track structure simulation, will be reviewed. Areas of understanding are discussed and directions for future work addressed. Particular attention is given to experimental and theoretical findings that have changed the traditional view of secondary electron production for charged particle interactions with atomic and molecular targets.

  13. AGS experiments in nuclear/QCD physics at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  14. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    Science.gov (United States)

    Kempe, André; Lackner, Maximilian

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients.

  15. Manipulating atom and photon entanglement from 'thought experiments' to quantum information processing

    CERN Document Server

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    Composite quantum systems cannot generally be analysed as a juxtaposition of separate entities, each described by its own wave function. They are described instead by a global entangled state. Entanglement appears thus as an essential concept, lying at the heart of quantum physics. At a fundamental level it is closely related to non-locality, quantum measurement, complementarity and decoherence, concepts that the founding fathers of quantum physics have analysed in various 'thought experiments'. At a more applied level, the engineering of entanglement in systems of increasing complexity could in principle open the way to various kinds of fascinating quantum information processing applications (quantum cryptography, teleportation, quantum computation). The study of entanglement has recently evolved as a very competitive field of research, both theoretical and experimental. In quantum optics, entanglement has been studied with twin-photon beams, trapped ions and with atoms and photons in cavities. After a gener...

  16. Atomic physics with highly-charged ions at the future FAIR facility: A status report

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany) and Institut fuer Kernphysik, University of Frankfurt (Germany)]. E-mail: t.stoehlker@gsi.de; Beyer, H.F. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Braeuning, H. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Braeuning-Demian, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Brandau, C. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Hagmann, S. [Institut fuer Kernphysik, University of Frankfurt (Germany); Kozhuharov, C. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Kluge, H.J. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Kuehl, Th. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Liesen, D. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Mann, R. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Noertershaeuser, W. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Quint, W. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Schramm, U. [LMU, Munich (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden)

    2007-08-15

    Key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups, devoted to the realization of experimental equipments and set-ups required to reach the physics goals is given.

  17. Atomic physics with highly-charged ions at the future FAIR facility. A status report

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)]|[Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Beyer, H.F.; Braeuning, H. [Gesellschaft fuer Schwerionenforschung, Darmstadt (DE)] (and others)

    2006-11-15

    The key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups, devoted to the realization of experimental equipments and setups required to reach the physics goals is given. (orig.)

  18. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  19. Atom chip apparatus for experiments with ultracold rubidium and potassium gases

    Energy Technology Data Exchange (ETDEWEB)

    Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.; Pyle, A. J.; Sensharma, A.; Chase, B.; Field, J. P.; Garcia, A.; Aubin, S., E-mail: saaubi@wm.edu [Department of Physics, College of William and Mary, Williamsburg, Virginia 23187 (United States); Jervis, D. [Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2014-04-15

    We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.

  20. Atom chip apparatus for experiments with ultracold rubidium and potassium gases.

    Science.gov (United States)

    Ivory, M K; Ziltz, A R; Fancher, C T; Pyle, A J; Sensharma, A; Chase, B; Field, J P; Garcia, A; Jervis, D; Aubin, S

    2014-04-01

    We present a dual chamber atom chip apparatus for generating ultracold (87)Rb and (39)K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10(4) (87)Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold (39)K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.

  1. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    Science.gov (United States)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of

  2. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  3. Towards Relativistic Atomic Physics and Post-Minkowskian Gravitational Waves

    CERN Document Server

    Lusanna, Luca

    2009-01-01

    A review is given of the formulation of relativistic atomic theory, in which there is an explicit realization of the Poincare' generators, both in the inertial and in the non-inertial rest-frame instant form of dynamics in Minkowski space-time. This implies the need to solve the problem of the relativistic center of mass of an isolated system and to describe the transitions from different conventions for clock synchronization, namely for the identifications of instantaneous 3-spaces, as gauge transformations. These problems, stemming from the Lorentz signature of space-time, are a source of non-locality, which induces a spatial non-separability in relativistic quantum mechanics, with implications for relativistic entanglement. Then the classical system of charged particles plus the electro-magnetic field is studied in the framework of ADM canonical tetrad gravity in asymptotically Minkowskian space-times admitting the ADM Poincare' group at spatial infinity, which allows to get the general relativistic extens...

  4. Atomic physics with highly-charged heavy ions at the GSI future facility: The scientific program of the SPARC collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany)]. E-mail: t.stoehlker@gsi.de; Beier, T. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Beyer, H.F. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Bosch, F. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Braeuning-Demian, A. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Gumberidze, A. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Hagmann, S. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Kozhuharov, C. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Kuehl, Th. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Liesen, D. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Mann, R. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Mokler, P.H. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Quint, W. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden); Warczak, A. [Institute of Physics, Jagiellonian University, Cracow (Poland)

    2005-07-01

    In the current report a short overview about the envisioned program of the atomic physics research collaboration SPARC (Stored Particle Atomic Research Collaboration, at the new international accelerator Facility for Antiproton and Ion Research (FAIR) at GSI is given. In addition, a condensed description of the planned experimental areas devoted to atomic physics research at the new facility is presented.

  5. Game Port Physics Introductory Experiments in Linear Dynamics.

    Science.gov (United States)

    McInerney, Michael

    1984-01-01

    Describes physics experiments (including speed, acceleration, and acceleration due to gravity) in which students write programs to obtain and manipulate experimental data using the Atari microcomputer game port. The approach emphasizes the essential physics of the experiments while affording students useful experience of automatic data collection.…

  6. Critical Missing Equation of Quantum Physics for Understanding Atomic Structures

    OpenAIRE

    Huang, Xiaofei

    2013-01-01

    This paper presents an optimization approach to explain why and how a quantum system evolves from an arbitrary initial state to a stationary state, satisfying the time-independent Schr\\"{o}dinger equation. It also points out the inaccuracy of this equation, which is critial important in quantum mechanics and quantum chemistry, due to a fundamental flaw in it conflicting with the physical reality. The some directions are suggested on how to modify the equation to fix the problem

  7. Critical Missing Equation of Quantum Physics for Understanding Atomic Structures

    CERN Document Server

    Huang, Xiaofei

    2015-01-01

    This paper presents an optimization approach to explain why and how a quantum system evolves from an arbitrary initial state to a stationary state, satisfying the time-independent Schr\\"{o}dinger equation. It also points out the inaccuracy of this equation, which is critial important in quantum mechanics and quantum chemistry, due to a fundamental flaw in it conflicting with the physical reality. The some directions are suggested on how to modify the equation to fix the problem

  8. Heavy ion physics with the ALICE experiment at LHC

    CERN Document Server

    Zampolli, Chiara

    2007-01-01

    ALICE is the experiment at the LHC collider at CERN dedicated to heavy ion physics. In this report, the ALICE detector will be presented, together with its expected performance as far as some selected physics topics are concerned.

  9. Probing the Physical Conditions of Atomic Gas at High Redshift

    CERN Document Server

    Neeleman, Marcel; Wolfe, Arthur M

    2014-01-01

    A new method is used to measure the physical conditions of the gas in damped Lyman-alpha systems (DLAs). Using high resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper to lower fine-structure levels of the ground state of C II and Si II. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov Chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5 % of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ~100 cm-3 and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log(P/k) = 3.4 [K cm-3], which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsec. We sho...

  10. Laboratory plasma physics experiments using merging supersonic plasma jets

    CERN Document Server

    Hsu, S C; Merritt, E C; Adams, C S; Dunn, J P; Brockington, S; Case, A; Gilmore, M; Lynn, A G; Messer, S J; Witherspoon, F D

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$, sonic Mach number $M_s\\equiv V_{\\rm jet}/C_s>10$, jet diameter $=5$ cm, and jet length $\\approx 20$ cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  11. Characterization of an atomic hydrogen source for charge exchange experiments

    Science.gov (United States)

    Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; Brown, G. V.; Hell, N.; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; Porter, F. S.

    2016-11-01

    We characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  12. Physics for computer science students with emphasis on atomic and semiconductor physics

    CERN Document Server

    Garcia, Narciso

    1991-01-01

    This text is the product of several years' effort to develop a course to fill a specific educational gap. It is our belief that computer science students should know how a computer works, particularly in light of rapidly changing tech­ nologies. The text was designed for computer science students who have a calculus background but have not necessarily taken prior physics courses. However, it is clearly not limited to these students. Anyone who has had first-year physics can start with Chapter 17. This includes all science and engineering students who would like a survey course of the ideas, theories, and experiments that made our modern electronics age possible. This textbook is meant to be used in a two-semester sequence. Chapters 1 through 16 can be covered during the first semester, and Chapters 17 through 28 in the second semester. At Queens College, where preliminary drafts have been used, the material is presented in three lecture periods (50 minutes each) and one recitation period per week, 15 weeks p...

  13. PROBING THE PHYSICAL CONDITIONS OF ATOMIC GAS AT HIGH REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Neeleman, Marcel; Wolfe, Arthur M. [Department of Physics and Center for Astrophysics and Space Sciences, UCSD, La Jolla, CA 92093 (United States); Prochaska, J. Xavier, E-mail: mneeleman@physics.ucsd.edu [Department of Astronomy and Astrophysics, UCO/Lick Observatory, 1156 High Street, University of California, Santa Cruz, CA 95064 (United States)

    2015-02-10

    A new method is used to measure the physical conditions of the gas in damped Lyα systems (DLAs). Using high-resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper and lower fine-structure levels of the ground state of C{sup +} and Si{sup +}. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5% of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ∼100 cm{sup –3} and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log (P/k{sub B} ) = 3.4 (K cm{sup –3}), which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsecs. We show that the majority of the systems are consistent with having densities significantly higher than expected for a purely canonical warm neutral medium, indicating that significant quantities of dense gas (i.e., n {sub H} > 0.1 cm{sup –3}) are required to match observations. Finally, we identify eight systems with positive detections of Si II*. These systems have pressures (P/k{sub B} ) in excess of 20,000 K cm{sup –3}, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.

  14. Signals for Lorentz and CPT Violation in Atomic Spectroscopy Experiments and Other Systems

    CERN Document Server

    Vargas, Arnaldo J

    2016-01-01

    The prospects of studying nonminimal operators for Lorentz violation using spectroscopy experiments with light atoms and muon spin-precession experiments are presented. Possible improvements on bounds on minimal and nonminimal operators for Lorentz violation are discussed.

  15. Three-body systems in physics of cold atoms and halo nuclei

    CERN Document Server

    Ji, Chen

    2015-01-01

    Few-body systems, such as cold atoms and halo nuclei, share universal features at low energies, which are insensitive to the underlying inter-particle interactions at short ranges. These low-energy properties can be investigated in the framework of effective field theory with two-body and three-body contact interactions. I review the effective-field-theory studies of universal physics in three-body systems, focusing on the application in cold atoms and halo nuclei.

  16. Handbook of theoretical atomic physics data for photon absorption, electron scattering, and vacancies decay

    CERN Document Server

    Amusia, Miron Ya; Yarzhemsky, Victor

    2012-01-01

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomi...

  17. The Physics of Bird Flight: An Experiment

    Science.gov (United States)

    Mihail, Michael D.; George, Thomas F.; Feldman, Bernard J.

    2008-01-01

    This article describes an experiment that measures the forces acting on a flying bird during takeoff. The experiment uses a minimum of equipment and only an elementary knowledge of kinematics and Newton's second law. The experiment involves first digitally videotaping a bird during takeoff, analyzing the video to determine the bird's position as a…

  18. The Influence of Hands On Physics Experiments on Scientific Process Skills According to Prospective Teachers' Experiences

    Science.gov (United States)

    Hirça, Necati

    2013-01-01

    In this study, relationship between prospective science and technology teachers' experiences in conducting Hands on physics experiments and their physics lab I achievement was investigated. Survey model was utilized and the study was carried out in the 2012 spring semester. Seven Hands on physics experiments were conducted with 28 prospective…

  19. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  20. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  1. Forward physics at the ATLAS experiment

    CERN Document Server

    Ruzicka, Pavel; The ATLAS collaboration

    2010-01-01

    This contribution describes forward physics measurements possible to make with current ATLAS forward detectors including the upgrade project AFP. The aim of AFP is to tag very forward going protons at high luminosities.

  2. Quantum Dots: An Experiment for Physical or Materials Chemistry

    Science.gov (United States)

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  3. Current experiments in elementary particle physics, 1976-87

    CERN Document Server

    Lawrence Berkeley Nat. Laboratory. Berkeley

    Contains more than 1,800 experiments in elementary particle physics from the Experience database. Search and browse by author; title; experiment number or prefix; institution; date approved, started or completed; accelerator or detector; polarization, reaction, final state or particle; or by papers produced. Maintained at SLAC for the Particle Data Group. Supplies the information for Current Experiments in Particle Physics (LBL-91). Print version updated every second year.

  4. An Experiment on a Physical Pendulum and Steiner's Theorem

    Science.gov (United States)

    Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.

    2010-01-01

    Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…

  5. A New ECR Ion Source for Atomic Physics Research at IMP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new Electron Cyclotron Resonance (ECR) ion source (LECR3-Lanzhou Electron Cyclotron Resonance ion source No.3) was constructed this year. The main purpose of this source is to provide highly charged ion beams for atomic physics and surface physics research. The design of this ion source is based on the IMP 14.5 GHz ECR ion source (LECR2-Lanzhou Electron Cyclotron Resonance ion source No.2) with double RF heating

  6. Current experiments in elementary particle physics. Revision 1-85

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Grudtsin, S.N.; Ryabov, Yu.G.; Frosch, R.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  7. Theory of Neutrino-Atom Collisions: The History, Present Status, and BSM Physics

    Directory of Open Access Journals (Sweden)

    Konstantin A. Kouzakov

    2014-01-01

    Full Text Available An overview of the current theoretical studies on neutrino-atom scattering processes is presented. The ionization channel of these processes, which is studied in experiments searching for neutrino magnetic moments, is brought into focus. Recent developments in the theory of atomic ionization by impact of reactor antineutrinos are discussed. It is shown that the stepping approximation is well applicable for the data analysis practically down to the ionization threshold.

  8. Theory of Neutrino-Atom Collisions: The History, Present Status, and BSM Physics

    OpenAIRE

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2014-01-01

    An overview of the current theoretical studies on neutrino-atom scattering processes is presented. The ionization channel of these processes, which is studied in experiments searching for neutrino magnetic moments, is brought into focus. Recent developments in the theory of atomic ionization by impact of reactor antineutrinos are discussed. It is shown that the stepping approximation is well applicable for the data analysis practically down to the ionization threshold.

  9. Nuclear Physics Experiments with Ion Storage Rings

    CERN Document Server

    Litvinova, Yu A; Blaum, K; Bosch, F; Brandau, C; Chen, L X; Dillmann, I; Egelhof, P; Geissel, H; Grisenti, R E; Hagmann, S; Heil, M; Heinz, A; Kalantar-Nayestanaki, N; Knöbel, R; Kozhuharov, C; Lestinsky, M; Ma, X W; Nilsson, T; Nolden, F; Ozawa, A; Raabe, R; Reed, M W; Reifarth, R; Sanjari, M S; Schneider, D; Simon, H; Steck, M; Stöhlker, T; Sun, B H; Tu, X L; Uesaka, T; Walker, P M; Wakasugi, M; Weick, H; Winckler, N; Woods, P J; Xu, H S; Yamaguchi, T; Yamaguchi, Y; Zhang, Y H

    2013-01-01

    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.

  10. Do General Physics Textbooks Discuss Scientists' Ideas about Atomic Structure? A Case in Korea

    Science.gov (United States)

    Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho

    2013-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general…

  11. Designing Flight Experiments for Hypersonic Flow Physics

    OpenAIRE

    Longo, J.M.A.; Eggers, Th.; Gülhan, A.; Turner, J.; Weihs, H.

    2005-01-01

    A major problem of concen for the success of physical-modelling resides in the availability of experimental data for model validation, particularly in the hot hypersonic regime. In the past, validation data have been achieved as secondary product of expensive space-transportation programs. Since in the last ten years there has been almost no successfull program due to lack of investment, no new experimental data are available. According, a new trend is emerging for low cost technology vali...

  12. Learning Physics by Creating Problems: An Experiment

    CERN Document Server

    Kolarkar, Ameya S

    2016-01-01

    We investigated the effects of student-generated problems on exams. The process was gradual with some training throughout the semester. Initial results were highly positive with the students involved performing significantly better, and showing statistically significant improvement (t = 5.04) compared to the rest of the class, on average. Overall, performance improved when students generated problems. Motivation was a limiting factor. There is significant potential for improving student learning of physics and other problem-based topics.

  13. Minimum detection efficiency for a loophole-free atom-photon Bell experiment

    CERN Document Server

    Cabello, A; Cabello, Adan; Larsson, Jan-Ake

    2007-01-01

    In Bell experiments, one problem is to achieve high enough photo-detection to ensure that there is no possibility of describing the results via a local hidden-variable model. Using the Clauser-Horne inequality and a two-photon non-maximally entangled state, a photo-detection efficiency higher than 0.67 is necessary. Here we discuss atom-photon Bell experiments. We show that, assuming perfect detection efficiency of the atom, it is possible to perform a loophole-free atom-photon Bell experiment whenever the photo-detection efficiency exceeds 0.50.

  14. Multi-V-type and Λ-type electromagnetically induced transparency experiments in rubidium atoms with low-power low-cost free running single mode diode lasers

    Science.gov (United States)

    Lavín Varela, S.; León Suazo, J. A.; Gutierrez González, J.; Vargas Roco, J.; Buberl, T.; Aguirre Gómez, J. G.

    2016-05-01

    In this work we present the experimental realization of electromagnetically induced transparency (EIT) in A-type and multi-V-type configurations in a sample of rubidium atoms inside a vapor cell at room temperature. Typical EIT windows are clearly visible in the Doppler- broadened absorption signal of the weak probe beam. The coherent optical pump and probe fields are produced by two tunable low-cost, low-power, continuous-wave (cw), free-running and single mode operated diode laser systems, temperature stabilized and current controlled, tuned to the D2 line of rubidium atoms at 780.2 nm wavelength. The continuum wave and single mode operation of our laser systems are confirmed by direct and saturated absorption spectroscopy techniques. Among other applications, these simple experiments can be used as a low-cost undergraduate laboratory in atomic physics, laser physics, coherent light-atom interaction, and high resolution atomic spectroscopy.

  15. Clear evidence of charge conjugation and parity violation in K atoms from atomic permanent electric dipole moment experiments

    CERN Document Server

    You, Pei-Lin

    2008-01-01

    Quantum mechanics thinks that atoms do not have permanent electric dipole moment (EDM) because of their spherical symmetry. Therefore, there is no polar atom in nature except for polar molecules. The electric susceptibility Xe caused by the orientation of polar substances is inversely proportional to the absolute temperature T while the induced susceptibility of atoms is temperature independent. This difference in temperature dependence offers a means of separating the polar and non-polar substances experimentally. Using special capacitor our experiments discovered that the relationship between Xe of Potassium atom and T is just Xe=B/T, where the slope B is approximately 283(K) as polar molecules, but appears to be disordered using the traditional capacitor. Its capacitance C at different voltage V was measured. The C-V curve shows that the saturation polarization of K vapor has be observed when E more than 105V/m and nearly all K atoms (over 98.9 per cent) are lined up with the field! The ground state neutra...

  16. How Novel Algorithms and Access to High Performance Computing Platforms are Enabling Scientific Progress in Atomic and Molecular Physics

    Science.gov (United States)

    Schneider, Barry I.

    2016-10-01

    Over the past 40 years there has been remarkable progress in the quantitative treatment of complex many-body problems in atomic and molecular physics (AMP). This has happened as a consequence of the development of new and powerful numerical methods, translating these algorithms into practical software and the associated evolution of powerful computing platforms ranging from desktops to high performance computational instruments capable of massively parallel computation. We are taking the opportunity afforded by this CCP2015 to review computational progress in scattering theory and the interaction of strong electromagnetic fields with atomic and molecular systems from the early 1960’s until the present time to show how these advances have revealed a remarkable array of interesting and in many cases unexpected features. The article is by no means complete and certainly reflects the views and experiences of the author.

  17. Solution Calorimetry Experiments for Physical Chemistry.

    Science.gov (United States)

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  18. Physics with photons at the ATLAS experiment

    CERN Document Server

    Pérez-Réale, V

    2008-01-01

    ATLAS is a general-purpose detector due to start operation next year at the Large Hadron Collider (LHC). The LHC will collide pairs of protons at a centre-of-mass energy of 14 TeV, with a bunch-crossing frequency of 40 MHz, and luminosities up to L = 10^34 cm^-2s^-1. The identification of photons is crucial for the study of a number of physics channels, including the search for a Higgs boson decaying to photon pairs, and measurements of direct production of single photons and photon pairs. Events containing true high-p_T photons must be selected with high efficiency, while rejecting the bulk of high-p_T jet events produced with enormously larger rate through QCD processes. The photon--photon and photon--jet channels are interesting in their own right, allowing the study of QCD at high energy. It is also essential to understand these proceses as the dominant background in the search for certain new physics processes, notably the production and decay of Higgs bosons to photon pairs. There are large uncertaintin...

  19. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    CERN Document Server

    Hayano, R S

    2010-01-01

    Proceedings of the Japan Academy, Series B Vol. 86 (2010) No. 1 P 1-10 Language: Next Article http://dx.doi.org/10.2183/pjab.86.1 JST.JSTAGE/pjab/86.1 Reviews Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants Ryugo S. HAYANO1) 1) Department of Physics, The University of Tokyo Released 2010/01/14 Keywords: antiproton, CERN, fundamental physical constants, laser spectroscopy Full Text PDF [1604K] Abstracts References(25) Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended val...

  20. Shifting standards experiments in particle physics in the twentieth century

    CERN Document Server

    Franklin, Allan

    2013-01-01

    In Shifting Standards, Allan Franklin provides an overview of notable experiments in particle physics. Using papers published in Physical Review, the journal of the American Physical Society, as his basis, Franklin details the experiments themselves, their data collection, the events witnessed, and the interpretation of results. From these papers, he distills the dramatic changes to particle physics experimentation from 1894 through 2009.Franklin develops a framework for his analysis, viewing each example according to exclusion and selection of data; possible experimenter bias; details of the experimental apparatus; size of the data set, apparatus, and number of authors; rates of data taking along with analysis and reduction; distinction between ideal and actual experiments; historical accounts of previous experiments; and personal comments and style.From Millikan’s tabletop oil-drop experiment to the Compact Muon Solenoid apparatus measuring approximately 4,000 cubic meters (not including accelerators) and...

  1. Smashing physics inside the world's biggest experiment

    CERN Document Server

    Butterworth, Jon

    2014-01-01

    The discovery of the Higgs boson made headlines around the world. Two scientists, Peter Higgs and Francois Englert, whose theories predicted its existence, shared a Nobel Prize. The discovery was the culmination of the largest experiment ever run, the ATLAS and CMS experiments at CERN's Large Hadron Collider. But what really is a Higgs boson and what does it do? How was it found? And how has its discovery changed our understanding of the fundamental laws of nature? And what did it feel like to be part of it? Jon Butterworth is one of the leading physicists at CERN and this book is the first popular inside account of the hunt for the Higgs. It is a story of incredible scientific collaboration, inspiring technological innovation and ground-breaking science. It is also the story of what happens when the world's most expensive experiment blows up, of neutrinos that may or may not travel faster than light, and the reality of life in an underground bunker in Switzerland. This book will also leave you with a working...

  2. Physics and Its Multiple Roles in the International Atomic Energy Agency

    Science.gov (United States)

    Massey, Charles D.

    2017-01-01

    The IAEA is the world's centre for cooperation in the nuclear field. It was set up as the world's ``Atoms for Peace'' organization in 1957 within the United Nations family. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure and peaceful use of nuclear technologies. Three main areas of work underpin the IAEA's mission: Safety and Security, Science and Technology, and Safeguards and Verification. To carry out its mission, the Agency is authorized to encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world; foster the exchange of scientific and technical information on peaceful uses of atomic energy; and encourage the exchange of training of scientists and experts in the field of peaceful uses of atomic energy. Nowadays, nuclear physics and nuclear technology are applied in a great variety of social areas, such as power production, medical diagnosis and therapies, environmental protection, security control, material tests, food processing, waste treatments, agriculture and artifacts analysis. This presentation will cover the role and practical application of physics at the IAEA, and, in particular, focus on the role physics has, and will play, in nuclear security.

  3. Clusters of atoms and molecules theory, experiment, and clusters of atoms

    CERN Document Server

    1994-01-01

    Clusters of Atoms and Molecules is devoted to theoretical concepts and experimental techniques important in the rapidly expanding field of cluster science. Cluster properties are dicussed for clusteres composed of alkali metals, semiconductors, transition metals, carbon, oxides and halides of alkali metals, rare gases, and neutral molecules. The book is composed of several well-integrated treatments all prepared by experts. Each contribution starts out as simple as possible and ends with the latest results so that the book can serve as a text for a course, an introduction into the field, or as a reference book for the expert.

  4. A portable laser system for high precision atom interferometry experiments

    CERN Document Server

    Schmidt, Malte; Giorgini, Antonio; Tino, Guglielmo M; Peters, Achim

    2010-01-01

    We present a modular rack-mounted laser system for the cooling and manipulation of neutral rubidium atoms which has been developed for the portable gravimeter GAIN, an atom interferometer that will be capable of performing high precision gravity measurements directly at sites of geophysical interest. This laser system is designed to be compact, mobile and robust, yet it still offers improvements over many conventional laboratory-based laser systems. Our system is contained in a standard 19" rack and emits light at five different wavelengths simultaneously on up to 12 fibre ports at a total output power of 800 mW. These wavelengths can be changed and switched between ports in less than a microsecond. The setup includes two phase-locked Raman lasers with a phase noise spectral density of less than 1 \\mu rad/sqrt(Hz) in the frequency range in which our gravimeter is most sensitive to noise. We characterize this laser system and evaluate the performance limits it imposes on an interferometer.

  5. Hadron physics at the COMPASS experiment

    Directory of Open Access Journals (Sweden)

    Krinner Fabian

    2015-01-01

    The Compass experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new JPC = 1++ state, the a1(1420, is observed with a mass and width in the ranges m = 1412 − 1422MeV/c2 and Γ = 130 − 150MeV/c2.

  6. Top quark physics with the CMS experiment

    Directory of Open Access Journals (Sweden)

    Cuevas Javier

    2014-04-01

    Full Text Available An overview of recent top quark measurements in proton-proton collisions at √s = 7 and 8 TeV in data collected with the CMS experiment at the LHC, using a data sample collected during the years 2011 and 2012 is presented. Measurements of top quark pair production cross sections in several top quark final states are reported, as well as electroweak production of single top quarks in both t-and tW-channels. The mass of the top quark is estimated by different methods.

  7. Nonlinear optical and atomic systems at the interface of physics and mathematics

    CERN Document Server

    Garreau, Jean-Claude

    2015-01-01

    Focusing on the interface between mathematics and physics, this book offers an introduction to the physics, the mathematics, and the numerical simulation of nonlinear systems in optics and atomic physics. The text covers a wide spectrum of current research on the subject, which is  an extremely active field in physics and mathematical physics, with a very broad range of implications, both for fundamental science and technological applications: light propagation in microstructured optical fibers, Bose-Einstein condensates, disordered systems, and the newly emerging field of nonlinear quantum mechanics.   Accessible to PhD students, this book will also be of interest to post-doctoral researchers and seasoned academics.

  8. An undergraduate experiment demonstrating the physics of metamaterials with acoustic waves and soda cans

    Science.gov (United States)

    Wilkinson, James T.; Whitehouse, Christopher B.; Oulton, Rupert F.; Gennaro, Sylvain D.

    2016-01-01

    We describe a novel undergraduate research project that highlights the physics of metamaterials with acoustic waves and soda cans. We confirm the Helmholtz resonance nature of a single can by measuring its amplitude and phase response to a sound wave. Arranging multiple cans in arrays smaller than the wavelength, we then design an antenna that redirects sound into a preferred direction. The antenna can be thought of as a new resonator, composed of artificially engineered meta-atoms, similar to a metamaterial. These experiments are illustrative, tactile, and open ended so as to enable students to explore the physics of matter/wave interaction.

  9. Current experiments in elementary-particle physics - March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated. (WHK)

  10. Simple Experiments on the Physics of Vision: The Retina

    Science.gov (United States)

    Cortel, Adolf

    2005-01-01

    Many simple experiments can be performed in the classroom to explore the physics of vision. Students can learn of the two types of receptive cells (rods and cones), their distribution on the retina and the existence of the blind spot.

  11. A "Medical Physics" Course Based Upon Hospital Field Experience

    Science.gov (United States)

    Onn, David G.

    1972-01-01

    Describes a noncalculus, medical physics'' course with a basic element of direct hospital field experience. The course is intended primarily for premedical students but may be taken by nonscience majors. (Author/PR)

  12. Creative Turbulence: Experiments in Art and Physics

    Science.gov (United States)

    Fonda, Enrico; Dubois, R. Luke; Camnasio, Sara; Porfiri, Maurizio; Sreenivasan, Katepalli R.; Lathrop, Daniel P.; Serrano, Daniel; Ranjan, Devesh

    2016-11-01

    Effective communication of basic research to non-experts is necessary to inspire the public and to justify support for science by the taxpayers. The creative power of art is particularly important to engage an adult audience, who otherwise might not be receptive to standard didactic material. Interdisciplinarity defines new trends in research, and works at the intersection of art and science are growing in popularity, even though they are often isolated experiments. We present a public-facing collaboration between physicists/engineers performing research in fluid dynamics, and audiovisual artists working in cutting-edge media installation and performance. The result of this collaboration is a curated exhibition, with supporting public programming. We present the artworks, the lesson learned from the interactions between artists and scientists, the potential outreach impact and future developments. This project is supported by the APS Public Outreach Mini Grant.

  13. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  14. Sharing my fifteen years experiences in the research field of Atomic Force Microscopy (AFM)

    OpenAIRE

    Guha T

    2014-01-01

    Atomic Force Microscope (AFM) was developed by Binnig and his coworkers in the year 1986. He was awarded Nobel Prize in physics for this work in 1986 in sharing with Rohrer and Ruska. Rationale to develop AFM: Scanning Tunneling Microscope (STM), the precursor to AFM is efficient in imaging electrically conducting specimen at atomic resolution. The impetus for development of AFM came to Binnig’s mind because of relatively poor efficiency of STM to image electrically non-conducting bi...

  15. Physics Potential and Prospects for CUORE and CUORICINO experiments

    OpenAIRE

    Irastorza, I. G.; Morales, A.; Scopel, S.; Cebrian, S

    2001-01-01

    The CUORE (Cryogenic Underground Observatory for Rare Events) experiment projects to construct and operate an array of 1000 cryogenic thermal detectors of a mass of 760 g each to investigate rare events physics, in particular, double beta decay and non baryonic particle dark matter. A first step towards CUORE is CUORICINO, an array of 56 of such bolometers, currently being installed in the Gran Sasso. In this paper we report the physics potential of both stages of the experiment regarding neu...

  16. Single-molecule experiments in biological physics: methods and applications.

    Science.gov (United States)

    Ritort, F

    2006-08-16

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  17. Atomic Physics Effects on Convergent, Child-Langmuir Ion Flow between Nearly Transparent Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, John F. [University of Wisconsin-Madison; Emmert, Gilbert A. [University of Wisconsin-Madison

    2013-11-07

    Research during this project at the University of Wisconsin Fusion Technology Institute (UW FTI) on ion and neutral flow through an arbitrary, monotonic potential difference created by nearly transparent electrodes accomplished the following: (1) developed and implemented an integral equation approach for atomic physics effects in helium plasmas; (2) extended the analysis to coupled integral equations that treat atomic and molecular deuterium ions and neutrals; (3) implemented the key deuterium and helium atomic and molecular cross sections; (4) added negative ion production and related cross sections; and (5) benchmarked the code against experimental results. The analysis and codes treat the species D0, D20, D+, D2+, D3+, D and, separately at present, He0 and He+. Extensions enhanced the analysis and related computer codes to include He++ ions plus planar and cylindrical geometries.

  18. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  19. When an Atom Becomes a Message—Practicing Experiments on the Origins of Life

    Directory of Open Access Journals (Sweden)

    Koichiro Matsuno

    2012-08-01

    Full Text Available Practicing experiments on the origins of life within the framework of quantum mechanics comes to face a task of distinguishing the descriptive spaces of the object between a space of physical states and a space of probability distributions. One candidate for accommodating both the physical and the probabilistic description in a mutually tolerable manner is to apply first-second person descriptions to the space of physical states while letting the space of probability distributions addressable in third person descriptions be accessible via first-second person descriptions. The mediator or messenger for accommodating these two types of description is the process of probability flow equilibration. The relative state formulation of quantum mechanics opens a possibility for the likelihood that a simple atom such as a carbon atom may carry a message for holding the process of probability flow equilibration. An experimental example demonstrating a carbon atom serving as a messenger is found in the running of the citric acid cycle in the absence of biological enzymes.

  20. Construction and characterization of external cavity diode lasers for atomic physics.

    Science.gov (United States)

    Hardman, Kyle S; Bennetts, Shayne; Debs, John E; Kuhn, Carlos C N; McDonald, Gordon D; Robins, Nick

    2014-04-24

    Since their development in the late 1980s, cheap, reliable external cavity diode lasers (ECDLs) have replaced complex and expensive traditional dye and Titanium Sapphire lasers as the workhorse laser of atomic physics labs. Their versatility and prolific use throughout atomic physics in applications such as absorption spectroscopy and laser cooling makes it imperative for incoming students to gain a firm practical understanding of these lasers. This publication builds upon the seminal work by Wieman, updating components, and providing a video tutorial. The setup, frequency locking and performance characterization of an ECDL will be described. Discussion of component selection and proper mounting of both diodes and gratings, the factors affecting mode selection within the cavity, proper alignment for optimal external feedback, optics setup for coarse and fine frequency sensitive measurements, a brief overview of laser locking techniques, and laser linewidth measurements are included.

  1. Les Houches Summer School of Theoretical Physics : Session 72, Coherent Atomic Matter Waves

    CERN Document Server

    Westbrook, C; David, F; Coherent Atomic Matter Waves

    2001-01-01

    Progress in atomic physics has been so vigorous during the past decade that one is hard pressed to follow all the new developments. In the early 1990s the first atom interferometers opened a new field in which we have been able to use the wave nature of atoms to probe fundamental quantum me chanics questions as well as to make precision measurements. Coming fast on the heels of this development was the demonstration of Bose Einstein condensation in dilute atomic vapors which intensified research interest in studying the wave nature of matter, especially in a domain in which "macro scopic" quantum effects (vortices, stimulated scattering of atomic beams) are visible. At the same time there has been much progress in our understanding of the behavior of waves (notably electromagnetic) in complex media, both periodic and disordered. An obvious topic of speculation and probably of future research is whether any new insight or applications will develop if one examines the behavior of de Broglie waves in ana...

  2. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  3. NAVEX - A Space Shuttle Experiment with Atomic Clocks

    Science.gov (United States)

    1982-12-01

    for synchronization will be clock transportations. In cooperation with our national time institute ’ Physikalisch -Technische Bundesanstalt’ (FTB...Einwegentfernungsrnessung" Nachrichtentechniskh Zeitschrift 29 (1976) H. 9, S. 673-677. [41 Tschiesche, H, : Experiment zur "Syllchronisation und Ein

  4. Bicycle Freewheeling with Air Drag as a Physics Experiment

    Science.gov (United States)

    Janssen, Paul; Janssens, Ewald

    2015-01-01

    To familiarize first-year students with the important ingredients of a physics experiment, we offer them a project close to their daily life: measuring the effect of air resistance on a bicycle. Experiments are done with a bicycle freewheeling on a downhill slope. The data are compared with equations of motions corresponding to different models…

  5. Autonomy and the Student Experience in Introductory Physics

    Science.gov (United States)

    Hall, Nicholas Ron

    2013-01-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students…

  6. From the Dawn of Nuclear Physics to the First Atomic Bombs

    Science.gov (United States)

    Woolbright, Stephen; Schumacher, Jacob; Michonova-Alexova, Ekaterina

    2014-03-01

    This work gives a fresh look at the major discoveries leading to nuclear fission within the historical perspective. The focus is on the main contributors to the discoveries in nuclear physics, leading to the idea of fission and its application to the creation of the atomic bombs used at the end of the World War II. The present work is a more complete review on the history of the nuclear physics discoveries and their application to the atomic bomb. In addition to the traditional approach to the topic, focusing mainly on the fundamental physics discoveries in Europe and on the Manhattan Project in the United States, the nuclear research in Japan is also emphasized. Along with that, a review of the existing credible scholar publications, providing evidence for possible atomic bomb research in Japan, is provided. Proper credit is given to the women physicists, whose contributions had not always been recognized. Considering the historical and political situation at the time of the scientific discoveries, thought-provoking questions about decision-making, morality, and responsibility are also addressed. The work refers to the contributions of over 20 Nobel Prize winners. EM-A is grateful to Prof. Walter Grunden and to Prof. Emeritus Shadahiko Kano, Prof. Emeritus Monitori Hoshi for sharing their own notes, documents, and references, and to CCCU for sponsoring her participation in the 2013 Nuclear Weapons Seminar in Japan.

  7. Symposium on Highlights from 14 years of LEAR Physics: "Light Antiprotonic Atoms" by R. Hayano

    CERN Multimedia

    1998-01-01

    Symposium on Highlights from 14 years of LEAR Physics hold at CERN, commemorating the closure of LEAR and giving a topical review of the impact of experiments with low energy antiprotons in their respective fields

  8. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    Science.gov (United States)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  9. Feasibility guidelines for kaonic atom experiments with ultra-high-resolution X-ray spectrometry

    Science.gov (United States)

    Friedman, E.; Okada, S.

    2013-10-01

    Recent studies of strong-interaction effects in kaonic atoms suggest that analysing so-called 'lower' and 'upper' levels in the same atom could separate one-nucleon absorption from multinucleon processes. The present work examines the feasibility of direct measurements of upper level widths in addition to lower level widths in future experiments, using superconducting microcalorimeter detectors. About ten elements are identified as possible candidates for such experiments, all of medium-weight and heavy nuclei. New experiments focused on achieving good accuracy for widths of such pairs of levels could contribute significantly to our knowledge of the K--nucleon interaction in the nuclear medium.

  10. Gender, experience, and self-efficacy in introductory physics

    Science.gov (United States)

    Nissen, Jayson M.; Shemwell, Jonathan T.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE) styles of physics instruction. We investigated one gender gap in the area of attitudes and beliefs. This was men's and women's physics self-efficacy, which comprises students' thoughts and feelings about their capabilities to succeed as learners in physics. According to extant research using pre- and post-course surveys, the self-efficacy of both men and women tends to be reduced after taking traditional and IE physics courses. Moreover, self-efficacy is reduced further for women than for men. However, it remains unclear from these studies whether this gender difference is caused by physics instruction. It may be, for instance, that the greater reduction of women's self-efficacy in physics merely reflects a broader trend in university education that has little to do with physics per se. We investigated this and other alternative causes, using an in-the-moment measurement technique called the Experience Sampling Method (ESM). We used ESM to collect multiple samples of university students' feelings of self-efficacy during four types of activity for two one-week periods: (i) an introductory IE physics course, (ii) students' other introductory STEM courses, (iii) their non-STEM courses, and (iv) their activities outside of school. We found that women experienced the IE physics course with lower self-efficacy than men, but for the other three activity types, women's self-efficacy was not reliably different from men's. We therefore concluded that the experience of physics instruction in the IE physics course depressed women's self-efficacy. Using complementary measures showing the IE physics course to be similar to

  11. Kinetic theory and atomic physics corrections for determination of ion velocities from charge-exchange spectroscopy

    Science.gov (United States)

    Muñoz Burgos, J. M.; Burrell, K. H.; Solomon, W. M.; Grierson, B. A.; Loch, S. D.; Ballance, C. P.; Chrystal, C.

    2013-09-01

    Charge-exchange spectroscopy is a powerful diagnostic tool for determining ion temperatures, densities and rotational velocities in tokamak plasmas. This technique depends on detailed understanding of the atomic physics processes that affect the measured apparent velocities with respect to the true ion rotational velocities. These atomic effects are mainly due to energy dependence of the charge-exchange cross-sections, and in the case of poloidal velocities, due to gyro-motion of the ion during the finite lifetime of the excited states. Accurate lifetimes are necessary for correct interpretation of measured poloidal velocities, specially for high density plasma regimes on machines such as ITER, where l-mixing effects must be taken into account. In this work, a full nl-resolved atomic collisional radiative model coupled with a full kinetic calculation that includes the effects of electric and magnetic fields on the ion gyro-motion is presented for the first time. The model directly calculates from atomic physics first principles the excited state lifetimes that are necessary to evaluate the gyro-orbit effects. It is shown that even for low density plasmas where l-mixing effects are unimportant and coronal conditions can be assumed, the nl-resolved model is necessary for an accurate description of the gyro-motion effects to determine poloidal velocities. This solution shows good agreement when compared to three QH-mode shots on DIII-D, which contain a wide range of toroidal velocities and high ion temperatures where greater atomic corrections are needed. The velocities obtained from the model are compared to experimental velocities determined from co- and counter-injection of neutral beams on DIII-D.

  12. Speculative Physics: the Ontology of Theory and Experiment in High Energy Particle Physics and Science Fiction

    CERN Document Server

    Lee, Clarissa Ai Ling

    2014-01-01

    The dissertation brings together approaches across the fields of physics, critical theory, literary studies, philosophy of physics, sociology of science, and history of science to synthesize a hybrid approach for instigating more rigorous and intense cross-disciplinary interrogations between the sciences and the humanities. There are two levels of conversations going on in the dissertation; at the first level, the discussion is centered on a critical historiography and philosophical implications of the discovery Higgs boson in relation to its position at the intersection of old (current) and the potential for new possibilities in quantum physics; I then position my findings on the Higgs boson in connection to the double-slit experiment that represents foundational inquiries into quantum physics, to demonstrate the bridge between fundamental physics and high energy particle physics. The conceptualization of the variants of the double-slit experiment informs the aforementioned critical comparisons. At the secon...

  13. Phases and Interfaces from Real Space Atomically Resolved Data: Physics-Based Deep Data Image Analysis.

    Science.gov (United States)

    Vasudevan, Rama K; Ziatdinov, Maxim; Jesse, Stephen; Kalinin, Sergei V

    2016-09-14

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ∼1-10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysis is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. This method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure-property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.

  14. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

    Science.gov (United States)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

  15. Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made

    Science.gov (United States)

    Doherty, Michael P.

    2000-01-01

    Direct examination of atomic interactions is difficult. One powerful approach to visualizing atomic interactions is to study near-index-matched colloidal dispersions of microscopic plastic spheres, which can be probed by visible light. Such spheres interact through hydrodynamic and Brownian forces, but they feel no direct force before an infinite repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres Experiment (PHaSE), researchers have sought a more complete understanding of the entropically driven disorder-order transition in hard-sphere colloidal dispersions. The experiment was conceived by Professors Paul M. Chaikin and William B. Russel of Princeton University. Microgravity was required because, on Earth, index-matched colloidal dispersions often cannot be density matched, resulting in significant settling over the crystallization period. This settling makes them a poor model of the equilibrium atomic system, where the effect of gravity is truly negligible. For this purpose, a customized light-scattering instrument was designed, built, and flown by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions STS 83 and STS 94). This instrument performed both static and dynamic light scattering, with sample oscillation for determining rheological properties. Scattered light from a 532- nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a concentric screen covering angles of 0 to 60 or by sensitive avalanche photodiode detectors, which convert the photons into binary data from which two correlators compute autocorrelation functions. The sample cell was driven by a direct-current servomotor to allow sinusoidal oscillation for the measurement of rheological properties. Significant microgravity research findings include the observation of beautiful dendritic crystals, the crystallization of a "glassy phase" sample in microgravity that did not crystallize for over 1 year in 1g

  16. Becoming Physics People: Development of Integrated Physics Identity through the Learning Assistant Experience

    Science.gov (United States)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-01-01

    In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.…

  17. The Belle II experiment: fundamental physics at the flavor frontier

    CERN Document Server

    de la Cruz, Ivan Heredia

    2016-01-01

    After the major success of B-factories to establish the CKM mechanism and its proven potential to search for new physics, the Belle II experiment will continue exploring the physics at the flavor frontier over the next years. Belle II will collect 50 times more data than its predecessor, Belle, and allow for various precision measurements and searches of rare decays and particles. This paper introduces the B-factory concept and the flavor frontier approach to search for new physics. It then describes the SuperKEKB accelerator and the Belle II detector, as well as some of the physics that will be analyzed in Belle II, concluding with the experiment status and schedule.

  18. Challenges and opportunities for atomic physics at FAIR: The new GSI accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, S. [Institut f. Kernphysik, University of Frankfurt (Germany) and GSI, Max Planckstr.1, Darmstadt (Germany)]. E-mail: s.hagmann@gsi.de; Beyer, H.F. [GSI, Max Planckstr.1, Darmstadt (Germany); Bosch, F. [GSI, Max Planckstr.1, Darmstadt (Germany); Braeuning-Demian, A. [GSI, Max Planckstr.1, Darmstadt (Germany); Kluge, H.-J. [GSI, Max Planckstr.1, Darmstadt (Germany); Kozhuharov, Ch. [GSI, Max Planckstr.1, Darmstadt (Germany); Kuehl, Th. [GSI, Max Planckstr.1, Darmstadt (Germany); Liesen, D. [GSI, Max Planckstr.1, Darmstadt (Germany); Stoehlker, Th. [GSI, Max Planckstr.1, Darmstadt (Germany); Ullrich, J. [Max Planck Inst. f. Kernphysik, Heidelberg (Germany); Moshammer, R. [Max Planck Inst. f. Kernphysik, Heidelberg (Germany); Mann, R. [GSI, Max Planckstr.1, Darmstadt (Germany); Mokler, P. [GSI, Max Planckstr.1, Darmstadt (Germany); Quint, W. [GSI, Max Planckstr.1, Darmstadt (Germany); Schuch, R. [Department of Physics, University of Stockholm (Sweden); Warczak, A. [Department of Physics, University of Cracow (Poland)

    2005-12-15

    We present a short overview of the current status of the new accelerator project FAIR at GSI with the new double synchrotron rings and the multi-storage rings. The key features of the new facility, which provides intense relativistic beams of stable and unstable nuclei, are introduced and their relation to the anticipated experimental programs in nuclear structure physics and antiproton physics is shown. The main emphasis in this overview is given to the atomic physics program with unique opportunities which will be provided e.g. by bare U{sup 92+} ions with kinetic energies continuously variable between relativistic energies corresponding to {gamma} up to {approx_equal}35 down to kinetic energies of such ions in traps corresponding to fractions of a Kelvin.

  19. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    Science.gov (United States)

    Taber, Keith S.

    2013-08-01

    Comparing the atom to a `tiny solar system' is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate how they understood the forces acting within the two systems. A sample of just over 100 across the 15-18 age range responded to a pencil-and-paper instrument that asked about four aspects of the two systems. It was found that for both systems, about four fifths of students expected forces to decrease with increasing distance; but that only a little over half expected there to be interactions between the minor constituents (electrons and planets). Most students failed to apply Newton's third law to either system. There was a considerable difference in the extent to which respondents were able to identify the type of force acting in the systems (nearly all for the solar system, but only a small proportion in the case of the atom). The findings are considered in terms of both the limitations of students' understanding of the basic physics and possible implications for the use of the teaching analogy.

  20. Physics Experiments Planned for the National Ignition Facility

    Science.gov (United States)

    Verdon, Charles P.

    1998-11-01

    This talk will review the current status and plans for high energy density physics experiments to be conducted on the National Ignition Facility (NIF). The NIF a multi-laboratory effort, presently under construction at the Lawrence Livermore National Laboratory, is a 192 beam solid state glass laser system designed to deliver 1.8MJ (at 351nm) in temporal shaped pulses. This review will begin by introducing the NIF in the context of its role in the overall United States Stockpile Stewardship Program. The major focus of this talk will be to describe the physics experiments planned for the NIF. By way of introduction to the experiments a short review of the NIF facility design and projected capabilities will be presented. In addition the current plans and time line for the activation of the laser and experimental facilities will also be reviewed. The majority of this talk will focus on describing the national inertial confinement fusion integrated theory and experimental target ignition plan. This national plan details the theory and experimental program required for achieving ignition and modest thermonuclear gain on the NIF. This section of the presentation will include a status of the current physics basis, ignition target designs, and target fabrication issues associated with the indirect-drive and direct-drive approaches to ignition. The NIF design provides the capabilities to support experiments for both approaches to ignition. Other uses for the NIF, including non ignition physics relevant to the national security mission, studies relevant to Inertial Fusion Energy, and basic science applications, will also be described. The NIF offers the potential to generate new basic scientific understanding about matter under extreme conditions by making available a unique facility for research into: astrophysics and space physics, hydrodynamics, condensed matter physics, material properties, plasma physics and radiation sources, and radiative properties. Examples of

  1. Isotopic shift of atom-dimer Efimov resonances in K-Rb mixtures: Critical effect of multichannel Feshbach physics

    CERN Document Server

    Kato, K; Kobayashi, J; Julienne, P S; Inouye, S

    2016-01-01

    The multichannel Efimov physics is investigated in ultracold heteronuclear admixtures of K and Rb atoms. We observe a shift in the scattering length where the first atom-dimer resonance appears in the $^{41}$K-$^{87}$Rb system relative to the position of the previously observed atom-dimer resonance in the $^{40}$K-$^{87}$Rb system. This shift is well explained by our calculations with a three-body model including the van der Waals interactions, and, more importantly, the multichannel spinor physics. With only minor difference in the atomic masses of the admixtures, the shift in the atom-dimer resonance positions can be cleanly ascribed to the isolated and overlapping Feshbach resonances in the $^{40}$K-$^{87}$Rb and $^{41}$K-$^{87}$Rb systems, respectively. Our study demonstrates the role of the multichannel Feshbach physics in determining Efimov resonances in heteronuclear three-body systems.

  2. Current experiments in particle physics - particle data group

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Lehar, F. [Centre d`Etudes Nucleaires de Saclay, Gif-sur-Yvette (France); Kettle, P.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  3. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  4. Compilation of current high-energy-physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976.

  5. Great experiments in physics firsthand accounts from Galileo to Einstein

    CERN Document Server

    1959-01-01

    From Galileo's famous experiments in accelerated motion to Einstein's revolutionary theory of relativity, the experiments recorded here trace the evolution of modern physics from its beginnings to the mid-20th century. Brought together for the first time in one volume are important source readings on 25 epochal discoveries that changed man's understanding of the physical world. The accounts, written by the physicists who made them, include:Issac Newton: The Laws of MotionHenry Cavendish: The Law of GravitationAugustin Fresnel: The Diffraction of LightHans Christian Oersted: ElecromagnetismH

  6. Physics Potential and Prospects for the CUORICINO and CUORE Experiments

    OpenAIRE

    CUORE Collaboration

    2003-01-01

    The CUORE experiment projects to construct and operate an array of 1000 cryogenic thermal detectors of TeO2, of a mass of 760 g each, to investigate rare events physics, in particular, double beta decay and non baryonic particle dark matter. A first step towards CUORE is CUORICINO, an array of 62 bolometers, currently being installed in the Gran Sasso Laboratory. In this paper we report the physics potential of both stages of the experiment regarding neutrinoless double beta decay of 130Te, W...

  7. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  8. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  9. Upper Secondary Students' Understanding of the Basic Physical Interactions in Analogous Atomic and Solar Systems

    Science.gov (United States)

    Taber, Keith S.

    2013-01-01

    Comparing the atom to a "tiny solar system" is a common teaching analogy, and the extent to which learners saw the systems as analogous was investigated. English upper secondary students were asked parallel questions about the physical interactions between the components of a simple atomic system and a simple solar system to investigate…

  10. Dynamic tunneling ionization of excited hydrogen atoms: A precise experiment versus theories

    Science.gov (United States)

    Sauer, B. E.; Yoakum, S.; Moorman, L.; Koch, P. M.; Richards, D.; Dando, P. A.

    1992-01-01

    New data for n0=24,...,32 H atoms ionized by a linearly polarized, 9.908-GHz electric field are compared with calculations. Being more precise than laser multiphoton ionization experiments with tightly bound atoms, our experiments distinguish between tunneling through and classical escape over a slowly oscillating barrier and between one- and many-state dynamical processes. Formulas used to interpret low-frequency laser multiphoton ionization data poorly describe our results. Our data delineate ranges of validity of other partly successful models and are best reproduced by a new 3D semiclassical model.

  11. Dynamic tunneling ionization of excited hydrogen atoms: A precise experiment versus theories

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, B.E.; Yoakum, S.; Moorman, L.; Koch, P.M. (Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3800 (United States)); Richards, D.; Dando, P.A. (Mathematics Faculty, Open University, Milton Keynes MK7 6AA (United Kingdom))

    1992-01-27

    New data for {ital n}{sub 0}=24,...,32 H atoms ionized by a linearly polarized, 9.908-GHz electric field are compared with calculations. Being more precise than laser multiphoton ionization experiments with tightly bound atoms, our experiments distinguish between tunneling {ital through} and classical escape {ital over} a slowly oscillating barrier and between one- and many-state dynamical processes. Formulas used to interpret low-frequency laser multiphoton ionization data poorly describe our results. Our data delineate ranges of validity of other partly successful models and are best reproduced by a new 3D semiclassical model.

  12. High Energy Physics Experiments In Grid Computing Networks

    Directory of Open Access Journals (Sweden)

    Andrzej Olszewski

    2008-01-01

    Full Text Available The demand for computing resources used for detector simulations and data analysis in HighEnergy Physics (HEP experiments is constantly increasing due to the development of studiesof rare physics processes in particle interactions. The latest generation of experiments at thenewly built LHC accelerator at CERN in Geneva is planning to use computing networks fortheir data processing needs. A Worldwide LHC Computing Grid (WLCG organization hasbeen created to develop a Grid with properties matching the needs of these experiments. Inthis paper we present the use of Grid computing by HEP experiments and describe activitiesat the participating computing centers with the case of Academic Computing Center, ACKCyfronet AGH, Kraków, Poland.

  13. Information and Entanglement Measures in Quantum Systems With Applications to Atomic Physics

    CERN Document Server

    Manzano, Daniel

    2011-01-01

    This thesis is a multidisciplinary contribution to the information theory of single-particle Coulomb systems in their relativistic and not relativistic description, to the theory of special functions of mathematical physics with the proposal and analysis of a new set of measures of spreading for orthogonal polynomials, to quantum computation and learning devices and to the analysis of entanglement in systems of identical fermions, in this field we propose a separability criteria for pure states of N identical fermions and the entanglement of two-electron atoms is studied, a new separability criteria for continuous variable systems is also analyzed. The notions of information, complexity and entanglement play a central role.

  14. Chladni Patterns on Drumheads: A "Physics of Music" Experiment

    Science.gov (United States)

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional…

  15. Skylab Experiments, Volume I, Physical Science, Solar Astronomy.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    Up-to-date knowledge about Skylab experiments is presented for the purpose of informing high school teachers about scientific research performed in orbit and enabling them to broaden their scope of material selection. The first volume is concerned with the solar astronomy program. The related fields are physics, electronics, biology, chemistry,…

  16. Physical Activity Experiences of Boys with and without ADHD

    Science.gov (United States)

    Harvey, William J.; Reid, Greg; Bloom, Gordon A.; Staples, Kerri; Grizenko, Natalie; Mbekou, Valentin; Ter-Stepanian, Marina; Joober, Ridha

    2009-01-01

    Physical activity experiences of 12 age-matched boys with and without attention-deficit hyperactivity disorder (ADHD) were explored by converging information from Test of Gross Motor Development-2 assessments and semistructured interviews. The knowledge-based approach and the inhibitory model of executive functions, a combined theoretical lens,…

  17. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    Science.gov (United States)

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  18. Sixteenth International Conference on the physics of electronic and atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B. (eds.)

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  19. A pilot experience in physics laboratory for a professional school

    CERN Document Server

    Montalbano, Vera; Di Renzone, Simone; Frati, Serena

    2013-01-01

    The reform of the upper secondary school in Italy has recently introduced physics in the curricula of professional schools, in realities where it was previously absent. Many teachers, often with a temporary position, are obliged to teaching physics in schools where the absence of the laboratory is added to the lack of interest of students who feel this matter as very far from their personal interests and from the preparation for the work which could expect from a professional school. We report a leaning path for introducing students to the measurement of simple physical quantities, which continued with the study of some properties of matter (volume, mass, density) and ending with some elements of thermodynamics. Educational materials designed in order to involve students in an active learning, actions performed for improving the quality of laboratory experience and difficulties encountered are presented. Finally, we compare the active engagement of these students with a similar experience performed in a very ...

  20. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    Science.gov (United States)

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  1. From Talk to Experience: Transforming the Preservice Physics Methods Course

    Directory of Open Access Journals (Sweden)

    Tom Russell

    2010-07-01

    Full Text Available This report of a collaborative self-study describes and interprets our pedagogical approach at the beginning of a preservice physics methods course and outlines the strategy that we used to create a context for productive learning. We focus on our attempt to engage teacher candidates in dialogue about learning physics and learning to teach physics by engaging them in brief teaching experiences in the first month of a preservice teacher education program, before the first practicum placement. Self-study methodologies are used to frame and reframe our perceptions of teaching and learning as we enacted a pedagogy of teacher education that was unfamiliar both to us and to our teacher candidates.Keywords: self-study of teacher education practices, lesson study, teacher education, physics, curriculum methods

  2. Physics of our Days: Cooling and thermometry of atomic Fermi gases

    Science.gov (United States)

    Onofrio, R.

    2017-02-01

    We review the status of cooling techniques aimed at achieving the deepest quantum degeneracy for atomic Fermi gases. We first discuss some physics motivations, providing a quantitative assessment of the need for deep quantum degeneracy in relevant physics cases, such as the search for unconventional superfluid states. Attention is then focused on the most widespread technique to reach deep quantum degeneracy for Fermi systems, sympathetic cooling of Bose–Fermi mixtures, organizing the discussion according to the specific species involved. Various proposals to circumvent some of the limitations on achieving the deepest Fermi degeneracy, and their experimental realizations, are then reviewed. Finally, we discuss the extension of these techniques to optical lattices and the implementation of precision thermometry crucial to the understanding of the phase diagram of classical and quantum phase transitions in Fermi gases.

  3. Observation, experiment and hypothesis in modern physical science

    CERN Document Server

    Hannaway, Owen

    1985-01-01

    These original contributions by philosophers and historians of science discuss a range of issues pertaining to the testing of hypotheses in modern physics by observation and experiment. Chapters by Lawrence Sklar, Dudley Shapere, Richard Boyd, R. C. Jeffrey, Peter Achinstein, and Ronald Laymon explore general philosophical themes with applications to modern physics and astrophysics. The themes include the nature of the hypothetico-deductive method, the concept of observation and the validity of the theoretical-observation distinction, the probabilistic basis of confirmation, and the testing of idealizations and approximations.The remaining four chapters focus on the history of particular twentieth-century experiments, the instruments and techniques utilized, and the hypotheses they were designed to test. Peter Galison reviews the development of the bubble chamber; Roger Stuewer recounts a sharp dispute between physicists in Cambridge and Vienna over the interpretation of artificial disintegration experiments;...

  4. Geneva University: Experiments in Physics: Hands-on Creative Processes

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Lundi 3 octobre 2011, 17h00 Ecole de Physique, Auditoire Stueckelberg «Experiments in Physics : Hands-on Creative Processes» Prof. Manfred Euler Leibniz-Institute for Mathematics and Science Education (IPN) University of Kiel, Deutschland Experiments play a variety of different roles in knowledge generation. The lecture will focus on the function of experiments as engines of intuition that foster insights into complex processes. The experimental presentations consider self-organization phenomena in various domains that range from the nanomechanics of biomolecules to perception and cognition. The inherent universality contributes to elucidating the enigmatic phenomenon of creativity. Une verrée en compagnie du conférencier sera offerte après le colloque.       &...

  5. Research on atomic states, physical properties and catalytic performance of Ru metal

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Using the one-atom theory (OA) of pure metals, the atomic states of Ru metal with hcp structure, fcc structure, bcc structure and liquid state were determined as fol- lows: [Kr](4dn)3.78(4dc)2.22(5sc)1.77(5sf)0.23,Ψa(fcc-Ru)=[Kr](4dn)3.70(4dc)2.44 (5sc)1.42(5sf)0.44, Ψ a(bcc-Ru)=[Kr](4dn)4.00(4dc)2.22(5sc)1.56(5sf)0.22, Ψ a(L-Ru)=[Kr](4dn)4.00(4dc)2.00(5sc)1.52 (5sf)0.48. The potential curve and physical properties as a function of temperature for hcp-Ru such as lattice constant, cohesive energy, linear thermal expansion coeffi- cient, specific heat and Gibbs energy and so on were calculated quantitatively. The theoretical results are in excellent agreement with experimental value. The rela- tionship between the atomic states and catalytic performance was explained qualitatively and these supplied the designation of Ru metal and relative materials with theoretical instruction and complete data.

  6. Fluid physics, thermodynamics, and heat transfer experiments in space

    Science.gov (United States)

    Dodge, F. T.; Abramson, H. N.; Angrist, S. W.; Catton, I.; Churchill, S. W.; Mannheimer, R. J.; Otrach, S.; Schwartz, S. H.; Sengers, J. V.

    1975-01-01

    An overstudy committee was formed to study and recommend fundamental experiments in fluid physics, thermodynamics, and heat transfer for experimentation in orbit, using the space shuttle system and a space laboratory. The space environment, particularly the low-gravity condition, is an indispensable requirement for all the recommended experiments. The experiments fell broadly into five groups: critical-point thermophysical phenomena, fluid surface dynamics and capillarity, convection at reduced gravity, non-heated multiphase mixtures, and multiphase heat transfer. The Committee attempted to assess the effects of g-jitter and other perturbations of the gravitational field on the conduct of the experiments. A series of ground-based experiments are recommended to define some of the phenomena and to develop reliable instrumentation.

  7. Atomic Oxygen and Space Environment Effects on Aerospace Materials Flown with EOIM-3 Experiment

    Science.gov (United States)

    Scialdone, John J.; Clatterbuck, Carroll H.; Ayres-Treusdell, Mary; Park, Gloria; Kolos, Diane

    1996-01-01

    Polymer materials samples mounted on a passive carrier tray were flown aboard the STS-46 Atlantis shuttle as complement to the EOIM-3 (Evaluation of Oxygen Interaction with Materials) experiment to evaluate the effects of atomic oxygen on the materials and to measure the gaseous shuttle bay environment. The morphological changes of the samples produced by the atomic oxygen fluence of 2.07 x 10(exp 20) atoms/cm(exp 2) are being reported. The changes have been verified using Electron Spectroscopy for Chemical Analysis (ESCA), gravimetric measurement, microscopic observations and thermo-optical measurements. The samples, including Kapton, Delrin, epoxies, Beta Cloth, Chemglaze Z306, silver Teflon, silicone coatings, 3M tape and Uralane and Ultem, PEEK, Victrex (PES), Polyethersulfone and Polymethylpentene thermoplastic, have been characterized by their oxygen reaction efficiency on the basis of their erosion losses and the oxygen fluence. Those efficiencies have been compared to results from other experiments, when available. The efficiencies of the samples are all in the range of E-24 g/atom. The results indicate that the reaction efficiencies of the reported materials can be grouped in about three ranges of values. The least affected materials which have efficiencies varying from 1 to 10(exp 25) g/atom, include silicones, epoxies, Uralane and Teflon. A second group with efficiency from 10 to 45(exp 25) g/atom includes additional silicone coatings, the Chemglaze Z306 paint and Kapton. The third range from 50 to 75(exp 25) includes organic compound such as Pentene, Peek, Ultem, Sulfone and a 3M tape. A Delrin sample had the highest reaction efficiency of 179(exp 25) g/atom. Two samples, the aluminum Beta cloth X389-7 and the epoxy fiberglass G-11 nonflame retardant, showed a slight mass increase.

  8. As-Run Physics Analysis for the UCSB-1 Experiment in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Joseph Wayne [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The University of California Santa Barbara (UCSB) -1 experiment was irradiated in the A-10 position of the ATR. The experiment was irradiated during cycles 145A, 145B, 146A, and 146B. Capsule 6A was removed from the test train following Cycle 145A and replaced with Capsule 6B. This report documents the as-run physics analysis in support of Post-Irradiation Examination (PIE) of the test. This report documents the as-run fluence and displacements per atom (DPA) for each capsule of the experiment based on as-run operating history of the ATR. Average as-run heating rates for each capsule are also presented in this report to support the thermal analysis.

  9. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    Energy Technology Data Exchange (ETDEWEB)

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  10. Large hadron collider physics program: Compact muon solenoid experiment

    Indian Academy of Sciences (India)

    J B Singh

    2000-04-01

    The LHC physics program at CERN addresses some of the fundamental issues in particle physics and CMS experiment would concentrate on them. The CMS detector is designed for the search of Standard Model Higgs boson in the whole possible mass range. Also it will be sensitive to Higgs bosons in the minimal supersymmetric model and well adapted to searches for SUSY particles, new massive vector bosons, CP-violation in -system, search for substructure of quarks and leptons, etc. In the LHC heavy ion collisions the energy density would be well above the threshold for the possible formation of quark–gluon plasma.

  11. The experiment PANDA: physics with antiprotons at FAIR

    Directory of Open Access Journals (Sweden)

    Boca Gianluigi

    2015-01-01

    The PANDA experiment is designed to achieve the above mentioned physics goals with a setup with the following characteristics: an almost full solid angle acceptance; excellent tracking capabilities with high resolution (1–2 % at 1 GeV/c in the central region; secondary vertex detection with resolution ≈ 100 microns or better; electromagnetic calorimetry for detections of gammas and electrons up to 10 GeV; good particle identification of charge tracks (electrons, muons, pions, kaons, protons; a dedicated interchangeable central apparatus for the hypernuclear physics; detector and data acquisition system capable of working at 20 MHz interaction rate with an intelligent software trigger that can provide maximum flexibility.

  12. LHCf experiment: forward physics at LHC for cosmic rays study

    Directory of Open Access Journals (Sweden)

    Del Prete M.

    2016-01-01

    Full Text Available The LHCf experiment, optimized for the study of forward physics at LHC, completes its main physics program in this year 2015, with the proton-proton collisions at the energy of 13 TeV. LHCf gives important results on the study of neutral particles at extreme pseudo-rapidity, both for proton-proton and for proton-ion interactions. These results are an important reference for tuning the models of the hadronic interaction currently used for the simulation of the atmospheric showers induced by very high energy cosmic rays. The results of this analysis and the future perspective are presented in this paper.

  13. Large Hadron Collider physics program Compact Muon Solenoid experiment

    CERN Document Server

    Singh, J B

    2000-01-01

    The LHC physics program at CERN addresses some of the fundamental issues in particle physics and CMS experiment would concentrate on them. The CMS detector is designed for the search of Standard Model Higgs boson in the whole possible mass range. Also it will be sensitive to Higgs bosons in the minimal supersymmetric model and well adapted to searches for SUSY particles, new massive vector bosons, CP-violation in the B-system, search for substructure of quarks and leptons, etc. In the LHC heavy ion collisions the energy density would be well above the threshold for the possible formation of quark-gluon plasma. (15 refs).

  14. Comparison between experiments and predictions based on maximum entropy for sprays from a pressure atomizer

    Science.gov (United States)

    Li, X.; Chin, L. P.; Tankin, R. S.; Jackson, T.; Stutrud, J.; Switzer, G.

    1991-07-01

    Measurements were made of the droplet size and velocity distributions in a hollow cone spray from a pressure atomizer using a phase/Doppler particle analyzer. The maximum entropy principle is used to predict these distributions. The constraints imposed in this model involve conversation of mass, momentum, and energy. Estimates of the source terms associated with these constraints are made based on physical reasoning. Agreement between the measurements and the predictions is very good.

  15. A system for designing and simulating particle physics experiments

    Science.gov (United States)

    Żelazny, Roman; Strzałkowski, Piotr

    1987-01-01

    In view of the rapid development of experimental facilities and their costs, the systematic design and preparation of particle physics experiments have become crucial. A software system is proposed as an aid for the experimental designer, mainly for experimental geometry analysis and experimental simulation. The following model is adopted: the description of an experiment is formulated in a language (here called XL) and put by its processor in a data base. The language is based on the entity-relationship-attribute approach. The information contained in the data base can be reported and analysed by an analyser (called XA) and modifications can be made at any time. In particular, the Monte Carlo methods can be used in experiment simulation for both physical phenomena in experimental set-up and detection analysis. The general idea of the system is based on the design concept of ISDOS project information systems. The characteristics of the simulation module are similar to those of the CERN Geant system, but some extensions are proposed. The system could be treated as a component of a greater, integrated software environment for the design of particle physics experiments, their monitoring and data processing.

  16. Symmetry and aesthetics in introductory physics: An experiment in interdisciplinary physics and fine arts education

    Science.gov (United States)

    van der Veen, Janet Krause

    In a recent editorial in Physics Today (July, 2006, p. 10) the ability of physicists to "imagine new realities" was correlated with what have been traditionally considered non-scientific qualities of imagination and creativity, which are usually associated with fine arts. In view of the current developments in physics of the 21st Century, including the searches for cosmic dark energy and evidence from the Large Hadron Collider which, it is hoped, will verify or refute the proposals of String Theory, the importance of developing creativity and imagination through education is gaining recognition. Two questions are addressed by this study: First, How can we bring the sense of aesthetics and creativity, which are important in the practice of physics, into the teaching and learning of physics at the introductory college level, without sacrificing the mathematical rigor which is necessary for proper understanding of physics? Second, How can we provide access to physics for a diverse population of students which includes physics majors, arts majors, and future teachers? An interdisciplinary curriculum which begins with teaching math as a language of nature, and utilizes arts to help visualize the connections between mathematics and the physical universe, may provide answers to these questions. In this dissertation I describe in detail the case study of the eleven students - seven physics majors and four arts majors - who participated in an experimental course, Symmetry and Aesthetics in Introductory Physics, in Winter Quarter, 2007, at UCSB's College of Creative Studies. The very positive results of this experiment suggest that this model deserves further testing, and could provide an entry into the study of physics for physics majors, liberal arts majors, future teachers, and as a foundation for media arts and technology programs.

  17. Experiences of physical violence by women living with intimate partners

    Directory of Open Access Journals (Sweden)

    F.C. Madzimbalale

    2010-09-01

    Full Text Available Intimate partner violence directed towards females by male partners is a common significant global public health problem. Most victims of physical aggression such as women and children are subjected to multiple acts of violence over extended periods of time, suffering from more than one type of abuse, for example physical which is more symbolic and evidenced by scars. The purpose of this study is to increase understanding of the symbols of physical violence as experienced by women who live with intimate partners in the Vhembe district of the Limpopo Province. The research design of this study was qualitative, exploratory and descriptive in nature. The accessible population was those participants who used the trauma unit A in a particular hospital. Seven women comprised the sample of the study. In-depth individual interviews were conducted exploring the women’s experiences in the context of physical violence. From the data collected all seven participants experienced some form of physical violence which resulted in permanent deformity. They experienced some form of battering such as kicking, stabbing, burning, fracturing, strangling and choking. Recommendations were made that health care providers are encouraged to implement screening for physical violence, to provide appropriate interventions if assault is identified and to provide appropriate education regarding, employment opportunities, legal literacy, and rights to inheritance. Human rights education and information regarding domestic violence should be provided to them because this is their absolute right (UNICEF, 2000:14.

  18. Effective atomic numbers for W/Cu alloy using transmission experiments

    Energy Technology Data Exchange (ETDEWEB)

    Murty, V.R.K. E-mail: murtyvrk@mopipi.ub.bw; Winkoun, D.P.; Devan, K.R.S

    2000-11-15

    Attenuation studies on pure elements are straightforward and extensive data sets are available in the literature. However, studies on alloys are meagre due to the nonavailability of alloys of known composition in suitable form. Such studies are useful in estimating effective atomic numbers and to verify the validity of the mixture rule. Empirical expressions for these have been reported in the literature but several discrepancies have been noted. In the present study, transmission experiments were conducted in a narrow beam geometry for the photon energy range 60-400 keV, evaluating the effective atomic numbers for W/Cu alloy of two compositions, 65/35 and 60/40.

  19. Low energy (anti)atoms for precision tests of basic physics

    CERN Document Server

    Silveira, D M; Veloso, M; Cesar, C L

    2001-01-01

    Recent advances in techniques to manipulate and study, with high precision, atomic hydrogen, from one hand, and successful trapping schemes for positrons and antiprotons, from the other hand, have encouraged the pursuit of experiments to test CPT violation and the weak equivalence principle (WEP) through the comparison of hydrogen and antihydrogen. A description of the hydrogen trap and laser system being built in Rio, to trap and perform high resolution spectroscopy on cold hydrogen, is presented along with a discussion on the techniques and experimental system being implemented by the ATHENA collaboration at CERN to produce cold antihydrogen. A new technique to make a cold antihydrogen beam is proposed. (25 refs).

  20. Forward and backward scattering experiments in ultra-cold Rubidium atoms

    DEFF Research Database (Denmark)

    Kampel, Nir Shlomo

    project, we have studied coherent forward scattering in the form of a memory experiment. In such an experiment we convert the input light pulse to an atomic excitation, and at a later time convert back the atomic excitation into the retrieved light pulse. In the first project, we investigate the source....... With a microscopic description of the loss term due to light assisted collisions followed by radiation trapping, we find a reasonable quantiative agreement between model and experiment. In the second project we have realized off resonance Raman memory in an ultracold thermal sample in a magnetic trap, with total......In this thesis two different projects are described dealing with different aspects of light scattering. In the first we are examining the origin of backward scattering as manifest in Rayleigh superradiance. Here we have studied the onset dependence on the sign of the probe detuning. In the second...

  1. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chiou

    Full Text Available Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young's modulus (E(eff relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.

  2. Compendium of quantum physics concepts, experiments, history and philosophy

    CERN Document Server

    Hentschel, Klaus; Weinert, Friedel

    2009-01-01

    With contributions by many of today's leading quantum physicists, philosophers and historians, including three Nobel laureates, this comprehensive A to Z of quantum physics provides a lucid understanding of the key concepts of quantum theory and experiment. It covers technical and interpretational aspects alike, and includes both traditional topics and newer areas such as quantum information and its relatives. The central concepts that have shaped contemporary understanding of the quantum world are clearly defined, with illustrations where helpful, and discussed at a level suitable for undergraduate and graduate students of physics, history of science, and philosophy of physics. All articles share three main aims: (1) to provide a clear definition and understanding of the term concerned; (2) where possible, to trace the historical origins of the concept; and (3) to provide a small but optimal selection of references to the most relevant literature, including pertinent historical studies. Also discussed are th...

  3. Forward Physics with the CMS Experiment at LHC

    CERN Document Server

    Sunar Cerci, Deniz

    2016-01-01

    Forward physics measurements with the Compact Muon Solenoid (CMS) experiment, one of the two large multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, cover a wide range of physics subjects. The forward calorimeters of CMS, HF and CASTOR, are used to collect data up to a pseudo-rapidity of 6.6. These detectors provide sensitivity to a large part of the total inelastic cross section, including diffractive events that produce particles only at forward rapidity, with the exception of very low mass diffraction. The results obtained with a centre-of-mass energy of 13 TeV are presented. The measurements are compared to model predictions and provide valuable input for tuning of Monte Carlo models used to describe high-energy hadronic interactions.

  4. Compilation of current high energy physics experiments - Sept. 1978

    Energy Technology Data Exchange (ETDEWEB)

    Addis, L.; Odian, A.; Row, G. M.; Ward, C. E. W.; Wanderer, P.; Armenteros, R.; Joos, P.; Groves, T. H.; Oyanagi, Y.; Arnison, G. T. J.; Antipov, Yu; Barinov, N.

    1978-09-01

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche. (RWR)

  5. Tevatron End-of-Run Beam Physics Experiments

    CERN Document Server

    Valishev, A; Miyamoto, R; White, S; Schmidt, F; Qiang, J

    2012-01-01

    Before the Tevatron Collider Run II ended in September of 2011, a number of specialized beam study periods were dedicated to the experiments on various accelerator physics concepts and effects during the last year of the machine operation. The study topics included collimation with bent crystals and hollow electron beams, diffusion measurements and various aspects of beambeam interactions. In this report we concentrate on the subject of beam-beam interactions, summarizing the results of beam experiments. The covered topics include offset collisions, coherent beam stability, effect of the bunch-length-to-beta-function ratio, and operation of AC dipole with colliding beams.

  6. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  7. Experience, gender, and performance: Connecting high school physics experience and gender differences to introductory college physics performance

    Science.gov (United States)

    Tai, Robert H.

    Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics

  8. The Physics of Miniature Atomic Clocks: 0-0 Versus "End" Transitions

    Science.gov (United States)

    Post, Amber; Jau, Yuan-Yu; Kuzma, Nicholas; Happer, William

    2003-05-01

    The majority of traditional atomic-clock designs are based on the 0-0 hyperfine transition of a Cs 133 atom. We are currently investigating the advantages of operating a miniature optical atomic clock using the "end" transitions, e.g. connecting states |f=1, mf =+/-1> and |f=2, mf=+/-2> in 87Rb. In our paper we present extensive new measurements of relevant relaxation rates, such as those due to spin-exchange collisions, buffer-gas pressure shifts, Carver Rates and others, which ultimately determine the choices of an operating regime for the miniature optical atomic clock. The relationship between these rates is non-trivial: for example, using higher laser power will increase polarization and reduce the spin-exchange rate [1], but it can simultaneously increase the linewidth due to the optical pumping rate. The dependence of these and other relaxation rates on the cell size, temperature, pressure, a choice of buffer gas, and other parameters will be reported. Based on these measured rates, our modeling can be used to predict the transition linewidths, signal-to-noise ratios and thus the stability of the clock in different operating regimes. The trade-off between the stability of the clock and the desired small cell size and low power consumption needs to be carefully considered in order to optimize our design. In our experiments we used optical, microwave, and radio-frequency excitation to study hyperfine and Zeeman resonance lines in heated glass cells containing pure-isotope alkali-metal vapor and buffer gasses (N2, Ar, He, etc.) at low (0 - 10 G) magnetic fields. Simultaneous use of light, microwave and radio-frequency fields allowed us to calibrate surrounding magnetic fields by observing the corresponding shifts of the resonance, thus leading us to a quantitative understanding of our system. [1] S. Appelt, A. B. Baranga, A. R. Young, W. Happer, Phys. Rev. A 59, 2078 (1999).

  9. Search for New Physics in reactor and accelerator experiments

    Science.gov (United States)

    Di Iura, A.; Girardi, I.; Meloni, D.

    2016-01-01

    We consider two scenarios of New Physics: the Large Extra Dimensions (LED), where sterile neutrinos can propagate in a (4+d) -dimensional space-time, and the Non Standard Interactions (NSI), where the neutrino interactions with ordinary matter are parametrized at low energy in terms of effective flavour-dependent complex couplings \\varepsilon_{αβ} . We study how these models have an impact on oscillation parameters in reactor and accelerator experiments.

  10. Can There BE Physics Without Experiments? Challenges and Pitfalls

    Science.gov (United States)

    't Hooft, Gerard

    2014-03-01

    Physicists investigating space, time and matter at the Planck scale will probably have to work with much less guidance from experimental input than has ever happened before in the history of Physics. This may imply that we should insist on much higher demands of logical and mathematical rigour than before. Working with long chains of arguments linking theories to experiment, we must be able to rely on logical precision when and where experimental checks cannot be provided.

  11. Physics Results from the Argo-YBJ Experiment

    CERN Document Server

    Di Sciascio, G

    2008-01-01

    The ARGO-YBJ experiment has been in stable data taking since November 2007 at the YangBaJing Cosmic Ray Laboratory (Tibet, P.R. China, 4300 m a.s.l.). In this paper we report a few selected results in Gamma-Ray Astronomy (Crab Nebula and Mrk421 observations, search for high energy tails of GRBs) and Cosmic Ray Physics (Moon and Sun shadow observations, proton-air cross section and antiproton/proton preliminary measurements).

  12. A simple digital delay for nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marques, J.G., E-mail: jmarques@ctn.ist.utl.pt [C2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS (Portugal); Cruz, C. [LATR, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066 Bobadela LRS (Portugal)

    2014-05-01

    A simple high precision digital delay for nuclear physics experiments was developed using fast ECL electronics. The circuit uses an oscillator synchronized with the signal to be delayed and a presettable counter. It is capable of delaying a negative NIM signal by 2 µs with a precision better than 50 ps. The circuit was developed for use in slow-fast coincidence units for Perturbed Angular Correlation spectrometers but it is not limited to this application.

  13. Atomic physics and quantum optics using superconducting circuits: from the Dynamical Casimir effect to Majorana fermions

    Science.gov (United States)

    Nori, Franco

    2012-02-01

    This talk will present an overview of some of our recent results on atomic physics and quantum optics using superconducting circuits. Particular emphasis will be given to photons interacting with qubits, interferometry, the Dynamical Casimir effect, and also studying Majorana fermions using superconducting circuits.[4pt] References available online at our web site:[0pt] J.Q. You, Z.D. Wang, W. Zhang, F. Nori, Manipulating and probing Majorana fermions using superconducting circuits, (2011). Arxiv. J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in a superconducting coplanar waveguide, Phys. Rev. Lett. 103, 147003 (2009). [0pt] J.R. Johansson, G. Johansson, C.M. Wilson, F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82, 052509 (2010). [0pt] C.M. Wilson, G. Johansson, A. Pourkabirian, J.R. Johansson, T. Duty, F. Nori, P. Delsing, Observation of the Dynamical Casimir Effect in a superconducting circuit. Nature, in press (Nov. 2011). P.D. Nation, J.R. Johansson, M.P. Blencowe, F. Nori, Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits, Rev. Mod. Phys., in press (2011). [0pt] J.Q. You, F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474, 589 (2011). [0pt] S.N. Shevchenko, S. Ashhab, F. Nori, Landau-Zener-Stuckelberg interferometry, Phys. Reports 492, 1 (2010). [0pt] I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation, Reports on Progress in Physics 74, 104401 (2011). [0pt] I.Buluta, F. Nori, Quantum Simulators, Science 326, 108 (2009). [0pt] L.F. Wei, K. Maruyama, X.B. Wang, J.Q. You, F. Nori, Testing quantum contextuality with macroscopic superconducting circuits, Phys. Rev. B 81, 174513 (2010). [0pt] J.Q. You, X.-F. Shi, X. Hu, F. Nori, Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuit, Phys. Rev. A 81, 063823 (2010).

  14. Sharing my fifteen years experiences in the research field of Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Guha T

    2014-03-01

    Full Text Available Atomic Force Microscope (AFM was developed by Binnig and his coworkers in the year 1986. He was awarded Nobel Prize in physics for this work in 1986 in sharing with Rohrer and Ruska. Rationale to develop AFM: Scanning Tunneling Microscope (STM, the precursor to AFM is efficient in imaging electrically conducting specimen at atomic resolution. The impetus for development of AFM came to Binnig’s mind because of relatively poor efficiency of STM to image electrically non-conducting biological samples. He wondered why the surfaces be always imaged with a current but not with a force. He thought if small forces of interactions between a probe tip atoms and specimen surface atoms could be detected and amplified then imaging of biological specimen would be possible at a very high resolution. AFM working Principle: AFM is a Scanning Probe Microscopy (SPM by which imaging is realized by interaction of a probe with sample surface without any beam (light, electron and lens system. The probe is attached to a soft and sensitive cantilever and either specimen is scanned by probe or specimen scans itself under a stationary probe. Probe’s spring constant must be small and the deflection must be measurable along with high resonance frequency. The most commonly associated force with AFM is called Vander Waals force. Three modes of working are contact mode, non contact mode and tapping mode. In contact zone, the probe tip attached with cantilever is held less than a few A˚ from the sample surface and the inter-atomic force between the atoms of probe tip and sample surface is repulsive. In non-contact zone, the probe tip is held at a distance of 100s of A˚ from the sample surface and the inter-atomic force here is long range Vander Waals interaction and is attractive in nature. AFM is also called Scanning Force Microscope because the force of interaction between probe tip atoms and surface atoms is amplified to generate a signal voltage which modulates video

  15. Experience in teaching intensive course of thermal physics for undergraduate physics students

    Science.gov (United States)

    Aliev, Farkhad

    2009-03-01

    This talk of non-technical nature describes experience of the author in teaching the intensive course of thermal physics for the undergraduate physics students at the Universidad Autonoma de Madrid, Spain. After brief introduction to the program, description of the WEB support of the course, I shall describe practical classes ( home-works, visits to the Laboratories, experimental demonstrations, typical problems and typical topics for presentations on the advanced thermodynamics, etc. ). I shall further discuss different possible actions to wake up an interest of the students to the thermal physics and ways to simulate their active participation in the class discussions. I also describe different schemes employed in the last few years to evaluate effectively and clearly the students work and knowledge. Finally, I will analyze the efficiency of our methodic in improving teaching of thermal physics at University level.

  16. Physical basis of coastal productivity: The SEEP and MASAR experiments

    Science.gov (United States)

    Csanady, G. T.

    Two major cooperative experiments, code-named Shelf Edge Exchange Processes (SEEP) I and II, were carried out on the northeast U.S. continental shelf and slope by an interdisciplinary group of scientists in the past decade. The work, supported by the Department of Energy, Office of Health and Environmental Research, had the broad aim of determining whether or to what extent energy-related human activities interfere with the high biological productivity of coastal waters. Much of SEEP I work was reported in a dedicated issue of Continental Shelf Research, including a summary article on the experiment as a whole [Walsh et al., 1988[. A parallel experiment, supported by the Minerals Management Service and code-named Mid Atlantic Slope and Rise (MASAR), had the objective of exploring physical processes over the continental slope and rise, including especially currents in the upper part of the water column. A good deal of MASAR work was also reported in the SEEP issue just mentioned, mainly in an article by Csanady and Hamilton (1988). There have been other papers and publications on these experiments, and more are forthcoming. While many questions remain, our horizons have broadened considerably after a decade of work on this problem, as if our aeroplane had just emerged from clouds to expose an interesting landscape. In this article I shall try to describe the physical (-oceanographic) features of that landscape, not in the chronological order in which we have espied them, but as the logic of the subject dictates.

  17. Physics from solar neutrinos in dark matter direct detection experiments

    CERN Document Server

    Cerdeño, David G; Jubb, Thomas; Machado, Pedro A N; Vincent, Aaron C; hm, Céline Bøe

    2016-01-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle to date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neutrinos, and use these estimates to infer errors on future measurements of the neutrino fluxes, weak mixing angle and solar observables, as well as to constrain new physics in the neutrino sector. The combined rates of solar neutrino events in second generation experiments (SuperCDMS and LZ) can yield a measurement of the pp flux to 2.5% accuracy via electron recoil, and slightly improve the boron-8 flux determination. Assuming a low-mass argon phase, projected tonne-scale experiments like DARWIN can reduce the uncertainty on bo...

  18. New Developments in Atom Interferometry

    Science.gov (United States)

    1992-07-01

    interferometers can be applied to a number of experiments in fundamental physics: tests of quantum mechanics such as the Aharonov - Casher effect (6), measurement of...qualitatively new types of experiments involving inertial effects , studies of atomic and molecular properties, tests of basic quantum physics, and may ultimately...laser light as the beam splitters. Atom interferometers will make possible qualitatively new types of experiments involving inertial effects , studies of

  19. The experiment PANDA: physics with antiprotons at FAIR

    Science.gov (United States)

    Boca, Gianluigi

    2015-05-01

    PANDA is an experiment that will run at the future facility FAIR, Darmstadt, Germany. A high intensity and cooled antiproton beam will collide on a fixed hydrogen or nuclear target covering center-of-mass energies between 2.2 and 5.5 GeV. PANDA addresses various physics aspects from the low energy non-perturbative region towards the perturbative regime of QCD. With the impressive theoretical developments in this field, e.g. lattice QCD, the predictions are becoming more accurate in the course of time. The data harvest with PANDA will, therefore, be an ideal test bench with the aim to provide a deeper understanding of hadronic phenomena such as confinement and the generation of hadron masses. A variety of physics topics will be covered with PANDA, for example: the formation or production of exotic non-qqbar charm meson states connected to the recently observed XYZ spectrum; the study of gluon-rich matter, such as glueballs and hybrids; the spectroscopy of the excited states of strange and charm baryons, their production cross section and their spin correlations; the behaviour of hadrons in nuclear matter; the hypernuclear physics; the electromagnetic proton form factors in the timelike region. The PANDA experiment is designed to achieve the above mentioned physics goals with a setup with the following characteristics: an almost full solid angle acceptance; excellent tracking capabilities with high resolution (1-2 % at 1 GeV/c in the central region); secondary vertex detection with resolution ≈ 100 microns or better; electromagnetic calorimetry for detections of gammas and electrons up to 10 GeV; good particle identification of charge tracks (electrons, muons, pions, kaons, protons); a dedicated interchangeable central apparatus for the hypernuclear physics; detector and data acquisition system capable of working at 20 MHz interaction rate with an intelligent software trigger that can provide maximum flexibility.

  20. Software for physics of tau lepton decay in LHC experiments

    CERN Document Server

    Przedzinski, Tomasz

    2010-01-01

    Software development in high energy physics experiments offers unique experience with rapidly changing environment and variety of different standards and frameworks that software must be adapted to. As such, regular methods of software development are hard to use as they do not take into account how greatly some of these changes influence the whole structure. The following thesis summarizes development of TAUOLA C++ Interface introducing tau decays to new event record standard. Documentation of the program is already published. That is why it is not recalled here again. We focus on the development cycle and methodology used in the project, starting from the definition of the expectations through planning and designing the abstract model and concluding with the implementation. In the last part of the paper we present installation of the software within different experiments surrounding Large Hadron Collider and the problems that emerged during this process.

  1. Dalton's disputed nitric oxide experiments and the origins of his atomic theory.

    Science.gov (United States)

    Usselman, Melvyn C; Leaist, Derek G; Watson, Katherine D

    2008-01-11

    In 1808 John Dalton published his first general account of chemical atomic theory, a cornerstone of modern chemistry. The theory originated in his earlier studies of the properties of atmospheric gases. In 1803 Dalton discovered that oxygen combined with either one or two volumes of nitric oxide in closed vessels over water and this pioneering observation of integral multiple proportions provided important experimental evidence for his incipient atomic ideas. Previous attempts to reproduce Dalton's experiments have been unsuccessful and some commentators have concluded the results were fraudulent. We report a successful reconstruction of Dalton's experiments and provide an analysis exonerating him of any scientific misconduct. But we conclude that Dalton, already thinking atomistically, adjusted experimental conditions to obtain the integral combining proportions.

  2. Multi-wavelength holography with a single spatial light modulator for ultracold atom experiments.

    Science.gov (United States)

    Bowman, David; Ireland, Philip; Bruce, Graham D; Cassettari, Donatella

    2015-04-06

    We demonstrate a method to independently and arbitrarily tailor the spatial profile of light of multiple wavelengths and we show possible applications to ultracold atoms experiments. A single spatial light modulator is programmed to create a pattern containing multiple spatially separated structures in the Fourier plane when illuminated with a single wavelength. When the modulator is illuminated with overlapped laser beams of different wavelengths, the position of the structures is wavelength-dependent. Hence, by designing their separations appropriately, a desired overlap of different structures at different wavelengths is obtained. We employ regional phase calculation algorithms and demonstrate several possible experimental scenarios by generating light patterns with 670 nm, 780 nm and 1064 nm laser light which are accurate to the level of a few percent. This technique is easily integrated into cold atom experiments, requiring little optical access.

  3. The influence of atomizer internal design and liquid physical properties on effervescent atomizing of coal-water slurry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng; Duan, Yufeng [Southeast Univ., Nanjing (China). Inst. of Thermal Engineering

    2013-07-01

    This study investigated the dependence of effervescent atomizing of coal-water slurry (CWS) on atomizer internal design and fluid properties. Results demonstrate that internal design of atomizer and fluid properties directly affect the two-phase flow pattern inside the atomizer which consequently affects the spray quality. The influence of mixing chamber length on spray quality is not significant at the ALR of 0.15 except for spray 0.75 glycerol/0.248 water/0.002 xanthan mixture. The same trend also found in the effect of angle of aeration holes at ALR of 0.15. Large diameter of the inclined aeration holes shows small SMD for water. The consistency index of fluids has no effect on the spray quality and Sauter Mean Diameter (SMD) increases when polymer additions were added to the glycerin-water mixture. The radial profile of SMD for spray water are almost flat, however, the largest SMD can be obtained at the edge of spray for three other fluids.

  4. THE POTENTIAL MODEL INVESTIGATION OF STARK EFFECT IN CAESIUM RYDBERG STATE ATOMS AND COMPARISON WITH EXPERIMENT

    Institute of Scientific and Technical Information of China (English)

    HU ZHENG-FA; ZHOU SHI-KANG; GONG SHUN-SHENG; ZHAN MING-SHENG

    2000-01-01

    The potential model method for computation of Stark structure of Cs Rydberg states atoms and oscillator strength is described,for external electric fields varying from 0 to 600V/cm.Anticrossing,l-mixing and n-mixing phenomena are observed clearly from the map of Stark.Corresponding experiment is performed under the same condition,and the two results are in good agreement with each other within the experimental uncertainty.

  5. Proposed Laser-Based HED physics experiments for Stockpile Stewardship

    Energy Technology Data Exchange (ETDEWEB)

    Benage, John F. [Los Alamos National Laboratory; Albright, Brian J. [Los Alamos National Laboratory; Fernandez, Juan C. [Los Alamos National Laboratory

    2012-09-04

    An analysis of the scientific areas in High Energy Density (HED) physics that underpin the enduring LANL mission in Stockpile Stewardship (SS) has identified important research needs that are not being met. That analysis has included the work done as part of defining the mission need for the High Intensity Laser Laboratory (HILL) LANL proposal to NNSA, LDRD DR proposal evaluations, and consideration of the Predictive Capability Framework and LANL NNSA milestones. From that evaluation, we have identified several specific and scientifically-exciting experimental concepts to address those needs. These experiments are particularly responsive to physics issues in Campaigns 1 and 10. These experiments are best done initially at the LANL Trident facility, often relying on the unique capabilities available there, although there are typically meritorious extensions envisioned at future facilities such as HILL, or the NIF once the ARC short-pulse laser is available at sufficient laser intensity. As the focus of the LANL HEDP effort broadens from ICF ignition of the point design at the conclusion of the National Ignition Campaign, into a more SS-centric effort, it is useful to consider these experiments, which address well-defined issues, with specific scientific hypothesis to test or models to validate or disprove, via unit-physics experiments. These experiments are in turn representative of a possible broad experimental portfolio to elucidate the physics of interest to these campaigns. These experiments, described below, include: (1) First direct measurement of the evolution of particulates in isochorically heated dense plasma; (2) Temperature relaxation measurements in a strongly-coupled plasma; (3) Viscosity measurements in a dense plasma; and (4) Ionic structure factors in a dense plasma. All these experiments address scientific topics of importance to our sponsors, involve excellent science at the boundaries of traditional fields, utilize unique capabilities at LANL

  6. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    Science.gov (United States)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  7. Looking at cell mechanics with atomic force microscopy: experiment and theory.

    Science.gov (United States)

    Benitez, Rafael; Toca-Herrera, José L

    2014-11-01

    This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented.

  8. Modeling the heating and atomic kinetics of a photoionized neon plasma experiment

    Science.gov (United States)

    Lockard, Tom E.

    Motivated by gas cell photoionized plasma experiments performed by our group at the Z facility of Sandia National Laboratories, we discuss in this dissertation a modeling study of the heating and ionization of the plasma for conditions characteristic of these experiments. Photoionized plasmas are non-equilibrium systems driven by a broadband x-ray radiation flux. They are commonly found in astrophysics but rarely seen in the laboratory. Several modeling tools have been employed: (1) a view-factor computer code constrained with side x-ray power and gated monochromatic image measurements of the z-pinch radiation, to model the time-history of the photon-energy resolved x-ray flux driving the photoionized plasma, (2) a Boltzmann self-consistent electron and atomic kinetics model to simulate the electron distribution function and configuration-averaged atomic kinetics, (3) a radiation-hydrodynamics code with inline non-equilibrium atomic kinetics to perform a comprehensive numerical simulation of the experiment and plasma heating, and (4) steady-state and time-dependent collisional-radiative atomic kinetics calculations with fine-structure energy level description to assess transient effects in the ionization and charge state distribution of the plasma. The results indicate that the photon-energy resolved x-ray flux impinging on the front window of the gas cell is very well approximated by a linear combination of three geometrically-diluted Planckian distributions. Knowledge of the spectral details of the x-ray drive turned out to be important for the heating and ionization of the plasma. The free electrons in the plasma thermalize quickly relative to the timescales associated with the time-history of the x-ray drive and the plasma atomic kinetics. Hence, electrons are well described by a Maxwellian energy distribution of a single temperature. This finding is important to support the application of a radiation-hydrodynamic model to simulate the experiment. It is found

  9. Negative Experiences in Physical Education and Sport: How Much Do They Affect Physical Activity Participation Later in Life?

    Science.gov (United States)

    Cardinal, Bradley J.; Yan, Zi; Cardinal, Marita K.

    2013-01-01

    People's feelings toward physical activity are often influenced by memories of their childhood experiences in physical education and sport. Unfortunately, many adults remember negative experiences, which may affect their desire to maintain a physically active lifestyle. A survey that asked 293 students about recollections from their childhood…

  10. Fast Digital Trigger Systems For Experiments In High- Energy Physics

    CERN Document Server

    Marciniewski, P J

    2001-01-01

    The data acquisition in high energy physics experiments is typically started by a pulse from a fast coincidence- based trigger system. It is essential that such a system can identify an event in a shortest possible time and with as good selectivity as possible. In order to meet these requirements, several new techniques and developments in the domain of signal discrimination and rapid hittopology analysis are presented. Two digital rise-time compensation methods were developed to improve the time resolution of the comparatively slow signals from inorganic scintillators. Both methods utilize double threshold analog comparators and digital processing logic. A unique adaptive threshold discrimination method was developed to reject after-pulses. The method was found to give the best timing, the smallest dead time and a complete rejection of noise pulses without missing physically significant pulses. Algorithms for fast multiplicity calculations of clusters of hits in two- dimensional matrices, in strings and in p...

  11. The PANDA experiment: physics goals and experimental setup

    Directory of Open Access Journals (Sweden)

    Boca Gianluigi

    2014-05-01

    Full Text Available PANDA (antiProton ANnihilation at DArmstadt is an experiment that will run at the GSI laboratory, Darmstadt, Germany, in 2019. A high intensity antiproton beam with momentum up to 15 GeV/c will collide on a fixed proton target (pellet target or jet target. A wide range of physics topics will be investigated: char- monium states and open charm states above the DD¯$D\\overline D $ threshold; exotic states like glueballs, oddballs, hybrids, multiquarks, molecules; the spectroscopy of the excited states of strange and charm baryons; non-perturbative QCD dynamics in the pp¯$p\\overline p $ production cross section of charm and strange baryons and their spin correlations; the behaviour of hadrons in nuclear matter; hypernuclear physics; electromagnetic proton form factors in the timelike region; the CP violation in the charm sector, rare and forbidden decays of charm baryons and mesons.

  12. Flavour physics and the Large Hadron Collider beauty experiment.

    Science.gov (United States)

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.

  13. Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Energy Technology Data Exchange (ETDEWEB)

    Aad, G.; Abat, E.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; /SUNY, Albany /Alberta U. /Ankara U. /Annecy, LAPP /Argonne /Arizona U. /Texas U., Arlington /Athens U. /Natl. Tech. U., Athens /Baku, Inst. Phys. /Barcelona, IFAE /Belgrade U. /VINCA Inst. Nucl. Sci., Belgrade /Bergen U. /LBL, Berkeley /Humboldt U., Berlin /Bern U., LHEP /Birmingham U. /Bogazici U. /INFN, Bologna /Bologna U.

    2011-11-28

    The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. In this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of

  14. A Physics Exploratory Experiment on Plasma Liner Formation

    Science.gov (United States)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  15. A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments

    Science.gov (United States)

    Sang, Ziru; Li, Feng; Jiang, Xiao; Jin, Ge

    2014-04-01

    We developed a reconfigurable nuclear instrument system (RNIS) that could satisfy the requirements of diverse nuclear and particle physics experiments, and the inertial confinement fusion diagnostic. Benefiting from the reconfigurable hardware structure and digital pulse processing technology, RNIS shakes off the restrictions of cumbersome crates and miscellaneous modules. It retains all the advantages of conventional nuclear instruments and is more flexible and portable. RNIS is primarily composed of a field programmable hardware board and relevant PC software. Separate analog channels are designed to provide different functions, such as amplifiers, ADC, fast discriminators and Schmitt discriminators for diverse experimental purposes. The high-performance field programmable gate array could complete high-precision time interval measurement, histogram accumulation, counting, and coincidence anticoincidence measurement. To illustrate the prospects of RNIS, a series of applications to the experiments are described in this paper. The first, for which RNIS was originally developed, involves nuclear energy spectrum measurement with a scintillation detector and photomultiplier. The second experiment applies RNIS to a G-M tube counting experiment, and in the third, it is applied to a quantum communication experiment through reconfiguration.

  16. The International Reactor Physics Experiment Evaluation Project (IRPHEP)

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Enrico Sartori; Lori Scott

    2006-09-01

    Since the beginning of the Nuclear Power industry, numerous experiments concerned with nuclear energy and technology have been performed at different research laboratories, worldwide. These experiments required a large investment in terms of infrastructure, expertise, and cost; however, many were performed without a high degree of attention to archival of results for future use. The degree and quality of documentation varies greatly. There is an urgent need to preserve integral reactor physics experimental data, including measurement methods, techniques, and separate or special effects data for nuclear energy and technology applications and the knowledge and competence contained therein. If the data are compromised, it is unlikely that any of these experiments will be repeated again in the future. The International Reactor Physics Evaluation Project (IRPhEP) was initiated, as a pilot activity in 1999 by the by the Organization of Economic Cooperation and Development (OECD) Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC). The project was endorsed as an official activity of the NSC in June of 2003. The purpose of the IRPhEP is to provide an extensively peer reviewed set of reactor physics related integral benchmark data that can be used by reactor designers and safety analysts to validate the analytical tools used to design next generation reactors and establish the safety basis for operation of these reactors. A short history of the IRPhEP is presented and its purposes are discussed in this paper. Accomplishments of the IRPhEP, including the first publication of the IRPhEP Handbook, are highlighted and the future of the project outlined.

  17. On curriculum of 'Atom and Radiation' in high school physics 1B

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Nobuo [Tachibana Gakuen Senior High School, Matsuda, Kanagawa (Japan)

    1999-09-01

    The 30% of electric power consumed in general home of Japan is supplied by nuclear power plants nowadays. High school students should have a right knowledge of nuclear energy. A curriculum of 'Atom and Radiation' is carried on about 10 school hours. The curriculum contains 10 items as follows: (1) history of discovery and development of nuclear energy, (2) radiation and radiation generation mechanism, (3) radiation measurement 1; natural radiation and familiar radiation source, (4) radiation measurement 2; relations of a distance and intensity (or dose), (5) radiation measurement 3; shielding effect experiment of radiation, (6) radiation observation by cloud chamber; assembling cloud chamber, (7) nuclear fission; chain reaction and atomic bomb, (8) principle of nuclear energy; principle and structure of nuclear reactor, (9) nuclear fuel and radioactive waste, (10) nuclear power as a energy source; discussion. Video-tapes fitted for these items are used in teaching. High school students after teaching have been able to consider nuclear energy and environmental issues by themselves. (M. Suetake)

  18. Chladni Patterns on Drumheads: A ``Physics of Music'' Experiment

    Science.gov (United States)

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional systems, such as string and wind instruments, to the two-dimensional membranes and plates of the percussion family. Although the sand patterns attributed to Ernst Florens Friedrich Chladni (1756-1827) are often demonstrated for this purpose using metal plates,2-4 the use of drumheads offers several pedagogical and practical advantages in the lab.

  19. Report on Physics of Channelization: Theory, Experiment, and Observation

    Energy Technology Data Exchange (ETDEWEB)

    Kudrolli, Arshad [Clark University

    2014-05-19

    The project involved a study of physical processes that create eroded channel and drainage networks. A particular focus was on how the shape of the channels and the network depended on the nature of the fluid flow. Our approach was to combine theoretical, experimental, and observational studies in close collaboration with Professor Daniel Rothman of the Massachusetts Institute of Technology. Laboratory -scaled experiments were developed and quantitative data on the shape of the pattern and erosion dynamics are obtained with a laser-aided topography technique and fluorescent optical imaging techniques.

  20. Neutrino Oscillation Physics Potential of the T2K Experiment

    CERN Document Server

    Abe, K; Aihara, H; Akiri, T; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bojechko, C; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Rodr'iguez, J Caravaca; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Danko, I; Das, R; Davis, S; de Perio, P; De Rosa, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Drapier, O; Duboyski, T; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Finch, A J; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayato, Y; Hearty, C; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Johnson, R A; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; King, S; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koseki, K; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Laihem, K; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Guerra, E S Pinzon; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Riccio, C; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Sacco, R; Sakashita, K; S'anchez, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shaker, F; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Still, B; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Waldron, A V; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2014-01-01

    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle $\\theta_{13}$ have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal $\\sin^22\\theta_{23}$, the octant of $\\theta_{23}$, and the mass hierarchy, in addition to the measurements of $\\delta_{CP}$, $\\sin^2\\theta_{23}$, and $\\Delta m^2_{32}$, for various combinations of $\

  1. Physics Analysis Tools for the CMS experiment at LHC

    CERN Document Server

    Fabozzi, Francesco; Hegner, Benedikt; Lista, Luca

    2008-01-01

    The CMS experiment is expected to start data taking during 2008, and large data samples, of the Peta-bytes scale, will be produced each year. The CMS Physics Tools package provides the CMS physicist with a powerful and flexible software layer for analysis of these huge datasets that is well integrated in the CMS experiment software. A core part of this package is the Candidate Model providing a coherent interface to different types of data. Standard tasks such as combinatorial analyses, generic cuts, MC truth matching and constrained fitting are supported. Advanced template techniques enable the user to add missing features easily. We explain the underlying model, certain details of the implementation and present some use cases showing how the tools are currently used in generator and full simulation studies as preparation for analysis of real data.

  2. Learning to Perform Physics Experiments via Deep Reinforcement Learning

    CERN Document Server

    Denil, Misha; Kulkarni, Tejas D; Erez, Tom; Battaglia, Peter; de Freitas, Nando

    2016-01-01

    When encountering novel object, humans are able to infer a wide range of physical properties such as mass, friction and deformability by interacting with them in a goal driven way. This process of active interaction is in the same spirit of a scientist performing an experiment to discover hidden facts. Recent advances in artificial intelligence have yielded machines that can achieve superhuman performance in Go, Atari, natural language processing, and complex control problems, but it is not clear that these systems can rival the scientific intuition of even a young child. In this work we introduce a basic set of tasks that require agents to estimate hidden properties such as mass and cohesion of objects in an interactive simulated environment where they can manipulate the objects and observe the consequences. We found that state of art deep reinforcement learning methods can learn to perform the experiments necessary to discover such hidden properties. By systematically manipulating the problem difficulty and...

  3. Reconstructive surgery for male stress urinary incontinence: Experiences using the ATOMS system at a single center

    Directory of Open Access Journals (Sweden)

    Krause, Jens

    2014-12-01

    Full Text Available Objective: To propose possible success-driven solutions for problem and complication rates encountered with the ATOMS sling system, based on first-hand experience; and to provide possible actual alternative scenarios for the treatment of male . Patients and methods: During the defined period (between 4/2010 and 04/2014, 36 patients received ATOMS system implants at our clinic. We collected pre- and post-operative evaluation data using the International Consultation on Incontinence Questionnaire Short Form (ICIQ SF. As an expansion of the questionnaire, we added questions about post-operative perineal pain, the general satisfaction with the results of the intervention and willingness to recommend the operation to a best friend. Results: Our data shows a relatively high explantation rate, but a surprisingly high patient satisfaction rate. Explantation was required mainly due to late onset infections or other symptomatic factors. Compared to other studies early onset infections were rare. Conclusion: A non-invasive, uncomplicated adjustable system to alleviate male stress urinary incontinence remains a challenge. Although there are various systems available for the treatment of male stress urinary incontinence, it seems that despite the advantages of the ATOMS system, an artificial sphincter system may pose more advantages based on our experience, understanding and knowledge of its well-documented long-term solutions and problems.

  4. Maximizing the DUNE early physics output with current experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Monojit; Goswami, Srubabati [Physical Research Laboratory, Ahmedabad (India); Raut, Sushant K. [Physical Research Laboratory, Ahmedabad (India); School of Engineering Sciences, KTH Royal Institute of Technology-AlbaNova University Center, Department of Theoretical Physics, Stockholm (Sweden)

    2016-03-15

    The deep underground neutrino experiment (DUNE) is a proposed next generation superbeam experiment at Fermilab. Its aims include measuring the unknown neutrino oscillation parameters - the neutrino mass hierarchy, the octant of the mixing angle θ{sub 23}, and the CP-violating phase δ{sub CP}. The current and upcoming experiments T2K, NOνA, and ICAL rate at IN will also be collecting data for the same measurements. In this paper, we explore the sensitivity reach of DUNE in combination with these other experiments. We evaluate the least exposure required by DUNE to determine the above three unknown parameters with reasonable confidence.We find that for each case, the inclusion of data from T2K, NOνA, and ICAL rate at IN help to achieve the same sensitivity with a reduced exposure from DUNE thereby helping to economize the configuration. Further, we quantify the effect of the proposed near detector on systematic errors and study the consequent improvement in sensitivity. We also examine the role played by the second oscillation cycle in furthering the physics reach of DUNE. Finally, we present an optimization study of the neutrino-antineutrino running of DUNE. (orig.)

  5. Physics prospects of future neutrino oscillation experiments in Asia

    CERN Document Server

    Hagiwara, K

    2004-01-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of the larger mass squared difference (the neutrino mass hierarchy pattern), the magnitude of the third mixing angle and the CP violating phase, and a two-fold ambiguity in the mixing angle that dictates the atmospheric neutrino oscillation should be determined by future oscillation experiments. In this talk, I introduce a few ideas of future long baseline neutrino oscillation experiments which make use of the super neutrino beams from J-PARC (Japan Proton Accelerator Research Complex) in Tokai village. We examine the poten...

  6. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    Science.gov (United States)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  7. Fast digital trigger systems for experiments in high- energy physics

    Science.gov (United States)

    Marciniewski, Pawel Jerzy

    The data acquisition in high energy physics experiments is typically started by a pulse from a fast coincidence- based trigger system. It is essential that such a system can identify an event in a shortest possible time and with as good selectivity as possible. In order to meet these requirements, several new techniques and developments in the domain of signal discrimination and rapid hittopology analysis are presented. Two digital rise-time compensation methods were developed to improve the time resolution of the comparatively slow signals from inorganic scintillators. Both methods utilize double threshold analog comparators and digital processing logic. A unique adaptive threshold discrimination method was developed to reject after-pulses. The method was found to give the best timing, the smallest dead time and a complete rejection of noise pulses without missing physically significant pulses. Algorithms for fast multiplicity calculations of clusters of hits in two- dimensional matrices, in strings and in planar detector configurations were evaluated. All techniques described in this thesis were implemented and verified in the trigger systems built for the experiments WASA (Wide Angle Shower Apparatus) at TSL, Uppsala, Sweden and the AMANDA (Antarctic Muon And Neutrino Detector Array) at the South Pole.

  8. High school student physics research experience yields positive results

    Science.gov (United States)

    Podolak, K. R.; Walters, M. J.

    2016-03-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a small scale research project while in high school gives them the hands on experience and ultimately prepares them more for the college experience. SUNY Plattsburgh’s Physics department started a five-week summer program for high school students in 2012. This program has proved not only beneficial for students while in the program, but also as they continue on in their development as scientists/engineers. Independent research, such as that offered by SUNY Plattsburgh’s five-week summer program, offers students a feel and taste of the culture of doing research, and life as a scientist. It is a short-term, risk free way to investigate whether a career in research or a particular scientific field is a good fit.

  9. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    Science.gov (United States)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  10. Introduction to the Contributions of A. Temkin and R. J. Drachman to Atomic Physics

    Science.gov (United States)

    Bhatia, A.K.

    2007-01-01

    Their work, as is the work of most atomic theorists, is concerned with solving the Schroedinger equation accurately for wave function in cases where there is no exact analytical solution. In particular, Temkin is associated with electron scattering from atoms and ions. When he started there already were a number of methods to study the scattering of electrons from atoms.

  11. A Data Transmission Method Based on Ethernet Physical Layer for Particle Physics Experiment

    CERN Document Server

    Xi-Ru, Huang; Jia-Jun, Zheng

    2015-01-01

    Due to the advantages of universality, flexibility and high performance, fast Ethernet is widely used in readout system design of modern particle physics experiments. However, Ethernet is usually used together with TCP/IP protocol stack, which makes it difficult to be implemented because designers have to use operating system to process this protocol. Furthermore, TCP/IP protocol degrades the transmission efficiency and real-time performance. To maximize the performance of Ethernet in physics experiment applications, a data readout method based on physical layer (PHY) is proposed in this paper. In this method, TCP/IP protocol is forsaken and replaced with a customized and simple protocol, which make it easier to be implemented. On each readout module, data from front-end electronics is first fed into an FPGA for protocol processing and then sent out to a PHY chip controlled by this FPGA for transmission. This kind of data path is fully implemented by hardware. While from the side of data acquisition system (D...

  12. Results From the Physics of Colloids Experiment on ISS

    Science.gov (United States)

    Weitz, David; Bailey, Arthur; Manley, Suliana; Prasad, Vikram; Christianson, Rebecca; Sankaran, Subramanian; Doherty, Michael; Jankovsky, Amy; Lorik, Tibor; Shiley, William

    2002-12-01

    The Physics of Colloids in Space (PCS) experiment was accommodated within International Space Station (ISS) EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack 2 and was remotely operated from early June 2001 until February 2002 from NASA Glenn Research Center's Telescience Support Center (TSC) in Cleveland, Ohio, and from the remote site at Harvard University in Cambridge, Massachusetts. PCS was launched on 4/19/2001 on Space Shuttle STS-100. The experiment was activated on 5/31/2001. The entire experimental setup performed remarkably well, and accomplished 2400 hours of science operations on-orbit. The sophisticated instrumentation in PCS is capable of dynamic and static light scattering from 11 to 169 degrees, Bragg scattering over the range from 10 to 60 degrees, dynamic and static light scattering at low angles from 0.3 to 6.0 degrees, and color imaging. The long duration microgravity environment on the ISS facilitated extended studies on the growth and coarsening characteristics of binary crystals. The de-mixing of the colloid-polymer critical-point sample was also studied as it phase-separated into two phases. Further, aging studies on a col-pol gel, gelation rate studies in extremely low concentration fractal gels over several days, and studies on a glass sample, all provided valuable information. Several exciting and unique aspects of these results are discussed here.

  13. MISSE 2 PEACE Polymers Experiment Atomic Oxygen Erosion Yield Error Analysis

    Science.gov (United States)

    McCarthy, Catherine E.; Banks, Bruce A.; deGroh, Kim, K.

    2010-01-01

    Atomic oxygen erosion of polymers in low Earth orbit (LEO) poses a serious threat to spacecraft performance and durability. To address this, 40 different polymer samples and a sample of pyrolytic graphite, collectively called the PEACE (Polymer Erosion and Contamination Experiment) Polymers, were exposed to the LEO space environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of the Materials International Space Station Experiment 1 & 2 (MISSE 1 & 2). The purpose of the PEACE Polymers experiment was to obtain accurate mass loss measurements in space to combine with ground measurements in order to accurately calculate the atomic oxygen erosion yields of a wide variety of polymeric materials exposed to the LEO space environment for a long period of time. Error calculations were performed in order to determine the accuracy of the mass measurements and therefore of the erosion yield values. The standard deviation, or error, of each factor was incorporated into the fractional uncertainty of the erosion yield for each of three different situations, depending on the post-flight weighing procedure. The resulting error calculations showed the erosion yield values to be very accurate, with an average error of 3.30 percent.

  14. Energy landscape investigation by wavelet transform analysis of atomic force spectroscopy data in a biorecognition experiment.

    Science.gov (United States)

    Bizzarri, Anna Rita

    2016-01-01

    Force fluctuations recorded in an atomic force spectroscopy experiment, during the approach of a tip functionalized with biotin towards a substrate charged with avidin, have been analyzed by a wavelet transform. The observation of strong transient changes only when a specific biorecognition process between the partners takes place suggests a drastic modulation of the force fluctuations when biomolecules recognize each other. Such an analysis allows to investigate the peculiar features of a biorecognition process. These results are discussed in connection with the possible role of energy minima explored by biomolecules during the biorecognition process.

  15. The Entangled Cosmos: an experiment in physical theopoetics

    Science.gov (United States)

    Keller, Catherine

    2012-09-01

    As an experiment in constructive transdisciplinary relationality, a theology of nonseparable difference here engages a physics of quantum entanglement. The metaphoric potential of "spooky action at a distance" to intensify a cosmology resistant to the dominant individualism and conducive to ethical ecologies of interdependence has only begun to develop across multiple discourses. This essay contemplates the specific unfolding of a theory of nonlocal superpositions by physicists such as Stapp, Bohm and Barad. It does not literalize any God-trope, but rather entangles theology in the mysterious uncertainty of our widest interdependencies. This essay, first presented as a lecture at the American Academy of Religion "Science, Technology and Religion" Group, San Francisco, November 2011, forms the core of a chapter in a book I am currently completing, The Cloud of the Impossible: Theological Entanglements.

  16. Probing new physics scenarios in accelerator and reactor neutrino experiments

    Science.gov (United States)

    Di Iura, A.; Girardi, I.; Meloni, D.

    2015-06-01

    We perform a detailed combined fit to the {{\\bar{ν }}e}\\to {{\\bar{ν }}e} disappearence data of the Daya Bay experiment and the appearance {{ν }μ }\\to {{ν }e} and disappearance {{ν }μ }\\to {{ν }μ } data of the Tokai to Kamioka (T2K) one in the presence of two models of new physics affecting neutrino oscillations, namely a model where sterile neutrinos can propagate in a large compactified extra dimension and a model where non-standard interactions (NSI) affect the neutrino production and detection. We find that the Daya Bay ⨁ T2K data combination constrains the largest radius of the compactified extra dimensions to be R≲ 0.17 μm at 2σ C.L. (for the inverted ordering of the neutrino mass spectrum) and the relevant NSI parameters in the range O({{10}-3})-O({{10}-2}), for particular choices of the charge parity violating phases.

  17. Results on QCD Physics from the CDF-II Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pagliarone, C.; /Cassino U. /INFN, Pisa

    2006-12-01

    In this paper the authors review a selection of recent results obtained, in the area of QCD physics, from the CDF-II experiment that studies p{bar p} collisions at {radical}s = 1.96 TeV provided by the Fermilab Tevatron Collider. All results shown correspond to analysis performed using the Tevatron Run II data samples. In particular they will illustrate the progress achieved and the status of the studies on the following QCD processes: jet inclusive production, using different jet clustering algorithm, W({yields} e{nu}{sub e}) + jets and Z({yields} e{sup +}e{sup -}) + jets production, {gamma} + b-jet production, dijet production in double pomeron exchange and finally exclusive e{sup +}e{sup -} and {gamma}{gamma} production. No deviations from the Standard Model have been observed so far.

  18. First experience of vectorizing electromagnetic physics models for detector simulation

    Energy Technology Data Exchange (ETDEWEB)

    Amadio, G. [Sao Paulo State U.; Apostolakis, J. [CERN; Bandieramonte, M. [Catania Astrophys. Observ.; Bianchini, C. [Mackenzie Presbiteriana U.; Bitzes, G. [CERN; Brun, R. [CERN; Canal, P. [Fermilab; Carminati, F. [CERN; Licht, J.de Fine [U. Copenhagen (main); Duhem, L. [Intel, Santa Clara; Elvira, D. [Fermilab; Gheata, A. [CERN; Jun, S. Y. [Fermilab; Lima, G. [Fermilab; Novak, M. [CERN; Presbyterian, M. [Bhabha Atomic Res. Ctr.; Shadura, O. [CERN; Seghal, R. [Bhabha Atomic Res. Ctr.; Wenzel, S. [CERN

    2015-12-23

    The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.

  19. Perfect/complete scattering experiments probing quantum mechanics on atomic and molecular collisions and coincidences

    CERN Document Server

    Kleinpoppen, Hans; Grum-Grzhimailo, Alexei N

    2013-01-01

    The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter.  The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory.  It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'.  The language of the related theory is the language of quantum mechanical amplitudes and their relative phases.  This book captures the spi...

  20. Cyber-physical experiments on the efficiency of swimming protocols

    Science.gov (United States)

    Wei, Nathaniel; Floryan, Daniel; van Buren, Tyler; Smits, Alexander

    2016-11-01

    We present results from experiments on a biologically inspired cyber-physical system, composed of a two-dimensional heaving and pitching rigid airfoil attached to a six component load cell, mounted to a traverse that can move along a water channel. A feedback controller, influenced by the apparatus of Mackowski and Williamson, introduces the effects of a fictional drag force specified by a virtual body profile and drives the traverse accordingly. Free-swimming protocols using the force-feedback system are compared with similar motions on a motionless traverse. The propulsive efficiency of burst-and-coast kinematics is also considered. Of particular interest are (1) the implementation of the cyber-physical control system with respect to the accessible experimental parameter space, (2) the impact of force-based streamwise actuation on experimental data, and (3) the effects of burst-and-coast motions on propulsive efficiency. The work was supported by the Office of Naval Research (ONR) under MURI Grant N00014-14-1-0533.

  1. CALET: a high energy astroparticle physics experiment on the ISS

    CERN Document Server

    Marrocchesi, Pier Simone

    2015-01-01

    CALET (CALorimetric Electron Telescope) is a high energy astroparticle physics experiment planned for a long exposure mission aboard the International Space Station (ISS) by the Japanese Aerospace Exploration Agency, in collaboration with the Italian Space Agency (ASI) and NASA. The main science goal is high precision measurements of the inclusive electron (+positron) spectrum below 1 TeV and the exploration of the energy region above 1 TeV, where the shape of the high end of the spectrum might unveil the presence of nearby sources of acceleration. CALET has been designed to achieve a large proton rejection capability (>10$^5$) with a fine grained imaging calorimeter (IMC) followed by a total absorption calorimeter (TASC), for a total thickness of 30 X$_{0}$ and 1.3 proton interaction length. With an excellent energy resolution and a lower background contamination with respect to previous experiments, CALET will search for possible spectral signatures of dark matter with both electrons and gamma rays. CALET w...

  2. The new spin physics program of the COMPASS experiment

    Directory of Open Access Journals (Sweden)

    Silva Luís

    2015-01-01

    Full Text Available The COMPASS experiment, at CERN SPS, has been compiling for more than a decade successful and precise results on nucleon structure and hadron spectroscopy, leading to statistical errors much smaller than previously measured. The new COMPASS spin physics program, starting this year, aims to a rather complete nucleon structure description; this new representation goes beyond the collinear approximation by including the quark intrinsic transverse momentum distributions. The theoretical framework, for this new picture of the nucleon, is given by the Transverse Momentum Dependent distributions (TMDs and by the Generalised Parton Distributions (GPDs. The TMDs, in particular Sivers, Boer-Mulders, pretzelosity and transversity functions will be obtained through the polarised Drell-Yan process, for the first time. The results will be complementary to those already obtained via polarised Semi-Inclusive Deep Inelastic Scattering (SIDIS. Also unpolarised SIDIS will be studied, allowing the knowledge improvement of the strange quark PDF and the access to the kaon fragmentation functions (FFs. Deeply Virtual Compton Scattering (DVCS off an unpolarised hydrogen target will be used to study the GPDs, in a kinematic region not yet covered by any existing experiment.

  3. Studies on implementation of pellet tracking in hadron physics experiments

    Directory of Open Access Journals (Sweden)

    Pyszniak A.

    2014-01-01

    Full Text Available A system for optical tracking of frozen hydrogen microsphere targets (pellets has been designed. It is intended for the upcoming hadron physics experiment PANDA at FAIR, Darmstadt, Germany. With such a tracking system one can reconstruct the positions of the individual pellets at the time of a hadronic interaction in the offline event analysis. This gives information on the position of the primary interaction vertex with an accuracy of a few 100 µm, which is very useful e.g. for reconstruction of charged particle tracks and secondary vertices and for background suppression. A study has been done at the WASA detector setup (Forschungszentrum Jülich, Germany to check the possibility of classification of hadronic events as originating in pellets or in background. The study has been done based on the instantaneous rate a Long Range TDC which was used to determine if a pellet was present in the accelerator beam region. It was clearly shown that it is possible to distinguish the two event classes. Also, an experience was gained with operation of two synchronized systems operating in different time scales, as it will also be the case with the optical pellet tracking.

  4. A VLBI experiment using a remote atomic clock via a coherent fibre link

    Science.gov (United States)

    Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide

    2017-02-01

    We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks.

  5. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation, Imaging, Observations, and Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2005-01-01

    This report presents particle formation observations and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Hydrogen was frozen into particles in liquid helium, and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. These newly analyzed data are from the test series held on February 28, 2001. Particle sizes from previous testing in 1999 and the testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed: microparticles and delayed particle formation. These experiment image analyses are some of the first steps toward visually characterizing these particles, and they allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  6. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation Energy and Imaging Analyses

    Science.gov (United States)

    Palaszewski, Bryan

    2002-01-01

    This paper presents particle formation energy balances and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium during the Phase II testing in 2001. Solid particles of hydrogen were frozen in liquid helium and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. The particle formation efficiency is also estimated. Particle sizes from the Phase I testing in 1999 and the Phase II testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed. These experiment image analyses are one of the first steps toward visually characterizing these particles and it allows designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  7. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    Science.gov (United States)

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  8. A VLBI experiment using a remote atomic clock via a coherent fibre link

    Science.gov (United States)

    Clivati, Cecilia; Ambrosini, Roberto; Artz, Thomas; Bertarini, Alessandra; Bortolotti, Claudio; Frittelli, Matteo; Levi, Filippo; Mura, Alberto; Maccaferri, Giuseppe; Nanni, Mauro; Negusini, Monia; Perini, Federico; Roma, Mauro; Stagni, Matteo; Zucco, Massimo; Calonico, Davide

    2017-01-01

    We describe a VLBI experiment in which, for the first time, the clock reference is delivered from a National Metrology Institute to a radio telescope using a coherent fibre link 550 km long. The experiment consisted of a 24-hours long geodetic campaign, performed by a network of European telescopes; in one of those (Medicina, Italy) the local clock was alternated with a signal generated from an optical comb slaved to a fibre-disseminated optical signal. The quality of the results obtained with this facility and with the local clock is similar: interferometric fringes were detected throughout the whole 24-hours period and it was possible to obtain a solution whose residuals are comparable to those obtained with the local clock. These results encourage further investigation of the ultimate VLBI performances achievable using fibre dissemination at the highest precision of state-of-the-art atomic clocks. PMID:28145451

  9. Laser-assisted atom probe tomography investigation of magnetic FePt nanoclusters: First experiments

    Energy Technology Data Exchange (ETDEWEB)

    Folcke, E.; Larde, R. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Le Breton, J.M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Gruber, M.; Vurpillot, F. [Groupe de Physique des Materiaux, UMR CNRS 6634, Universite de Rouen, 76801 Saint Etienne du Rouvray (France); Shield, J.E.; Rui, X. [Department of Mechanical and Materials Engineering, Nebraska Center for Materials and Nanoscience, University of Nebraska, N104 WSEC, Lincoln, NE 68588 (United States); Patterson, M.M. [Department of Physics, University of Wisconsin-Stout, Menomonie, WI 54751 (United States)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer FePt nanoclusters dispersed in a Cr matrix were studied by atom probe tomography. Black-Right-Pointing-Pointer Simulated experiments were conducted to study the artefacts of the analysis. Black-Right-Pointing-Pointer In FePt nanoclusters, Fe and Pt are present in equiatomic proportions. Black-Right-Pointing-Pointer FePt nanoclusters are homogeneous, no core-shell structure is observed. - Abstract: FePt nanoclusters dispersed in a Cr matrix have been investigated by laser-assisted atom probe tomography. The results were analysed according to simulated evaporation experiments. Three-dimensional (3D) reconstructions reveal the presence of nanoclusters roughly spherical in shape, with a size in good agreement with previous transmission electron microscopy observations. Some clusters appear to be broken up after the evaporation process due to the fact that the Cr matrix has a lower evaporation field than Fe and Pt. It is thus shown that the observed FePt nanoclusters are chemically homogeneous. They contain Fe and Pt in equiatomic proportions, with no core-shell structure observed.

  10. Mini-Column Ion-Exchange Separation and Atomic Absorption Quantitation of Nickel, Cobalt, and Iron: An Undergraduate Quantitative Analysis Experiment.

    Science.gov (United States)

    Anderson, James L.; And Others

    1980-01-01

    Presents an undergraduate quantitative analysis experiment, describing an atomic absorption quantitation scheme that is fast, sensitive and comparatively simple relative to other titration experiments. (CS)

  11. Gender, Experience, and Self-Efficacy in Introductory Physics

    Science.gov (United States)

    Nissen, Jayson M.; Shemwell, Jonathan T.

    2016-01-01

    There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE) styles of physics instruction. We investigated one gender gap…

  12. Atomic "bomb testing": the Elitzur-Vaidman experiment violates the Leggett-Garg inequality

    Science.gov (United States)

    Robens, Carsten; Alt, Wolfgang; Emary, Clive; Meschede, Dieter; Alberti, Andrea

    2017-01-01

    Elitzur and Vaidman have proposed a measurement scheme that, based on the quantum superposition principle, allows one to detect the presence of an object—in a dramatic scenario, a bomb—without interacting with it. It was pointed out by Ghirardi that this interaction-free measurement scheme can be put in direct relation with falsification tests of the macro-realistic worldview. Here we have implemented the "bomb test" with a single atom trapped in a spin-dependent optical lattice to show explicitly a violation of the Leggett-Garg inequality—a quantitative criterion fulfilled by macro-realistic physical theories. To perform interaction-free measurements, we have implemented a novel measurement method that correlates spin and position of the atom. This method, which quantum mechanically entangles spin and position, finds general application for spin measurements, thereby avoiding the shortcomings inherent in the widely used push-out technique. Allowing decoherence to dominate the evolution of our system causes a transition from quantum to classical behavior in fulfillment of the Leggett-Garg inequality.

  13. A data transmission method for particle physics experiments based on Ethernet physical layer

    Science.gov (United States)

    Huang, Xi-Ru; Cao, Ping; Zheng, Jia-Jun

    2015-11-01

    Due to its advantages of universality, flexibility and high performance, fast Ethernet is widely used in readout system design for modern particle physics experiments. However, Ethernet is usually used together with the TCP/IP protocol stack, which makes it difficult to implement readout systems because designers have to use the operating system to process this protocol. Furthermore, TCP/IP degrades the transmission efficiency and real-time performance. To maximize the performance of Ethernet in physics experiment applications, a data readout method based on the physical layer (PHY) is proposed. In this method, TCP/IP is replaced with a customized and simple protocol, which makes it easier to implement. On each readout module, data from the front-end electronics is first fed into an FPGA for protocol processing and then sent out to a PHY chip controlled by this FPGA for transmission. This kind of data path is fully implemented by hardware. From the side of the data acquisition system (DAQ), however, the absence of a standard protocol causes problems for the network related applications. To solve this problem, in the operating system kernel space, data received by the network interface card is redirected from the traditional flow to a specified memory space by a customized program. This memory space can easily be accessed by applications in user space. For the purpose of verification, a prototype system has been designed and implemented. Preliminary test results show that this method can meet the requirements of data transmission from the readout module to the DAQ with an efficient and simple manner. Supported by National Natural Science Foundation of China (11005107) and Independent Projects of State Key Laboratory of Particle Detection and Electronics (201301)

  14. Coherent optical transients observed in rubidium atomic line filtered Doppler velocimetry experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Mario E., E-mail: mario.fajardo@eglin.af.mil; Molek, Christopher D.; Vesely, Annamaria L. [Air Force Research Laboratory, Munitions Directorate, Ordnance Division, Energetic Materials Branch, AFRL/RWME, 2306 Perimeter Road, Eglin AFB, Florida 32542-5910 (United States)

    2015-10-14

    We report the first successful results from our novel Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus, along with unanticipated oscillatory signals due to coherent optical transients generated within pure Rb vapor cells. RALF is a high-velocity and high-acceleration extension of the well-known Doppler Global Velocimetry (DGV) technique for constructing multi-dimensional flow velocity vector maps in aerodynamics experiments [H. Komine, U.S. Patent No. 4,919,536 (24 April 1990)]. RALF exploits the frequency dependence of pressure-broadened Rb atom optical absorptions in a heated Rb/N{sub 2} gas cell to encode the Doppler shift of reflected near-resonant (λ{sub 0} ≈ 780.24 nm) laser light onto the intensity transmitted by the cell. The present RALF apparatus combines fiber optic and free-space components and was built to determine suitable operating conditions and performance parameters for the Rb/N{sub 2} gas cells. It yields single-spot velocities of thin laser-driven-flyer test surfaces and incorporates a simultaneous Photonic Doppler Velocimetry (PDV) channel [Strand et al., Rev. Sci. Instrum. 77, 083108 (2006)] for validation of the RALF results, which we demonstrate here over the v = 0 to 1 km/s range. Both RALF and DGV presume the vapor cells to be simple Beer's Law optical absorbers, so we were quite surprised to observe oscillatory signals in experiments employing low pressure pure Rb vapor cells. We interpret these oscillations as interference between the Doppler shifted reflected light and the Free Induction Decay (FID) coherent optical transient produced within the pure Rb cells at the original laser frequency; this is confirmed by direct comparison of the PDV and FID signals. We attribute the different behaviors of the Rb/N{sub 2} vs. Rb gas cells to efficient dephasing of the atomic/optical coherences by Rb-N{sub 2} collisions. The minimum necessary N{sub 2} buffer gas density ≈0.3 amagat translates into a

  15. Physical Construction of the Chemical Atom: Is It Convenient to Go All the Way Back?

    Science.gov (United States)

    Izquierdo-Aymerich, Merce; Aduriz-Bravo, Agustin

    2009-01-01

    In this paper we present an analysis of chemistry texts (mainly textbooks) published during the first half of the 20th century. We show the evolution of the explanations therein in terms of atoms and of atomic structure, when scientists were interpreting phenomena as evidence of the discontinuous, corpuscular structure of matter. In this process…

  16. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Science.gov (United States)

    Yamanaka, N.; Sahoo, B. K.; Yoshinaga, N.; Sato, T.; Asahi, K.; Das, B. P.

    2017-03-01

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested.

  17. Emulating solid-state physics with a hybrid system of ultracold ions and atoms.

    Science.gov (United States)

    Bissbort, U; Cocks, D; Negretti, A; Idziaszek, Z; Calarco, T; Schmidt-Kaler, F; Hofstetter, W; Gerritsma, R

    2013-08-23

    We propose and theoretically investigate a hybrid system composed of a crystal of trapped ions coupled to a cloud of ultracold fermions. The ions form a periodic lattice and induce a band structure in the atoms. This system combines the advantages of high fidelity operations and detection offered by trapped ion systems with ultracold atomic systems. It also features close analogies to natural solid-state systems, as the atomic degrees of freedom couple to phonons of the ion lattice, thereby emulating a solid-state system. Starting from the microscopic many-body Hamiltonian, we derive the low energy Hamiltonian, including the atomic band structure, and give an expression for the atom-phonon coupling. We discuss possible experimental implementations such as a Peierls-like transition into a period-doubled dimerized state.

  18. Davisson-Germer Prize in Atomic or Surface Physics: The COLTRIMS multi-particle imaging technique-new Insight into the World of Correlation

    Science.gov (United States)

    Schmidt-Bocking, Horst

    2008-05-01

    The correlated many-particle dynamics in Coulombic systems, which is one of the unsolved fundamental problems in AMO-physics, can now be experimentally approached with so far unprecedented completeness and precision. The recent development of the COLTRIMS technique (COLd Target Recoil Ion Momentum Spectroscopy) provides a coincident multi-fragment imaging technique for eV and sub-eV fragment detection. In its completeness it is as powerful as the bubble chamber in high energy physics. In recent benchmark experiments quasi snapshots (duration as short as an atto-sec) of the correlated dynamics between electrons and nuclei has been made for atomic and molecular objects. This new imaging technique has opened a powerful observation window into the hidden world of many-particle dynamics. Recent multiple-ionization studies will be presented and the observation of correlated electron pairs will be discussed.

  19. Yes-no experiments and ordered structures in quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Garola, C.; Solombrino, L. (Lecce Univ. (Italy). Ist. di Fisica)

    1983-09-11

    We consider the set E of all the yes-no experiments that can be performed on a given physical system and the related posets (E,<=) of the ''effects'' and (L,<=) of the ''propositions'', illustrate by means of examples the relations <= and <= and give counter examples for properties that one might suspect to hold in (E,<=); in particular, we show that Mackey's axiom V does not usually hold either in (E,<=) or in its greatest subposet (E/sub 0/,<=) which can be orthocomplemented with standard methods in quantum logic. Following on the suggestions arising from the examples, we associate with every observable T, by means of the concept of ''efficiency'', a family Esub(T) of yes-no experiments, hence a family Esub(T) of effects parameterized by the Borel fuzzy sets on the real line, and show that the description of the effects by means of operators, which is usual in some axiomatic approaches, can be recovered in standard Hilbert-space quantum theory as an immediate consequence of simple, ''intuitive'' assumptions on E. This description is used in order to explicitly display (possibly in the presence of superselection rules) some properties of the representations of (E,<=) and (L,<=), and the links between some different axiomatic approaches (in particular, Mackey and Piron). Finally, we point out some mathematical properties of the lattice of the operators that describe Esub(T).

  20. Yes-no experiments and ordered structures in quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Garola, C.; Solombrino, L. (Lecce Univ. (Italy). Ist. di Fisica)

    1983-09-11

    The set E of all the yes-no experiments that can be performed on a given physical system and the related posets (E, <=) of the 'effects' and (L, '<=') of the propositions are considered. The relations <= and '<=' are illustrated by means of examples, and counterexamples for properties that one might suspect to hold in (E, '<=') are given. In particular it is shown that Mackey's axiom V does not usually hold either in (E, <=) or in its greatest subposet (E/sub 0/, <=) which can be orthocomplemented with standard methods in quantum logic. Following on the suggestions arising from the examples, it is associated with every observable T, by means of the concept of 'efficiency', a family Esub(T) of yes-no experiments, hence a family Esub(T) of effects parametrized by the Borel fuzzy sets on the real line, and it is shown that the description of the effects by means of operators, which is usual in some axiomatic approaches, can be recovered in standard Hilbert-space quantum theory as an immediate consequence of simple, 'intuitive' assumptions on E. This description is used in order to explicitly display (possibly in the presence of superselection rules) some properties of the representations of (E, <=) and (L, '<='), and the links between some different axiomatic approaches (in particular, Mackey and Piron). Finally, some mathematical properties of the lattice of the operators that describe Esub(T) are pointed out.

  1. Atlas Pulsed Power Facility for High Energy Density Physics Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.B.; Ballard, E.O.; Barr, G.W.; Bowman, D.W.; Chochrane, J.C.; Davis, H.A.; Elizondo, J.M.; Gribble, R.F.; Griego, J.R.; Hicks, R.D.; Hinckley, W.B.; Hosack, K.W.; Nielsen, K.E.; Parker, J.V.; Parsons, M.O.; Rickets, R.L.; Salazar, H.R.; Sanchez, P.G.; Scudder, D.W.; Shapiro, C.; Thompson, M.C.; Trainor, R.J.; Valdez, G.A.; Vigil, B.N.; Watt, R.G.; Wysock, F.J.

    1999-06-07

    The Atlas facility, now under construction at Los Alamos National Laboratory (LANL), will provide a unique capability for performing high-energy-density experiments in support of weapon-physics and basic-research programs. It is intended to be an international user facility, providing opportunities for researchers from national laboratories and academic institutions around the world. Emphasizing institutions around the world. Emphasizing hydrodynamic experiments, Atlas will provide the capability for achieving steady shock pressures exceeding 10-Mbar in a volume of several cubic centimeters. In addition, the kinetic energy associated with solid liner implosion velocities exceeding 12 km/s is sufficient to drive dense, hydrodynamic targets into the ionized regime, permitting the study of complex issues associated with strongly-coupled plasmas. The primary element of Atlas is a 23-MJ capacitor bank, comprised of 96 separate Marx generators housed in 12 separate oil-filled tanks, surrounding a central target chamber. Each tank will house two, independently-removable maintenance units, with each maintenance unit consisting of four Marx modules. Each Marx module has four capacitors that can each be charged to a maximum of 60 kilovolts. When railgap switches are triggered, the marx modules erect to a maximum of 240 kV. The parallel discharge of these 96 Marx modules will deliver a 30-MA current pulse with a 4-5-{micro}s risetime to a cylindrical, imploding liner via 24 vertical, tri-plate, oil-insulated transmission lines. An experimental program for testing and certifying all Marx and transmission line components has been completed. A complete maintenance module and its associated transmission line (the First Article) are now under construction and testing. The current Atlas schedule calls for construction of the machine to be complete by August, 2000. Acceptance testing is scheduled to begin in November, 2000, leading to initial operations in January, 2001.

  2. Antihydrogen Experiment Gravity Interferometry Spectroscopy

    CERN Multimedia

    Gerber, S; Tietje, I C; Allkofer, Y R; Trezzi, D; Dassa, L; Rienacker, B; Khalidova, O; Ferrari, G; Krasnicky, D; Perini, D; Cerchiari, G; Belov, A; Boscolo, I; Sacerdoti, M G; Ferragut, R O; Nedelec, P; Testera, G; Hinterberger, A; Al-qaradawi, I; Malbrunot, C L S; Brusa, R S; Prelz, F; Manuzio, G; Riccardi, C; Fontana, A; Genova, P; Haider, S; Haug, F; Merkt, F; Turbabin, A; Castelli, F; Lagomarsino, V E; Doser, M; Penasa, L; Gninenko, S; Cataneo, F; Zenoni, A; Cabaret, L; Comparat, D P; Zmeskal, J; Scampoli, P; Dudarev, A; Kellerbauer, A G; Mariazzi, S; Fesel, J V; Nesteruk, K P; Carraro, C; Zavatarelli, S M

    The AEGIS experiment (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) has the aim of carrying out the first measurement of the gravitational interaction of antimatter to a precision of 1%, by applying techniques from atomic physics, laser spectroscopy and interferometry to a beam of antihydrogen atoms. A further goal of the experiment is to carry out spectroscopy of the antihydrogen atoms in flight.

  3. Constraints on New Physics from Long Baseline Neutrino Oscillation Experiments

    CERN Document Server

    Honda, Minako; Okamura, Naotoshi; Pronin, Alexey; Takeuchi, Tatsu

    2007-01-01

    New physics beyond the Standard Model can lead to extra matter effects on neutrino oscillation if the new interactions distinguish among the three flavors of neutrino. In a previous paper, we argued that a long-baseline neutrino oscillation experiment in which the Fermilab-NUMI beam in its high-energy mode is aimed at the planned Hyper-Kamiokande detector would be capable of constraining the size of those extra effects, provided the vacuum value of \\sin^2 2\\theta_{23} is not too close to one. In this paper, we discuss how such a constraint would translate into limits on the coupling constants and masses of new particles in various models. The models we consider are: models with generation distinguishing Z's such as topcolor assisted technicolor, models containing various types of leptoquarks, R-parity violating SUSY, and extended Higgs sector models. In several cases, we find that the limits thus obtained could be competitive with those expected from direct searches at the LHC. In the event that any of the pa...

  4. Experiences developing ALEGRA: A C++ coupled physics framework

    Energy Technology Data Exchange (ETDEWEB)

    Budge, K.G.; Peery, J.S.

    1998-11-01

    ALEGRA is a coupled physics framework originally written to simulate inertial confinement fusion (ICF) experiments being conducted at the PBFA-II facility at Sandia National Laboratories. It has since grown into a large software development project supporting a number of computational programs at Sandia. As the project has grown, so has the development team, from the original two authors to a group of over fifteen programmers crossing several departments. In addition, ALEGRA now runs on a wide variety of platforms, from large PCs to the ASCI Teraflops massively parallel supercomputer. The authors discuss the reasons for ALEGRA`s success, which include the intelligent use of object-oriented techniques and the choice of C++ as the programming language. They argue that the intelligent use of development tools, such as build tools (e.g. make), compiler, debugging environment (e.g. dbx), version control system (e.g. cvs), and bug management software (e.g. ClearDDTS), is nearly as important as the choice of language and paradigm.

  5. Space, body, time and relationship experiences of recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine

    2016-01-01

    BACKGROUND: Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already...... the classroom as a space for physical activity, designing schoolyards with smaller secluded spaces and varied facilities, improving children's self-esteem and body image, e.g., during physical education, and creating teacher organised play activities during recess....

  6. Forward physics with the LHCf experiment: a LHC contribution to cosmic-ray physics

    Directory of Open Access Journals (Sweden)

    Bonechi L.

    2014-04-01

    Full Text Available LHCf is a small detector installed at LHC accelerator to measure neutral particle flow in the forward direction of proton -proton (p - p and proton -nucleus (p - A interactions. Thanks to the optimal performance that has characterized the last years’ running of the LHC collider, several measurements have been taken since 2009 in different running conditions. After data taking for p - p interactions at √s = 900 GeV, 2.76 TeV and 7 TeV and proton - Lead nucleus (p -Pb at √sNN = 5.02 TeV (energy of a couple of projectile and target nucleons in their center of mass reference frame, LHCf is now going to complete its physics program with the 13 TeV p - p run foreseen in 2015. The complete set of results will become a reference data set of forward physics for the calibration and tuning of the hadronic interaction models currently used for the simulation of the atmospheric showers induced by very high energy cosmic rays. For this reason we think that LHCf is giving an important contribution for the study of cosmic rays at the highest energies. In this paper the experiment, the published results and the current status are reviewed.

  7. Nuclear effects in atomic transitions

    OpenAIRE

    Pálffy, Adriana

    2011-01-01

    Atomic electrons are sensitive to the properties of the nucleus they are bound to, such as nuclear mass, charge distribution, spin, magnetization distribution, or even excited level scheme. These nuclear parameters are reflected in the atomic transition energies. A very precise determination of atomic spectra may thus reveal information about the nucleus, otherwise hardly accessible via nuclear physics experiments. This work reviews theoretical and experimental aspects of the nuclear effects ...

  8. Efimov physics and universal trimers in spin-orbit-coupled ultracold atomic mixtures

    Science.gov (United States)

    Shi, Zhe-Yu; Zhai, Hui; Cui, Xiaoling

    2015-02-01

    We study the two-body and three-body bound states in ultracold atomic mixtures with one of the atoms subjected to an isotropic spin-orbit (SO) coupling. We consider a system of two identical fermions interacting with one SO-coupled atom. It is found that there can exist two types of three-body bound states, Efimov trimers and universal trimers. The Efimov trimers are energetically less favored by the SO coupling, which will finally merge into the atom-dimer threshold as increasing the SO-coupling strength. Nevertheless, these trimers exhibit a discrete scaling law incorporating the SO-coupling effect. On the other hand, the universal trimers are more favored by the SO coupling. They can be induced at negative s -wave scattering lengths and with smaller mass ratios than those without SO coupling. These results are obtained by both the Born-Oppenheimer approximation and exact solutions from three-body equations.

  9. Nobel Prize in Physics 1997 "for development of methods to cool and trap atoms with laser light" : Steven Chu, Claude Cohen-Tannoudji and William D. Phillips

    CERN Multimedia

    Audiovideo service

    1998-01-01

    Prof. C. Cohen-Tannoudji presents "manipulating atoms with light" . By using quasi-resonant exchanges of energy, linear and angular momentum between atoms and photons, it is possible to polarize atoms, to displace their energy levels and to control their position and their velocity. A few physical mechanisms allowing one to trap atoms and to cool them in the microKelvin, and even in the nanoKelvin range, will be described. Various possible applications of such ultracold atoms will be also reviewed.

  10. Structure Modeling and Validation applied to Source Physics Experiments (SPEs)

    Science.gov (United States)

    Larmat, C. S.; Rowe, C. A.; Patton, H. J.

    2012-12-01

    The U. S. Department of Energy's Source Physics Experiments (SPEs) comprise a series of small chemical explosions used to develop a better understanding of seismic energy generation and wave propagation for low-yield explosions. In particular, we anticipate improved understanding of the processes through which shear waves are generated by the explosion source. Three tests, 100, 1000 and 1000 kg yields respectively, were detonated in the same emplacement hole and recorded on the same networks of ground motion sensors in the granites of Climax Stock at the Nevada National Security Site. We present results for the analysis and modeling of seismic waveforms recorded close-in on five linear geophone lines extending radially from ground zero, having offsets from 100 to 2000 m and station spacing of 100 m. These records exhibit azimuthal variations of P-wave arrival times, and phase velocity, spreading and attenuation properties of high-frequency Rg waves. We construct a 1D seismic body-wave model starting from a refraction analysis of P-waves and adjusting to address time-domain and frequency-domain dispersion measurements of Rg waves between 2 and 9 Hz. The shallowest part of the structure we address using the arrival times recorded by near-field accelerometers residing within 200 m of the shot hole. We additionally perform a 2D modeling study with the Spectral Element Method (SEM) to investigate which structural features are most responsible for the observed variations, in particular anomalously weak amplitude decay in some directions of this topographically complicated locality. We find that a near-surface, thin, weathered layer of varying thickness and low wave speeds plays a major role on the observed waveforms. We anticipate performing full 3D modeling of the seismic near-field through analysis and validation of waveforms on the 5 radial receiver arrays.

  11. The Use of Cylindrical Lenses in Easy Experiments for Physics Education and the Magic Arts

    Science.gov (United States)

    Bednarek, Stanislaw; Krysiak, Jerzy

    2011-01-01

    The purpose of this article is to present the properties of cylindrical lenses and provide some examples of their use in easy school physics experiments. Such experiments could be successfully conducted in the context of science education, in fun experiments that teach physics and in science fair projects, or used to entertain an audience by…

  12. Collective resonance fluorescence in small and dense atom clouds: Comparison between theory and experiment

    CERN Document Server

    Jenkins, S D; Javanainen, J; Jennewein, S; Bourgain, R; Pellegrino, J; Sortais, Y R P; Browaeys, A

    2016-01-01

    We study the emergence of a collective optical response of a cold and dense $^{87}$Rb atomic cloud to a near-resonant low-intensity light when the atom number is gradually increased. Experimental observations are compared with microscopic stochastic simulations of recurrent scattering processes between the atoms that incorporate the atomic multilevel structure and the optical measurement setup. We analyze the optical response of an inhomogeneously-broadened gas and find that the experimental observations of the resonance line shifts and the total collected scattered light intensity in cold atom clouds substantially deviate from those of thermal atomic ensembles, indicating strong light-induced resonant dipole-dipole interactions between the atoms. At high densities, the simulations also predict a significantly slower decay of light-induced excitations in cold than in thermal atom clouds. The role of dipole-dipole interactions is discussed in terms of resonant coupling examples and the collective radiative exc...

  13. Experiences of physical activity during pregnancy in Danish nulliparous women with a physically active life before pregnancy. A qualitative study

    DEFF Research Database (Denmark)

    Hegaard, Hanne Kristine; Kjaergaard, Hanne; Damm, Peter P;

    2010-01-01

    National guidelines recommend that healthy pregnant women take 30 minutes or more of moderate exercise a day. Most women reduce the level of physical activity during pregnancy but only a few studies of women's experiences of physical activity during pregnancy exist. The aim of the present study...

  14. Experiences of physical activity during pregnancy in Danish nulliparous women with a physically active life before pregnancy. A qualitative study

    DEFF Research Database (Denmark)

    Hegaard, Hanne; Kjaergaard, Hanne; Damm, Peter P;

    2010-01-01

    National guidelines recommend that healthy pregnant women take 30 minutes or more of moderate exercise a day. Most women reduce the level of physical activity during pregnancy but only a few studies of women's experiences of physical activity during pregnancy exist. The aim of the present study w...

  15. A review of progress in the physics of open quantum systems: theory and experiment

    Science.gov (United States)

    Rotter, I.; Bird, J. P.

    2015-11-01

    This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q   +   P   =   1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In

  16. A review of progress in the physics of open quantum systems: theory and experiment.

    Science.gov (United States)

    Rotter, I; Bird, J P

    2015-11-01

    This report on progress explores recent advances in our theoretical and experimental understanding of the physics of open quantum systems (OQSs). The study of such systems represents a core problem in modern physics that has evolved to assume an unprecedented interdisciplinary character. OQSs consist of some localized, microscopic, region that is coupled to an external environment by means of an appropriate interaction. Examples of such systems may be found in numerous areas of physics, including atomic and nuclear physics, photonics, biophysics, and mesoscopic physics. It is the latter area that provides the main focus of this review, an emphasis that is driven by the capacity that exists to subject mesoscopic devices to unprecedented control. We thus provide a detailed discussion of the behavior of mesoscopic devices (and other OQSs) in terms of the projection-operator formalism, according to which the system under study is considered to be comprised of a localized region (Q), embedded into a well-defined environment (P) of scattering wavefunctions (with Q   +   P   =   1). The Q subspace must be treated using the concepts of non-Hermitian physics, and of particular interest here is: the capacity of the environment to mediate a coupling between the different states of Q; the role played by the presence of exceptional points (EPs) in the spectra of OQSs; the influence of EPs on the rigidity of the wavefunction phases, and; the ability of EPs to initiate a dynamical phase transition (DPT). EPs are singular points in the continuum, at which two resonance states coalesce, that is where they exhibit a non-avoided crossing. DPTs occur when the quantum dynamics of the open system causes transitions between non-analytically connected states, as a function of some external control parameter. Much like conventional phase transitions, the behavior of the system on one side of the DPT does not serve as a reliable indicator of that on the other. In

  17. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  18. Physics of Laser Materials Processing Theory and Experiment

    CERN Document Server

    Gladush, Gennady G

    2011-01-01

    This book describes the basic mechanisms, theory, simulations and technological aspects of Laser processing techniques. It covers the principles of laser quenching, welding, cutting, alloying, selective sintering, ablation, etc. The main attention is paid to the quantitative description. The diversity and complexity of technological and physical processes is discussed using a unitary approach. The book aims on understanding the cause-and-effect relations in physical processes in Laser technologies. It will help researchers and engineers to improve the existing and develop new Laser machining techniques. The book addresses readers with a certain background in general physics and mathematical analysis: graduate students, researchers and engineers practicing laser applications.

  19. Expected performance of the ATLAS experiment detector, trigger and physics

    CERN Document Server

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Acharya, Bobby Samir; Adams, D.L.; Addy, T.N.; Adorisio, C.; Adragna, P.; Adye, T.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Aloisio, A.; Alon, R.; Alonso, A.; Alonso, J.; Alviggi, M.G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Andrieux, M-L.; Anduaga, X.S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.A.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atkinson, T.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.A.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Baines, J.T.; Baker, O.K.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.B.; Barberio, E.L.; Barberis, D.; Barbero, M.B.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.B.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimaraes da Costa, J.; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bazalova, M.; Beare, B.; Beauchemin, P.H.; Beccherle, R.B.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednar, P.; Bednyakov, V.A.; Bee, C.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, Elin; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, Jed; Biglietti, M.; Bilokon, H.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bischofberger, M.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G.J.; Bocci, A.; Bodine, B.; Boek, J.; Boelaert, N.; Boeser, Sebastian; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Booth, C.N.; Booth, P.S.L.; Booth, J.R.A.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, O.; Bratzler, U.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Broggi, F.; Brooijmans, G.; Brooks, W.K.; Brubaker, E.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.B.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Buescher, Volker; Bugge, L.; Bujor, F.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burke, S.; Busato, E.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Cabrera Urban, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Cantero, J.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A.M.; Castaneda Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Cazzato, A.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.C.; Chakraborty, D.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.C.; Charlton, D.G.; Chatterjii, S.C.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T.L.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muino, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, Mark S.; Cooper, B.D.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.C.; Corso-Radu, A.; Cortes-Gonzalez, A.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.C.; Crepe-Renaudin, S.; Cuciuc, C.M.; Cuenca Almenar, C.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Rocha Gesualdi Mello, A.; Da Silva, P.V.M.; Da Via, C.V.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Davey, W.D.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P.E.; De Cecco, S.; De Groot, N.; de Jong, P.; De La Cruz-Burelo, E.; De La Taille, C.; De Mora, L.; De Oliveira Branco, M.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, W.; Denisov, S.P.; Dennis, C.; Derue, F.; Dervan, P.; Desch, K.K.; Deviveiros, P.O.; Dewhurst, A.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diehl, E.B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Vale, M.A.B.do; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dogan, O.B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Donega, M.; Donini, J.; Donszelmann, T.; Dopke, J.; Dorfan, D.E.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Dragic, J.D.; Drasal, Z.; Dressnandt, N.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Duehrssen, M.; Duerdoth, I.P.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dueren, M.; Ebenstein, W.L.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, E.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Feligioni, L.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flacher, H.F.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C.M.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Foehlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D.A.; Formica, A.; Forti, A.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.F.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.G.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E.J.; Gallas, M.V.; Gallop, B.J.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Garcia Navarro, J.E.; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.G.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.G.; Gayde, J-C.; Gazis, E.N.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Gnanvo, K.G.; Godfrey, J.G.; Godlewski, J.; Goepfert, T.; Goessling, C.; Goettfert, T.; Goggi, V.G.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Goncalo, R.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gorokhov, S.A.; Goryachev, S.V.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.; Goussiou, A.G.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grafstroem, P.; Grahn, K-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Gratchev, V.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenwood, Z.D.; Gregor, I.M.; Griesmayer, E.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Gruse, C.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, P.; Guttman, N.G.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haertel, R.; Hajduk, Z.; Hakobyan, H.; Hakobyan, R.H.; Haller, J.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.B.; Harris, O.M.; Hart, J.C.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heinemann, B.; Heinemann, F.E.W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R.C.W.; Henke, M.; Henriques Correia, A.M.; Henrot-Versille, S.; Henss, T.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higon-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillier, S.J.; Hinchliffe, I.; Hinkelbein, C.; Hirsch, F.; Hobbs, J.; Hod, N.H.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.H.; Holmgren, S.O.; Holy, T.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Houlden, M.A.; Hoummada, A.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P.J.; Huang, G.S.; Huang, J.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.I.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Ishikawa, A.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, J.N.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L.G.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johns, K.A.; Jon-And, K.; Jones, A.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Jorgensen, S.; Jovanovic, P.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz, Muge; Karr, K.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, Thomas H.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocnar, A.; Kodys, P.; Koeneke, K.; Koenig, A.C.; Koenig, S.; Koepke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V.A.; Kortner, O.; Kostyukhin, V.V.; Kotamaki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kovar, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.K.; Krejci, F.; Krepouri, A.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Krstic, J.; Kruchonak, U.; Krueger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.K.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.K.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.K.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuznetsova, Ekaterina; Kvasnicka, O.; Kwee, R.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J.A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lambacher, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.L.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Lazarev, A.B.; Le Bihan, A-C.; Le Dortz, O.; Le Maner, C.; Le Vine, M.; Leahu, M.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Lefevre, R.P.; Legendre, M.; Leger, A.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook Cheong, A.; Leveque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Liebig, W.; Lifshitz, R.; Liko, D.; Lilley, J.N.; Lim, H.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Liolios, A.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, A.; Litke, A.M.; Liu, C.; Liu, D.L.; Liu, J.L.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopez Mateos, D.; Losada, M.; Losty, M.J.; Lou, X.; Loureiro, K.F.; Lovas, L.; Love, J.; Lowe, A.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maassen, M.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Maettig, P.; Magass, C.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G.M.; Majewski, S.; Makida, Y.; Makovec, N.M.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, Fairouz; Mallik, U.; Malon, D.; Maltezos, S.; Malychev, V.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March Ruiz, L.; Marchand, J.F.; Marchese, F.M.; Marcisovsky, M.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i Garcia, S.; Martin, A.; Martin, A.J.; Martin, B.; Martin, F.F.; Martin, J.P.; Martinez Perez, M.; Martinez Outschoorn, V.; Martini, A.; Martynenko, V.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Maugain, J.M.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mc Kee, S.P.; McCarthy, R.L.; McCormick, C.; McCubbin, N.A.; McFarlane, K.W.; McGarvie, S.; McGlone, H.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Mechnich, J.M.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B.R.; Meng, Z.M.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Micu, L.; Middleton, R.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Miller, R.J.; Mills, B.M.; Mills, C.M.; Milosavljevic, M.; Milstead, D.A.; Mima, S.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.M.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Moeller, V.; Monig, Klaus; Moeser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Moeck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.M.; Moraes, A.; Morais, A.; Morel, J.; Moreno, D.; Moreno Llacer, M.; Morettini, P.; Morii, M.; Morin, J.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.M.; Moszczynski, A.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mueller, J.; Mueller, K.; Mueller, T.A.; Muenstermann, D.M.; Muir, A.M.; Murillo Garcia, R.; Murray, W.J.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Nesterov, S.Y.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Ng, C.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Nielsen, J.; Nikiforov, A.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L.J.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; O'Neale, S.W.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Odaka, S.; Odino, G.A.; Ogren, H.; Oh, S.H.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.O.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.O.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Osuna, C.; Otec, R.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Oye, O.K.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Palla, J.; Pallin, D.; Palma, A.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, W.; Parker, M.A.; Parker, S.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, P.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Pengo, R.; Penwell, J.; Perantoni, M.; Pereira, A.; Perez, K.; Perez Codina, E.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezoa, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pier, S.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Poblaguev, A.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.P.; Polychronakos, V.; Pomarede, D.M.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popescu, R.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Price, M.J.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, Kirill; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Perez Garcia-Estan, M.T.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rajek, S.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redlinger, G.R.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rezaie, E.; Reznicek, P.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R.R.; Risler, C.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Roberts, K.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Rodriguez, D.; Rodriguez, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottlaender, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruehr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumiantsev, V.; Rumyantsev, L.; Rusakovich, N.A.; Rust, D.R.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybin, A.M.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M.A.; Sandaker, H.; Sander, H.G.; Sandhoff, M.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Saraiva, J.G.; Sarangi, T.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schaefer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.; Schamov, A.G.; Schegelsky, V.A.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmidt, M.P.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroers, M.S.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H-C.; Schumacher, J.; Schumacher, M.; Schumm, B.S.; Schune, Ph.; Schwanenberger, C.S.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.S.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shan, L.; Shank, J.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.S.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silbert, O.; Silva, J.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjolin, J.; Skubic, P.; Skvorodnev, N.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spogli, L.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R.D.; Stahl, T.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, H.J.; Stenzel, H.; Stevenson, K.S.; Stewart, G.; Stewart, T.D.; Stockton, M.C.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Sviridov, Yu.M.; Sykora, I.; Sykora, T.; Szczygiel, R.R.; Szymocha, T.; Sanchez, J.; Ta, D.; Taffard, A.T.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Tali, B.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.T.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.T.; Todorova-Nova, S.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torro Pastor, E.; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Tsarouchas, C.; Tseng, J.C-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsipolitis, G.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tyndel, M.; Typaldos, D.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valkar, S.; Valls Ferrer, J.A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; VanBerg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vassilakopoulos, V.I.; Vassilieva, L.; Vataga, E.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, Andrea; Ventura, D.; Ventura, S.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinogradov, V.B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Toerne, E.; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, J.; Wang, J.C.; Wang, S.M.W.; Ward, C.P.; Warsinsky, M.; Watkins, P.M.; Watson, A.T.; Watts, G.; Watts, S.W.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werthenbach, U.; Wessels, M.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.W.; Winton, L.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S.L.; Wu, X.; Xella, S.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zendler, C.; Zenin, A.V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.A.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zinna, M.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zychacek, V.

    2009-01-01

    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.

  20. Probing Pre- and In-service Physics Teachers' Knowledge Using the Double-Slit Thought Experiment

    Science.gov (United States)

    Asikainen, Mervi A.; Hirvonen, Pekka E.

    2014-09-01

    This study describes the use of the double-slit thought experiment as a diagnostic tool for probing physics teachers' understanding. A total of 9 pre-service teachers and 18 in-service teachers with a variety of different experience in modern physics teaching at the upper secondary level responded in a paper-and-pencil test and three of these teachers were interviewed. The results showed that the physics teachers' thought experiments with classical particles, light, and electrons were often partial. Many teachers also suffered a lack of the basic ideas and principles of physics, which probably hindered thought experimenting. In particular, understanding the ontological nature of classical particles, light and electrons seemed to be essential in performing the double-slit experiment in an appropriate way. However, the in-service physics teachers who had teaching experience in modern physics were more prepared for the double-slit thought experiment than the pre-service teachers. The results suggest that both thought experiments and the double-slit experiment should be given more weight in physics teacher education, even if experience in modern physics teaching at upper secondary school seems to some extent to develop teachers' abilities.

  1. Quantum physics of light and matter a modern introduction to photons, atoms and many-body systems

    CERN Document Server

    Salasnich, Luca

    2014-01-01

    The book gives an introduction to the field quantization (second quantization) of light and matter with applications to atomic physics. The first chapter briefly reviews the origins of special relativity and quantum mechanics and the basic notions of quantum information theory and quantum statistical mechanics. The second chapter is devoted to the second quantization of the electromagnetic field, while the third chapter shows the consequences of the light field quantization in the description of electromagnetic transitions.In the fourth chapter it is analyzed the spin of the electron, and in particular its derivation from the Dirac equation, while the fifth chapter investigates the effects of external electric and magnetic fields on the atomic spectra (Stark and Zeeman effects). The sixth chapter describes the properties of systems composed by many interacting identical particles by introducing the Hartree-Fock variational method, the density functional theory, and the Born-Oppenheimer approximation. Finally,...

  2. Atomic physics with highly charged ions. Progress report, FY 1989--91

    Energy Technology Data Exchange (ETDEWEB)

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  3. Fusion related atomic physics. Progress report, June 1, 1975--February 28, 1976

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-02-01

    Summaries of research progress on ion--atom collisions are given. Electron capture by high velocity point charges (bare nuclei with Z less than or equal to 9) was studied in several ways. Studies on the nuclear reactions induced by /sup 13/C and /sup 9/Be ions near the Coulomb barrier have continued. (MOW)

  4. Enhancing Laos Students' Understanding of Nature of Science in Physics Learning about Atom for Peace

    Science.gov (United States)

    Sengdala, Phoxay; Yuenyong, Chokchai

    2014-01-01

    This paper aimed to study of Grade 12 students' understanding of nature of science in learning about atom for peace through science technology and society (STS) approach. Participants were 51 Grade 12 who study in Thongphong high school Vientiane Capital City Lao PDR, 1st semester of 2012 academic year. This research regarded interpretive…

  5. Inequality in Experiences of Physics Education: Secondary School Girls' and Boys' Perceptions of their Physics Education and Intentions to Continue with Physics After the Age of 16

    Science.gov (United States)

    Mujtaba, Tamjid; Reiss, Michael J.

    2013-07-01

    This paper explores the factors that are associated in England with 15-year-old students' intentions to study physics after the age of 16, when it is no longer compulsory. Survey responses were collated from 5,034 year 10 students as learners of physics during the academic year 2008-2009 from 137 England secondary schools. Our analysis uses individual items from the survey rather than constructs (aggregates of items) to explore what it is about physics teachers, physics lessons and physics itself that is most correlated with intended participation in physics after the age of 16. Our findings indicate that extrinsic material gain motivation in physics was the most important factor associated with intended participation. In addition, an item-level analysis helped to uncover issues around gender inequality in physics educational experiences which were masked by the use of construct-based analyses. Girls' perceptions of their physics teachers were similar to those of boys on many fronts. However, despite the encouragement individual students receive from their teachers being a key factor associated with aspirations to continue with physics, girls were statistically significantly less likely to receive such encouragement. We also found that girls had less positive experiences of their physics lessons and physics education than did boys.

  6. JUNO: a General Purpose Experiment for Neutrino Physics

    CERN Document Server

    Grassi, Marco

    2016-01-01

    JUNO is a 20 kt Liquid Scintillator Antineutrino Detector currently under construction in the south of China. This report reviews JUNO's physics programme related to all neutrino sources but reactor antineutrinos, namely neutrinos from supernova burst, solar neutrinos and geoneutrinos.

  7. The Kinetics and Thermodynamics of the Phenol from Cumene Process: A Physical Chemistry Experiment.

    Science.gov (United States)

    Chen, Edward C. M.; Sjoberg, Stephen L.

    1980-01-01

    Presents a physical chemistry experiment demonstrating the differences between thermodynamics and kinetics. The experiment used the formation of phenol and acetone from cumene hydroperoxide, also providing an example of an industrially significant process. (CS)

  8. Experiences in automatic keywording of particle physics literature

    CERN Document Server

    Montejo Ráez, Arturo

    2001-01-01

    Attributing keywords can assist in the classification and retrieval of documents in the particle physics literature. As information services face a future with less available manpower and more and more documents being written, the possibility of keyword attribution being assisted by automatic classification software is explored. A project being carried out at CERN (the European Laboratory for Particle Physics) for the development and integration of automatic keywording is described.

  9. Elementary particles. Modern physics from the atoms to the standard model; Elementare Teilchen. Moderne Physik von den Atomen bis zum Standard-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Bleck-Neuhaus, Joern [Bremen Univ. (Germany). FB 1 Physik

    2010-07-01

    The actual state of knowledge of nuclear and elementary-particle physics has a fluctuating history of origin, often characterized by shockingly new formations of terms, which until today are for studyings of physics often only under difficulties accessible. This books uses the controverse and at the same time instructive development processes themselves for the access to the difficult new concepts. It makes understandable, how the physical picture of the smallest particles looks today und why it has arised so and not otherwise: From the detection of the existence of the atoms up to the present standard model of elementary-particle physics, in a steady exchange between established theoretical models, confirming and contradicting experimental findings, sometimes controversial new formations of terms, improved experiments etc. - a process, which certainly continues in the future. Guidance of the presentation is an also in the detail reproducible argumentation. Studyings of physics before their B.Sc. examination will get knowledges about subatomar physics, which belong to the genralknowledge of their field. Also for teachings of physics at schools or universities this new presentation might be interesting. [German] Der aktuelle Wissensstand der Kern- und Elementarteilchenphysik hat eine wechselvolle Entstehungsgeschichte, oft gekennzeichnet durch schockierend neue Begriffsbildungen, die sich bis heute den Physik-Studierenden oft nur unter Muehen erschliessen. Dieses Buch nutzt die kontroversen und zugleich lehrreichen Entwicklungsprozesse selber fuer den Zugang zu den schwierigen neuen Konzepten. Es macht verstaendlich, wie das physikalische Bild von den kleinsten Teilchen heute aussieht und warum es so und nicht anders entstanden ist: Vom Nachweis der Existenz der Atome bis zum derzeitigen Standard-Modell der Elementarteilchenphysik, in einem staendigen Wechselspiel zwischen etablierten theoretischen Modellen, bestaetigenden oder widersprechenden experimentellen

  10. Dynamics of physical and functional status of students in the experiment on approvals personality oriented physical education

    Directory of Open Access Journals (Sweden)

    Belykh S.I.

    2013-09-01

    Full Text Available The results of the testing of personality-oriented physical education. In the experiment involved 640 students. Found that the greatest increase in indicators of physical fitness in young men in the experimental group revealed a flexibility test (6.67% and flexion extension Hand-ups (5.75. The girls showed improvement in the flexibility test (7.09% flexion and extension of hand-ups (6.14%. Clarified the nature and content of the personal-oriented physical education, especially its use in physical education students. Pedagogical conditions of effective application of personal-oriented physical education students in self-movement towards a healthy lifestyle. The data on the importance of physical culture for the prevention of self destructive behavior (drug addiction, alcoholism, smoking.

  11. Divisible Atoms or None at All? Facing the European Contributions to Developments of Chemistry and Physics in China.

    Science.gov (United States)

    Južnič, Stanislav

    2016-12-01

    atoms is discussed as possible new paradigm which could rename the destructible divisible entities of future physics, and with more difficulties also of chemistry. The word atom meaning indivisible not compound entity is basically in contradiction with the characteristics of item it is supposed to describe. The suffix "a" provides a negation in Ancient Greek language. The suffix should be omitted to use tom (τομος) to manage the actual situation of a-toms (=Toms) as compound of elementary particles. In late 19th century after the European Spring of Nations actually two basically different concepts of atoms of chemists and physicists accomplished a kind of symbioses. The suggestion is put forward that while indivisible atoms soon became contradictions in physics, they still retain some value in chemistry which should be taken into account in the attempt to hange the name of atom. The research of human genome as the atom of genetics is similar in broader sense, while there is no basic problem with the nomenclature of genome. The genome manipulations are far less obstructed with Chinese traditions compared to Christian beliefs.

  12. Efficient Continuous-Duty Bitter-Type Electromagnets for Cold Atom Experiments

    CERN Document Server

    Sabulsky, Dylan; Gemelke, Nathan D; Chin, Cheng

    2013-01-01

    We present the design, construction and characterization of Bitter-type electromagnets which can generate high magnetic fields under continuous operation with efficient heat removal for cold atom experiments. The electromagnets are constructed from a stack of alternating layers consisting of copper arcs and insulating polyester spacers. Efficient cooling of the copper is achieved via parallel rectangular water cooling channels between copper layers with low resistance to flow; a high ratio of the water-cooled surface area to the volume of copper ensures a short length scale ~1 mm to extract dissipated heat. High copper fraction per layer ensures high magnetic field generated per unit energy dissipated. The ensemble is highly scalable and compressed to create a watertight seal without epoxy. From our measurements, a peak field of 770 G is generated 14 mm away from a single electromagnet with a current of 400 A and a total power dissipation of 1.6 kW. With cooling water flowing at 3.8 l/min, the coil temperatur...

  13. Physics of quantum fluids new trends and hot topics in atomic and polariton condensates

    CERN Document Server

    Modugno, Michele

    2013-01-01

    The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.

  14. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  15. First Results of the GPS.DM Observatory: Search for Dark Matter and Exotic Physics with Atomic Clocks and GPS Constellation

    Science.gov (United States)

    Roberts, Benjamin; Blewitt, Geoff; Dailey, Conner; Pospelov, Maxim; Rollings, Alex; Sherman, Jeff; Williams, Wyatt; Derevianko, Andrei; GPS. DM Collaboration

    2017-01-01

    Despite the overwhelming cosmological evidence for the existence of dark matter, and the considerable effort of the scientific community over decades, there is no evidence for dark matter in terrestrial experiments. The GPS.DM observatory uses the existing GPS constellation as a 50,000 km-aperture sensor array, analysing the satellite and terrestrial atomic clock data for exotic physics signatures. In particular, the collaboration searches for evidence of transient variations of fundamental constants correlated with the Earth's galactic motion through the dark matter halo. There already exists more than 10 years of good clock timing data that can be used in the search. This type of search is particularly sensitive to exotic forms of dark matter, such as topological defects. Supported by the NSF.

  16. DEMONSTRATION EXPERIMENTS OF LIGHT POLARIZATION IN PHYSICS COURSE

    OpenAIRE

    Brazhkin, Y.; Kalenkov, S.; Nizhegorodov, V.

    2008-01-01

    The article presents layout of experiments for observatiion of polarizing effects on light passage through crossed polarizers. Addition of the third polarizer leads to appearance of light on the screen. Experiment is for cases with a laser light source, reflection of light under the Brewster's angle. Photos of the installations realizing the given effects are resulted.

  17. Physics of quantum fluids. New trends and hot topics in atomic and polariton condensates

    Energy Technology Data Exchange (ETDEWEB)

    Bramati, Alberto [Paris Univ. (France). Laboratoire Kastler Brossel; Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France); Modugno, Michele (eds.) [IKERBASQUE, Bilbao (Spain); Univ. del Pais Vasco, Bilbao (Spain). Dept. de Fisica Teorica e Historia de la Ciencia

    2013-10-01

    Provides an overview of the field of quantum fluids. Presents analogies and differences between polariton and atomic quantum fluids. With contributions from the major actors in the field. Explains a new type of quantum fluid with specific characteristics. The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.

  18. Fostering Inclusion and Positive Physical Education Experiences for Overweight and Obese Students

    Science.gov (United States)

    Rukavina, Paul B.; Doolittle, Sarah A.

    2016-01-01

    Overweight and obese students are often socially and instructionally excluded from physical education and school physical activity opportunities. This article describes teaching strategies from a study of middle school physical education teachers who are committed to providing effective teaching and positive experiences for overweight and obese…

  19. The problems of solar-terrestrial coupling and new processes introduced to the physics of the ionosphere from the physics of atomic collisions

    Science.gov (United States)

    Avakyan, Sergei

    2010-05-01

    Further progress in research of solar-terrestrial coupling requires better understanding of solar variability influence on the ionosphere. The most powerful manifestations of solar variability are solar flares and geomagnetic storms. During a flare EUV/X-ray irradiations are completely absorbed in the ionosphere producing SID. During geomagnetic storms precipitations of electrons with energy of several keV (and to a lesser extent protons precipitations) from radiation belts and geomagnetosphere produce additional ionization and low latitude auroras. Considering the physics of ionosphere during the last several decades we have been taking into account three novel processes well known in the physics of atomic collisions. These are Auger effect [S. V. Avakyan, The consideration of Auger processes in the upper atmosphere of Earth. In Abstracts of paper presented at the Tenth scien. and techn. Conf. of young specialists of S.I. Vavilov State Optical Institute, 1974, 29-31.], multiple photoionization of upper, valence shell [S.V. Avakyan, The source of O++ ions in the upper atmosphere, 1979, Cosmic Res, 17, 942 - 943] and Rydberg excitation of all the components of upper atmosphere [S.V. Avakyan, The new factor in the physics of solar - terrestrial relations - Rydberg atomic and molecules states. Conf. on Physics of solar-terrestrial relationships, 1994, Almaty, 3 - 5]. In the present paper the results of bringing these new processes in the ionospheric physics are discussed and also its possible role in the physics of solar-terrestrial coupling is considered. Involving these processes to the model estimations allowed us for the first time to come to the following important conclusions: - Auger electrons play the determinant role at the formation of energy spectrum of photoelectrons and secondary auroral electrons at the range above 150 eV; - double photoionization of the outer shell of the oxygen atom (by a single photon) plays a dominant role in the formation of

  20. Exciting interdisciplinary physics quarks and gluons, atomic nuclei, relativity and cosmology, biological systems

    CERN Document Server

    2013-01-01

    Nuclear physics is an exciting, broadly faceted field. It spans a wide range of topics, reaching from nuclear structure physics to high-energy physics, astrophysics and medical physics (heavy ion tumor therapy).  New developments are presented in this volume and the status of research is reviewed. A major focus is put on nuclear structure physics, dealing with superheavy elements and with various forms of exotic nuclei: strange nuclei, very neutron rich nuclei, nuclei of antimatter. Also quantum electrodynamics of strong fields is addressed, which is linked to the occurrence of giant nuclear systems in, e.g., U+U collisions. At high energies nuclear physics joins with elementary particle physics. Various chapters address the theory of elementary matter at high densities and temperature, in particular the quark gluon plasma which is predicted by quantum chromodynamics (QCD) to occur in high-energy heavy ion collisions. In the field of nuclear astrophysics, the properties of neutron stars and quark stars are d...

  1. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    Science.gov (United States)

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  2. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  3. Lab-in-a-box @ school: Exiting hands-on experiments in soft matter physics

    Science.gov (United States)

    Jacobs, Karin; Brinkmann, Martin; Müller, Frank

    2015-03-01

    Soft materials like liquids and polymers are part of everyday life, yet at school, this topic is rarely touched. Within the priority program SPP 1064 'Nano- and Microfluidics' of the German Science Foundation, we designed an outreach project that allows pupils (age 14 to 18) to perform hands-on experiments (www.labinabox.de). The experiments allow them e.g. to feel viscosity and viscoelasticity, experience surface tension or see structure formation. We call the modus operandi 'subjective experiments' to contrast them with the scientifically objective experiments, which pupils often describe as being boring. Over a dozen different experiments under the topic 'physics of fluids' are collected in a big box that travels to the school. Three other topics of boxes are available, 'physics of light, 'physics of liquid crystals', and 'physics of adhesion and friction'. Each experiment can be performed by 1-3 pupils within 10 - 20 min. That way, each scholar can perform 6 to 8 different small experiments within one topic. 'Subjective experiments' especially catch the attention of girls without disadvantaging boys. Both are fascinated by the hands-on physics experience and are therefore eager to perform also 'boring' objective experiments. Morover, before/after polls reveal that their interest in physics has greatly advanced. The project can easily be taken over and/or adapted to other topics in the natural sciences. Financial support of the German Science Foundation DFG is acknowledged.

  4. "What's (the) Matter?", A Show on Elementary Particle Physics with 28 Demonstration Experiments

    CERN Document Server

    Dreiner, Herbi K; Borzyszkowski, Mikolaj; Braun, Maxim; Faßbender, Alexander; Hampel, Julia; Hansen, Maike; Hebecker, Dustin; Heepenstrick, Timo; Heinz, Sascha; Hortmanns, Katharina; Jost, Christian; Kortmann, Michael; Kruckow, Matthias U; Leuteritz, Till; Lütz, Claudia; Mahlberg, Philip; Müllers, Johannes; Opferkuch, Toby; Paul, Ewald; Pauli, Peter; Rossbach, Merlin; Schaepe, Steffen; Schiffer, Tobias; Schmidt, Jan F; Schüller-Ruhl, Jana; Schürmann, Christoph; Ubaldi, Lorenzo; Wagner-Carena, Sebastian

    2016-01-01

    We present the screenplay of a physics show on particle physics, by the Physikshow of Bonn University. The show is addressed at non-physicists aged 14+ and communicates basic concepts of elementary particle physics including the discovery of the Higgs boson in an entertaining fashion. It is also demonstrates a successful outreach activity heavily relying on the university physics students. This paper is addressed at anybody interested in particle physics and/or show physics. This paper is also addressed at fellow physicists working in outreach, maybe the experiments and our choice of simple explanations will be helpful. Furthermore, we are very interested in related activities elsewhere, in particular also demonstration experiments relevant to particle physics, as often little of this work is published. Our show involves 28 live demonstration experiments. These are presented in an extensive appendix, including photos and technical details. The show is set up as a quest, where 2 students from Bonn with the aid...

  5. High School Student Physics Research Experience Yields Positive Results

    Science.gov (United States)

    Podolak, K. R.; Walters, M. J.

    2016-01-01

    All high school students that wish to continue onto college are seeking opportunities to be competitive in the college market. They participate in extra-curricular activities which are seen to foster creativity and the skills necessary to do well in the college environment. In the case of students with an interest in physics, participating in a…

  6. The CMS experiment puts physics onto the menu

    CERN Document Server

    Leonidopoulos, Christos

    2011-01-01

    CMS has addressed the challenge of identifying in real time different kinds of 
physics at the LHC – from the "bread and butter" of Standard Model processes to 
signals of new particles – with triggers served up according to a carefully designed menu.

  7. Engineering Students' Experiences from Physics Group Work in Learning Labs

    Science.gov (United States)

    Mellingsaeter, Magnus Strøm

    2014-01-01

    Background: This paper presents a case study from a physics course at a Norwegian university college, investigating key aspects of a group-work project, so-called learning labs, from the participating students' perspective. Purpose: In order to develop these learning labs further, the students' perspective is important. Which aspects are essential…

  8. Elementary Physical Education Teachers' Experiences in Teaching English Language Learners

    Science.gov (United States)

    Sato, Takahiro; Hodge, Samuel R.

    2016-01-01

    The purpose of the current study was to describe and explain the views on teaching English Language Learners (ELLs) held by six elementary physical education (PE) teachers in the Midwest region of the United States. Situated in positioning theory, the research approach was descriptive-qualitative. The primary sources of data were face-to-face…

  9. Some applications of the Faddeev-Yakubovsky equations to the cold-atom physics; Quelques applications des equations de Faddeev-Yakubovsky a la physique des atomes froids

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, J. [Laboratoire physique subatomique et cosmologie, universite Jospeh-Fourier, CNRS/IN2P3, 53, avenue des Martyrs, 38026 Grenoble cedex (France); Deltuva, A. [Centro de Fisica Nuclear da Universidade de Lisboa, P-1649-003 Lisboa (Portugal); Lazauskas, R. [IPHC, IN2P3-CNRS/universite Louis-Pasteur, BP 28, 67037 Strasbourg cedex 2 (France)

    2011-01-15

    We present some recent applications of the Faddeev-Yakubovsky equations in describing atomic bound and scattering problems. We consider the scattering of a charged particle X by atomic hydrogen with special interest in X = p,e{sup {+-},} systems of cold bosonic molecules and the bound and scattering properties of N=3 and N=4 atomic {sup 4}He multimers. (authors)

  10. The Scales of Time, Length, Mass, Energy, and Other Fundamental Physical Quantities in the Atomic World and the Use of Atomic Units in Quantum Mechanical Calculations

    Science.gov (United States)

    Teo, Boon K.; Li, Wai-Kee

    2011-01-01

    This article is divided into two parts. In the first part, the atomic unit (au) system is introduced and the scales of time, space (length), and speed, as well as those of mass and energy, in the atomic world are discussed. In the second part, the utility of atomic units in quantum mechanical and spectroscopic calculations is illustrated with…

  11. Whispering gallery states of neutrons and anti-hydrogen atoms and their applications to fundamental and surface physics

    Science.gov (United States)

    Nesvizhevsky, Valery

    2013-03-01

    The `whispering gallery' effect has been known since ancient times for sound waves in air, later in water and more recently for a broad range of electromagnetic waves: radio, optics, Roentgen and so on. It is intensively used and explored due to its numerous crucial applications. It consists of wave localization near a curved reflecting surface and is expected for waves of various natures, for instance, for neutrons and (anti)atoms. For (anti)matter waves, it includes a new feature: a massive particle is settled in quantum states, with parameters depending on its mass. In this talk, we present the first observation of the quantum whispering-gallery effect for matter particles (cold neutrons) 1-2. This phenomenon provides an example of an exactly solvable problem analogous to the `quantum bouncer'; it is complementary to recently discovered gravitational quantum states of neutrons3. These two phenomena provide a direct demonstration of the weak equivalence principle for a massive particle in a quantum state. Deeply bound long-living states are weakly sensitive to surface potential; highly excited short-living states are very sensitive to the wall nuclear potential shape. Therefore, they are a promising tool for studying fundamental neutron-matter interactions, quantum neutron optics and surface physics effects. Analogous phenomena could be measured with atoms and anti-atoms 4-5.

  12. The Physics of Metrology All About Instruments - from Trundle Wheels to Atomic Clocks

    CERN Document Server

    Hebra, Alexius J

    2008-01-01

    Suitable for practicing engineers, instrument designers, service technicians and engineering students, this reference manual incorporates the related fields of physics, mechanics and mathematics to enhance the understanding of the subject matter

  13. Precision Cosmic Ray physics with space-born experiment

    Science.gov (United States)

    Incagli, Marco

    2016-07-01

    More than 100 years after their discoveries, cosmic rays have been extensively studied, both with balloon experiments and with ground observatories. More recently, the possibility of mounting detectors on satellites or on the International Space Station has allowed for a long duration (several years) continuous observation of primary cosmic rays, i.e. before their interaction with the earth atmosphere, thus opening a new regime of precision measurements. In this review, recent results from major space experiments, as Pamela, AMS02 and Fermi, as well as next generation experiments proposed for the International Space Station, for standalone satellites or for the yet to come Chinese Space Station, will be presented. The impact of these experiment on the knowledge of Cosmic Ray propagation will also be discussed.

  14. A note on black-hole physics, cosmic censorship, and the charge-mass relation of atomic nuclei

    Science.gov (United States)

    Hod, Shahar

    2016-02-01

    Arguing from the cosmic censorship principle, one of the fundamental cornerstones of black-hole physics, we have recently suggested the existence of a universal upper bound relating the maximal electric charge of a weakly self-gravitating system to its total mass: Z(A)≤slant {Z}*(A)\\equiv {α }-1/3{A}2/3, where Z is the number of protons in the system, A is the total baryon (mass) number, and α ={e}2/{{\\hslash }}c is the dimensionless fine-structure constant. In order to test the validity of this suggested bound, we here explore the Z(A) functional relation of atomic nuclei as deduced from the Weizsäcker semi-empirical mass formula. It is shown that all atomic nuclei, including the meta-stable maximally charged ones, conform to the suggested charge-mass upper bound. Our results support the validity of the cosmic censorship conjecture in black-hole physics.

  15. Spectral and Atomic Physics Analysis of Xenon L-Shell Emission From High Energy Laser Produced Plasmas

    Science.gov (United States)

    Thorn, Daniel; Kemp, G. E.; Widmann, K.; Benjamin, R. D.; May, M. J.; Colvin, J. D.; Barrios, M. A.; Fournier, K. B.; Liedahl, D.; Moore, A. S.; Blue, B. E.

    2016-10-01

    The spectrum of the L-shell (n =2) radiation in mid to high-Z ions is useful for probing plasma conditions in the multi-keV temperature range. Xenon in particular with its L-shell radiation centered around 4.5 keV is copiously produced from plasmas with electron temperatures in the 5-10 keV range. We report on a series of time-resolved L-shell Xe spectra measured with the NIF X-ray Spectrometer (NXS) in high-energy long-pulse (>10 ns) laser produced plasmas at the National Ignition Facility. The resolving power of the NXS is sufficiently high (E/ ∂E >100) in the 4-5 keV spectral band that the emission from different charge states is observed. An analysis of the time resolved L-shell spectrum of Xe is presented along with spectral modeling by detailed radiation transport and atomic physics from the SCRAM code and comparison with predictions from HYDRA a radiation-hydrodynamics code with inline atomic-physics from CRETIN. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  16. Physics Accomplishments and Future Prospects of the BES Experiments at the BEPC Collider

    CERN Document Server

    Briere, Roy A; Mitchell, Ryan E

    2016-01-01

    The cornerstone of the Chinese experimental particle physics program consists of a series of experiments performed in the tau-charm energy region. China began building e+e- colliders at the Institute for High Energy Physics in Beijing more than three decades ago. Beijing Electron Spectrometer, BES, is the common root name for the particle physics detectors operated at these machines. The development of the BES program is summarized and highlights of the physics results across several topical areas are presented.

  17. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms; Experiences d'optique atomique coherente ou non avec un jet superfin d'atomes metastables de gaz rares

    Energy Technology Data Exchange (ETDEWEB)

    Grucker, J

    2007-12-15

    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable {sup 3}P{sub 2} state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ({sup 3}P{sub 2}). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms.

  18. The PANDA Experiment at FAIR - Subatomic Physics with Antiprotons

    CERN Document Server

    Messchendorp, Johan

    2016-01-01

    The non-perturbative nature of the strong interaction leads to spectacular phenomena, such as the formation of hadronic matter, color confinement, and the generation of the mass of visible matter. To get deeper insight into the underlying mechanisms remains one of the most challenging tasks within the field of subatomic physics. The antiProton ANnihilations at DArmstadt (PANDA) collaboration has the ambition to address key questions in this field by exploiting a cooled beam of antiprotons at the High Energy Storage Ring (HESR) at the future Facility for Antiproton and Ion Research (FAIR) combined with a state-of-the-art and versatile detector. This contribution will address some of the unique features of PANDA that give rise to a promising physics program together with state-of-the-art technological developments.

  19. A Phenomenological Study: A Phenomenological Exploration of the Lived Experience of Practicing Physical Education Teachers on the Integration of Technology in Physical Education

    Science.gov (United States)

    Armijo, Erica Anne

    2016-01-01

    The purpose of this study is to explore the lived experiences of practicing physical education teachers on the integration of technology in a physical education. This study arose from my current experiences as a physical educator and the current inculcation of technology in education and more specifically physical education. As a current physical…

  20. Exploring mesoscopic physics of vacancy-ordered systems through atomic scale observations of topological defects.

    Science.gov (United States)

    Borisevich, A Y; Morozovska, A N; Kim, Young-Min; Leonard, D; Oxley, M P; Biegalski, M D; Eliseev, E A; Kalinin, S V

    2012-08-10

    Vacancy-ordered transition metal oxides have multiple similarities to classical ferroic systems including ferroelectrics and ferroelastics. The expansion coefficients for corresponding Ginzburg-Landau-type free energies are readily accessible from bulk phase diagrams. Here, we demonstrate that the gradient and interfacial terms can quantitatively be determined from the atomically resolved scanning transmission electron microscopy data of the topological defects and interfaces in model lanthanum-strontium cobaltite. With this knowledge, the interplay between ordering, chemical composition, and mechanical effects at domain walls, interfaces and structural defects can be analyzed.

  1. Atomic polarizabilities

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, M. S. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Mitroy, J. [School of Engineering, Charles Darwin University, Darwin NT 0909 (Australia); Clark, Charles W. [Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, Gaithersburg, Maryland 20899-8410 (United States); Kozlov, M. G. [Petersburg Nuclear Physics Institute, Gatchina 188300 (Russian Federation)

    2015-01-22

    The atomic dipole polarizability governs the first-order response of an atom to an applied electric field. Atomic polarization phenomena impinge upon a number of areas and processes in physics and have been the subject of considerable interest and heightened importance in recent years. In this paper, we will summarize some of the recent applications of atomic polarizability studies. A summary of results for polarizabilities of noble gases, monovalent, and divalent atoms is given. The development of the CI+all-order method that combines configuration interaction and linearized coupled-cluster approaches is discussed.

  2. Becoming physics people: Development of physics identity in self-concept and practice through the Learning Assistant experience

    Science.gov (United States)

    Close, Eleanor

    2016-03-01

    The physics department at Texas State University has implemented a Learning Assistant (LA) program with reform-based instructional changes in our introductory course sequences. We are interested in how participation in the LA program influences LAs' identity both as physics students and as physics teachers; in particular, how being part of the LA community changes participants' self-concepts and their day-to-day practice. We analyze video of weekly LA preparation sessions and interviews with LAs as well as written artifacts from program applications, pedagogy course reflections, and evaluations. Our analysis of self-concepts is informed by the identity framework developed by Hazari et al., and our analysis of practice is informed by Lave and Wenger's theory of Communities of Practice. Regression models from quantitative studies show that the physics identity construct strongly predicts intended choice of a career in physics; the goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger ``physics student'' identity and stronger ``physics instructor'' identity, and that these identities are reconciled into a coherent integrated physics identity. In addition to becoming more confident and competent in physics, LAs perceive themselves to have increased competence in communication and a stronger sense of belonging to a supportive and collaborative community; participation in the LA program also changes their ways of learning and of being students, both within and beyond physics. This research and the TXST LA program are supported by NSF DUE-1240036, NSF DUE-1431578, and the Halliburton Foundation.

  3. Mott physics and collective modes: An atomic approximation of the four-particle irreducible functional

    Science.gov (United States)

    Ayral, Thomas; Parcollet, Olivier

    2016-08-01

    We discuss a generalization of the dynamical mean field theory (DMFT) for strongly correlated systems close to a Mott transition based on a systematic approximation of the fully irreducible four-point vertex. It is an atomic-limit approximation of a functional of the one- and two-particle Green functions, built with the second Legendre transform of the free energy with respect to the two-particle Green function. This functional is represented diagrammatically by four-particle irreducible (4PI) diagrams. Like the dynamical vertex approximation (D Γ A ), the fully irreducible vertex is computed from a quantum impurity model whose bath is self-consistently determined by solving the parquet equations. However, in contrast with D Γ A and DMFT, the interaction term of the impurity model is also self-consistently determined. The method interpolates between the parquet approximation at weak coupling and the atomic limit, where it is exact. It is applicable to systems with short-range and long-range interactions.

  4. Effective-field-theory analysis of Efimov physics in heteronuclear mixtures of ultracold atomic gases

    Science.gov (United States)

    Acharya, Bijaya; Ji, Chen; Platter, Lucas

    2016-09-01

    We use an effective-field-theory framework to analyze the Efimov effect in heteronuclear three-body systems consisting of two species of atoms with a large interspecies scattering length. In the leading-order description of this theory, various three-body observables in heteronuclear mixtures can be universally parametrized by one three-body parameter. We present the next-to-leading corrections, which include the effects of the finite interspecies effective range and the finite intraspecies scattering length, to various three-body observables. We show that only one additional three-body parameter is required to render the theory predictive at this order. By including the effective range and intraspecies scattering length corrections, we derive a set of universal relations that connect the different Efimov features near the interspecies Feshbach resonance. Furthermore, we show that these relations can be interpreted in terms of the running of the three-body counterterms that naturally emerge from proper renormalization. Finally, we make predictions for recombination observables of a number of atomic systems that are of experimental interest.

  5. Size-controlled bismuth nanoparticles physically grown by the support of cobalt atomic flux

    Science.gov (United States)

    Lee, Ho Seok; Noh, Jin-Seo

    2016-04-01

    Bi nanoparticle arrays with the almost monodispersity were synthesized using a magnetically assisted physical method. The average size and the overall morphology of Bi nanoparticles could be controlled by the adjustment of several parameters such as relative powers applied to Bi and Co targets, substrate temperature, and growth time. It was disclosed that Bi nanoparticles grow larger at a higher relative power to Bi, higher substrate temperature, and longer growth time, accompanying the deterioration of well-developed faceted structures. This physical method may provide a facile and fast route to achieving quality Bi nanoparticle arrays with a certain extent of size and morphology controllability.

  6. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    Science.gov (United States)

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  7. Cleaners' experiences with group-based workplace physical training

    DEFF Research Database (Denmark)

    Kirkelund, Lasse; Mortensen, Ole Steen; Holtermann, Andreas

    2012-01-01

    month post-intervention. We analyzed interview data using Systematic Text Condensation. Findings: Participants learned to use their bodies in new ways. Group training permitted social breaks from work, enforcing colleague unity. Participants did not perceive training as stressful, although working...... for implementation seem to be important for sustained effects of health-promotion interventions in the workplace. Originality: The social character of the physical training facilitated a community of practice, which potentially supported the learning of new competencies, and how to improve the organization...

  8. Davisson-Germer Prize Talk: Many-Body Physics with Atomic Fermions

    Science.gov (United States)

    Hulet, Randall

    2016-05-01

    Ultracold atomic gases confined to optical lattices have proven to be highly versatile and tunable systems for realizing novel quantum states of matter. We are using Fermi gases of 6 Li atoms in our laboratory to explore several goals related to the strong correlations that arise in these systems. We have realized the Hubbard model, which has long been suspected of containing the essential ingredients of high temperature superconductivity. We measured the compressibility of the Mott insulating phase that occurs near half filling (1 atom/site), thus demonstrating the excitation gap of the Mott insulator. Progress in this field, however, has been hampered by an inability to cool to low enough temperatures to achieve the most ambitious goals. To address this problem, we have developed the compensated optical lattice method to enable evaporative cooling in the lattice. With this method, we have cooled the Mott insulator sufficiently far to observe short-range antiferromagnetic correlations using Bragg scattering of light. We are currently exploring new methods for entropy storage and redistribution to achieve even lower entropy in the antiferromagnetic phase. Motivated by the enhancement of quantum correlations in low dimensions, we are also exploring Fermi gases in quasi-one-dimension (1D). A deep 2D optical lattice produces an array of 1D tubes which can be weakly coupled by reducing the lattice depth, thus increasing the lattice hopping t between them. We observe a crossover from 1D-like to 3D-like behavior in the phase separation of a spin-imbalanced Fermi gas with increasing t. While this crossover occurs at a value of t that depends on interaction, we find that the crossover location is universally dependent upon the scaled hopping t /ɛb , where ɛb is the pair binding energy. Finally, I will also report progress on measuring the speed of sound of the charge and spin modes in a 1D Fermi gas. Work supported by an ARO MURI, NSF, and the Robert A Welch Foundation.

  9. Divertor plasma physics experiments on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, M.A.; Allen, S.L.; Evans, T.E. [and others

    1996-10-01

    In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model.

  10. Physical gills in diving insects and spiders: theory and experiment.

    Science.gov (United States)

    Seymour, Roger S; Matthews, Philip G D

    2013-01-15

    Insects and spiders rely on gas-filled airways for respiration in air. However, some diving species take a tiny air-store bubble from the surface that acts as a primary O(2) source and also as a physical gill to obtain dissolved O(2) from the water. After a long history of modelling, recent work with O(2)-sensitive optodes has tested the models and extended our understanding of physical gill function. Models predict that compressible gas gills can extend dives up to more than eightfold, but this is never reached, because the animals surface long before the bubble is exhausted. Incompressible gas gills are theoretically permanent. However, neither compressible nor incompressible gas gills can support even resting metabolic rate unless the animal is very small, has a low metabolic rate or ventilates the bubble's surface, because the volume of gas required to produce an adequate surface area is too large to permit diving. Diving-bell spiders appear to be the only large aquatic arthropods that can have gas gill surface areas large enough to supply resting metabolic demands in stagnant, oxygenated water, because they suspend a large bubble in a submerged web.

  11. Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory

    Science.gov (United States)

    LoPresto, Michael C.

    2016-01-01

    What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…

  12. An effective field theory analysis of Efimov physics in heteronuclear mixtures of ultracold atomic gases

    CERN Document Server

    Acharya, Bijaya; Platter, Lucas

    2016-01-01

    We use an effective field theory framework to analyze the Efimov effect in heteronuclear three-body systems consisting of two species of atoms with a large interspecies scattering length. In the leading-order description of this theory, various three-body observables in heteronuclear mixtures can be universally parameterized by one three-body parameter. We present the next-to-leading corrections, which include the effects of the finite interspecies effective range and the finite intraspecies scattering length, to various three-body observables. We show that only one additional three-body parameter is required to render the theory predictive at this order. By including the effective range and intraspecies scattering length corrections, we derive a set of universal relations that connect the different Efimov features near the interspecies Feshbach resonance. Furthermore, we show that these relations can be interpreted in terms of the running of the three-body counterterms that naturally emerge from proper renor...

  13. Diagnostics for ion beam driven high energy density physics experiments.

    Science.gov (United States)

    Bieniosek, F M; Henestroza, E; Lidia, S; Ni, P A

    2010-10-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30 mA K(+) beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multichannel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (Velocity Interferometer System for Any Reflector), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  14. The EEE experiment project: status and first physics results

    Science.gov (United States)

    Abbrescia, M.; Agocs, A.; Aiola, S.; Antolini, R.; Avanzini, C.; Baldini Ferroli, R.; Bencivenni, G.; Bossini, E.; Bressan, E.; Chiavassa, A.; Cicaló, C.; Cifarelli, L.; Coccia, E.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Frolov, V.; Garbini, M.; Gemme, G.; Gnesi, I.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Li, S.; Librizzi, F.; Maggiora, A.; Massai, M.; Miozzi, S.; Panareo, M.; Paoletti, R.; Perasso, L.; Pilo, F.; Piragino, G.; Regano, A.; Riggi, F.; Righini, G. C.; Romano, F.; Sartorelli, G.; Scapparone, E.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Spandre, G.; Squarcia, S.; Taiuti, M.; Toselli, F.; Votano, L.; Williams, M. C. S.; Yánez, G.; Zichichi, A.; Zuyeuski, R.

    2013-06-01

    The Extreme Energy Events Project is an experiment for the detection of Extensive Air Showers which exploits the Multigap Resistive Plate Chamber technology. At the moment 40 EEE muon telescopes, distributed all over the Italian territory, are taking data, allowing the relative analysis to produce the first interesting results, which are reported here. Moreover, this Project has a strong added value thanks to its effectiveness in terms of scientific communication, which derives from the peculiar way it was planned and carried on.

  15. FROM THE HISTORY OF PHYSICS: Two classic experiments in superconductivity

    Science.gov (United States)

    Meĭlikhov, E. Z.

    1988-05-01

    Two experiments of I. K. Kikoin—the correlation between superconductivity and the galvanomagnetic properties of metals (1933), and the gyromagnetic effect in superconductors (1938)—which were carried out long before the appearance of the microscopic theory of superconductivity, anticipated two of its principal conclusions. Established were: 1) the determining role of electron-phonon interaction; 2) the orbital nature of diamagnetism in superconductors.

  16. High energy physics experiment triggers and the trustworthiness of software

    Energy Technology Data Exchange (ETDEWEB)

    Nash, T.

    1991-10-01

    For all the time and frustration that high energy physicists expend interacting with computers, it is surprising that more attention is not paid to the critical role computers play in the science. With large, expensive colliding beam experiments now dependent on complex programs working at startup, questions of reliability -- the trustworthiness of software -- need to be addressed. This issue is most acute in triggers, used to select data to record -- and data to discard -- in the real time environment of an experiment. High level triggers are built on codes that now exceed 2 million source lines -- and for the first time experiments are truly dependent on them. This dependency will increase at the accelerators planned for the new millennium (SSC and LHC), where cost and other pressures will reduce tolerance for first run problems, and the high luminosities will make this on-line data selection essential. A sense of this incipient crisis motivated the unusual juxtaposition to topics in these lectures. 37 refs., 1 fig.

  17. Atomic-scale wear of amorphous hydrogenated carbon during intermittent contact: a combined study using experiment, simulation, and theory.

    Science.gov (United States)

    Vahdat, Vahid; Ryan, Kathleen E; Keating, Pamela L; Jiang, Yijie; Adiga, Shashishekar P; Schall, J David; Turner, Kevin T; Harrison, Judith A; Carpick, Robert W

    2014-07-22

    In this study, we explore the wear behavior of amplitude modulation atomic force microscopy (AM-AFM, an intermittent-contact AFM mode) tips coated with a common type of diamond-like carbon, amorphous hydrogenated carbon (a-C:H), when scanned against an ultra-nanocrystalline diamond (UNCD) sample both experimentally and through molecular dynamics (MD) simulations. Finite element analysis is utilized in a unique way to create a representative geometry of the tip to be simulated in MD. To conduct consistent and quantitative experiments, we apply a protocol that involves determining the tip-sample interaction geometry, calculating the tip-sample force and normal contact stress over the course of the wear test, and precisely quantifying the wear volume using high-resolution transmission electron microscopy imaging. The results reveal gradual wear of a-C:H with no sign of fracture or plastic deformation. The wear rate of a-C:H is consistent with a reaction-rate-based wear theory, which predicts an exponential dependence of the rate of atom removal on the average normal contact stress. From this, kinetic parameters governing the wear process are estimated. MD simulations of an a-C:H tip, whose radius is comparable to the tip radii used in experiments, making contact with a UNCD sample multiple times exhibit an atomic-level removal process. The atomistic wear events observed in the simulations are correlated with under-coordinated atomic species at the contacting surfaces.

  18. Physics at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Subhasis

    2014-11-15

    The Facility for Antiproton and Ion Research (FAIR) is under construction at Darmstadt, Germany. It will deliver high intensity beams of ions and antiprotons for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics and biophysics. One of the scientific pillars of FAIR is the Compressed Baryonic Matter (CBM) experiment which is designed for the study of high density nuclear matter as it exists in the core of neutron stars. In this article the scientific program of FAIR will be reviewed with emphasis on the CBM experiment.

  19. Atoms, metaphors and paradoxes Niels Bohr and the construction of a new physics

    CERN Document Server

    Petruccioli, Sandro

    2006-01-01

    This book gives a detailed study of the development and the interpretation given to Niels Bohr's Principle of Correspondence. It also describes the role that this principle played in guiding Bohr's research over the critical period from 1920 to 1927. Quantum mechanics, developed in the 1920s and 1930s by Bohr, Heisenberg, Born, Schrödinger and Dirac, represents one of the most profound turning points in science. This theory required a wholly new kind of physics in which many of the principles, concepts and models representing reality, that had formed the basis of classical physics since Galileo and Newton, had to be abandoned. This book re-examines the birth of quantum mechanics, in particular examining the development of crucial and original insights of Niels Bohr.

  20. HISTRAP: Proposal for a Heavy Ion Storage Ring for Atomic Physics

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This paper presents an overview of the physics capabilities of HISTRAP together with a brief description of the facility and a sampling of the beams which will be available for experimentation, and surveys some of the lines of investigation in the physics of multicharged ions, molecular ion spectroscopy, condensed beams, and nuclear physics that will become possible with the advent of HISTRAP. Details of the accelerator design are discussed, including computer studies of beam tracking in the HISTRAP lattice, a discussion of the HHIRF tandem and ECR/RFQ injectors, and a description of the electron beam cooling system. In the past three years, HISTRAP has received substantial support from Oak Ridge National Laboratory management and staff. The project has used discretionary funds to develop hardware prototypes and carry out design studies. Construction has been completed on a vacuum test stand which models 1/16 of the storage ring and has attained a pressure of 4 x 10/sup -12/ Torr; a prototype rf cavity capable of accelerating beams up to 90 MeV/nucleon and decelerating to 20 keV/nucleon; and a prototype dipole magnet, one of the eight required for the HISTRAP lattice. This paper also contains a summary of the work on electron cooling carried out by one of our staff members at CERN. Building structures and services are described. Details of cost and schedule are also discussed. 77 refs.

  1. Real-time dynamics and proposal for feasible experiments of lattice gauge-Higgs model simulated by cold atoms

    Science.gov (United States)

    Kuno, Yoshihito; Kasamatsu, Kenichi; Takahashi, Yoshiro; Ichinose, Ikuo; Matsui, Tetsuo

    2015-06-01

    Lattice gauge theory has provided a crucial non-perturbative method in studying canonical models in high-energy physics such as quantum chromodynamics. Among other models of lattice gauge theory, the lattice gauge-Higgs model is a quite important one because it describes a wide variety of phenomena/models related to the Anderson-Higgs mechanism, such as superconductivity, the standard model of particle physics, and the inflation process of the early Universe. In this paper, we first show that atomic description of the lattice gauge model allows us to explore real-time dynamics of the gauge variables by using the Gross-Pitaevskii equations. Numerical simulations of the time development of an electric flux reveal some interesting characteristics of the dynamic aspect of the model and determine its phase diagram. Next, to realize a quantum simulator of the U(1) lattice gauge-Higgs model on an optical lattice filled by cold atoms, we propose two feasible methods: (i) Wannier states in the excited bands and (ii) dipolar atoms in a multilayer optical lattice. We pay attention to the constraint of Gauss's law and avoid nonlocal gauge interactions.

  2. Videos of physics experiments. A supplementary educational tool for students and teachers

    CERN Document Server

    Pilakouta, M; Fragkedakis, E; Varsamis, C P

    2012-01-01

    The educational use of video and multimedia is increasing rapidly in secondary and higher education across all disciplines. Videos for physics education can be found in many universities and other educational institutions websites all over the world. In the area of experimental physics, the available videos demonstrate mainly physical phenomena or physics experiments and only few of them allow for the quantitative estimation of physical parameters. In this work, we present characteristic videos of an ongoing project aiming at the development of a collection of educational videos that guide students to measure data and to analyze them in order to calculate physical quantities. These videos can be used for physics teaching, as a demonstration, as a supplementary educational tool for the students pre lab preparation and also in the physics lab, if the necessary equipment is not available or in case of time consuming measurements. The pilot use of a video related to the measurement of the lead attenuation coeffic...

  3. Beyond the Standard Model Higgs Physics using the ATLAS Experiment

    CERN Document Server

    Keller, J; The ATLAS collaboration

    2013-01-01

    The discovery of a Higgs-like boson with a mass of about 125 GeV has prompted the question of whether or not this particle is part of a much larger and more complex Higgs sector than that envisioned in the Standard Model. In this talk, we outline the current results from the ATLAS Experiment regarding Beyond the Standard Model (BSM) Higgs hypothesis tests. Searches for additional Higgs bosons are presented and interpreted in well motivated BSM Higgs frameworks, such as two Higgs doublet Models and the Minimal Supersymmetric Standard Model.

  4. Neutrino physics with the SHiP experiment

    CERN Document Server

    AUTHOR|(SzGeCERN)759942

    2015-01-01

    Despite the Standard Model (SM) has been strongly confirmed by the Higgs discovery, several experimental facts are still not explained. The SHiP experiment (Search for Hidden Particles), a beam dump experiment at CERN, aims at the observation of long lived particles very weakly coupled with ordinary matter. These particles of the GeV mass scale, foreseen in many extensions of the SM, might come from the decay of charmed hadrons produced in the collision of a 400 GeV proton beam on a target. High rates of all the three active neutrinos are also expected. For the first time the properties and the cross section of the ντ will be studied thanks to a detector based on nuclear emulsions, with the micrometric resolution needed to identify the tau lepton produced in neutrino interactions. Measuring the charge of the tau daughters, will enable the first observation of the ν ̄τ and the study of its cross section.

  5. Physics reach of the XENON1T dark matter experiment

    CERN Document Server

    Aprile, E; Agostini, F; Alfonsi, M; Amaro, F D; Anthony, M; Arazi, L; Arneodo, F; Balan, C; Barrow, P; Baudis, L; Bauermeister, B; Berger, T; Breur, P; Breskin, A; Brown, A; Brown, E; Bruenner, S; Bruno, G; Budnik, R; Bütikofer, L; Cardoso, J M R; Cervantes, M; Cichon, D; Coderre, D; Colijn, A P; Conrad, J; Contreras, H; Cussonneau, J P; Decowski, M P; de Perio, P; Di Gangi, P; Di Giovanni, A; Duchovni, E; Fattori, S; Ferella, A D; Fieguth, A; Franco, D; Fulgione, W; Galloway, M; Garbini, M; Geis, C; Goetzke, L W; Greene, Z; Grignon, C; Gross, E; Hampel, W; Hasterok, C; Itay, R; Kaether, F; Kaminsky, B; Kessler, G; Kish, A; Landsman, H; Lang, R F; Lellouch, D; Levinson, L; Calloch, M Le; Levy, C; Lindemann, S; Lindner, M; Lopes, J A M; Lyashenko, A; Macmullin, S; Manfredini, A; Undagoitia, T Marrodán; Masbou, J; Massoli, F V; Mayani, D; Fernandez, A J Melgarejo; Meng, Y; Messina, M; Micheneau, K; Miguez, B; Molinario, A; Murra, M; Naganoma, J; Oberlack, U; Orrigo, S E A; Pakarha, P; Pelssers, B; Persiani, R; Piastra, F; Pienaar, J; Plante, G; Priel, N; Rauch, L; Reichard, S; Reuter, C; Rizzo, A; Rosendahl, S; Rupp, N; Santos, J M F dos; Sartorelli, G; Scheibelhut, M; Schindler, S; Schreiner, J; Schumann, M; Lavina, L Scotto; Selvi, M; Shagin, P; Simgen, H; Stein, A; Thers, D; Tiseni, A; Trinchero, G; Tunnell, C; von Sivers, M; Wall, R; Wang, H; Weber, M; Wei, Y; Weinheimer, C; Wulf, J; Zhang, Y

    2015-01-01

    The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \\pm 0.15) \\cdot 10^{-4}$ ($\\rm{kg} \\cdot day \\cdot keV)^{-1}$, mainly due to the decay of $^{222}\\rm{Rn}$ daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region ($4$, $50$) keV, is composed of $(0.6 \\pm 0.1)$ ($\\rm{t} \\cdot y)^{-1}$ from radiogenic neutrons, $(1.8 \\pm 0.3) \\cdot 10^{-2}$ ($\\rm{t} \\cdot y)^{-1}$ from coherent scattering of neutrinos, and less than $0.01$ ($\\rm{t} \\cdot y)^{-1}$ from...

  6. Physical activity and anomalous bodily experiences in patients with first-episode schizophrenia

    DEFF Research Database (Denmark)

    Nyboe, Lene; Moeller, Marianne K; Vestergaard, Claus H

    2016-01-01

    were obtained from medical records of all patients. RESULTS: Physical activity and aerobic fitness was significantly lower in patients with FES compared with healthy controls (p fitness. Patients with more severe....... AIM: The purpose of the study was to compare physical activity in patients with FES with healthy controls; to investigate changes in physical activity over 1 year of follow-up; and to explore the correlations of physical activity and anomalous bodily experiences reported by patients with FES. METHODS......: Both physical activity and aerobic fitness were measured. Anomalous bodily experiences were measured by selected items from the Examination of Anomalous Self-Experience and The Body Awareness Scale. Psychopathological data comprising negative and positive symptoms and data on psychotropic medication...

  7. Implementation of the GFS physical package in the GRAPES regional model: single column experiment

    Science.gov (United States)

    Chen, Baode; Huang, Wei; Bao, Jian-wen

    2015-04-01

    There is a growing concern about coupling among physical components in NWP models. The Physics package of the NCEP Global Forecast System (GFS) has been considerably turned and connection among various components is well considered. Thus, the full GFS physical package was implemented into the GRAPES-MESO and its single column version as well. Using the data collected at ARM Southern Great Plain site during the summer 1997 Intensive Observing Period, several experiments of single-column model (SCM) were conducted to test performance of a set of original physical processes of GRAPES(CTL experiment) and the GFS physics package implemented(GFS experiment). Temperature, moisture, radiation, surface heat flux, surface air temperature and precipitation are evaluated. It is found that potential temperature and vapor mixing ratio simulated by GFS experiment is more accurate than that of CTL experiment. Errors of surface downward solar and long-wave radiation simulated by GFS experiment are less than that of CTL experiment and upward latent and sensible heat flux are also better agreeing with observation. The maximum and minimum 2-m air temperatures of the GFS experiment are close to observation compared with that of CTL experiment. Analysis of precipitation simulated shows that both sets of physical processes well reproduce heavy rainfall events. Failure and delay of moderate rainfall events and over predictions of drizzle events are commonly found for two sets of experiments. For the case of three rainfall events, the errors of potential temperature and vapor mixing ratio simulated by GFS experiment were smaller than that of CTL experiment. It is shown that the late occurrences of rainfall are resulted from a more stable temperature profile and lower moisture simulated in boundary layer than those from the observation prior to rainfall. When the simulated rainfall occurs, the simulated temperature and moisture become more favorable to the precipitation than observation.

  8. Withdrawal of Chinese Physics Letters 28 (2011) 043401 “Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps” by WANG Ji-Cheng et al.

    Institute of Scientific and Technical Information of China (English)

    WANG Ji-Cheng; ZHOU Ke-Ya; WANG Yue-Yuan; LIAO Qing-Hong; LIU Shu-Tian

    2011-01-01

    We announce the withdrawal of the article entitled “Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps”,which was published in Chinese Physics Letters [28(4)(2011)043401].The first author,Jicheng Wang,had participated in related research with Professor Kirk Madison's group at the Department of Physics & Astronomy at the University of British Columbia,Canada from September 2008 to February 2010.Even though consent had been granted for some of the experimental data to be used by Jicheng Wang in his own thesis,its publication had not been authorized.We apologize to Professor K.Madison for the misunderstanding,and to Chinese Physics Letters and the readers of Chinese Physics Letters for any inconvenience this mistake may have caused.%We announce the withdrawal of the article entitled "Measurement of Absolute Atomic Collision Cross Section with Helium Using 87Rb Atoms Confined in Magneto-Optic and Magnetic Traps", which was published in Chinese Physics Letters [28(4) (2011)043401]. The first author, Jicheng Wang, had participated in related research with Professor Kirk Madison's group at the Department of Physics & Astronomy at the University of British Columbia, Canada from September 2008 to February 2010. Even though consent had been granted for some of the experimental data to be used by Jicheng Wang in his own thesis, its publication had not been authorized. We apologize to Professor K. Madison for the misunderstanding, and to Chinese Physics Letters ad the readers of Chinese Physics Letters for any inconvenience this mistake may have caused.

  9. SU-E-E-05: Initial Experience On Physics Rotation of Radiological Residents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Williams, D; DiSantis, D; Hardy, P; Oates, M [University of Kentucky, Lexington, KY (United States)

    2014-06-01

    Purpose: The new ABR core exam integrates physics into clinical teaching, with an emphasis on understanding image quality, image artifacts, radiation dose and patient safety for each modality and/or sub-specialty. Accordingly, physics training of radiological residents faces a challenge. A traditional teaching of physics through didactic lectures may not fully fulfill this goal. It is also difficult to incorporate physics teaching in clinical practice due to time constraints. A dedicated physics rotation may be a solution. This study is to evaluate a full week physics workshop developed for the first year radiological residents. Methods: The physics rotation took a full week. It included three major parts, introduction lectures, hand-on experiences and observation of technologist operation. An introduction of basic concepts was given to each modality at the beginning. Hand-on experiments were emphasized and took most of time. During hand-on experiments, residents performed radiation measurements, studied the relationship between patient dose and practice (i.e., fluoroscopy), investigated influence of acquisition parameters (i.g., kV, mAs) on image quality, and evaluated image quality using phantoms A physics test before and after the workshop was also given but not for comparison purpose. Results: The evaluation shows that the physics rotation during the first week of residency in radiology is preferred by all residents. The length of a full week of physics workshop is appropriate. All residents think that the intensive workshop can significantly benefit their coming clinical rotations. Residents become more comfortable regarding the use of radiation and counseling relevant questions such as a pregnant patient risk from a CE PE examination. Conclusion: A dedicated physics rotation, assisting with didactic lectures, may fulfill the requirements of physics of the new ABR core exam. It helps radiologists deeply understand the physics concepts and more efficiently use

  10. From atoms to galaxies a conceptual physics approach to scientific awareness

    CERN Document Server

    Hassani, Sadri

    2010-01-01

    … present[s] some of the most striking ideas behind physics but also give[s] students and the general public the opportunity of reflecting on the implications of these ideas and provide them with the tools to draw a distinction between scientific fact and nonsense. The book does indeed do what it says on the cover; it presents topics ranging from early Greek astronomy and Newtonian dynamics, passing by electromagnetism and thermodynamics and culminating with quantum theory, relativity and cosmology. … the CD included with the book has lengthier mathematical and numerical examples that suppleme

  11. Atomic Radiations in the Decay of Medical Radioisotopes: A Physics Perspective

    Directory of Open Access Journals (Sweden)

    B. Q. Lee

    2012-01-01

    Full Text Available Auger electrons emitted in nuclear decay offer a unique tool to treat cancer cells at the scale of a DNA molecule. Over the last forty years many aspects of this promising research goal have been explored, however it is still not in the phase of serious clinical trials. In this paper, we review the physical processes of Auger emission in nuclear decay and present a new model being developed to evaluate the energy spectrum of Auger electrons, and hence overcome the limitations of existing computations.

  12. Electron-Atom Collisions in Gases

    Science.gov (United States)

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  13. Infrared Spectra of Simple Inorganic Ion Pairs in Solid Solution: A Physical Inorganic Chemistry Experiment.

    Science.gov (United States)

    Miller, Philip J.; Tong, William G.

    1980-01-01

    Presents a physical inorganic experiment in which large single crystals of the alkali halides doped with divalent ion impurities are prepared easily. Demonstrates the ion pairing of inorganic ions in solid solution. (CS)

  14. Review of Nuclear Physics Experiments for Space Radiation

    Science.gov (United States)

    Norbury, John W.; Miller, Jack; Adamczyk, Anne M.; Heilbronn, Lawrence H.; Townsend, Lawrence W.; Blattnig, Steve R.; Norman, Ryan B.; Guetersloh, Stephen B.; Zeitlin, Cary J.

    2011-01-01

    Human space flight requires protecting astronauts from the harmful effects of space radiation. The availability of measured nuclear cross section data needed for these studies is reviewed in the present paper. The energy range of interest for radiation protection is approximately 100 MeV/n to 10 GeV/n. The majority of data are for projectile fragmentation partial and total cross sections, including both charge changing and isotopic cross sections. The cross section data are organized into categories which include charge changing, elemental, isotopic for total, single and double differential with respect to momentum, energy and angle. Gaps in the data relevant to space radiation protection are discussed and recommendations for future experiments are made.

  15. $\\gamma\\gamma$ physics with the KLOE experiment

    CERN Document Server

    Archilli, F; Badoni, D; Balwierz, I; Bencivenni, G; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Budano, A; Bulychjev, S A; Campana, P; Capon, G; Ceradini, F; Ciambrone, P; Czerwinski, E; Dane, E; De Lucia, E; De Robertis, G; De Santis, A; De Zorzi, G; Di Domenico, A; Di Donato, C; Domenici, D; Erriquez, O; Fanizzi, G; Felici, G; Fiore, S; Franzini, P; Gauzzi, P; Giovannella, S; Gonnella, F; Graziani, E; Happacher, F; Hoistad, B; Iarocci, E; Jacewicz, M; Johansson, T; Kulikov, V; Kupsc, A; Lee-Franzini, J; Loddo, F; Martemianov, M; Martini, M; Matsyuk, M; Messi, R; Miscetti, S; Morello, G; Moricciani, D; Moskal, P; Nguyen, F; Passeri, A; Patera, V; Longhi, I Prado; Ranieri, A; Santangelo, P; Sarra, I; Schioppa, M; Sciascia, B; Sciubba, A; Silarski, M; Taccini, C; Tortora, L; Venanzoni, G; Versaci, R; Wislicki, W; Wolke, M; Zdebik, J

    2011-01-01

    The processes $e^+e^-\\to e^+e^-X$, with $X$ being either the $\\eta$ meson or $\\pi^0\\pi^0$, are studied at DA$\\Phi$NE, with $e^+e^-$ beams colliding at $\\sqrt{s}\\simeq1$ GeV, below the $\\phi$ resonance peak. The data sample is from an integrated luminosity of 240 pb$^{-1}$, collected by the KLOE experiment without tagging of the outgoing $e^+e^-$. Preliminary results are presented on the observation of the $\\gamma\\gamma\\to\\eta$ process, with both $\\eta\\to\\pi^+\\pi^-\\pi^0$ and $\\eta\\to\\pi^0\\pi^0\\pi^0$ channels, and the evidence for $\\gamma\\gamma\\to\\pi^0\\pi^0$ production at low $\\pi^0\\pi^0$ invariant mass.

  16. Atomic oxygen and ultraviolet radiation mission total exposures for LDEF experiments

    Science.gov (United States)

    Bourassa, R. J.; Gillis, J. R.; Rousslang, Ken W.

    1992-01-01

    Atomic oxygen and solar radiation exposures were determined analytically for rows, longerons, and end bays of the LDEF. Calculated atomic oxygen exposures are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation. Results also incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the six year flight of the spacecraft. Solar radiation exposure calculations are based on the form factors reported in the Solar Illumination Data Package prepared by NASA Langley. The earth albedo value for these calculations was based on the Nimbus 7 earth radiation data set. Summary charts for both atomic oxygen and solar radiation exposure are presented to facilitate the use of the data generated by LDEF experimenters.

  17. Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments

    Science.gov (United States)

    Espinosa, G.; Rodríguez, R.; Gil, J. M.; Suzuki-Vidal, F.; Lebedev, S. V.; Ciardi, A.; Rubiano, J. G.; Martel, P.

    2017-03-01

    Numerical simulations of laboratory astrophysics experiments on plasma flows require plasma microscopic properties that are obtained by means of an atomic kinetic model. This fact implies a careful choice of the most suitable model for the experiment under analysis. Otherwise, the calculations could lead to inaccurate results and inappropriate conclusions. First, a study of the validity of the local thermodynamic equilibrium in the calculation of the average ionization, mean radiative properties, and cooling times of argon plasmas in a range of plasma conditions of interest in laboratory astrophysics experiments on radiative shocks is performed in this work. In the second part, we have made an analysis of the influence of the atomic kinetic model used to calculate plasma microscopic properties of experiments carried out on magpie on radiative bow shocks propagating in argon. The models considered were developed assuming both local and nonlocal thermodynamic equilibrium and, for the latter situation, we have considered in the kinetic model different effects such as external radiation field and plasma mixture. The microscopic properties studied were the average ionization, the charge state distributions, the monochromatic opacities and emissivities, the Planck mean opacity, and the radiative power loss. The microscopic study was made as a postprocess of a radiative-hydrodynamic simulation of the experiment. We have also performed a theoretical analysis of the influence of these atomic kinetic models in the criteria for the onset possibility of thermal instabilities due to radiative cooling in those experiments in which small structures were experimentally observed in the bow shock that could be due to this kind of instability.

  18. A course in mathematical physics 3 quantum mechanics of atoms and molecules

    CERN Document Server

    Thirring, Walter

    1981-01-01

    In this third volume of A Course in Mathematical Physics I have attempted not simply to introduce axioms and derive quantum mechanics from them, but also to progress to relevant applications. Reading the axiomatic litera­ ture often gives one the impression that it largely consists of making refined axioms, thereby freeing physics from any trace of down-to-earth residue and cutting it off from simpler ways of thinking. The goal pursued here, however, is to come up with concrete results that can be compared with experimental facts. Everything else should be regarded only as a side issue, and has been chosen for pragmatic reasons. It is precisely with this in mind that I feel it appropriate to draw upon the most modern mathematical methods. Only by their means can the logical fabric of quantum theory be woven with a smooth structure; in their absence, rough spots would . inevitably appear, especially in the theory of unbounded operators, where the details are too intricate to be comprehended easily. Great care...

  19. Physics of Colloids in Space: Microgravity Experiment Launched, Installed, and Activated on the International Space Station

    Science.gov (United States)

    Doherty, Michael P.

    2002-01-01

    The Physics of Colloids in Space (PCS) experiment is a Microgravity Fluids Physics investigation that is presently located in an Expedite the Process of Experiments to Space Station (EXPRESS) Rack on the International Space Station. PCS was launched to the International Space Station on April 19, 2001, activated on May 31, 2001, and will continue to operate about 90 hr per week through May 2002.

  20. High passive-stability diode-laser design for use in atomic-physics experiments

    CERN Document Server

    Cook, Eryn C; Brown-Heft, Tobias L; Garman, Jeffrey C; Steck, Daniel A

    2012-01-01

    We present the design and performance characterization of an external cavity diode-laser system optimized for high stability, low passive spectral linewidth, low cost, and ease of in-house assembly. The main cavity body is machined from a single aluminum block for robustness to temperature changes and mechanical vibrations, and features a stiff and light diffraction-grating arm to suppress low-frequency mechanical resonances. The cavity is vacuum-sealed, and a custom-molded silicone external housing further isolates the system from acoustic noise and temperature fluctuations. Beam shaping, optical isolation, and fiber coupling are integrated, and the design is easily adapted to many commonly used wavelengths. Resonance data, passive-linewidth data, and passive stability characterization of the new design demonstrate that its performance exceeds published specifications for commercial precision diode-laser systems. The design is fully documented and freely available.

  1. Including Visually Impaired Students in Physical Education Lessons: A Case Study of Teacher and Pupil Experiences

    Science.gov (United States)

    Herold, Frank; Dandolo, Jack

    2009-01-01

    Following recent education policy and curriculum changes in England, the notion of inclusion of children with special educational needs in physical education has increasingly become a topic of research interest and concern. It was the aim of this study to explore personal experiences and perspectives of inclusion in physical education. To this end…

  2. Using the mobile phone acceleration sensor in Physics experiments: free and damped harmonic oscillations

    CERN Document Server

    Castro-Palacio, Juan Carlos; Gimenez, Marcos H; Monsoriu, Juan A

    2012-01-01

    The mobile acceleration sensor has been used to in Physics experiments on free and damped oscillations. Results for the period, frequency, spring constant and damping constant match very well to measurements obtained by other methods. The Accelerometer Monitor application for Android has been used to get the outputs of the sensor. Perspectives for the Physics laboratory have also been discussed.

  3. Review Committee report on the conceptual design of the Tokamak Physics Experiment

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report discusses the following topics on the conceptual design of the Tokamak Physics Experiment: Role and mission of TPX; overview of design; physics design assessment; engineering design assessment; evaluation of cost, schedule, and management plans; and, environment safety and health.

  4. Experiences and Outcomes of Preschool Physical Education: An Analysis of Developmental Discourses in Scottish Curricular Documentation

    Science.gov (United States)

    McEvilly, Nollaig

    2014-01-01

    This article provides an analysis of developmental discourses underpinning preschool physical education in Scotland's Curriculum for Excellence. Implementing a post-structural perspective, the article examines the preschool experiences and outcomes related to physical education as presented in the Curriculum for Excellence "health and…

  5. Physical Activity Experiences and Beliefs among Single Mothers: A Qualitative Study

    Science.gov (United States)

    Dlugonski, Deirdre; Motl, Robert W.

    2016-01-01

    Purpose: Single motherhood has been associated with negative health consequences such as depression and cardiovascular disease. Physical activity might reduce these consequences, but little is known about physical activity experiences and beliefs that might inform interventions and programs for single mothers. The present study used…

  6. The Acculturation Experiences of Foreign-Born Students of Color in Physics

    Science.gov (United States)

    Fries-Britt, Sharon; George Mwangi, Chrystal A.; Peralta, Alicia M.

    2014-01-01

    This study focuses on 15 foreign-born students majoring in physics who are also racial/ethnic minorities. We address the research question: What are the acculturation experiences of foreign-born Students of Color majoring in physics? Berry's (2003) theory of acculturation and Bandura's (1994) theory of self-efficacy were substantive…

  7. Physicists purchase materials testing machine in support of pioneering particle physics experiments

    CERN Multimedia

    Sharpe, Suzanne

    2007-01-01

    "The particle physics group at Liverpool University has purchased an LRXPlus singlecolumn materials testing machine from Lloyd Instruments, which will be used to help characterise the carbon-fibre support frames for detectors used for state-of-the-art particle physics experiments." (1 page)

  8. TOPICAL REVIEW: Single-molecule experiments in biological physics: methods and applications

    Science.gov (United States)

    Ritort, F.

    2006-08-01

    I review single-molecule experiments (SMEs) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SMEs it is possible to manipulate molecules one at a time and measure distributions describing molecular properties, characterize the kinetics of biomolecular reactions and detect molecular intermediates. SMEs provide additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SMEs it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level, emphasizing the importance of SMEs to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SMEs from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOTs), magnetic tweezers (MTs), biomembrane force probes (BFPs) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation) and proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SMEs to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.

  9. New calorimeters for space experiments: physics requirements and technological challenges

    Science.gov (United States)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  10. Results on axion physics from the CAST Experiment at CERN

    CERN Document Server

    Eleftheriadis, Christos A; Aune, S; Barth, K; Belov, A; Beltran, B; Bräuninger, H; Carmona, J; Cebrián, S; Collar, J I; Dafni, T; Davenport, M; Di Lella, L; Englhauser, J; Fanourakis, G K; Ferrer-Ribas, E; Fischer, H; Franz, J; Friedrich, P; Geralis, T; Giomataris, Ioanis; Gninenko, S; Gomez, H; Hasinoff, M; Heinsius, F H; Hoffmann, D H H; Irastorza, I G; Jacoby, J; Jakovcic, K; Kang, D; Königsmann, K C; Kotthaus, R; Krcmar, M; Kousouris, K; Kuster, M; Laki, B; Lasseur, C; Liolios, A; Ljubicic, cA; Lutz, G; Luzón, G; Miller, D; Morales, A; Morales, J; Nordt, A; Ortiz, A; Papaevangelou, T; Placci, A; Raffelt, G; Riege1, H; Rodríguez, A; Ruz, J; Savvidis, I; Semertzidis, Y K; Serpico, Pasquale Dario; Stewart, L; Villar, J; Vogel, J; Walckiers, L; Zioutas, K

    2007-01-01

    Axions are expected to be produced in the sun via the Primakoff process. They may be detected through the inverse process in the laboratory, under the influence of a strong magnetic field, giving rise to X-rays of energies in the range of a few keV. Such an Axion detector is the CERN Axion Solar Telescope (CAST), collecting data since 2003. Results have been published, pushing the axion-photon coupling g$_{a\\gamma}$ below the 10$^{-10}$ GeV$^{-1}$ limit at 95% CL, for axion masses less than 0.02 eV. This limit is nearly an order of magnitude lower than previous experimental limits and surpassed for the first time limits set from astrophysical arguments based on the energy-loss concept. The experiment is currently exploring axion masses in the range of 0.02 eV $< m_a <$ 1.1 eV. In the next run, currently under preparation, the axion mass explored will be extended up to the limit of 1.1 eV, testing for the first time the region of theoretical axion models with the axion helioscope method.

  11. The Early Years of Indirect Drive Development for High Energy Density Physics Experiments at AWE

    Science.gov (United States)

    Thomas, Brian

    2016-10-01

    The importance of laser driven indirect drive for high energy density physics experiments was recognised at A WE in 1971. The two beam 1TW HELEN laser was procured to work in this area and experiments with this system began in 1980. Early experiments in hohlraum coupling and performance scaling with both l.06μm and 0.53μm will be described together with experiments specifically designed to confirm the understanding of radiation wave propagation, hohlraum heating and hohlraum plasma filling. The use of indirect drive for early experiments to study spherical and cylindrical implosions, opacity, EOS, mix and planar radiation hydrodynamics experiments will also be described.

  12. Testing Universality of Efimov Physics in an Ultracold Mixture of Lithium and Cesium Atoms

    Science.gov (United States)

    Johansen, Jacob; Desalvo, Brian; Chin, Cheng

    2016-05-01

    We conduct a survey of Li-Cs-Cs Efimov resonances in a 6 Li-133 Cs mixture in the magnetic field range of 800 to 950 G. In this region, limiting our study to the two lowest Zeeman levels of lithium and the lowest Zeeman level of cesium, there are five Feshbach resonances which may be probed. The Cs-Cs scattering length at these resonances varies from -3600 a0 to +1000 a0, allowing us to study the impact of the Cs-Cs scattering length on the Efimov resonance positions. In addition, a combination of broad and narrow Feshbach resonances in this magnetic field range allows us to probe the influence of molecular physics on the Efimov effect, particularly the variation of the three-body parameter.

  13. CALET on the ISS: a high energy astroparticle physics experiment

    Science.gov (United States)

    Marrocchesi, Pier Simone; CALET Collaboration

    2016-05-01

    CALET is a space mission of the Japanese Aerospace Agency (JAXA) in collaboration with the Italian Space Agency (ASI) and NASA. The CALET instrument (CALorimetric Electron Telescope) is planned for a long exposure on the JEM-EF, an external platform of the Japanese Experiment Module KIBO, aboard the International Space Station (ISS). The main science objectives include high precision measurements of the inclusive electron (+positron) spectrum below 1 TeV and the exploration of the energy region above 1 TeV, where the shape of the high end of the spectrum might reveal the presence of nearby sources of acceleration. With an excellent energy resolution and low background contamination CALET will search for possible spectral signatures of dark matter with both electrons and gamma rays. It will also measure the high energy spectra and relative abundance of cosmic nuclei from proton to iron and detect trans-iron elements up to Z ~ 40. With a large exposure and high energy resolution, CALET will be able to verify and complement the observations of CREAM, PAMELA and AMS-02 on a possible deviation from a pure power-law of proton and He spectra in the region of a few hundred GeV and to extend the study to the multi-TeV region. CALET will also contribute to clarify the present experimental picture on the energy dependence of the boron/carbon ratio, below and above 1 TeV/n, thereby providing valuable information on cosmic-ray propagation in the galaxy. Gamma-ray transients will be studied with a dedicated Gamma-ray Burst Monitor (GBM).

  14. The Deep Impact Experiment and the Physics of Impact Cratering

    Science.gov (United States)

    Richardson, J. E.; Melosh, H. J.; Deep Impact Science Team

    2005-08-01

    On July 4, 2005 the Deep Impact experiment produced an impact event on the surface of Comet 9P Tempel 1, using a 360 kg (primarily copper) impactor striking the comet at a velocity of 10.2 km/sec. In addition to images taken from the flyby spacecraft (500 km closest approach distance), images of the target were also returned from the impactor spacecraft, which show that the impactor hit the comet's surface at an oblique angle of roughly 60 degrees from the surface normal. The impactor struck the comet at an ideal location for viewing the cratering process by the flyby spacecraft both during the 800 second long post-impact imaging phase and during the ``look-back" imaging phase (beginning ˜ 45 minutes after impact). Within a fraction of a second of impact, an incandescent vapor plume emerged from the impact site, cooling rapidly and moving away from the comet at a speed of ˜ 5 km/sec. This vapor emission was followed by the emergence and rapid growth of a prominent, conical ejecta plume, indicating crater excavation flow. This ejecta plume was more opaque (composed of finer material) than predicted, obscuring clear observations of the impact crater itself (extraction efforts continue). However, the behavior of the plume during both it's growth and fallback stages is consistent with a gravity-scaled cratering event into a very weak (post-shock) target material. The expansion state of the plume during the look-back phase will also allow us to place constraints on the comet's gravity field (and by extension mass and density).

  15. Experiment on Physical Desalinisation of Uranium-contaminated Gravel Surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Uk-Ryang; Kim, Gye-Nam; Kim, Seung-Soo; Han, Gyu-Seong; Moon, Jai-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    As a result, the method to wash uranium-contaminated gravels could not get satisfactory desalinization rate. During the long oxidization process it was judged that uranium penetrated inside the gravels, so we tried to increase the desalinization rate by fragmentizing them into pieces and then washing them. The desalinization rate after fragmentizing the gravels into pieces and washing them brought a satisfactory result.. However, we could obtain desired concentration for gravels with high uranium concentration by fragmentizing them and breaking them further into even smaller pieces. Likewise, desalinization using soil washing process is complicated and has to go through multiple washing steps, resulting in too much of waste fluid generated accordingly. The increase of waste fluid generated leads to the increase in by-products of the final disposal process later on, bringing a not good economic result. Furthermore, taking into account that the desalinization rate is 65% during soil washing process, it is expected that gravel washing will show a similar desalinization result; it is considered uneasy to have a perfect desalinization only by soil washing. The grinding method is actually used in the primary desalinization process in order to desalinize radioactivity-contaminated concrete. This method does desalinization by grinding the radioactivity-contaminated area of the concrete surface with desalinization equipment, which enables a near-to-perfect desalinization for relatively thinly contaminated surface. Likewise, this research verified the degree of desalinization by applying the grinding method and comparing it to the fragmentizing-washing method, and attempted to find a method to desalinize uranium-contaminated gravels more effectively. In order to desalinize uranium-contaminated gravels more effectively and compare to the existing washing-desalinization method, we conducted a desalinization experiment with grinding method that grinds gravel surface. As a

  16. Gaining insight into the physics of dynamic atomic force microscopy in complex environments using the VEDA simulator.

    Science.gov (United States)

    Kiracofe, Daniel; Melcher, John; Raman, Arvind

    2012-01-01

    Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.

  17. In-source laser spectroscopy of polonium isotopes: From atomic physics to nuclear structure

    CERN Multimedia

    Rothe, S

    2014-01-01

    The Resonance Ionization Laser Ion Source RILIS [1] at the CERN-ISOLDE on-line radioactive ion beam facility is essential for ion beam production for the majority of experiments, but it is also powerful tool for laser spectroscopy of rare isotopes. A series of experiments on in-source laser spectroscopy of polonium isotopes [2, 3] revealed the nuclear ground state properties of 191;211;216;218Po. However, limitations caused by the isobaric background of surface-ionized francium isotopes hindered the study of several neutron rich polonium isotopes. The development of the Laser Ion Source and Trap (LIST) [4] and finally its integration at ISOLDE has led to a dramatic suppression of surface ions. Meanwhile, the RILIS laser spectroscopy capabilities have advanced tremendously. Widely tunable titanium:sapphire (Ti:Sa) lasers were installed to complement the established dye laser system. Along with a new data acquisition system [5], this more versatile laser setup enabled rst ever laser spectroscopy of the radioact...

  18. Atomic physics for cave-men and other beginners. The universe from within. Molecules, atoms, and elementary particles; Atomphysik fuer Hoehlenmenschen und andere Anfaenger. Das Universum von innen. Molekuele, Atome und Elementarteilchen

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Juergen

    2016-07-01

    In this essential can be found the structure and the general properties of atoms, the precise interior of atoms and the special behaviour resulting from it, and the mysterious world of ''quanta'' and their behaviour.

  19. 64 International conference "NUCLEUS-2014" Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies

    OpenAIRE

    Vlasnikov, A. K.

    2014-01-01

    Тезисы 64 международной конференции «ЯДРО-2014» (Фундаментальные проблемы ядерной физики, атомной энергетики и ядерных технологий), БГУ, Минск, 1 – 4 июля 2014 года. The scientific program of the conference covers almost all problems in nuclear physics and its applications such as: neutron-rich nuclei, nuclei far from stability valley, giant resonances, many-phonon and many-quasiparticle states in nuclei, high-spin and super-deformed states in nuclei, synthesis of super-heavy elements, ...

  20. Energetic Particle Physics In Fusion Research In Preparation For Burning Plasma Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gorelenkov, Nikolai N [PPPL

    2013-06-01

    The area of energetic particle (EP) physics of fusion research has been actively and extensively researched in recent decades. The progress achieved in advancing and understanding EP physics has been substantial since the last comprehensive review on this topic by W.W. Heidbrink and G.J. Sadler [1]. That review coincided with the start of deuterium-tritium (DT) experiments on Tokamak Fusion Test reactor (TFTR) and full scale fusion alphas physics studies. Fusion research in recent years has been influenced by EP physics in many ways including the limitations imposed by the "sea" of Alfven eigenmodes (AE) in particular by the toroidicityinduced AEs (TAE) modes and reversed shear Alfven (RSAE). In present paper we attempt a broad review of EP physics progress in tokamaks and spherical tori since the first DT experiments on TFTR and JET (Joint European Torus) including helical/stellarator devices. Introductory discussions on basic ingredients of EP physics, i.e. particle orbits in STs, fundamental diagnostic techniques of EPs and instabilities, wave particle resonances and others are given to help understanding the advanced topics of EP physics. At the end we cover important and interesting physics issues toward the burning plasma experiments such as ITER (International Thermonuclear Experimental Reactor).