WorldWideScience

Sample records for atomic physics experiments

  1. Accelerator based atomic physics experiments: an overview

    International Nuclear Information System (INIS)

    Atomic Physics research with beams from accelerators has continued to expand and the number of papers and articles at meetings and in journals reflects a steadily increasing interest and an increasing support from various funding agencies. An attempt will be made to point out where interdisciplinary benefits have occurred, and where applications of the new results to engineering problems are expected. Drawing from material which will be discussed in the conference, a list of the most active areas of research is presented. Accelerator based atomic physics brings together techniques from many areas, including chemistry, astronomy and astrophysics, nuclear physics, solid state physics and engineering. An example is the use of crystal channeling to sort some of the phenomena of ordinary heavy ion stopping powers. This tool has helped us to reach a better understanding of stopping mechanisms with the result that now we have established a better base for predicting energy losses of heavy ions in various materials

  2. Experiments in atomic and applied physics using synchrotron radiation

    International Nuclear Information System (INIS)

    A diverse program in atomic and applied physics using x rays produced at the X-26 beam line at the Brookhaven National Synchrotron Light Source is in progress. The atomic physics program studies the properties of multiply-ionized atoms using the x rays for photo-excitation and ionization of neutral atoms and ion beams. The applied physics program builds on the techniques and results of the atomic physics work to develop new analytical techniques for elemental and chemical characterization of materials. The results are then used for a general experimental program in biomedical sciences, geo- and cosmochemistry, and materials sciences. The present status of the program is illustrated by describing selected experiments. Prospects for development of new experimental capabilities are discussed in terms of a heavy ion storage ring for atomic physics experiments and the feasibility of photoelectron microscopy for high spatial resolution analytical work. 21 refs., 11 figs., 2 tabs

  3. Atom interferometers and optical atomic clocks: New quantum sensors for fundamental physics experiments in space

    International Nuclear Information System (INIS)

    We present projects for future space missions using new quantum devices based on ultracold atoms. They will enable fundamental physics experiments testing quantum physics, physics beyond the standard model of fundamental particles and interactions, special relativity, gravitation and general relativity

  4. Electron coincidence experiments in atomic physics

    International Nuclear Information System (INIS)

    The author reports on two types of coincidence experiments involving collisions of electrons with target gases. These are the (e,2e) and (e,eγ) experiments. Coincidence experiments can completely determine the kinematics of a reaction. Under certain conditions this means that if the reaction is understood, it can yield direct detailed information on target structure or conversely if the structure is knwon it can lead to extremely sensitive information on the reaction mechanism

  5. Atomic physics experiments at the high energy storage ring

    Science.gov (United States)

    Stöhlker, Thomas; Litvinov, Yuri A.; the SPARC Collaboration

    2015-11-01

    Facility for Antiproton and Ion Research (FAIR), will offer unprecedented experimental opportunities. The Stored Particles Atomic Research Collaboration (SPARC) at FAIR aims at creating a worldwide unique research program with highly charged ions by utilizing storage ring and trapping facilities. The foreseen experiments will address physics at strong, ultra-short electromagnetic fields including the fundamental interactions between electrons and heavy nuclei as well as the experiments at the border between nuclear and atomic physics. In view of the staged construction of the FAIR facility, SPARC worked out an early realization scheme for experiments with highly-charged heavy-ions at relativistic energies to be conducted in the High-Energy Storage Ring.

  6. Atomic physics

    International Nuclear Information System (INIS)

    Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 23Po,2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 23Po level of helium-like krypton

  7. Atomic physics experiments with trapped and cooled highly charged ions

    OpenAIRE

    Kluge, H.-J.; Quint, W; Winters, D. F. A

    2007-01-01

    Trapping and cooling techniques have become very important for many fundamental experiments in atomic physics. When applied to highly charged ions confined in Penning traps, these procedures are very effective for testing quantum electrodynamics in extreme electromagnetic fields produced by heavy highly charged ions such as uranium U$^{91+}$. In addition, fundamental constants or nuclear ground state properties can be determined with high accuracy in these simple systems. Finally, by studying...

  8. Atomic physics experiments with trapped and cooled highly charged ions

    CERN Document Server

    Kluge, H -J; Winters, D F A

    2007-01-01

    Trapping and cooling techniques have become very important for many fundamental experiments in atomic physics. When applied to highly charged ions confined in Penning traps, these procedures are very effective for testing quantum electrodynamics in extreme electromagnetic fields produced by heavy highly charged ions such as uranium U$^{91+}$. In addition, fundamental constants or nuclear ground state properties can be determined with high accuracy in these simple systems. Finally, by studying a single trapped radioactive ion, its nuclear decay can be studied in detail by observing the disappearance of the signal of the mother and the appearance of that of the daughter isotope. Such experiments on highly charged ions at extremely low energy will become possible by the HITRAP facility which is currently being built up at GSI. Also the future Facility for Antiproton and Ion Research (FAIR) will be briefly described which is expected to be operational by 2014.

  9. Atomic Physics

    CERN Document Server

    Foot, Christopher J

    2007-01-01

    This text will thoroughly update the existing literature on atomic physics. Intended to accompany an advanced undergraduate course in atomic physics, the book will lead the students up to the latest advances and the applications to Bose-Einstein Condensation of atoms, matter-wave inter-ferometry and quantum computing with trapped ions. The elementary atomic physics covered in the early chapters should be accessible to undergraduates when they are first introduced to the subject. To complement. the usual quantum mechanical treatment of atomic structure the book strongly emphasizes the experimen

  10. Atomic physics

    CERN Document Server

    Born, Max

    1989-01-01

    The Nobel Laureate's brilliant exposition of the kinetic theory of gases, elementary particles, the nuclear atom, wave-corpuscles, atomic structure and spectral lines, electron spin and Pauli's principle, quantum statistics, molecular structure and nuclear physics. Over 40 appendices, a bibliography, numerous figures and graphs.

  11. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    International Nuclear Information System (INIS)

    In present magnetically confined fusion devices, high and intermediate Z impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high Z plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introduced through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3 - 1600 Angstrom), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.) copyright 1999 American Institute of Physics

  12. Benchmarking atomic physics models for magnetically confined fusion plasma physics experiments

    Science.gov (United States)

    May, M. J.; Finkenthal, M.; Soukhanovskii, V.; Stutman, D.; Moos, H. W.; Pacella, D.; Mazzitelli, G.; Fournier, K.; Goldstein, W.; Gregory, B.

    1999-01-01

    In present magnetically confined fusion devices, high and intermediate Z impurities are either puffed into the plasma for divertor radiative cooling experiments or are sputtered from the high Z plasma facing armor. The beneficial cooling of the edge as well as the detrimental radiative losses from the core of these impurities can be properly understood only if the atomic physics used in the modeling of the cooling curves is very accurate. To this end, a comprehensive experimental and theoretical analysis of some relevant impurities is undertaken. Gases (Ne, Ar, Kr, and Xe) are puffed and nongases are introduced through laser ablation into the FTU tokamak plasma. The charge state distributions and total density of these impurities are determined from spatial scans of several photometrically calibrated vacuum ultraviolet and x-ray spectrographs (3-1600 Å), the multiple ionization state transport code transport code (MIST) and a collisional radiative model. The radiative power losses are measured with bolometery, and the emissivity profiles were measured by a visible bremsstrahlung array. The ionization balance, excitation physics, and the radiative cooling curves are computed from the Hebrew University Lawrence Livermore atomic code (HULLAC) and are benchmarked by these experiments. (Supported by U.S. DOE Grant No. DE-FG02-86ER53214 at JHU and Contract No. W-7405-ENG-48 at LLNL.)

  13. Possible future experiments in atomic physics utilizing synchrotron radiation

    International Nuclear Information System (INIS)

    The survey is limited to processes in which a single photon is absorbed and either photon attenuation is measured or the end products following absorption are detected. Furthermore, only interactions with free atoms (or positive ions) in their ground states are considered

  14. Atomic and Molecular Physics

    OpenAIRE

    Cohen-Tannoudji, Claude

    2015-01-01

    When physicists began to explore the world of atoms more precisely, as they endeavoured to understand its structure and the laws governing its behaviour, they soon encountered serious difficulties. Our intuitive concepts, based on our daily experience of the macroscopic world around us, proved to be completely erroneous on the atomic scale; the atom was incomprehensible within the framework of classical physics. In order to uncover these new mysteries, after a great deal of trial and error, e...

  15. Several atomic-physics issues connected with the use of neutral beams in fusion experiments

    International Nuclear Information System (INIS)

    Energetic neutral beams are used for heating and diagnostics in present magnetic fusion experiments. They are also being considered for use in future large experiments. Atomic physics issues are important for both the production of the neutral beams and the interaction of the beams and the plasma. Interest in neutral beams based on negative hydrogen ions is growing, largely based on advances in producing high current ion sources. An extension of the negative ion approach has been the suggestion to use negative ions of Z > 1 elements, such as carbon and oxygen, to form high power neutral beams for plasma heating

  16. Atomic Physics 16: Sixteenth International Conference on Atomic Physics. Proceedings

    International Nuclear Information System (INIS)

    These proceedings represent papers presented at the 16th International Conference on Atomic Physics held in Windsor, Ontario, Canada, in August, 1998. The topics discussed included a wide array of subjects in atomic physics such as atom holography, alignment in atomic collisions, coulomb-interacting particles, muon experiments, x-rays from comets, atomic electron collisions in intense laser fields, spectroscopy of trapped ions, and Bose-Einstein condensates. This conference represents the single most important meeting world wide on fundamental advances in atomic physics. There were 30 papers presented at the conference,out of which 4 have been abstracted for the Energy, Science and Technology database

  17. An open source digital servo for atomic, molecular, and optical physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Leibrandt, D. R., E-mail: david.leibrandt@nist.gov; Heidecker, J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2015-12-15

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of {sup 27}Al{sup +} in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  18. An open source digital servo for atomic, molecular, and optical physics experiments

    International Nuclear Information System (INIS)

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser

  19. An open source digital servo for atomic, molecular, and optical physics experiments

    Science.gov (United States)

    Leibrandt, D. R.; Heidecker, J.

    2015-12-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical physics experiments. The servo is capable of feedback bandwidths up to roughly 1 MHz (limited by the 320 ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of 27Al+ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  20. Atomic physics experiments combining synchrotron radiation and lasers: present capabilities and future possibilities

    International Nuclear Information System (INIS)

    This (occasionally speculative) paper considers the range of hybrid experiments in atomic physics that are now or may soon be possible with combined use of two rather different photon sources, monochromatized synchrotron radiation (SR) in the vacuum ultraviolet (VUV) below about 300 eV and lasers below about 5-10 eV. A wide range of experiments will employ one or more continuous lasers to create an appreciable stationary fraction of valence-excited target atoms in a beam and will draw heavily on the techniques previously developed to create aligned or oriented targets for electron scattering experiments. The very low duty factor of most pulsed lasers mitigates against their use with SR, but it should be possible to develop specialized, mode-locked, pulsed dye lasers whose pulse train is synchronized to that of the SR source. The development of free-electron lasers at SR facilities will provide an ideal tunable laser source in the same laboratories, certainly in the infrared and perhaps into the UV. SR and photoelectron spectroscopy can be used to probe photo-excitation and ionization of electrons in inner or outer shells, either directly or via doubly-excited resonances. Triply-excited states may also be open to study. Analogous experiments with electronically or vibronically excited molecules will be challenging. In laser-excited alkali and alkaline-earth vapors, collisional interactions among the excited atoms can produce a weakly ionized plasma emitting hot electrons that can confuse SR photoelectron spectra, especially near ionization thresholds. 33 references, 2 figures, 3 tables

  1. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    Science.gov (United States)

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  2. Advances in atomic physics

    OpenAIRE

    Tharwat M. El-Sherbini

    2015-01-01

    Graphical abstract In this review article, important developments in the field of atomic physics are highlighted and linked to research works the author was involved in himself as a leader of the Cairo University – Atomic Physics Group. Starting from the late 1960s – when the author first engaged in research - an overview is provided of the milestones in the fascinating landscape of atomic physics.

  3. Division of atomic physics

    International Nuclear Information System (INIS)

    The Division of Atomic Physics, Lund Institute of Technology (LTH), is responsible for the basic physics teaching in all subjects at LTH and for specialized teaching in Optics, Atomic Physics, Atomic and Molecular Spectroscopy and Laser Physics. The Division has research activities in basic and applied optical spectroscopy, to a large extent based on lasers. It is also part of the Physics Department, Lund University, where it forms one of eight divisions. Since the beginning of 1980 the research activities of our division have been centred around the use of lasers. The activities during the period 1991-1992 is described in this progress reports

  4. Topics in atomic physics

    CERN Document Server

    Burkhardt, Charles E

    2006-01-01

    The study of atomic physics propelled us into the quantum age in the early twentieth century and carried us into the twenty-first century with a wealth of new and, in some cases, unexplained phenomena. Topics in Atomic Physics provides a foundation for students to begin research in modern atomic physics. It can also serve as a reference because it contains material that is not easily located in other sources. A distinguishing feature is the thorough exposition of the quantum mechanical hydrogen atom using both the traditional formulation and an alternative treatment not usually found in textbooks. The alternative treatment exploits the preeminent nature of the pure Coulomb potential and places the Lenz vector operator on an equal footing with other operators corresponding to classically conserved quantities. A number of difficult to find proofs and derivations are included as is development of operator formalism that permits facile solution of the Stark effect in hydrogen. Discussion of the classical hydrogen...

  5. Making custom fiber lasers for use in an atomic physics experiment

    Science.gov (United States)

    Khademian, Ali; Cameron, Garnet; Nault, Kyla; Shiner, David

    2016-05-01

    Fiber lasers can be a reasonable choice for a laser source in atomic physics. Our particular applications involve the optical pumping and in some applications cooling of various transitions in atomic helium. Doped fiber with emission at the required wavelengths is necessary. Readily available fiber and approximate wavelength emission ranges include Yb (990 - 1150 nm), Er/Yb (1530 - 1625 nm) and Th (1900 -2100 nm). High efficiency conversion of pump photons into stable single frequency laser emission at the required wavelength is the function of the fiber laser. A simple fiber laser cavity uses a short (~ few mm) fiber grating high reflector mirror, a doped fiber section for the laser cavity, and a long (~ few cm) fiber grating output coupler. To ensure reliable single frequency operation, the laser cavity length should be within 2-3 times the output grating length. However the cavity length must be long enough for round trip gains to compensate for the output mirror transmission loss. Efficiency can be maximized by avoiding fiber splices in the fiber laser cavity. This requires that the gratings be written into the doped fiber directly. In our previous designs, back coupling of the fiber laser into the pump laser contributes to instability and sometimes caused catastrophic pump failure. Current designs use a fiber based wavelength splitter (WDM) to study and circumvent this problem. Data will be presented on the fiber lasers at 1083 nm. Work on a Thulium 2057 nm fiber laser will also be discussed. This work is supported by NSF Grant # 1404498.

  6. Theoretical atomic collision physics

    Energy Technology Data Exchange (ETDEWEB)

    Lane, N.F. (Rice Univ., Houston, TX (USA) Rice Univ., Houston, TX (USA). Quantum Inst.)

    1990-01-01

    The theoretical atomic physics at Rice University focuses on obtaining a better understanding of the mechanisms that control inelastic collisions between excited atoms and atoms, molecules and ions. Particular attention is given to systems and processes that are of potential importance to advanced energy technologies. In the current year, significant progress has been made in quantitative studies of: quenching of low-Rydberg Na atoms in thermal energy collisions with He, Ne and Ar atoms; selective excitation resulting from charge transfer in collisions of highly stripped ions of He, Li, C, and with Li, Na and He atoms and H{sub 2} molecules at keV energies; differential elastic and single, and double electron transfer in He{sup ++} collisions with He at keV energies; inelastic electron-transfer in ultra-low-energy-energy (T=8 to 80K) collisions between {sup 3}He{sup +} and {sup 4}He and {sup 4}He{sup +} and {sup 3}He; a formalism for ionization by electron impact of ions in dense, high temperature plasmas.

  7. Physics of non-steady state diffusion of lightweight atoms in a heavy atom matrix. Introducing an open-source tool for simulated-experiments in fluid mechanics

    CERN Document Server

    Serrano-López, Roberto; Tapia-Júdez, Oscar; Fradera, Jorge

    2013-01-01

    The practice-based learning methodologies offer to undergraduate professors different ways to illustrate certain general physic principles. Traditional experimental workbenches have been extensively used during decades for academic lessons in order to complete theoretical dissertations or lectures, aiming at assuring an adequate understanding. The high cost of materials and laboratory equipment, the excessive preparation time, and the difficulty for carrying out offsite-campus replications by students, are disadvantages that can discourage of trying new kinds of experimental tasks. This paper gives insight of simulated experiment possibilities through an open-source-based computational suite in teaching fluid mechanics. Physics underlying diffusion of a light specie in a heavier atom matrix, as function of time and position, were explained to students as an example to teach them the Fick's Second Law expression. We present a docent step-by-step programme, scheduled in three sessions. The expected solution is ...

  8. Atoms, molecules and optical physics

    CERN Document Server

    Hertel, Ingolf V

    2015-01-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginner...

  9. The state of Atomic Physics

    International Nuclear Information System (INIS)

    This chapter presents the final lecture given at the Eighth International Conference on Atomic Physics held in Sweden in 1982. Discusses (in general terms) new tools, positron investigations, quantum electrodynamics, physical metaphors, Bell's inequalities, quantum mechanics, precision measurements, sensitivity, high-resolution laser spectroscopy, and the theoretical papers given at the conference. Concludes that there are gaps in atomic physics which need to be filled

  10. Experimental atomic physics

    International Nuclear Information System (INIS)

    The atomic structure and collision phenomena of highly stripped ions in the range Z = 6 to 35 were studied. Charge-transfer and multiple-electron-loss cross sections were determined. Absolute x-ray-production cross sections for incident heavy ions were measured. 10 figures, 1 table

  11. Atomic physics and reality

    CERN Multimedia

    1985-01-01

    An account of the long standing debate between Niels Bohr and Albert Einstein regarding the validity of the quantum mechanical description of atomic phenomena.With physicts, John Wheeler (Texas), John Bell (CERN), David Rohm (London), Abner Shimony (Boston), Alain Aspect (Paris)

  12. Quantum Electronics for Atomic Physics

    CERN Document Server

    Nagourney, Warren

    2010-01-01

    Quantum Electronics for Atomic Physics provides a course in quantum electronics for researchers in atomic physics. The book covers the usual topics, such as Gaussian beams, cavities, lasers, nonlinear optics and modulation techniques, but also includes a number of areas not usually found in a textbook on quantum electronics. It includes such practical matters as the enhancement of nonlinear processes in a build-up cavity, impedance matching into a cavity, laser frequencystabilization (including servomechanism theory), astigmatism in ring cavities, and atomic/molecular spectroscopic techniques

  13. Physics of atomic nuclei

    CERN Document Server

    Zelevinsky, Vladimir

    2016-01-01

    This advanced textbook presents an extensive and diverse study of low-energy nuclear physics considering the nucleus as a quantum system of strongly interacting constituents. The contents guide students from the basic facts and ideas to more modern topics including important developments over the last 20 years, resulting in a comprehensive collection of major modern-day nuclear models otherwise unavailable in the current literature. The book emphasizes the common features of the nucleus and other many-body mesoscopic systems currently in the center of interest in physics. The authors have also included full problem sets that can be selected by lecturers and adjusted to specific interests for more advanced students, with many chapters containing links to freely available computer code. As a result, readers are equipped for scientific work in mesoscopic physics.

  14. Atoms, molecules and optical physics 1. Atoms and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter

    2015-09-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  15. Atoms, molecules and optical physics 1. Atoms and spectroscopy

    International Nuclear Information System (INIS)

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  16. Atomic Structure Theory Lectures on Atomic Physics

    CERN Document Server

    Johnson, Walter R

    2007-01-01

    Atomic Structure Theory is a textbook for students with a background in quantum mechanics. The text is designed to give hands-on experience with atomic structure calculations. Material covered includes angular momentum methods, the central field Schrödinger and Dirac equations, Hartree-Fock and Dirac-Hartree-Fock equations, multiplet structure, hyperfine structure, the isotope shift, dipole and multipole transitions, basic many-body perturbation theory, configuration interaction, and correlation corrections to matrix elements. Numerical methods for solving the Schrödinger and Dirac eigenvalue problems and the (Dirac)-Hartree-Fock equations are given as well. B-spline basis sets are used to carry out sums arising in higher-order many-body calculations. Illustrative problems are provided, together with solutions. FORTRAN programs implementing the numerical methods in the text are included.

  17. Particle physics experiments 1983

    International Nuclear Information System (INIS)

    The report describes work carried out in 1983 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  18. High-energy atomic physics

    CERN Document Server

    Drukarev, Evgeny G

    2016-01-01

    This self-contained text introduces readers to the field of high-energy atomic physics - a new regime of photon-atom interactions in which the photon energies significantly exceed the atomic or molecular binding energies, and which opened up with the recent advent of new synchrotron sources. From a theoretical point of view, a small-parameter characteristic of the bound system emerged, making it possible to perform analytic perturbative calculations that can in turn serve as benchmarks for more powerful numerical computations. The first part of the book introduces readers to the foundations of this new regime and its theoretical treatment. In particular, the validity of the small-parameter perturbation expansion and of the lowest-order approximation is critically reviewed. The following chapters then apply these insights to various atomic processes, such as photoionization as a many-body problem, dominant mechanisms for the production of ions at higher energies, Compton scattering and ionization accompanied b...

  19. The future of atomic physics

    International Nuclear Information System (INIS)

    Physics must be based on strict mathematics rather than the set of working rules used now. The fundamental ideas of the existing theory are wrong and a new mathematical basis is needed. Although field theory is being developed and extended it is unlikely this will be important in atomic physics so effort must be concentrated on Einstein's special theory of relativity not his general one. Thus representations of the Lorentz group should be used. The simplest example of a pathological representation of the Lorentz group is given. It is suggested that this may be essential for the physics of the future. (U.K.)

  20. A new data acquisition system for Schottky signals in atomic physics experiments at GSI's and FAIR's storage rings

    Science.gov (United States)

    Trageser, C.; Brandau, C.; Kozhuharov, C.; Litvinov, Yu A.; Müller, A.; Nolden, F.; Sanjari, S.; Stöhlker, T.

    2015-11-01

    A new continuous and broadband data acquisition system for measurements of Schottky-signals of ions revolving in a storage ring has been implemented. This set-up is capable of recording the radio frequency (RF) signal of the ions that circulate in the storage ring with a sustained acquisition rate of more than 3.5× {10}7 IQ-samples per second. This allows several harmonics of the full momentum acceptance of a storage ring to be measured at the same time. The RF signal analyzer modules are complemented by further electronic modules such as counters, precision clocks and synchronization modules that facilitate a seamless integration with main experimental data acquisitions for atomic and nuclear physics. In this contribution, the setup and first results from a test run at the experimental storage ring at GSI, Darmstadt, Germany, are presented.

  1. Atomic collision experiments using pulsed synchrotron radiation

    International Nuclear Information System (INIS)

    High intensity and continuous nature of the synchrotron radiation are the properties that are fundamentally important for studies of some atomic collision experiments, and many processes have been investigated by using these characteristics. However, so far the property that the radiation is highly polarized and pulsed in time has not been exploited significantly in atomic physics. As an example of the atomic processes relevant to such polarized and pulsed features of the synchrotron radiation, collisions involving optically-allowed excited atoms and molecules will be presented. (author)

  2. The Physics Cluster for Atomic and Subatomic Physics

    International Nuclear Information System (INIS)

    Full text: It is planned to bring together the Institute of High Energy Physics (HEPHY) and the Stefan- Meyer Institute (SMI), forming a new Institute of Particle Physics which will be in close scientific, technological and geographic location to the Atominstitut (ATI) of the Univ. of Technology, Vienna . Together, these institutes would form the Physics Cluster for Atomic and Subatomic Physics. At the Physics Cluster we will develop a unique research programme comprising a threefold approach to fundamental problems in particle physics: (1) accelerator-based high-energy physics for direct discoveries, (2) precision studies of the strong interaction searching for new exotic hadronic excitations (3) ultra high precision experiments at low energies with discovery potential not accessible with the conventional methods of particle physics. In the coming decade research will focus on exploiting the discovery potential at accelerators, LHC and KEK, with emphasis on Physics beyond the Standard Model and on studies of exotic nuclear matter at Frascati, at J-PARC and FAIR. The new research line of ultra high precision experiments will start from present expertise with precision experiments with cold and ultracold neutrons at the ILL or at FRMII, atoms, molecules or nuclear transition. It will focus on observables, which are sensitive to physics beyond the Standard Model, such as the breaking of fundamental symmetries (e.g. C, P and T), the variability of fundamental constants, aspects of gravity and ultra weak interactions or Supersymmetry. We will describe the research aims and the potential this Cluster for Atomic and Subatomic Physics will bring to particle physics. (author)

  3. Atomic probes of new physics

    CERN Document Server

    Frugiuele, Claudia; Perez, Gilad; Schlaffer, Matthias

    2016-01-01

    Precise isotope shift spectroscopy in various atomic systems can provide a sensitive tool to constrain new physics, in particular new physics that couples to electrons and neutrons [1]. We present an analysis for estimating the reach of such measurements in the framework of effective field theory and various benchmark models for SM extensions: color neutral vector resonances, leptoquarks and the $750\\,\\textrm{GeV}$ scalar diphoton resonance. We also provide a comparison with the reach of the LHC, $e^+e^-$ colliders and $g-2$ of the electron. Isotope shift spectroscopy can compete and possibly even improve the sensitivity to probe a broad variety of Standard Model extensions.

  4. Experiments in cold atom optics towards precision atom interferometry

    Science.gov (United States)

    Aveline, David C.

    magnetic field contours of the traps and the dynamics of atoms within those confining potentials. We also controlled the propagation along the atom chip guides by accelerating atoms with longitudinal magnetic gradients, and investigated an atom focusing scheme. While the atom chip wire guides perform a role analogous to optical fibers guiding light waves, "free space" cold atoms offer great opportunity for precision interferometry. We describe a second on-going atom optics experiment that measures gravity gradients using a pair of atom fountain interferometers separated by one meter. We have demonstrated Gravity Gradiometer resolution down to 4x10-9 g/m using a 40 kg test mass. The atomic physics subsystem is described in detail, including the vacuum, cold atom source, optics, magnetic coils and shields, and vibration isolation and compensation. The system is designed to be a compact, robust, transportable instrument, taking strides towards future gravity gradient measurements in the field. In the realm of space applications, there has been interest for micro-gravity science experiments aboard the International Space Station, along with instrument development for gravity mapping of Earth and planetary bodies with satellite-based instruments. Furthermore, there are ground-based applications for gravity imaging of local density distributions, precision measurement of gravity, as well as proposals for redefining the kilogram, detecting gravitational waves and determining the Gravitational constant.

  5. Applications of Hubble Volume in Atomic Physics, Nuclear Physics, Particle Physics, Quantum Physics and Cosmic Physics

    Directory of Open Access Journals (Sweden)

    U. V. S. Seshavatharam

    2013-08-01

    Full Text Available In this paper an attempt is made to emphasize the major shortcomings of standard cosmology. It can be suggested that, the current cosmological changes can be understood by studying the atom and the atomic nucleus through ground based experiments. If light is coming from the atoms of the gigantic galaxy, then redshift can be interpreted as an index of the galactic atomic ‘light emission mechanism’. In no way it seems to be connected with ‘galaxy receding’. With ‘cosmological increasing (emitted photon energy’, observed cosmic redshift can be considered as a measure of the age difference between our galaxy and any observed galaxy. If it is possible to show that, (from the observer older galaxy’s distance increases with its ‘age’, then ‘galaxy receding’ and ‘accelerating universe’ concepts can be put for a revision at fundamental level. At any given cosmic time, the product of ‘critical density’ and ‘Hubble volume’ gives a characteristic cosmic mass and it can be called as the ‘Hubble mass’. Interesting thing is that, Schwarzschild radius of the ‘Hubble mass’ again matches with the ‘Hubble length’. Most of the cosmologists believe that this is merely a coincidence. At any given cosmic time,’Hubble length’ can be considered as the gravitational or electromagnetic interaction range. If one is willing to think in this direction, by increasing the number of applications of Hubble mass and Hubble volume in other areas of fundamental physics like quantum physics, nuclear physics, atomic physics and particle physics - slowly and gradually - in a progressive way, concepts of ‘Black hole Cosmology’ can be strengthened and can also be confirmed.

  6. Atomic Physics 15: Proceedings of the Fifteenth International Conference on Atomic Physics.

    Science.gov (United States)

    van Linden van den Heuvell, H. B.; Walraven, J. T. M.; Reynolds, M. W.

    1997-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * Generation of a "Schrödinger cat" of radiation and observation of its decoherence * Synthesis of entangled states and quantum computing * Entangled states of atomic ions for quantum metrology and computation * Entanglement and indistinguishability: Coherence experiments with photon pairs and triplets * Atom optics as a testing ground for quantum chaos * Coherent ultra-bright XUV lasers and harmonics * Hollow atoms * Interdisciplinary experiments with polarized noble gases * The creation and study of Bose-Einstein condensation in a cold alkali vapor * oscopic quantum phenomena in trapped Bose-condensed gases * Doppler-free spectroscopy of trapped atomic hydrogen * QED and the ground state of helium * Towards coherent atomic samples using laser cooling * Bose-Einstein condensation of a weakly-interacting gas * Zeeman and his contemporaries: Dutch physics around 1900 * Zeeman's great discovery * The Zeeman effect: A tool for atom manipulation * The Zeeman effect a century later: New insights into classical physics * QED effects in few-electron high-Z systems * Lamb shift experiments on high-Z one- and two-electron systems * Fundamental constants of nature * Response of atoms in photonic lattices * Hydrogen-like systems and quantum electrodynamics * New experiments with atomic lattices bound by light * Bloch oscillations of atoms in an optical potential * Quantum decoherence and inertial sensing with atom interferometers * Quantum effects in He clusters * Atoms in super-intense radiation fields * Wave packet dynamics of excited atomic electrons in intense laser fields * Nonlinear laser-electron scattering * Comparing the antiproton and proton and progress toward cold antihydrogen * Author Index

  7. Particle physics experiments 1989

    International Nuclear Information System (INIS)

    This report describes work carried out in 1989 on experiments approved by the Particle Physics Experiments Selection Panel of Rutherford Appleton Laboratory. The contents consist of unedited contributions from each experiment. (author)

  8. Particle physics experiments 1987

    International Nuclear Information System (INIS)

    This report describes work carried out in 1987 on experiments approved by the Particle Physics Experiments Selection Panel (United Kingdom). The contents consist of unedited contributions from each experiment. (author)

  9. Particle physics experiments

    International Nuclear Information System (INIS)

    The report of the Rutherford Appleton Laboratory describes the work carried out in 1985 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. (author)

  10. Probing the Planck Scale in Low-Energy Atomic Physics

    OpenAIRE

    Bluhm, Robert

    2001-01-01

    Experiments in atomic physics have exceptional sensitivity to small shifts in energy in an atom, ion, or bound particle. They are particularly well suited to search for unique low-energy signatures of new physics, including effects that could originate from the Planck scale. A number of recent experiments have used CPT and Lorentz violation as a candidate signal of new physics originating from the Planck scale. A discussion of these experiments and their theoretical implications is presented.

  11. Physics through the 1990s: Atomic, molecular, and optical physics

    International Nuclear Information System (INIS)

    This report was prepared by the Panel on Atomic, Molecular, and Optical Physics of the Physics Survey Committee in response to its charge to describe the field, to characterize the recent advances, and to identify the current frontiers of research. Some of the areas discussed are: atomic structure, atomic dynamics, accelerator-based atomic physics, molecular photoionization and electron-molecule scattering, astrophysics, laser spectroscopy, atmospheric physics, plasma physics, and applications

  12. The causality problem in atomic physics

    International Nuclear Information System (INIS)

    The casuality problem in atomic physics is analysed by Bohr in a wide methodological context. The first part of the paper is a short historical essay picturing the entry of statistical concepts into physics. Bohr underlines a close relationship between an unavoidably probabilitic nature of the quantum theory and quantum postulates introducing the alien-to-classical-physics concepts of integrity, individuality of atomic processes. In the second central part of the paper Bohr discusses the casuality problems in atomic physics in detail and shows that their solution requires a careful analysis of the observation process. Proceeding from the program methodological requirement to describe the measuring instrumentation operation and observation results in the language of classical physics, he explains that the statistical character of the uncertainty relationships expresses a substantial specifically quantum constraint to the applicifically of classical conceptions analyses of microphenomena. Then Bohr refines in principle the notion ''phenomenon'', as one of the central notions among those he employed for the formulation of his complementarity principle. According to bohr a phenomenon should be under-stood as an unambiguously present situation of a completed experiment. Therefore, it is erroneous to speak of the phenomenon perturbation by the observation. The final part of the article deals with the discussion of methodological parallels of the quantum theory and relativity theory

  13. Particle physics experiments 1984

    International Nuclear Information System (INIS)

    The Rutherford Appleton laboratory report describes work carried out in 1984 on experiments approved by the Particle Physics selection panel. The contents consist of unedited contributions from each experiment. (author)

  14. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  15. Particle physics experiments 1982

    International Nuclear Information System (INIS)

    Work carried out in 1982 on 52 experiments approved by the Particle Physics Experiments Selection Panel is described. Each experiment is listed under title, collaboration, technique, accelerator, year of running, status and spokesman. Unedited contributions are given from each experiment. (U.K.)

  16. Particle physics experiments 1986

    International Nuclear Information System (INIS)

    The paper presents research work carried out in 1986 on 52 elementary particle experiments approved by the Particle Physics Experiments Selection Panel. Most of the experiments were collaborative and involved research groups from different countries. About half of the experiments were conducted at CERN, the remaining experiments employed the accelerators: LAMPT, LEP, PETRA, SLAC, and HERA. The contents consist of unedited contributions from each experiment. (U.K.)

  17. Atomic collision physics: A summary and some projections

    International Nuclear Information System (INIS)

    It seems that it is my task to represent the ''Collision Physics Community'' at this symposium. First, we consider the part of atomic collision physics covered at this conference, i.e., multiple electron transfer to highly charged ions, and second we consider some applications of atomic collision experiments to tests of QED

  18. Dynamical processes in atomic and molecular physics

    CERN Document Server

    Ogurtsov, Gennadi

    2012-01-01

    Atomic and molecular physics underlie a basis for our knowledge of fundamental processes in nature and technology and in such applications as solid state physics, chemistry and biology. In recent years, atomic and molecular physics has undergone a revolutionary change due to great achievements in computing and experimental techniques. As a result, it has become possible to obtain information both on atomic and molecular characteristics and on dynamics of atomic and molecular processes. This e-book highlights the present state of investigations in the field of atomic and molecular physics. Rece

  19. Particle physics experiments 1988

    International Nuclear Information System (INIS)

    This report describes work carried out in 1988 on experiments approved by the Particle Physics Experiments Selection Panel. The contents consist of unedited contributions from each experiment. More than forty projects at different accelerators (SPS, ISIS, PETRA, LAMPF, LEP, HERA, BNL, ILL, LEAR) are listed. Different organisations collaborate on different projects. A brief progress report is given. References to published articles are given. (author)

  20. The Atomic Physics Center of Toulouse

    International Nuclear Information System (INIS)

    The research program was concerned with the aerosol and atmospheric exchange physics and, in atomic physics essentially with: atomic collisions, postluminescence in gases, discharges in gases at medium and high pressure, the electric arc, dielectric physics, and radiation transport in matter

  1. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1993-01-01

    Advances in Atomic, Molecular, and Optical Physics, established in 1965, continues its tradition of excellence with Volume 32, published in honor of Founding Editor Sir David Bates upon his retirement as editorof the series. This volume presents reviews of topics related to the applications of atomic and molecular physics to atmospheric physics and astrophysics.

  2. Atomic physics in strong fields

    International Nuclear Information System (INIS)

    This report discusses: Microwave Driven Multiphoton Excitation Dynamics in Rydberg Atoms; Nonadiabatic Geometric Phases of Multiphoton Transitions in Dissipative Systems and Spin-j Systems; and Nonperturbative Treatments of Atomic and Molecular Processes in Intense Laser Fields

  3. Microtraps and Atom Chips: Toolboxes for Cold Atom Physics

    OpenAIRE

    Feenstra, L.; Andersson, L. M.; Schmiedmayer, J.

    2003-01-01

    Magnetic microtraps and Atom Chips are safe, small-scale, reliable and flexible tools to prepare ultra-cold and degenerate atom clouds as sources for various atom-optical experiments. We present an overview of the possibilities of the devices and indicate how a microtrap can be used to prepare and launch a Bose-Einstein condensate for use in an atom clock or an interferometer.

  4. Particle physics experiments 1992

    International Nuclear Information System (INIS)

    The research programs described here were carried out in 1992 at Rutherford Appleton Laboratory and funded by the United Kingdom Science and Engineering Research Council. The area covered in these experiments is particle physics. Unedited contributions from over forty experimental programs are included. Experiments are listed according to their current status, the accelerator used and its years of operation. (UK)

  5. Physics of non-steady state diffusion of lightweight atoms in a heavy atom matrix. Introducing an open-source tool for simulated-experiments in fluid mechanics

    OpenAIRE

    Serrano-López, Roberto; Cuesta-López, Santiago; Tapia-Júdez, Oscar; Fradera, Jorge

    2013-01-01

    The practice-based learning methodologies offer to undergraduate professors different ways to illustrate certain general physic principles. Traditional experimental workbenches have been extensively used during decades for academic lessons in order to complete theoretical dissertations or lectures, aiming at assuring an adequate understanding. The high cost of materials and laboratory equipment, the excessive preparation time, and the difficulty for carrying out offsite-campus replications by...

  6. Relativistic atomic physics at the SSC

    International Nuclear Information System (INIS)

    This report discusses the following proposed work for relativistic atomic physics at the Superconducting Super Collider: Beam diagnostics; atomic physics research; staffing; education; budget information; statement concerning matching funds; description and justification of major items of equipment; statement of current and pending support; and assurance of compliance

  7. Experimental atomic and molecular physics research

    International Nuclear Information System (INIS)

    The Atomic Physics research in the Physics Division consists of five ongoing experimental programs: dissociation and other interactions of energetic molecular ions in solid and gaseous targets; beam-foil research and collision dynamics of heavy ions; photoionization-photoelectron research; spectroscopy of free atoms and molecules, high precision laser-rf double-resonance spectroscopy with atomic and molecular beams; and Moessbauer effect research

  8. The infancy of atomic physics Hercules in his cradle

    CERN Document Server

    Keller, Alex

    2006-01-01

    Atomic physics is a mighty Hercules that dominates modern civilization, promising immense reserves of power but threatening catastrophic war and radioactive pollution. The story of the atom's discovery and the development of techniques to harness its energy offers fascinating insights into the forces behind twenty-first-century technology. This compelling history portrays the human faces and lives behind the beginnings of atomic science.The Infancy of Atomic Physics ranges from experiments in the 1880s by William Crookes and others to the era just after the First World War, when Rutherford's f

  9. Particle physics experiments 1980

    International Nuclear Information System (INIS)

    This report describes work carried out in 1980 on experiments approved by the Particle Physics Ezperiments Selection Panel. A table of contents giving, title and collaboration, technique, accelerator used, year of running, status as at December 1980, the spokesman and experimental code, is followed by unedited contributions from each of the 54 experiments included in this annual review including lists of submitted publications. (U.K.)

  10. Cold atom-ion experiments in hybrid traps

    OpenAIRE

    Härter, Arne; Denschlag, Johannes Hecker

    2013-01-01

    In the last 5 years, a novel field of physics and chemistry has developed in which cold trapped ions and ultracold atomic gases are brought into contact with each other. Combining ion traps with traps for neutral atoms yields a variety of new possibilities for research and experiments. These range from studies of cold atom-ion collisions and atom-ion chemistry to applications in quantum information science and condensed matter related research. In this article we give a brief introduction int...

  11. Atomic physics at the advanced photon source

    International Nuclear Information System (INIS)

    Argonne's 7-GeV synchrotron light source (APS) is expected to commence operations for research early in FY 1996. The Basic Energy Sciences Synchrotron Research Center (BESSRC) is likewise expected to start its research programs at that time. As members of the BESSRC CAT (Collaborative Access Team), we are preparing, together with atomic physicists from the University of Western Michigan, the University of Tennessee, and University of Notre Dame, to initiate a series of atomic physics experiments that exploit the unique capabilities of the APS, especially its high brilliance for photon energies extending from about 3 keV to more than 50 keV. Most of our early work will be conducted on an undulator beam line and we are thus concentrating on various aspects of that beam line and its associated experimental areas. Our group has undertaken responsibilities in such areas as hutch design, evaluation of undulator performance, user policy, interfacing and instrumentation, etc. Initial experiments will probably utilize existing apparatus. We are, however, planning to move rapidly to more sophisticated measurements involving, for example, ion-beam targets, simultaneous laser excitation, and the spectroscopy of emitted photons

  12. Atomic theory and tests of the Standard Model in atomic experiments

    International Nuclear Information System (INIS)

    Measurements of the weak charge characterizing the strength of the electron-nucleon weak interaction provide tests of the Standard Model and a way of searching for new physics beyond the Standard Model. Atomic experiments give limits on the extra Z-boson, leptoquarks, composite fermions, and radiative corrections produced by particles that are predicted by new theories. To extract the accurate value of the weak charge from atomic experiments one has to perform high precision atomic calculations of the PNC effects

  13. Einstein's contributions to atomic physics

    International Nuclear Information System (INIS)

    Many of the epoch-breaking papers that have been published by Einstein are remembered today as treatises dealing with various isolated phenomena rather than as direct consequences of a new unified world view. This paper traces the various ways in which ten papers published by Einstein during the period 1905-1925 influenced the development of the modern atomic paradigm, and illustrates how these discoveries can be made intuitive and pedagogically useful.

  14. Atomic physics in strong fields

    International Nuclear Information System (INIS)

    This report discusses the following topics: nonadiabatic geometric phases of multiphoton transitions; nonperturbative treatments of level shifts of excited states in strong fields; multiple high-order harmonic generation in intense laser fields; quantum fractal character of quasi-energy states in multi-color fields; complex- scaling Fourier-grid Hamiltonian method for intense-field multiphoton resonances; and microwave driven multiphoton excitation dynamics in Rydberg atoms: Fast Fourier transformation propagation method

  15. Theoretical atomic and molecular physics: Progress report

    International Nuclear Information System (INIS)

    The theoretical atomic and molecular physics program at Rice University addresses basic problems on the structure and collision dynamics of electrons, atoms, ions and molecules, emphasizing processes related to possible new energy technologies and other applications. The program focuses on collision processes under ''disturbed'' conditions, i.e., high levels of excitation, ionization, energy transfer, and external influences. Research projects include: collision processes in ICF plasmas; excitation and charge-transfer processes; Rydberg atom collisions; Penning ionization of atoms; excitation in electron-molecule collisions; and related topics. 48 refs

  16. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Berman, Paul R; Arimondo, Ennio

    2006-01-01

    Volume 54 of the Advances Series contains ten contributions, covering a diversity of subject areas in atomic, molecular and optical physics. The article by Regal and Jin reviews the properties of a Fermi degenerate gas of cold potassium atoms in the crossover regime between the Bose-Einstein condensation of molecules and the condensation of fermionic atom pairs. The transition between the two regions can be probed by varying an external magnetic field. Sherson, Julsgaard and Polzik explore the manner in which light and atoms can be entangled, with applications to quantum information processing

  17. New results in atomic physics at the Advanced Light Source

    International Nuclear Information System (INIS)

    The Advanced Light Source is the world's first low-energy third-generation synchrotron radiation source. It has been running reliably and exceeding design specifications since it began operation in October 1993. It is available to a wide community of researchers in many scientific fields, including atomic and molecular science and chemistry. Here, new results in atomic physics at the Advanced Light Source demonstrate the opportunities available in atomic and molecular physics at this synchrotron light source. The unprecedented brightness allows experiments with high flux, high spectral resolution, and nearly 100% linear polarization

  18. Artificial Atoms: from Quantum Physics to Applications

    International Nuclear Information System (INIS)

    The primary objective of this workshop is to survey the most recent advances of technologies enabling single atom- and artificial atom-based devices. These include the assembly of artificial molecular structures with magnetic dipole and optical interactions between engineered atoms embedded in solid-state lattices. The ability to control single atoms in diamond or similar solids under ambient operating conditions opens new perspectives for technologies based on nanoelectronics and nanophotonics. The scope of the workshop is extended towards the physics of strong coupling between atoms and radiation field modes. Beyond the traditional atom-cavity systems, artificial dipoles coupled to microwave radiation in circuit quantum electrodynamics is considered. All these technologies mutually influence each other in developing novel devices for sensing at the quantum level and for quantum information processing.

  19. Advances in atomic physics an overview

    CERN Document Server

    Cohen-Tannoudji, Claude

    2011-01-01

    This book presents a comprehensive overview of the spectacular advances seen in atomic physics during the last 50 years. The authors explain how such progress was possible by highlighting connections between developments that occurred at different times. They discuss the new perspectives and the new research fields that look promising. The emphasis is placed, not on detailed calculations, but rather on physical ideas. Combining both theoretical and experimental considerations, the book will be of interest to a wide range of students, teachers and researchers in quantum and atomic physics.

  20. Atomic hydrogen and fundamental physical constants

    International Nuclear Information System (INIS)

    Techniques are described which allow the study, in undergraduate laboratories, of the spectrum of atomic hydrogen. The Rydberg constant, the electron-proton mass ratio, and the fine-structure constant are evaluated from the measurements. The key to the series of experiments is a discharge tube in which atomic lines dominate over the molecular lines. (author)

  1. Atomic physics precise measurements and ultracold matter

    CERN Document Server

    Inguscio, Massimo

    2013-01-01

    Atomic Physics provides an expert guide to two spectacular new landscapes in physics: precision measurements, which have been revolutionized by the advent of the optical frequency comb, and atomic physics, which has been revolutionized by laser cooling. These advances are not incremental but transformative: they have generated a consilience between atomic and many-body physics, precipitated an explosion of scientific and technological applications, opened new areas of research, and attracted a brilliant generation of younger scientists. The research is advancing so rapidly, the barrage of applications is so dazzling, that students can be bewildered. For both students and experienced scientists, this book provides an invaluable description of basic principles, experimental methods, and scientific applications.

  2. Atomic physics in Inertial Confinement Fusion (ICF)

    International Nuclear Information System (INIS)

    The US Inertial Confinement Fusion Program plans to start advanced pulsed power experiments at the end of 2001. The enhancement of plasma diagnostics technique and target design demand a profound understanding of atomic processes. Advances are reviewed

  3. The ALADDIN atomic physics database system

    International Nuclear Information System (INIS)

    ALADDIN is an atomic physics database system which has been developed in order to provide a broadly-based standard medium for the exchange and management of atomic data. ALADDIN consists of a data format definition together with supporting software for both interactive searches as well as for access to the data by plasma modeling and other codes. The ALADDIN system is designed to offer maximum flexibility in the choice of data representations and labeling schemes, so as to support a wide range of atomic physics data types and allow natural evolution and modification of the database as needs change. Associated dictionary files are included in the ALADDIN system for data documentation. The importance of supporting the widest possible user community was also central to the ALADDIN design, leading to the use of straightforward text files with concatenated data entries for the file structure, and the adoption of strict FORTRAN 77 code for the supporting software. This will allow ready access to the ALADDIN system on the widest range of scientific computers, and easy interfacing with FORTRAN modeling codes, user developed atomic physics codes and databases, etc. This supporting software consists of the ALADDIN interactive searching and data display code, together with the ALPACK subroutine package which provides ALADDIN datafile searching and data retrieval capabilities to user's codes. ALADDIN has been adopted as the standard international atomic physics data exchange format for magnetic confinement fusion applications by the International Atomic Energy Agency (IAEA). Entry of critically evaluated atomic data sets into ALADDIN format is to be coordinated by the IAEA Atomic and Molecular Data Unit, which will also coordinate long-term development and distribution of updated software and documentation. The increasingly widespread adoption of the ALADDIN data format can be expected to greatly facilitate access to atomic data both within and outside of this original fusion

  4. AtomChips: mesoscopic physics with ultracold atoms

    International Nuclear Information System (INIS)

    Full text: Miniaturization and integration of atom-optical components on atom chips allow coherent manipulation of matter waves on the quantum level by using high spatial resolution electro magnetic potentials from structures on the atom chip or by employing adiabatic radio frequency (RF) or micro wave (MW) potentials. Bose-Einstein condensates (BECs) on these AtomChips can be used for many different tasks. These range from measuring magnetic and electric fields with unprecedented sensitivity by observing the density modulations in trapped highly elongated 1d BECs, to fundamental studies of the universal properties in low dimensional systems like non equilibrium dynamics and coherence decay in one-dimensional super fluids. The talk will give an overview of the recent advances and experiments. (author)

  5. Crucial Experiments in Quantum Physics.

    Science.gov (United States)

    Trigg, George L.

    The six experiments included in this monography are titled Blackbody Radiation, Collision of Electrons with Atoms, The Photoelectric Effect, Magnetic Properties of Atoms, The Scattering of X-Rays, and Diffraction of Electrons by a Crystal Lattice. The discussion provides historical background by giving description of the original experiments and…

  6. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  7. The atomic physics facility at the LBL ECR source

    International Nuclear Information System (INIS)

    A low-energy beam line facility for atomic and surface physics research has been added to the injection line of the ECR source at the LBL 88 in. cyclotron. Beams throughout the periodic table can be delivered to three beam line stations at energies up to 15Q keV. Experiments using this facility inlcude forbidden line emission from the ion beam, ion-atom collisions, merged electron-ion beams and sputtering by highly charged ions. (orig.)

  8. The atomic physics facility at the LBL ECR Source

    International Nuclear Information System (INIS)

    A low energy beam line facility for atomic and surface physics research has been added to the injection line of the ECR source at the LBL 88-Inch Cyclotron. Beams throughout the periodic table can be delivered to 3 beam line stations at energies up to 15 Q keV. Experiments using this facility include forbidden line emission from the ion beam, ion-atom collisions, merged electron-ion beams and sputtering by highly charged ions. 9 refs., 4 figs

  9. Atomic physics at high brilliance synchrotron sources: Proceedings

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: present status of SPring-8 and the atomic physics undulator beamline; recent photoabsorption measurements in the rare gases and alkalis in the 3 to 15 keV proton energy region; atomic and molecular physics at LURE; experiments on atoms, ions and small molecules using the new generation of synchrotron radiation sources; soft x-ray fluorescence spectroscopy using tunable synchrotron radiation; soft x-ray fluorescence spectroscopy excited by synchrotron radiation: Inelastic and resonant scattering near threshold; outer-shell photoionization of ions; overview of the APS BESSRC beamline development; the advanced light source: Research opportunities in atomic and molecular physics; Photoionization of the Ba+ ion by 4d shell excitation; decay dynamics of inner-shell excited atoms and molecules; absorption of atomic Ca, Cr, Mn and Cu; High-resolution photoelectron studies of resonant molecular photoionization; radiative and radiationless resonant raman scattering by synchrotron radiation; auger spectrometry of atoms and molecules; some thoughts of future experiments with the new generation of storage rings; Electron spectroscopy studies of argon K-shell excitation and vacancy cascades; ionization of atoms by high energy photons; ion coincidence spectroscopy on rare gas atoms and small molecules after photoexcitation at energies of several keV; an EBIS for use with synchrotron radiation photoionization of multiply charged ions and PHOBIS; gamma-2e coincidence measurements the wave of the future in inner-shell electron spectroscopy; recoil momentum spectroscopy in ion-atom and photon-atom collisions; a study of compton ionization of helium; future perspectives of photoionization studies at high photon energies; and status report on the advanced photon source. These papers have been cataloged separately elsewhere

  10. Knockout reactions in atomic and nuclear physics

    International Nuclear Information System (INIS)

    In a knockout experiment the momenta of a projectile before and after the collision and of a knocked-out particle are all measured, so that the recoil momentum of the residual system is known by subtraction. The atomic (e,2e) experiments are very much more accurate and detailed than present nuclear experiments. The (e,2e) reaction on argon is used to illustrate the principles involved. Other experiments involve the (p,2p) and (e,e'p) reactions

  11. B Physics (Experiment)

    OpenAIRE

    Kreps, Michal

    2010-01-01

    In past few years the flavor physics made important transition from the work on confirmation the standard model of particle physics to the phase of search for effects of a new physics beyond standard model. In this paper we review current state of the physics of b-hadrons with emphasis on results with a sensitivity to new physics.

  12. High School Physics Teaching Experience

    Science.gov (United States)

    Physics Teacher, 2012

    2012-01-01

    We divided our high school physics teaching experience into three groups: first year teaching physics, second or third year teaching physics, and four or more years of experience teaching physics. We did this because everything is new for teachers teaching a course for the first time. The second and third time through the course, teachers learn…

  13. Precision atomic physics techniques for nuclear physics with radioactive beams

    OpenAIRE

    Blaum, Klaus; Dilling, Jens; Nörtershäuser, Wilfried

    2013-01-01

    Atomic physics techniques for the determination of ground-state properties of radioactive isotopes are very sensitive and provide accurate masses, binding energies, Q-values, charge radii, spins, and electromagnetic moments. Many fields in nuclear physics benefit from these highly accurate numbers. They give insight into details of the nuclear structure for a better understanding of the underlying effective interactions, provide important input for studies of fundamental symmetries in physics...

  14. Atomic physics research with synchrotron radiation

    International Nuclear Information System (INIS)

    Applications of synchrotron radiation to research in high-energy atomic physics are summarized. These lie in the areas of photoelectron spectrometry, photon scattering, x-ray absorption spectroscopy, time-resolved measurements, resonance spectroscopy and threshold excitation, and future, yet undefined studies

  15. Guide to Laboratory Practicum in Atomic Physics

    Science.gov (United States)

    Burbulea, N. F.; Golban, G. N.; Scurtul, V. V.; Oleynik, V. A.

    1980-12-01

    The broshure represents a collection of 11 Laboratory works in Quantum Optics, Semiconductor, Atomic and Nuclear Physics for students of 2-nd years from Technical High Schools. A minimum of theoretical knowledges is given as well as a description of experimental installation (setup),a number of control questions and a task to be carried out is presented for every of the Laboratory work.

  16. Concepts in atomic and nuclear physics

    International Nuclear Information System (INIS)

    This report consists of lecture notes treating a number of concepts from atomic- and nuclear physics, which could belong to the ready knowledge of a radiation-protection specialist. The text includes some problems and exercises which are elaborated in a separate report. (H.W.). 19 refs.; 36 figs.; 12 tabs

  17. The fundamentals of atomic and molecular physics

    CERN Document Server

    Brooks, Robert L

    2013-01-01

    The Fundamentals of Atomic and Molecular Physics is intended as an introduction to the field for advanced undergraduates who have taken quantum mechanics. Each chapter builds upon the previous, using the same tools and methods throughout. As the students progress through the book, their ability to use these tools will steadily increase, along with their confidence in their efficacy. The book treats the two-electron atom as the simplest example of the many-electron atom—as opposed to using techniques that are not applicable to many-electron atoms—so that it is unnecessary to develop additional equations when turning to multielectron atoms, such as carbon. External fields are treated using both perturbation theory and direct diagonalization and spontaneous emission is developed from first principles. Only diatomic molecules are considered with the hydrogen molecular ion and neutral molecule treated in some detail. This comprehensive coverage of the quantum mechanics of complex atoms and simple diatomic mole...

  18. Atomic, molecular, and optical physics charged particles

    CERN Document Server

    Dunning, F B

    1995-01-01

    With this volume, Methods of Experimental Physics becomes Experimental Methods in the Physical Sciences, a name change which reflects the evolution of todays science. This volume is the first of three which will provide a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics; the three volumes as a set will form an excellent experimental handbook for the field. The wide availability of tunable lasers in the pastseveral years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  19. The ALADDIN atomic physics database system

    International Nuclear Information System (INIS)

    ALADDIN is an atomic physics database system which has been developed in order to provide a broadly-based standard medium for the exchange and management of atomic data. ALADDIN consists of a data format definition together with supporting software for both interactive searches as well as for access to the data by plasma modeling and other codes. 8AB The ALADDIN system is designed to offer maximum flexibility in the choice of data representations and labeling schemes, so as to support a wide range of atomic physics data types and allow natural evolution and modification of the database as needs change. Associated dictionary files are included in the ALADDIN system for data documentation. The importance of supporting the widest possible user community was also central to be ALADDIN design, leading to the use of straightforward text files with concatentated data entries for the file structure, and the adoption of strict FORTRAN 77 code for the supporting software. This will allow ready access to the ALADDIN system on the widest range of scientific computers, and easy interfacing with FORTRAN modeling codes, user developed atomic physics codes and database, etc. This supporting software consists of the ALADDIN interactive searching and data display code, together with the ALPACK subroutine package which provides ALADDIN datafile searching and data retrieval capabilities to user's codes

  20. Atomic physics processes in radial transport calculations

    International Nuclear Information System (INIS)

    These lectures were intended as preparation for detailed discussions of the role of atomic and molecular physics in confinement research at the 1982 NATO Advanced Study Institute. They begin with a description of the major approaches to magnetic confinement: tandem (ambipolar) mirrors with their associated auxiliary barriers, tokamaks, and stellarators. The leading alternatives, the ELMO Bumpy Torus and the reversed field pinch, are also treated. The evolution equations for particle, energy, and (where relevant) field diffusion are presented and discussed. This is the context for atomic and molecular processes relevant to confinement

  1. Applied atomic and collision physics special topics

    CERN Document Server

    Massey, H S W; Bederson, Benjamin

    1982-01-01

    Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p

  2. Case studies in atomic collision physics

    CERN Document Server

    McDaniel, E W

    2013-01-01

    Case Studies in Atomic Collision Physics II focuses on studies on the role of atomic collision processes in astrophysical plasmas, including ionic recombination, electron transport, and position scattering. The book first discusses three-body recombination of positive and negative ions, as well as introduction to ionic recombination, calculation of the recombination coefficient, ions recombining in their parent gas, and three-body recombination at moderate and high gas-densities. The manuscript also takes a look at precision measurements of electron transport coefficients and differential cr

  3. Theoretical Femtosecond Physics Atoms and Molecules in Strong Laser Fields

    CERN Document Server

    Grossmann, Frank

    2008-01-01

    Theoretical femtosecond physics is a new field of research. Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers of up to atomic field strengths are leading to an understanding of many challenging experimental discoveries. Laser-matter interaction is treated on a nonperturbative level in the book using approximate and numerical solutions of the time-dependent Schrödinger equation. The light field is treated classically. Physical phenomena, ranging from ionization of atoms to the ionization and dissociation of molecules and the control of chemical reactions are presented and discussed. Theoretical background for experiments with strong and short laser pulses is given. Several exercises are included in the main text. Some detailed calculations are performed in the appendices.

  4. Atoms, molecules and optical physics 1. Atomic physics and foundations of spectroscopy

    International Nuclear Information System (INIS)

    Unique, unified presentation of these partial fields and by this exclusive. With the highly reputed co-author Prof. Dr. Ingolf Volker Hertel. Eminent presentation makes it possible, together also over set connections. For bachelor/master and diploma curricula. The book applies primarily to graduate students of physics and physical chemistry until promotion. It offers a detailed introduction to the most important theme complexes of atomic and molecular physics and the methods of modern optical physics connected with this. In many selected partial fields it leads until the actual status of research. Simultaneously it also appeals to the active scientist and wants to be a standard work of the field. By the clearly stuctured chapters the reader is - starting from the foundations of quantum physics - step-wise made familiar with the most important phenomena and models of atomic and molecular physics and led wherever it is offered, to their actual developments in modern research. In the first part here present the to a certain degree canonical knowledge with the main topic structure of atoms and molecules and the competent spectroscopy is summarized. In the second part still being in work deepening knowledge for this is mediated, and selected chapters of modern optics, lase physics, cluster research, and scattering physics is treated, as well a short excursus in the world of cold atoms and molecules is given. At the whole both volumes of this textbook want to show to the interested reader that atomic, molecular, and optical physics, are still as usual an alive field of modern physical research

  5. Experiments in Fundamental Neutron Physics

    OpenAIRE

    Nico, J. S.; Snow, W. M.

    2006-01-01

    Experiments using slow neutrons address a growing range of scientific issues spanning nuclear physics, particle physics, astrophysics, and cosmology. The field of fundamental physics using neutrons has experienced a significant increase in activity over the last two decades. This review summarizes some of the recent developments in the field and outlines some of the prospects for future research.

  6. Grid Computing in High Energy Physics Experiments

    Czech Academy of Sciences Publication Activity Database

    Adamová, Dagmar; Saiz, P.

    Rijeka: InTech, 2012 - (Maad, S.), s. 181-219 ISBN 978-953-51-0604-3 R&D Projects: GA MŠk LA08015; GA MŠk 1P04LA211; GA MŠk LC07048 Institutional support: RVO:61389005 Keywords : grid computing * CERN * Partide physics Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders http://www.intechopen.com/ books /grid-computing-technology- and -applications-widespread-coverage- and -new-horizons/grid-computing-in-high-energy-physics-experiments

  7. Atomic, molecular, and optical physics electromagnetic radiation

    CERN Document Server

    Dunning, F B; Lucatorto, Thomas

    1997-01-01

    Combined with Volumes 29A and 29B, this volume is a comprehensive treatment of the key experimental methods of atomic, molecular, and optical physics, as well as an excellent experimental handbook for the field. Thewide availability of tunable lasers in the past several years has revolutionized the field and lead to the introduction of many new experimental methods that are covered in these volumes. Traditional methods are also included to ensure that the volumes will be a complete reference source for the field.

  8. Lecture notes on atomic and molecular physics

    CERN Document Server

    Erkoc, Sakir

    1996-01-01

    This book aims to present a unified account of the physics of atoms and molecules from a modern viewpoint. It is based on courses given by the authors at Middle East Technical University, Ankara and Georgia Institute of Technology, Atlanta, and is suitable for study at third and fourth year levels of an undergraduate course.Students should be able to read this volume and understand its contents without the need to supplement it by referring to more detailed discussions. The whole subject covered in this volume is expected to be finished in one semester.

  9. Quantum electronics for atomic physics and telecommunication

    CERN Document Server

    Nagourney, Warren G

    2014-01-01

    Nagourney provides a course in quantum electronics for researchers in atomic physics and other related areas (including telecommunications). The book covers the usual topics, such as Gaussian beams, optical cavities, lasers, non-linear optics, modulation techniques and fibre optics, but also includes a number of areas not usually found in a textbook on quantum electronics, such as the enhancement of non-linear processes in a build-up cavity or periodically poled waveguide, impedance matching into a cavity and astigmatism in ring cavities.

  10. Atomic and molecular physics at INDUS-1: plans and prospects

    International Nuclear Information System (INIS)

    This paper will give a brief description of the INDUS-1 source, details of the proposed beam lines, the present status of the beam lines and atomic and molecular physics experiments planned to be carried out on these beam lines. It will also include some of the future plans for utilisation of INDUS-1 and INDUS-2, a higher energy (2 GeV) machine

  11. Atomic and nuclear physics an introduction

    CERN Document Server

    Littlefield, T A

    1979-01-01

    After the death of Dr. Littlefield it was decided that I should undertake the revision ofthe whole of Atomic and Nuclear Physics: an Introduction for the third edition, and it was soon apparent that major changes were necessary. I am confident that these changes would have had Dr. Littlefield's approval. The prime consideration for the present edition has been to modernize at a minimum cost. As much as possible of the second edition has therefore been retained, but where changes have been made they have been fairly drastic. Thus the chapters on fine structure, wave mechanics, the vector model of the atom, Pauli's principle and the Zeeman effect have been completely restructured. The chapters on nuclear models, cosmic rays, fusion systems and fundamental particles have been brought up to date while a new chapter on charm and the latest ideas on quarks has been included. It is hoped that the presentation of the last named will give readers a feeling that physics research can be full of adventure and surprises.

  12. Do atoms and anti-atoms obey the same laws of physics?

    CERN Multimedia

    Jeffrey Hangst

    2010-01-01

    ALPHA physicists have recently succeeded in trapping anti-atoms for the first time. Being able to hold on to the simplest atoms of antimatter is an important step towards the collaboration’s ultimate goal: precision spectroscopic comparison of hydrogen and antihydrogen. The question they are seeking to answer: do atoms and anti-atoms obey the same laws of physics? The Standard Model says that they must.   The ALPHA Collaboration celebrates the successful results. The ALPHA collaboration has taken it up a gear and trapped 38 atoms of antihydrogen for the first time. Antihydrogen atoms have been mass-produced at the Antiproton Decelerator (AD) since 2002, when ATHENA (ALPHA’s predecessor) and ATRAP learned how to mix clouds of antiprotons and positrons at cryogenic temperatures. However, these anti-atoms were not confined, and flew off in a few microseconds to meet their fate: annihilation with matter in the walls of the experiment. ALPHA uses antiprotons produced at...

  13. Particle physics experiments, 1991

    International Nuclear Information System (INIS)

    Data taking for this experiment was completed in December 1983. The samples include approximately 19,000 (ν) and 11,000 (ν-bar) charged current events. These constitute the largest data set of interactions on free protons. Work published to date includes studies of inclusive structure functions and final state properties, exclusive final states, neutral current cross sections and production of strange and charmed particles. During the past year results have been published on the production of f2 (1270) and ν0 (770) mesons in ρp and ρ-barp charged current interactions. In the case of the f2 this represents the first observation of such production. It is found that the multiplicities are 0.047±0.017 in ρp and 0.17±0.018 in ρ-barp. The f2 mesons are mostly produced at large hadronic invariant mass W and in the forward hemisphere. The production of ν0 mesons can be observed with high statistics in both ρp and ρ-barp interactions and the differential cross section studied. The observations are compared with LUND Monte Carlo predictions, which are generally found to be too high. However qualitative features of the data are reproduced. Work continues on a precise determination of the neutral current/charged current ratio, on the study of charged and neutral current structure functions and on the production of strange particles. (author)

  14. Atoms, molecules, and optical physics 2. Molecules and photons, spectroscopy and scattering physics

    International Nuclear Information System (INIS)

    These textbooks apply first of all to graduate students of physics and physical chemistry until the promotion. They want to a certain degree mediate the canonical knowledge of atomic and molecular physics and introduce to foundations of modern optica and quantum optics. In many selected partial fields they lead (together with a planned third volume) up to the actual status of research. So also the active scientist is addressed. By clearly structurated chapters the reader is - starting from the foundations of quantum physics, stepwise made familiar with the most important phenomena, models, and measuring methods. Thereby the focus lies on the experiment and its interpretation - the necessary theory is introduced from this point of view compactly and occasionally also something laxly. The first part is concentrated to the structure of the atoms and an introduction in modern methods of spectroscopy. In the present second part it deals with the structure of molecules and their spectroscopy as well as with scattering physics, which treats - complementarly to the bound molecular states - the continuum. Finally selected chapters of laser physics, modern optics, and quantum optics are treated. Thereby atomic, molecular, and optical physics is proved as a undiminishedly alive, highly productive branch of modern physics. It provides simultaneously for many further partial fields of physics and other natural-scientific disciplines indispensable foundations.

  15. Theoretical atomic physics code development III TAPS: A display code for atomic physics data

    International Nuclear Information System (INIS)

    A large amount of theoretical atomic physics data is becoming available through use of the computer codes CATS and ACE developed at Los Alamos National Laboratory. A new code, TAPS, has been written to access this data, perform averages over terms and configurations, and display information in graphical or text form. 7 refs., 13 figs., 1 tab

  16. Production of heavy ion beams for atomic physics studies

    International Nuclear Information System (INIS)

    A laboratory for research in atomic physics of ions has been set up around a 2 MV tandem Van de Graaff accelerator designed and built indegenously. Mass analysed negatively charged heavy ion beams from a directly extracted duoplasmatron ion source are injected through various ion-optical elements into the accelerating tube. A gas stripper at the high voltage dome changes the negative ions into positive ions which are subsequently accelerated. The high energy end of the accelerator consists of quadrupole focussing magnets and an analysing magnet. A pair of insulated tantalum slits provide corona feedback and stabilize the energy of the accelerator. A beam resolution of 5 keV at 1 MeV proton energy has been measured. A number of experiments are presently being planned to utilize the accelerator in the field of basic research in atomic physics. These include beam-foil spectroscopic measurements involving detection of decay photon/electrons, ion-induced X-ray emission, analytical applications and radiation damage studies. Electron spectrometers which are in the stage of testing include cylindrical mirror analyser and parallel plate analyser. On the accelerator front, efforts are underway to develop a new sputter ion source and computer automation for improving stability and reliability. The salient features of the accelerator and the instrumentation developed for carrying out experiments in atomic physics are reported. (author). 14 refs., 17 figs

  17. Nuclear physics experiment at INS

    International Nuclear Information System (INIS)

    Present activities at the Institute for Nuclear Study (INS) are presented. Selected topics are from recent experiments by use of the INS cyclotron, experiments at the Bevalac facility under the INS-LBL collaboration program, and preparatory works for the Numatron project, a new project for the high-energy heavy-ion physics. (author)

  18. I.I. Rabi Prize in Atomic, Molecular and Optical Physics Talk: Novel Quantum Physics in Few- and Many-body Atomic Systems

    Science.gov (United States)

    Chin, Cheng

    2011-05-01

    Recent cold atom researches are reaching out far beyond the realm that was conventionally viewed as atomic physics. Many long standing issues in other physics disciplines or in Gedanken-experiments are nowadays common targets of cold atom physicists. Two prominent examples will be discussed in this talk: BEC-BCS crossover and Efimov physics. Here, cold atoms are employed to emulate electrons in superconductors, and nucleons in nuclear reactions, respectively. The ability to emulate exotic or thought systems using cold atoms stems from the precisely determined, simple, and tunable interaction properties of cold atoms. New experimental tools have also been devised toward an ultimate goal: a complete control and a complete characterization of a few- or many-body quantum system. We are tantalizingly close to this major milestone, and will soon open new venues to explore new quantum phenomena that may (or may not!) exist in scientists' dreams.

  19. High Rydberg atoms: newcomers to the atomic physics scene

    International Nuclear Information System (INIS)

    A description is given of high Rydberg atoms which have a greatly increased size due to their having been perturbed in certain ways. The production, detection, and research on these atoms are considered. The motivation for such studies, apart from their intrinsic interest, includes laser development, laser isotope separation, energy deposition in gases, plasma diagnostics, and radio astronomy

  20. Atomic physics and non-equilibrium plasmas

    International Nuclear Information System (INIS)

    Three lectures comprise the report. The lecture, Atomic Structure, is primarily theoretical and covers four topics: (1) Non-relativistic one-electron atom, (2) Relativistic one-electron atom, (3) Non-relativistic many-electron atom, and (4) Relativistic many-electron atom. The lecture, Radiative and Collisional Transitions, considers the problem of transitions between atomic states caused by interactions with radiation or other particles. The lecture, Ionization Balance: Spectral Line Shapes, discusses collisional and radiative transitions when ionization and recombination processes are included. 24 figs., 11 tabs

  1. Atomic physics and non-equilibrium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Weisheit, J.C.

    1986-04-25

    Three lectures comprise the report. The lecture, Atomic Structure, is primarily theoretical and covers four topics: (1) Non-relativistic one-electron atom, (2) Relativistic one-electron atom, (3) Non-relativistic many-electron atom, and (4) Relativistic many-electron atom. The lecture, Radiative and Collisional Transitions, considers the problem of transitions between atomic states caused by interactions with radiation or other particles. The lecture, Ionization Balance: Spectral Line Shapes, discusses collisional and radiative transitions when ionization and recombination processes are included. 24 figs., 11 tabs.

  2. International Conference 'Current Problems in Nuclear Physics and Atomic Energy'. May 29 - Jun 03 2006. Book of Abstracts

    International Nuclear Information System (INIS)

    The collective processes in atomic nuclei, nuclear reactions and processes with exotic nuclei, rare nuclear processes, relativistic nuclear physics, neutron physics, physics of nuclear reactors, problems of atomic energy and reactors of the future, applied nuclear physics and technique of experiments was discussed in this conference

  3. Rb atomic magnetometer toward EDM experiment with laser cooled francium atoms

    Science.gov (United States)

    Inoue, Takeshi; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Ko; Kawamura, Hirokazu; Sakamoto, Kosuke; Uchiyama, Aiko; Asahi, Koichiro; Yoshimi, Akihiro; Sakemi, Yasuhiro

    2014-09-01

    A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield. We prepared the cell coated with an anti-relaxation material and measured the relaxation time. A degauss of the shield was performed to eliminate the residual field. We will report the present status of the magnetometer. A permanent electric dipole moment (EDM) of a particle or an atom is a suited observable to test the physics beyond the standard model. We plan to search for the electron EDM by using the laser cooled francium (Fr) atom, since the Fr atom has a large enhancement factor of the electron EDM and the laser cooling techniques can suppress both statistical and systematic errors. In the EDM experiment, a fluctuation of the magnetic field is a main source of the errors. In order to achieve the high precision magnetometry, a magnetometer based on the nonlinear magneto-optical rotation effect of the Rb atom is under development. A long coherence time of Rb atom is the key issue for the highly sensitive detection of the field fluctuations. The coherence time is limited due both to collisions with an inner surface of a cell contained the Rb atom and to residual field in a magnetic shield

  4. Research in atomic and applied physics using a 6-GeV synchrotron source

    International Nuclear Information System (INIS)

    The Division of Atomic and Applied Physics in the Department of Applied Science at Brookhaven National Laboratory conducts a broad program of research using ion beams and synchrotron radiation for experiments in atomic physics and nuclear analytical techniques and applications. Many of the experiments would benefit greatly from the use of high energy, high intensity photon beams from a 6-GeV synchrotron source. A survey of some of the specific scientific possibilities is presented

  5. Sustained Spheromak Physics Experiment, SSPX

    International Nuclear Information System (INIS)

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of Te = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ''''gun'''' into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for Te measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at Te of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime

  6. Sustained Spheromak Physics Experiment, SSPX

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B.

    1997-05-15

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T{sub e} = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ``gun`` into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T{sub e} measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T{sub e} of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime.

  7. What do we learn from atomic physics about fundamental symmetries in nuclei and particles?

    International Nuclear Information System (INIS)

    Atomic experiments bring meaningful and valuable information on fundamental symmetries. The hypothesis of a large (∼ 100 eV) P-odd weak matrix element between single-particle states in heavy nuclei is inconsistent with the results of atomic PNC experiments. Upper limits on CP-violation obtained in atomic and molecular spectroscopy are as informative as those established in neutron physics. Very strict upper limits on T-odd, P-even interactions (nucleon-nucleon, electron-nucleon, electron-electron, and β-decay) are derived from the same atomic and neutron experiments. (author)

  8. Atomic clocks: A mathematical physics perspective

    International Nuclear Information System (INIS)

    Full text: Accuracy of atomic clocks (since their introduction in 50's) is increasing by roughly one order per decade. A natural theoretical problem posed by this development is to seek the ultimate accuracy of atomic clocks and means to achieve it. This problem was indeed extensively studied and various bounds on the accuracy are well understood, e.g. shot noise limit. I would present a mathematical minded (but simple) model of atomic clocks and discuss accuracy bounds within the model. (author)

  9. On the utility and ubiquity of atomic collision physics

    International Nuclear Information System (INIS)

    This paper is divided into three parts. In the introduction, we discuss the history and makeup of ICPEAC. In the second part, we discuss the extent of applicability of atomic collision physics. In the third part, we chose one subject (dielectronic excitation) to show the interrelationship of various sub-branches of atomic collision physics. 28 refs., 14 figs

  10. Recent advances in Rydberg physics using alkaline-earth atoms

    Science.gov (United States)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  11. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  12. CRYRING - a facility for atomic, molecular and nuclear physics

    International Nuclear Information System (INIS)

    The CRYRING project was put forward by the Research Institute of Physics (AFI), Stockholm, Sweden, as a proposal in October 1983 under the heading A facility with CRYSIS and other ion sources connected to a synchrotron ring intended for studies of atomic, molecular and nuclear collisions, in particular in experiments with interacting beams of ions, molecules, electrons and laser photons. In September 1985 funding was granted for the last subproject, comprising the actual ring structure to be completed by 1989-90. Thus started the third Swedish storage ring project, the first being the synchrotron radiation electron ring MAX at Lund and the second the nuclear and particle physics light ion ring CELSIUS at Uppsala. The present short contribution aims at a pedagogical (though necessarily somewhat superficial) presentation of CRYRING and its modes of operation. 21 references, 5 figures

  13. New trends in atomic and molecular physics advanced technological applications

    CERN Document Server

    2013-01-01

    The field of Atomic and Molecular Physics (AMP) has reached significant advances in high–precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy , astrophysics , fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) To...

  14. Weisskopf--Wigner approximation in atomic physics

    International Nuclear Information System (INIS)

    Several approximations involved in the usual Weisskopf-Wigner treatment of the emission of light by an atom are investigated. The system considered is a recoilless, nonrelativistic hydrogen atom interacting with a quantized electromagnetic field, in dipole approximation (with a nonrelativistic cutoff in momentum space). Since only electric dipole waves interact with the atom, the Hamiltonian can be expressed in a simple one-dimensional form. The time evolution of the system is determined by resolvent operator techniques. The method goes beyond the analysis by Van Hove and Hugenholtz, allowing one to treat also fields of finite intensity in the infinite-volume limit. A comparison between this and other techniques is made

  15. Atomic physics: A milestone in quantum computing

    Science.gov (United States)

    Bartlett, Stephen D.

    2016-08-01

    Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63

  16. Atomic physics: computer calculations and theoretical analysis

    OpenAIRE

    Drukarev, E. G.

    2004-01-01

    It is demonstrated, how the theoretical analysis preceding the numerical calculations helps to calculate the energy of the ground state of helium atom, and enables to avoid qualitative errors in the calculations of the characteristics of the double photoionization.

  17. Atomic physics and radiation processes in plasmas

    International Nuclear Information System (INIS)

    It is pointed out that atomic and molecular (A/M) processes play important roles in divertor plasmas but the problems related to these processes are not yet studied quantitatively. Recently new subjects related to A/M processes such as plasma- vapor interaction during plasma disruption are presented. This is a brief summary of our discussions. Our recent results of the calculations for the line emissions of carbon atoms in edge plasmas are also included. (J.P.N.)

  18. Tight Binding Models in Cold Atoms Physics

    Science.gov (United States)

    Zakrzewski, J.

    2007-05-01

    Cold atomic gases placed in optical lattice potentials offer a unique tool to study simple tight binding models. Both the standard cases known from the condensed matter theory as well as novel situations may be addressed. Cold atoms setting allows for a precise control of parameters of the systems discussed, stimulating new questions and problems. The attempts to treat disorder in a controlled fashion are addressed in detail.

  19. Combined ion and atom trap for low temperature ion-atom physics

    OpenAIRE

    Ravi, K.; LEE, Seunghyun; Sharma, Arijit; Werth, G.; Rangwala, S. A.

    2010-01-01

    We report an experimental apparatus and technique which simultaneously traps ions and cold atoms with spatial overlap. Such an apparatus is motivated by the study of ion-atom processes at temperatures ranging from hot to ultra-cold. This area is a largely unexplored domain of physics with cold trapped atoms. In this article we discuss the general design considerations for combining these two traps and present our experimental setup. The ion trap and atom traps are characterized independently ...

  20. A metastable helium trap for atomic collision physics

    International Nuclear Information System (INIS)

    Full text: Metastable helium in the 23S state is an important species for atom optics and atomic collision physics. Because of its large internal energy (20eV), long lifetime (∼8000s) and large collision cross section for a range of processes, metastable helium plays an important role in atmospheric physics, plasma discharges and gas laser physics. We have embarked on a program of studies on atom-atom and electron-atom collision processes involving cold metastable helium. We confine metastable helium atoms in a magneto-optic trap (MOT), which is loaded by a transversely collimated, slowed and 2-D focussed atomic beam. We employ diode laser tuned to the 1083 nm (23S1 - 23P21) transition to generate laser cooling forces in both the loading beam and the trap. Approximately 10 million helium atoms are trapped at temperatures of ∼ 1mK. We use phase modulation spectroscopy to measure the trapped atomic density. The cold, trapped atoms can collide to produce either atomic He+ or molecular He2+ ions by Penning Ionisation (PI) or Associative Ionisation (AI). The rate of formation of these ions is dependant upon the detuning of the trapping laser from resonance. A further laser can be used to connect the 23S1 state to another higher lying excited state, and variation of the probe laser detuning used to measure interatomic collision potential. Electron-atom collision processes are studied using a monochromatic electron beam with a well defined spatial current distribution. The total trap loss due to electron collisions is measured as a function of electron energy. Results will be presented for these atomic collision physics measurements involving cold, trapped metastable helium atoms. Copyright (1999) Australian Optical Society

  1. Atomic physics of strongly correlated systems

    International Nuclear Information System (INIS)

    This report presents the progress made in our continuing study of strongly correlated atomic systems within the last year. We have examined the shape of three-body systems in hyperspherical coordinates by studying the evolution of the density functions with the mass ratio of the particles in the system. We have calculated the ejected electron spectra from the autoionizing states formed in double capture processes in collisions of multiply charged ions with atoms. We have investigated the systematics and the propensity rules of radiative and Auger decay rates of high-lying doubly excited states. We have also studied ion-atom collisions for processes which pose great challenges to detailed theories, by looking into processes where the cross sections are small such as the excitation process in He++ + H collisions, or by looking into fine details such as the orientation parameters in excitation and charge transfer processes

  2. Fundamentals of Atomic and Nuclear Physics. Chapter 1

    International Nuclear Information System (INIS)

    Knowledge of the structure of the atom, elementary nuclear physics, the nature of electromagnetic radiation and the production of X rays is fundamental to the understanding of the physics of medical imaging and radiation protection. This, the first chapter of the handbook, summarizes those aspects of these areas which, being part of the foundation of modern physics, underpin the remainder of the book

  3. Atomic physics with highly charged ions

    International Nuclear Information System (INIS)

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations

  4. Investigations in atomic physics by heavy ion projectiles

    International Nuclear Information System (INIS)

    Investigations in atomic physics by high-energy heavy ions are discussed. The main attention is paid to collision mechanisms (direct Coulomb interaction, quasi-molecular collision mechanism and other models) and the structure of highly ionized and excited atoms. Some problems of fundamental issues (Lamb shift of H-like heavy ions, the superheavy quasi-atoms and the position production in supercritical fields) are conside-- red in detail

  5. Role and position of atomic physics in science and practice

    International Nuclear Information System (INIS)

    A brief overview is presented on the latest results of atomic physics and their possible practical application. First the atomcule should be mentioned that has been recently obtained in CERN. Another novelty is the Bose-Einstein condensation. In atomic holography Hungarian scientists have achieved pioneering results. Finally, atom and ion traps are mentioned. Some new and potential applications in practice are discussed. (R.P.)

  6. Highly charged atomic physics at HIRFL-CSR

    International Nuclear Information System (INIS)

    HIRFL-CSR is a proposed electron cooling storage ring optimized to accelerate and store beams of highly charged heavy ions. Several possibilities for advanced atomic physics studies are discussed, such as studies of electron-ion, ion-atoms, photon-ion-electron interactions and high resolution spectroscopy

  7. New trends in atomic and molecular physics. Advanced technological applications

    International Nuclear Information System (INIS)

    Represents an up-to-date scientific status report on new trends in atomic and molecular physics. Multi-disciplinary approach. Also of interest to researchers in astrophysics and fusion plasma physics. Contains material important for nano- and laser technology. The field of Atomic and Molecular Physics (AMP) has reached significant advances in high-precision experimental measurement techniques. The area covers a wide spectrum ranging from conventional to new emerging multi-disciplinary areas like physics of highly charged ions (HCI), molecular physics, optical science, ultrafast laser technology etc. This book includes the important topics of atomic structure, physics of atomic collision, photoexcitation, photoionization processes, Laser cooling and trapping, Bose Einstein condensation and advanced technology applications of AMP in the fields of astronomy, astrophysics, fusion, biology and nanotechnology. This book is useful for researchers, professors, graduate, post graduate and PhD students dealing with atomic and molecular physics. The book has a wide scope with applications in neighbouring fields like plasma physics, astrophysics, cold collisions, nanotechnology and future fusion energy sources like ITER (international Thermonuclear Experimental Reactor) Tokomak plasma machine which need accurate AMP data.

  8. Two centre problems in relativistic atomic physics

    OpenAIRE

    McConnell, Sean R.

    2012-01-01

    The work contained within this thesis is concerned with the explanation and usage of a set of theoretical procedures for the study of static and dynamic two–centre problems in the relativistic framework of Dirac’s equation. Two distinctly different theories for handling time–dependent atomic interactions are reviewed, namely semi–classical perturbation theory and a non–perturbative numerical technique based on the coupled channel equation to directly solve the time–dependent, two–centre Dirac...

  9. Design, fabrication and characterization of tunable external cavity diode laser and atom trapping chips for atomic physics

    Science.gov (United States)

    Chuang, Ho-Chiao

    External cavity diode laser systems (ECDLs) have been well documented for their suitability in the fields of laser cooling and atom trapping, and are now widely used in optical and atomic physics. A particularly simple implementation of this idea uses feedback from a diffraction grating mounted in the Littrow configuration and the typical size of this laser is quite large (120mmx90mmx90mm). For atom optics, the current atom trapping chips are not in a feedthrough configuration, which makes the chips to glass cell assembly process complicated and the wires and solder areas vulnerable, resulting in an unreliable vacuum seal. Recent experimental realizations of atom optical devices such as atomic waveguides, beam splitters, and on-chip Bose-Einstein condensate (BEC) sources have opened a new field for the development of more complex devices such as, e.g., BEC-based atom transistor. This work focuses on micro/nano fabrication techniques to build three different devices for the miniature BEC system. The research work focuses on the development of new ECDLs, a novel fabrication process of feedthrough atom trapping chips for atomic optics and a fabrication process for atom transistor chips. In the ECDLs part, we describe a new method for constructing a smaller external-cavity diode laser by use of a micromachined silicon flexure and a VHG (Volume Holographic Grating). It is much smaller, inexpensive and easy to build because it is based on simple modifications of a few commercial optical and mechanical components but with a specific silicon flexure design enabled by micro-fabrication technology for the laser frequency tuning. In the feedthrough chips part, we present a novel fabrication process for feedthrough atom trapping chips in atomic condensate optics cells using the copper electroplating to seal the vias. The advantages of using feedthrough atom trapping chips are the simple microfabrication process and reduction of the overall chip area bonded on the glass atom

  10. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  11. Tokamak Physics Experiment divertor design

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment (TPX) tokamak requires a symmetric up/down double-null divertor capable of operation with steady-state heat flux as high as 7.5 MW/m2. The divertor is designed to operate in the radiative mode and employs a deep slot configuration with gas puffing lines to enhance radiative divertor operation. Pumping is provided by cryopumps that pump through eight vertical ports in the floor and ceiling of the vessel. The plasma facing surface is made of carbon-carbon composite blocks (macroblocks) bonded to multiple parallel copper tubes oriented vertically. Water flowing at 6 m/s is used, with the critical heat flux (CHF) margin improved by the use of enhanced heat transfer surfaces. In order to extend the operating period where hands on maintenance is allowed and to also reduce dismantling and disposal costs, the TPX design emphasizes the use of low activation materials. The primary materials used in the divertor are titanium, copper, and carbon-carbon composite. The low activation material selection and the planned physics operation will allow personnel access into the vacuum vessel for the first 2 years of operation. The remote handling system requires that all plasma facing components (PFCs) are configured as modular components of restricted dimensions with special provisions for lifting, alignment, mounting, attachment, and connection of cooling lines, and instrumentation and diagnostics services

  12. Atoms and molecules interacting with light atomic physics for the laser era

    CERN Document Server

    Straten, Peter van der

    2016-01-01

    This in-depth textbook with a focus on atom-light interactions prepares students for research in a fast-growing and dynamic field. Intended to accompany the laser-induced revolution in atomic physics, it is a comprehensive text for the emerging era in atomic, molecular and optical science. Utilising an intuitive and physical approach, the text describes two-level atom transitions, including appendices on Ramsey spectroscopy, adiabatic rapid passage and entanglement. With a unique focus on optical interactions, the authors present multi-level atomic transitions with dipole selection rules, and M1/E2 and multiphoton transitions. Conventional structure topics are discussed in some detail, beginning with the hydrogen atom and these are interspersed with material rarely found in textbooks such as intuitive descriptions of quantum defects. The final chapters examine modern applications and include many references to current research literature. The numerous exercises and multiple appendices throughout enable advanc...

  13. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  14. Supercomputers and the future of computational atomic scattering physics

    International Nuclear Information System (INIS)

    The advent of the supercomputer has opened new vistas for the computational atomic physicist. Problems of hitherto unparalleled complexity are now being examined using these new machines, and important connections with other fields of physics are being established. This talk briefly reviews some of the most important trends in computational scattering physics and suggests some exciting possibilities for the future. 7 refs., 2 figs

  15. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1997-01-01

    Praise for the Series""This volume maintains the authoritative standards of the series...The editors and publishers are to be congratulated.""--M.S. Child in Physics Bulletin""Maintains the high standards of earlier volumes in the series...All the articles are written by experts in the field, and their summaries are most timely...Strongly recommended.""--G. Herzberg in American Scientist

  16. Advances in atomic, molecular, and optical physics

    CERN Document Server

    Bederson, Benjamin

    1995-01-01

    Praise for Previous Volumes"This volume maintains the authoritative standards of the series...The editors and publishers are to be congratulated"- M.S. CHILD in PHYSICS BULLETIN"Maintains the high standards of earlier volumes in the series...All the series are written by experts in the field, and their summaries are most timely...Strongly recommended."- G. HERZBERG in AMERICAN SCIENTIST

  17. The Common Elements of Atomic and Hadronic Physics

    CERN Document Server

    Brodsky, Stanley J

    2015-01-01

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed...

  18. [The physics of laser polarized muonic atoms

    International Nuclear Information System (INIS)

    This past research period we carried out a successful experiment at LAMPF in collaboration with Syracuse University in which we used lasers to produce polarized muonic 3He. Samples of nuclear polarized 3He were produced by spin-exchange with optically pumped rubidium vapor. Unpolarized muons were stopped in the gas, and became polarized due to their hyperfine interaction with the 3He nucleus. We determined that a muon polarization of ∼8% results with a 3He target polarization of 100%. The high statistical accuracy of our result gives us a firm handle on a theoretical question of great importance to future work involving muons and polarized 3He. Currently, we are working toward a new experiment at LAMPF, for which we have just submitted a proposal requesting running time this coming summer. The experiment utilizes a new technique for producing polarized muonic 3He, a technique we believe has the potential for producing practical polarizations that in principle could be as high as 75%, and in practice may exceed 25--50%. We call this new technique direct spin-exchange (DSE) because it is based on spin-exchange collisions between neutral muonic helium and an optically pumped vapor of Rb. It is direct because, in contrast to the technique we used last summer, the 3He nucleus is not involved in the spin-exchange process. We have proposed the use of DSE to study the induced pseudoscalar form factor of 3He. Finally, we describe an experiment to measure the spin dependent structure function of the neutron at SLAC. Princeton played an important role in the design and proposal of this experiment, including hosting a meeting to explore the technical feasibility of the polarized 3He target

  19. Atomic Layer Thermopile Materials: Physics and Application

    Directory of Open Access Journals (Sweden)

    P. X. Zhang

    2008-01-01

    Full Text Available New types of thermoelectric materials characterized by highly anisotropic Fermi surfaces and thus anisotropic Seebeck coefficients are reviewed. Early studies revealed that there is an induced voltage in high TC oxide superconductors when the surface of the films is exposed to short light pulses. Subsequent investigations proved that the effect is due to anisotropic components of the Seebeck tensor, and the type of materials is referred to atomic layer thermopile (ALT. Our recent studies indicate that multilayer thin films at the nanoscale demonstrate enhanced ALT properties. This is in agreement with the prediction in seeking the larger figure of merit (ZT thermoelectric materials in nanostructures. The study of ALT materials provides both deep insight of anisotropic transport property of these materials and at the same time potential materials for applications, such as light detector and microcooler. By measuring the ALT properties under various perturbations, it is found that the information on anisotropic transport properties can be provided. The information sometimes is not easily obtained by other tools due to the nanoscale phase coexistence in these materials. Also, some remained open questions and future development in this research direction have been well discussed.

  20. Kaonic atoms measurements at the DAFNE accelerator: the SIDDHARTA experiment

    International Nuclear Information System (INIS)

    Kaonic Hydrogen and Helium X-ray measurements play nowadays a fundamental role in testing the reliability of the Chiral Perturbation Theory as a realisation of the Quantum Chromodynamics at low energies. Dictated by both electromagnetic and strong interaction, X-ray transitions at lower energy levels of these complex bound systems offer indeed the unique opportunity to perform a threshold measurements of zero-energy meson-nucleon scattering. Nowadays the SIDDHARTA experiment at DAFNE collider is the only apparatus which can provide such kind of measurements with the high precision needed to disentangle different theoretical calculation scenarios. In this work we present the SIDDHARTA experiment performances and results, with a focus on the main topics of light kaonic atom physics.

  1. Physics of polarized scattering at multi-level atomic systems

    CERN Document Server

    Stenflo, Jan

    2015-01-01

    The symmetric peak observed in linear polarization in the core of the solar sodium D$_1$ line at 5896 \\AA\\ has remained enigmatic since its discovery nearly two decades ago. One reason is that the theory of polarized scattering has not been experimentally tested for multi-level atomic systems in the relevant parameter domains, although the theory is continually being used for the interpretation of astrophysical observations. A laboratory experiment that was set up a decade ago to find out whether the D$_1$ enigma is a problem of solar physics or quantum physics revealed that the D$_1$ system has a rich polarization structure in situations where standard scattering theory predicts zero polarization, even when optical pumping of the $m$ state populations of the hyperfine-split ground state is accounted for. Here we show that the laboratory results can be modeled in great quantitative detail if the theory is extended to include the coherences in both the initial and final states of the scattering process. Radiat...

  2. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  3. SASP - Symposium on atomic, cluster and surface physics '94

    International Nuclear Information System (INIS)

    This international symposium (Founding Chairman: W. Lindinger, Innsbruck) is one in a continuing biennial series of conferences which seeks to promote the growth of scientific knowledge and its effective exchange among scientists in the field of atomic, molecular, cluster and surface physics and related areas. The symposium deals in particular with interactions between ions, electrons, photons, atoms, molecules, and clusters and their interactions with surfaces. (author)

  4. The Common Elements of Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-26

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  5. Apparatus for fermion atomic clock, atom interferometry and quantum pumping experiments

    Science.gov (United States)

    Ivory, M. K.; Ziltz, A.; Field, J.; Aubin, S.

    2010-03-01

    We present the current state of an apparatus designed to create and manipulate ultracold bosonic and fermionic Rb and K isotopes for a fermion atomic clock, atom interferometry, microwave trapping, and quantum pumping experiments. Quantum pumping is a phenomenon which can precisely control bias-less flow of single electrons in a circuit. Using ultracold atoms on atom chips, we can test theoretical predictions which have not yet been verified due to experimental difficulties in solid state systems. The apparatus design consists of a magneto-optical trap, magnetic transport system, atom chip, and optical dipole trap. We have demonstrated basic laser cooling and trapping and are working towards transport of the collected atoms to the atom chip for cooling to quantum degeneracy. Once quantum degeneracy is achieved at the chip, micro-magnetic reservoirs of ultracold atoms connected by a 1D ``wire'' create a circuit for various quantum pumping schemes. These schemes are also more broadly applicable to atomtronics experiments.

  6. Opportunities for atomic physics with hard synchrotron radiation

    International Nuclear Information System (INIS)

    The construction of third-generation synchrotron radiation facilities places atomic and molecular scientists at the threshold of extraordinary opportunities. Areas of potential interest for the APS in atomic physics are: (1) exploration of relativistic and QED effects which become prominent in inner shells and at high Z; (2) total photon interaction cross sections; (3) scattering; (4) fluorescence; (5) photo- and Auger-electron spectrometries; and (6) ion spectrometry. A special regime in which the APS will lend access to unprecedented exploration is atomic inner-shell phenomena

  7. Proceedings of the workshop on fundamental muon physics: atoms, nuclei, and particles

    International Nuclear Information System (INIS)

    This report contains the proceedings of a workshop held at Los Alamos, January 20-22, 1986, to discuss present and future experiments with muons in particle, nuclear, and atomic physics. Special attention was paid to new developments in muon beams and detection devices. The workshop sessions were Muon Decay, Muon Capture, QED and Electroweak Interactions, Laser Spectroscopy of Muonic Atoms, High-Energy Muon-Nucleon and Muon-Nucleus Scattering, Muon Beams - New Developments, and Muon Catalysis

  8. Educational, research and implementation activities in the Department of Atomic Physics at Plovdiv University

    International Nuclear Information System (INIS)

    The Department of Atomic Physics at Plovdiv University has 40 year long experience in educating students in Atomic and Subatomic Physics. We aim at making the knowledge gained in nuclear physics part of the culture of our students. At the core of our educational activities lies our long and successful experience in studying the characteristics of atomic nuclei. In cooperation with JINR-Dubna we have studied the nuclei of approximately 40 percent of the periodic table elements. These studies also serve as a basis for the diverse implementation activities of the Department, which have an impressive geographical spread. In recent years our research has been focusing more specifically on radio-ecological issues with the valuable support of the Nuclear Regulatory Agency (NRA). Future more intense support on behalf of NRA's together with more dynamic links with other specialized units, such as the Kozloduy NPP in the first place, would considerably contribute to optimizing the effect of our overall activity. (authors)

  9. Gas lasers applied atomic collision physics, v.3

    CERN Document Server

    McDaniel, E W

    1982-01-01

    Applied Atomic Collision Physics, Volume 3: Gas Lasers describes the applications of atomic collision physics in the development of many types of gas lasers. Topics covered range from negative ion formation in gas lasers to high-pressure ion kinetics and relaxation of molecules exchanging vibrational energy. Ion-ion recombination in high-pressure plasmas is also discussed, along with electron-ion recombination in gas lasers and collision processes in chemical lasers.Comprised of 14 chapters, this volume begins with a historical summary of gas laser developments and an overview of the basic ope

  10. Atomic physics with highly charged ions

    International Nuclear Information System (INIS)

    The past year has been a busy one for all three accelerators, the LINAC, EBIS and the tandem. The EBIS continues to deliver beams of highly charged ions around the clock for the study of low energy collisions with gases and surfaces. The electron beam energy has been upgraded to 10 keV, and intensities of highly charged species such as Xe44+ have been greatly increased. The tandem, the traditional source of highly charged Binary encounter electron production at zero degrees were studied for medium Z (Si,Cl,Cu) projectiles. Recoil momentum spectroscopy has been used to separate the contributions to collisional ionization of one-electron ions (C5+, O7+, F8+) from the nucleus and the electrons of a He target. Marked structure in the binary encounter electron spectra for Cuq+ on H2 targets has been measured for moderate velocity projectiles. Electron capture by slow multiply charged (EBIS) projectiles from laser excited targets has been carried out. Cross sections for capture from Na(3s) and Na*(3p) have been measured for velocities between 0.1 and 1 au. The extension of these experiments to laser excited Rydberg targets is proceeding. Electron capture cross sections and average Q values for Ar16+ on He at velocities between 0.23 and 1.67 au have been measured. The charge state distribution of the He recoils following large angle scattering of C4+ and C6+ ions at 7.5 keV/u has been measured. Cross sections have been measured for up to sextuple capture from C60 (buckminsterfullerene) by highly charged slow projectiles. Coupled channel calculations for double capture from He by slow multicharge ions have been carried out

  11. Important atomic physics issues for ion beam fusion

    International Nuclear Information System (INIS)

    This paper suggests several current atomic physics questions important to ion beam fusion. Among the topics discussed are beam transport, beam-target interaction, and reactor design. The major part of the report is discussion concerning areas of research necessary to better understand beam-target interactions

  12. ATOMIC PHYSICS, AN AUTOINSTRUCTIONAL PROGRAM, VOLUME 4, SUPPLEMENT.

    Science.gov (United States)

    DETERLINE, WILLIAM A.; KLAUS, DAVID J.

    THE AUTOINSTRUCTIONAL MATERIALS IN THIS TEXT WERE PREPARED FOR USE IN AN EXPERIMENTAL STUDY, OFFERING SELF-TUTORING MATERIAL FOR LEARNING ATOMIC PHYSICS. THE TOPICS COVERED ARE (1) RADIATION USES AND NUCLEAR FISSION, (2) NUCLEAR REACTORS, (3) ENERGY FROM NUCLEAR REACTORS, (4) NUCLEAR EXPLOSIONS AND FUSION, (5) A COMPREHENSIVE REVIEW, AND (6) A…

  13. Physics Potential of Solar Neutrino Experiments

    OpenAIRE

    Balantekin, A. B.; Yuksel, H.

    2003-01-01

    We discuss the physics potential of the solar neutrino experiments i) To explore the parameter space of neutrino mass and mixings; ii) To probe the physics of the Sun; iii) To explore nuclear physics of the neutrino-target interactions. Examples are given for these three classes.

  14. Einstein's physics atoms, quanta, and relativity : derived, explained, and appraised

    CERN Document Server

    Cheng, Ta-Pei

    2013-01-01

    Many regard Albert Einstein as the greatest physicist since Newton. What exactly did he do that is so important in physics? We provide an introduction to his physics at a level accessible to an undergraduate physics student. All equations are worked out in detail from the beginning. Einstein's doctoral thesis and his Brownian motion paper were decisive contributions to our understanding of matter as composed of molecules and atoms. Einstein was one of the founding fathers of quantum theory: his photon proposal through the investigation of blackbody radiation, his quantum theory of photoelectri

  15. Future atomic physics researches at HIRFL-CSR

    International Nuclear Information System (INIS)

    A new storage ring system, HIRFL-CSR, is now in construction in the National Laboratory of Heavy Ion Research Facility of Lanzhou, China. The new facility consists of a main ring (CSRm) and an experimental ring (CSRe). With the flexibility of the production and the investigation of highly charged ions and radioactive ion beams the new HIRFL-CSR facility will make many frontier atomic physics researches possible in near future. The future physics researches at the HIRFL-CSR are now under consideration. In this paper an overview of the HIRFL-CSR project is given, and the main atomic physics programs to be carried at the HIRFL-CSR are presented. (orig.)

  16. Introduction to the physics of matter basic atomic, molecular, and solid-state physics

    CERN Document Server

    Manini, Nicola

    2014-01-01

    This book offers an up-to-date, compact presentation of basic topics in the physics of matter, from atoms to molecules to solids, including elements of statistical mechanics. The adiabatic separation of the motion of electrons and nuclei in matter and its spectroscopic implications are outlined for molecules and recalled regularly in the study of the dynamics of gases and solids. Numerous experiments are described and more than 160 figures give a clear visual impression of the main concepts. Sufficient detail of mathematical derivations is provided to enable students to follow easily. The focus is on present-day understanding and especially on phenomena fitting various independent-particle models. The historical development of this understanding, and phenomena such as magnetism and superconductivity, where interparticle interactions and nonadiabatic effects play a crucial role, are mostly omitted. A final outlook section stimulates the curiosity of the reader to pursue the study of such advanced topics in gra...

  17. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  18. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.; Ryabov, Yu.G.; Frosch, R.; Olin, A.; Lehar, F.; Moskalev, A.N.; Barkov, B.P.

    1987-03-01

    This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  19. Physics in Brazil in the next decade: atomic, molecular and optical physics, biological, chemical and medical physics, physics teaching and plasma physics

    International Nuclear Information System (INIS)

    This is an overview of physics in Brazil in the next decade. It is specially concerned with atomic, molecular and optical physics, biological chemical and medical physics, and also teaching of physics and plasma physics. It presents the main research groups in Brazil in the above mentioned areas. It talks as well, about financing new projects and the costs involved to improve these areas. (A.C.A.S.)

  20. Strong field atomic physics in the mid-infrared

    International Nuclear Information System (INIS)

    We examine strong field atomic physics in a wavelength region (3-4 microns) where very little work has previously been done. The soft photon energy allows the exploration of one-electron atoms with low binding energies (alkali metals). We find that photoionization spectra differ from rare gas studies at shorter wavelengths due to more complex ion core potentials. Harmonic generation is studied, and we find that harmonic bandwidths are consistent with theory and the possibility of compression to pulse widths much shorter than that of the driving pulse. Harmonic yields in the visible and UV are sufficient for a complete study of their amplitude and phase characteristics.

  1. Atomic density functions: atomic physics calculations analyzed with methods from quantum chemistry

    CERN Document Server

    Borgoo, Alex; Geerlings, P

    2011-01-01

    This contribution reviews a selection of findings on atomic density functions and discusses ways for reading chemical information from them. First an expression for the density function for atoms in the multi-configuration Hartree--Fock scheme is established. The spherical harmonic content of the density function and ways to restore the spherical symmetry in a general open-shell case are treated. The evaluation of the density function is illustrated in a few examples. In the second part of the paper, atomic density functions are analyzed using quantum similarity measures. The comparison of atomic density functions is shown to be useful to obtain physical and chemical information. Finally, concepts from information theory are introduced and adopted for the comparison of density functions. In particular, based on the Kullback--Leibler form, a functional is constructed that reveals the periodicity in Mendeleev's table. Finally a quantum similarity measure is constructed, based on the integrand of the Kullback--L...

  2. Experiments in intermediate energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  3. Atom optical tools for antimatter experiments

    Energy Technology Data Exchange (ETDEWEB)

    Braeunig, Philippe H.M.

    2014-12-17

    The direct measurement of the gravitational acceleration of antimatter in the earth's field, which represents a test of the weak equivalence principle, is in the focus of several ongoing experimental attempts. This thesis investigates tools and techniques known from the field of atom optics that can be utilised for such a measurement with antihydrogen atoms as envisioned by the AEgIS collaboration. A first experimental step is presented, in which a detection due to an electromagnetic force acting on antiprotons is measured with a Moire deflectometer. This device, which can be described with classical particle trajectories, consists of two gratings and a spatially resolving detector. Key elements of this measurement are the use of an emulsion detector with high spatial resolution and an absolute reference technique based on an interferometric fringe pattern of light, which is not deflected by forces. For future realisations, a new detection and evaluation scheme to measure gravity based on a three-grating system enclosed by a vertex-reconstructing detector is discussed. This allows the use of a grating periodicity that is smaller than the resolution of the detector while making efficient use of the particle flux. Smaller periodicities are favourable to increase the inertial sensitivity of the measurement apparatus but require to take effects of diffraction into account. To explore this near-field regime with antimatter, a Talbot-Lau interferometer for antiprotons is proposed and its possible experimental implementation is discussed.

  4. Experiments with a laser cooled cloud of atoms

    OpenAIRE

    Natarajan, Vasant; Banerjee, Ayan; Rapol, Umakant

    1999-01-01

    We discuss two experiments that can be performed using a cloud of laser-cooled and trapped atoms, namely Bose-Einstein condensation (BEC) and search for a permanent Electric Dipole Moment (EDM). BEC can be observed in Rb atoms in a magnetic trap by using forced evaporative cooling to continuously lower the temperature below the condensation limit. The cloud is cooled by preferentially ejecting the hottest atoms from a magnetic trap. The magnetic trap is loaded with laser-cooled atoms from a m...

  5. Laser cooling of atoms and impact in theoretical physics

    International Nuclear Information System (INIS)

    Exchange of momentum during resonant interaction of laser radiation with atomic systems can decelerate the atoms and reduce their kinetic temperature. Charged particles can be trapped by using a combination of electric and magnetic fields. The cold ions have no first order Doppler effect. This increases the precision of measurement in high resolution spectroscopy. Collisions with buffer gas atoms in a penning trap cool the cyclotron motion of ions but increase the magnetron radius leading to significant loss of ions in the trap. It has been shown that application of an RF field with frequency equal to the sum of the magnetron and cyclotron frequencies can lead to axialisation of ions thereby increasing the spatial overlap of the ions with the radiation and enhancing the sensitivity. The method has been used for measurement of electronic and nuclear g-factors. The high precision with which g-factors of fundamental particles is measured can be used as a test for results of QED calculations. The new mechanism used for trapping of neutral atoms will be discussed. This method has led to interesting new observations such as quantum jump, atomic fountains and Bose-Einstein condensation. Observation of atomic parity violation experiments have led to the discovery of nuclear anapole moment. (author)

  6. Atoms

    International Nuclear Information System (INIS)

    Completed by recent contributions on various topics (atoms and the Brownian motion, the career of Jean Perrin, the evolution of atomic physics since Jean Perrin, relationship between scientific atomism and philosophical atomism), this book is a reprint of a book published at the beginning of the twentieth century in which the author addressed the relationship between atomic theory and chemistry (molecules, atoms, the Avogadro hypothesis, molecule structures, solutes, upper limits of molecular quantities), molecular agitation (molecule velocity, molecule rotation or vibration, molecular free range), the Brownian motion and emulsions (history and general features, statistical equilibrium of emulsions), the laws of the Brownian motion (Einstein's theory, experimental control), fluctuations (the theory of Smoluchowski), light and quanta (black body, extension of quantum theory), the electricity atom, the atom genesis and destruction (transmutations, atom counting)

  7. Physical, Atomic and Thermal Properties of Biofield Treated Lithium Powder

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Lithium has gained extensive attention in medical science due to mood stabilizing activity. The objective of the present study was to evaluate the impact of biofield treatment on physical, atomic, and thermal properties of lithium powder. The lithium powder was divided into two parts i.e., control and treatment. Control part was remained as untreated and treatment part received Mr. Trivedi’s biofield treatment. Subsequently, control and treated lithium powder samples were characterized ...

  8. Quantum Monte Carlo approaches to nuclear and atomic physics

    OpenAIRE

    Carlson, J.; Gandolfi, Stefano; Gezerlis, Alexandros

    2012-01-01

    Quantum Monte Carlo methods have proven to be valuable in the study of strongly correlated quantum systems, particularly nuclear physics and cold atomic gases. Historically, such ab initio simulations have been used to study properties of light nuclei, including spectra and form factors, low-energy scattering, and high-momentum properties including inclusive scattering and one- and two-body momentum distributions. More recently they have been used to study the properties of homogeneous and in...

  9. Theoretical atomic physics code development I: CATS: Cowan Atomic Structure Code

    International Nuclear Information System (INIS)

    An adaptation of R.D. Cowan's Atomic Structure program, CATS, has been developed as part of the Theoretical Atomic Physics (TAPS) code development effort at Los Alamos. CATS has been designed to be easy to run and to produce data files that can interface with other programs easily. The CATS produced data files currently include wave functions, energy levels, oscillator strengths, plane-wave-Born electron-ion collision strengths, photoionization cross sections, and a variety of other quantities. This paper describes the use of CATS. 10 refs

  10. Moscow State University physics alumni and the Soviet Atomic Project

    International Nuclear Information System (INIS)

    In this paper, two closely related themes are addressed: (1) the role that M V Lomonosov Moscow State University (MSU) played in training specialists in physics for the Soviet Atomic Project, and (2) what its alumni contributed to the development of thermonuclear weapons. In its earlier stages, the Soviet Atomic Project was in acute need of qualified personnel, without whom building nuclear and thermonuclear weapons would be an impossible task, and MSU became a key higher educational institution grappled with the training problem. The first part of the paper discusses the efforts of the leading Soviet scientists and leaders of FMD (First Main Directorate) to organize the training of specialists in nuclear physics at the MSU Physics Department and, on the other hand, to create a new Physics and Technology Department at the university. As a result, a number of Soviet Government's resolutions were prepared and issued, part of which are presented in the paper and give an idea of the large-scale challenges this sphere of education was facing at the time. Information is presented for the first time on the early MSU Physics Department graduates in the structure of matter, being employed in the FMD organizations and enterprises from 1948 to 1951. The second part discusses the contribution to the development of thermonuclear weapons by the teams of scientists led by Academicians I E Tamm, A N Tikhonov, and I M Frank, and including MSU physics alumni. The paper will be useful to anyone interested in the history of Russian physics. (from the history of physics)

  11. Theoretical femtosecond physics atoms and molecules in strong laser fields

    CERN Document Server

    Grossmann, Frank

    2013-01-01

    Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...

  12. Current experiments in elementary particle physics. Revision

    International Nuclear Information System (INIS)

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  13. Current experiments in elementary-particle physics

    International Nuclear Information System (INIS)

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated

  14. Current experiments in elementary particle physics. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Armstrong, F.E. [Lawrence Berkeley Lab., CA (United States); von Przewoski, B. [Indiana Univ. Cyclotron Facility, Bloomington, IN (United States)] [and others

    1994-08-01

    This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  15. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  16. Current experiments in elementary particle physics. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Wohl, C.G.; Armstrong, B. [Lawrence Berkeley Lab., CA (United States); Dodder, D.C. [Los Alamos National Lab., NM (United States); Klyukhin, V.I.; Ryabov, Yu.G. [Inst. for High Energy Physics, Serpukhov (Russian Federation); Illarionova, N.S. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation); Lehar, F. [CEN Saclay, Gif-sur-Yvette (France); Oyanagi, Y. [Univ. of Tokyo (Japan). Faculty of Sciences; Olin, A. [TRIUMF, Vancouver, BC (Canada); Frosch, R. [Paul Scherrer Inst., Villigen (Switzerland)

    1992-06-01

    This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  17. Current experiments in elementary particle physics

    International Nuclear Information System (INIS)

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized

  18. Current experiments in elementary particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.; Yost, G.P. (Lawrence Berkeley Lab., CA (USA)); Oyanagi, Y. (Tsukuba Univ., Ibaraki (Japan)); Dodder, D.C. (Los Alamos National Lab., NM (USA)); Ryabov, Yu.G.; Slabospitsky, S.R. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Serpukhov (USSR). Inst. Fiziki Vysokikh Ehnergij); Frosch, R. (Swiss Inst. for Nuclear Research, Villigen (Switzerla

    1989-09-01

    This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.

  19. A Group Experience with Physically Handicapped Children.

    Science.gov (United States)

    Castle, Norma

    1980-01-01

    Describes a group experience program developed as an alternative to the long-term hospitalization of physically handicapped children. The program emphasizes emotional growth through participation in meetings designed to counteract dependency. (CM)

  20. Forward Physics at the ATLAS experiment

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    Poster summarize forward physics at the ATLAS experiment. It aims to AFP project which is the project to install forward detectors at 220m (AFP220) and 420m (AFP420) around ATLAS for measurements at high luminosity.

  1. Maintenance experience at Rajasthan atomic power station

    International Nuclear Information System (INIS)

    The Rajasthan Atomic Power Station is a twin-unit station of the CANDU-PHW type with a nominal rating of 200 MW(e) net per unit and on-power refuelling capability. Unit-I became critical in August 1972 and was declared commercial in December 1973. Unit-II is in an advanced stage of construction. Maintenance and repairs of both the nuclear and conventional equipment are done during routine planning, breakdown outages, poison shutdown outages and planned annual shutdown periods. Yearly, a period of three to four weeks may be needed for carrying out major inspection and maintenance activity on large equipment such as the steam turbine, generator, main condenser, station transformer, primary coolant recirculation pumps, moderator pumps and fuelling machines. Preventive maintenance jobs are planned and executed in accessible areas daily as a matter of routine and during poison shutdown outages in inaccessible areas. This requires that the maintenance crews be more or less continually on the alert. In addition to gamma radiation, radiation doses due to tritium are encountered and pose special problems for the maintenance personnel. During the past two years (1972-74) it was found that there is a need, in the maintenance crews, for more specialists for various radioactive and conventional jobs. This paper outlines the significant nuclear and conventional maintenance activities as well as problems in maintenance encountered during the period 1972-74. (author)

  2. Ultimate Statistical Physics: fluorescence of a single atom

    CERN Document Server

    Pomeau, Yves; Ginibre, Jean

    2016-01-01

    We discuss the statistics of emission of photons by a single atom or ion illuminated by a laser beam at the frequency of quasi-resonance between two energy levels, a situation that corresponds to real experiments. We extend this to the case of two laser beams resonant with the energy differences between two excited levels and the ground state (three level atom in V-configuration). We use a novel approach of this type of problem by considering Kolmogorov equation for the probability distribution of the atomic state which takes into account first the deterministic evolution of this state under the effect of the incoming laser beam and the random emission of photons during the spontaneous decay of the excited state(s) to the ground state. This approach yields solvable equations in the two level atom case. For the three level atom case we set the problem and define clearly its frame. The results obtained are valid both in the opposite limits of rare and of frequent spontaneous decay, compared to the period of the...

  3. Atomic physics at the Advanced Photon Source: Workshop report

    International Nuclear Information System (INIS)

    The first Workshop on Atomic Physics at the Advanced Photon Source was held at Argonne National Laboratory on March 29--30, 1990. The unprecedented brightness of the Advanced Photon Source (APS) in the hard X-ray region is expected to make possible a vast array of new research opportunities for the atomic-physics community. Starting with discussions of the history and current status of the field, presentations were made on various future directions for research with hard X-rays interacting with atoms, ions, clusters, and solids. Also important were the discussions on the design and status of the four next-generation rings coming on line during the 1990's: the ALS 1.6 GeV ring at Berkeley; the ESRF 6.0-GeV ring at Grenoble (1993); the APS 7.0-GeV ring at Argonne (1995); and the SPring-8 8.0-GeV ring in Japan (1998). The participation of more than one hundred scientists from domestic as well as foreign institutions demonstrated a strong interest in this field. We plan to organize follow-up workshops in the future emphasizing specific research topics

  4. Single atoms on demand for cavity QED experiments

    International Nuclear Information System (INIS)

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the cavity

  5. Single atoms on demand for cavity QED experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, I.

    2007-09-06

    Cavity quantum electrodynamics (cavity QED) describes electromagnetic fields in a confined space and the radiative properties of atoms in such fields. The simplest example of such system is a single atom interacting with one mode of a high-finesse resonator. Besides observation and exploration of fundamental quantum mechanical effects, this system bears a high potential for applications quantum information science such as, e.g., quantum logic gates, quantum communication and quantum teleportation. In this thesis I present an experiment on the deterministic coupling of a single neutral atom to the mode of a high-finesse optical resonator. In Chapter 1 I describe our basic techniques for trapping and observing single cesium atoms. As a source of single atoms we use a high-gradient magneto-optical trap, which captures the atoms from background gas in a vacuum chamber and cools them down to millikelvin temperatures. The atoms are then transferred without loss into a standing-wave dipole trap, which provides a conservative potential required for experiments on atomic coherence such as quantum information processing and metrology on trapped atoms. Moreover, shifting the standing-wave pattern allows us to deterministically transport the atoms (Chapter 2). In combination with nondestructive fluorescence imaging of individual trapped atoms, this enables us to control their position with submicrometer precision over several millimeters along the dipole trap. The cavity QED system can distinctly display quantum behaviour in the so-called strong coupling regime, i.e., when the coherent atom-cavity coupling rate dominates dissipation in the system. This sets the main requirements on the resonator's properties: small mode volume and high finesse. Chapter 3 is devoted to the manufacturing, assembling, and testing of an ultra-high finesse optical Fabry-Perot resonator, stabilized to the atomic transition. In Chapter 4 I present the transportation of single atoms into the

  6. Current Experiments in Particle Physics (September 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H.; Lehar, F.; Klyukhin, V.I.; Ryabov, Yu.G.; Bilak, S.V.; Illarionova, N.S.; Khachaturov, B.A.; Strokovsky, E.A.; Hoffman, C.M.; Kettle, P.-R.; Olin, A.; Armstrong, F.E.

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries. This report contains full summaries of 180 approved current and recent experiments in elementary particle physics. The focus of the report is on selected experiments which directly contribute to our better understanding of elementary particles and their properties such as masses, widths or lifetimes, and branching fractions.

  7. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  8. ESR and related experiments in spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    This thesis deals with some experiments in (gaseous) spin-polarized atomic hydrogen. One uses the expression 'stabilized' atomic hydrogen, meaning that by choosing suitable conditions one can suppress the tendency of atoms to recombine into H2 molecules, such that the lifetime of the atomic state is extended by many orders of magnitude. Research is focused at the study of processes that determine the decay rate of polarized H samples, with the ultimate goal of preparing samples of sufficiently high density and at low enough temperature to observe experimentally the behaviour of the (degenerate) quantum gas. ESR (Electron Spin Resonance) appears to be a very suitable measurement technique to study the properties of polarized H. This work describes the introduction of ESR as detection technique, and the first results of an experiment in polarized H using this technique. (orig.)

  9. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia

    2002-01-01

    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  10. High-performance laser power feedback control system for cold atom physics

    Institute of Scientific and Technical Information of China (English)

    Bo Lu; Thibault Vogt; Xinxing Liu; Xiaoji Zhou; Xuzong Chen

    2011-01-01

    @@ A laser power feedback control system that features fast response,large-scale performance,low noise,and excellent stability is presented.Some essential points used for optimization are described.Primary optical lattice experiments are given as examples to show the performance of this system.With these performance characteristics,the power control system is useful for applications in cold atom physics and precision measurements.%A laser power feedback control system that features fast response, large-scale performance, low noise, and excellent stability is presented. Some essential points used for optimization are described. Primary optical lattice experiments are given as examples to show the performance of this system. With these performance characteristics, the power control system is useful for applications in cold atom physics and precision measurements.

  11. Atomic physics with high-brightness synchrotron x-ray sources

    International Nuclear Information System (INIS)

    A description of atomic physics experiments that we intend to carry out at the National Synchrotron Light Source is given. Emphasis is given to work that investigates the properties of multiply charged ions. The use of a synchrotron storage ring for highly charged heavy ions is proposed as a way to produce high current beams which will make possible experiments to study the photoexcitation and ionization of multiply charged ions for the first time. Experiments along the same lines which are feasible at the proposed Advanced Light Source are considered briefly. 7 refs., 2 figs

  12. APIPIS: the Atomic Physics Ion-Photon Interaction System

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B.M.; Jones, K.W.; Meron, M.; Kostroun, V.O.

    1985-01-01

    A proposed new facility for the study of highly charged heavy ions is described. The basic elements of APIPIS, the Atomic Physics Ion-Photon Interaction System, are: (1) a source of multiply-charged ions; (2) a linear accelerator; (3) a synchrotron storage ring; and (4) a source of high brightness x rays. The placement of a heavy ion storage ring at the x-ray ring of the National Synchrotron Light Source will provide unique opportunities for the study of photo-excitation of heavy ions.

  13. Integrated physics package of a chip-scale atomic clock

    International Nuclear Information System (INIS)

    The physics package of a chip-scale atomic clock (CSAC) has been successfully realized by integrating vertical cavity surface emitting laser (VCSEL), neutral density (ND) filter, λ/4 wave plate, 87Rb vapor cell, photodiode (PD), and magnetic coil into a cuboid metal package with a volume of about 2.8 cm3. In this physics package, the critical component, 87Rb vapor cell, is batch-fabricated based on MEMS technology and in-situ chemical reaction method. Pt heater and thermistors are integrated in the physics package. A PTFE pillar is used to support the optical elements in the physics package, in order to reduce the power dissipation. The optical absorption spectrum of 87Rb D1 line and the microwave frequency correction signal are successfully observed while connecting the package with the servo circuit system. Using the above mentioned packaging solution, a CSAC with short-term frequency stability of about 7 × 10−10 τ−1/2 has been successfully achieved, which demonstrates that this physics package would become one promising solution for the CSAC. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Intense Electron Beams from GaAs Photocathodes as a Tool for Molecular and Atomic Physics

    OpenAIRE

    Krantz, C.

    2009-01-01

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at stable cathode lifetimes of 24 h or more. ...

  15. Current Experiments in Particle Physics. 1996 Edition

    International Nuclear Information System (INIS)

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries

  16. Atom Interferometry for Fundamental Physics and Gravity Measurements in Space

    Science.gov (United States)

    Kohel, James M.

    2012-01-01

    Laser-cooled atoms are used as freefall test masses. The gravitational acceleration on atoms is measured by atom-wave interferometry. The fundamental concept behind atom interferometry is the quantum mechanical particle-wave duality. One can exploit the wave-like nature of atoms to construct an atom interferometer based on matter waves analogous to laser interferometers.

  17. Advancing Successful Physics Majors - The Physics First Year Seminar Experience

    Science.gov (United States)

    Deibel, Jason; Petkie, Douglas

    In 2012, the Wright State University physics curriculum introduced a new year-long seminar course required for all new physics majors. The goal of this course is to improve student retention and success via building a community of physics majors and provide them with the skills, mindset, and advising necessary to successfully complete a degree and transition to the next part of their careers. This new course sequence assembles a new cohort of majors annually. To prepare each cohort, students engage in a variety of activities that span from student success skills to more specific physics content while building an entrepreneurial mindset. Students participate in activities including study skills, career night, course planning, campus services, and a department social function. More importantly, students gain exposure to programming, literature searches, data analysis, technical writing, elevator pitches, and experimental design via hands-on projects. This includes the students proposing, designing, and conducting their own experiments. Preliminary evidence indicates increased retention, student success, and an enhanced sense of community among physics undergraduate students, The overall number of majors and students eventually completing their physics degrees has nearly tripled. Associate Professor, Department of Physics.

  18. Developing a New Atomic Physics Computer Program (HTAC) to Perform Atomic Structure and Transition Rate Calculations in Three Advanced Methods

    OpenAIRE

    Amani Tahat; Mahmoud Abu-Allaban; Safeia Hamasha

    2011-01-01

    In this study, a new atomic physics program (HTAC) is introduced and tested. It is a utility program designed to automate the computation of various atomic structure and spectral data. It is the first comprehensive code that enables performing atomic calculations based on three advanced theories: the fully relativistic configuration interactions approach, the multi-reference many body perturbation theory and the R-Matrix method. It has been designed to generate tabulated atomic data files tha...

  19. Manual for Experiments in Engineering Physics

    CERN Document Server

    Kulkarni, P

    2015-01-01

    Experiments performed in the Physics Laboratory play a significant role in understanding the concepts taught in the theory. A good accompanying laboratory manual serves as a concise guideline which students can use to complete the experiments without having to refer to several reference books on the subject. A thorough study of the manual prior to the experiment helps the student to immediately start with the performance in the laboratory. The general practice in several universities for the conduct of experimental laboratory class has been to enable students take observations and allow the submission in one week time. However, the observations do not complete the experiment and serve as only one part of learning in the measurement of the physical quantities in the laboratory. The calculations and the submission of the journal before the end of the experimental turn should be an integral part of the laboratory class. With this motivation a scheme is suggested for the conduct of the laboratory class.

  20. Atomic Physics with Accelerators: Projectile Electron Spectroscopy (APAPES)

    International Nuclear Information System (INIS)

    The new research initiative APAPES (http://apapes.physics.uoc.gr/) has already established a new experimental station with a beam line dedicated for atomic collisions physics research, at the 5 MV TANDEM accelerator of the National Research Centre ''Demokritos'' in Athens, Greece. A complete zero-degree Auger projectile spectroscopy (ZAPS) apparatus has been put together to perform high resolution studies of electrons emitted in ion-atom collisions. A single stage hemispherical spectrometer with a 2-dimensional Position Sensitive Detector (PSD) combined with a doubly-differentially pumped gas target will be used to perform a systematic isoelectronic investigation of K-Auger spectra emitted from collisions of preexcited and ground state He-like ions with gas targets using novel techniques. Our intention is to provide a more thorough understanding of cascade feeding of the 1s2s2p 4P metastable states produced by electron capture in collisions of He-like ions with gas targets and further elucidate their role in the non-statistical production of excited three-electron 1s2s2p states by electron capture, recently a field of conflicting interpretations awaiting further resolution. At the moment, the apparatus is being completed and the spectrometer will soon be fully operational. Here we present the project progress and the recent high resolution spectrum obtained in collisions of 12 MeV C4+ on a Neon gas target

  1. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Bernd [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Grum-Grzhimailo, Alexei N. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics; Kleinpoppen, Hans

    2013-07-01

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is

  2. Perfect/complete scattering experiments. Probing quantum mechanics on atomic and molecular collisions and coincidences

    International Nuclear Information System (INIS)

    Derives parameters for electrons, photons, atoms, ions, molecules calculated from theory. Delivers the quantum mechanical knowledge of atomic and molecular physics. Presents state-of-the-art experiments in atomic and molecular physics and related theoretical approaches. The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or 'complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment 'complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The 'complete' experiment is, until today, hardly to perform

  3. Atomic and molecular physics using positron accumulation techniques - Summary and a look to the future

    International Nuclear Information System (INIS)

    An overview is presented of current techniques to accumulate and cool large numbers of positrons from a radioactive 22Na source and neon moderator, and the first operation of a new generation of positron accumulator is described. Experiments are discussed that use these techniques to study the interaction of positrons with atoms and molecules at low energies (i.e., below the threshold for positronium formation), including systematic studies of the dependence of positron annihilation on chemical composition. By measuring the Doppler-broadening of gamma-ray annihilation radiation, the quantum state of the annihilating electrons in atoms and molecules was identified. These experiments indicate that positrons annihilate with approximately equal probability on any valence electron. Annihilation with inner shell electrons is infrequent, but is measurable at the level of a few percent in heavier atoms. Measurements of annihilation rates in molecules as a function of positron temperature revealed a number of interesting trends that are briefly discussed. We have developed a new technique to make a cold, bright positron beam. This technique is now being used for a new generation of scattering experiments in the range of energies ≤1 eV. Other possible experiments to study aspects of atomic and molecular physics using positron accumulation techniques and this cold positron beam are briefly discussed

  4. Physics Experiments at the UNEDLabs Portal

    Directory of Open Access Journals (Sweden)

    Juan pedro Sánchez

    2012-01-01

    Full Text Available UNEDLabs is a web portal based on a free, modern, open source, and well-known learning management system: Moodle. This portal joins two theme networks of virtual and remote laboratories (one for Control Engineering and another one for Physics, named AutomatL@bs and FisL@bs, respectively together. AutomatL@bs has been operative for five years now. Following AutomatL@bs’ scheme, FisL@bs was created as a network of remote and virtual laboratories for physics university education via the Internet to offer students the possibility of performing hands-on experiences in different fields of physics in two ways: simulation and real remote operation. Now, both FisL@bs and AutomatL@bs join together (while maintaining their independency into an unique new web portal called UNEDLabs. This work focuses on this new web environment and gives a detailed account of a novel way in Physics to let distance learning students gain practical experience autonomously. This paper explains how the new portal works and the software tools used for creating it. In addition, it also describes the physics experiments which are already operative.

  5. Physics Achievements from the Belle Experiment

    CERN Document Server

    Brodzicka, Jolanta; Chang, Paoti; Eidelman, Simon; Golob, Bostjan; Hayasaka, Kiyoshi; Hayashii, Hisaki; Iijima, Toru; Inami, Kenji; Kinoshita, Kay; Kwon, Youngjoon; Miyabayashi, Kenkichi; Mohanty, Gagan; Nakao, Mikihiko; Nakazawa, Hideyuki; Olsen, Stephen; Sakai, Yoshihide; Schwanda, Christoph; Schwartz, Alan; Trabelsi, Karim; Uehara, Sadaharu; Uno, Shoji; Watanabe, Yasushi; Zupanc, Anze

    2012-01-01

    The Belle experiment, running at the KEKB e+e- asymmetric energy collider during the first decade of the century, achieved its original objective of measuring precisely differences between particles and anti-particles in the B system. After collecting 1000 fb-1 of data at various Upsilon resonances, Belle also obtained the many other physics results described in this article.

  6. Yankee atomic experience with coastdown. Report YAEC-1270

    International Nuclear Information System (INIS)

    This report summarizes Yankee Atomic's operating experience with 19 coastdowns in three different nuclear power plants. The observed effects of coastdown on plant capacity factor, efficiency, maneuverability, and fuel integrity are demonstrated. Calculations of resource requirements and fuel cycle economics for equilibrium cycles show typical savings of 3 to 5% for cycles using coastdown compared to those which produce the same energy without coastdown

  7. Multichannel SQUID systems for particle physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Henry, S. [University of Oxford, Department of Physics, Keble Road, Oxford, OX1 3RH (United Kingdom)]. E-mail: s.henryl@physics.ox.ac.uk; Divakar, U. [University of Oxford, Department of Physics, Keble Road, Oxford, OX1 3RH (United Kingdom); Kraus, H. [University of Oxford, Department of Physics, Keble Road, Oxford, OX1 3RH (United Kingdom); Majorovits, B. [University of Oxford, Department of Physics, Keble Road, Oxford, OX1 3RH (United Kingdom)

    2006-04-15

    We have developed multichannel SQUID systems for two particle physics experiments: a 66-channel system for detector readout in the CRESST dark matter search, and a 12-channel magnetometry system for the CryoEDM neutron electric dipole moment experiment. These different applications have different requirements, for example in the CRESST system it is important to minimise crosstalk, while the CryoEDM system must be shielded from magnetic noise. Future experiments such as the EURECA dark matter project may require systems with a much higher number of channels.

  8. Davisson-Germer Prize in Atomic or Surface Physics Lecture: Exploring Flatland with Cold Atoms

    Science.gov (United States)

    Dalibard, Jean

    2012-06-01

    A two-dimensional Bose fluid is a remarkably rich many-body system, which allows one to revisit several features of quantum statistical physics. Firstly, the role of thermal fluctuations is enhanced compared to the 3D case, which destroys the ordered state associated with Bose-Einstein condensation. However interactions between particles can still cause a superfluid transition, thanks to the Berezinskii-Kosterlitz-Thouless mechanism. Secondly, a weakly interacting Bose fluid in 2D must be scale-invariant, a remarkable feature that manifests itself in the very simple form taken by the equation of state of the fluid. In this talk I will present recent experimental progress in the investigation of 2D atomic gases, which provide a nice illustration of the main features of low dimensional many-body physics.

  9. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  10. Status and perspectives of atomic physics research at GSI: The new GSI accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th. E-mail: t.stoehlker@gsi.de; Backe, H.; Beyer, H.F.; Bosch, F.; Braeuning-Demian, A.; Hagmann, S.; Ionescu, D.C.; Jungmann, K.; Kluge, H.-J.; Kozhuharov, C.; Kuehl, Th.; Liesen, D.; Mann, R.; Mokler, P.H.; Quint, W

    2003-05-01

    A short overview on the results of atomic physics research at the storage ring ESR is given followed by a presentation of the envisioned atomic physics program at the planned new GSI facility. The proposed new GSI facility will provide highest intensities of relativistic beams of both stable and unstable heavy nuclei - up to a Lorentz factor of 24. At those relativistic velocities, the energies of optical transitions, such as for lasers, are boosted into the X-ray region and the high-charge state ions generate electric and magnetic fields of exceptional strength. Together with high beam intensities a range of important experiments can be anticipated, for example electronic transitions in relativistic heavy-ion collisions such as dynamically induced e{sup +}e{sup -} pairs, test of quantum electrodynamics (QED) in strong fields, and ions and electrons in ultra-high intensity femtosecond laser fields.

  11. ALPHA experiment : limit on the charge of antihydrogen atom

    CERN Multimedia

    2016-01-01

    Antimatter continues to intrigue physicists due to its apparent absence in the observable universe. Current theory requires that matter and antimatter should have appeared in equal quantities after the Big Bang, but the Stan- dard Model offers no quantitative explanation for the apparent disappearance of half of the universe. It has recently become possible to study trapped atoms1–4 of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter.

  12. Kaonic atoms studies at DAFNE by the SIDDHARTA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cargnelli, M. [Stefan Meyer Institut of the Austrian Academy od Sciences, Vienna, 1090, Boltzmanngasse 3 (Austria); Bazzi, M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Beer, G. [Dep. of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria B.C. Canada V8W3P6 (Canada); Bombelli, L. [Politecnico di Milano, Dip. di Elettronica e Informazione, Via Ponzio, 34/5, I-20133 Milano (Italy); Bragadireanu, A.M.; Curceanu Petrascu, C. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Fiorini, C.; Frizzi, T. [Politecnico di Milano, Dip. di Elettronica e Informazione, Via Ponzio, 34/5, I-20133 Milano (Italy); Ghio, F.; Girolami, B. [INFN Sez. di Roma I and Instituto Superiore di Sanita I-00161, Roma (Italy); Guaraldo, C. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Hayano, R. [University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo (Japan); Iliescu, M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Ishiwatari, T. [Stefan Meyer Institut of the Austrian Academy od Sciences, Vienna, 1090, Boltzmanngasse 3 (Austria); Iwasaki, M. [RIKEN, Institute of Physical and Chemical Research, Saitama (Japan); Kienle, P. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Physik Departement, Technische Universitaet Muenchen, Garching (Germany); Lechner, P. [PNSensors GmbH, Roennerstr. 28, D-80803 Muenchen (Germany); Levi Sandri, P. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Longoni, A. [Politecnico di Milano, Dip. di Elettronica e Informazione, Via Ponzio, 34/5, I-20133 Milano (Italy); Lucherini, V. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy)] (and others)

    2010-04-01

    The K-barN system at rest makes a sensitive testing ground for chiral SU(3) symmetry in QCD, especially for the explicit symmetry breaking induced by the relatively large mass of the strange quark. At the DA{phi}NE electron-positron collider of Laboratori Nazionali di Frascati we study kaonic atoms, taking advantage of the low-energy kaons from {phi}-mesons decaying nearly at rest. The low-energy antikaon-nucleon interaction in kaonic hydrogen and kaonic deuterium can be investigated under favorable conditions. The DEAR (DA{phi}NE Exotic Atom Research) experiment at LNF delivered the most precise data on kaonic hydrogen up to now. DEAR and its follow-up experiment SIDDHARTA (Silicon Drift Detector for Hadronic Atom Research by Timing Application) are using X-ray spectroscopy of kaonic atoms to measure the strong interaction induced shift and width of the ground state. SIDDHARTA is the first experiment on kaonic deuterium ever, and kaonic hydrogen is remeasured with improved precision. From the shift and width in K{sup -}p and K{sup -}d the isospin-dependent antikaon-nucleon scattering lengths can be determined, quantities essential as constraints for low-energy QCD.

  13. Atoms, molecules and optical physics 2. Molecules and photons - Spectroscopy and collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (Germany)

    2015-09-01

    This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  14. Atoms, molecules and optical physics 2. Molecules and photons - Spectroscopy and collisions

    International Nuclear Information System (INIS)

    This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  15. Digital Electronics for Nuclear Physics Experiments

    Science.gov (United States)

    Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team

    2015-10-01

    Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.

  16. The Collective Vector method in nuclear and atomic physics

    International Nuclear Information System (INIS)

    We present a brief review of the method of the Collective Vector (CV) and its use in conjunction with the Lanczos algorithm (LA). The combination of these two ideas produces a method for contracting super-large hamiltonians (up to 106 x 106) by factors of 1000 or more. The contracted hamiltonians, which we call quasi-hamiltonians, typically have dimensions of the order of 102 x 102 and produce corresponding quasi-spectra with associated quasi-eigenfunctions which reproduce the features of the full microscopic spectrum thru the conservation of the spectral moments. Examples of applications to both nuclear and atomic physics are given demonstrating the convergence properties of the method. The application of the LA/CV approach to the problem of modelling nuclear level densities is described and finally we discuss the possibility of conjoining new collective models of nuclear structure with the LA/CV method. 13 refs., 4 figs

  17. Difference-frequency combs in cold atom physics

    CERN Document Server

    Kliese, Russell; Puppe, Thomas; Rohde, Felix; Sell, Alexander; Zach, Armin; Leisching, Patrick; Kaenders, Wilhelm; Keegan, Niamh C; Bounds, Alistair D; Bridge, Elizabeth M; Leonard, Jack; Adams, Charles S; Cornish, Simon L; Jones, Matthew P A

    2016-01-01

    Optical frequency combs provide the clockwork to relate optical frequencies to radio frequencies. Hence, combs allow to measure optical frequencies with respect to a radio frequency where the accuracy is limited only by the reference signal. In order to provide a stable link between the radio and optical frequencies, the two parameters of the frequency comb must be fixed: the carrier envelope offset frequency $f_{\\rm ceo}$ and the pulse repetition-rate $f_{\\rm rep}$. We have developed the first optical frequency comb based on difference frequency generation (DFG) that eliminates $f_{\\rm ceo}$ by design - specifically tailored for applications in cold atom physics. An $f_{\\rm ceo}$-free spectrum at 1550 nm is generated from a super continuum spanning more than an optical octave. Established amplification and frequency conversion techniques based on reliable telecom fiber technology allow generation of multiple wavelength outputs. In this paper we discuss the frequency comb design, characterization, and optical...

  18. Atomic Physics in the Quest for Fusion Energy and ITER

    International Nuclear Information System (INIS)

    The urgent quest for new energy sources has led developed countries, representing over half of the world population, to collaborate on demonstrating the scientific and technological feasibility of magnetic fusion through the construction and operation of ITER. Data on high-Z ions will be important in this quest. Tungsten plasma facing components have the necessary low erosion rates and low tritium retention but the high radiative efficiency of tungsten ions leads to stringent restrictions on the concentration of tungsten ions in the burning plasma. The influx of tungsten to the burning plasma will need to be diagnosed, understood and stringently controlled. Expanded knowledge of the atomic physics of neutral and ionized tungsten will be important to monitor impurity influxes and derive tungsten concentrations. Also, inert gases such as argon and xenon will be used to dissipate the heat flux flowing to the divertor. This article will summarize the spectroscopic diagnostics planned for ITER and outline areas where additional data is needed.

  19. Collisions near threshold in atomic and molecular physics

    International Nuclear Information System (INIS)

    We review topics of current interest in the physics of electronic, atomic and molecular scattering in the vicinity of thresholds. Starting from phase space arguments, we discuss the modifications of the Wigner law that are required to deal with scattering by Coulomb, dipolar and dispersion potentials, as well as aspects of threshold behaviour observed in ultracold atomic collisions. We employ the tools of quantum defect and semiclassical theories to bring out the rich variety of threshold behaviours. The discussion is then turned to recent progress in understanding threshold behaviour of many-body break-ups into both charged and neutral species, including both Wannier double ionization and three-body recombination in ultracold gases. We emphasize the dominant role that hyperspherical coordinate methods have played in understanding these problems. We assess the effects of external fields on scattering, and the corresponding modification of phase space that alters the Wigner law. Threshold laws in low dimensions and examples of their applications to specific collision processes are discussed. (author)

  20. Nuclear effects in atomic and solid state physics

    Energy Technology Data Exchange (ETDEWEB)

    Belov, Nikolay

    2015-04-15

    Various nuclear effects in atomic systems and in a particular type of solids, namely, in unconventional superconductors, are investigated. The first process considered, internal pair conversion in heavy ions, can play an important role in numerous scattering processes to be examined at existing or upcoming high-energy heavy-ion-accelerator facilities. The rate of nuclear excitation and thus the number of created pairs is found here to be strongly increased by ion planar channeling through a crystal. The time-reversed process of pair conversion, nuclear excitation by resonant positron annihilation, provides an alternative mechanism of positron-matter interaction and constitutes a state-selective way to excite nuclei which is complementary to photo- and Coulomb excitation. Furthermore, weak-interaction effects are examined in the context of parity violation in unconventional p-wave superconductors. We suggest schemes to efficiently enhance the effect and to enable its future experimental study. The considered effects represent new phenomena at the interface of atomic and nuclear physics and quantum electrodynamics, and provide effective ways to investigate fundamental interactions.

  1. An open source digital servo for AMO physics experiments

    CERN Document Server

    Leibrandt, David R

    2015-01-01

    We describe a general purpose digital servo optimized for feedback control of lasers in atomic, molecular, and optical (AMO) physics experiments. The servo is capable of feedback bandwidths up to roughly 1~MHz (limited by the 320~ns total latency); loop filter shapes up to fifth order; multiple-input, multiple-output control; and automatic lock acquisition. The configuration of the servo is controlled via a graphical user interface, which also provides a rudimentary software oscilloscope and tools for measurement of system transfer functions. We illustrate the functionality of the digital servo by describing its use in two example scenarios: frequency control of the laser used to probe the narrow clock transition of $^{27}$Al$^+$ in an optical atomic clock, and length control of a cavity used for resonant frequency doubling of a laser.

  2. Connecting High School Physics Experiences, Outcome Expectations, Physics Identity, and Physics Career Choice: A Gender Study

    Science.gov (United States)

    Hazari, Zahra; Sonnert, Gerhard; Sadler, Philip M.; Shanahan, Marie-Claire

    2010-01-01

    This study explores how students' physics identities are shaped by their experiences in high school physics classes and by their career outcome expectations. The theoretical framework focuses on physics identity and includes the dimensions of student performance, competence, recognition by others, and interest. Drawing data from the Persistence…

  3. Educational reactor-physics experiments with the critical assemble TCA

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsui, Hiroaki; Okubo, Masaaki; Igashira, Masayuki [Tokyo Inst. of Tech. (Japan); Horiki, Oichiro; Suzaki, Takenori

    1997-10-01

    The Tank-Type Critical Assembly (TCA) of Japan Atomic Energy Research Institute is research equipment for light water reactor physics. In the present report, the lectures given to the graduate students of Tokyo Institute of Technology who participated in the educational experiment course held on 26-30 August at TCA are rearranged to provide useful information for those who will implement educational basic experiments with TCA in the future. This report describes the principles, procedures, and data analyses for (1) Critical approach and Exponential experiment, (2) Measurement of neutron flux distribution, (3) Measurement of power distribution, (4) Measurement of fuel rod worth distribution, and (5) Measurement of safety plate worth by the rod drop method. (author)

  4. Compilation of current high energy physics experiments

    International Nuclear Information System (INIS)

    This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary of the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche

  5. LWHCR physics experiments and their interpretation

    International Nuclear Information System (INIS)

    A survey is made of comparisons between calculated and measured integral parameters relevant to the physics design of PuO/sub 2//UO/sub 2/-fueled light water high converter reactors (LWHCR). Mainly considered are experiments conducted to date in the PROTEUS reactor at Wuerenlingen, as also a series of measurements in the SNEAK facility at Karlsruhe. A wide range of standard LWR methods and data sets have been applied to the analysis of some of the neutron balance investigations carried out in the former programme, and discrepancies are found to be very much greater than generally encountered for LWR lattices. This points at the much higher sensitivity of LWHCR physics parameters to shortcomings in the basic nuclear data being used, as also to the need for an even broader and more accurate experimental base for testing LWHCR design calculations. The on-going programmes of integral experiments in France and Switzerland are helping meet the latter requirement. (author)

  6. Underground Muon Physics with the MACRO experiment

    OpenAIRE

    M. SioliUniversity and INFN, Bologna; for the MACRO Collaboration

    2015-01-01

    Underground muon events detected by the MACRO experiment at Gran Sasso have been studied for different purposes. The studies include the vertical muon intensity measurement, multiplicity distribution, lateral and angular muon distribution and searches for substructures inside muon bundles. These analyses have contributed to bring new insights in cosmic ray physics, in particular in the framework of primary cosmic ray composition studies. Moreover, this activity allows the testing and tuning o...

  7. Flavour Physics with High-Luminosity Experiments

    CERN Document Server

    2016-01-01

    With the first dedicated B-factory experiments BaBar (USA) and BELLE (Japan) Flavour Physics has entered the phase of precision physics. LHCb (CERN) and the high luminosity extension of KEK-B together with the state of the art BELLE II detector will further push this precision frontier. Progress in this field always relied on close cooperation between experiment and theory, as extraction of fundamental parameters often is very indirect. To extract the full physics information from existing and future data, this cooperation must be further intensified. This MIAPP programme aims in particular to prepare for this task by joining experimentalists and theorists in the various relevant fields, with the goal to build the necessary tools in face of the challenge of new large data sets. The programme will begin with a focus on physics with non-leptonic final states, continued by semileptonic B meson decays and Tau decays, and on various aspects of CP symmetry violation closer to the end. In addition, in the final ...

  8. An Approach about Simulation Physics Experiments and Instructional Applications

    OpenAIRE

    Yuncheng Li

    2011-01-01

    Simulation physics, as a mode of instructional applications, in physics teaching has been widely used. So instructional design of simulation physics experiments is particularly important problems. This paper focuses on the simulation experiments design in teaching and learning environment.

  9. The Cold Atom Laboratory: a facility for ultracold atom experiments aboard the International Space Station

    Science.gov (United States)

    Aveline, David; CAL Team

    2016-05-01

    Spread across the globe there are many different experiments in cold quantum gases, enabling the creation and study of novel states of matter, as well as some of the most accurate inertial sensors currently known. The Cold Atom Laboratory (CAL), being built at NASA's Jet Propulsion Laboratory (JPL), will be a multi-user facility that will allow the first study of ultracold quantum gases in the microgravity conditions of the International Space Station (ISS). The microgravity environment offers a wealth of advantages for studies of cold atoms, including expansion into extremely weak traps and achieving unearthly cold temperatures. It will also enable very long interaction times with released samples, thereby enhancing the sensitivity of cold atom interferometry. We will describe the CAL mission objectives and the flight hardware architecture. We will also report our ongoing technology development for the CAL mission, including the first microwave evaporation to Bose-Einstein condensation (BEC) on a miniaturized atom chip system, demonstrated in JPL's CAL Ground Testbed. We will present the design, setup, and operation of two experiments that reliably generate and probe BECs and dual-species mixtures of Rb-87 and K-39 (or K-41). CAL is scheduled to launch to the ISS in 2017. The CAL mission is supported by NASA's SLPS and ISS-PO. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract with the National Aeronautics and Space Administration.

  10. Diffraction grating characterisation for cold-atom experiments

    CERN Document Server

    McGilligan, James P; Riis, Erling; Arnold, Aidan S

    2016-01-01

    We have studied the optical properties of gratings micro-fabricated into semiconductor wafers, which can be used for simplifying cold-atom experiments. The study entailed characterisation of diffraction efficiency as a function of coating, periodicity, duty cycle and geometry using over 100 distinct gratings. The critical parameters of experimental use, such as diffraction angle and wavelength are also discussed, with an outlook to achieving optimal ultracold experimental conditions.

  11. Workshop on the use of atomic beams in plasma experiments

    International Nuclear Information System (INIS)

    The material of the workshop entitled 'Use of Atomic Beams in Plasma Experiments', which was organized to summarize the results of the joint research and to give an outlook to the future trends of development in the field is presented. Different topics on plasma diagnostics, plasma impurities, impurity injection, transport theory in plasma and their use in tokamak devices are covered. 18 items are separately indexed for INIS database. (K.A.)

  12. Microprocessors in physics experiments at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Rochester, L.S.

    1981-04-01

    The increasing size and complexity of high energy physics experiments is changing the way data are collected. To implement a trigger or event filter requires complex logic which may have to be modified as the experiment proceeds. Simply to monitor a detector, large amounts of data must be processed on line. The use of microprocessors or other programmable devices can help to achieve these ends flexibly and economically. At SLAC, a number of microprocessor-based systems have been built and are in use in experimental setups, and others are now being developed. This talk is a review of existing systems and their use in experiments, and of developments in progress and future plans.

  13. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability

    International Nuclear Information System (INIS)

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, α = (24.33 ± 0.16)*10-30 m3, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  14. Horia Hulubei, father founder of the Institute of Atomic Physics

    International Nuclear Information System (INIS)

    Horia Hulubei (b. November 15, 1896, Jassy, d. November 22, 1972, Bucharest) enrolled in 1915 at the University of Jassy, but his studies were interrupted by the WW I. He volunteered first on the Eastern Front, and then in France as a fighter pilot. Wounded and decorated with Legion d'Honneur, he came back to Romania and worked in the field of civil aviation. He graduated in 1926 from the same University with Magna cum Laudae. In 1927, Hulubei went in Paris with a fellowship at the Physical Chemistry Laboratory of Sorbonne and took his Ph. D. in 1933 with Jean Perrin in the field of X-rays spectroscopy, a domain in which he became one of the best specialists of the time. His papers treat a large area of subjects from the multiple Compton effect (predicted and experimentally discovered by him), Raman spectra, the X-ray spectra of gases (obtained for the first time by him in collaboration with Mademoiselle Yvette Cauchois), the identification of elements by X spectroscopy etc. Winner of two prizes of Paris Academy of Sciences, he was elected Corresponding Member of this prestigious French institution. He was also a Directeur de Recherches at the French National Centre of Scientific Research (CNRS). Back in Romania at the beginning of WW II, Hulubei became Professor of Physics, and in 1941, Rector of Bucharest University. After the war, Professor Hulubei dedicated himself to the organization of Romanian research in the field of Physics. The foundation of the Institute of Atomic Physics (IAP) in 1949 in Bucharest was the realization of his dream to build a modern institution of Western type in his own country, tightly connected with the rest of scientific world by international cooperation. Horia Hulubei was practically removed from his directorship of IAP in 1968, following his nomination in a honorary duty, but he remained in a permanent contact with the people formed by him and with the directions of research initiated by him and continued by his followers. The

  15. Optimization of atomic beam sources for polarization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Martin; Nass, Alexander; Stroeher, Hans [IKP, Forschungszentrum Juelich (Germany)

    2013-07-01

    For experiments with spin-polarized protons and neutrons a dense target is required. In current atomic beam sources an atomic hydrogen or deuterium beam is expanded through a cold nozzle and a system of sextupole magnets and RF-transition units selects a certain hyperfine state. The achievable flux seems to be limited to about 10{sup 17} particles per second with a high nuclear polarization. A lot of experimental and theoretical effort has been undertaken to understand all effects and to increase the flux. However, improvements have remained marginal. Now, a Monte Carlo simulation based on the DSMC part of the open source C++ library OpenFOAM is set up in order to get a better understanding of the flow and to optimize the various elements. It is intended to include important effects like deflection from magnetic fields, recombination on the walls and spin exchange collisions in the simulation and make quantitative predictions of changes in the experimental setup. The goal is to get a tool that helps to further increase the output of an atomic beam source. So far, a new binary collision model, magnetic fields, RF-transition units and a tool to measure the collision age are included. The next step will be to couple the whole simulation with an optimization algorithm implementing Adaptive Simulated Annealing (ASA) in order to automatically optimize the atomic beam source.

  16. A Data Readout Approach for Physics Experiment

    CERN Document Server

    Xi-Ru, Huang; Li-Wei, Gao; Jia-Jun, Zheng

    2014-01-01

    With the increasing physical event rate and number of electronic channels, traditional readout scheme meets the challenge of improving readout speed caused by the limited bandwidth of crate backplane. In this paper, a high-speed data readout method based on Ethernet is designed for each module to have capability of transmitting data to DAQ. Features of explicitly parallel data transmitting and distributed network architecture make the readout system has advantage of adapting varying requirements of particle physics experiments. Furthermore, to guarantee the readout performance and flexibility, a standalone embedded CPU system is utilized for network protocol stack processing. To receive customized data format and protocol from front-end electronics, a field programmable gate array (FPGA) is used for logic reconfiguration. To optimize the interface and improve the data swap speed between CPU and FPGA, a sophisticated method based on SRAM is presented in this paper. For the purpose of evaluating this high-speed...

  17. Proceedings of the nineteenth symposium of atomic energy research on WWER reactor physics and reactor safety

    International Nuclear Information System (INIS)

    The present volume contains 55 papers, presented on the nineteenth symposium of atomic energy research, held in Varna, Bulgaria, 21-25 September 2009. The papers are presented in their original form, i. e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Fuel Management, Spectral and Core Calculations, Core Surveillance and Monitoring, CFD Analysis, Reactor Dynamics Thermal Hydraulics and Safety Analysis, Physical Problems of Spent Fuel Decommissioning and Radwaste, Actinide Transmutation and Spent Fuel Disposal, Core Operation, Experiments and Code Validation - according to the presentation sequence on the Symposium. (Author)

  18. ELASR - An electrostatic storage ring for atomic and molecular physics at KACST

    Science.gov (United States)

    El Ghazaly, Mohamed O. A.

    A new ELectrostAtic Storage Ring (ELASR) has been designed and built at the King Abdulaziz City for Science and Technology (KACST), in Riyadh, Saudi Arabia. It was developed to be the core of a new storage ring laboratory for atomic and molecular physics at KACST. ELASR follows the standard design of the pioneering storage ring ELISA and it thereby features a racetrack single-bend shaped ring. Complementary simulation code packages were used to work out the design under the requirements of the projected experiments. This paper reports a short description of the ELASR storage ring through an overview of its design and construction.

  19. MISSE 6 Stressed Polymers Experiment Atomic Oxygen Erosion Data

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Mitchell, Gianna G.; Yi, Grace T.; Guo, Aobo; Ashmeade, Claire C.; Roberts, Lily M.; McCarthy, Catherine E.; Sechkar, Edward A.

    2013-01-01

    Polymers and other oxidizable materials used on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded away by reaction with atomic oxygen (AO). For spacecraft design, it is important to know the LEO AO erosion yield, Ey (volume loss per incident oxygen atom), of materials susceptible to AO erosion. The Stressed Polymers Experiment was developed and flown as part of the Materials International Space Station Experiment 6 (MISSE 6) to compare the AO erosion yields of stressed and non-stressed polymers to determine if erosion is dependent upon stress while in LEO. The experiment contained 36 thin film polymer samples that were exposed to ram AO for 1.45 years. This paper provides an overview of the Stressed Polymers Experiment with details on the polymers flown, the characterization techniques used, the AO fluence, and the erosion yield results. The MISSE 6 data are compared to data for similar samples flown on previous MISSE missions to determine fluence or solar radiation effects on erosion yield.

  20. A comparison of dynamic atomic force microscope set-ups for performing atomic scale manipulation experiments

    International Nuclear Information System (INIS)

    We present the results of calculations performed to investigate the process of single-atom manipulation with the non-contact atomic force microscope comparing the two most common experimental set-ups: a conventional large amplitude silicon cantilever and a small amplitude quartz tuning fork. The manipulation of a model system-an oxygen vacancy in the MgO(001) surface by a single vertical approach at a fixed lateral position-is simulated for each set-up using a detailed and realistic atomistic model that accounts for temperature and the tip trajectory, and it is found that both approaches produce the manipulation event in approximately the same way. The behaviour of the tip dynamics and the resulting response of the instrumentation to the manipulation event is studied using a virtual dynamic atomic force microscope that includes a realistic description of noise for each type of set-up. The results of these calculations indicate how a single-atom manipulation can be performed and recognized by each type of experiment

  1. High temperature facility for atomic physics studies. Final report

    International Nuclear Information System (INIS)

    The results of a program designed to develop a laser heated plasma sample for atomic physics studies in the 30 to 100 eV range of electron temperature and the 3 x 1017 to 1018 cm-3 range in electron density are presented. The approach used was discussed in detail in Mathematical Sciences Northwest, Inc., (MSNW) Proposal 1660, that is, the laser breakdown mode of heating in a slow solenoid. An extensive rework of the plasma sample facility was done in order to use this mode of heating. Specifically, a new solenoid magnet was constructed to allow higher field operation and the plasma chamber was modified to allow the use of puff filling orifices and small bore tube liners. The vacuum system and focussing optics were changed to allow the use of an on-axis Cassagranian system capable of focussing the laser radiation to a nearly diffraction limited spot as is necessary when heating through a small aperture. The 10 liter CO2 laser optics were charged to an unstable oscillator configuration and additional windows were provided into the optical cavity for alignment purposes

  2. Heavy flavor physics with the CMS experiment

    Directory of Open Access Journals (Sweden)

    Chiochia Vincenzo

    2012-07-01

    Full Text Available Thanks to the excellent tracking and muon identification performance, combined with a flexible trigger system, the CMS experiment at the Large Hadron Collider is conducting a rich and competitive program of measurements in the field of heavy flavor physics. We review the status of b-quark production cross section measurements in inclusive and exclusive final states, the measurement of B hadron angular correlations, the search for rare Bs0 and B0 decays to dimuons, and the observation of the X(3872 resonance.

  3. Tokamak physics experiment: Diagnostic windows study

    International Nuclear Information System (INIS)

    We detail the study of diagnostic windows and window thermal stress remediation in the long-pulse, high-power Tokamak Physics Experiment (TPX) operation. The operating environment of the TPX diagnostic windows is reviewed, thermal loads on the windows estimated, and cooling requirements for the windows considered. Applicable window-cooling technology from other fields is reviewed and its application to the TPX windows considered. Methods for TPX window thermal conditioning are recommended, with some discussion of potential implementation problems provided. Recommendations for further research and development work to ensure performance of windows in the TPX system are presented

  4. Atomic physics with highly-charged heavy ions at the GSI future facility: The scientific program of the SPARC collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Gumberidze, A. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany)]. E-mail: a.gumberidze@gsi.de; Bosch, F. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Braeuning-Demian, A. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Hagmann, S. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Kuehl, Th. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Liesen, D. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden); Stoehlker, Th. [GSI, Plankstr. 1, D-64291 Darmstadt (Germany)

    2005-05-01

    The proposed new international accelerator Facility for Antiproton and Ion Research (FAIR) will open up exciting and far-reaching perspectives for atomic physics research in the realm of highly-charged heavy ions: it will provide the highest intensities of relativistic beams of both stable and unstable heavy nuclei. In combination with the strongest possible electromagnetic fields produced by the nuclear charge of the heaviest nuclei, this will allow to extend atomic spectroscopy up to the virtual limits of atomic matter. Based on the experience and results already achieved at the experimental storage ring (ESR), a substantial progress in atomic physics research has to be expected in this domain, due to a tremendous improvement of intensity, energy and production yield of both stable and unstable nuclei.

  5. Physical scale experiments on torrential filter structures

    Science.gov (United States)

    Chiari, Michael; Moser, Markus; Trojer, Martin; Hübl, Johannes

    2016-04-01

    In the framework of the INTERREG Project "SedAlp" physical scale model experiments are carried out in the hydraulic laboratory of the Institute of Mountain Risk Engineering at the University of Life Sciences in Vienna in order to optimize torrent protection structures. Two different types of check dams are investigated. A screen-dam with inclined vertical beams is compared with a beam-dam with horizontal beams. The experiments evaluate the variation of sediment transport of these structures including the influence of coarse woody debris. Therefore the distance between the steel elements can be adjusted to show their ability to filter sediment. The physical scale of the experiments is 1:30. All experimental runs are Froude scaled. Both dams are tested in elongated and pear-shaped sediment retention basins in order to investigate the shape effect of the deposition area. For a systematic comparison of the two check dams experiments with fluvial bedload transport are made. First a typical hydrograph for an extreme flood with unlimited sediment supply is modelled. A typical torrential sediment mixture with a wide grain-size distribution is fed by a conveyor belt according the transport capacity of the upstream reach. Then the deposition is scanned with a laser-scan device in order to analyse the deposition pattern and the deposited volume. Afterwards a flood with a lower reoccurrence period without sediment transport from upstream is modelled to investigate the ability of the protection structure for self-emptying. To investigate the influence of driftwood on the deposition behaviour experiments with logs are made. Different log diameters and lengths are added upstream the basin. The results show, that the deposition during the experiments was not controlled by sorting-effects at the location of the dam. The deposition always started from upstream, where the transport capacity was reduced due to the milder slope and the widening of the basin. No grain sorting effects

  6. The laboratory experience in introductory physics courses

    Science.gov (United States)

    Di Stefano, Maria C.

    1997-03-01

    The last two decades or so have witnessed intense efforts to improve the teaching and learning of physics. Scholarly studies have provided the grounding for many projects which reform the structure of introductory courses. A number of these innovations, however, are resource intensive, or depend on the ability to introduce changes in areas which are beyond the control of the faculty (e.g., scheduling), thus inhibiting their implementation. An alternative strategy that overcomes these obstacles is to modify the nature of the laboratory experience (a component that practically nobody disputes is an essential part of the introductory course), to provide hands-on learning opportunities that differ from the traditional "follow-this-recipe-to-verify-this-law" approach. I have chosen to implement a variety of activities that support the overall objectives of the course: developing conceptual understanding and transferable skills, and providing practice in the ways scientists actually do science. Given the audience in this two-semester, algebra-based course, mostly biology majors and pre-professionals (health-related careers, such as medicine, physical therapy, and veterinary), these goals were identified as the most important and lasting contribution that a physics course can make to the students intellectual development. I offer here examples of the types of hands on activities that I have implemented, organized for the sake of this presentation in four rather loose categories, depending on which subset of the course objectives the activities mostly address: self-designed lab activities, discussion of demo-type activities, building concepts from simple to complex, and out-of-lab physical phenomena.

  7. An interface between the nuclear physics and the atomic physics; how to measure nuclear times observing atomic transitions

    International Nuclear Information System (INIS)

    Recent observations are related in which processes resulting from the ionization in ion-atom collisions are observed in coincidence with nuclear processes (where the incidence ion nucleus hits the target atom nucleus). The delay introduced by the nuclear reaction contaminates the results of the atomic collision and manifest itself either in the X rays (positrons) emitted in the joined atom system or in the X rays (Auger electrons) emitted by separeted atoms, after the collision. Both effects serve to obtain information on the reaction times (in general much less then 10-16 sec). Following this line, other experimental possibilities are discussed. (L.C.)

  8. Optimization of atomic beam sources for polarization experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gaisser, Martin; Nass, Alexander; Stroeher, Hans [IKP, Forschungszentrum Juelich (Germany)

    2012-07-01

    For experiments with spinpolarized protons and neutrons a dense target is required. In current atomic beam sources an atomic hydrogen or deuterium beam is expanded through a cold nozzle and a system of sextupole magnets and RF-transition units selects a certain hyperfine state. The achievable flux seems to be limited to about 10{sup 17} particles per second with a high nuclear polarization. A lot of experimental and theoretical effort has been undertaken to understand all effects and to increase the flux. However, improvements have remained marginal. Now, a Monte Carlo simulation based on the DSMC part of the open source C++ library OpenFOAM is set up in order to get a better understanding of the flow and to optimize the various elements. The goal is to include important effects like deflection from a magnetic field, recombination on the walls and spin exchange collisions in the simulation and make quantitative predictions of changes in the experimental setup. The goal is to get a tool that helps to further increase the output of an atomic beam source.

  9. Optimization of atomic beam sources for polarization experiments

    International Nuclear Information System (INIS)

    For experiments with spinpolarized protons and neutrons a dense target is required. In current atomic beam sources an atomic hydrogen or deuterium beam is expanded through a cold nozzle and a system of sextupole magnets and RF-transition units selects a certain hyperfine state. The achievable flux seems to be limited to about 1017 particles per second with a high nuclear polarization. A lot of experimental and theoretical effort has been undertaken to understand all effects and to increase the flux. However, improvements have remained marginal. Now, a Monte Carlo simulation based on the DSMC part of the open source C++ library OpenFOAM is set up in order to get a better understanding of the flow and to optimize the various elements. The goal is to include important effects like deflection from a magnetic field, recombination on the walls and spin exchange collisions in the simulation and make quantitative predictions of changes in the experimental setup. The goal is to get a tool that helps to further increase the output of an atomic beam source.

  10. Status and perspectives of atomic physics research at GSI : The new GSI accelerator project

    NARCIS (Netherlands)

    Stolker, T; Backe, H; Beyer, HF; Brauning-Demian, A; Hagmann, S; Ionescu, DC; Jungmann, K; Kluge, HJ; Kozhuharov, C; Kuhl, T; Liesen, D; Mann, R; Mokler, PH; Quint, W; Bosch, F.M.

    2003-01-01

    A short overview on the results of atomic physics research at the storage ring ESR is given followed by a presentation of the envisioned atomic physics program at the planned new GSI facility. The proposed new GSI facility will provide highest intensities of relativistic beams of both stable and uns

  11. Analytical calculations of scattering lengths in atomic physics

    International Nuclear Information System (INIS)

    We describe a method for evaluating analytical long-range contributions to scattering lengths for some potentials used in atomic physics. We assume that an interaction potential between colliding particles consists of two parts. The form of a short-range component, vanishing beyond some distance from the origin (a core radius), need not be given. Instead, we assume that a set of short-range scattering lengths due to that part of the interaction is known. A long-range tail of the potential is chosen to be an inverse power potential, a superposition of two inverse power potentials with suitably chosen exponents or the Lent potential. For these three classes of long-range interactions a radial Schrodinger equation at zero energy may be solved analytically with solutions expressed in terms of the Bessel, Whittaker and Legendre functions, respectively. We utilize this fact and derive exact analytical formulae for the scattering lengths. The expressions depend on the short-range scattering lengths, the core radius and parameters characterizing the long-range part of the interaction. Cases when the long-range potential (or its part) may be treated as a perturbation are also discussed and formulae for scattering lengths linear in strengths of the perturbing potentials are given. It is shown that for some combination of the orbital angular momentum quantum number and an exponent of the leading term of the potential the derived formulae, exact or approximate, take very simple forms and contain only polynomial and trigonometric functions. The expressions obtained in this paper are applicable to scattering of charged particles by neutral targets and to collisions between neutrals. The results are illustrated by accelerating convergence of scattering lengths computed for e--Xe and Cs-Cs systems. (author)

  12. Pre-service physics teachers' ideas on size, visibility and structure of the atom

    International Nuclear Information System (INIS)

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of theories regarding the atom they will bring into their own classrooms. Six tasks were developed, comprising size, visibility and structure of the atom. These tasks carried out by pre-service physics teachers were examined by content analysis and six categories were determined. These are size, visibility, subatomic particles, atom models, electron orbit and electron features. Pre-service physics teachers' ideas about the atom were clarified under these categories.

  13. International research work experience of young females in physics

    CERN Document Server

    Choi, Serene H -J; Roelofs, Susan H; Alvarez-Elizondo, Martha B; Nieminen, Timo A

    2011-01-01

    International research work for young people is common in physics. However, work experience and career plan of female workers in physics are little studied. We explore them by interviewing three international female workers in physics.

  14. Many-body processes in atomic and molecular physics

    International Nuclear Information System (INIS)

    This report discusses the following topics: Dynamics of Multiphoton Excitation in Rydberg Atoms; Nonlinear Schrodinger Equation and Dissipative Quantum Dynamics in Periodic Fields; Density Matrix Formulation of Complex Geometric Phases in Dissipative Systems; and A. C. Stark Shifts of Excited States of Atoms in Strong Fields

  15. Other physics experiments at the Homestake Mine

    International Nuclear Information System (INIS)

    The Homestake Gold Mine presently houses the Brookhaven solar neutrino experiment and a 300-ton water Cerenkov detector at a depth of 4200 meters water equivalent. The Cerenkov detector has been used to study nucleon decay, multiple muons, and neutrino bursts. An array of liquid scintillator, with surface area of 130 m2, is presently being constructed to measure magnetic monopoles, neutrino oscillations, underground muons, and neutrino bursts. At the same time, a 1 km2 extensive air shower array is being built on the surface in order to measure the high energy cosmic ray composition with simultaneous surface and underground shower measurements. Future plans call for a 1406-ton liquid scintillator Tracking Spectrometer to measure nucleon decay, n-anti n transitions, and the low energy cosmic ray neutrino spectrum. We describe the present results and the possibilities for physics other than nucleon decay in the nucleon decay detectors

  16. Automatically processing physical data from LHD experiments

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, M., E-mail: emoto.masahiko@nifs.ac.jp; Ida, K.; Suzuki, C.; Yoshida, M.; Akiyama, T.; Nakamura, Y.; Sakamoto, R.; Yokoyama, M.; Yoshinuma, M.

    2014-05-15

    Physical data produced by large helical device (LHD) experiments is supplied by the Kaiseki server, and registers more than 200 types of diagnostic data. Dependencies exist amongst the data; i.e., in many cases, the calculation of one data requires other data. Therefore, to obtain unregistered data, one needs to calculate not only the diagnostic data itself but also the dependent data; however, because the data is registered by different scientists, each scientist must separately calculate and register their respective data. To simplify this complicated procedure, we have developed an automatic calculation system called AutoAna. The calculation programs of AutoAna are distributed on a network, and the number of such programs can be easily increased dynamically. Our system is therefore scalable and ready for substantial increases in the size of the target data.

  17. Microstructures for physics and chemistry experiments

    International Nuclear Information System (INIS)

    For the past 15 years we have been using integrated circuit (IC) technology to fabricate targets and diagnostic devices for physics and chemistry experiments at LLNL. Some of the features that make this technology attractive for this purpose are: the advanced state of computer aided design which makes arrays and design variation possible, the ability to print and etch feature sizes in the micron and sub-micron range, the purity of the materials used, the ample supply of equipment and procedures associated with the IC industry. Examples of the more popular devises include x-ray transmissive windows, diffraction grating, Fresnel zone plates, resolution and alignment targets, small apertures, laser targets, field emission points, and microchannel coolers. This paper discusses the fabrication of these devices and show several examples

  18. Proceedings of the workshop on atomic physics with fast heavy-ion beams

    International Nuclear Information System (INIS)

    The Workshop on Atomic Physics with Fast Heavy-Ion Beams was held in the Physics Division, Argonne National Laboratory on January 20 and 21, 1983. The meeting brought together approx. 50 practitioners in the field of accelerator-based atomic physics. The workshop was held to focus attention on possible areas of atomic physics research which would benefit from use of the newest generation of accelerators designed to produce intense high-quality beams of fast heavy ions. Abstracts of individual paper were prepared separately for the data base

  19. Controlled Space Physics Experiments using Laboratory Magnetospheres

    Science.gov (United States)

    Mauel, M. E.; Kesner, J.; Garnier, D.

    2013-12-01

    Modern society's reliance on space-based platforms for a variety of economic and geopolitical purposes makes understanding the physics of the magnetosphere and "space weather'' one of the most important applications of plasma science. During the past decade, results from the CTX and LDX laboratory magnetospheres and from the RT-1 device at University of Tokyo, we have developed techniques to explore space physics using controlled experiments in laboratory magnetospheres. This presentation briefly reviews observations from the laboratory magnetospheres at Columbia University and MIT, including adiabatic drift-resonant transport, low-frequency MHD turbulence, and the formation of high-beta plasmas with profiles similar to Earth's inner magnetosphere. First principle validation of ``whole plasma'' space weather models have been completed in relevant magnetic geometry, including the spectrum and dynamics of turbulence successfully modeled with nonlinear bounce-averaged gyrokinetic simulations. Plans to explore Alfvénic dynamics and whistler wave trapping are discussed through the achievement of higher-density plasmas using radio-frequency heating. Photographs of the laboratory magnetospheres located at MIT (top) and Columbia University (bottom).

  20. Industry roles in the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    The Tokamak Physics Experiment (TPX) is the first major fusion project opportunity in many years for US industry. Both the TPX management and the Department of Energy's Office of Fusion Energy are committed to creating industry roles that are integrated throughout the project and that appropriately use the capabilities they offer. To address industry roles in TPX it is first appropriate to describe the collaborative national approach taken for this program. The Director of the Princeton Plasma Physics Laboratory (PPPL) was asked by DOE to set up this national team structure, and the current senior management positions and delegated responsibilities reflect that approach. While reporting lines and delegated roles are clear in the organization chart for TPX, one way to view, it, different from that of the individuals responsible upward through this management structure for various elements of the project, is through institutional responsibilities to the senior management team. In this view the management team relies on several national laboratories, each using industry contracts for major sub-systems and components, to execute the project. These responsibilities for design and for contracting are listed, showing that all major contracts will come through three national laboratories, forming teams for their responsible activities

  1. The proceeding of the 15th national symposium on atomic physics and nuclear physics and the 8th annual meeting an modern physics

    International Nuclear Information System (INIS)

    It is the proceedings of the 15th national symposium on atomic physics and nuclear physics and the 8th annual meeting on modern physics. The symposium was held on Jun, 27-31, 2004, in Guangzhou, China. 30 papers are presented in this symposium. Some of them related with nuclear physics

  2. Physics of leptoquarks in precision experiments and at particle colliders

    CERN Document Server

    Doršner, I; Greljo, A; Kamenik, J F; Košnik, N

    2016-01-01

    We present a comprehensive review of physics effects generated by leptoquarks (LQs), i.e., hypothetical particles that can turn quarks into leptons and vice versa, of either scalar or vector nature. These considerations include discussion of possible completions of the Standard Model that contain LQ fields. The main focus of the review is on those LQ scenarios that are not problematic with regard to proton stability. We accordingly concentrate on the phenomenology of light leptoquarks that is relevant for precision experiments and particle colliders. Important constraints on LQ interactions with matter are derived from precision low energy observables such as electric dipole moments, (g-2) of charged leptons, atomic parity violation, neutral meson mixing, Kaon, B, and D meson decays, etc. We provide a general analysis of indirect constraints on LQ Yukawa interactions to make statements that are as model independent as possible. We address complementary constraints that originate from electroweak precision mea...

  3. Specializing and upgrading (single bunch) of AR and atomic physics: photo excitation/ionization of laser exciting atom, TOF measurement of photoion and photoelectron, etc

    International Nuclear Information System (INIS)

    By RF 2.5 GeV ring, many active measurements such as photoexcitation and photoionization of atom, photoion and adsorption of rare gas, photoelectron of metal vapor were investigated. Then, TOF measurement of photoion and photoionization of ion have been studied and good results were obtained. But the experiments of atom and molecule have not been observed by AR ring, because that many works of atomic physics were studied by the vacuum ultraviolet and soft x-ray field, and RF was easy to use. With specializing and upgrading of Ar, we discussed the atomic physical experiment using AR. By laser ablation, odd parity and even parity resonance of Li and the change of oscillator strength distribution of Ba were observed. Many problems were proposed on TOF measurement of photoion such as escape of the light element, recombination of multiion, thermal ion and the ratio of pulse width/period. To solve these problems, the electron start-ion stop method and the photon start-ion stop method were suggested. TOF measurement of photoelectron has features such as (1) the simultaneous measurement of the wide range of energy, (2) good character in the low energy field and (3) constant background. (S.Y.)

  4. Physics Results of the LHCf Experiment

    CERN Document Server

    Tricomi, Alessia

    2014-01-01

    The LHCf experiment has been designed to precisely measure very forward neutral particle spec- tra produced in the high energy hadron-hadron collisions at LHC up to an energy of 14 TeV in the center of mass system. These measurements are of fundamental importance to calibrate the Monte Carlo models widely used in the high energy cosmic ray (HECR) field, up to an equivalent laboratory energy of the order of 10 17 eV. The experiment has taken data in p-p collisions at √ s = 0 . 9 TeV, √ s = 2 . 76 TeV and √ s = 7 TeV as well as in p-Pb collisions at √ s = 5 TeV. In this paper the most up-to-date results on the inclusive photon spectra, π 0 and neutron spectra measured by LHCf are reported. Comparison of these spectra with the model expectations and the impact on high energy cosmic ray (HECR) Physics are discussed. In addition, perspectives for future analyses as well as the program for the next data taking period will be discussed.

  5. Physics evaluation of compact tokamak ignition experiments

    International Nuclear Information System (INIS)

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/2/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs

  6. An all-optical vector atomic magnetometer for fundamental physics applications

    Science.gov (United States)

    Wurm, David; Mateos, Ignacio; Zhivun, Elena; Patton, Brian; Fierlinger, Peter; Beck, Douglas; Budker, Dmitry

    2014-05-01

    We have developed a laboratory prototype of a compact all-optical vector magnetometer. Due to their high precision and absolute accuracy, atomic magnetometers are crucial sensors in fundamental physics experiments which require extremely stable magnetic fields (e.g., neutron EDM searches). This all-optical sensor will allow high-resolution measurements of the magnitude and direction of a magnetic field without perturbing the magnetic environment. Moreover, its absolute accuracy makes it calibration-free, an advantage in space applications (e.g., space-based gravitational-wave detection). Magnetometry in precision experiments or space applications also demands long-term stability and well-understood noise characteristics at frequencies below 10-4 Hz. We have characterized the low-frequency noise floor of this sensor and will discuss methods to improve its long-time performance.

  7. Physics Experiments at the Agesta Power Station

    International Nuclear Information System (INIS)

    Part A. Dynamic measurements have been performed at the Aagesta reactor at power levels from 0.3 to 65 MW(th). The purposes of the experiments have been both to develop experimental methods and equipment for the dynamic studies and to measure the dynamic characteristics of the reactor in order to check the dynamic model. The experiments have been performed with four different perturbation functions: trapezoidal and step functions and two types of periodic multifrequency signals. Perturbations were introduced in the reactivity and in the load. The recordings were made of the responses of nuclear power, coolant inlet and outlet temperature and control rod position. The results are presented as step responses and transfer functions (Bode diagrams). Inmost cases the relative accuracy is ± 0.5 dB in amplitude and ± 5 deg in phase. The results from the experiments in general show rather good agreement with the results obtained from a dynamic model, which successively has been improved. Experience on reactor noise analysis based on measurements in the Agesta power reactor is discussed. It is shown that the noise measurements have given complementary dynamic information of the reactor. Part B. Static measurements of the physics parameters in the Agesta reactor are carried out to confirm theoretical methods for reactor calculations and to form a good basis for safe operation of the reactor. The reactivity worth of groups of control rods are determined with different methods and compared with calculations with the three-dimensional code HETERO. The excess reactivity as a function of burn up is obtained from the control rod positions. The temperature coefficient of the moderator is measured by lowering the moderator temperature at constant power and observing the change in control rod insertion. As burn up increases the experiments are repeated in order to follow the changes in the coefficient. The xenon poisoning effects are measured by changing the power level and

  8. Casimir effects in atomic, molecular, and optical physics

    CERN Document Server

    Babb, James F

    2010-01-01

    The long-range interaction between two atoms and the long-range interaction between an ion and an electron are compared at small and large intersystem separations. The vacuum dressed atom formalism is applied and found to provide a framework for interpretation of the similarities between the two cases. The van der Waals forces or Casimir-Polder potentials are used to obtain insight into relativistic and higher multipolar terms.

  9. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude

    2009-10-28

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  10. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    International Nuclear Information System (INIS)

    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  11. Complete experiments in photoionization of atoms and molecules

    International Nuclear Information System (INIS)

    Full text: The complete experiment is an ultimate goal of many studies. It gives the way to check the quality of existing theories and to get the deepest insight into the nature of processes. For many years it was believed that the complete experiment in photoionization of atoms in the electric dipole approximation can be performed by measuring the angular distribution and spin polarization of photoelectrons, and there were numerous studies in that direction. Recently it was discovered that the spin polarization parameters are not independent, and for the complete experiment in a general case one needs to know in addition the state of polarization of the residual ion. Examples of several complete experiments will be presented, together with the ways to simplify the problem. Vice versa, the complete experiments in photoionization of molecules were considered for a long time as a formidable problem due to the necessity to take into account the contribution of many partial waves. The fast progress in experimental technique made it possible to measure photoelectron angular distributions for fixed-in-space molecules with circularly and linearly polarized light. That allowed extracting simultaneously up to 16 dipole matrix elements and phase shift differences from the measured photoelectron angular distributions. The crucial problem in molecules is a manifold of solutions of the fitting procedure. The use in addition of other experimental data like the angular asymmetry parameter bet a and the ratio of pi to sigma symmetry resolved cross sections made it possible to select a single solution or at least to restrict substantially the number of possible solutions. The examples of the most recent complete experiments for NO, CO, and N2 molecules will be presented and comparison with existing theories discussed

  12. Coherent backscattering of light by cold atoms: theory meets experiment

    OpenAIRE

    Labeyrie, Guillaume; Delande, Dominique; Mueller, Cord A.; Miniatura, Christian; Kaiser, Robin

    2002-01-01

    Coherent backscattering (CBS) of quasi-resonant light by cold atoms presents some specific features due to the internal structure of the atomic scatterers. We present the first quantitative comparison between the experimentally observed CBS cones and Monte-Carlo calculations which take into account the shape of the atomic cloud as well as the internal atomic structure.

  13. Coherent backscattering of light by cold atoms: theory meets experiment

    International Nuclear Information System (INIS)

    Coherent backscattering (CBS) of quasi-resonant light by cold atoms presents some specific features due to the internal structure of the atomic scatterers. We present the first quantitative comparison between the experimentally observed CBS cones and Monte Carlo calculations which take into account the shape of the atomic cloud as well as the internal atomic structure. (authors)

  14. AGS experiments in nuclear/QCD physics at medium energies

    Energy Technology Data Exchange (ETDEWEB)

    Lo Presti, P.

    1998-07-01

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments.

  15. AGS experiments in nuclear/QCD physics at medium energies

    International Nuclear Information System (INIS)

    This report contains a diagram of the experimental setup for each experiment as well as giving a brief discussion of its purpose and list of collaborators for the experiment. Thirty-one experiments in the areas of nuclear physics and particle physics are covered. It concludes with a list of publications of the AGS experiments

  16. Industry roles in the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    There are several distinguishing features of the Tokamak Physics Experiment (TPX) to be found in the TPX program and in the organizations for constructing and operating the machine. Programmatically, TPX addresses several issues critical to the viability of magnetic fusion power plants. Organizationally, it is a multi-institutional partnership to construct and operate the machine and carry out its program mission. An important part of the construction partnership is the integrated industrial responsibility for design, R ampersand D, and construction. The TPX physics design takes advantage of recent research on advanced tokamak operating modes achieved for time scales of the order of seconds that are consistent with continuous operation. This synergism of high performance (higher power density) modes with plasma current driven mostly by internal pressure (boot-strap effect) points toward tokamak power plants that will be cost-competitive and operate continuously. A large fraction of the project is subcontracted to industry. By policy, these contracts are at a high level in the project breakdown of work, giving contractors much of the overall responsibility for a given major system. That responsibility often includes design and R ampersand D in addition to the fabrication of the system in question. Each contract is managed through one of three national laboratories: PPPL, LLNL, and ORNL. Separate contracts for system integration and construction management round out the industry involvement in the project. This integrated, major responsibility attracts high-level corporate attention within each company, which are major corporations with long-standing interest in fusion. Through the contracts already established on the TPX project, a new standard for industry involvement in fusion has been set, and these industries will be well prepared for future fusion projects

  17. Theoretical Atomic Physics code development II: ACE: Another collisional excitation code

    International Nuclear Information System (INIS)

    A new computer code for calculating collisional excitation data (collision strengths or cross sections) using a variety of models is described. The code uses data generated by the Cowan Atomic Structure code or CATS for the atomic structure. Collisional data are placed on a random access file and can be displayed in a variety of formats using the Theoretical Atomic Physics Code or TAPS. All of these codes are part of the Theoretical Atomic Physics code development effort at Los Alamos. 15 refs., 10 figs., 1 tab

  18. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    International Nuclear Information System (INIS)

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper

  19. Division of Atomic Physics. Lund Institute of Technology. Progress Report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    Wahlstroem, C.G. [ed.

    1995-12-31

    The Division of Atomic Physics is responsible for basic physics teaching in all engineering disciplines and for specialized teaching in Optics, Atomic Physics, Spectroscopy, Laser Physics, and Non-Linear Optics. Research activities are mainly carried out in the fields of basic and applied spectroscopy, largely based on the use of lasers. Projects in the following areas are reported: Basic Atomic Physics - Atomic physics with high power laser radiation; Laser spectroscopic investigations of atomic and ionic excited states in the short-wavelength region; Laser spectroscopy in the visible; Theoretical Atomic Physics; Applied Optics and Quantum Electronics -High resolution spectroscopy; Photon echoes in Rare Earth Ion Doped Crystals; diode laser Spectroscopy; Environmental Remote Sensing -Tropospheric Ozone Lidar; Measurement of gases of geophysical origin; Industrial and Urban Pollution Measurements; Laser induced fluorescence of vegetation and water; Applications in Medicine and Biology - Tissue diagnostic using Laser-induced fluorescence; Photodynamic Therapy; Measurement of Optical Properties of Tissue with applications to Diagnostics; Two Photon Excited fluorescence Microscopy; Capillary Electrophoresis; New Techniques; Industrial Applications - Optical spectroscopy in Metallurgy; Physics of Electric Breakdown in Dielectric liquids; Optical Spectroscopy of Paper.

  20. Atomic physics and synchrotron radiation: The production and accumulation of highly charged ions

    International Nuclear Information System (INIS)

    Synchrotron radiation can be used to produce highly-charged ions, and to study photoexcitation and photoionization for ions of virtually any element in the periodic table. To date, with few exceptions, atomic physics studies have been limited to rare gases and a few metal vapors, and to photoexcitation energies in the VUV region of the electromagnetic spectrum. These limitations can now be overcome using photons produced by high-brightness synchrotron storage rings, such as the x-ray ring at the National Synchrotron Light Source (NSLS) at Brookhaven. Furthermore, calculations indicate that irradiation of an ion trap with an intense energetic photon beam will result in a viable source of highly-charged ions that can be given the name PHOBIS: the PHOton Beam Ion Source. Promising results, which encourage the wider systematic use of synchrotron radiation in atomic physics research, have been obtained in recent experiments on VUV photoemission and the production and storage of multiply-charged ions. 26 refs., 4 figs., 1 tab

  1. Pre-Service Physics Teachers' Ideas on Size, Visibility and Structure of the Atom

    Science.gov (United States)

    Unlu, Pervin

    2010-01-01

    Understanding the atom gives the opportunity to both understand and conceptually unify the various domains of science, such as physics, chemistry, biology, astronomy and geology. Among these disciplines, physics teachers are expected to be particularly well educated in this topic. It is important that pre-service physics teachers know what sort of…

  2. Benchmark physics experiment of metallic-fueled LMFBR at FCA

    International Nuclear Information System (INIS)

    A benchmark physics experiment of a metallic-fueled LMFBR was performed at Japan Atomic Energy Research Institute's Fast Critical Assembly (FCA) in order to examine availability of data and method for a design of metallic-fueled core. The nuclear data and the calculation methods used for a LMFBR core design have been improved based on the oxide fuel core experiments. A metallic-fueled core has a harder neutron spectrum than an oxide-fueled core and has typical nuclear characteristics affected by the neutron spectrum. In this study, availability of the conventional calculation method for the design of the metallic-fueled core was examined by comparing the calculation values of the nuclear characteristics with the measured values. The experimental core (FCA assembly XVI-1) was selected by referring to the conceptual design of Central Research Institute of Electric Power Industry. The calculated-to-experiment (C/E) value for keff of assembly XVI-1 was 1.001. From this, as far as the criticality the prediction accuracy of the conventional calculation for the metallic-fueled core was concluded to be similar to that of an oxide-fueled core. (author)

  3. Report of the seminar on nuclear physics and atomic physics at the JAERI tandem-booster accelerator

    International Nuclear Information System (INIS)

    A meeting on new experimental apparatus which are suitable for Nuclear Physics and Atomic Physics at the JAERI tandem-booster accelerator being under construction was held at Tokai Research Establishment of JAERI in the period from 6 to 7 November, 1989. More than 80 participants from universities and JAERI attended to discuss the following themes: 1. Atomic and Molecular Physics in the energy region of tandem-booster accelerator. 2. Experimental methods and apparatus for nuclear structure study. 3. Experimental methods and apparatus for nuclear reaction study. (author)

  4. Using crocodile physics software to design virtual experiments in physics teaching at schools (Vietnam

    Directory of Open Access Journals (Sweden)

    Le Thang N.

    2014-03-01

    Full Text Available Physics is an experiment science, therefore, to uphold teaching quality of physics at schools, the quality of using experiments, first, need to be improved. However, with a limited time, such experiments have not always been carried and not always be as successful as expected. Hence, application of information technology and communication in teaching is of significance. In this article we introduction using crocodile physics software to design virtual experiments in physics teaching at schools.

  5. Using crocodile physics software to design virtual experiments in physics teaching at schools (Vietnam)

    OpenAIRE

    Le Thang N.

    2014-01-01

    Physics is an experiment science, therefore, to uphold teaching quality of physics at schools, the quality of using experiments, first, need to be improved. However, with a limited time, such experiments have not always been carried and not always be as successful as expected. Hence, application of information technology and communication in teaching is of significance. In this article we introduction using crocodile physics software to design virtual experiments in physics teaching at schools.

  6. From Casimir-Polder Force to Dicke Physics: Interaction between Atoms and a Topological Insulator

    Science.gov (United States)

    Fuchs, Sebastian; Buhmann, Stefan

    We apply the theory of macroscopic quantum electrodynamics in dispersing and absorbing media to study the Casimir-Polder force between an atom and a topological insulator. The electromagnetic response of a topological insulator surface leads to a mixing of electric and magnetic fields, breaking the time-reversal symmetry. The coupling of these fields to an atom causes shifts of the atom's eigenenergies and modified decay rates near the surface of the topological insulator. Energy shifts and modified decay rates cannot only be triggered by the presence of a material, but can be caused by other atoms in close proximity as well. The collective dynamics of atoms (Dicke Physics) leads to a superradiant burst. Combining macroscopic QED and Dicke physics opens the door to the investigation of cooperative atom-surface interactions.

  7. Plant life management experience at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    The twin BWR reactors of Tarapur Atomic Power Station (TAPS) are in their 38th year of successful operation and have generated more than 71 billion units of electric power. The plant has seen continuous evolution based on operating experience, feedback from overseas reactors, lessons learnt from nuclear incidents, accidents and fresh review of design basis and safety analysis of the plant due to efforts of upgradation, renovation and refurbishment. The Plant Life Management involved establishing an Ageing Management Programme (AMP). The AMP involved identification of key systems, structures and components (SSCs) that may experience degradation due to ageing, and take corrective measures through maintenance, repair and/or replacement. The identified components were identified as major critical components, important systems and other critical components. The components were further classified as not replaceable, difficult to replace and replaceable on routine basis. The various degradation mechanisms (Stress Corrosion Cracking (SCC), Intra Granular Stress Corrosion Cracking (IGSCC), Trans Granular Stress Corrosion Cracking (TGSCC), Erosion Corrosion (EC), Flow Accelerated Corrosion (FAC), Temperature, Pressure, Humidity, Radiation, etc.,) were identified for critical components, their method of detection, methodologies followed for In-Service inspection and developmental activities to assess the integrity of nuclear reactor vessels, piping and components for continued service. For each component mode of degradation was identified, ageing assessment was done and action plan was finalized. A comprehensive examination was carried out on Structures, Systems and Components (SSCs) as part of plant ageing management programme

  8. SASP '86: Symposium on atomic and surface physics

    International Nuclear Information System (INIS)

    71 papers are presented on subject matters indicated in the section headings: 1) Ion-neutral and neutral-neutral interactions in the gas phase; 2) Laser physics and photonics; 3) Electron collisions and electronic capture; 4) Ion-surface interaction and plasma-related effects; 5) Cluster physics. 70 thereof are of INIS interested and are treated separately. (G.Q.)

  9. Pulsed power accelerator for material physics experiments

    Science.gov (United States)

    Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Austin, K. N.; Waisman, E. M.; Hickman, R. J.; Davis, J.-P.; Haill, T. A.; Knudson, M. D.; Seagle, C. T.; Brown, J. L.; Goerz, D. A.; Spielman, R. B.; Goldlust, J. A.; Cravey, W. R.

    2015-09-01

    We have developed the design of Thor: a pulsed power accelerator that delivers a precisely shaped current pulse with a peak value as high as 7 MA to a strip-line load. The peak magnetic pressure achieved within a 1-cm-wide load is as high as 100 GPa. Thor is powered by as many as 288 decoupled and transit-time isolated bricks. Each brick consists of a single switch and two capacitors connected electrically in series. The bricks can be individually triggered to achieve a high degree of current pulse tailoring. Because the accelerator is impedance matched throughout, capacitor energy is delivered to the strip-line load with an efficiency as high as 50%. We used an iterative finite element method (FEM), circuit, and magnetohydrodynamic simulations to develop an optimized accelerator design. When powered by 96 bricks, Thor delivers as much as 4.1 MA to a load, and achieves peak magnetic pressures as high as 65 GPa. When powered by 288 bricks, Thor delivers as much as 6.9 MA to a load, and achieves magnetic pressures as high as 170 GPa. We have developed an algebraic calculational procedure that uses the single brick basis function to determine the brick-triggering sequence necessary to generate a highly tailored current pulse time history for shockless loading of samples. Thor will drive a wide variety of magnetically driven shockless ramp compression, shockless flyer plate, shock-ramp, equation of state, material strength, phase transition, and other advanced material physics experiments.

  10. The 'atom-splitting' moment of synthetic biology: Nuclear physics and synthetic biology share common features

    OpenAIRE

    Valentine, Alex J; Kleinert, Aleysia; Verdier, Jerome

    2012-01-01

    Synthetic biology and nuclear physics share many commonalities in terms of public perception and funding. Synthetic biologists could learn valuable lessons from the history of the atomic bomb and nuclear power.

  11. Present and future directions of atomic physics research with multiply-charged ions at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Atomic physics research with multiply-charged ions is now in progress using ion beams from the Brookhaven Double MP-Tandem van de Graaff facility. In the near future, experiments will start using ions produced by photons from the National Synchrotron Light Source (NSLS). Examples of typical experiments are discussed to illustrate the comprehensive nature of these facilities. Plans for future expansion by addition of a CRYEBIS type ion source coupled to a heavy-ion storage ring for use in crossed-beam experiments at the NSLS are discussed. 18 refs., 8 figs

  12. Request for Support for the Conference on Super Intense Laser Atom Physics

    International Nuclear Information System (INIS)

    The Conference on Super Intense Laser Atom Physics (SILAP) was held in November 2003 in Dallas, Texas. The venue for the meeting was South Fork Ranch in the outskirts of Dallas. The topics of the meeting included high harmonic generation and attosecond pulse generation, strong field interactions with molecules and clusters, particle acceleration, and relativistic laser atom interactions

  13. Physics design options for compact ignition experiments

    International Nuclear Information System (INIS)

    This paper considers the following topics: (1) physics assessments-design and engineering impact, (2) zero-dimensional confinement studies relating to physics requirements and options for ignited plasmas, classes of devices with equivalent performance, and sensitivity to variations in confinement models, and (3) one and one-half dimensional confinement studies relating to dynamic simulations, critical physics issues, startup analyses, and volt-second consumption

  14. Physics of the missing atoms: technetium and promethium

    International Nuclear Information System (INIS)

    Technetium (Z = 43) and promethium (Z = 61) are by far the least abundant of all atoms below the radioactive elements (Z = 84 onwards). Their scarcity confirms theoretical predictions emerging from a theory of the photon derived from synchronous lattice electrodynamics. This theory has given precise theoretical values for the fine-structure constant and the constant of gravitation G and is now shown in this paper to indicate resonant interactions between the vacuum lattice oscillations and technetium and promethium. In the case of promethium there is strong reason for believing that this atom can assume supergravitational or antigravitational properties, accounting for its scarcity. This paper not only adds support to the earlier theoretical work on the photon and gravitation, but suggests a research route that might lead to new technology based on controlled interactions with gravity fields

  15. The Influence of Physical and Physiological Cues on Atomic Force Microscopy-Based Cell Stiffness Assessment

    OpenAIRE

    Yu-Wei Chiou; Hsiu-Kuan Lin; Ming-Jer Tang; Hsi-Hui Lin; Ming-Long Yeh

    2013-01-01

    Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM)-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All...

  16. Atomic physics with highly-charged ions at the future FAIR facility. A status report

    International Nuclear Information System (INIS)

    The key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups,

  17. Recent progresses on atomic physics with highly charged ions in Lanzhou

    International Nuclear Information System (INIS)

    Storage rings, dedicated small accelerators and experimental setups have been established during past few years in Lanzhou China. The commissioning of the heavy ion Cooler Storage Rings gained great success. These advances give good opportunities for atomic physics researches using highly charged ions. The current status of the accelerators, some experimental setups will be introduced. Examples of some research results will be selected and reported. The future aspects of atomic physics related to ion-matter interactions will be outlined.

  18. Python GUI Scripting Interface for Running Atomic Physics Applications

    OpenAIRE

    Tahat, Amani; Tahat, Mofleh

    2011-01-01

    We create a Python GUI scripting interface working under Windows in addition to (UNIX/Linux). The GUI has been built around the Python open-source programming language. We use the Python's GUI library that so called Python Mega Widgets (PMW) and based on Tkinter Python module (http://www.freenetpages.co.uk/hp/alan.gauld/tutgui.htm). The new GUI was motivated primarily by the desire of more updated operations, more flexibility incorporating future and current improvements in producing atomic d...

  19. Towards Relativistic Atomic Physics and Post-Minkowskian Gravitational Waves

    OpenAIRE

    Luca LusannaINFN

    2009-01-01

    A review is given of the formulation of relativistic atomic theory, in which there is an explicit realization of the Poincare' generators, both in the inertial and in the non-inertial rest-frame instant form of dynamics in Minkowski space-time. This implies the need to solve the problem of the relativistic center of mass of an isolated system and to describe the transitions from different conventions for clock synchronization, namely for the identifications of instantaneous ...

  20. Theoretical atomic and molecular physics: Progress report, July 1, 1988 through June 30, 1989

    International Nuclear Information System (INIS)

    The theoretical atomic and molecular physics program at Rice University emphasizes fundamental questions regarding the structure and collision dynamics of various atomic and molecular systems with some attention given to atomic processes at surfaces. Our activities have been centered on continuing the projects initiated last year as well as beginning some new studies. These include: differential elastic and charge-transfer scattering and alignment and orientation of the excited electron cloud in ion-atom, atom-atom and ion-molecule collisions, using a molecular-orbital representation and both semiclassical and quantal methods; quenching of low-lying Rydberg states of a sodium atom in a collision with a rare-gas atom, using a semiclassical representation; so far, target atoms He, Ne and Ar have been studied; chemiionization and ion-pair formation in a collision of a Li atom with a metastable He atom at intermediate collision energies, using a combination of quantal and semi-classical methods; Penning ionization of alkali atoms Na and K, using advanced Cl and Stieltjes imaging methods; radiative and nonradiative charge-transfer in He+ + H collisions at ultra-low collision energies, using quantal methods; elastic and inelastic processes in electron-molecule collisions, using the continuum-multiple-scattering method; and inelastic collision processes in dense, high-temperature plasmas. Selected highlights of our research progress are briefly summarized in this paper

  1. Atomic and molecular physics in the gas phase

    International Nuclear Information System (INIS)

    The spatial and temporal distributions of energy deposition by high-linear-energy-transfer radiation play an important role in the subsequent chemical and biological processes leading to radiation damage. Because the spatial structures of energy deposition events are of the same dimensions as molecular structures in the mammalian cell, direct measurements of energy deposition distributions appropriate to radiation biology are infeasible. This has led to the development of models of energy transport based on a knowledge of atomic and molecular interactions process that enable one to simulate energy transfer on an atomic scale. Such models require a detailed understanding of the interactions of ions and electrons with biologically relevant material. During the past 20 years there has been a great deal of progress in our understanding of these interactions; much of it coming from studies in the gas phase. These studies provide information on the systematics of interaction cross sections leading to a knowledge of the regions of energy deposition where molecular and phase effects are important and that guide developments in appropriate theory. In this report studies of the doubly differential cross sections, crucial to the development of stochastic energy deposition calculations and track structure simulation, will be reviewed. Areas of understanding are discussed and directions for future work addressed. Particular attention is given to experimental and theoretical findings that have changed the traditional view of secondary electron production for charged particle interactions with atomic and molecular targets

  2. Physics Experiments with Nintendo Wii Controllers

    Science.gov (United States)

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from…

  3. Methodology of physical recreation: problems, experience, recommendations

    Directory of Open Access Journals (Sweden)

    Zaytsev V.P.

    2013-04-01

    Full Text Available The article contains methodical approaches in the process of conducting practical classes with the students on discipline «Physical recreation». The methodical reception is shown, also their definition, the importance of definitions during the life of the person, including the student. The essence of physical recreation in the understanding of students for passive and active recreation is uncover, as well as formulating the tasks in forming, recovering, strengthening and preserving the health of different age groups of the population. The methodological principles of physical recreation described in detail in the context of its performance by students. It uses traditional principal means for physical culture ((physical exercise, movement modes, natural factors, massage, occupational therapy, mechanotherapy. They are distinguished by various forms, methods, and activities, bearing recreational character.

  4. Laboratory plasma physics experiments using merging supersonic plasma jets

    CERN Document Server

    Hsu, S C; Merritt, E C; Adams, C S; Dunn, J P; Brockington, S; Case, A; Gilmore, M; Lynn, A G; Messer, S J; Witherspoon, F D

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$, sonic Mach number $M_s\\equiv V_{\\rm jet}/C_s>10$, jet diameter $=5$ cm, and jet length $\\approx 20$ cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  5. Laboratory plasma physics experiments using merging supersonic plasma jets

    International Nuclear Information System (INIS)

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ∼1016 cm-3, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge Z¯ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper

  6. The Physics of Bird Flight: An Experiment

    Science.gov (United States)

    Mihail, Michael D.; George, Thomas F.; Feldman, Bernard J.

    2008-01-01

    This article describes an experiment that measures the forces acting on a flying bird during takeoff. The experiment uses a minimum of equipment and only an elementary knowledge of kinematics and Newton's second law. The experiment involves first digitally videotaping a bird during takeoff, analyzing the video to determine the bird's position as a…

  7. Cooperative effects in a physically adsorbed monolayer of two-level atoms

    International Nuclear Information System (INIS)

    We discuss the possibility of optical instability in a monolayer of two-level atoms physically adsorbed on a flat metallic surface. Taking into account the feedback mechanism and the local field correction we find the necessary and the sufficient conditions for the onset of bistability and we also obtain the resonance fluorescence spectrum and the rate of absorption from a probe field by an atom of the monolayer. Finally, we give a possible explanation in terms of cooperative interaction for the large decay rate found experimentally monolayers of low excited physically adsorbed atoms. (author). 19 refs

  8. Yang–Baxter integrable models in experiments: from condensed matter to ultracold atoms

    International Nuclear Information System (INIS)

    The Yang–Baxter equation has long been recognised as the masterkey to integrability, providing the basis for exactly solved models which capture the fundamental physics of a number of realistic classical and quantum systems. In this article we provide an introductory survey of the impact of Yang–Baxter integrable models on experiments in condensed matter physics and ultracold atoms. A number of prominent examples are covered, including the hard-hexagon model, the Heisenberg spin chain, the transverse quantum Ising chain, a spin ladder model, the Lieb–Liniger Bose gas, the Gaudin–Yang Fermi gas and the two-site Bose–Hubbard model. The review concludes by pointing to some other recent developments with promise for further progress. (review)

  9. Atomic-scale nanowires: physical and electronic structure

    International Nuclear Information System (INIS)

    The technology to build and study nanowires with sizes ranging from individual atoms to tens of nanometres has been developing rapidly over the last few years. We survey the motivation behind these developments, and summarize the basics behind quantized conduction. Several of the different experimental techniques and materials systems used in the creation of nanowires are examined, and the range of theoretical methods developed both for examining open systems (especially their conduction properties) and for modelling large systems are considered. We present various noteworthy example results from the field, before concluding with a look at future directions. (topical review)

  10. Exotic atom research at DAΦNE (The DEAR Experiment)

    International Nuclear Information System (INIS)

    The DEAR experiment (DEAR:DAΦNE Exotic Atom Research) is presented. Reliable data, in terms of high statistics, low background, good resolution, as it is possible to obtain with DEAR from kaonic hydrogen and kaonic deuterium, will allow to make the first precision measurement of the kaon-nucleon scattering length aK-n. The measurement will allow to understand the kaon-nucleon interaction, in particular by definitely solving the 'kaonic hydrogen puzzle' and to study the nature of the Λ(1405) (K bar N bound state or an elementary three-quark state ?). The KN scattering length is related to an important quantity such as the KN sigma term. As in the case of the πN sigma term, one can eventually extract the KN sigma term from accurate KN interaction data at threshold. At present, this is not possible. The KN sigma term is present in the nucleon mass and its value allows to estimate the amount of the nucleon mass due to strangeness. The KN sigma term is encountered also in describing kaon condensation in dense nuclear matter and, consequently it can give independent information with respect to the phenomena observed in relativistic heavy ion collisions. (authors)

  11. Physics launches first Virginia Tech signature experience

    OpenAIRE

    Doss, Catherine

    2010-01-01

    When Professor Nahum Arav joined the Department of Physics in the College of Science in January 2008, he says he had a dream: to introduce Virginia Tech students to the beauty and wonders of the universe.

  12. Forward physics at the ATLAS experiment

    CERN Document Server

    Ruzicka, Pavel; The ATLAS collaboration

    2010-01-01

    This contribution describes forward physics measurements possible to make with current ATLAS forward detectors including the upgrade project AFP. The aim of AFP is to tag very forward going protons at high luminosities.

  13. LXIV International conference NUCLEUS 2014. Fundamental problems of nuclear physics, atomic power engineering and nuclear technologies (LXIV Meeting on nuclear spectroscopy and nuclear structure). Book of abstracts

    International Nuclear Information System (INIS)

    The scientific program of the conference covers almost all problems in nuclear physics and its applications in atomic power engineering and nuclear technologies. The recent results of experimental investigations of atomic nuclear structure and nuclear properties as well as nuclear reaction mechanisms are analyzed. The theoretical problems of atomic nuclei, fundamental interactions and nuclear reactions are considered. The new instrumentation and methods of nuclear-physical experiments are presented. The interaction of nuclear radiation with matter is discussed. The particular attention is given to fundamental problems of nuclear power engineering

  14. Nuclear physics (of the cell, not the atom)

    Science.gov (United States)

    Pederson, Thoru; Marko, John F.

    2014-01-01

    The nucleus is physically distinct from the cytoplasm in ways that suggest new ideas and approaches for interrogating the operation of this organelle. Chemical bond formation and breakage underlie the lives of cells, but as this special issue of Molecular Biology of the Cell attests, the nonchemical aspects of cell nuclei present a new frontier to biologists and biophysicists. PMID:25368422

  15. Project Physics Teacher Guide 5, Models of the Atom.

    Science.gov (United States)

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Teaching procedures of Project Physics Unit 5 are presented to help teachers make effective use of learning materials. Unit contents are discussed in connection with teaching aid lists, multi-media schedules, schedule blocks, and resource charts. Brief summaries are made for transparencies, 16mm films, and reader articles. Included is information…

  16. Handbook of theoretical atomic physics. Data for photon absorption, electron scattering, and vacancies decay

    International Nuclear Information System (INIS)

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomic data are presented. The atomic data are useful for investigating the electronic structure and physical processes in solids and liquids, molecules and clusters, astronomical objects, solar and planet atmospheres and atomic nucleus. Deep understanding of chemical reactions and processes is reached by deep and accurate knowledge of atomic structure and processes with participation of atoms. This book is useful for theorists performing research in different domains of contemporary physics, chemistry and biology, technologists working on production of new materials and for experimentalists performing research in the field of photon and electron interaction with atoms, molecules, solid bodies and liquids.

  17. Handbook of theoretical atomic physics. Data for photon absorption, electron scattering, and vacancies decay

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, Miron [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Chernysheva, Larissa [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Yarzhemsky, Victor [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation)

    2012-07-01

    The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomic data are presented. The atomic data are useful for investigating the electronic structure and physical processes in solids and liquids, molecules and clusters, astronomical objects, solar and planet atmospheres and atomic nucleus. Deep understanding of chemical reactions and processes is reached by deep and accurate knowledge of atomic structure and processes with participation of atoms. This book is useful for theorists performing research in different domains of contemporary physics, chemistry and biology, technologists working on production of new materials and for experimentalists performing research in the field of photon and electron interaction with atoms, molecules, solid bodies and liquids.

  18. Plant life management experience at Tarapur Atomic Power Station

    International Nuclear Information System (INIS)

    Tarapur Atomic Power Station, the longest serving Nuclear Power Plant in the Asian continent has completed 36 years of successful operation and generated more than 70 Billion units of electric power. Built in late sixties, with the state-of-the-art safety features prevailing then, TAPS through the process of evolution has become much more safer plant due to efforts of upgradation, renovation and refurbishment prompted by the station's operating experience, feed back from overseas reactors, lessons learnt from nuclear incidents, accidents and fresh review of design basis and safety analysis of the plant. All components of a Nuclear power plant experience some degradation with time. The Reactor Pressure Vessels (RPV) designed for 40 effective full power years (EFPY) of operation have operated for less than 21 EFPY and the material condition is assessed to be fit for several more years of service. The condition of the containment and main plant buildings was assessed to be satisfactory. The Life Management Programme involved identification of key systems, structures and components (SSCs) that may experience degradation due to ageing, and take corrective measures through maintenance, repair and / or replacement. The identified components were classified as major critical components, important systems and other critical components. For each component mode of degradation was identified, ageing assessment was done and action plan was finalized. Replacement of some important equipment like 3X50% capacity Emergency Diesel Generators (EDG) with 3 X 100% capacity EDG, Salt Service Water (SSW) pumps, Control rod drive (CRD) pumps, Emergency Condenser tube bundles, Station battery has been done on the basis of condition monitoring and to obviate common cause failure and enhance the system reliability. Samples of Safety related cables were subjected to residual life assessment (RLA) and replacement action firmed up on the basis of the RLA findings. Condition survey of Main plant

  19. Atomic physics with highly-charged ions at the future FAIR facility. A status report

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, T. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany)]|[Frankfurt Univ. (Germany). Inst. fuer Kernphysik; Beyer, H.F.; Braeuning, H. [Gesellschaft fuer Schwerionenforschung, Darmstadt (DE)] (and others)

    2006-11-15

    The key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups, devoted to the realization of experimental equipments and setups required to reach the physics goals is given. (orig.)

  20. Atomic physics with highly-charged ions at the future FAIR facility: A status report

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany) and Institut fuer Kernphysik, University of Frankfurt (Germany)]. E-mail: t.stoehlker@gsi.de; Beyer, H.F. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Braeuning, H. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Braeuning-Demian, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Brandau, C. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Hagmann, S. [Institut fuer Kernphysik, University of Frankfurt (Germany); Kozhuharov, C. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Kluge, H.J. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Kuehl, Th. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Liesen, D. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Mann, R. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Noertershaeuser, W. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Quint, W. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Schramm, U. [LMU, Munich (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden)

    2007-08-15

    Key features of the future international accelerator Facility for Antiproton and Ion Research (FAIR) offer a range of new and challenging opportunities for atomic physics research in the realm of highly-charged heavy ions and exotic nuclei. Centred on use of FAIR, the Stored Particle Atomic Physics Research Collaboration (SPARC), organized in working groups, has been formed. A short report on the tasks and activities of the various SPARC working groups, devoted to the realization of experimental equipments and set-ups required to reach the physics goals is given.

  1. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, S.; Gemmell, D.

    1996-08-01

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms.

  2. Atomic physics with hard X-rays from high brilliance synchrotron light sources

    International Nuclear Information System (INIS)

    A century after the discovery of x rays, the experimental capability for studying atomic structure and dynamics with hard, bright synchrotron radiation is increasing remarkably. Tempting opportunities arise for experiments on many-body effects, aspects of fundamental photon-atom interaction processes, and relativistic and quantum-electrodynamic phenomena. Some of these possibilities are surveyed in general terms

  3. Overview of Physics Results from the National Spherical Torus Experiment

    Czech Academy of Sciences Publication Activity Database

    Sabbagh, S.A.; Ahn, J-W.; Allain, J.; Andre, R.; Balbaky, A.; Bastasz, R.; Battaglia, D.; Bell, M.; Bell, R.; Belova, E.; Berkery, J.; Betti, R.; Bialek, J.; Bigelow, T.; Bitter, M.; Boedo, J.; Bonoli, P.; Boozer, A.; Bortolon, A.; Brennan, D.; Breslau, J.; Buttery, R.; Canik, J.; Caravelli, G.; Chang, C.; Crocker, N.; Darrow, D.; Davis, B.; Delgado-Aparicio, L.; Diallo, A.; Ding, S.; D’Ippolito, D.; Domier, C.; Dorland, W.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Foley, J.; Fonck, R.; Frazin, R.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Glasser, A.; Gorelenkov, N.; Gray, T.; Guo, Y.; Guttenfelder, W.; Hahm, T.; Harvey, R.; Hassanein, A.; Heidbrink, W.; Hill, K.; Hirooka, Y.; Hooper, E.B.; Hosea, J.; Humphreys, D.; Indireshkumar, K.; Jaeger, F.; Jarboe, T.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Katsuro-Hopkins, O.; Kaye, S.; Kessel, C.; Kim, J.; Kolemen, E.; Kramer, G.; Krasheninnikov, S.; Kubota, S.; Kugel, H.; La Haye, R.J.; Lao, L.; LeBlanc, B.; Lee, W.; Lee, K.; Leuer, J.; Levinton, F.; Liang, Y.; Liu, D.; Luhmann Jr, N.; Maingi, R.; Majeski, R.; Manickam, J.; Mansfield, D.; Maqueda, R.; Mazzucato, E.; McLean, A.; McCune, D.; McGeehan, B.; McKee, G.; Medley, S.; Meier, E.; Menard, J.; Menon, M.; Meyer, H.; Mikkelsen, D.; Miloshevsky, G.; Mueller, D.; Munsat, T.; Myra, J.; Nelson, B.; Nishino, N.; Nygren, R.; Ono, M.; Osborne, T.; Park, H.; Park, J.; Park, Y.; Paul, S.; Peebles, W.; Penaflor, B.; Phillips, C.; Pigarov, A.; Podesta, M.; Preinhaelter, Josef; Raman, R.; Ren, Y.; Rewoldt, G.; Rognlien, T.; Ross, P.; Rowley, C.; Ruskov, E.; Russell, D.; Ruzic, D.; Ryan, P.; Schaffer, M.; Schuster, E.; Scotti, F.; Shaing, K.; Shevchenko, V.; Shinohara, K.; Sizyuk, V.; Skinner, C.; Smirnov, A.; Smith, D.; Snyder, P.; Solomon, W.; Sontag, A.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Stutman, D.; Takahashi, H.; Takase, Y.; Tamura, N.; Tang, X.; Taylor, G.; Taylor, C.; Tritz, K.; Tsarouhas, D.; Umansky, M.; Urban, Jakub; Untergberg, E.; Walker, M.; Wampler, W.; Wang, W.; Whaley, J.; White, R.; Wilgen, J.; Wilson, R.; Wong, K.L.; Wright, J.; Xia, Z.; Youchison, D.; Yu, G.; Yuh, H.; Zakharov, L.; Zemlyanov, D.; Zimmer, G.; Zweben, S.J.

    San Diego : International Atomic Energy Agency (IAEA), 2013, OV/3-1-OV/3-1. ISBN N. [IAEA Fusion Energy Conference/24./. San Diego (US), 08.10.2012-13.10.2012] Institutional support: RVO:61389021 Keywords : NSTX * plasma * ELMs Subject RIV: BL - Plasma and Gas Discharge Physics http://www-naweb.iaea.org/napc/physics/FEC/FEC2012/papers/454_OV31.pdf

  4. PREFACE: 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP)

    Science.gov (United States)

    Williams, Jim F.; Buckman, Steve; Bieske, Evan J.

    2009-09-01

    These proceedings arose from the 8th Asian International Seminar on Atomic and Molecular Physics (AISAMP) which was held at the University of Western Australia 24-28 November 2008. The history of AISAMP (Takayanagi and Matsuzawa 2002) recognizes its origin from the Japan-China meeting of 1985, and the first use of the name 'The First Asian International Seminar on Atomic and Molecular Physics (AISAMP)' in 1992. The initial attendees, Japan and China, were joined subsequently by scientists from Korea, Taiwan, India, Australia and recently by Malaysia, Thailand, Vietnam, Turkey Iran, UK and USA. The main purpose of the biennial AISAMP series is to create a wide forum for exchanging ideas and information among atomic and molecular scientists and to promote international collaboration. The scope of the AISAMP8 meeting included pure, strategic and applied research involving atomic and molecular structure and processes in all forms of matter and antimatter. For 2008 the AISAMP conference incorporated the Australian Atomic and Molecular Physics and Quantum Chemistry meeting. The topics for AISAMP8 embraced themes from earlier AISAMP meetings and reflected new interests, in atomic and molecular structures, spectroscopy and collisions; atomic and molecular physics with laser or synchrotron radiation; quantum information processing using atoms and molecules; atoms and molecules in surface physics, nanotechnology, biophysics, atmospheric physics and other interdisciplinary studies. The implementation of the AISAMP themes, as well as the international representation of research interests, is indicated both in the contents list of these published manuscripts as well as in the program for the meeting. Altogether, 184 presentations were made at the 8th AISAMP, including Invited Talks and Contributed Poster Presentations, of which 60 appear in the present Proceedings after review by expert referees in accordance with the usual practice of Journal of Physics: Conference Series of

  5. Physics for computer science students with emphasis on atomic and semiconductor physics

    CERN Document Server

    Garcia, Narciso

    1991-01-01

    This text is the product of several years' effort to develop a course to fill a specific educational gap. It is our belief that computer science students should know how a computer works, particularly in light of rapidly changing tech­ nologies. The text was designed for computer science students who have a calculus background but have not necessarily taken prior physics courses. However, it is clearly not limited to these students. Anyone who has had first-year physics can start with Chapter 17. This includes all science and engineering students who would like a survey course of the ideas, theories, and experiments that made our modern electronics age possible. This textbook is meant to be used in a two-semester sequence. Chapters 1 through 16 can be covered during the first semester, and Chapters 17 through 28 in the second semester. At Queens College, where preliminary drafts have been used, the material is presented in three lecture periods (50 minutes each) and one recitation period per week, 15 weeks p...

  6. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    Science.gov (United States)

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  7. NTES laser facility for physics experiments

    International Nuclear Information System (INIS)

    This paper discusses the following topics on the NTES laser facility: Mission Statement and Project Description; Experiment Area; High-Energy, Double-Pass Laser; Facilities; Laser Control and Data Acquisition; and Auxiliary Lasers

  8. Nuclear physics experiments with ion storage rings

    Science.gov (United States)

    Litvinov, Yu. A.; Bishop, S.; Blaum, K.; Bosch, F.; Brandau, C.; Chen, L. X.; Dillmann, I.; Egelhof, P.; Geissel, H.; Grisenti, R. E.; Hagmann, S.; Heil, M.; Heinz, A.; Kalantar-Nayestanaki, N.; Knöbel, R.; Kozhuharov, C.; Lestinsky, M.; Ma, X. W.; Nilsson, T.; Nolden, F.; Ozawa, A.; Raabe, R.; Reed, M. W.; Reifarth, R.; Sanjari, M. S.; Schneider, D.; Simon, H.; Steck, M.; Stöhlker, T.; Sun, B. H.; Tu, X. L.; Uesaka, T.; Walker, P. M.; Wakasugi, M.; Weick, H.; Winckler, N.; Woods, P. J.; Xu, H. S.; Yamaguchi, T.; Yamaguchi, Y.; Zhang, Y. H.

    2013-12-01

    In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.

  9. Nuclear Physics Experiments Below The Coulomb Barrier

    International Nuclear Information System (INIS)

    In 1932, Cockcroft and Walton showed that (p,α) reactions with lithium were possible at energies near 100 keV. We report an undergraduate laboratory experiment with 90 keV protons colliding with a thick lithium target. The experiment allows students to observe the products of two reactions, to determine the product masses, and to learn techniques for deconvolving experimental spectra profiles.

  10. PROBING THE PHYSICAL CONDITIONS OF ATOMIC GAS AT HIGH REDSHIFT

    Energy Technology Data Exchange (ETDEWEB)

    Neeleman, Marcel; Wolfe, Arthur M. [Department of Physics and Center for Astrophysics and Space Sciences, UCSD, La Jolla, CA 92093 (United States); Prochaska, J. Xavier, E-mail: mneeleman@physics.ucsd.edu [Department of Astronomy and Astrophysics, UCO/Lick Observatory, 1156 High Street, University of California, Santa Cruz, CA 95064 (United States)

    2015-02-10

    A new method is used to measure the physical conditions of the gas in damped Lyα systems (DLAs). Using high-resolution absorption spectra of a sample of 80 DLAs, we are able to measure the ratio of the upper and lower fine-structure levels of the ground state of C{sup +} and Si{sup +}. These ratios are determined solely by the physical conditions of the gas. We explore the allowed physical parameter space using a Monte Carlo Markov chain method to constrain simultaneously the temperature, neutral hydrogen density, and electron density of each DLA. The results indicate that at least 5% of all DLAs have the bulk of their gas in a dense, cold phase with typical densities of ∼100 cm{sup –3} and temperatures below 500 K. We further find that the typical pressure of DLAs in our sample is log (P/k{sub B} ) = 3.4 (K cm{sup –3}), which is comparable to the pressure of the local interstellar medium (ISM), and that the components containing the bulk of the neutral gas can be quite small with absorption sizes as small as a few parsecs. We show that the majority of the systems are consistent with having densities significantly higher than expected for a purely canonical warm neutral medium, indicating that significant quantities of dense gas (i.e., n {sub H} > 0.1 cm{sup –3}) are required to match observations. Finally, we identify eight systems with positive detections of Si II*. These systems have pressures (P/k{sub B} ) in excess of 20,000 K cm{sup –3}, which suggest that these systems tag a highly turbulent ISM in young, star-forming galaxies.

  11. Lasers as a Bridge between Atomic and Nuclear Physics

    OpenAIRE

    Matinyan, Sergei G.

    1997-01-01

    This paper reviews the application of optical and UV laser radiation to several topics in low-energy nuclear physics. We consider the laser-induced nuclear anti-Stokes transitions, the laser-assisted and the laser-induced internal conversion, and the Electron Bridge and Inverse Electron Bridge mechanisms as tools for deexciting and exciting of low-lying nuclear isomeric states. A study of the anomalous, by low-lying, nuclear isomeric states (on an example of the $^{229}$Th nucleus) is present...

  12. Unravelling CSH atomic structure via computational and experimental physical chemistry

    OpenAIRE

    Abdolhosseini Qomi, Mohammad Javad; Pellenq, Roland; Ulm, Franz

    2014-01-01

    Calcium Silicate Hydrate (CSH) is the main binding phase for the cement paste, which is responsible for its strength and creep behavior. This is a nonstoichiometric hydration phase with calcium to silicon ratio (C/S) ranging from 1 to 2.2. At low C/S ratios, the molecular structure of CSH resembles to that of Tobermorite minerals, whereas in high C/S ratios it mostly looks like disordered glasses. By taking advantage of tools of statistical physics, it is shown that CSH at a given C/S can be ...

  13. Current experiments in elementary particle physics. Revision 1-85

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Oyanagi, Y.; Dodder, D.C.; Grudtsin, S.N.; Ryabov, Yu.G.; Frosch, R.

    1985-01-01

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.

  14. Current experiments in elementary particle physics. Revision 1-85

    International Nuclear Information System (INIS)

    This report contains summaries of 551 approved experiments in elementary particle physics (experiments that finished taking data before 1 January 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Properties of the fixed-target beams at most of the laboratories are summarized. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries

  15. Shippingport Atomic Power Station Operating Experience, Developments and Future Plans

    International Nuclear Information System (INIS)

    This paper describes and evaluates five years of operation and test of the Shippingport Atomic Power Station and discusses the current technical developments and future plans of the Shippingport programme. This programme is directed towards development of the basic technology of light-water reactors to provide the basis for potential reduction in the costs of nuclear power. The Shippingport reactor plant has operated for over five years and has been found to integrate readily into a utility system either as a base load or peak load unit. Plant component performance has been reliable. There have been no problems in contamination or waste disposal. Access to primary coolant components for maintenance has been good, demonstrating the integrity of fuel elements. Each of the three refuelling operations performed since start-up of Shippingport has required successively less time to accomplish. Recently, the third seed was refuelled in 32 working days, about one quarter the time required for the first refuelling. The formal requirements of personnel training, written administrative procedures, power plant manuals, etc., which have been a vital factor in the successful implementation of the Shippingport programme, are described. The results obtained from the comprehensive test programme carried out at Shippingport are compared with calculations, and good agreement has been obtained. Reactor core performance, plant stability, and response to load changes, fuel element and control rod performance, long-term effects such as corrosion and radiation level build-up, component performance, etc., are discussed in this paper. The principal objective of the current and future programmes of the Shippingport Project in advancing the basic technology of water-cooled reactors is discussed. This programme includes the continued operation of the Shippingport plant, and the development, design, manufacture and test operation of a long-life, highpower density second core - Core 2. At its

  16. Atomic physics with highly-charged heavy ions at the GSI future facility: The scientific program of the SPARC collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Stoehlker, Th. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany)]. E-mail: t.stoehlker@gsi.de; Beier, T. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Beyer, H.F. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Bosch, F. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Braeuning-Demian, A. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Gumberidze, A. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Hagmann, S. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Kozhuharov, C. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Kuehl, Th. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Liesen, D. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Mann, R. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Mokler, P.H. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Quint, W. [Gesellschaft fur Schwerionenforschung mbh, 64291 GSI-Darmstadt (Germany); Schuch, R. [Stockholm University, Stockholm (Sweden); Warczak, A. [Institute of Physics, Jagiellonian University, Cracow (Poland)

    2005-07-01

    In the current report a short overview about the envisioned program of the atomic physics research collaboration SPARC (Stored Particle Atomic Research Collaboration, at the new international accelerator Facility for Antiproton and Ion Research (FAIR) at GSI is given. In addition, a condensed description of the planned experimental areas devoted to atomic physics research at the new facility is presented.

  17. Learning Physics by Creating Problems: An Experiment

    CERN Document Server

    Kolarkar, Ameya S

    2016-01-01

    We investigated the effects of student-generated problems on exams. The process was gradual with some training throughout the semester. Initial results were highly positive with the students involved performing significantly better, and showing statistically significant improvement (t = 5.04) compared to the rest of the class, on average. Overall, performance improved when students generated problems. Motivation was a limiting factor. There is significant potential for improving student learning of physics and other problem-based topics.

  18. Experiments and applications of soliton physics

    International Nuclear Information System (INIS)

    The present lecture surveys various soliton phenomena, after giving the mathematical foundation to define solitons. Laboratory devices for the studies of plasma soliton phenomena are described together with experimental results. The most interesting application of soliton physics is illustrated in the discussion of soliton propagation in optical fibers. Topics on chaotic behavior in nonlinear dynamical systems will be discussed briefly in concluding remarks. (J.P.N.)

  19. Dod physical security equipment application experience

    International Nuclear Information System (INIS)

    In the Department of Defense, the subject of physical security is very broad in scope. Its application ranges from countering the shoplifters in the post exchange facilities to the sophisticated terrorist who may attempt to obtain access to one of our nuclear weapons. This paper focuses on the area of specific interest to the members of INMM which is the protection of nuclear devices and the classified information associated with them

  20. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    Energy Technology Data Exchange (ETDEWEB)

    Guiberteau, Ph.; Nokhamzon, J.G. [French Atomic and Alternatives Energy Commission CEA/DEN/DADN Saclay 91191 Gif-sur-Yvette Cedex (France)

    2012-07-01

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling

  1. French Atomic Energy Commission Decommissioning Programme and Feedback Experience - 12230

    International Nuclear Information System (INIS)

    Since the French Atomic and Alternatives Energy Commission (CEA) was founded in 1945 to carry out research programmes on use of nuclear, and its application France has set up and run various types of installations: research or prototypes reactors, process study or examination laboratories, pilot installations, accelerators, nuclear power plants and processing facilities. Some of these are currently being dismantled or must be dismantled soon so that the DEN, the Nuclear Energy Division, can construct new equipment and thus have available a range of R and D facilities in line with the issues of the nuclear industry of the future. Since the 1960's and 1970's in all its centres, the CEA has acquired experience and know-how through dismantling various nuclear facilities. The dismantling techniques are nowadays operational, even if sometimes certain specific developments are necessary to reduce the cost of operations. Thanks to availability of techniques and guarantees of dismantling programme financing now from two dedicated funds, close to euro 15,000 M for the next thirty years, for current or projected dismantling operations, the CEA's Nuclear Energy Division has been able to develop, when necessary, its immediate dismantling strategy. Currently, nearly thirty facilities are being dismantled by the CEA's Nuclear Energy Division operational units with industrial partners. Thus the next decade will see completion of the dismantling and radioactive clean-up of the Grenoble site and of the facilities on the Fontenay-aux-Roses site. By 2016, the dismantling of the UP1 plant at Marcoule, the largest dismantling work in France, will be well advanced, with all the process equipment dismantled. After an overview of the French regulatory framework, the paper will describe the DD and R (Decontamination Decommissioning and Remediation) strategy, programme and feedback experience inside the CEA's Nuclear Energy Division. A special feature of dismantling operations at the CEA

  2. Precision electroweak physics at future collider experiments

    Energy Technology Data Exchange (ETDEWEB)

    Baur, U. [State Univ. of New York, Buffalo, NY (United States). Dept. of Physics; Demarteau, M. [Fermi National Accelerator Lab., Batavia, IL (United States)

    1996-11-01

    We present an overview of the present status and prospects for progress in electroweak measurements at future collider experiments leading to precision tests of the Standard Model of Electroweak Interactions. Special attention is paid to the measurement of the {ital W} mass, the effective weak mixing angle, and the determination of the top quark mass. Their constraints on the Higgs boson mass are discussed.

  3. Using the Wiimote in Introductory Physics Experiments

    Science.gov (United States)

    Ochoa, Romulo; Rooney, Frank G.; Somers, William J.

    2011-01-01

    The Wii is a very popular gaming console. An important component of its appeal is the ease of use of its remote controller, popularly known as a Wiimote. This simple-looking but powerful device has a three-axis accelerometer and communicates with the console via Bluetooth protocol. We present two experiments that demonstrate the feasibility of…

  4. Precision electroweak physics at future collider experiments

    International Nuclear Information System (INIS)

    We present an overview of the present status and prospects for progress in electroweak measurements at future collider experiments leading to precision tests of the Standard Model of Electroweak Interactions. Special attention is paid to the measurement of the W mass, the effective weak mixing angle, and the determination of the top quark mass. Their constraints on the Higgs boson mass are discussed

  5. Solution Calorimetry Experiments for Physical Chemistry.

    Science.gov (United States)

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  6. Applications of resonance ionization spectroscopy in atomic and molecular physics

    International Nuclear Information System (INIS)

    We examine topics of current interest in which we feel the use of RIS can yield significant contributions. To this end we discuss several previous studies as examples of the methods involved and then suggest a variety of specific experiments, the performance of which, we endeavor to show, should be possible with present-day technology. The areas of consideration are: (1) laser excitation with relatively broad bandwidth lasers; (2) measurements of photoionization cross sections; and (3) studies of collision and transport processes. Particular attention is given to the inert gases and to diatomic molecules

  7. Field-matter interaction in atomic and plasma physics, from fluctuations to the strongly nonlinear regime

    International Nuclear Information System (INIS)

    This manuscript provides a theoretical description, sometimes illustrated by experimental results, of several examples of field-matter interaction in various domains of physics, showing how the same basic concepts and theoretical methods may be used in very different physics situations. The issues addressed here are nonlinear field-matter interaction in plasma physics within the framework of classical mechanics (with a particular emphasis on wave-particle interaction), the linear analysis of beam-plasma instabilities in the relativistic regime, and the quantum description of laser-atom interaction, including quantum electrodynamics. Novel methods are systematically introduced in order to solve some very old problems, like the nonlinear counterpart of the Landau damping rate in plasma physics, for example. Moreover, our results directly apply to inertial confinement fusion, laser propagation in an atomic vapor, ion acceleration in a magnetized plasma and the physics of the Reversed Field Pinch for magnetic fusion. (author)

  8. Accurate abundance analysis of late-type stars: advances in atomic physics

    CERN Document Server

    Barklem, Paul S

    2016-01-01

    The measurement of stellar properties such as chemical compositions, masses and ages, through stellar spectra, is a fundamental problem in astrophysics. Progress in the understanding, calculation and measurement of atomic properties and processes relevant to the high-accuracy analysis of F-, G-, and K-type stellar spectra is reviewed, with particular emphasis on abundance analysis. This includes fundamental atomic data such as energy levels, wavelengths, and transition probabilities, as well as processes of photoionisation, collisional broadening and inelastic collisions. A recurring theme throughout the review is the interplay between theoretical atomic physics, laboratory measurements, and astrophysical modelling, all of which contribute to our understanding of atoms and atomic processes, as well as to modelling stellar spectra.

  9. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  10. Low temperature metallic magnetic calorimeters for atomic and particle physics

    International Nuclear Information System (INIS)

    Low temperature Metallic Magnetic Calorimeters (MMCs) are energy dispersive detectors working at temperature below 100 mK. The energy released by the interaction of a particle in a suitable absorber induces an increase of temperature in the detector. The change of temperature is measured as a change of magnetization of a paramagnetic sensor positioned in a weak magnetic field and is tightly connected to the absorber and weakly to the thermal bath. The signal is read out by a low noise high bandwidth two stage SQUID system. The knowledge of the thermodynamical properties, which allows for numerical optimization, and the possibility of fully micro-fabricate these detectors offer a large flexibility for the detector design. Presently MMCs are developed for a wide range of applications including X-ray spectroscopy of highly charged ions, direct neutrino mass measurements by beta spectroscopy, X-ray cameras for astronomy, calibration of radiation standards in metrology and spatially resolved detection of molecular fragments. We present an introduction to the physics of MMCs and discuss design considerations and micro-fabrication processes of current devices and their experimental performance.

  11. Characterizing Student Experiences in Physics Competitions: The Power of Emotions

    Science.gov (United States)

    Moll, Rachel F.; Nashon, S.; Anderson, D.

    2006-12-01

    Low enrolment and motivation are key issues in physics education and recently the affective dimension of learning is being studied for evidence of its influence on student attitudes towards physics. Physics Olympics competitions are a novel context for stimulating intense emotional experiences. In this study, one team of students and their teacher were interviewed and observed prior to and during the event to characterize their emotions and determine the connections between their experiences and learning and attitudes/motivation towards physics. Results showed that certain types of events stimulated strong emotions of frustration and ownership, and that students’ attitudes were that physics is fun, diverse and relevant. Analysis of these themes indicated that the nature of emotions generated was connected to their attitudes towards physics. This finding points to the potential and value of informal and novel contexts in creating strong positive emotions, which have a strong influence on student attitudes towards physics.

  12. Shifting standards experiments in particle physics in the twentieth century

    CERN Document Server

    Franklin, Allan

    2013-01-01

    In Shifting Standards, Allan Franklin provides an overview of notable experiments in particle physics. Using papers published in Physical Review, the journal of the American Physical Society, as his basis, Franklin details the experiments themselves, their data collection, the events witnessed, and the interpretation of results. From these papers, he distills the dramatic changes to particle physics experimentation from 1894 through 2009.Franklin develops a framework for his analysis, viewing each example according to exclusion and selection of data; possible experimenter bias; details of the experimental apparatus; size of the data set, apparatus, and number of authors; rates of data taking along with analysis and reduction; distinction between ideal and actual experiments; historical accounts of previous experiments; and personal comments and style.From Millikan’s tabletop oil-drop experiment to the Compact Muon Solenoid apparatus measuring approximately 4,000 cubic meters (not including accelerators) and...

  13. Smashing physics inside the world's biggest experiment

    CERN Document Server

    Butterworth, Jon

    2014-01-01

    The discovery of the Higgs boson made headlines around the world. Two scientists, Peter Higgs and Francois Englert, whose theories predicted its existence, shared a Nobel Prize. The discovery was the culmination of the largest experiment ever run, the ATLAS and CMS experiments at CERN's Large Hadron Collider. But what really is a Higgs boson and what does it do? How was it found? And how has its discovery changed our understanding of the fundamental laws of nature? And what did it feel like to be part of it? Jon Butterworth is one of the leading physicists at CERN and this book is the first popular inside account of the hunt for the Higgs. It is a story of incredible scientific collaboration, inspiring technological innovation and ground-breaking science. It is also the story of what happens when the world's most expensive experiment blows up, of neutrinos that may or may not travel faster than light, and the reality of life in an underground bunker in Switzerland. This book will also leave you with a working...

  14. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    International Nuclear Information System (INIS)

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume

  15. Proceedings of the workshop on opportunities for atomic physics using slow, highly-charged ions

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The study of atomic physics with highly-charged ions is an area of intense activity at the present time because of a convergence of theoretical interest and advances in experimental techniques. The purpose of the Argonne ''Workshop on Opportunities for Atomic Physics Using Slow, Highly-Charged Ions'' was to bring together atomic, nuclear, and accelerator physicists in order to identify what new facilities would be most useful for the atomic physics community. The program included discussion of existing once-through machines, advanced ion sources, recoil ion techniques, ion traps, and cooler rings. One of the topics of the Workshop was to discuss possible improvement to the ANL Tandem-Linac facility (ATLAS) to enhance the capability for slowing down ions after they are stripped to a high-charge state (the Accel/Decel technique). Another topic was the opportunity for atomic physics provided by the ECR ion source which is being built for the Uranium Upgrade of ATLAS. 18 analytics were prepared for the individual papers in this volume.

  16. Searches for New Physics at the Belle II Experiment

    CERN Document Server

    Wang, Boqun

    2015-01-01

    The Belle II experiment at the SuperKEKB collider is an upgrade of the Belle / KEKB experiment. It will start physics data taking from 2018 and with $40$ times luminosity, its goal is to accumulate 50 $ab^{-1}$ of $e^+e^-$ collision data. The physics programs have a wide range of areas for new physics, such as more constraints on CKM Unitarity Triangle, searching for charged Higgs, direct CPV, Lepton Flavour Violation and dark matter.In this monograph, we will review the current status of Belle II and SuperKEKB construction and introduce the main physics opportunities at this facility.

  17. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  18. The exploration and practice of physics experiment teaching based on network

    OpenAIRE

    Min-xi CHENG; Xian-qiu WU

    2007-01-01

    The consideration and practice that network technology assisted physical experiment teaching were discussed. The teaching modes of physical experiment based on network includes the special subject website of physical experiment, experiment teaching network management, web course of experiment and the long-distance manipulation of physical experiment. With the result, the physical experiment teaching effect and the management were improved by network technology.

  19. Hadron physics at the COMPASS experiment

    Directory of Open Access Journals (Sweden)

    Krinner Fabian

    2015-01-01

    The Compass experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new JPC = 1++ state, the a1(1420, is observed with a mass and width in the ranges m = 1412 − 1422MeV/c2 and Γ = 130 − 150MeV/c2.

  20. Top quark physics with the CMS experiment

    Directory of Open Access Journals (Sweden)

    Cuevas Javier

    2014-04-01

    Full Text Available An overview of recent top quark measurements in proton-proton collisions at √s = 7 and 8 TeV in data collected with the CMS experiment at the LHC, using a data sample collected during the years 2011 and 2012 is presented. Measurements of top quark pair production cross sections in several top quark final states are reported, as well as electroweak production of single top quarks in both t-and tW-channels. The mass of the top quark is estimated by different methods.

  1. V. S. Lebedev and I. L. Beigman, Physics of Highly Excited Atoms and Ions

    Science.gov (United States)

    Mewe, R.

    1999-07-01

    This book contains a comprehensive description of the basic principles of the theoretical spectroscopy and experimental spectroscopic diagnostics of Rydberg atoms and ions, i.e., atoms in highly excited states with a very large principal quantum number (n≫1). Rydberg atoms are characterized by a number of peculiar physical properties as compared to atoms in the ground or a low excited state. They have a very small ionization potential (∝1/n2), the highly excited electron has a small orbital velocity (∝1/n), the radius (∝n2) is very large, the excited electron has a long orbital period (∝n3), and the radiation lifetime is very long (∝n3-5). At the same time the R. atom is very sensitive to perturbations from external fields in collisions with charged and neutral targets. In recent years, R. atoms have been observed in laboratory and cosmic conditions for n up to ˜1000, which means that the size amounts to about 0.1 mm, ˜106 times that of an atom in the ground state. The scope of this monograph is to familiarize the reader with today's approaches and methods for describing isolated R. atoms and ions, radiative transitions between highly excited states, and photoionization and photorecombination processes. The authors present a number of efficient methods for describing the structure and properties of R. atoms and calculating processes of collisions with neutral and charged particles as well as spectral-line broadening and shift of Rydberg atomic series in gases, cool and hot plasmas in laboratories and in astrophysical sources. Particular attention is paid to a comparison of theoretical results with available experimental data. The book contains 9 chapters. Chapter 1 gives an introduction to the basic properties of R. atoms (ions), Chapter 2 is devoted to an account of general methods describing an isolated Rydberg atom. Chapter 3 is focussed on the recent achievements in calculations of form factors and dipole matrix elements of different types of

  2. Data acquisition for high energy physics experiments

    International Nuclear Information System (INIS)

    The general scope of Data Acquisition Systems range from the feedthroughs on the actual detectors to the storage racks for the data recording media. The systems are concerned with the conversion of interesting, volatile signals usually to a stable, digitized format. The problems involved are interesting because of the boundary conditions: engineering, economics, required resolution and range, rates, radiation damage, and physical size available for the components. Systems that will be considered here are limited to those for e+e- and hadronic colliding beam problems. Component tasks of a Data Acquisition System are preamplification and signal conditioning, digitization, sparsification, data correction, data reduction, and data recording. Implementation of these tasks require considerations for buffering of the data, multiplexing of the data paths, and triggering systems to control the Data Acquisition System. These lecture develop a conceptual understanding of the building blocks required for these systems and their relationships to each other in real systems. The approach is pedagogic and a variety of data acquisition issues are introduced. An SLD is used for illustration an SSC detector is briefly considered

  3. Current experiments in elementary-particle physics - March 1983

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Armstrong, F.E.; Rittenberg, A.

    1983-03-01

    Microfiche are included which contain summaries of 479 experiments in elementary particle physics. Experiments are included at the following laboratories: Brookhaven (BNL); CERN; CESR; DESY; Fermilab (FNAL); Institute for Nuclear Studies (INS); KEK; LAMPF; Serpukhov (SERP); SIN; SLAC; and TRIUMF. Also, summaries of proton decay experiments are included. A list of experiments and titles is included; and a beam-target-momentum index and a spokesperson index are given. Properties of beams at the facilities are tabulated. (WHK)

  4. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  5. A New ECR Ion Source for Atomic Physics Research at IMP

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new Electron Cyclotron Resonance (ECR) ion source (LECR3-Lanzhou Electron Cyclotron Resonance ion source No.3) was constructed this year. The main purpose of this source is to provide highly charged ion beams for atomic physics and surface physics research. The design of this ion source is based on the IMP 14.5 GHz ECR ion source (LECR2-Lanzhou Electron Cyclotron Resonance ion source No.2) with double RF heating

  6. Unfolding methods in high-energy physics experiments

    International Nuclear Information System (INIS)

    Distributions measured in high-energy physics experiments are often distorted or transformed by limited acceptance and finite resolution of the detectors. The unfolding of measured distributions is an important, but due to inherent instabilities a very difficult problem. Methods for unfolding, applicable for the analysis of high-energy physics experiments, and their properties are discussed. An introduction is given to the method of regularization. (orig.)

  7. Specifications for reactor physics experiments on CANFLEX-RU fuel

    International Nuclear Information System (INIS)

    This is to describe reactor physics experiments to be performed in the ZED-2 reactor to study CANFLEX-RU fuel bundles in CANDU-type fuel channels. The experiments are to provide benchmark quality validation data for the computer codes and associated nuclear databases used for physics calculations, in particular WIMS-AECL. Such validation data is likely to be a requirement by the regulator as condition for licensing a CANDU reactor based on an enriched fuel cycle

  8. Theory of Neutrino-Atom Collisions: The History, Present Status, and BSM Physics

    International Nuclear Information System (INIS)

    An overview of the current theoretical studies on neutrino-atom scattering processes is presented. The ionization channel of these processes, which is studied in experiments searching for neutrino magnetic moments, is brought into focus. Recent developments in the theory of atomic ionization by impact of reactor antineutrinos are discussed. It is shown that the stepping approximation is well applicable for the data analysis practically down to the ionization threshold

  9. Various applications of atomic physics and kinetics codes to plasma modeling

    International Nuclear Information System (INIS)

    A collection of computer codes developed at Los Alamos have been applied to a variety of plasma modeling problems. The CATS, RATS, ACE, and GIPPER codes are used to calculate a consistent set of atomic physics data for a given problem. The calculated data include atomic energy levels, oscillator strengths, electron impact excitation and ionization cross sections, photoionization cross sections, and autoionization rates. The FINE and LINES codes access these data sets directly to perform plasma modeling calculations. Preliminary results of some of the current applications are presented, including, the calculation of holmium opacity, the modeling of plasma flat panel display devices, the analysis of some new results from the LANL TRIDENT laser and prediction of the radiative properties of the plasma wakefield light source for extreme ultraviolet lithography (EUVL). For the latter project, the simultaneous solution of atomic kinetics for the level populations and the Boltzmann equation for the electron energy distribution is currently being implemented. copyright 1996 American Institute of Physics

  10. Do General Physics Textbooks Discuss Scientists' Ideas about Atomic Structure? A Case in Korea

    Science.gov (United States)

    Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho

    2013-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general…

  11. Minimum detection efficiency for a loophole-free atom-photon Bell experiment

    OpenAIRE

    Cabello, Adan; Larsson, Jan-Ake

    2007-01-01

    In Bell experiments, one problem is to achieve high enough photodetection to ensure that there is no possibility of describing the results via a local hidden-variable model. Using the Clauser-Horne inequality and a two-photon non-maximally entangled state, a photodetection efficiency higher than 0.67 is necessary. Here we discuss atom-photon Bell experiments. We show that, assuming perfect detection efficiency of the atom, it is possible to perform a loophole-free atom-photon Bell experiment ...

  12. An undergraduate experiment demonstrating the physics of metamaterials with acoustic waves and soda cans

    Science.gov (United States)

    Wilkinson, James T.; Whitehouse, Christopher B.; Oulton, Rupert F.; Gennaro, Sylvain D.

    2016-01-01

    We describe a novel undergraduate research project that highlights the physics of metamaterials with acoustic waves and soda cans. We confirm the Helmholtz resonance nature of a single can by measuring its amplitude and phase response to a sound wave. Arranging multiple cans in arrays smaller than the wavelength, we then design an antenna that redirects sound into a preferred direction. The antenna can be thought of as a new resonator, composed of artificially engineered meta-atoms, similar to a metamaterial. These experiments are illustrative, tactile, and open ended so as to enable students to explore the physics of matter/wave interaction.

  13. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Large-scale vapor explosion experiments have shown that intimate contact between hot and cold liquids, and a temperature upon contact that is greater than the spontaneous nucleation temperature of the system, are two necessary conditions for the onset of large scale vapor explosions. A model, based on spontaneous nucleation of the homogeneous type, has been proposed to describe the relevant processes and the resulting energetics for explosive boiling systems. The model considers that spontaneous nucleation cannot occur either during the relief time for constant volume heating or until the thermal boundary layer is sufficiently thick to support a vapor cavity of the critical size. After nucleation, bubble growth does not occur until an acoustic wave establishes a pressure gradient in the cold liquid. These considerations lead to the prediction that, for a given temperature, drops greater than a critical size will remain in film boiling due to coalescence of vapor nuclei and drops smaller than this value will wet and be captured by the hot liquid surface. These results are compared to small drop data for well-wetted systems and excellent agreement is obtained between the observed behavior and the model predictions. In conclusion: A model, based on spontaneous nucleation, has been proposed to describe vaporization potential and behavior upon contact in a liquid/liquid system. This behavior is determined by the size of the liquid mass, single-phase pressurization and acoustic relief, nucleation frequency due to random density fluctuations, the initiation of unstable growth and acoustic relief, and the development of the thermal boundary layer in the cold liquid. The proposed model predicts that the stability of a given size drop upon intimate contact with another liquid is extremely dependent upon the interface temperature. For low interface temperatures, large masses will be captured by the hot liquid and the resulting vaporization rates will be extremely low because

  14. Photoionization of ions and the general program in atomic and molecular physics at Daresbury

    International Nuclear Information System (INIS)

    The current program in Atomic and Molecular Science is focused on photoionization of atoms and small molecules. On the atomic side, experiments on the double ionization of helium were completed recently, verifying the Wannier threshold law for double photoionization. Also, the angular distribution of the electrons has just been measured, and these results show a marked divergence form theoretical expectations. Other experiments include fluorescence polarization measurements for the atomic ions calcium and strontium, which, when combined with photoelectron angular distribution measurements, form the complete photoionization experiment. A sizeable part of the program is devoted to studying molecular fragmentation. The triple coincidence technique, in which the two fragment ions are detected in coincidence with the photoelectron after the parent molecule has been doubly ionized, was developed at Daresbury, and experiments in this area continue with the addition of fluorescence measurements. Looking to the future, the atomic and molecular science program at Daresbury will move closer to applied science areas, with metal clusters and transient species becoming more prominent. Much of this work will require a source with two to three orders of magnitude advantage in photon intensity over the SRS, and a design study is presently under way for a VUV/Soft X-ray source to meet these requirements

  15. Bicycle Freewheeling with Air Drag as a Physics Experiment

    Science.gov (United States)

    Janssen, Paul; Janssens, Ewald

    2015-01-01

    To familiarize first-year students with the important ingredients of a physics experiment, we offer them a project close to their daily life: measuring the effect of air resistance on a bicycle. Experiments are done with a bicycle freewheeling on a downhill slope. The data are compared with equations of motions corresponding to different models…

  16. Clear evidence of charge conjugation and parity violation in K atoms from atomic permanent electric dipole moment experiments

    CERN Document Server

    You, Pei-Lin

    2008-01-01

    Quantum mechanics thinks that atoms do not have permanent electric dipole moment (EDM) because of their spherical symmetry. Therefore, there is no polar atom in nature except for polar molecules. The electric susceptibility Xe caused by the orientation of polar substances is inversely proportional to the absolute temperature T while the induced susceptibility of atoms is temperature independent. This difference in temperature dependence offers a means of separating the polar and non-polar substances experimentally. Using special capacitor our experiments discovered that the relationship between Xe of Potassium atom and T is just Xe=B/T, where the slope B is approximately 283(K) as polar molecules, but appears to be disordered using the traditional capacitor. Its capacitance C at different voltage V was measured. The C-V curve shows that the saturation polarization of K vapor has be observed when E more than 105V/m and nearly all K atoms (over 98.9 per cent) are lined up with the field! The ground state neutra...

  17. Current status and improvement of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology

    International Nuclear Information System (INIS)

    The author reviews the current status of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology in higher education and expresses author's views on the future improvement of the nuclear physics experiment course

  18. Compilation of current high-energy physics experiments

    International Nuclear Information System (INIS)

    This is the fourth edition of the compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. Only approved experiments are included

  19. Laboratory Experiments in College Physics, 7th Edition

    Science.gov (United States)

    Bernard, Cicero H.; Epp, Chirold D.

    1994-07-01

    Provides a large selection of classical physics laboratory experiments whose subject matter coincides with most first-year college physics texts. All experiments can be performed with a wide variety of appartus and multiple procedures are given to accommodate several popular approaches. A number of experiments contain special error analysis procedures. Questions are designed to aid students in making more careful observations and to train them to analyze these observations as well as interpret their results. Forms to record the data and results are also included.

  20. Compilation of current high-energy physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1981-05-01

    This is the fourth edition of the compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. Only approved experiments are included.

  1. Accurate measurement and physical insight: The X-ray extended range technique for fundamental atomic physics, condensed matter research and biological sciences

    International Nuclear Information System (INIS)

    Research in core physics or atomic and condensed matter science is increasingly relevant for diverse fields and are finding application in chemistry, engineering and biological sciences, linking to experimental research at synchrotrons, reactors and specialised facilities. Over recent synchrotron experiments and publications we have developed methods for measuring the absorption coefficient far from the edge and in the XAFS (X-ray absorption fine structure) region in neutral atoms, simple compounds and organometallics reaching accuracies of below 0.02%. This is 50-500 times more accurate than earlier methods, and 50-250 times more accurate than claimed uncertainties in theoretical computations for these systems. The data and methodology are useful for a wide range of applications, including major synchrotron and laboratory techniques relating to fine structure, near-edge analysis and standard crystallography. Experiments are sensitive to theoretical and computational issues, including correlation between convergence of electronic and atomic orbitals and wavefunctions. Hence, particularly in relation to the popular techniques of XAFS and XANES (X-ray absorption near-edge structure), this development calls for strong theoretical involvement but has great applications in solid state structural determination, catalysis and enzyme environments, active centres of biomolecules and organometallics, phase changes and fluorescence investigations and others. We discuss key features of the X-ray extended range technique (XERT) and illustrate applications.

  2. Multi-V-type and Λ-type electromagnetically induced transparency experiments in rubidium atoms with low-power low-cost free running single mode diode lasers

    Science.gov (United States)

    Lavín Varela, S.; León Suazo, J. A.; Gutierrez González, J.; Vargas Roco, J.; Buberl, T.; Aguirre Gómez, J. G.

    2016-05-01

    In this work we present the experimental realization of electromagnetically induced transparency (EIT) in A-type and multi-V-type configurations in a sample of rubidium atoms inside a vapor cell at room temperature. Typical EIT windows are clearly visible in the Doppler- broadened absorption signal of the weak probe beam. The coherent optical pump and probe fields are produced by two tunable low-cost, low-power, continuous-wave (cw), free-running and single mode operated diode laser systems, temperature stabilized and current controlled, tuned to the D2 line of rubidium atoms at 780.2 nm wavelength. The continuum wave and single mode operation of our laser systems are confirmed by direct and saturated absorption spectroscopy techniques. Among other applications, these simple experiments can be used as a low-cost undergraduate laboratory in atomic physics, laser physics, coherent light-atom interaction, and high resolution atomic spectroscopy.

  3. Do general physics textbooks discuss scientists’ ideas about atomic structure? A case in Korea

    Science.gov (United States)

    Niaz, Mansoor; Kwon, Sangwoon; Kim, Nahyun; Lee, Gyoungho

    2013-01-01

    Research in science education has recognized the importance of teaching atomic structure within a history and philosophy of science perspective. The objective of this study is to evaluate general physics textbooks published in Korea based on the eight criteria developed in previous research. The result of this study shows that Korean general physics textbooks often lack detail about the history and philosophy of science. This result is quite similar to those published for the USA. Furthermore, chemistry textbooks published in the USA, Turkey and Venezuela are quite similar to the physics textbooks. This is a cause for concern as textbooks present theories as facts and ignore the historical reconstructions based on the development of scientific theories that frequently involve controversies and conflicts among scientists. The inclusion of historical reconstructions of ideas about atomic structure can provide students with a better appreciation of the dynamics of scientific progress.

  4. Status of the hydrogen and deuterium atomic beam polarized target for NEPTUN experiment

    Science.gov (United States)

    Balandikov, N. I.; Ershov, V. P.; Fimushkin, V. V.; Kulikov, M. V.; Pilipenko, Yu. K.; Shutov, V. B.

    1995-09-01

    NEPTUN-NEPTUN-A is a polarized experiment at Accelerating and Storage Complex (UNK, IHEP) with two internal targets. Status of the atomic beam polarized target that is being developed at the Joint Institute for Nuclear Research, Dubna is presented.

  5. Clusters of atoms and molecules theory, experiment, and clusters of atoms

    CERN Document Server

    1994-01-01

    Clusters of Atoms and Molecules is devoted to theoretical concepts and experimental techniques important in the rapidly expanding field of cluster science. Cluster properties are dicussed for clusteres composed of alkali metals, semiconductors, transition metals, carbon, oxides and halides of alkali metals, rare gases, and neutral molecules. The book is composed of several well-integrated treatments all prepared by experts. Each contribution starts out as simple as possible and ends with the latest results so that the book can serve as a text for a course, an introduction into the field, or as a reference book for the expert.

  6. Space, body, time and relationship experiences of recess physical activity

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Tjørnhøj-Thomsen, Tine;

    2016-01-01

    and relations revealed several key factors influencing their recess physical activity: perceived classroom safety, indoor cosiness, lack of attractive outdoor facilities, bodily dissatisfaction, bodily complaints, tiredness, feeling bored, and peer influence. CONCLUSION: We found that the four existential......BACKGROUND: Increasing recess physical activity has been the aim of several interventions, as this setting can provide numerous physical activity opportunities. However, it is unclear if these interventions are equally effective for all children, or if they only appeal to children who are already...... physically active. This study was conducted to explore the least physically active children's "lived experiences" within four existential lifeworlds linked to physical activity during recess: space, body, time, and relations. METHODS: The study builds on ethnographic fieldwork in a public school in Denmark...

  7. Nonlinear optical and atomic systems at the interface of physics and mathematics

    CERN Document Server

    Garreau, Jean-Claude

    2015-01-01

    Focusing on the interface between mathematics and physics, this book offers an introduction to the physics, the mathematics, and the numerical simulation of nonlinear systems in optics and atomic physics. The text covers a wide spectrum of current research on the subject, which is  an extremely active field in physics and mathematical physics, with a very broad range of implications, both for fundamental science and technological applications: light propagation in microstructured optical fibers, Bose-Einstein condensates, disordered systems, and the newly emerging field of nonlinear quantum mechanics.   Accessible to PhD students, this book will also be of interest to post-doctoral researchers and seasoned academics.

  8. Astronomical spectroscopy an introduction to the atomic and molecular physics of astronomical spectra

    CERN Document Server

    Tennyson, Jonathan

    2005-01-01

    Nearly all the information we know about the Universe comes from thestudy of light as it reaches us. The understanding of this informationcontained in light requires both telescopes capable of resolving lightinto its different component colors, as well as detailed knowledge ofthe quantum mechanical behavior of atoms and molecules. This uniquebook, which is based on a third-year undergraduate course given by theauthor at University College London, presents the basic atomic andmolecular physics necessary to understand and interpret astronomicalspectra. It explains what information can be extract

  9. SASP. Contributions to the 13. Symposium on atomic and surface physics and related topics

    International Nuclear Information System (INIS)

    The XIII symposium on Atomic and Surface Physics and related Topics (SASP) is devoted to cover the research of interactions between ions, electrons, photons, atoms, molecules and clusters and their interaction with surfaces. This year there was a special session dedicated to proton transfer reaction mass spectrometry covering its applications in different fields and a mini symposium on the radiation action on bio-molecules such as uracil. The contributions included in the proceeding correspond to invited lectures and poster sessions, consisting of short and extended abstracts as well as short articles. (nevyjel)

  10. Speculative Physics: the Ontology of Theory and Experiment in High Energy Particle Physics and Science Fiction

    CERN Document Server

    Lee, Clarissa Ai Ling

    2014-01-01

    The dissertation brings together approaches across the fields of physics, critical theory, literary studies, philosophy of physics, sociology of science, and history of science to synthesize a hybrid approach for instigating more rigorous and intense cross-disciplinary interrogations between the sciences and the humanities. There are two levels of conversations going on in the dissertation; at the first level, the discussion is centered on a critical historiography and philosophical implications of the discovery Higgs boson in relation to its position at the intersection of old (current) and the potential for new possibilities in quantum physics; I then position my findings on the Higgs boson in connection to the double-slit experiment that represents foundational inquiries into quantum physics, to demonstrate the bridge between fundamental physics and high energy particle physics. The conceptualization of the variants of the double-slit experiment informs the aforementioned critical comparisons. At the secon...

  11. Radiological safety experience in nuclear fuel cycle operations at Bhabha Atomic Research Center, Trombay, Mumbai, India

    International Nuclear Information System (INIS)

    Activities at Bhabha Atomic Research Centre (BARC), Mumbai, cover nuclear fuel cycle operations based on natural uranium as the fuel. The facilities include: plant for purification and production of nuclear grade uranium metal, fuel fabrication, research reactor operation, fuel reprocessing and radioactive waste management in each stage. Comprehensive radiation protection programmes for assessment and monitoring of radiological impact of these operations, both in occupational and public environment, have been operating in BARC since beginning. These programmes, based on the 1990 ICRP Recommendations as prescribed by national regulatory body, the Atomic Energy Regulatory Board (AERB), are being successfully implemented by the Health, Safety and Environment Group, BARC. Radiation Hazards Control Units attached to the nuclear fuel cycle facilities provide radiation safety surveillance to the various operations. The radiation monitoring programme consists of measurement and control of external exposures by thermoluminescent dosimeters (TLDs), hand-held and installed instruments, and internal exposures by bioassay and direct whole body counting using shadow shield counter for beta gamma emitters and phoswich detector based system for plutonium. In addition, an environmental monitoring programme is in place to assess public exposures resulting from the operation of these facilities. The programme involves analysis of various matrices in the environment such as bay water, salt, fish, sediment and computation of resulting public exposures. Based on the operating experience in these plants, improved educating and training programmes for plant operators, have been designed. This, together with the application of new technologies have brought down individual as well as average doses of occupational workers. The environmental releases remain a small fraction of the authorised limits. The operating health physics experience in some of these facilities is discussed in this paper

  12. Becoming physics people: Development of integrated physics identity through the Learning Assistant experience

    Science.gov (United States)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of community of practice and physics identity, and explore the implications suggested by these theories for LA program adoption and adaptation. Regression models from physics identity studies show that the physics identity construct strongly predicts intended choice of a career in physics. The goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger "physics student" identity and stronger "physics instructor" identity, and that these identities are reconciled into a coherent integrated physics identity. Increased comfort in interactions with peers, near peers, and faculty seems to be an important component of this identity development and reconciliation, suggesting that a focus on supporting community membership is useful for effective program design.

  13. Digital physical startup system applying to physical startup experiment of HTR-10

    International Nuclear Information System (INIS)

    10 MW high temperature gas cooled reactor firstly used digital physical startup system to realize to be critical. The author introduces the structure of hardware and human-computer interface function of digital physical startup system, the application characteristics of the system relate to 10 MW high temperature gas cooled reactor and experiments have fulfilled by using the system

  14. Becoming Physics People: Development of Integrated Physics Identity through the Learning Assistant Experience

    Science.gov (United States)

    Close, Eleanor W.; Conn, Jessica; Close, Hunter G.

    2016-01-01

    In this study, we analyze the experience of students in the Physics Learning Assistant (LA) program at Texas State University in terms of the existing theoretical frameworks of "community of practice" and "physics identity," and explore the implications suggested by these theories for LA program adoption and adaptation.…

  15. The Belle II experiment: fundamental physics at the flavor frontier

    CERN Document Server

    de la Cruz, Ivan Heredia

    2016-01-01

    After the major success of B-factories to establish the CKM mechanism and its proven potential to search for new physics, the Belle II experiment will continue exploring the physics at the flavor frontier over the next years. Belle II will collect 50 times more data than its predecessor, Belle, and allow for various precision measurements and searches of rare decays and particles. This paper introduces the B-factory concept and the flavor frontier approach to search for new physics. It then describes the SuperKEKB accelerator and the Belle II detector, as well as some of the physics that will be analyzed in Belle II, concluding with the experiment status and schedule.

  16. Physics in your pocket: experimenting and learning with your smartphone

    OpenAIRE

    González, Manuel Á.; González Rebollo, Miguel Ángel

    2015-01-01

    Along the last years the use of mobile devices in education has increased hugely. This increase includes not only the use of ICTs as learning facilitators. Mobile devices have also become useful tools in experimental physics thanks to their rich sets of built-in sensors. The use of smartphones as measurement devices in physics experiments requires careful attention to ensure good learning outcomes. Some aspects that must be considered are the reliability and accuracy of the smartphone sensors...

  17. The physics of musical scales: Theory and experiment

    Science.gov (United States)

    Durfee, Dallin S.; Colton, John S.

    2015-10-01

    The theory of musical scales involves mathematical ratios, harmonic resonators, beats, and human perception and provides an interesting application of the physics of waves and sound. We first review the history and physics of musical scales, with an emphasis on four historically important scales: twelve-tone equal temperament, Pythagorean, quarter-comma meantone, and Ptolemaic just intonation. We then present an easy way for students and teachers to directly experience the qualities of different scales using MIDI synthesis.

  18. The BTeV experiment: Physics and detector

    International Nuclear Information System (INIS)

    Exploring the large number of heavy quarks produced at Fermilab's Tevatron collider, the BTeV experiment is designed to make precision measurements of Standard Model parameters and to perform an exhaustive search for physics beyond the Standard Model. In my presentation at LHC2003 I presented some highlights of the BTeV physics program and discussed a few of the many technological challenges the BTeV collaboration faces designing and building the detector. (orig.)

  19. Home experiment by physics education at basic schools

    OpenAIRE

    ČERVENKA, Petr

    2012-01-01

    This diploma thesis deals with increase of motivation of primary school pupils for school subject ? physics, focusing on preparation for lessons of physics by means of experiments carried out at home. The target of this thesis is to produce a set of worksheets and supportive educational material as an instrument which might increase the interest of primary school pupils in this subject and which might become an important motivating element. In the process of production of the worksheets theor...

  20. Physics of Hard Spheres Experiment: Significant and Quantitative Findings Made

    Science.gov (United States)

    Doherty, Michael P.

    2000-01-01

    Direct examination of atomic interactions is difficult. One powerful approach to visualizing atomic interactions is to study near-index-matched colloidal dispersions of microscopic plastic spheres, which can be probed by visible light. Such spheres interact through hydrodynamic and Brownian forces, but they feel no direct force before an infinite repulsion at contact. Through the microgravity flight of the Physics of Hard Spheres Experiment (PHaSE), researchers have sought a more complete understanding of the entropically driven disorder-order transition in hard-sphere colloidal dispersions. The experiment was conceived by Professors Paul M. Chaikin and William B. Russel of Princeton University. Microgravity was required because, on Earth, index-matched colloidal dispersions often cannot be density matched, resulting in significant settling over the crystallization period. This settling makes them a poor model of the equilibrium atomic system, where the effect of gravity is truly negligible. For this purpose, a customized light-scattering instrument was designed, built, and flown by the NASA Glenn Research Center at Lewis Field on the space shuttle (shuttle missions STS 83 and STS 94). This instrument performed both static and dynamic light scattering, with sample oscillation for determining rheological properties. Scattered light from a 532- nm laser was recorded either by a 10-bit charge-coupled discharge (CCD) camera from a concentric screen covering angles of 0 to 60 or by sensitive avalanche photodiode detectors, which convert the photons into binary data from which two correlators compute autocorrelation functions. The sample cell was driven by a direct-current servomotor to allow sinusoidal oscillation for the measurement of rheological properties. Significant microgravity research findings include the observation of beautiful dendritic crystals, the crystallization of a "glassy phase" sample in microgravity that did not crystallize for over 1 year in 1g

  1. Medical physics in Europe following recommendations of the International Atomic Energy Agency

    Directory of Open Access Journals (Sweden)

    Casar Bozidar

    2016-03-01

    Full Text Available Medical physics is a health profession where principles of applied physics are mostly directed towards the application of ionizing radiation in medicine. The key role of the medical physics expert in safe and effective use of ionizing radiation in medicine was widely recognized in recent European reference documents like the European Union Council Directive 2013/59/EURATOM (2014, and European Commission Radiation Protection No. 174, European Guidelines on Medical Physics Expert (2014. Also the International Atomic Energy Agency (IAEA has been outspoken in supporting and fostering the status of medical physics in radiation medicine through multiple initiatives as technical and cooperation projects and important documents like IAEA Human Health Series No. 25, Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists (2013 and the International Basic Safety Standards, General Safety Requirements Part 3 (2014. The significance of these documents and the recognition of the present insufficient fulfilment of the requirements and recommendations in many European countries have led the IAEA to organize in 2015 the Regional Meeting on Medical Physics in Europe, where major issues in medical physics in Europe were discussed. Most important outcomes of the meeting were the recommendations addressed to European member states and the survey on medical physics status in Europe conducted by the IAEA and European Federation of Organizations for Medical Physics.

  2. Current experiments in particle physics - particle data group

    Energy Technology Data Exchange (ETDEWEB)

    Galic, H. [Stanford Univ., CA (United States). Stanford Linear Accelerator Center; Lehar, F. [Centre d`Etudes Nucleaires de Saclay, Gif-sur-Yvette (France); Kettle, P.R. [Paul Scherrer Institute, Villigen (Switzerland)] [and others

    1996-09-01

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries.

  3. Advanced detection techniques for educational experiments in cosmic ray physics

    International Nuclear Information System (INIS)

    In this paper we describe several detection techniques that can be employed to study cosmic ray properties and carry out training activities at high school and undergraduate level. Some of the proposed devices and instrumentation are inherited from professional research experiments, while others were especially developed and marketed for educational cosmic ray experiments. The educational impact of experiments in cosmic ray physics in high-school or undergraduate curricula will be exploited through various examples, going from simple experiments carried out with small Geiger counters or scintillation devices to more advanced detection instrumentation which can offer starting points for not trivial research work. (authors)

  4. Current experiments in particle physics - particle data group

    International Nuclear Information System (INIS)

    This report contains summaries of current and recent experiments in Particle Physics. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, Frascati, ITEP (Moscow), JINR (Dubna), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several proton decay and solar neutrino experiments. Excluded are experiments that finished taking data before 1991. Instructions are given for the World Wide Web (WWW) searching of the computer database (maintained under the SLAC-SPIRES system) that contains the summaries

  5. Precision spectroscopy of light kaonic atom X-rays in the SIDDHARTA experiment

    Science.gov (United States)

    Cargnelli, M.; Bazzi, M.; Beer, G.; Bombelli, L.; Bragadireanu, A. M.; Curceanu, C.; Fiorini, C.; Frizzi, T.; Ghio, F.; Girolami, B.; Guaraldo, C.; Hayano, R.; Iliescu, M.; Ishiwatari, T.; Iwasaki, M.; Kienle, P.; Lechner, P.; Sandri, P. Levi; Longoni, A.; Lucherini, V.; Marton, J.; Okada, S.; Pietreanu, D.; Ponta, T.; Vidal, A. Romero; Scordo, A.; Shi, H.-X.; Sirghi, D. L.; Sirghi, F.; Soltau, H.; Strüder, L.; Tatsuno, H.; Doce, O. Vazquez; Widmann, E.; Zmeskal, J.

    2011-10-01

    The KN system at rest makes a sensitive testing ground for low energy QCD. At the DAΦNE electron-positron collider of Laboratori Nazionali di Frascati we study kaonic atoms, taking advantage of the low-energy kaons from Φ-mesons decaying nearly at rest. The DEAR (DAΦNE Exotic Atom Research) experiment at LNF delivered the most precise data on kaonic hydrogen up to now. DEAR and its follow-up experiment SIDDHARTA (Silicon Drift Detector for Hadronic Atom Research by Timing Application) are using X-ray spectroscopy of kaonic atoms to measure the strong interaction induced shift and width of the ground state. SIDDHARTA is the first experiment on kaonic helium-3 and deuterium ever, and kaonic hydrogen was remeasured with improved precision.

  6. Precision spectroscopy of light kaonic atom X-rays in the SIDDHARTA experiment

    International Nuclear Information System (INIS)

    The KN system at rest makes a sensitive testing ground for low energy QCD. At the DAΦNE electron-positron collider of Laboratori Nazionali di Frascati we study kaonic atoms, taking advantage of the low-energy kaons from Φ-mesons decaying nearly at rest. The DEAR (DAΦNE Exotic Atom Research) experiment at LNF delivered the most precise data on kaonic hydrogen up to now. DEAR and its follow-up experiment SIDDHARTA (Silicon Drift Detector for Hadronic Atom Research by Timing Application) are using X-ray spectroscopy of kaonic atoms to measure the strong interaction induced shift and width of the ground state. SIDDHARTA is the first experiment on kaonic helium-3 and deuterium ever, and kaonic hydrogen was remeasured with improved precision.

  7. A Study on school experiences of physics department students

    International Nuclear Information System (INIS)

    Bringing up the young people who are seen as the guaranty of the future depends on a better education. One of the best ways of forming a high in quality education is connected to developing the quality in teacher training. Most of the developed countries have been carrying on studies in order to develop teacher training. School experience classes are the ones which are planned for the candidate teachers to observe the school in learning and teaching period and to practice in classrooms. Beginning from candidate teachers first years at school, this class should be thought to be beneficial for identifying their future school atmosphere, and it should be run effectively. For this purpose, it has been identified what difficulties the physics undergraduate and physics (with no thesis) master students, who took part in School Experience classes at the practice schools of Konya at which faculty-school cooperation is applied, had during activities, and their success at overcoming these difficulties, and their ideas about the practice school and its teachers. The research was done by making a survey to the physics undergraduate and physics(with no thesis) master students in 2003 Spring semester. The results of the research were analyzed for both girls and boys separately. After analyzed, the results showed that the most striking activity which both the undergraduate physics and physics(with no thesis) master students had difficulty was group activities. Moreover, it showed that 90 percent of the two groups had the idea that school experience activities would be beneficial for being a good physics teacher. It has been also recognized that the physics undergraduate students had a more positive view than physics(with no thesis) master students on the matter of meeting lack of interest from practice teachers, and taking the same course from the same teacher

  8. Atomic Physics Effects on Convergent, Child-Langmuir Ion Flow between Nearly Transparent Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Santarius, John F. [University of Wisconsin-Madison; Emmert, Gilbert A. [University of Wisconsin-Madison

    2013-11-07

    Research during this project at the University of Wisconsin Fusion Technology Institute (UW FTI) on ion and neutral flow through an arbitrary, monotonic potential difference created by nearly transparent electrodes accomplished the following: (1) developed and implemented an integral equation approach for atomic physics effects in helium plasmas; (2) extended the analysis to coupled integral equations that treat atomic and molecular deuterium ions and neutrals; (3) implemented the key deuterium and helium atomic and molecular cross sections; (4) added negative ion production and related cross sections; and (5) benchmarked the code against experimental results. The analysis and codes treat the species D0, D20, D+, D2+, D3+, D and, separately at present, He0 and He+. Extensions enhanced the analysis and related computer codes to include He++ ions plus planar and cylindrical geometries.

  9. Physical essence of the multibody contact-sliding at atomic scale

    Science.gov (United States)

    Han, Xuesong

    2014-01-01

    Investigation the multibody contact-sliding occurred at atomic discrete contact spot will play an important role in determine the origin of tribology behavior and evaluates the micro-mechanical property of nanomaterials and thus optimizing the design of surface texture. This paper carries out large scale parallel molecular dynamics simulation on contact-sliding at atomic scale to uncover the special physical essence. The research shows that some kind of force field exists between nanodot pair and the interaction can be expressed by the linear combination of exponential function while the effective interaction distance limited in 1 angstrom for nanodot with several tens of nanometer diameter. The variation tendency about the interaction force between nanodot array is almost the same between nanodot pairs and thus the interaction between two nanodot array can be characterized by parallel mechanical spring. Multibody effect which dominates the interaction between atoms or molecules will gradually diminish with the increasing of length scales.

  10. Compilation of current high-energy-physics experiments

    International Nuclear Information System (INIS)

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976

  11. Constraints on New Physics from Various Neutrino Experiments

    OpenAIRE

    Pronin, Alexey

    2008-01-01

    In this thesis we consider a number of past, present, and future neutrino experiments designed to test physics beyond the Standard Model. First, we analyze potential new physics explanations of the NuTeV anomaly and check their compatibility with the most recent experimental data. The models we consider are: gauged Lmu-Ltau, gauged B-3Lmu, and S1, S3, V1, V3 leptoquarks. We find that only the triplet leptoquark models can explain NuTeV and be compatible with the data from other experiments a...

  12. Compilation of current high-energy-physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976.

  13. Great experiments in physics firsthand accounts from Galileo to Einstein

    CERN Document Server

    1959-01-01

    From Galileo's famous experiments in accelerated motion to Einstein's revolutionary theory of relativity, the experiments recorded here trace the evolution of modern physics from its beginnings to the mid-20th century. Brought together for the first time in one volume are important source readings on 25 epochal discoveries that changed man's understanding of the physical world. The accounts, written by the physicists who made them, include:Issac Newton: The Laws of MotionHenry Cavendish: The Law of GravitationAugustin Fresnel: The Diffraction of LightHans Christian Oersted: ElecromagnetismH

  14. Tritium handling experience at Atomic Energy of Canada Limited

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, S.; McCrimmon, K.; Lalonde, S.; Ryland, D.; Boniface, H.; Muirhead, C.; Castillo, I. [Atomic Energy of Canad Limited - AECL, Chalk River Laboratories, Chalk River, ON (Canada)

    2015-03-15

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues.

  15. Tritium handling experience at Atomic Energy of Canada Limited

    International Nuclear Information System (INIS)

    Canada has been a leader in tritium handling technologies as a result of the successful CANDU reactor technology used for power production. Over the last 50 to 60 years, capabilities have been established in tritium handling and tritium management in CANDU stations, tritium removal processes for heavy and light water, tritium measurement and monitoring, and understanding the effects of tritium on the environment. This paper outlines details of tritium-related work currently being carried out at Atomic Energy of Canada Limited (AECL). It concerns the CECE (Combined Electrolysis and Catalytic Exchange) process for detritiation, tritium-compatible electrolysers, tritium permeation studies, and tritium powered batteries. It is worth noting that AECL offers a Tritium Safe-Handling Course to national and international participants, the course is a mixture of classroom sessions and hands-on practical exercises. The expertise and facilities available at AECL is ready to address technological needs of nuclear fusion and next-generation nuclear fission reactors related to tritium handling and related issues

  16. The physics analysis tools project for the ATLAS experiment

    International Nuclear Information System (INIS)

    The Large Hadron Collider is expected to start colliding proton beams in 2009. The enormous amount of data produced by the ATLAS experiment (≅1 PB per year) will be used in searches for the Higgs boson and Physics beyond the standard model. In order to meet this challenge, a suite of common Physics Analysis Tools has been developed as part of the Physics Analysis software project. These tools run within the ATLAS software framework, ATHENA, covering a wide range of applications. There are tools responsible for event selection based on analysed data and detector quality information, tools responsible for specific physics analysis operations including data quality monitoring and physics validation, and complete analysis tool-kits (frameworks) with the goal to aid the physicist to perform his analysis hiding the details of the ATHENA framework. (authors)

  17. Physics programmes and goals of large tokamak experiments

    International Nuclear Information System (INIS)

    This report describes physics programmes and goals of four large Tokamak experiments (LTX); i.e., JET, TFTR, JT-60 and T-15. Physics problems foreseen in LTX are reviewed in the light of presently available results from Tokamaks in operation. Programmes and objectives of LTX are described by each project. Their various aspects are then reviewed. Possible collaborative programmes among the projects are briefly discussed. The report is based on the discussion held at the physics session of the fourth IAEA Technical Committee Meeting on LTX (Tokyo, April 1980). It is compiled from contributions by session chairmen of the meeting and appropriate persons of each project. (author)

  18. Atomic physics research with second and third generation synchrotron light sources

    International Nuclear Information System (INIS)

    This contribution to these proceedings is intended to provide an introduction and overview for other contributions on atomic (and related) physics research at existing and planned synchrotron light sources. The emphasis will be on research accomplishments and future opportunities, but a comparison will be given of operating characteristics for first, second, and third generation machines. First generation light sources were built to do research with the primary electron and positron beams, rather than with the synchrotron radiation itself. Second generation machines were specifically designed to be dedicated synchrotron-radiation facilities, with an emphasis on the use of bending-magnet radiation. The new third generation light sources are being designed to optimize radiation from insertion devices, such as undulators and wigglers. Each generation of synchrotron light source offers useful capabilities for forefront research in atomic physics and many other disciplines. 27 refs., 1 fig., 3 tabs

  19. FROM THE HISTORY OF PHYSICS: The development of the first Soviet atomic bomb

    Science.gov (United States)

    Goncharov, German A.; Ryabev, Lev D.

    2001-01-01

    In the late 1930s and early 1940s, two remarkable physical phenomena — the fission of heavy nuclei and the chain fission reaction — were discovered, implying that a new powerful source of energy (nuclear fission energy) might become a practical possibility for mankind. At that time, however, the political situation in the world made the development of the atomic bomb the main objective of nuclear energy research in the countries involved. The first atomic bombs, notoriously used in the war against Japan, were produced by the United States of America only six and a half years after the discovery of fission. Four years later, the first Soviet atomic bomb was tested. This was a major step toward the establishment of nuclear parity which led to stability and global peace and thus greatly influenced the destiny of human kind. Based on documentary materials covering the period from 1939 to 1949, this paper traces the origin and evolution of the physical ideas behind the first Soviet atomic bomb and discusses the most important events associated with the project.

  20. Atomic physics with highly charged ions: Progress report, 15 August 1985--14 August 1988

    International Nuclear Information System (INIS)

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project ''Atomic Physics with Highly Charged Ions'' speaks to these points. The experimental work is made possible locally by the use of relatively high velocity, highly charged projectiles (v typically 5% c) as obtained from the 6 MV tandem Van de Graaff accelerator. The work in the past few years has divided into collisions at high velocity using the primary beams from the accelerator and collisions at low velocity using secondary beams (recoil ions produced in a high velocity collision) in a so-called SIRS (Secondary Ion Recoil Source) geometry. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x-rays and Auger electrons. Correlation effects and polarization phenomena in ion-atom collisions have been investigated

  1. Atomic physics with new synchrotron radiation: Report from the Japanese working group

    International Nuclear Information System (INIS)

    The construction of a new photon facility, SPring-8, is being started this year in Harima, Japan, and the first photon beam is to be supplied to users in 1998. As a next generation photon source, this facility will rely mainly upon insertion devices like the APS. The source has two characteristic features. One is that the photon flux is very powerful. In atomic physics target density is often very dilute, and, in many cases, coincidence measurement is desirable to get more definite conclusions. Only with the advent of an intense photon source such studies become tractable and will compensate a thin target density. Another feature is that it can yield photons as high as one hundred or two hundred keV. Since the K-edge of uranium is about 120 keV, the new source can be used to ionize even the innermost shell of the heaviest element. In order to discuss the possible projects in the field of atomic physics with these new photon sources, a group was organized in December 1988. The following themes have been discussed (multiply charged ion is abbreviated to MCI): (1) spectroscopy of atoms and molecules; (2) photoionization of ions (inclusive of MCI); (3) MCI-trap (spectroscopy of MCI, cold MCI plasma); (4) collisions of very slow MCI; (5) electronic and atomic structures of microclusters; and (6) plasma

  2. A distributed atomic physics database and modeling system for plasma spectroscopy

    International Nuclear Information System (INIS)

    We are undertaking to develop a set of computational capabilities which will facilitate the access, manipulation, and understanding of atomic data in calculations of x-ray spectral modeling. In this present limited description we will emphasize the objectives for this work, the design philosophy, and aspects of the atomic database, as a more complete description of this work is available. The project is referred to as the Plasma Spectroscopy Initiative; the computing environment is called PSI, or the ''PSI shell'' since the primary interface resembles a UNIX shell window. The working group consists of researchers in the fields of x-ray plasma spectroscopy, atomic physics, plasma diagnostics, line shape theory, astrophysics, and computer science. To date, our focus has been to develop the software foundations, including the atomic physics database, and to apply the existing capabilities to a range of working problems. These problems have been chosen in part to exercise the overall design and implementation of the shell. For successful implementation the final design must have great flexibility since our goal is not simply to satisfy our interests but to vide a tool of general use to the community

  3. High Energy Physics Experiments In Grid Computing Networks

    Directory of Open Access Journals (Sweden)

    Andrzej Olszewski

    2008-01-01

    Full Text Available The demand for computing resources used for detector simulations and data analysis in HighEnergy Physics (HEP experiments is constantly increasing due to the development of studiesof rare physics processes in particle interactions. The latest generation of experiments at thenewly built LHC accelerator at CERN in Geneva is planning to use computing networks fortheir data processing needs. A Worldwide LHC Computing Grid (WLCG organization hasbeen created to develop a Grid with properties matching the needs of these experiments. Inthis paper we present the use of Grid computing by HEP experiments and describe activitiesat the participating computing centers with the case of Academic Computing Center, ACKCyfronet AGH, Kraków, Poland.

  4. Focus on topological physics: from condensed matter to cold atoms and optics

    Science.gov (United States)

    Zhai, Hui; Rechtsman, Mikael; Lu, Yuan-Ming; Yang, Kun

    2016-08-01

    The notions of a topological phase and topological order were first introduced in the studies of integer and fractional quantum Hall effects, and further developed in the study of topological insulators and topological superconductors in the past decade. Topological concepts are now widely used in many branches of physics, not only limited to condensed matter systems but also in ultracold atomic systems, photonic materials and trapped ions. Papers published in this focus issue are direct testaments of that, and readers will gain a global view of how topology impacts different branches of contemporary physics. We hope that these pages will inspire new ideas through communication between different fields.

  5. Potential Impact of Biofield Energy Treatment on the Atomic, Physical and Thermal Properties Indium Powder

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Indium has gained significant attention in the semiconductor industries due to its unique thermal and optical properties. The objective of this research was to investigate the influence of the biofield energy treatment on the atomic, physical and thermal properties of the indium. The study was performed in two groups (control and treated). The control group remained as untreated, and treated group received Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated in...

  6. Evaluation of Atomic, Physical and Thermal Properties of Tellurium Powder: Impact of Biofield Energy Treatment

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Tellurium has gained significant attention due to its photoconductivity, piezoelectricity, and thermo conductivity properties. The aim of this study was to evaluate the effect of biofield energy treatment on thermal, physical and atomic properties of tellurium powder. The tellurium powder was equally divided in two parts: control and treated (T). The treated part was subjected to Mr. Trivedi’s biofield energy treatment, whereas the control part was remained untreated. Subsequently, the ...

  7. Evaluation of Biofield Treatment on Physical, Atomic and Structural Characteristics of Manganese (II, III) Oxide

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    In Mn3O4, the crystal structure, dislocation density, particle size and spin of the electrons plays crucial role in modulating its magnetic properties. Present study investigates impact of Biofield treatment on physical and atomic properties of Mn3O4. X-ray diffraction revealed the significant effect of biofield on lattice parameter, unit cell volume, molecular weight, crystallite sizes and densities of treated Mn3O4. XRD analysis confirmed that crystallinity was enhanced and dislocation dens...

  8. Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium

    OpenAIRE

    Trivedi, Mahendra; Branton, Alice; Trivedi, Dahryn; Nayak, Gopal

    2015-01-01

    Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Magnesium powder was divided into two parts denoted as control and treatment. Control part was remained as untreated and treatment part received biofield treatment. Both control and treated magnesium samples we...

  9. Potential Impact of BioField Treatment on Atomic and Physical Characteristics of Magnesium

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Magnesium (Mg), present in every cell of all living organisms, is an essential nutrient and primarily responsible for catalytic reaction of over 300 enzymes. The aim of present study was to evaluate the effect of biofield treatment on atomic and physical properties of magnesium powder. Magnesium powder was divided into two parts denoted as control and treatment. Control part was remained as untreated and treatment part received biofield treatment. Both control and treated ...

  10. Physics from solar neutrinos in dark matter direct detection experiments

    OpenAIRE

    Cerdeño, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro A. N.; Vincent, Aaron C.; Bœhm, Céline

    2016-01-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle sin2θWto date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neu...

  11. Physics from solar neutrinos in dark matter direct detection experiments

    OpenAIRE

    David G. Cerdeño; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro A. N.; Vincent, Aaron C.; Boehm, Céline

    2016-01-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle to date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neutrinos...

  12. Physics prospects of future neutrino oscillation experiments in Asia

    OpenAIRE

    Hagiwara, Kaoru

    2004-01-01

    The three neutrino model has 9 physical parameters, 3 neutrino masses, 3 mixing angles and 3 CP violating phases. Among them, neutrino oscillation experiments can probe 6 parameters: 2 mass squared differences, 3 mixing angles, and 1 CP phase. The experiments performed so far determined the magnitudes of the two mass squared differences, the sign of the smaller mass squared difference, the magnitudes of two of the three mixing angles, and the upper bound on the third mixing angle. The sign of...

  13. Enhanced synthesis of Sn nanowires with aid of Se atom via physical vapor transport

    Science.gov (United States)

    Cai, Huacheng; Wang, Wendong; Liu, Peiwen; Wang, Guangming; Liu, Ankang; He, Zhe; Cheng, Zhaofang; Zhang, Shengli; Xia, Minggang

    2015-06-01

    We demonstrate tin (Sn) nanowires growth enhanced by Selenium (Se) atoms via physical vapor transport (PVT) method. The Raman spectroscopy, X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy show that Sn nanowires are synthesized with a large quantity, good quality and high purity of Sn. The growth of Sn nanowires is attributed to Solid-Vapor-Liquid mechanism. The effects of gold nanoparticles catalyst, Si substrate, and Se atoms on Sn nanowires growth are discussed in detail. We find that Se atom plays a key role in the growth of Sn nanowires. The gaseous Sn atoms are absorbed by the eutectic alloy droplets of Se-Au at first. Then Sn atoms precipitate at the liquid-solid phase interface due to a supersaturated solution and form a one-dimensional nanostructure. In all, this PVT method could provide a simple and quick way to synthesize monocrystalline Sn nanowires with an advantage in both quality and quantity. The optical transmittance of Sn nanowires thin film with 2 μm2 density approaches 85-90% in visible wavelength. Therefore, the Sn nanowires thin film can be applied to transparent electrode along with their metallic property.

  14. From the Dawn of Nuclear Physics to the First Atomic Bombs

    Science.gov (United States)

    Woolbright, Stephen; Schumacher, Jacob; Michonova-Alexova, Ekaterina

    2014-03-01

    This work gives a fresh look at the major discoveries leading to nuclear fission within the historical perspective. The focus is on the main contributors to the discoveries in nuclear physics, leading to the idea of fission and its application to the creation of the atomic bombs used at the end of the World War II. The present work is a more complete review on the history of the nuclear physics discoveries and their application to the atomic bomb. In addition to the traditional approach to the topic, focusing mainly on the fundamental physics discoveries in Europe and on the Manhattan Project in the United States, the nuclear research in Japan is also emphasized. Along with that, a review of the existing credible scholar publications, providing evidence for possible atomic bomb research in Japan, is provided. Proper credit is given to the women physicists, whose contributions had not always been recognized. Considering the historical and political situation at the time of the scientific discoveries, thought-provoking questions about decision-making, morality, and responsibility are also addressed. The work refers to the contributions of over 20 Nobel Prize winners. EM-A is grateful to Prof. Walter Grunden and to Prof. Emeritus Shadahiko Kano, Prof. Emeritus Monitori Hoshi for sharing their own notes, documents, and references, and to CCCU for sponsoring her participation in the 2013 Nuclear Weapons Seminar in Japan.

  15. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes

    International Nuclear Information System (INIS)

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  16. Experiments on state selection and Penning ionisation with fast metastable rare gas atoms

    International Nuclear Information System (INIS)

    This thesis describes experiments with metastable He/Ne atoms. The experiments are performed in a crossed beam machine. Two different sources are used for the production of metastable atoms: a source for the production of metastable atoms in the thermal energy range and a hollow cathode arc for the production of metastable atoms in the superthermal energy range (1-7 eV). The progress made in the use of the hollow cathode arc is described as well as the experimental set-up. The rare gas energy-level diagram is characterized by two metastable levels. By optical pumping it is possible to select a single metastable level, both for He and Ne. For the case of He this is done by a recently built He quenchlamp which selectively quenches the metastable 21S level population. In the thermal energy range the quenching is complete; in the superthermal energy range the 21S level population is only partly quenched. For the optical pumping of Ne* atoms a cw dye laser is used. New experiments have been started on the measurement, in a crossed beam machine, of the fluorescence caused by inelastic collisions where metastable atoms are involved. The He* + Ne system is used as a pilot study for these experiments. The He-Ne laser is based on this collision system. (Auth.)

  17. On the physical and chemical details of alumina atomic layer deposition: A combined experimental and numerical approach

    International Nuclear Information System (INIS)

    Alumina thin film is typically studied as a model atomic layer deposition (ALD) process due to its high dielectric constant, high thermal stability, and good adhesion on various wafer surfaces. Despite extensive applications of alumina ALD in microelectronics industries, details on the physical and chemical processes are not yet well understood. ALD experiments are not able to shed adequate light on the detailed information regarding the transient ALD process. Most of current numerical approaches lack detailed surface reaction mechanisms, and their results are not well correlated with experimental observations. In this paper, the authors present a combined experimental and numerical study on the details of flow and surface reactions in alumina ALD using trimethylaluminum and water as precursors. Results obtained from experiments and simulations are compared and correlated. By experiments, growth rate on five samples under different deposition conditions is characterized. The deposition rate from numerical simulation agrees well with the experimental results. Details of precursor distributions in a full cycle of ALD are studied numerically to bridge between experimental observations and simulations. The 3D transient numerical model adopts surface reaction kinetics and mechanisms based on atomic-level studies to investigate the surface deposition process. Surface deposition is shown as a strictly self-limited process in our numerical studies. ALD is a complex strong-coupled fluid, thermal and chemical process, which is not only heavily dependent on the chemical kinetics and surface conditions but also on the flow and material distributions

  18. Feasibility guidelines for kaonic-atom experiments with ultra-high-resolution X-ray spectrometry

    CERN Document Server

    Friedman, E

    2013-01-01

    Recent studies of strong interaction effects in kaonic atoms suggest that analysing so-called `lower' and `upper' levels in the same atom could separate one-nucleon absorption from multinucleon processes. The present work examines the feasibility of direct measurements of upper level widths in addition to lower level widths in future experiments, using superconducting microcalorimeter detectors. About ten elements are identified as possible candidates for such experiments, all of medium-weight and heavy nuclei. New experiments focused on achieving good accuracy for widths of such pairs of levels could contribute significantly to our knowledge of the $K^-$-nucleon interaction in the nuclear medium.

  19. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    Science.gov (United States)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in

  20. The physics analysis environment of the ZEUS experiment

    International Nuclear Information System (INIS)

    The ZEUS Experiment has over the last three years developed its own model of the central computing environment for physics analysis. This model has been designed to provide ZEUS physicists with powerful and user friendly tools for data analysis as well as to be truly scalable and open. (orig.)

  1. Multidisciplinary Field Training in Undergraduate Physical Geography: Russian Experience

    Science.gov (United States)

    Kasimov, Nikolay S.; Chalov, Sergey R.; Panin, Andrey V.

    2013-01-01

    Field training is seen as a central component of the discipline of Physical Geography and an essential part of the undergraduate curriculum. This paper explores the structure and relationships between fieldwork and theoretical courses and the abundant experiences of field training in the undergraduate curriculum of 37 Russian universities. It…

  2. Chladni Patterns on Drumheads: A "Physics of Music" Experiment

    Science.gov (United States)

    Worland, Randy

    2011-01-01

    In our "Physics of Music" class for non-science majors, we have developed a laboratory exercise in which students experiment with Chladni sand patterns on drumheads. Chladni patterns provide a kinesthetic, visual, and entertaining way to illustrate standing waves on flat surfaces and are very helpful when making the transition from one-dimensional…

  3. The HERA-B experiment: physics programme and status

    International Nuclear Information System (INIS)

    The HERA-B experiment aims to measure CP-violation in the B system, by exploiting the interaction of the proton beam of the HERA accelerator at DESY with a wire fixed target.0 Besides the main goal of measuring the β angle of the CKM unitarity triangle, a wide experimental program on B physics will be pursued. (orig.)

  4. Physical Activity Experiences of Boys with and without ADHD

    Science.gov (United States)

    Harvey, William J.; Reid, Greg; Bloom, Gordon A.; Staples, Kerri; Grizenko, Natalie; Mbekou, Valentin; Ter-Stepanian, Marina; Joober, Ridha

    2009-01-01

    Physical activity experiences of 12 age-matched boys with and without attention-deficit hyperactivity disorder (ADHD) were explored by converging information from Test of Gross Motor Development-2 assessments and semistructured interviews. The knowledge-based approach and the inhibitory model of executive functions, a combined theoretical lens,…

  5. Daily Life Experiences of Japanese Adults with Physical Disabilities.

    Science.gov (United States)

    Wilhite, Barbara C.

    1995-01-01

    Interviews with 13 Japanese individuals (mean age 50 years) with physical disabilities found that their disabilities permeated every aspect of their daily experience. Informants described a life style in which they maximized their energies and abilities and limited unnecessary activities. Those who worked in the community or were able to…

  6. The ALICE experiment at the LHC first physics results

    CERN Document Server

    Herrera-Corral, Gerardo

    2010-01-01

    ALICE is one of the experiments at the LHC. The excellent performance of the detector has been demonstrated with the measurement and analysis of the first proton-proton collisions provided by the LHC on November 2009. We review the first physics results and the general status of the project. We also review the activities of the Mexican group participating in ALICE project.

  7. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    Science.gov (United States)

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  8. Data acquisition systems for high energy Physics experiments

    International Nuclear Information System (INIS)

    We describe here the Data Acquisition Systems most frequently used in High Energy Physics experiments. This report begins with a brief description of the main elements of a typical signal processing chain, following with a detailed exposition of the four most popular instrumentation standards used in this kind of experimental: NIM, CAMAC, FASTBUS and VME. (Author) 9 refs

  9. Statistical physics of human beings in games: Controlled experiments

    International Nuclear Information System (INIS)

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems. (topical review - statistical physics and complex systems)

  10. A pilot experience in physics laboratory for a professional school

    CERN Document Server

    Montalbano, Vera; Di Renzone, Simone; Frati, Serena

    2013-01-01

    The reform of the upper secondary school in Italy has recently introduced physics in the curricula of professional schools, in realities where it was previously absent. Many teachers, often with a temporary position, are obliged to teaching physics in schools where the absence of the laboratory is added to the lack of interest of students who feel this matter as very far from their personal interests and from the preparation for the work which could expect from a professional school. We report a leaning path for introducing students to the measurement of simple physical quantities, which continued with the study of some properties of matter (volume, mass, density) and ending with some elements of thermodynamics. Educational materials designed in order to involve students in an active learning, actions performed for improving the quality of laboratory experience and difficulties encountered are presented. Finally, we compare the active engagement of these students with a similar experience performed in a very ...

  11. The AMS experiment: first results and physics prospects

    International Nuclear Information System (INIS)

    The main physics goal of the AMS experiment is the search for primordial antimatter, non-baryonic dark matter, and the measurement with high statistics and high accuracy of the electrically charged cosmic ray particles and light nuclei in the extraterrestrial space beyond the atmosphere. AMS is the first magnetic spectrometer which will be flown in space. It will be installed for 3 years on the international space station (ISS) in 2003. A precursor flight with the space shuttle DISCOVERY took place in June 1998. 100 millions particles were recorded during the test flight and unexpected physics results were observed on fluxes of protons, electrons, positrons, and helium nuclei. These results are described below, and the physics prospects for the second phase of the experiment on the space station as well. (author)

  12. Non local thermodynamic equilibrium self-consistent average atom model for plasma physics

    International Nuclear Information System (INIS)

    A time-dependent collisional-radiative average-atom model is presented to study statistical properties of highly-charged ion plasmas in off-equilibrium conditions. Atomic structure is described either with a screened-hydrogenic model including l-splitting, or by calculating one electron states in a self-consistent average-atom potential. Collisional and radiative excitation/deexcitation and ionization/recombination rats, as well as auto-ionization and dielectronic recombination rates, are formulated within the average-configuration framework. A good agreement with experiment is found for the charge-state distribution of a gold plasma at electron and density temperature equal to 6 x 1020 cm-3 and 2200 eV. (author)

  13. Atomic physics for cave-men and other beginners. The universe from within. Molecules, atoms, and elementary particles

    International Nuclear Information System (INIS)

    In this essential can be found the structure and the general properties of atoms, the precise interior of atoms and the special behaviour resulting from it, and the mysterious world of ''quanta'' and their behaviour.

  14. Industrial metrology as applied to large physics experiments

    International Nuclear Information System (INIS)

    A physics experiment is a large complex 3-D object (typ. 1200 m3, 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ''survey alignment toolbox'' measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require a heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments

  15. What do solar neutrino experiments teach us about physics?

    International Nuclear Information System (INIS)

    The predictions of the standard model (solar and electroweak) for solar neutrino experiments will be described, with special emphasis on quantitative estimates of the uncertainties in the predictions. An argument--which uses detailed Monte Carlo studies of the solar-model-predictions--will be presented which demonstrates that the existing solar neutrino experiments cannot be reconciled unless new weak interaction physics changes the shape of the 8Be neutrino energy spectrum. Additional arguments that suggest that new physics is required will be summarized. The predictions for next-generation experiments that are independent of details of solar models will be highlighted. An urgent appeal will be made for performing a measurement of the p(7Be, γ)8B reaction using a radioactive beam of 7Be

  16. Geneva University: Experiments in Physics: Hands-on Creative Processes

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Lundi 3 octobre 2011, 17h00 Ecole de Physique, Auditoire Stueckelberg «Experiments in Physics : Hands-on Creative Processes» Prof. Manfred Euler Leibniz-Institute for Mathematics and Science Education (IPN) University of Kiel, Deutschland Experiments play a variety of different roles in knowledge generation. The lecture will focus on the function of experiments as engines of intuition that foster insights into complex processes. The experimental presentations consider self-organization phenomena in various domains that range from the nanomechanics of biomolecules to perception and cognition. The inherent universality contributes to elucidating the enigmatic phenomenon of creativity. Une verrée en compagnie du conférencier sera offerte après le colloque.       &...

  17. Scintillation counters in modern high-energy physics experiments (Review)

    Science.gov (United States)

    Kharzheev, Yu. N.

    2015-07-01

    Scintillation counters (SCs) based on organic plastic scintillators (OPSs) are widely used in modern high-energy physics (HEP) experiments. A comprehensive review is given to technologies for production of OPS strips and tiles (extrusion, injection molding, etc.), optical and physical characteristics of OPSs, and methods of light collection based on the use of wavelength-shifting (WLS) fibers coupled to multipixel vacuum and silicon PMs. Examples are given of the use of SCs in modern experiments involved in the search for quarks and new particles, including the Higgs boson (D0, CDF, ATLAS, CMS), new states of matter (ALICE), CP violation (LHCb, KLOE), neutrino oscillations (MINOS, OPERA), and cosmic particles in a wide mass and energy interval (AMS-02). Scintillation counters hold great promise for future HEP experiments (at the ILC, NICA, FAIR) due to properties of a high segmentation, WLS fiber light collection, and multipixel silicon PMT readout.

  18. Observation, experiment and hypothesis in modern physical science

    CERN Document Server

    Hannaway, Owen

    1985-01-01

    These original contributions by philosophers and historians of science discuss a range of issues pertaining to the testing of hypotheses in modern physics by observation and experiment. Chapters by Lawrence Sklar, Dudley Shapere, Richard Boyd, R. C. Jeffrey, Peter Achinstein, and Ronald Laymon explore general philosophical themes with applications to modern physics and astrophysics. The themes include the nature of the hypothetico-deductive method, the concept of observation and the validity of the theoretical-observation distinction, the probabilistic basis of confirmation, and the testing of idealizations and approximations.The remaining four chapters focus on the history of particular twentieth-century experiments, the instruments and techniques utilized, and the hypotheses they were designed to test. Peter Galison reviews the development of the bubble chamber; Roger Stuewer recounts a sharp dispute between physicists in Cambridge and Vienna over the interpretation of artificial disintegration experiments;...

  19. Atomic bombs and the long-run effect on trust: Experiences in Hiroshima and Nagasaki.

    OpenAIRE

    YAMAMURA, Eiji

    2012-01-01

    Hiroshima and Nagasaki in Japan are the only cities in the world that have experienced an atomic bomb attack. This paper explores how this devastating experience affected victims’ tendency to trust others. Individual-level data were used to examine the long-term influence of experiencing an atomic bomb on individuals’ trust. After controlling for individual characteristics, I obtained the following key findings. Individuals who experienced the attack were more likely to trust others. Furtherm...

  20. Precision spectroscopy of light kaonic atom X-rays in the SIDDHARTA experiment

    International Nuclear Information System (INIS)

    The SIDDHARTA experiment successfully measured kaonic atom X-rays using four gas targets of hydrogen, deuterium, helium-3, and helium-4 at the DAΦNH electron-positron collider. Excellent performance of the SDDs under beam conditions was found in terms of X-ray energy resolution and a good background suppression capability. The preliminary results of the strong-interaction shifts of the kaonic atoms with Z = 1 and 2 are given.

  1. Physics of Ultra-Cold Matter Atomic Clouds, Bose-Einstein Condensates and Rydberg Plasmas

    CERN Document Server

    Mendonça, J T

    2013-01-01

    The advent of laser cooling of atoms led to the discovery of ultra-cold matter, with temperatures below liquid Helium, which displays a variety of new physical phenomena. Physics of Ultra-Cold Matter gives an overview of this recent area of science, with a discussion of its main results and a description of its theoretical concepts and methods. Ultra-cold matter can be considered in three distinct phases: ultra-cold gas, Bose Einstein condensate, and Rydberg plasmas. This book gives an integrated view of this new area of science at the frontier between atomic physics, condensed matter, and plasma physics. It describes these three distinct phases while exploring the differences, as well as the sometimes unexpected similarities, of their respective theoretical methods. This book is an informative guide for researchers, and the benefits are a result from an integrated view of a very broad area of research, which is limited in previous books about this subject. The main unifying tool explored in this book is the ...

  2. Kaonic atoms measurements at the DAΦNE collider: the SIDDHARTA experiment

    International Nuclear Information System (INIS)

    This work presents the SIDDHARTA experimental results on the kaonic hydrogen and helium atoms, reviewing some fundamental aspects of the physics case. After an introduction about the fundamental role played by these bound systems and their X-ray transitions measurements in testing the reliability of the Chiral Perturbation Theory as a realisation of Quantum Chromodynamics at low energies, a short review of the light kaonic atoms physics is given. The review, highlighting the experimental challenges, aims to better understand the SIDDHARTA performances to obtain the most precise spectroscopic X-ray measurements of these light kaonic atoms. A description of the SIDDHARTA apparatus is followed by the presentation of the results on kaonic hydrogen and helium, nowadays the most precise available in literature.

  3. Atomic and molecular physics - Ions in solids - Laser systems. Courses, corrected exercises and problems Level M1/M2

    International Nuclear Information System (INIS)

    This document proposes the table of contents and a brief presentation of a course book for students in atomic and molecular physics. After some generalities on energy quantification and on photon momentum / Compton Effect, the different chapters address topics like hydrogen and helium atoms, alkalis, alkaline-earth, atoms with several valence electrons, the atom-radiation interaction, molecule and ion spectroscopy in solids, and the most significant laser systems using an active media based on atoms, ions or molecules in a diluted environment. Each chapter contains exercises and problems

  4. About spectrometer technical function for nuclear physical experiments on cyclotron

    International Nuclear Information System (INIS)

    During energy spectra of second particles of nuclear reaction unfolding the problem of peak distinctive separation of nuclei energetically unsolved states and also separate impurity atom contribution in the target. Owing to this the research of experimental tabular technical function of spectrometer charged particle reverberation is actual. The use of approximation formulas existing in the literary source to the ETAFO spectrometer will help, under experiments specific conditions, to stabilize some parameters and get rid of cumbersome calculations under computer processing of large number of experimental spectra

  5. Challenges and opportunities for atomic physics at FAIR: The new GSI accelerator project

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, S. [Institut f. Kernphysik, University of Frankfurt (Germany) and GSI, Max Planckstr.1, Darmstadt (Germany)]. E-mail: s.hagmann@gsi.de; Beyer, H.F. [GSI, Max Planckstr.1, Darmstadt (Germany); Bosch, F. [GSI, Max Planckstr.1, Darmstadt (Germany); Braeuning-Demian, A. [GSI, Max Planckstr.1, Darmstadt (Germany); Kluge, H.-J. [GSI, Max Planckstr.1, Darmstadt (Germany); Kozhuharov, Ch. [GSI, Max Planckstr.1, Darmstadt (Germany); Kuehl, Th. [GSI, Max Planckstr.1, Darmstadt (Germany); Liesen, D. [GSI, Max Planckstr.1, Darmstadt (Germany); Stoehlker, Th. [GSI, Max Planckstr.1, Darmstadt (Germany); Ullrich, J. [Max Planck Inst. f. Kernphysik, Heidelberg (Germany); Moshammer, R. [Max Planck Inst. f. Kernphysik, Heidelberg (Germany); Mann, R. [GSI, Max Planckstr.1, Darmstadt (Germany); Mokler, P. [GSI, Max Planckstr.1, Darmstadt (Germany); Quint, W. [GSI, Max Planckstr.1, Darmstadt (Germany); Schuch, R. [Department of Physics, University of Stockholm (Sweden); Warczak, A. [Department of Physics, University of Cracow (Poland)

    2005-12-15

    We present a short overview of the current status of the new accelerator project FAIR at GSI with the new double synchrotron rings and the multi-storage rings. The key features of the new facility, which provides intense relativistic beams of stable and unstable nuclei, are introduced and their relation to the anticipated experimental programs in nuclear structure physics and antiproton physics is shown. The main emphasis in this overview is given to the atomic physics program with unique opportunities which will be provided e.g. by bare U{sup 92+} ions with kinetic energies continuously variable between relativistic energies corresponding to {gamma} up to {approx_equal}35 down to kinetic energies of such ions in traps corresponding to fractions of a Kelvin.

  6. Stalking the Anti-Racist Atom: Engaging Educational Equity and Diversity in Physics Teaching

    Science.gov (United States)

    Hodari, Apriel K.

    2006-12-01

    One of the first articles I ever read on diversity in physics education stated, “There’s no such thing as an anti-racist atom.” This perspective, that the science of physics is itself inherently unbiased, illustrates the difficulty of engaging our intellectual community on this topic. We genuinely believe that our science is devoid of the complications of the human condition, and therefore we need not worry about these things. It is clear however, as people competing for scarce resources in a non-equitable society, we engage in all of the same behaviors everyone else does, include those that work against equity and diversity. Over the last several years, my colleagues and I have held workshops aimed at addressing educational equity and diversity in physics teaching. In this discussion, I will present some of the questions we have posed, along with lessons learned and ideas about what we can do next.

  7. Atom Skimmers and Atom Lasers Utilizing Them

    Science.gov (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  8. Real-time virtual EAST physical experiment system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan, E-mail: lidan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Xiao, B.J., E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui (China); Xia, J.Y., E-mail: jyxia@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Yang, Fei, E-mail: fyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Department of Computer Science, Anhui Medical University, Hefei, Anhui (China)

    2014-05-15

    Graphical abstract: - Highlights: • 3D model of experimental advanced superconducting tokamak is established. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, plasma shape visualization and simulation. • Browser-oriented system is web-based and more interactive, immersive and convenient. • The system provides the framework for virtual physical experimental environment. - Abstract: As a large fusion reaction device, experimental advanced superconducting tokamak (EAST)’s internal structure is complicated and not easily accessible. Moreover, various diagnostic systems and complicated configuration bring about the inconveniency to the scientists who are unfamiliar with the system but interested in the data. We propose a virtual system to display the 3D model of EAST facility and enable people to view its inner structure and get access to the information of its components in various view sights. We would also provide most of the diagnostic configuration details together with their signal names and physical properties. Compared to the previous ways of viewing information by reference to collected drawings and videos, virtual EAST system is more interactive and immersive. We constructed the browser-oriented virtual EAST physical experiment system, integrated real-time experiment data acquisition, plasma shape visualization and experiment result simulation in order to reproduce physical experiments in a web browser. This system used B/S (Browser/Server) structure in combination with the technology of virtual reality – VRML (Virtual Reality Modeling Language) and Java 3D. In order to avoid the bandwidth limit across internet, we balanced the rendering speed and the precision of the virtual model components. Any registered user can view the experimental information visually and efficiently by logining the system through a web browser. The establishment of the system provides the

  9. Real-time virtual EAST physical experiment system

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • 3D model of experimental advanced superconducting tokamak is established. • Interaction behavior is created that the users can get information from database. • The system integrates data acquisition, plasma shape visualization and simulation. • Browser-oriented system is web-based and more interactive, immersive and convenient. • The system provides the framework for virtual physical experimental environment. - Abstract: As a large fusion reaction device, experimental advanced superconducting tokamak (EAST)’s internal structure is complicated and not easily accessible. Moreover, various diagnostic systems and complicated configuration bring about the inconveniency to the scientists who are unfamiliar with the system but interested in the data. We propose a virtual system to display the 3D model of EAST facility and enable people to view its inner structure and get access to the information of its components in various view sights. We would also provide most of the diagnostic configuration details together with their signal names and physical properties. Compared to the previous ways of viewing information by reference to collected drawings and videos, virtual EAST system is more interactive and immersive. We constructed the browser-oriented virtual EAST physical experiment system, integrated real-time experiment data acquisition, plasma shape visualization and experiment result simulation in order to reproduce physical experiments in a web browser. This system used B/S (Browser/Server) structure in combination with the technology of virtual reality – VRML (Virtual Reality Modeling Language) and Java 3D. In order to avoid the bandwidth limit across internet, we balanced the rendering speed and the precision of the virtual model components. Any registered user can view the experimental information visually and efficiently by logining the system through a web browser. The establishment of the system provides the

  10. Interactive Lecture Experiments in Large Introductory Physics Classes

    Science.gov (United States)

    Milner-Bolotin, Marina M.; Kotlicki, A.; Rieger, G.; Bates, F.; Moll, R.; McPhee, K.; Nashon, S.

    2006-12-01

    We describe Interactive Lecture Experiments (ILE), which build on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom. Real time experimental data is collected, using Logger Pro combined with the digital video technology. This data is uploaded to the Internet and made available to the students for further analysis. Student learning is assessed in the following lecture using conceptual questions (clickers). The goal of this project is to use ILE to make large lectures more interactive and promote student interest in science, critical thinking and data analysis skills. We report on the systematic study conducted using the Colorado Learning Attitudes about Science Survey, Force Concept Inventory, open-ended physics problems and focus group interviews to determine the impact of ILE on student academic achievement, motivation and attitudes towards physics. Three sections of students (750 students) experienced four ILE experiments. The surveys were administered twice and academic results for students who experienced the ILE for a particular topic were compared to the students, from a different section, who did not complete the ILE for that topic. Additional qualitative data on students’ attitudes was collected using open ended survey questions and interviews. We will present preliminary conclusions about the role of ILEs as an effective pedagogy in large introductory physics courses. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, J.Wiley & Sons, INC. Interactive Lecture Experiments: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  11. Resolving all-order method convergence problems for atomic physics applications

    International Nuclear Information System (INIS)

    The development of the relativistic all-order method where all single, double, and partial triple excitations of the Dirac-Hartree-Fock wave function are included to all orders of perturbation theory led to many important results for the study of fundamental symmetries, development of atomic clocks, ultracold atom physics, and others, as well as provided recommended values of many atomic properties critically evaluated for their accuracy for a large number of monovalent systems. This approach requires iterative solutions of the linearized coupled-cluster equations leading to convergence issues in some cases where correlation corrections are particularly large or lead to an oscillating pattern. Moreover, these issues also lead to similar problems in the configuration-interaction (CI)+all-order method for many-particle systems. In this work, we have resolved most of the known convergence problems by applying two different convergence stabilizer methods, namely, reduced linear equation and direct inversion of iterative subspace. Examples are presented for B, Al, Zn+, and Yb+. Solving these convergence problems greatly expands the number of atomic species that can be treated with the all-order methods and is anticipated to facilitate many interesting future applications.

  12. Measures that the Federal Atomic Energy Agency of the Russian Federation is taking to improve physical protection

    International Nuclear Information System (INIS)

    In our view, this conference is a logical extension of international efforts to coordinate activities to prevent potential acts of nuclear terrorism. Terrorism, in all its manifestations and in scale, has become one of the most dangerous problems of the 21st century. Our experience tells us that the possibility now exists for nuclear material to be used for criminal purposes. This is the starting point for us in the Russian Federation. In the light of this and the rapid development of nuclear power for peaceful purposes, the physical security of nuclear sites is one, if not the most crucial, factor in determining the long term prospects for nuclear development and for international collaboration in this field. Against this background, the IAEA's role in strengthening the international physical protection regime for facilities involved in the peaceful use of atomic energy is steadily growing. Nowadays, this activity has a pronounced preventive dimension focused on potential acts of nuclear terrorism. Rosatom (which I represent) carries out its activities in the field of the physical protection of nuclear material and facilities in accordance with the fundamentals of the Russian Federation's national nuclear and radiation safety policy for the period up to 2010 and on the basis of the Rosatom sector based programme for improving the physical protection of nuclear material, nuclear facilities and nuclear material storage locations. The main focus of our efforts to strengthen the physical protection regime is directed at improving the security system for nuclear facilities and nuclear material. In the Russian Federation, all facilities that pose a nuclear threat are under the protection of the federal domestic security forces. Also, departmental security units have been set up to assist the domestic security forces in security and emergency response matters. A federal State enterprise, Rosatom Departmental Security, has been created, and its function is to direct the

  13. Elementary Particle Physics Experiment at the University of Massachusetts, Amherst

    Energy Technology Data Exchange (ETDEWEB)

    Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane

    2013-07-30

    In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.

  14. The experiment PANDA: physics with antiprotons at FAIR

    Directory of Open Access Journals (Sweden)

    Boca Gianluigi

    2015-01-01

    The PANDA experiment is designed to achieve the above mentioned physics goals with a setup with the following characteristics: an almost full solid angle acceptance; excellent tracking capabilities with high resolution (1–2 % at 1 GeV/c in the central region; secondary vertex detection with resolution ≈ 100 microns or better; electromagnetic calorimetry for detections of gammas and electrons up to 10 GeV; good particle identification of charge tracks (electrons, muons, pions, kaons, protons; a dedicated interchangeable central apparatus for the hypernuclear physics; detector and data acquisition system capable of working at 20 MHz interaction rate with an intelligent software trigger that can provide maximum flexibility.

  15. Large hadron collider physics program: Compact muon solenoid experiment

    Indian Academy of Sciences (India)

    J B Singh

    2000-04-01

    The LHC physics program at CERN addresses some of the fundamental issues in particle physics and CMS experiment would concentrate on them. The CMS detector is designed for the search of Standard Model Higgs boson in the whole possible mass range. Also it will be sensitive to Higgs bosons in the minimal supersymmetric model and well adapted to searches for SUSY particles, new massive vector bosons, CP-violation in -system, search for substructure of quarks and leptons, etc. In the LHC heavy ion collisions the energy density would be well above the threshold for the possible formation of quark–gluon plasma.

  16. Health physics experience during recovery of 233U from irradiated thorium rods

    International Nuclear Information System (INIS)

    Recovery of 233U from the irradiated thorium rods (46 numbers) received from Bhabha Atomic Research Centre (BARC) was carried out successfully at Reprocessing Development Laboratory (RDL), Indira Gandhi Centre for Atomic Research (IGCAR). The reprocessing was done in five stages viz., charging of fuel rods into charging flask, decladding, dissolution, solvent extraction and reconversion. The complete operation, being first of its kind, undertaken at the centre needed extensive health physics surveillance and supervision at each stage of the operation. The operational radiation protection methods followed and the experience gained during this initial campaign in area and personnel monitoring, air monitoring and contamination are discussed. The results of routine stack monitoring and analysis of waste generated in the process are given. Special operations like decommissioning of the glove box are highlighted. A brief description of unusual occurrences is also given. (author)

  17. Experiences of physical violence by women living with intimate partners

    Directory of Open Access Journals (Sweden)

    F.C. Madzimbalale

    2010-09-01

    Full Text Available Intimate partner violence directed towards females by male partners is a common significant global public health problem. Most victims of physical aggression such as women and children are subjected to multiple acts of violence over extended periods of time, suffering from more than one type of abuse, for example physical which is more symbolic and evidenced by scars. The purpose of this study is to increase understanding of the symbols of physical violence as experienced by women who live with intimate partners in the Vhembe district of the Limpopo Province. The research design of this study was qualitative, exploratory and descriptive in nature. The accessible population was those participants who used the trauma unit A in a particular hospital. Seven women comprised the sample of the study. In-depth individual interviews were conducted exploring the women’s experiences in the context of physical violence. From the data collected all seven participants experienced some form of physical violence which resulted in permanent deformity. They experienced some form of battering such as kicking, stabbing, burning, fracturing, strangling and choking. Recommendations were made that health care providers are encouraged to implement screening for physical violence, to provide appropriate interventions if assault is identified and to provide appropriate education regarding, employment opportunities, legal literacy, and rights to inheritance. Human rights education and information regarding domestic violence should be provided to them because this is their absolute right (UNICEF, 2000:14.

  18. Experiences of physical violence by women living with intimate partners.

    Science.gov (United States)

    Madzimbalale, F C; Khoza, L B

    2010-06-01

    Intimate partner violence directed towards females by male partners is a common significant global public health problem. Most victims of physical aggression such as women and children are subjected to multiple acts of violence over extended periods of time, suffering from more than one type of abuse, for example physical which is more symbolic and evidenced by scars. The purpose of this study is to increase understanding of the symbols of physical violence as experienced by women who live with intimate partners in the Vhembe district of the Limpopo Province. The research design of this study was qualitative, exploratory and descriptive in nature. The accessible population was those participants who used the trauma unit A in a particular hospital. Seven women comprised the sample of the study. In-depth individual interviews were conducted exploring the women's experiences in the context of physical violence. From the data collected all seven participants experienced some form of physical violence which resulted in permanent deformity. They experienced some form of battering such as kicking, stabbing, burning, fracturing, strangling and choking. Recommendations were made that health care providers are encouraged to implement screening for physical violence, to provide appropriate interventions if assault is identified and to provide appropriate education regarding, employment opportunities, legal literacy, and rights to inheritance. Human rights education and information regarding domestic violence should be provided to them because this is their absolute right (UNICEF, 2000:14). PMID:21469513

  19. Symmetry and aesthetics in introductory physics: An experiment in interdisciplinary physics and fine arts education

    Science.gov (United States)

    van der Veen, Janet Krause

    In a recent editorial in Physics Today (July, 2006, p. 10) the ability of physicists to "imagine new realities" was correlated with what have been traditionally considered non-scientific qualities of imagination and creativity, which are usually associated with fine arts. In view of the current developments in physics of the 21st Century, including the searches for cosmic dark energy and evidence from the Large Hadron Collider which, it is hoped, will verify or refute the proposals of String Theory, the importance of developing creativity and imagination through education is gaining recognition. Two questions are addressed by this study: First, How can we bring the sense of aesthetics and creativity, which are important in the practice of physics, into the teaching and learning of physics at the introductory college level, without sacrificing the mathematical rigor which is necessary for proper understanding of physics? Second, How can we provide access to physics for a diverse population of students which includes physics majors, arts majors, and future teachers? An interdisciplinary curriculum which begins with teaching math as a language of nature, and utilizes arts to help visualize the connections between mathematics and the physical universe, may provide answers to these questions. In this dissertation I describe in detail the case study of the eleven students - seven physics majors and four arts majors - who participated in an experimental course, Symmetry and Aesthetics in Introductory Physics, in Winter Quarter, 2007, at UCSB's College of Creative Studies. The very positive results of this experiment suggest that this model deserves further testing, and could provide an entry into the study of physics for physics majors, liberal arts majors, future teachers, and as a foundation for media arts and technology programs.

  20. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.