Atomic parity violation: an overview
International Nuclear Information System (INIS)
This paper gives an overview on parity violation. The authors clarify the meaning of synonym expressions such as mirror symmetry breaking, parity nonconservation and parity violation and present a short historical survey. The other sections present the possible manifestations of parity violation in atomic and molecular physics, the parity violation measurements in atomic radiative transitions, the results in cesium and their implications and finally a new generation of experiments in progress and plans for future projects. (A.L.B.)
Observation of an unusually large atomic parity-violation effect
Tsigutkin, Konstantin
2010-03-01
We report on observation of a large parity-violation effect in the atoms of ytterbium (Yb). This left-right asymmetry appears naturally in the Standard Model, and is associated with the exchange of a virtual heavy ``gauge" boson between subatomic particles. Eventually, parity violation has been observed and precisely measured by a number of groups in several different atoms, culminating in a 0.3% measurement in cesium (Cs) by Carl Wieman and co-workers at Boulder. The parity-violating amplitude of the 6x^2 ^1S0 -> 5d6s ^3D1 408-nm forbidden transition of ytterbium is found to be two orders of magnitude larger than in cesium. This is the largest atomic parity-violating amplitude yet observed. This also opens the way to future measurements of the parity violation effects for different Yb isotopes in order to test the effect of the neutron distributions within the nucleus and detect the so-called ``anapole moment" by comparing parity-violating amplitudes for various hyperfine components of the transition. So far, Cs is the only system where such a moment has been detected. Measurements of anapole moments are important for understanding the electroweak interactions within the nucleus which are hard to probe by other means.
Parity Violating Energy Shifts and Berry Phases in Atoms, I
Bruss, D.; Gasenzer, T.; Nachtmann, O
1998-01-01
We present a study of parity (P) violating contributions to the eigenenergies of stationary systems containing atoms in spatially inhomogeneous external electric fields. In this context the subtle interplay of P-violation and time reversal (T) invariance plays an important role. If the entire field configuration is chosen to exhibit chirality the energies are in general shifted by pseudoscalar contributions which change sign under a planar reflection of the field. To calculate the effects we ...
Parity and time-reversal violation in nuclei and atoms
International Nuclear Information System (INIS)
Two topics are briefly reviewed: the parity (P)-violating NN interaction and the time-reversal (T) and P-violating electric moments (EDM's) of atoms. The ΔI = 1 P-violating NN amplitude dominated by weak π+- exchange is found to be appreciably smaller than bag-model predictions. This may be a dynamical symmetry of flavor-conserving hadronic weak processes reminiscent of the ΔI = 1/2 rule in flavor-changing decays. General principles of experimental searches for atomic EDM's are discussed. Atomic EDM's are sensitive to electronic or nuclear EDM's and to a P-and-T-violating electron-quark interaction. Even though the experimental precision is still approx.104 times worse than counting statistics, the recent results have reached a sensitivity to nuclear EDM's which rivals that of the neutron EDM data. Further significant improvements can be expected. 17 refs., 4 figs
Strongly enhanced atomic parity violation due to close levels of opposite parity
Roberts, B M; Flambaum, V V
2014-01-01
We present calculations of nuclear-spin-dependent and nuclear-spin-independent parity violating amplitudes in Ba, Ra, Ac+, Th and Pa. Parity nonconservation in these systems is greatly enhanced due to the presence of very close electronic energy levels of opposite parity, large nuclear charge, and strong nuclear enhancement of parity-violating effects. The presented amplitudes constitute several of the largest atomic parity-violating signals predicted so far. Experiments using these systems may be performed to determine values for the nuclear anapole moment, a P-odd T-even nuclear moment given rise to by parity-violating nuclear forces. Such measurements may prove to be valuable tools in the study of parity violation in the hadron sector. The considered spin-independent transitions could also be used to measure the ratio of weak charges for different isotopes of the same atom, the results of which would serve as a test of the standard model and also of neutron distributions. Barium, with seven stable isotopes...
Parity Violation in Atoms and Polarized Electron Scattering
Bouchiat, Marie-Anne; PAVI'97
1999-01-01
This work is an extensive review of the advances in the field of parity violation experiments in electron scattering at high energy and and in atomic physics. The results are a challenge to the standard electroweak theory and the understanding of hadron structure. The theoretical framework is presented at a pedagogical level, experiments and future projects are reviewed, and the results and their interpretation are discussed.
Atomic parity violation in a single Ra ion
International Nuclear Information System (INIS)
Precision measurements of atomic parity violation is the only path to determine the electroweak mixing angle in the Standard Model of particle physics at low energy scale. A single trapped Ra+ ion is the most promising candidate for such an experiment. The system combines the advantages of large parity violation amplitudes due to the faster than Z3 scaling, the possibility to perform accurate atomic structure calculation on this one valence electron system and the ability to precision frequency measurements on trapped ion. Our first laser spectroscopy on an ensemble of trapped short-lived 209-214Ra+ isotopes in a linear Paul trap provided hyperfine structure of the 6d 2D3/2 states and isotope shift of the 6d 2D3/2 - 7p 2P1/2 transition. These results provide input for the ongoing precision atomic structure calculations. The next step of the experiments towards laser cooling of a single trapped radium ion. The experimental setup is being commissioned with Ba ions.
Atomic parity violation in a single Ra ion
Energy Technology Data Exchange (ETDEWEB)
Nunes Portela, M.; Beker, H.; Giri, G.; Jungmann, K.; Onderwater, C.J.G.; Schlesser, S.; Timmermans, R.G.E.; Versolato, O.O.; Willmann, L.; Wilschut, H.W. [KVI, University of Groningen, NL (Germany)
2012-07-01
Precision measurements of atomic parity violation is the only path to determine the electroweak mixing angle in the Standard Model of particle physics at low energy scale. A single trapped Ra{sup +} ion is the most promising candidate for such an experiment. The system combines the advantages of large parity violation amplitudes due to the faster than Z{sup 3} scaling, the possibility to perform accurate atomic structure calculation on this one valence electron system and the ability to precision frequency measurements on trapped ion. Our first laser spectroscopy on an ensemble of trapped short-lived {sup 209-214}Ra{sup +} isotopes in a linear Paul trap provided hyperfine structure of the 6d {sup 2}D{sub 3/2} states and isotope shift of the 6d {sup 2}D{sub 3/2} - 7p {sup 2}P{sub 1/2} transition. These results provide input for the ongoing precision atomic structure calculations. The next step of the experiments towards laser cooling of a single trapped radium ion. The experimental setup is being commissioned with Ba ions.
Precision Excited State Lifetime Measurements for Atomic Parity Violation and Atomic Clocks
Sell, Jerry; Patterson, Brian; Gearba, Alina; Snell, Jeremy; Knize, Randy
2016-05-01
Measurements of excited state atomic lifetimes provide a valuable test of atomic theory, allowing comparisons between experimental and theoretical transition dipole matrix elements. Such tests are important in Rb and Cs, where atomic parity violating experiments have been performed or proposed, and where atomic structure calculations are required to properly interpret the parity violating effect. In optical lattice clocks, precision lifetime measurements can aid in reducing the uncertainty of frequency shifts due to the surrounding blackbody radiation field. We will present our technique for precisely measuring excited state lifetimes which employs mode-locked ultrafast lasers interacting with two counter-propagating atomic beams. This method allows the timing in the experiment to be based on the inherent timing stability of mode-locked lasers, while counter-propagating atomic beams provides cancellation of systematic errors due to atomic motion to first order. Our current progress measuring Rb excited state lifetimes will be presented along with future planned measurements in Yb.
Effects of nuclear parity violation in deuterium atoms and elastic electron-deuteron scattering
Henley, E. M.; Hwang, W.-Y. P.
1981-03-01
The effects of nuclear parity violation on atomic deuterium parity violation experiments and elastic electron-deuteron scattering are treated. Since the hadronic isoscalar axial neutral weak current is very small in the Weinberg-Salam theory, the effects of nuclear parity violation are important in parity violation measurements which test the vector coupling to the electron and the axial (isoscalar) coupling to the deuteron. Such measurements have been proposed as a test of the Weinberg-Salam theory. A consistent treatment of the effect requires a modification of the impulse approximation to restore gauge invariance. It is found that parity nonconservation caused by nuclear parity violation is of the same order of magnitude as that caused by the anomaly-induced isoscalar axial neutral weak current or as that due to radiative corrections. NUCLEAR REACTIONS 2H(e,e')2H parity-violating form factors, "nucleon-only" impulse approximation constrained by gauge invariance; induced isoscalar axial neutral weak current, radiative corrections.
Theory of longitudinal atomic beam spin echo and parity violating Berry-phases in atoms
International Nuclear Information System (INIS)
We present a nonrelativistic theory for the quantum mechanical description of longitudinal atomic beam spin echo experiments, where a beam of neutral atoms is subjected to static electric and magnetic fields. The atomic wave function is the solution of a matrix-valued Schroedinger equation and can be written as superposition of local (atomic) eigenstates of the potential matrix. The position- and time-dependent amplitude function of each eigenstate represents an atomic wave packet and can be calculated in a series expansion with a master formula that we derive. The zeroth order of this series expansion describes the adiabatic limit, whereas the higher order contributions contain the mixing of the eigenstates and the corresponding amplitude functions. We give a tutorial for the theoretical description of longitudinal atomic beam spin echo experiments and for the so-called Fahrplan model, which is a visualisation tool for the propagation of wave packets of different atomic eigenstates. As an example for the application of our theory, we study parity violating geometric (Berry-)phases. In this context, we define geometric flux densities, which for certain field configurations can be used to illustrate geometric phases in a vector diagram. Considering an example with a specific field configuration, we prove the existence of a parity violating geometric phase. (orig.)
International Nuclear Information System (INIS)
This report contains papers on the following: the Bates parity violation experiment; parity violation in the nuclear domain; the weak neutral current in the standard model; measurement of parity nonconservation in the proton-proton total cross section at 800 MeV; p(/rvec e/,e)p in the standard model; physics and technology of polarized sources; injector for polarized electrons at CEBAF; measurement of the electron beam polarization; high power cryogenic targets; focusing toroidal spectrometer for parity violation experiments; solenoidal field spectrometer for parity violation experiments; experimental areas and spectrometer costs; problems of neutron form factors, reducing spurious asymmetries in parity experiments, and proposed parity experiment at CEBAF; asymmetries in the LAMPF parity experiment; and parity violation in the photodisintegration of deuterium
Calculation of parity and time invariance violation in the radium atom
Dzuba, V A; Ginges, J S M
1999-01-01
Parity (P) and time (T) invariance violating effects in the Ra atom are strongly enhanced due to close states of opposite parity, the large nuclear charge Z and the collective nature of P,T-odd nuclear moments. We have performed calculations of the atomic electric dipole moments (EDM) produced by the electron EDM and the nuclear magnetic quadrupole and Schiff moments. We have also calculated the effects of parity non-conservation produced by the nuclear anapole moment and the weak charge. Our results show that as a rule the values of these effects are much larger than those considered so far in other atoms (enhancement is up to 10^5 times).
A theoretical analysis of parity violation induced by neutral currents in atomic cesium
Bouchiat, C.; Piketty, C. A.; Pignon, D.
1983-07-01
In this paper we give a theoretical analysis of the parity violation phenomena in nS - n'S transitions in atomic cesium induced by the electron-nucleus neutral-current interaction. The actual observation of parity violation consists in the measurement of an interference between the p.v. electric dipole amplitude Elpv with the electric amplitude induced by a static electric field. Our theoretical work must then include a calculation of the diagonal and non-diagonal polarizabilities of the states of atomic cesium. We have used a one-electron model proposed by Norcross which incorporates some many-body effects like the electric screening induced by the core polarization in a semi-empirical way. Our calculated values of the diagonal and non-diagonal polarizabilities of the nS states are in good agreement with the existing measurements; this confirms the already well-established success of the model in predicting the radiative transitions in cesium. We present theoretical arguments supported by detailed numerical computations showing that the one-particle matrix element of the parity-violating electron-nucleus interaction and the parity-violating electric dipole amplitude Elpv itself weakly depend on the shape of the one-electron potential provided the binding energies of the valence states are reproduced accurately. Furthermore it turns out that because of a compensation mechanism, the parity-violating transition is induced by the radiation field outside the ion core region where the screening can be described simply in terms of the measurable cesium ion polarizability. Our results are then used to extract, from the Ecole Normale Supérieure experiment, a value of the weak charge Qw = -57.1 ± 9.4 (r.m.s. statistical deviation) ± 4.7 (systematic uncertainty). This number is to be compared with the prediction of the Weinberg-Salam model with electro-weak radiative corrections: Qw = -68.6 ± 3.0. A general discussion of the uncertainties of the atomic physics
Parity violating radiative emission of neutrino pair in heavy alkaline earth atoms of even isotopes
Yoshimura, M; Uetake, S
2014-01-01
Metastable excited states ${}^3P_2, {}^3P_0$ of heavy alkaline earth atoms of even isotopes are studied for parity violating (PV) effects in radiative emission of neutrino pair (RENP). PV terms arise from interference between two diagrams containing neutrino pair emission of valence spin current and nuclear electroweak charge density proportional to the number of neutrons in nucleus. This mechanism gives large PV effects, since it does not suffer from the suppression of 1/(electron mass) usually present for non-relativistic atomic electrons. A controllable magnetic field is crucial to identify RENP process by measuring PV observables. Results of PV asymmetries under the magnetic field reversal and the photon circular polarization reversal are presented for an example of Yb atom.
Parity violation in neutron resonances
International Nuclear Information System (INIS)
The compound nucleus provides an ideal laboratory for the study of symmetry breaking. The origin of the enhancement of parity violation in low energy neutron resonances is discussed, as well as the methods of analysis. Results from recent parity violation experiments are presented and proposed new experiments discussed. (author)
Parity violation and neutrino mass
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Besides the fact of parity violation in weak interactions, based on evidences from neutrino oscillation and tritium beta decay, a natural conjecture is hat neutrinos may be spacelike particles with a tiny proper mass. A Dirac-type equation for spacelike neutrinos is further investigated and its solutions are discussed. This equation can be written in two spinor equations coupled together via nonzero proper mass while respecting maximum parity violation.
Cumulative Parity Violation in Supernovae
Horowitz, C J; Li, Gang
1998-01-01
Supernovae provide a unique opportunity for large scale parity violation because they are dominated by neutrinos. We calculate the parity violating asymmetry A of neutrino emission in a strong magnetic field. We assume the neutrinos elastically scatter many times from slightly polarized neutrons. Because of multple interactions, A grows with the optical thickness of the proto-neutron star and may be much larger than previous estimates. As a result, the neutron star could recoil at a significant velocity.
Parity Violating Measurements of Neutron Densities
Horowitz, C J; Souder, P A; Michaels, R
2001-01-01
Parity violating electron nucleus scattering is a clean and powerful tool formeasuring the spatial distributions of neutrons in nuclei with unprecedentedaccuracy. Parity violation arises from the interference of electromagnetic andweak neutral amplitudes, and the $Z^0$ of the Standard Model couples primarilyto neutrons at low $Q^2$. The data can be interpreted with as much confidenceas electromagnetic scattering. After briefly reviewing the present theoreticaland experimental knowledge of neutron densities, we discuss possible parityviolation measurements, their theoretical interpretation, and applications. Theexperiments are feasible at existing facilities. We show that theoreticalcorrections are either small or well understood, which makes the interpretationclean. The quantitative relationship to atomic parity nonconservationobservables is examined, and we show that the electron scattering asymmetriescan be directly applied to atomic PNC because the observables haveapproximately the same dependence on nucle...
You, Pei-Lin
2008-01-01
Quantum mechanics thinks that all atoms do not have permanent electric dipole moment (EDM) because of their spherical symmetry. Therefore, there is no polar atom in nature except for polar molecules. The electric susceptibility Xe caused by the orientation of polar substances is inversely proportional to the absolute temperature T while the induced susceptibility of atoms is temperature independent. Using special capacitors our experiments discovered that directional motion of Rb atoms in a non-uniform electric field and ground state Rb atom is polar atom with a large EDM: d(Rb) =2.72*10-29C.m = 1.70*10-8e.cm. The experiment showed that the relationship between Xe of Rb vapor and T is just Xe =B/T, where the slope B =380(k) as polar molecules. Its capacitance C at different voltage V was measured. The C-V curve shows that the saturation polarization of Rb vapor has be observed when E more than 8.5*104V/m. New example of CP (charge conjugation and parity) violation occurred in Rb atoms (see arXiv 0809.4767). I...
Energy Technology Data Exchange (ETDEWEB)
Bergmann, T.F.
2006-07-19
We present a nonrelativistic theory for the quantum mechanical description of longitudinal atomic beam spin echo experiments, where a beam of neutral atoms is subjected to static electric and magnetic fields. The atomic wave function is the solution of a matrix-valued Schroedinger equation and can be written as superposition of local (atomic) eigenstates of the potential matrix. The position- and time-dependent amplitude function of each eigenstate represents an atomic wave packet and can be calculated in a series expansion with a master formula that we derive. The zeroth order of this series expansion describes the adiabatic limit, whereas the higher order contributions contain the mixing of the eigenstates and the corresponding amplitude functions. We give a tutorial for the theoretical description of longitudinal atomic beam spin echo experiments and for the so-called Fahrplan model, which is a visualisation tool for the propagation of wave packets of different atomic eigenstates. As an example for the application of our theory, we study parity violating geometric (Berry-)phases. In this context, we define geometric flux densities, which for certain field configurations can be used to illustrate geometric phases in a vector diagram. Considering an example with a specific field configuration, we prove the existence of a parity violating geometric phase. (orig.)
Parity Violation to Hadronic Structure and more..
Jager, K; Lhuillier, D; Maas, F; Page, S; Papanicolas, C; Stiliaris, S; Wiele, J; Third international workshop on “From Parity Violation to Hadronic Structure and more ...”
2007-01-01
This book contains the proceedings of the third international workshop on “From Parity Violation to Hadronic Structure and more ...” which was held from May 16 to May 20, 2006, at the George Eliopoulos conference center on the Greek island of Milos. It is part of a series that started in Mainz in 2002 and was followed by a second workshop in Grenoble in 2004. While originally initiated by the extraction of the strangeness contribution to the electromagnetic form factors of the nucleon, the workshop series has continuously broadened the focus to the application of Parity Violation using hadronic probes and to Parity Violation experiments in atomic physics. Meanwhile there have been many exciting new proposals for using Parity Violation in other areas like in the search for new physics beyond the standard model or in exploring hadron structure. There are also close connections to the open question on the size of the two photon exchange amplitude. Fifty years after the 1956 proposal of Lee and Yang to test t...
International Nuclear Information System (INIS)
The present work deals with the recent advances of atomic spectroscopy experiments on cesium and francium, which aim at precise parity violation (PV) measurements in these atoms. Within the framework of a 'double-badged thesis', the candidate devoted himself on the one hand to the preliminary PV measurement (8% accuracy) of the present Cs experiment at the Kastler-Brossel laboratory in Paris and on the other hand to the preparation of a Fr radioactive atomic sample (production and trapping) at the LNL (INFN) in Italy. The two experiments are at very different stages. The measurements reported for cesium were actually made possible thanks to the work initiated in 1991, for the PV detection by stimulated emission. The Italian experiment is instead in a beginning stage: in order to probe the properties of francium, which is unstable, a number of atoms large enough has to be first produced and collected. The PV schemes which proved to be well suited for cesium are a solid starting point for the case of francium. (author)
Energy Technology Data Exchange (ETDEWEB)
Sanguinetti, St
2004-07-01
The present work deals with the recent advances of atomic spectroscopy experiments on cesium and francium, which aim at precise parity violation (PV) measurements in these atoms. Within the framework of a 'double-badged thesis', the candidate devoted himself on the one hand to the preliminary PV measurement (8% accuracy) of the present Cs experiment at the Kastler-Brossel laboratory in Paris and on the other hand to the preparation of a Fr radioactive atomic sample (production and trapping) at the LNL (INFN) in Italy. The two experiments are at very different stages. The measurements reported for cesium were actually made possible thanks to the work initiated in 1991, for the PV detection by stimulated emission. The Italian experiment is instead in a beginning stage: in order to probe the properties of francium, which is unstable, a number of atoms large enough has to be first produced and collected. The PV schemes which proved to be well suited for cesium are a solid starting point for the case of francium. (author)
Muon anomaly and dark parity violation.
Davoudiasl, Hooman; Lee, Hye-Sung; Marciano, William J
2012-07-20
The muon anomalous magnetic moment exhibits a 3.6σ discrepancy between experiment and theory. One explanation requires the existence of a light vector boson, Z(d) (the dark Z), with mass 10-500 MeV that couples weakly to the electromagnetic current through kinetic mixing. Support for such a solution also comes from astrophysics conjectures regarding the utility of a U(1)(d) gauge symmetry in the dark matter sector. In that scenario, we show that mass mixing between the Z(d) and ordinary Z boson introduces a new source of "dark" parity violation, which is potentially observable in atomic and polarized electron scattering experiments. Restrictive bounds on the mixing (m(Z(d))/m(Z))δ are found from existing atomic parity violation results, δ2expected to be reached, thereby complementing direct searches for the Z(d) boson. PMID:22861837
Parity violation effects in superconductors
Energy Technology Data Exchange (ETDEWEB)
Belov, Nikolay A. [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany); Harman, Zoltan [Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg (Germany); ExtreMe Matter Institute (EMMI), Planckstrasse 1, 64291 Darmstadt (Germany)
2013-07-01
Parity violation effects in a circular superconducting Josephson junction has been investigated in the eighties. That time it appeared that this phenomenon was not significant enough to be experimentally observable. In our work we show, that this rate can be increased in the case of a circular Josephson junction of an unconventional superconductor. Furthermore, this phenomenon can be more significant in the case of the ferromagnetic p-wave unconventional superconductor, since the effect is stronger for polarized pairs.
Parity violation in electron scattering
International Nuclear Information System (INIS)
The elaboration of the electroweak standard model from the discovery of parity violation to the weak neutral current is described in the first chapter. In the second chapter the author discusses the 2 experimental approaches of the parity violation experiments. In the first approach the weak neutral current can be assumed to be well known and can be used as a probe for the hadronic matter. The second approach consists in measuring the weak neutral current between 2 particles with known internal structure in order to test the predictions of the standard model in the low energy range. The chapters 3 and 4 are an illustration of the first approach through the HAPPEx series of experiments that took place in the Jefferson Laboratory from 1998 to 2005. The HAPPEx experiments aimed at measuring the contribution of strange quarks in the electromagnetic form factors of the nucleon through the violation of parity in the elastic scattering at forward angles. The last chapter is dedicated to the E158 experiment that was performed at the Slac (California) between 2000 and 2003. The weak neutral current was measured between 2 electrons and the high accuracy obtained allowed the physics beyond the standard model to be indirectly constraint up to a few TeV. (A.C.)
Prospects for an atomic parity-violation experiment in U90+
International Nuclear Information System (INIS)
Parity mixing of electron states should be extremely strong for heliumlike uranium. We calculate its size and discuss whether it could be determined experimentally. We analyze one specific scheme for such an experiment. The required laser intensities for two-photon spectroscopy of the 23P0--2 1S0level splitting is of the order of 1017 W/cm2. A determination of parity mixing would require at least 1021 W/cm2
Allanach, B C; Sridhar, K
2016-01-01
We consider a modified Randall-Sundrum (RS) framework between the Planck scale and the GUT scale. In this scenario, RS works as a theory of flavour and not as a solution to the hierarchy problem. The latter is resolved by supersymmetrising the bulk, so that the minimal supersymmetric standard model being the effective 4-dimensional theory. Matter fields are localised in the bulk in order to fit fermion-mass and mixing-data. If $R$-parity violating terms are allowed in the superpotential, their orders of magnitude throughout flavour space are then predicted, resulting in rich flavour textures. If the $R$-parity violating contributions to neutrino masses are somewhat suppressed, then lepton-number violating models exist which explain the neutrino oscillation data while not being in contradiction with current experimental bounds. Another promising model is one where baryon number is violated and Dirac neutrino masses result solely from fermion localisation. We sketch the likely discovery signatures of the baryon...
Parity and time reversal violating nuclear polarizability
Flambaum, V V; Mititelu, G
2000-01-01
We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). Parity and time reversal violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability beta_{ik} (defined by an energy shift U = -beta_{ik} E_{i}H_{k}, E is electric field and H magnetic field). The interaction of atomic electrons with beta_{ik} produces an atomic EDM. We performed an analytical calculation of the P,T-odd nuclear polarizability and estimated the value for the induced atomic EDM. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation.
Parity and time reversal violating nuclear polarizability
Flambaum, V. V.; Ginges, J. S. M.; Mititelu, G.
2000-01-01
We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). Parity and time reversal violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability beta_{ik} (defined by an energy shift U = -beta_{ik} E_{i}H_{k}, E is electric field and H magnetic field). The interaction of atomic electrons with beta_{ik} produces an atomic EDM. We performed an analytical calculation of the P,T-odd nuclear polarizability and estimated the value for the induced a...
Parity violation and electron scattering
International Nuclear Information System (INIS)
I have been asked to set stage for the more specialized talks to follow and to review the history of parity nonconservation in electron scattering. In electron scattering, parity violation (PV) is the unique signal which allows us to study the weak interactions among the much stronger electromagnetic ones. It is observed through the detection of a pseudoscalar quantity in the cross section or rate of a reaction. These pseudoscalars usually involve a spin or polarization. Since it is known that spin effects are more sensitive to dynamics than differential or total cross sections, which are partially determined by geometry, PV measurements allow us to learn about the weak interactions and nucleon and nuclear structure. Because the weak interactions are of short range, the measurements are sensitive to different aspects of the target structure than the long range electromagnetic scattering. 15 refs., 7 figs
R-parity violation searches at LEP
International Nuclear Information System (INIS)
The present results on R-parity violation searches performed by the four LEP experiments are presented. This concerns mainly the pair and single production of SUSY particles in the hypothesis of R-parity violation (Rp/) via explicit trilinear couplings (LLE-bar, LQD-bar and U-barD-barD-bar). The chargino pair production search in the spontaneous R-parity violation by an effective bilinear term εiHuLi scenario is also presented. (author)
Parity Violating Elastic Electron Scattering and Coulomb Distortions
Horowitz, C J
1998-01-01
Parity violating elastic electron-nucleus scattering provides an accurate and model independent measurement of neutron densities, because the $Z^0$ couples primarily to neutrons. Coulomb distortion corrections to the parity violating asymmetry $A_l$ are calculated exactly using a relativistic optical model. Distortions significantly reduce $A_l$ in a heavy nucleus. However even with distortions, an experiment to measure the neutron radius is feasible. This will aid the interpretation of future atomic parity violation measurements and provide fundamental nuclear structure information. Coulomb distortions and small differences between neutron and proton radii could be important for a standard model test on $^4$He, $^{12}$C or $^{16}$O.
Biochirality and parity violating energy difference
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Biochirality originates from the chiral influences in the universe. The parity non-conservation of weak neutral current, which takes place through the exchange of neutral boson Z0 combined with the long range Coulomb interaction in atoms and molecules, produces a parity violating energy difference (PVED). In this note, the fact is to be indicated that there is a λ-type second order phase transition of D- and L-alanine (valine) at a certain critical temperature Tc. The PVED is to be calculated as 6×10-5eV/molecule by varieties of modern physical and chemical methods including the differential scanning calorimeter (DSC), SQUID, single crystal X-ray diffraction spectra,Iow-temperature 1H.MAS ssNMR, Raman spectra and ultrasonic measurement. A mechanism that differs from Salam's hypotheses is also discussed here.
The Muon Anomaly and Dark Parity Violation
Davoudiasl, Hooman; Marciano, William J
2012-01-01
The muon anomalous magnetic moment exhibits a 3.6 \\sigma discrepancy between experiment and theory. One explanation requires the existence of a light vector boson, Z_d (the dark Z), with mass 10 - 500 MeV that couples weakly to the electromagnetic current through kinetic mixing. Support for such a solution also comes from astrophysics conjectures regarding the utility of a U(1)_d gauge symmetry in the dark matter sector. In that scenario, we show that mass mixing between the Z_d and ordinary Z boson introduces a new source of "dark" parity violation which is potentially observable in atomic and polarized electron scattering experiments. Restrictive bounds on the mixing (m_{Z_d} / m_Z) \\delta are found from existing atomic parity violation results, \\delta^2 < 2 x 10^{-5}. Combined with future planned and proposed polarized electron scattering experiments, a sensitivity of \\delta^2 ~ 10^{-6} is expected to be reached, thereby complementing direct searches for the Z_d boson.
Parity Violating Bosonic Loops at Finite Temperature
Alves, V. S.; Das, Ashok; Dunne, Gerald V.; Perez, Silvana
2001-01-01
The finite temperature parity-violating contributions to the polarization tensor are computed at one loop in a system without fermions. The system studied is a Maxwell-Chern-Simons-Higgs system in the broken phase, for which the parity-violating terms are well known at zero temperature. At nonzero temperature the static and long-wavelength limits of the parity violating terms have very different structure, and involve non-analytic log terms depending on the various mass scales. At high temper...
Parity Violating Measurements of Neutron Densities and Nuclear Structure
Horowitz, C J
2000-01-01
Parity violating electron nucleus scattering is a clean and powerful tool for measuring the spatial distributions of neutrons in nuclei with unprecedented accuracy. Parity violation arises from the interference of electromagnetic and weak neutral amplitudes, and the $Z^0$ of the Standard Model couples primarily to neutrons at low $Q^2$. Experiments are now feasible at existing facilities. We show that theoretical corrections are either small or well understood, which makes the interpretation clean. A neutron density measurement may have many implications for nuclear structure, atomic parity nonconservation experiments, and the structure of neutron stars.
Nuclear Parity Violation from Lattice QCD
Kurth, Thorsten; Rinaldi, Enrico; Vranas, Pavlos; Nicholson, Amy; Strother, Mark; Walker-Loud, Andre
2015-01-01
The electroweak interaction at the level of quarks and gluons are well understood from precision measurements in high energy collider experiments. Relating these fundamental parameters to Hadronic Parity Violation in nuclei however remains an outstanding theoretical challenge. One of the most interesting observables in this respect is the parity violating hadronic neutral current: it is hard to measure in collider experiments and is thus the least constrained observable of the Standard Model. Precision measurements of parity violating transitions in nuclei can help to improve these constraints. In these systems however, the weak interaction is masked by effects of the seven orders of magnitude stronger non-perturbative strong interaction. Therefore, in order to relate experimental measurements of the parity violating pion-nucleon couplings to the fundamental Lagrangian of the SM, these non-perturbative effects have to be well understood. In this paper, we are going to present a Lattice QCD approach for comput...
Parity Violation in ep scattering at Jlab
Energy Technology Data Exchange (ETDEWEB)
Paul Souder
2005-10-01
We review the program of parity violation in the scattering of polarized electrons at JLab. Results are presented from recent experiments measuring the weak form factors, which in turn measure the contribution of strange quarks to the elastic form factors. In addition, we discuss the physics of parity violation in deep inelastic scattering, which will become possible with the upgrade of the JLab energy to 12 GeV.
Parity Violation in the NN System
Directory of Open Access Journals (Sweden)
Schindler M.J.
2010-04-01
Full Text Available We brieﬂy review the apparent experimental discrepancies that sustain interest in the ﬁeld of lowenergy few-nucleon parity violation. We argue that it is not possible to determine whether present experimental measurements are consistent unless each is understood in terms of a complete EFT with consistent power counting. Towards this end, we present the EFT that describes very low energy parity violating observables associated with two-nucleon scattering and photon-deuteron interactions.
Macroscopic Parity Violation and Supernova Asymmetries
Horowitz, C J
1998-01-01
Core collapse supernovae are dominated by weakly interacting neutrinos. This provides a unique opportunity for macroscopic parity violation. We speculate that parity violation in a strong magnetic field can lead to an asymmetry in the explosion and a recoil of the newly formed neutron star. We estimate the asymmetry from neutrino-polarized-neutron elastic scattering, polarized electron capture and neutrino-nucleus elastic scattering in a (partially) polarized electron gas.
Models of dynamical R-parity violation
Csáki, Csaba; Kuflik, Eric; Slone, Oren; Volansky, Tomer
2015-06-01
The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called flavor mediation scenario, allows for the mediation of supersymmetry breaking, R-parity breaking, and flavor symmetry breaking in a unified manner.
Spontaneous R-Parity violation bounds
Frank, M
2001-01-01
We investigate bounds from tree-level and one-loop processes in generic supersymmetric models with spontaneous R-parity breaking in the superpotential. We analyse the bounds from a general point of view. The bounds are applicable both for all models with spontaneous R-parity violation and for explicit bilinear R-parity violation based on general lepton-chargino and neutrino-neutralino mixings. We find constraints from semileptonic B, D and K decays, leptonic decays of the mu and tau, electric dipole moments, as well as bounds for the anomalous magnetic moment of the muon.
Models of Dynamical R-Parity Violation
Csaki, Csaba; Slone, Oren; Volansky, Tomer
2015-01-01
The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called ...
You, Pei-Lin
2008-01-01
Quantum mechanics thinks that atoms do not have permanent electric dipole moment (EDM) because of their spherical symmetry. Therefore, there is no polar atom in nature except for polar molecules. The electric susceptibility Xe caused by the orientation of polar substances is inversely proportional to the absolute temperature T while the induced susceptibility of atoms is temperature independent. This difference in temperature dependence offers a means of separating the polar and non-polar substances experimentally. Using special capacitor our experiments discovered that the relationship between Xe of Potassium atom and T is just Xe=B/T, where the slope B is approximately 283(K) as polar molecules, but appears to be disordered using the traditional capacitor. Its capacitance C at different voltage V was measured. The C-V curve shows that the saturation polarization of K vapor has be observed when E more than 105V/m and nearly all K atoms (over 98.9 per cent) are lined up with the field! The ground state neutra...
Spin density matrices for nuclear density functionals with parity violations
Barrett, B R
2010-01-01
The spin density matrix (SDM) used in atomic and molecular physics is revisited for nuclear physics, in the context of the radial density functional theory. The vector part of the SDM defines a "hedgehog" situation, which exists only if nuclear states contain some amount of parity violation.
Parity-Violation With Electrons: Theoretical Perspectives
Ramsey-Musolf, M J
2005-01-01
I review recent progress and developments in parity-violating electron scattering as it bears on three topics: strange quarks and hadron structure, electroweak radiative corrections, and physics beyond the Standard Model. I also discuss related developments in parity-conserving scattering with transversely polarized electrons as a probe of two-photon processes. I conclude with a perspective on the future of the field.
International Nuclear Information System (INIS)
We have calculated the order αGsub(μ) corrections to the order Gsub(μ) parity-violating (PV) electron-quark potential Hsub(PV)sup(e-q) at q2=0 in the standard SU(2)sub(L) x U(1) theory using a renormalization scheme which has Msub(W), Msub(Z) and Msub(H) (Higgs' mass) as input parameters. We then use SU(3) relations to write an effective PV electron-nucleon potential Hsub(PV)sup(e-N) in terms of the dimensionless parameters Csub(1P), Csub(1N) (nuclear spin independent) Csub(2P), Csub(2N) (nuclear spin dependent) and Csub(3P), Csub(3N) (electron anomalous magnetic moment dependent). For ssub(theta)2 identical to 1-Msub(W)2/Msub(Z)2 approx.= .23 and small Higgs' mass Msub(H)or approx.1 TeV. Csub(3P), and Csub(3N) are first induced at one loop and are small. We show that Csub(2P) and Csub(2N) suffer from large uncertainties due to the strong interactions which make the theoretical interpretation of experiments designed to measure these quantities less clear than was previously thought. The other parameters are relatively free from strong interaction uncertainties. We review the diseases of the old 1934 four-fermion theory and give an overview of the renormalization of the Weinberg-Salam theory. We discuss the possibility of high-precision experiments in one-electron atoms to measure these radiative corrections and remind the reader of a previously proposed experiment in hydrogen or deuterium which will measure Csub(1P) or Csub(1P)+Csub(1N) respectively. (author)
Parity Violation in Proton-Proton Scattering
van Oers, W. T. H.; collaboration, for E497
1997-01-01
Measurements of parity-violating longitudinal analyzing powers (normalized asymmetries) in polarized proton-proton scattering provide a unique window on the interplay between the weak and strong interactions between and within hadrons. Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future: at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Juelich) at 230 MeV and near 1.3 GeV. These ex...
Parity violation in deep inelastic scattering
Energy Technology Data Exchange (ETDEWEB)
Souder, P. [Syracuse Univ., NY (United States)
1994-04-01
AA beam of polarized electrons at CEBAF with an energy of 8 GeV or more will be useful for performing precision measurements of parity violation in deep inelastic scattering. Possible applications include precision tests of the Standard Model, model-independent measurements of parton distribution functions, and studies of quark correlations.
Hadronic weak charges and parity-violating forward Compton scattering
Gorchtein, Mikhail
2016-01-01
Parity-violating elastic electron-nucleon scattering at low momentum transfer allows one to access the nucleon's weak charge, the vector coupling of the $Z$-boson to the nucleon. In the Standard Model and at tree level, the weak charge of the proton is related to the weak mixing angle and accidentally suppressed, $Q_W^{p,\\,{\\rm tree}}=1-4\\sin^2\\theta_W\\approx0.07$. Modern experiments aim at extracting $Q_W^p$ at $\\sim1\\%$ accuracy. Similarly, parity non-conservation in atoms allows to access the weak charge of atomic nuclei. We consider a novel class of radiative corrections, an exchange of two photons with parity violation in the hadronic/nuclear system. These corrections may affect the extraction of $\\sin^2\\theta_W$ from the experimental data at the relevant level of precision because they are affected by long-range interactions similar to other parity-violating radiative corrections, such as, e.g., the $\\gamma Z$-exchange, which has obtained much attention recently. We show that the significance of this ne...
$R$ parity violation from discrete $R$ symmetries
Chen, Mu-Chun; Takhistov, Volodymyr
2015-01-01
We consider supersymmetric extensions of the standard model in which the usual $R$ or matter parity gets replaced by another $R$ or non-$R$ discrete symmetry that explains the observed longevity of the nucleon and solves the $\\mu$ problem of MSSM. In order to identify suitable symmetries, we develop a novel method of deriving the maximal $\\mathbb{Z}_{N}^{(R)}$ symmetry that satisfies a given set of constraints. We identify $R$ parity violating (RPV) and conserving models that are consistent with precision gauge unification and also comment on their compatibility with a unified gauge symmetry such as the Pati-Salam group. Finally, we provide a counter-example to the statement found in the recent literature that the lepton number violating RPV scenarios must have $\\mu$ term and the bilinear $\\kappa \\, L \\, H_u$ operator of comparable magnitude.
R parity violation from discrete R symmetries
Directory of Open Access Journals (Sweden)
Mu-Chun Chen
2015-02-01
Full Text Available We consider supersymmetric extensions of the standard model in which the usual R or matter parity gets replaced by another R or non-R discrete symmetry that explains the observed longevity of the nucleon and solves the μ problem of MSSM. In order to identify suitable symmetries, we develop a novel method of deriving the maximal ZN(R symmetry that satisfies a given set of constraints. We identify R parity violating (RPV and conserving models that are consistent with precision gauge unification and also comment on their compatibility with a unified gauge symmetry such as the Pati–Salam group. Finally, we provide a counter-example to the statement found in the recent literature that the lepton number violating RPV scenarios must have μ term and the bilinear κLHu operator of comparable magnitude.
Nucleon-Nucleon Parity Violation Experiments
Van Oers, W T H
1999-01-01
Measurements of parity-violating longitudinal analyzing powers Az (normalized asymmetries) in polarized proton-proton scattering and in polarized neutron capture on the proton (n+p -> d+gamma) provide a unique window on the interplay between the weak and strong interactions between and within hadrons. Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future: at TRIUMF at 221 MeV and 450 MeV and at COSY (Forschungszentrum Jülich) in the multi-GeV range. A new measurement of the parity-violating gamma ray asymmetry with a ten-fold improvement in the accuracy over previous measurements is being developed at LANSCE. These experiments are intended to provide stringent constraints on the set of six effective weak meson-nucleon coupling constants, which characterize the weak interaction between hadrons in the energy domain where meson exchange models provide an appropriate description. The 221 MeV pp experiment is unique in th...
Parity Violation in Proton-Proton Scattering
Van Oers, W T H
1997-01-01
Measurements of parity-violating longitudinal analyzing powers (normalized asymmetries) in polarized proton-proton scattering provide a unique window on the interplay between the weak and strong interactions between and within hadrons. Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future: at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Jülich) at 230 MeV and near 1.3 GeV. These experiments are intended to provide stringent constraints on the set of six effective weak meson-nucleon coupling constants, which characterize the weak interaction between hadrons in the energy domain where meson exchange models provide an appropriate description. The 221 MeV is unique in that it selects a single transition amplitude (3P2-1D2) and consequently constrains the weak meson-nucleon coupling constant h_rho{pp}. The TRIUMF 221 MeV proton-proton parity violation experiment is described in some detail. A preliminar...
Parity Violating Electron Scattering in the Relativistic Eikonal Approximation
Institute of Scientific and Technical Information of China (English)
DONG Tie-Kuang; REN Zhong-Zhou
2008-01-01
The parity violating electron scattering is investigated in the relativistic Eikonal approximation. The parity violating asymmetry parameters for many isotopes are calculated. In calculations the proton and neutron densities are obtained from the relativistic mean-field theory. We take Ni isotopes as examples to analyse the behaviour of the parity violating asymmetry parameters. The results show that the parity violating asymmetry parameter is sensitive to the difference between the proton and neutron densities. The amplitude of the parity violating asymmetry parameter increases with the distance between the minima of proton and neutron form factors. Our results are useful for future parity violating electron scattering experiments. By comparing our results with experimental data one can test the validity of the relativistic mean-field theory in calculating the neutron densities of nuclei.
van Oers, Willem T H
2008-01-01
After almost five decades of study of parity violation in hadronic systems, the determination of the seven weak meson-nucleon couplings is still incomplete. Whereas parity violation in nuclear systems is complicated by the intricacies of QCD, measurements of parity violation in the much simpler proton-proton system are more straightforward to interpret. We now have three such precision pp experiments at 13.6, at 45, and 221 MeV. Today there are also better possibilities for theoretical interpretation using effective field theory. In electron-proton scattering, parity violating ep experiments such as SAMPLE, G0, HAPPEX, and PVA4 have already shown that the strange quark contributions to the charge and magnetization distributions of the nucleon are tiny. When analyzed together, the results have also greatly improved knowledge of the proton's "weak charge" (Q^p_weak = 1-4sin^2\\theta_W at tree level). The Q^p_weak experiment at JLab will further improve this, determining the proton's weak charge to a precision of...
Parity-Violation in Deep Inelastic Scattering
International Nuclear Information System (INIS)
The completion of the planned 12 GeV upgrade at Jefferson Lab will open a new avenue for precision studies of the high-x structure of the nucleon through parity-violation in deeply-inelastic scattering (PV-DIS). PV-DIS would be a clean technique for studying quark-level charge symmetry violation, probing higher-twist effects and for a measurement of the structure function ratio d/u at high x. In addition to these topics in hadronic physics, these measurements would also provide access to a linear combination of the poorly measured axial electron-quark weak couplings C2u and C2d, thus provide an important test of the electroweak Standard Model.
Space parity violation in nuclear fission
International Nuclear Information System (INIS)
Space parity violation in low energy fission was observed by the Soviet physicists in 1977 in the course of the angular distribution investigations of the light and heavy fragments in the polarized thermal neutron fission of 233,235U and 239Pu. Unexpected large values of the P-odd asymmetry coefficients (αnf ∼ 10-4) were obtained in the angular distribution W(0) = 1 + bar αnf (bar σn · pf). So large values of αnf looked very strange because of the existence of numerous different exit channels in fission process (∼108 - 1010) and a small relative value of nonconserving space parity potential of the weak NN-interaction (∼ 10-7). In addition to the P-violating asymmetry bar αnf P-conserving right-left asymmetry of the fission fragment angular distribution W (θ) = 1 + α RLnf pf · αn x pf was observed in 1979. The main goal of the new experimental investigations of P-odd and P-even effects in fission was a search of the possible relationships between the asymmetry coefficients and the characteristics of the entrance and exit channels in slow neutron fission. In this paper the brief review of the experimental results obtained by different groups is given. The main part of these results have been obtained at the WWR-M reactor of Leningrad Nuclear Physics Institute (LNPI)
Minimal flavour violation and neutrino masses without R-parity
DEFF Research Database (Denmark)
Arcadi, G.; Di Luzio, L.; Nardecchia, M.
2012-01-01
symmetry breaking all the couplings of the superpotential including the R-parity violating ones. If R-parity violation is responsible for neutrino masses, our setup can be seen as an extension of MFV to the lepton sector. We analyze two patterns based on the non-abelian flavour symmetries SU(3)(4) circle...
Hadronic parity violation in few-nucleon systems
International Nuclear Information System (INIS)
The interactions between nucleons contain a parity-violating component, which originates in the weak interaction between quarks and which is suppressed by a factor of approximately 10−7 compared to the dominant parity-conserving component. A theoretical framework based on effective field theory methods to analyze and interpret parity-violating interactions between nucleons is described and a number of applications are discussed
International Nuclear Information System (INIS)
While Parity Violation (PV) experiments on highly forbidden transitions have been using detection of fluorescence signals; our experiment uses a pump-probe scheme to detect the PV signal directly on a transmitted probe beam. A pulsed laser beam of linear polarisation ε1 excites the atoms on the 6S-7S cesium transition in a colinear electric field E || k(ex). The probe beam (k(pr) || k(ex)) of linear polarisation ε2 tuned to the transition 7S-6P(3/2) is amplified. The small asymmetry (∼ 10-6) in the gain that depends on the handedness of the tri-hedron (E, ε1, ε2) is the manifestation of the PV effect. This is measured as an E-odd apparent rotation of the plane of polarization of the probe beam; using balanced mode polarimetry. New criteria of selection have been devised, that allow us to distinguish the true PV-signal against fake rotations due to electromagnetic interferences, geometrical effects, polarization imperfections, or stray transverse electric and magnetic fields. These selection criteria exploit the symmetry of the PV-rotation - linear dichroism - and the revolution symmetry of the experiment. Using these criteria it is not only possible to reject fake signals, but also to elucidate the underlying physical mechanisms and to measure the relevant defects of the apparatus. The present signal-to-noise ratio allows embarking in PV measurements to reach the 10% statistical accuracy. A 1% measurement still requires improvements. Two methods have been demonstrated. The first one exploits the amplification of the asymmetry at high gain - one major advantage provided by our detection method based on stimulated emission. The second method uses both a much higher incident intensity and a special dichroic component which magnifies tiny polarization rotations. (author)
Κ-meson decays and parity violation
International Nuclear Information System (INIS)
Between 1948 and 1954 many Κ-meson decay modes were observed, including the tau, pion and xi positives, in emulsion experiments all with masses around 500 MeV. An attempt was made to rationalize the various names for the new particles being discovered. A period of experimental consolidation followed. An attempt was then made to determine the spin parity of the three-pion system from tau plus decay using matrix calculations. New stripped emulsion techniques now permitted a secondary-particle track to be followed to its endpoint. Stacked emulsions were flown in balloons to study Κ mesons and hyperons using cosmic radiation. Later similar work used the new particle accelerators, the Cosmotron and the Bevatron as sources. The author showed that the tau plus and theta plus were competing decay modes of the same Κ+ meson, but this meant that parity conservation was violated. Later theoreticians T D Lee and C N Yang provided evidence for this surprising idea from their work on semileptonic weak interactions. (UK)
Hadronic parity violation in few-body systems
Energy Technology Data Exchange (ETDEWEB)
L. Girlanda, R. Schiavilla, M. Viviani, A. Kievsky, L.E. Marcucci
2009-06-01
Recent interest, both from experimental and theoretical point of view, on hadronic parity violation is reviewed, with particular emphasis on an effective theory description. After discussing the minimal form of the parity-violating NN contact e ective Lagrangian, we concentrate on the calculation of the neutron spin rotation in vec n - d scattering at zero energy. We find that this observable is sensitive to the long-range component of the parity-violating NN pontential due to the pion exchange, and that it is expected to be one order of magnitude larger than in vec n - p scattering.
Precision electroweak studies using parity violation in electron scattering
Energy Technology Data Exchange (ETDEWEB)
Paschke, Kent D, [Virginia U., JLAB
2013-11-01
The nature of new neutral-current interactions can be revealed at the low-energy precision frontier, where studies of parity-violation in electron scattering will complement the energy-frontier studies at the LHC. Measurements of the parity-violating observable APV - the cross-section asymmetry in the scattering of longitudinally polarized electrons from an unpolarized target - are sensitive to possible contact interactions from new physics at multi-TeV mass scales. The 12 GeV upgrade at JLab and a new, high-intensity beam at Mainz offer opportunities for significant improvements in measurements of electron-electron and electron-quark parity-violating interactions.
Precision electroweak studies using parity violation in electron scattering
International Nuclear Information System (INIS)
The nature of new neutral-current interactions can be revealed at the low-energy precision frontier, where studies of parity-violation in electron scattering will complement the energy-frontier studies at the LHC. Measurements of the parity-violating observable APV - the cross-section asymmetry in the scattering of longitudinally polarized electrons from an unpolarized target - are sensitive to possible contact interactions from new physics at multi-TeV mass scales. The 12 GeV upgrade at JLab and a new, high-intensity beam at Mainz offer opportunities for significant improvements in measurements of electron-electron and electron-quark parity-violating interactions
Parity violation in high energy physics
International Nuclear Information System (INIS)
This paper presents work that is part of a larger research program attempting to study methodological and epistemological aspects of the various theories or models proposed to explain the weak interactions of elementary particles. The development of weak interaction theory can be divided into four periods - each with its own distinctive problems. The first period (1933-1952) starts with Fermi's first papers on β-decay and is concluded with hypothesis of Universal Fermi Interaction, and the discovery of strange particles. The second period (1953-1959) starts with the establishment of the ''θ-tau puzzle'' and continues through the development of the V-A structure of the weak interactions. During the third period (1960-1970) there is extensive use and impressive results of group theoretical techniques. Finally, the last period which starts at the beginning of the 1970's is the period of the gauge theories and the unification attempts. Here the author is concerned with only the second period, and concentrates on the question of parity violation
Future Directions in Parity Violation: From Quarks to the Cosmos
Ramsey-Musolf, Michael J.
2007-01-01
I discuss the prospects for future studies of parity-violating (PV) interactions at low energies and the insights they might provide about open questions in the Standard Model as well as physics that lies beyond it. I cover four types of parity-violating observables: PV electron scattering; PV hadronic interactions; PV correlations in weak decays; and searches for the permanent electric dipole moments of quantum systems.
A new source for parity violating nuclear force
International Nuclear Information System (INIS)
We propose a mechanism for parity violation in the two nucleon meson-exchange interaction by way of the mixing of mesons of opposite parities. This mixing arises from parity violating W± and Z exchange between the q-antiq pari in the meson. Numerically is effect turns out to be as important as vector meson exchange with a weak meson-nucleon vertex. The calculation is performed using both the standard Born approximation adding the amplitude phases by Watson's theorem and also using the exact correlated two-nucleon wave functions. The effect of correlations and form factors is found to be crucially important at intermediate energies
Precision electroweak studies using parity violation in electron scattering
Energy Technology Data Exchange (ETDEWEB)
Paschke, K. D. [Department of Physics, University of Virginia, Charlottesville, Virginia 22903 (United States)
2013-11-07
The nature of new neutral-current interactions can be revealed at the low-energy precision frontier, where studies of parity-violation in electron scattering will complement the energy-frontier studies at the LHC. Measurements of the parity-violating observable A{sub PV} - the cross-section asymmetry in the scattering of longitudinally polarized electrons from an unpolarized target - are sensitive to possible contact interactions from new physics at multi-TeV mass scales. The 12 GeV upgrade at JLab and a new, high-intensity beam at Mainz offer opportunities for significant improvements in measurements of electron-electron and electron-quark parity-violating interactions.
Res-Parity: Parity Violation in Inelastic scattering at Low Q2
Energy Technology Data Exchange (ETDEWEB)
Reimer, Paul; Bosted, Peter; Arrington, John; Mkrtchyan, Hamlet; Zheng, Xiaochao
2006-05-16
Parity violating electron scattering has become a well established tool which has been used, for example, to probe the Standard Model and the strange-quark contribution to the nucleon. While much of this work has focused on elastic scattering, the RES-Parity experiment, which has been proposed to take place at Jefferson Laboratory, would focus on inelastic scattering in the low-Q2, low-W domain. RES-Parity would search for evidence of quark-hadron duality and resonance structure with parity violation in the resonance region. In terms of parity violation, this region is essentially unexplored, but the interpretation of other high-precision electron scattering experiments will rely on a reasonable understanding of scattering at lower energy and low-W through the effects of radiative corrections. RES-Parity would also study nuclear effects with the weak current. Because of the intrinsic broad band energy spectrum of neutrino beams, neutrino experiments are necessarily dependent on an untested, implicit assumption that these effects are identical to electromagnetic nuclear effects. RES-Parity is a relatively straight forward experiment. With a large expected asymmetry (~ 0.5 × 10^{-4}) these studies may be completed with in a relatively brief period.
Δ contributions to the parity-violating nuclear interaction
Feldman, G. B.; Crawford, G. A.; Dubach, J.; Holstein, B. R.
1991-02-01
A quark-model picture which incorporates SU(6)w symmetry is utilized to calculate the weak Δ-nucleon-meson and Δ-Δ-meson parity-violating vertices for π, ρ, and ω mesons, thus extending previous work in the nucleon sector. The effective quark Hamiltonian is based upon the renormalization-group-corrected Weinberg-Salam model. The calculated parity-violating vertices are used to determine the coupling constants in an effective baryon Hamiltonian. We give ``best'' values as well as estimates of the ranges of uncertainty.
Effect of CP violation in bilinear R-parity violation on baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Cheriguene, Asma; Langenfeld, Ulrich; Porod, Werner [Universitaet Wuerzburg (Germany); Liebler, Stefan [Universitaet Wuppertal (Germany)
2013-07-01
Supersymmetric models where R-parity is broken via lepton number violation provides an intrinsically supersymmetric explanation for the observed neutrino. The complex phases of the corresponding parameters are constrained by the observed matter anti-matter asymmetry of the universe. Taking bilinear R-parity violation as framework in combination with the assumption of a large lepton asymmetry generated via the Affleck-Dine mechanism at the end of inflation we investigate these constraints in the parameter range compatible with neutrino data.
Effect of CP violation in bilinear R-parity violation on baryogenesis
International Nuclear Information System (INIS)
Supersymmetric models where R-parity is broken via lepton number violation provides an intrinsically supersymmetric explanation for the observed neutrino. The complex phases of the corresponding parameters are constrained by the observed matter anti-matter asymmetry of the universe. Taking bilinear R-parity violation as framework in combination with the assumption of a large lepton asymmetry generated via the Affleck-Dine mechanism at the end of inflation we investigate these constraints in the parameter range compatible with neutrino data.
Parity violation in the strong interaction
Haeberli, W.
1981-03-01
A review is presented of measurements designed to detect parity nonconservation (PNC) in nuclear interactions. Current trends in the analysis of PNC effects are summarized, and recent experimental results are discussed. All experimental results on systems which can be interpreted in terms of the weak NN potential are compared with predictions from a set of weak amplitudes calculated with the Weinberg-Salam model.
Theory and spectroscopy of parity violation in chiral molecules
International Nuclear Information System (INIS)
Full text: Parity violation plays a crucial role in the 'Standard Model of Particle Physics' and according to current understanding it has crucial connections to fundamental symmetry violations in general and to such fundamental phenomena as the existence of mass of the elementary particles. In chemistry, one important consequence is a 'parity violating energy difference' ΔPVE of the ground state energies of enantiomers of chiral molecules, corresponding to a non zero enthalpy of stereomutation or enantiomerization ΔRH00 = NAΔPVE, which would be exactly zero if perfect inversion symmetry were true. An experiment to measure this very small energy difference in the sub-femto-eV (or atto-eV) range, typically, has been proposed some time ago. Recent improved theory predicts parity violating potentials to be larger by about two orders of magnitude for the prototype compound H2O2 and related molecules, as compared to older theories, and this large increase has been confirmed by subsequent independent theoretical results in several groups. Thus the prospects for successful experiments look brighter today than ever before. In the lecture we will discuss the current status of the field and report in some detail on the various spectroscopic approaches, which can be used, as well as the current challenges of these experiments. If time permits, even more fundamental symmetry violations such as CP and CPT violation will be discussed. (author)
Single B Production through R-Parity Violation
O'Leary, B
2007-01-01
Supersymmetry without R-parity predicts tree level quark flavor violation. We present a potential signal of single bottom production at electron-positron colliders with energies in the range 6 to 20 GeV. Taking into account rare decay limits it should be detectable with the current BaBar and Belle data samples.
Parity violation workshop: CEBAF [Continuous Electron Beam Accelerator Facility
International Nuclear Information System (INIS)
This paper discusses the use of electron scattering experiments for exploring parity violation in the nuclear domain. It is shown how such experiments can test the structure of strong interactions, the local gauge theory quantum chromodynamics based on color, and the unified gauge theory of electroweak interactions. 14 refs., 13 figs., 1 tab
Single B Production through R-Parity Violation
O'Leary, Ben
2006-01-01
Supersymmetry without R-parity predicts tree level quark flavor violation. We present a potential signal of single bottom production at electron-positron colliders with energies in the range 6 to 20 GeV. Taking into account rare decay limits it should be detectable with the current BaBar and Belle data samples.
Parity violating radiative weak decays and the quark model
International Nuclear Information System (INIS)
We propose a model for radiative weak decays of hyperons with baryon exchanges in the s- and u-channels as described by the quark model: the 1/2+ (56, 0+) for parity conserving, and the first excited 1/2- (70, 1-) or partiy violating amplitudes. Special attention is drawn on the problem of gauge invariance. We get a large Σ+ → psub(upsilon) asymmetry of the right sign. The parity violating amplitude although SU (3)-suppressed, is of the order deltam/ω(deltam, SU (3)-breaking parameter; ω, baryon level spacing), which is not small. In the quark model the parity conserving amplitude is also SU(3)-suppressed contrarily to the usual belief. (orig.)
Parity non-conservation in atoms
International Nuclear Information System (INIS)
The parity non-conservation discovered in particle physics in 1959 has consequences on the behaviour of atoms illuminated by light of circular polarization. The theoretical treatments of this topic and recent experimental test of detecting the effects of parity non-conservation on atomic physics are listed, reviewed and illustrated. The main experimental results and limits are summarized. Proposed future experiments are discussed. (D.Gy.)
Measurement of parity violation in electron-quark scattering.
2014-02-01
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks' chirality preference when participating in the weak force, which have been measured directly only once in the past 40 years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u - C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future. PMID:24499917
Measurement of parity violation in electron–quark scattering
Energy Technology Data Exchange (ETDEWEB)
Wang, D.; Pan, K.; Subedi, R.; Deng, X.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; De Leo, R.; Deconinck, W.; Deur, A.; Dutta, C.; El Fassi, L.; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; LeRose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Myers, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman,; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.
2014-02-05
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks chirality preference when participating in the weak force, which have been measured directly3, 4 only once in the past 40?years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u???C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.
Measurement of parity violation in electron-quark scattering
The Jefferson Lab Pvdis Collaboration; Wang, D.; Pan, K.; Subedi, R.; Deng, X.; Ahmed, Z.; Allada, K.; Aniol, K. A.; Armstrong, D. S.; Arrington, J.; Bellini, V.; Beminiwattha, R.; Benesch, J.; Benmokhtar, F.; Bertozzi, W.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, J.-P.; Chudakov, E.; Cisbani, E.; Dalton, M. M.; de Jager, C. W.; de Leo, R.; Deconinck, W.; Deur, A.; Dutta, C.; El Fassi, L.; Erler, J.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Garibaldi, F.; Gilad, S.; Giusa, A.; Glamazdin, A.; Golge, S.; Grimm, K.; Hafidi, K.; Hansen, J.-O.; Higinbotham, D. W.; Holmes, R.; Holmstrom, T.; Holt, R. J.; Huang, J.; Hyde, C. E.; Jen, C. M.; Jones, D.; Kang, Hoyoung; King, P. M.; Kowalski, S.; Kumar, K. S.; Lee, J. H.; Lerose, J. J.; Liyanage, N.; Long, E.; McNulty, D.; Margaziotis, D. J.; Meddi, F.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Myers, K. E.; Nanda, S.; Narayan, A.; Nelyubin, V.; Nuruzzaman; Oh, Y.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Rider, K.; Riordan, S.; Roche, J.; Rubin, J.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Sirca, S.; Souder, P. A.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Urciuoli, G. M.; Waidyawansa, B.; Wojtsekhowski, B.; Ye, L.; Zhao, B.; Zheng, X.
2014-02-01
Symmetry permeates nature and is fundamental to all laws of physics. One example is parity (mirror) symmetry, which implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering has been important in establishing (and now testing) the standard model of particle physics. One particular set of quantities accessible through measurements of parity-violating electron scattering are the effective weak couplings C2q, sensitive to the quarks' chirality preference when participating in the weak force, which have been measured directly only once in the past 40years. Here we report a measurement of the parity-violating asymmetry in electron-quark scattering, which yields a determination of 2C2u-C2d (where u and d denote up and down quarks, respectively) with a precision increased by a factor of five relative to the earlier result. These results provide evidence with greater than 95 per cent confidence that the C2q couplings are non-zero, as predicted by the electroweak theory. They lead to constraints on new parity-violating interactions beyond the standard model, particularly those due to quark chirality. Whereas contemporary particle physics research is focused on high-energy colliders such as the Large Hadron Collider, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. Our measurement is relatively free of ambiguity in its interpretation, and opens the door to even more precise measurements in the future.
Sensitivity of Low-Energy Parity-Violation To New Physics
Ramsey-Musolf, M. J.
1999-01-01
I review the new physics sensitivity of low-energy parity-violating (PV) observables. I concentrate on signatures of new tree-level physics in atomic PV with a single isotope, ratios of atomic PV observables, and PV electron scattering. In addition to comparing the new physics sensitivities of these observables with those of high-energy colliders, I also discuss the theoretical issues involved in the extraction of new physics limits from low-energy PV observables.
Some aspects of -parity violating supersymmetry
Indian Academy of Sciences (India)
Sourov Roy
2000-07-01
I brieﬂy review a scenario where -parity is explicitly broken through a term bilinear in the lepton and Higgs superﬁelds in the superpotential. An immediate consequence of the presence of this term is the generation of a massive neutrino at the tree level. Constraints on the parameter space are discussed in the context of recent super-Kamiokande results on atmospheric neutrinos. The testability of such models is emphasized through the observation of comparable numbers of muons and taus, produced together with the -boson, in decays of the lightest neutralino. Some other phenomenological implications of such a scenario are also discussed.
Atomic CP-violating polarizability
Ravaine, Boris; Kozlov, M. G.; Derevianko, Andrei
2005-01-01
Searches for CP violating effects in atoms and molecules provide important constrains on competing extensions to the standard model of elementary particles. In particular, CP violation in an atom leads to the CP-odd (T,P-odd) polarizability $\\beta^\\mathrm{CP}$: a magnetic moment $\\mu^\\mathrm{CP}$ is induced by an electric field $\\mathcal{E}_0$ applied to an atom, $\\mu^\\mathrm{CP} = \\beta^\\mathrm{CP} \\mathcal{E}_0 $. We estimate the CP-violating polarizability for rare-gas (diamagnetic) atoms ...
Parity-Violating Effects in the np System
International Nuclear Information System (INIS)
We investigate parity-violating observables in the np system, including the longitudinal asymmetry and neutron-spin rotation in (rvec n)p elastic scattering, the photon asymmetry in (rvec n)p radiative capture, and the asymmetries in deuteron photo-disintegration d((rvec γ), n)p in the threshold region and electro-disintegration d((rvec e), e(prime)np) in quasi-elastic kinematics. To have an estimate of the model dependence for the various predictions, a number of different, latest-generation strong-interaction potentials--Argonne ν18, Bonn 2000, and Nijmegen I--are used in combination with a weak-interaction potential consisting of π-, ρ-, and ω-meson exchanges--the model known as DDH. The complete bound and scattering problems in the presence of parity-conserving, including electromagnetic, and parity-violating potentials is solved in both configuration and momentum space. The issue of electromagnetic current conservation is examined carefully. We find large cancellations between the asymmetries induced by the parity-violating interactions and those arising from the associated pion-exchange currents. In the (rvec n)p capture, the model dependence is nevertheless quite small, because of constraints arising through the Siegert evaluation of the relevant E1 matrix elements. In quasi-elastic electron scattering these processes are found to be insignificant compared to the asymmetry produced by γ-Z interference on individual nucleons. These two experiments, then, provide clean probes of different aspects of weak-interaction physics associated with parity violation in the np system. Finally, we find that the neutron spin rotation in (rvec n)p elastic scattering and asymmetry in deuteron disintegration by circularly-polarized photons exhibit significant sensitivity both to the values used for the weak vector-meson couplings in the DDH model and to the input strong-interaction potential adopted in the calculation
Parity-Violating Nuclear Force as derived from QCD Sum Rules
Hwang, W-Y P
2008-01-01
Parity-violating nuclear force, as may be accessed from parity violation studies in nuclear systems, represents an area of nonleptonic weak interactions which has been the subject of experimental investigations for several decades. In the simple meson-exchange picture, parity-violating nuclear force may be parameterized as arising from exchange of \\pi, \\rho, \\omega, or other meson(s) with strong meson-nucleon coupling at one vertex and weak parity-violating meson-nucleon coupling at the other vertex. The QCD sum rule method allows for a fairly complicated, but nevertheless straightforward, leading-order loop-contribution determination of the various parity-violating MNN couplings starting from QCD (with the nontrivial vacuum) and Glashow-Salam-Weinberg electroweak theory. We continue our earlier investigation of parity-violating \\pi NN coupling (by Henley, Hwang, and Kisslinger) to other parity-violating couplings. Our predictions are in reasonable overall agreement with the results estimated on phenomenologi...
Baryonic R-parity violation and its running
Bernon, Jeremy
2014-01-01
Baryonic R-parity violation arises naturally once Minimal Flavor Violation (MFV) is imposed on the supersymmetric flavor sector at the low scale. At the same time, the yet unknown flavor dynamics behind MFV could take place at a very high scale. In this paper, we analyze the renormalization group (RG) evolution of this scenario. We find that low-scale MFV is systematically reinforced through the evolution, with the R-parity violating couplings exhibiting infrared fixed points. Intriguingly, we also find that if holomorphy is imposed on MFV at some scale, it is preserved by the RG evolution. Furthermore, low-scale holomorphy is a powerful infrared attractor for a large class of non-holomorphic scenarios. Therefore, supersymmetry with minimally flavor violating baryon number violation at the low scale, especially in the holomorphic case but not only, is viable and resilient under the RG evolution, and should constitute a leading contender for the physics beyond the Standard Model waiting to be discovered at the...
Parity-Violating Electron-Deuteron Scattering with a Twist
Mantry, Sonny; Sacco, Gian Franco
2010-01-01
We show that Parity-Violating Deep Inelastic Scattering (PVDIS) of longitudinally polarized electrons from deuterium can in principle be a relatively clean probe of higher twist quark-quark correlations beyond the parton model. As first observed by Bjorken and Wolfenstein, the dominant contribution to the electron polarization asymmetry, proportional to the axial vector electron coupling, receives corrections at twist-four from the matrix element of a single four-quark operator. We reformulate the Bjorken/Wolfenstein argument in a matter suitable for the interpretation of experiments planned at the Thomas Jefferson National Accelerator Facility (JLab). In particular, we observe that because the contribution of the relevant twist four operator satisfies the Callan-Gross relation, the ratio of parity-violating longitudinal and transverse cross sections, R_{\\gamma Z}, is identical to that for purely electromagnetic scattering, R_{\\gamma}, up to perturbative and power suppressed contributions. This result simplif...
R-parity Violating Supersymmetry at IceCube
Dev, P S Bhupal; Rodejohann, Werner
2016-01-01
The presence of $R$-parity violating supersymmetric interactions involving high-energy neutrinos can lead to resonant production of TeV-scale squarks inside large-volume neutrino detectors. Using the ultra-high energy neutrino events observed recently at the IceCube, with the fact that for a given power-law flux of astrophysical neutrinos, there is no statistically significant deviation in the current data from the Standard Model expectations, we derive robust upper limits on the $R$-parity violating couplings as a function of the resonantly-produced squark mass, independent of the other unknown model parameters. With more statistics, we expect these limits to be comparable/complementary to the existing limits from direct collider searches and other low-energy processes.
Parity-Violating Hydrodynamics in 2+1 Dimensions
Jensen, Kristan; Kovtun, Pavel; Meyer, Rene; Ritz, Adam; Yarom, Amos
2011-01-01
We study relativistic hydrodynamics of normal fluids in two spatial dimensions. When the microscopic theory breaks parity, extra transport coefficients appear in the hydrodynamic regime, including the Hall viscosity, and the anomalous Hall conductivity. In this work we classify all the transport coefficients in first order hydrodynamics. We then use properties of response functions and the positivity of entropy production to restrict the possible coefficients in the constitutive relations. All the parity-breaking transport coefficients are dissipationless, and some of them are related to the thermodynamic response to an external magnetic field and to vorticity. In addition, we give a holographic example of a strongly interacting relativistic fluid where the parity-violating transport coefficients are computable.
Parity-Violating Electron-Deuteron Scattering with a Twist
Mantry, Sonny; Ramsey-Musolf, Michael J.; Sacco, Gian Franco
2010-01-01
We show that Parity-Violating Deep Inelastic Scattering (PVDIS) of longitudinally polarized electrons from deuterium can in principle be a relatively clean probe of higher twist quark-quark correlations beyond the parton model. As first observed by Bjorken and Wolfenstein, the dominant contribution to the electron polarization asymmetry, proportional to the axial vector electron coupling, receives corrections at twist-four from the matrix element of a single four-quark operator. We reformulat...
Space-Time Parity Violation and Magnetoelectric Interactions in Antiferromagnets
Kadomtseva, A.M.; Zvezdin, A. K.; Popov, Yu. F.; Pyatakov, A. P.; Vorob'ev, G. P.
2004-01-01
The properties of antiferromagnetic materials with violated space-time parity are considered. Particular attention is given to the bismuth ferrite BiFeO3 ferroelectric magnet. This material is distinguished from other antiferromagnets in that the inversion center is absent in its crystal and magnetic structures. This circumstance gives rise to the diversified and unusual properties, namely, to the appearance of a spatially modulated spin structure and to the unique possibility of the linear m...
Hadronic parity violation in pionless effective field theory
International Nuclear Information System (INIS)
We present results for two-body observables that are sensitive to the parity-violating component of nucleon-nucleon interactions. These interactions are studied using an effective field theory in which the only dynamic degrees of freedom are nucleon fields. The observables we study are cross-section asymmetries in nucleon-nucleon scattering and asymmetries and induced polarizations in the process np→dγ.
Neutrino mass patterns, -parity violating supersymmetry and associated phenomenology
Indian Academy of Sciences (India)
Biswarup Mukhopadhyaya
2000-01-01
Motivated by the recent super-Kamiokande results on atmospheric neutrinos, we incorporate massive neutrinos, with large angle oscillation between the second and third generations, in a theory with -parity violating supersymmetry. The general features of such a theory are brieﬂy reviewed. We emphasize its testability through the observation of comparable numbers of muons and taus, produced together with the -boson, in decays of the lightest neutralino. A distinctly measurable decay gap is anotherremarkable feature of such a scenario.
Affleck-Dine baryogenesis with R-parity violation
Higaki, Tetsutaro; Saikawa, Ken'ichi; Takahashi, Tomo; Yamaguchi, Masahide
2014-01-01
We investigate whether the baryon asymmetry of the universe is explained in the framework of the supersymmetric extension of the Standard Model with R-parity violating interactions. It is shown that the Affleck-Dine mechanism naturally works via a trilinear interaction $LLE^c$, $LQD^c$, or $U^cD^cD^c$, if the magnitude of the coupling corresponding to the operator $\\lambda$, $\\lambda'$, or $\\lambda''$ is sufficiently small. The formation of Q-balls and their subsequent evolution are also discussed. The present baryon asymmetry can be explained in the parameter region where R-parity is mildly violated $10^{-9}\\lesssim\\lambda,\\lambda',\\lambda''\\lesssim 10^{-6}$ and the mass of the gravitino is relatively heavy $m_{3/2}\\gtrsim 10^4\\mathrm{GeV}$. On the other hand, it is difficult to explain the present baryon asymmetry for larger values of R-parity violating couplings $\\lambda,\\lambda',\\lambda''\\gtrsim 10^{-5}$, since Q-balls are likely to be destructed in the thermal environment and the primordial baryon number...
Precision tests of parity violation over cosmological distances
Kaufman, Jonathan P.; Keating, Brian G.; Johnson, Bradley R.
2016-01-01
Recent measurements of the cosmic microwave background (CMB) B-mode polarization power spectrum by the BICEP2 and POLARBEAR experiments have demonstrated new precision tools for probing fundamental physics. Regardless of origin, the detection of sub-μK CMB polarization represents a technological tour de force. Yet more information may be latent in the CMB's polarization pattern. Because of its tensorial nature, CMB polarization may also reveal parity-violating physics via a detection of cosmic polarization rotation. Although current CMB polarimeters are sensitive enough to measure one degree-level polarization rotation with >5σ statistical significance, they lack the ability to differentiate this effect from a systematic instrumental polarization rotation. Here, we motivate the search for cosmic polarization rotation from current CMB data as well as independent radio galaxy and quasar polarization measurements. We argue that an improvement in calibration accuracy would allow the unambiguous measurement of parity- and Lorentz-violating effects. We describe the CalSat space-based polarization calibrator that will provide stringent control of systematic polarization angle calibration uncertainties to 0.05° - an order of magnitude improvement over current CMB polarization calibrators. CalSat-based calibration could be used with current CMB polarimeters searching for B-mode polarization, effectively turning them into probes of cosmic parity violation, `for free' - i.e. without the need to build dedicated instruments.
Strange Vector Form Factors from Parity-Violating Electron Scattering
Paschke, Kent; Michaels, Robert; Armstrong, David; 10.1088/1742-6596/299/1/012003
2011-01-01
The simplest models might describe the nucleon as 3 light quarks, but this description would be incomplete without inclusion of the sea of glue and q-qbar pairs which binds it. Early indications of a particularly large contribution from strange quarks in this sea to the spin and mass of the nucleon motivated an experimental program examining the role of these strange quarks in the nucleon vector form factors. The strangeness form factors can be extracted from the well-studied electromagnetic structure of the nucleon using parity-violation in electron-nuclear scattering to isolate the effect of the weak interaction. With high luminosity and polarization, and a very stable beam due to its superconducting RF cavities, CEBAF at Jefferson Lab is a precision instrument uniquely well suited to the challenge of measurements of the small parity-violating asymmetries. The techniques and results of the two major Jefferson Lab experimental efforts in parity-violation studies, HAPPEX and G0, as well as efforts to describe...
Strange Vector Form Factors from Parity-Violating Electron Scattering
International Nuclear Information System (INIS)
The simplest models might describe the nucleon as 3 light quarks, but this description would be incomplete without inclusion of the sea of glue and q q-bar pairs which binds it. Early indications of a particularly large contribution from strange quarks in this sea to the spin and mass of the nucleon motivated an experimental program examining the role of these strange quarks in the nucleon vector form factors. The strangeness form factors can be extracted from the well-studied electromagnetic structure of the nucleon using parity-violation in electron-nuclear scattering to isolate the effect of the weak interaction. With high luminosity and polarization, and a very stable beam due to its superconducting RF cavities, CEBAF at Jefferson Lab is a precision instrument uniquely well suited to the challenge of measurements of the small parity-violating asymmetries. The techniques and results of the two major Jefferson Lab experimental efforts in parity-violation studies, HAPPEX and G0, as well as efforts to describe the strange form factors in QCD, will be reviewed.
Strange vector form factors from parity-violating electron scattering
Energy Technology Data Exchange (ETDEWEB)
Kent Paschke, Anthony Thomas, Robert Michaels, David Armstrong
2011-06-01
The simplest models might describe the nucleon as 3 light quarks, but this description would be incomplete without inclusion of the sea of glue and qbar q pairs which binds it. Early indications of a particularly large contribution from strange quarks in this sea to the spin and mass of the nucleon motivated an experimental program examining the role of these strange quarks in the nucleon vector form factors. The strangeness form factors can be extracted from the well-studied electromagnetic structure of the nucleon using parity-violation in electron-nuclear scattering to isolate the effect of the weak interaction. With high luminosity and polarization, and a very stable beam due to its superconducting RF cavities, CEBAF at Jefferson Lab is a precision instrument uniquely well suited to the challenge of measurements of the small parity-violating asymmetries. The techniques and results of the two major Jefferson Lab experimental efforts in parity-violation studies, HAPPEX and G0, as well as efforts to describe the strange form factors in QCD, will be reviewed.
Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation
Czech Academy of Sciences Publication Activity Database
Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bombara, M.; Bonner, B. E.; Botje, M.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Sanchez, M.C.D.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Coserea, R. M.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dunlop, J.C.; Mazumdar, M.R.D.; Edwards, W.R.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Gangaharan, D.R.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Heppelmann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Igo, G..; Iordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Kopytine, M.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, N.; Li, C.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Matis, H.S.; Matulenko, Yu.A.; McShane, T.S.; Meschanin, A.; Milner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mitchell, J.; Mohanty, B.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Panitkin, S.Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stadnik, A.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; Vander Molen, A.M.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.S.M.; Vasilevski, I.M.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Webb, J.C.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.; Tlustý, David
2009-01-01
Roč. 103, č. 25 (2009), 251601/1-251601/7. ISSN 0031-9007 R&D Projects: GA ČR GA202/07/0079; GA MŠk LC07048; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : heavy-ion collisions * local parity violation * strong interaction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.328, year: 2009
Cosmological Signature of New Parity-Violating Interactions
International Nuclear Information System (INIS)
Are there any manifestations of parity violation other than those observed in weak interactions? A map of the cosmic microwave background (CMB) temperature and polarization will provide a new signature of P violation. We examine two classes of P -violating interactions that would give rise to such a signature. The first interaction leads to a cosmological birefringence, possibly driven by quintessence. The other interaction leads to an asymmetry in the amplitude of right- versus left-handed gravitational waves produced during inflation. The Planck Surveyor should improve upon the current sensitivity to birefringence. While the primordial effect would most likely elude detection by MAP and Planck, it may be detectable with a future dedicated CMB polarization experiment. copyright 1999 The American Physical Society
The Minimal Supersymmetric Standard Model with a Bilinear R-Parity Violating Term
Díaz, M A
1998-01-01
Some aspects of bilinear R-Parity violation, the simplest extension of the MSSM which does not conserve R-Parity, are reviewed in comparison with the MSSM. We put special emphasis on the effect of quantum corrections.
Spontaneous parity violation under extreme conditions: an effective lagrangian analysis
International Nuclear Information System (INIS)
We investigate how large baryon densities (and possibly high temperatures) may induce spontaneous parity violation in the composite meson sector of vector-like gauge theory (presumably QCD or techni-QCD). The analysis at intermediate energy scales is done by using an extended σ-model lagrangian that includes two scalar and two pseudoscalar multiplets and fulfills low-energy constraints for vector-like gauge theories. We elaborate on a novel mechanism of parity breaking based on the interplay between lightest and heavier meson condensates, which therefore cannot be realized in the simplest σ model. The results are relevant for idealized homogeneous and infinite nuclear (quark or techniquark) matter where the influence of the density can be examined with the help of a constant chemical potential. The model is able to describe satisfactorily the first-order phase transition to stable nuclear matter, and it predicts a second-order phase transition to a state where parity is spontaneously broken. We argue that the parity breaking phenomenon is quite generic when a large enough chemical potential is present. Current quark masses are explicitly taken into account in this work and shown not to change the general conclusions. (orig.)
Jefferson Lab injector development for next generation parity violation experiments
Grames, J.; Hansknect, J.; Poelker, M.; Suleiman, R.
2011-11-01
To meet the challenging requirements of next generation parity violation experiments at Jefferson Lab, the Center for Injectors and Sources is working on improving the parity-quality of the electron beam. These improvements include new electron photogun design and fast helicity reversal of the Pockels Cell. We proposed and designed a new scheme for slow helicity reversal using a Wien Filter and two Solenoids. This slow reversal complements the insertable half-wave plate reversal of the laser-light polarization by reversing the electron beam polarization at the injector while maintaining a constant accelerator configuration. For position feedback, fast air-core magnets located in the injector were commissioned and a new scheme for charge feedback is planned.
Parity-violating and anisotropic correlations in pseudoscalar inflation
Energy Technology Data Exchange (ETDEWEB)
Bartolo, Nicola; Matarrese, Sabino; Shiraishi, Maresuke [Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Peloso, Marco, E-mail: nicola.bartolo@pd.infn.it, E-mail: sabino.matarrese@pd.infn.it, E-mail: peloso@physics.umn.edu, E-mail: maresuke.shiraishi@pd.infn.it [School of Physics and Astronomy, University of Minnesota, Minneapolis 55455 (United States)
2015-01-01
A pseudo-scalar inflaton field can have interesting phenomenological signatures associated with parity violation. The existing analyses of these signatures typically assume statistical isotropy. In the present work we instead investigate the possibility that a pseudo-scalar inflaton is coupled to a vector field carrying a small but non-negligible vacuum expectation value (vev) coherent over our Hubble patch. We show that, in such case, correlators involving the primordial curvature perturbations and gravitational waves violate both statistical isotropy and parity symmetry. We compute the Cosmic Microwave Background (CMB) temperature anisotropies (T) and polarization (E/B) generated by these primordial modes. The CMB two-point correlation functions present distinct signals of broken rotational and parity invariance. Specifically, we find non-vanishing TT, TE, EE and BB correlators between ℓ{sub 1} and ℓ{sub 2} = ℓ{sub 1} ± 1 multipoles, and non-vanishing TB and EB correlators between ℓ{sub 1} and ℓ{sub 2} = ℓ{sub 1} ± 2 multipoles. Such signatures are specific of the models under consideration and they cannot be generated if one of parity and isotropy is preserved. As a specific example we consider the simple case in which the vector field has just an ''electric'' background component decaying in the standard way as a{sup −2}. In this case a strong scale-dependent quadrupolar modulation of the primordial power spectra is generated and we find that almost noiseless data of the large-scale temperature and E-mode polarization anisotropies (like, e.g., the ones provided by WMAP or Planck) should be able to constrain the quadrupolar amplitude coefficients g{sub 2M} of the primordial scalar power spectrum (normalized at the pivot scale comparable to the present horizon size k{sup −1}{sub 0} = 14 Gpc) down to g{sub 2M} = 30 (68%CL)
Searches for R-Parity violating SUSY with the ATLAS detector
Hou, Suen; The ATLAS collaboration
2016-01-01
The violation of R-parity allows new signatures to be pursued in the search for supersymmetry at the LHC. This talk presents the latest results from the ATLAS experiment on searches for R-parity violating SUSY using data from pp collisions at a centre-of-mass energy of 13 TeV. The results presented are for dedicated searches for resonances, as well as a systematic analysis of the constraints placed on R-parity violating models.
Measurements of Parity-Violation Parameters at SLD
Iwasaki, M; Adam, I; Akimoto, H; Aston, D; Baird, K G; Baltay, C; Band, H R; Barklow, Timothy L; Bauer, J M; Bellodi, G; Berger, R; Blaylock, G; Bogart, J R; Bower, G R; Brau, J E; Breidenbach, M; Bugg, W M; Burke, D; Burnett, T H; Burrows, P N; Calcaterra, A; Cassell, R; Chou, A; Cohn, H O; Coller, J A; Convery, M R; Cook, V; Cowan, R F; Crawford, G; Damerell, C J S; Daoudi, M; Dasu, S; De Groot, N; De Sangro, R; Dong, D N; Doser, Michael; Dubois, R; Erofeeva, I; Eschenburg, V; Etzion, E; Fahey, S; Falciai, D; Fernández, J P; Flood, K; Frey, R; Hart, E L; Hasuko, K; Hertzbach, S S; Huffer, M E; Huynh, X; Jackson, D J; Jacques, P; Jaros, J A; Jiang, Z Y; Johnson, A S; Johnson, J R; Kajikawa, R; Kalelkar, M S; Kang, H J; Kofler, R R; Kroeger, R S; Langston, M; Leith, D W G S; Lia, V; Lin, C; Mancinelli, G; Manly, S L; Mantovani, G C; Markiewicz, T W; Maruyama, T; McKemey, A K; Messner, R; Moffeit, K C; Moore, T B; Morii, M; Müller, D; Murzin, V S; Narita, S; Nauenberg, U; Neal, H; Nesom, G; Oishi, N; Onoprienko, D V; Osborne, L S; Panvini, R S; Park, C H; Peruzzi, I; Piccolo, M; Piemontese, L; Plano, R J; Prepost, R; Prescott, C Y; Ratcliff, B N; Reidy, J; Reinertsen, P L; Rochester, L S; Rowson, P C; Russell, J J; Saxton, O H; Schalk, T L; Schumm, B A; Schwiening, J; Serbo, V V; Shapiro, G; Sinev, N B; Snyder, J A; Stängle, H; Stahl, A; Stamer, P E; Steiner, H; Su, D; Suekane, F; Sugiyama, A; Suzuki, S; Swartz, M; Taylor, F E; Thom, J; Torrence, E; Usher, T; Vavra, J; Verdier, R; Wagner, D L; Waite, A P; Walston, S; Weidemann, A W; Weiss, E R; Whitaker, J S; Williams, S H; Willocq, S; Wilson, R J; Wisniewski, W J; Wittlin, J L; Woods, M; Wright, T R; Yamamoto, R K; Yashima, J; Yellin, S J; Young, C C; Yuta, H; Iwasaki, Masako
2001-01-01
We present direct measurements of the parity-violation parameters $A_b$, $A_c$, and $A_s$ at the $Z^0$ resonance with the SLD detector. The measurements are based on approximately 530k hadronic $Z^0$ events collected in 1993-98. Obtained results are $A_b = 0.914\\pm0.024$ (SLD combined: preliminary), $A_c = 0.635\\pm0.027$ (SLD combined: preliminary), and $A_s = 0.895\\pm0.066(stat.)\\pm 0.062(sys.)$.
Super-gravity unification with bilinear R-parity violation
Valle, José W F
1998-01-01
Bilinear R-parity violation (BRpV) provides the simplest and most meaningful way to include such effects into the Minimal Supersymmetrical Standard Model (MSSM). It is defined by a quadratic superpotential term $\\epsilon L H$ which mixes lepton and Higgs superfields and mimics the effects of models with spontaneous breaking. I review some of its main features and show how large fine-tuning. I discuss the effect of BRpV on gauge and Yukawa unification, showing how bottom--tau unification can be achieved at any value of solution is ruled out.
Resonance Region Structure Functions and Parity Violating Deep Inelastic Scattering
Carlson, Carl E.; Rislow, Benjamin C.
2012-01-01
The primary motive of parity violating deep inelastic scattering experiments has been to test the standard model, particularly the axial couplings to the quarks, in the scaling region. The measurements can also test for the validity of models for the off-diagonal structure functions $F_{1,2,3}^{\\gamma Z}(x,Q^2)$ in the resonance region. The off-diagonal structure functions are important for the accurate calculation of the $\\gamma Z$-box correction to the weak charge of the proton. Currently, ...
Quantum Gravity, Torsion, Parity Violation and all that
Freidel, L.; D. MINIC; Takeuchi, T.
2005-01-01
We discuss the issue of parity violation in quantum gravity. In particular, we study the coupling of fermionic degrees of freedom in the presence of torsion and the physical meaning of the Immirzi parameter from the viewpoint of effective field theory. We derive the low-energy effective lagrangian which turns out to involve two parameters, one measuring the non-minimal coupling of fermions in the presence of torsion, the other being the Immirzi parameter. In the case of non-minimal coupling t...
U(1) prime dark matter and R-parity violation
Energy Technology Data Exchange (ETDEWEB)
Brahm, D.E.
1990-04-01
Attempts to understand physics beyond the Standard Model must face many phenomenological constraint, from recent Z{sup {degree}} data, neutral current measurements, cosmology and astrophysics, neutrino experiments, tests of lepton-and baryon-number conservation and CP violation, and many other ongoing experiments. The most interesting models are those which are allowed by current data, but offer predictions which can soon be experimentally confirmed or refuted. Two classes of such models are explored in this dissertation. The first, containing an extra U(1){prime} gauge group, has a dark matter candidate which could soon be detected. The second, incorporating supersymmetry with R-parity violation, predicts rare Z{sup {degree}} decays at LEP; some of these models can already be ruled out by LEP data and gluino searches at the Tevatron. 54 refs., 31 figs.
Search for R-parity violating supersymmetry with displaced vertices
CMS Collaboration
2016-01-01
A search for $R$-parity violating supersymmetry has been performed using proton-proton collision data collected by the CMS experiment at a center-of-mass energy of $\\sqrt{s}=8~\\mathrm{TeV}$. The data analyzed correspond to an integrated luminosity of $17.6~\\mathrm{fb}^{-1}$. This search assumes a minimal flavor violating model where the lightest supersymmetric particle is a long-lived neutralino or gluino, leading to a signal with jets emanating from displaced vertices. Based on a sample of events with two displaced vertices, the pair production cross section is bounded as a function of mass and lifetime of the neutralino or gluino. For a mass of 400 GeV and mean proper decay length of 10 mm, the analysis excludes cross sections above $0.6~\\mathrm{fb}$ at $95\\%$ confidence level.
Likelihood analysis of parity violation in the compound nucleus
International Nuclear Information System (INIS)
We discuss the determination of the root mean-squared matrix element of the parity-violating interaction between compound-nuclear states using likelihood analysis. We briefly review the relevant features of the statistical model of the compound nucleus and the formalism of likelihood analysis. We then discuss the application of likelihood analysis to data on panty-violating longitudinal asymmetries. The reliability of the extracted value of the matrix element and errors assigned to the matrix element is stressed. We treat the situations where the spins of the p-wave resonances are not known and known using experimental data and Monte Carlo techniques. We conclude that likelihood analysis provides a reliable way to determine M and its confidence interval. We briefly discuss some problems associated with the normalization of the likelihood function
Finite-Q^2 Corrections to Parity-Violating DIS
Energy Technology Data Exchange (ETDEWEB)
T. Hobbs; W. Melnitchouk
2008-01-23
Parity-violating deep inelastic scattering (PVDIS) has been proposed as an important new tool to extract the flavor and isospin dependence of parton distributions in the nucleon. We discuss finite-$Q^2$ effects in PVDIS asymmetries arising from subleading kinematical corrections and longitudinal contributions to the $\\gamma Z$ interference. For the proton, these need to be accounted for when extracting the $d/u$ ratio at large $x$. For the deuteron, the finite-$Q^2$ corrections can distort the effects of charge symmetry violation in parton distributions, or signals for physics beyond the standard model. We further explore the dependence of PVDIS asymmetries for polarized targets on the $u$ and $d$ helicity distributions at large $x$.
$B \\to X_{s}l_{i} ^{+}l_{j} ^{-}$ Decays with R-parity violation
Jang, J H; Lee Jae Sik; Jang, Ji-Ho; Kim, Yeong Gyun; Lee, Jae Sik
1998-01-01
We derive the upper bounds on certain products of R-parity- and lepton-flavor-violating couplings from $B \\ra X_s {l_i}^+ {l_j}^-$ decays. These modes of B-meson decays can constrain the product combinations of the couplings with one or more heavy generation indices which are comparable with or stronger than the present bounds. From the studies of the invariant dilepton mass spectrum and the forward backward asymmetry of the emitted leptons we note the possibility of detecting R-parity-violating signals even when the total decay rate due to R-parity violating couplings is comparable with that in the standard model and discriminating two types of R-parity-violating signals. The general expectation of the enhancement of the forward backward asymmetry of the emitted leptons in the minimal supersymmetric standard model with R-parity may be corrupted by R-parity violation.
Atomic CP-violating polarizability
International Nuclear Information System (INIS)
Searches for CP-violating effects in atoms and molecules provide important constrains on competing extensions to the standard model of elementary particles. In particular, CP violation in an atom leads to the CP-odd (T,P-odd) polarizability βCP: a magnetic moment μCP is induced by an electric field E0 applied to an atom, μCP=βCPE0. We estimate the CP-violating polarizability for rare-gas (diamagnetic) atoms He through Rn. We relate βCP to the permanent electric dipole moment (EDM) of the electron and to the scalar constant of the CP-odd electron-nucleus interaction. The analysis is carried out using the third-order perturbation theory and the Dirac-Hartree-Fock formalism. We find that, as a function of nuclear charge Z, βCP scales steeply as Z5R(Z), where slowly varying R(Z) is a relativistic enhancement factor. Finally, we evaluate the feasibility of setting a limit on electron EDM by measuring CP-violating magnetization of liquid Xe. We find that such an experiment could provide competitive bounds on electron EDM only if the present level of experimental sensitivity to ultraweak magnetic fields [Kominis et al., Nature 422, 596 (2003)] is improved by several orders of magnitude
Atomic CP-violating polarizability
Ravaine, B; Derevianko, A; Ravaine, Boris; Derevianko, Andrei
2005-01-01
Searches for CP violating effects in atoms and molecules provide important constrains on competing extensions to the standard model of elementary particles. In particular, CP violation in an atom leads to the CP-odd (T,P-odd) polarizability $\\beta^\\mathrm{CP}$: a magnetic moment $\\mu^\\mathrm{CP}$ is induced by an electric field $\\mathcal{E}_0$ applied to an atom, $\\mu^\\mathrm{CP} = \\beta^\\mathrm{CP} \\mathcal{E}_0 $. We estimate the CP-violating polarizability for rare-gas (diamagnetic) atoms He through Rn. We relate betaCP to the permanent electric dipole moment (EDM) of the electron and to the scalar constant of the CP-odd electron-nucleus interaction. The analysis is carried out using the third-order perturbation theory and the Dirac-Hartree-Fock formalism. We find that, as a function of nuclear charge Z, betaCP scales steeply as Z^5 R(Z), where slowly-varying R(Z) is a relativistic enhancement factor. Finally, we evaluate a feasibility of setting a limit on electron EDM by measuring CP-violating magnetizat...
Parity-violating electroweak asymmetry in (rvec e) p scattering
International Nuclear Information System (INIS)
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from protons. Significant contributions to this asymmetry could arise from the contributions of strange form factors in the nucleon. The measured asymmetry is A = -15.05 ± 0.98(stat) ± 0.56(syst) ppm at the kinematic point lab> = 12.3o and 2> = 0.477 (GeV/c)2. Based on these data as well as data on electromagnetic form factors, we extract the linear combination of strange form factors GEs + 0.392GMs = 0.014 ± 0.020 ± 0.010 where the first error arises from this experiment and the second arises from the electromagnetic form factor data. This paper provides a full description of the special experimental techniques employed for precisely measuring the small asymmetry, including the first use of a strained GaAs crystal and a laser-Compton polarimeter in a fixed target parity-violation experiment
Parity-violating electroweak asymmetry in {rvec e} p scattering
Energy Technology Data Exchange (ETDEWEB)
Konrad Aniol; David Armstrong; Todd Averett; Maud Baylac; Etienne Burtin; John Calarco; Gordon Cates; Christian Cavata; Zhengwei Chai; C. Chang; Jian-Ping Chen; Eugene Chudakov; Evaristo Cisbani; Marius Coman; Daniel Dale; Alexandre Deur; Pibero Djawotho; Martin Epstein; Stephanie Escoffier; Lars Ewell; Nicolas Falletto; John Finn; Kevin Fissum; A.Fleck; Bernard Frois; Salvatore Frullani; Haiyan Gao; Franco Garibaldi; Ashot Gasparian; G.Gerstner; Ronald Gilman; Oleksandr Glamazdin; Javier Gomez; Viktor Gorbenko; Jens-Ole Hansen; F. Hersman; Douglas Higinbotham; Richard Holmes; Maurik Holtrop; Thomas Humensky; Sebastien Incerti; Mauro Iodice; Cornelis de Jager; David Jardillier; Xiaodong Jiang; Mark Jones; J.Jorda; Christophe Jutier; Kahl; James Kelly; Donghee Kim; Min Kim; Minsuk Kim; Ioannis Kominis; Edgar Kooijman; Kevin Kramer; Krishna Kumar; Michael Kuss; John LeRose; Raffaele De Leo; M.Leuschner; David Lhuillier; Meihua Liang; Nilanga Liyanage; R.Lourie; Richard Madey; Sergey Malov; Demetrius Margaziotis; Frederic Marie; Pete Markowitz; Jacques Martino; Peter Mastromarino; Kathy McCormick; Justin McIntyre; Zein-Eddine Meziani; Robert Michaels; Brian Milbrath; Gerald Miller; Joseph Mitchell; Ludyvine Morand; Damien Neyret; Charles Perdrisat; Gerassimos Petratos; Roman Pomatsalyuk; John Price; David Prout; Vina Punjabi; Thierry Pussieux; Gilles Quemener; Ronald Ransome; David Relyea; Yves Roblin; Julie Roche; Gary Rutledge; Paul Rutt; Marat Rvachev; Franck Sabatie; Arunava Saha; Paul Souder; Marcus Spradlin; Steffen Strauch; Riad Suleiman; Jeffrey Templon; Tatsuo Terasawa; J.Thompson; Raphael Tieulent; Luminita Todor; Baris Tonguc; Paul Ulmer; Guido Urciuoli; Branislav Vlahovic; Krishni Wijesooriya; R.Wilson; Bogdan Wojtsekhowski; Rhett Woo; Wang Xu; Imran Younus; C. Zhang
2004-02-01
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from protons. Significant contributions to this asymmetry could arise from the contributions of strange form factors in the nucleon. The measured asymmetry is A = -15.05 {+-} 0.98(stat) {+-} 0.56(syst) ppm at the kinematic point <{theta}{sub lab}> = 12.3{sup o} and = 0.477 (GeV/c){sup 2}. Based on these data as well as data on electromagnetic form factors, we extract the linear combination of strange form factors G{sub E}{sup s} + 0.392G{sub M}{sup s} = 0.014 {+-} 0.020 {+-} 0.010 where the first error arises from this experiment and the second arises from the electromagnetic form factor data. This paper provides a full description of the special experimental techniques employed for precisely measuring the small asymmetry, including the first use of a strained GaAs crystal and a laser-Compton polarimeter in a fixed target parity-violation experiment.
R-Parity Violating SUSY Results from ATLAS and CMS
Pettersson, Nora Emilia; The ATLAS collaboration
2015-01-01
Experimental searches for Supersymmetry (SUSY) at the Large Hadronic Collider (LHC) often assume R-Parity Conservation (RPC) to avoid proton decay. A consequence of RPC is that it implies the existence of a stable SUSY-particle that cannot decay. The search strategies are strongly based on the hypothesize of weakly interacting massive particles escaping without detection - yielding missing transverse energy (MET) to the collision events. It is vital to explore all possibilities considering that no observation of SUSY has been made and that strong exclusions already have been placed on RPC-SUSY scenarios. Introducing individually baryon- and lepton-number violating couplings in R-Parity Violating (RPV) models would avoid rapid proton decay. The strong mass and cross-section exclusion set for RPC-SUSY are weaken if RPV couplings are allowed in the SUSY Lagrangian - as these standard searches lose sensitivity due to less expected MET. A summarization a few of the experimental searches for both prompt and long-li...
Search for supersymmetric particles with R-parity violation
International Nuclear Information System (INIS)
Searches for new particles are presented under the assumption that the R-parity, taking the value +1 for all the ordinary particles and -1 for their supersymmetric partners, is not conserved. We suppose that the dominant R-parity violating couplings involve only leptonic fields and that the lifetime of the lightest supersymmetric particle can be neglected. Sleptons, squarks and neutralinos pairs searches have been performed in a data sample collected by the ALEPH detector, at the e+e- collider LEP, from 1989 to 1993. In this statistic, corresponding to almost two million hadronic Ζ decays, no signal was observed. As a result, supersymmetric particle masses and couplings are at least as well constrained as under the usual assumption of R-parity conservation. In a second part, the ALEPH Beam Monitor system (BOMs) is studied. The BOMs, located at 65 m from the ALEPH interaction region, allow the determination of the beam position at the interaction point. The comparison of the 1994 BOM measurements, with the beam position measured by the ALEPH vertex detector, shows sizeable systematic differences. A position monitoring system of the quadrupoles closet to the interaction point has been installed in 1995 and allows the agreement between the BOMs and ALEPH vertex detector data to be improved. Moreover, a new method for the calibration of the electronic ALEPH BOMs system is developed. (author). 54 refs., 75 figs. 15 tabs
Parity violation in the CMB trispectrum from the scalar sector
Shiraishi, Maresuke
2016-01-01
Under the existence of chiral non-Gaussian sources during inflation, the trispectrum of primordial curvature perturbations can break parity. We examine signatures of the induced trispectrum of the cosmic microwave background (CMB) anisotropies. It is confirmed via harmonic-space analysis that such CMB trispectrum has nonvanishing signal in the $\\ell_1 + \\ell_2 + \\ell_3 + \\ell_4 = \\text{odd}$ domain, as a consequence of parity violation. When the curvature trispectrum is parametrized with Legendre polynomials, the CMB signal due to the Legendre dipolar term is enhanced at the squeezed configurations in $\\ell$ space, yielding a high signal-to-noise ratio. A Fisher matrix computation results in a minimum detectable size of the dipolar coefficient in a cosmic-variance-limited-level temperature survey as $d_1^{\\rm odd} = 640$. In an inflationary model where the inflaton field couples to the gauge field via a $f(\\phi)(F^2 + F\\tilde{F})$ interaction, the curvature trispectrum contains such parity-odd dipolar term. W...
Testing Parity with Atomic Radiative Capture of $\\mu^-$
McKeen, David
2012-01-01
The next generation of "intensity frontier" facilities will bring a significant increase in the intensity of sub-relativistic beams of $\\mu^-$. We show that the use of these beams in combination with thin targets of $Z\\sim 30$ elements opens up the possibility of testing parity-violating interactions of muons with nuclei via direct radiative capture of muons into atomic 2S orbitals. Since atomic capture preserves longitudinal muon polarization, the measurement of the gamma ray angular asymmetry in the single photon $2S_{1/2}$-$1S_{1/2}$ transition will offer a direct test of parity. We calculate the probability of atomic radiative capture taking into account the finite size of the nucleus to show that this process can dominate over the usual muonic atom cascade, and that the as yet unobserved single photon $2S_{1/2}$-$1S_{1/2}$ transition in muonic atoms can be detected in this way using current muon facilities.
Saha, J P; Saha, Jyoti Prasad; Kundu, Anirban
2004-01-01
We perform a systematic reevaluation of the constraints on the flavor-changing neutral current (FCNC) parameters in R-parity conserving and R-parity violating supersymmetric models. As a typical process, we study the constraints coming from the measurements on the B0-\\bar{B0} system on the supersymmetric $\\delta^d_{13}$ parameters, as well as on the products of the lambda' type R-parity violating couplings. Present data allows us to put constraints on both the real and the imaginary parts of the relevant parameters.
Parity violation in electron scattering; Violation de parite en diffusion d'electrons
Energy Technology Data Exchange (ETDEWEB)
Lhuillier, D
2007-09-15
The elaboration of the electroweak standard model from the discovery of parity violation to the weak neutral current is described in the first chapter. In the second chapter the author discusses the 2 experimental approaches of the parity violation experiments. In the first approach the weak neutral current can be assumed to be well known and can be used as a probe for the hadronic matter. The second approach consists in measuring the weak neutral current between 2 particles with known internal structure in order to test the predictions of the standard model in the low energy range. The chapters 3 and 4 are an illustration of the first approach through the HAPPEx series of experiments that took place in the Jefferson Laboratory from 1998 to 2005. The HAPPEx experiments aimed at measuring the contribution of strange quarks in the electromagnetic form factors of the nucleon through the violation of parity in the elastic scattering at forward angles. The last chapter is dedicated to the E158 experiment that was performed at the Slac (California) between 2000 and 2003. The weak neutral current was measured between 2 electrons and the high accuracy obtained allowed the physics beyond the standard model to be indirectly constraint up to a few TeV. (A.C.)
R-parity violating right-handed neutrino in gravitino dark matter scenario
Energy Technology Data Exchange (ETDEWEB)
Endo, Motoi [CERN, Geneva (Switzerland). Theory Div., PH Dept.; Shindou, Tetsuo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-06-15
A decay of the gravitino dark matter is an attractive candidate to explain the current excesses of the PAMELA/ATIC cosmic-ray data. However, R-parity violations are required to be very tiny in low-energy scale. We suggest a R-parity violation in the right-handed neutrino sector. The violation is suppressed by a see-saw mechanism. Although a reheating temperature is constrained from above, the thermal leptogenesis is found to work successfully with a help of the R-parity violating right-handed neutrino. (orig.)
Search for parity violation in the 1081 keV γ-transition of 18F
International Nuclear Information System (INIS)
The effect of a parity violation in the atomic nucleus by neutral currents can be studied on 18F. The theory predicts a circular polarization of the 1081 KeV γ transition of about 5per mille. In the framework of this thesis an improved poalrimeter for the measurement of the γ circular polarization was constructed. Furthermore an apparature containing 4 Ge(Li) detectors was extended by 4 NaI detectors. The circular polarization was determined to (-1.0 +- 1.8)per mille. (orig.)
Parity violation in electron-deuteron scattering. II. Break-up channels
Hwang, W.-Y. P.; Henley, E. M.; Miller, Gerald A.
1981-12-01
Parity violation in electron-deuteron inelastic scattering is decribed. An impulse approximation, modified to incorporate gauge invariance, is employed. Additional meson-exchange currents are included. Normal-parity and abnormal-parity wave function components are generated numerically with a Reid soft-core potential for the former and a general parity-violating weak potential with adjustable coupling constants for the latter. Numerical results for parity-conserving differential cross sections are in good agreement with existing data. For low n- p excitation energies and medium-energy electrons, we find that parity-violating asymmetries are dominated by contributions from neutral weak currents so that the Weinberg-Salam theory can be tested. For low-energy electrons, 5 MeV ≲ Ee ≲ 50 MeV, our results indicate that the asymmetry caused by nuclear parity violation is roughly as important as that due to neutral weak currents. The pion-nucleon parity-violating coupling, fπ, as well as the rho- and omega-nucleon parity-violating couplings, may be determinable from such experiments. Further, it is possible to check the experiment of Lobashov et al., which detects circular polarization in the thermal-neutron capture reaction.
Nuclear Parity-Violation in Effective Field Theory
Energy Technology Data Exchange (ETDEWEB)
Shi-Lin Zhu; C.M. Maekawa; B.R. Holstein; M.J. Ramsey-Musolf; U van Kolck
2005-02-21
We reformulate the analysis of nuclear parity-violation (PV) within the framework of effective field theory (EFT). To order Q, the PV nucleon-nucleon (NN) interaction depends on five a priori unknown constants that parameterize the leading-order, short-range four-nucleon operators. When pions are included as explicit degrees of freedom, the potential contains additional medium- and long-range components parameterized by PV piNN couplings. We derive the form of the corresponding one- and two-pion-exchange potentials. We apply these considerations to a set of existing and prospective PV few-body measurements that may be used to determine the five independent low-energy constants relevant to the pionless EFT and the additional constants associated with dynamical pions. We also discuss the relationship between the conventional meson-exchange framework and the EFT formulation, and argue that the latter provides a more general and systematic basis for analyzing nuclear PV.
Insight into the parity violation at πNN vertex
International Nuclear Information System (INIS)
Asub(π)=A(n → π-p) parity-violating amplitude is considered. Within the field-theoretical approach it is shown that cononical ETC-part (where ETC is the equal time commutator) of Asub(π) corresponds to nonfactorizing (NF) diagrams. Asub(π)sup(NF) may be calculated for the total effective Hamiltonian in SU(2)sub(L) x U(1) x SU(3)sub(C) theory via the SU(3) sum rule and is very sensitive to the behaviour of running QCD constant asub(s)(μ) at μ < or approximately msub(c) (msub(c) is mass of c-quark). It is argued that the contribution of factorizing diagrams into Asub(π) is negligible
Bell Inequality for Generalized Parity Measurement and its Violation for Continuous Variable Systems
Chen, J L; Kwek, L C; Oh, C H; Chen, Jing-Ling; Wu, Chun-Feng
2003-01-01
We generalize the concept of the usual parity measurement. Due to the generalized parity measurement, we obtain multi-component correlation functions. Bell inequality for the multi-component correlation function is proposed. The violation of the Bell inequality for continuous variable systems is investigated. The violation of the the original Einstein-Podolsky-Rosen states can exceed the Cirel'son bound, the maximal violation is 2.96981.
Parity nonconservation in the hydrogen atom
International Nuclear Information System (INIS)
The development of experiments to detect parity nonconserving (PNC) mixing of the 2s/sub a/2/ and 2p/sub 1/2/ levels of the hydrogen atom in a 570 Gauss magnetic field is described. The technique involves observation of an asymmetry in the rate of microwave induced transitions at 1608 MHz due to the interference of two amplitudes, one produced by applied microwave and static electric fields and the other produced by an applied microwave field and the 2s/sub 1/2/-2p/sub 1/2/ mixing inducd by a PNC Hamiltonian
R-Parity violation in F-Theory
Romão, Miguel Crispim; King, Stephen F; Leontaris, George K; Meadowcroft, Andrew K
2016-01-01
We discuss R-parity violation (RPV) in semi-local and local F-theory constructions. We first present a detailed analysis of all possible combinations of RPV operators arising from semi-local F-theory spectral cover constructions, assuming an $SU(5)$ GUT. We provide a classification of all possible allowed combinations of RPV operators originating from operators of the form $10\\cdot \\bar 5\\cdot \\bar 5$, including the effect of $U(1)$ fluxes with global restrictions. We then relax the global constraints and perform explicit computations of the bottom/tau and RPV Yukawa couplings, at an $SO(12)$ local point of enhancement in the presence of general fluxes subject only to local flux restrictions. We compare our results to the experimental limits on each allowed RPV operator, and show that operators such as $LLe^c$, $LQd^c$ and $u^cd^cd^c$ may be present separately within current bounds, possibly on the edge of observability, suggesting lepton number violation or neutron-antineutron oscillations as possible signal...
Parity-violating nuclear force as derived from QCD sum rules
Hwang, W.-Y. P.; Wen, Chih-Yi
2008-08-01
Parity-violating nuclear force, as may be accessed from parity-violation studies in nuclear systems, represents an area of nonleptonic weak interactions that has been the subject of experimental investigations for several decades. In the simple meson-exchange picture, a parity-violating nuclear force may be parametrized as arising from the exchange of π,ρ,ω, or other mesons with strong meson-nucleon coupling at one vertex and weak parity-violating meson-nucleon coupling at the other vertex. The QCD sum rule method allows for a fairly complicated, but nevertheless straightforward, leading-order loop-contribution determination of the various parity-violating MNN couplings starting from QCD (with the nontrivial vacuum) and Glashow-Salam-Weinberg electroweak theory. We continue our earlier investigation of the parity-violating πNN coupling (by Henley, Hwang, and Kisslinger) to other parity-violating couplings. Our predictions are in reasonable overall agreement with the results estimated on phenomenological grounds, such as in the now classic paper of Desplanques, Donoghue, and Holstein, in the global experimental fit of Adelberger and Haxton, or the effective field theory thinking of Ramsey-Musolf and Page.
Parity-violating asymmetry in $\\gamma d \\to \\vec{n}p$ with a pionless effective theory
Shin, J W; Hyun, C H; Hong, S W
2011-01-01
Nuclear parity violation is studied with polarized neutrons in the photodisintegration of the deuteron at low energies. A pionless effective field theory with di-baryon fields is used for the investigation. Hadronic weak interactions are treated by parity-violating di-baryon-nucleon-nucleon vertices, which have undetermined coupling contants. A parity-violating asymmetry in the process is calculated for the incident photon energy up to 30 MeV. If experimental data for the parity-violating asymmetry become available in the future, we will be able to determine the unknown coupling contants in the parity-violating vertices.
R-parity violating two-loop level rainbowlike contribution to the fermion electric dipole moment
Yamanaka, Nodoka
2012-01-01
We analyze the two-loop level R-parity violating supersymmetric contribution to the electric and chromoelectric dipole moments of the fermion with neutrino and gaugino in the intermediate state. It is found that this contribution can be sufficiently enhanced with large tan {\\beta} and that it can have comparable size with the currently known R-parity violating Barr-Zee type process in the TeV scale supersymmetry breaking. We also give new limits on the R-parity violating couplings from the experimental data of the electric dipole moments of the neutron and the electron.
Ab initio calculation of molecular energies including parity violating interactions
International Nuclear Information System (INIS)
A new approach, RHF-CIS, based on the perturbation of the ground state RHF wave function by the CIS excitations, has been implemented for evaluation of energy of parity violating interaction in molecules, Epv. The earlier approach, RHF-SDE, was based on the perturbation of the RHF ground states by the single-determinant ''excitations'' (SDE). The results obtained show the dramatic difference between Epv values in the RHF-CIS framework and those in the RHF-SDE framework: the Epv values of the RHF-CIS formalism are more than one order of magnitude greater compared to the RHF-SDE formalism as well as the corresponding tensor components. The maximal total value obtained for hydrogen peroxide in the RHF-CIS framework is 3.661 X 10-19 EH (DZ** basis set) while the maximal Epv value for the RHF-SDE formalism is just 3.635 X 10-20 EH (TZ basis set). It is remarkable that both in the RFH-CIS and in the RHF-SDE approaches the diagonal tensor components of Epv strictly follow the geometry of a molecule and are always different from zero at chiral conformations. The zeros of the total Epv at chiral geometries are now found to be the results of the interplay between the diagonal tensor components values. We have carried out exhaustive analysis of the RHF-SDE formalism and found that it is not sufficiently accurate for studies of Epv. To this end, we have completely reproduced the previous work, which has been done in the RHF-SDE frame-work, and developed it further, studying how the RHF-SDE results vary when changing size and quality of basis sets. This last resource does not save the RHF-SDE formalism for evaluations of Epv from the general failure. Packages of FORTRAN routines called ENWEAK/RHFSDE-93 and ENWEAK/RHFCIS-94 have been developed which run on top of an ab initio MO package. We used 6-31G and 6-31G**, DZ and DZ**, TZ and TZ**, and (10s, 6p,**) basis sets. We will discuss the importance of the present results for possible measurement of the parity violating energy
Can R-parity violation hide vanilla supersymmetry at the LHC?
Energy Technology Data Exchange (ETDEWEB)
Asano, Masaki [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Rolbiecki, Krzysztof; Sakurai, Kazuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-09-15
Current experimental constraints on a large parameter space in supersymmetric models rely on the large missing energy signature. This is usually provided by the lightest neutralino which stability is ensured by the R-parity. However, if the R-parity is violated, the lightest neutralino decays into the standard model particles and the missing energy cut is not efficient anymore. In particular, the UDD type R-parity violation induces the neutralino decay to three quarks which potentially leads to the most difficult signal to be searched at hadron colliders. In this paper, we study the constraints on the R-parity violating supersymmetric models using a same-sign dilepton and a multijet signatures. We show that the gluino and squarks lighter than a TeV are already excluded in constrained minimal supersymmetric standard model with R-parity violation if their masses are approximately equal. We also analyze constraints in a simplified model with R-parity violation. We compare how R-parity violation changes some of the observables typically used to distinguish a supersymmetric signal from standard model backgrounds.
Parity Violation in Forward Angle Elastic Electron-Proton Scattering
Energy Technology Data Exchange (ETDEWEB)
Miller, IV, Grady Wilson
2001-01-01
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton at Jefferson Laboratory. The kinematic point ({theta}_lab = 12.3 deg. and (Q^2) = 0.48 (GeV/c)^2) is chosen to provide sensitivity to the strange electric form factor G^s_E. A 3.36 GeV beam of longitudinally polarized electrons was scattered from protons in a liquid hydrogen target. The scattered flux was detected by a pair of spectrometers which focussed the elastically-scattered electrons onto total-absorption detectors. The detector signals were integrated and digitized by a custom data acquisition system. A feedback system reduced systematic errors by controlling helicity-correlated beam intensity differences at the sub-ppm (part per million) level. The experimental result, A = 14.5 +/- 2.0 (stat) +/- 1.1 (syst) ppm, is consistent with the electroweak Standard Model with no additional contributions from strange quarks. In particular, the measurement implies G^S_E + 0.39 G^s_M = 0.023 +/- 0.040 +/- 0.026 ({delta}G^n_E), where the last uncertainty is due to the estimated uncertainty in the neutron electric form factor G^n_E . This result represents the first experimental constraint of the strange electric form factor.
Can R-parity violation lower $\\sin 2\\beta$?
Bhattacharya, G; Kundu, A; Bhattacharyya, Gautam; Datta, Amitava; Kundu, Anirban
2001-01-01
Recent time-dependent CP asymmetry measurements in the $B_d \\to J/\\psi K_S$ channel by the BaBar and Belle Collaborations yield somewhat lower values of $\\sin 2\\beta$ compared to the one obtained from the standard model fit. If the inconsistency between these numbers persists with more statistics, this will signal new physics contaminating the $B_d \\to J/\\psi K_S$ channel, thus disturbing the extraction of $\\beta$. We show that the R-parity-violating interactions in supersymmetric theories can provide extra new phases which play a role in significantly reducing the above CP asymmetry, thus explaining why BaBar and Belle report lower values of $\\sin 2\\beta$. The same couplings also affect the $B_d \\to \\phi K_S$ decay rate and asymmetry, explain the $B \\to \\eta' K$ anomaly, and predict nonzero CP asymmetry in dominant $B_s$ decays. The scenario will be tested in the ongoing and upcoming B factories.
Hemispherical Asymmetry from Parity-Violating Excited Initial States
Ashoorioon, Amjad
2015-01-01
We investigate if the hemispherical asymmetry in the CMB is produced from parity-violating excited initial condition. We show that in the limit where the deviations from the Bunch-Davies vacuum is large and the scale of new physics is maximally separated from the inflationary Hubble parameter, the primordial power spectrum is modulated only by dipole and quadrupole terms. Requiring the dipole contribution in the power spectrum accounts for the observed power asymmetry, $A=0.07\\pm0.022$, we show that the amount of quadrupole terms is roughly equal to $A^2$, which is still consistent with the bounds from the CMB. The mean local bispectrum which gets enhanced for the excited initial states is within the $1\\sigma$ bound of Planck 2015 results, $f_{\\rm NL}\\simeq 4.17$, but reachable by future CMB experiments. The amplitude of the local non-gaussianity modulates around this mean value, approximately depending on the angle that the short wavelength mode makes with the preferred direction. The amount of variation max...
Di-Higgs signatures from R-parity violating supersymmetry as the origin of neutrino mass
Biswas, Sanjoy; Sharma, Pankaj
2016-01-01
Motivated by the naturalness and neutrino mass generation, we study a bilinear R-parity violating supersymmetric scenario with a light Higgsino-like lightest supersymmetric particle (LSP). We observe that the LSP dominantly decays to $\
International Nuclear Information System (INIS)
The parity violation in neutron diffraction in perfect single crystal of KBr was investigated. The neutron spectrum was approximated by the function 1/E. The neutron detection efficiency and angular divergence of the neutron beam falling on the crystal were taken into account. The enhancement the effects of parity violation in neutron diffraction was detected both in reflected and in transmitted neutron beam. An entirely new method (compensation-diffraction method) was proposed to search for the effects of parity violation in neutron diffraction. Sensitivity of the method, according to the calculations, increases 5.6 times. In this case the parasitic P - odd dichroism in the total cross section is suppressed in ∼ 800 times. The influence of the divergence of the neutron beam by the value of parity violation in neutron diffraction was investigated. The calculations were performed to optimize the specific experimental studies
Searches for R-Parity Violating Decays of Gauginos at 183 GeV at LEP
Abbiendi, G; Alexander, Gideon; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bock, P; Böhme, J; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Hoch, M; Höcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Ueda, I; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D
1999-01-01
Searches for pair-produced charginos and neutralinos with R-parity violating decays have been performed using a data sample corresponding to an integrated luminosity of 56 pb-1 collected with the OPAL detector at LEP at a centre-of-mass energy of 183 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle becomes unstable. The searches have been performed under the assumptions that the lightest supersymmetric particle promptly decays and that only one R-parity violating coupling is dominant for each of the decay modes considered. Such processes would yield multiple leptons, leptons plus jets, or multiple jets with or without significant missing energy in the final state. No excess of such events above Standard Model backgrounds has been observed. Limits are presented on the production cross-sections of gauginos in R-parity violating scenarios. Limits are also presented in the framework of the Minimal Supersymmetric Standard Model.
Parity violation in neutron capture on the proton: Determining the weak pion–nucleon coupling
Directory of Open Access Journals (Sweden)
J. de Vries
2015-07-01
Full Text Available We investigate the parity-violating analyzing power in neutron capture on the proton at thermal energies in the framework of chiral effective field theory. By combining this analysis with a previous analysis of parity violation in proton–proton scattering, we are able to extract the size of the weak pion–nucleon coupling constant. The uncertainty is significant and dominated by the experimental error which is expected to be reduced soon.
Parity violation in γN → Nπ0 induced by offshell effects
International Nuclear Information System (INIS)
Parity violating (PV) effects in γN→Nπ0 vanish due to CP invariance for particles on mass shell. However, when one of the nucleons in the intermediate state goes off the mass shell, parity violating effects can be induced. This has been discussed by Henley et al. and a quantitative estimate of the PV πNN and γNN vertices has been obtained
Bag-model matrix elements of the parity-violating weak hamiltonian for charmed baryons
International Nuclear Information System (INIS)
Baryon matrix elements of the parity-violating part of the charmchanging weak Hamiltonian might be significant and comparable with those of the parity-conserving one due to large symmetry breaking. Expression for these new matrix elements by using the MIT-bag model are derived and their implications on earlier calculations of nonleptonic charmed-baryon decays are estimated
Development of a Hydrogen Møller Polarimeter for Precision Parity-Violating Electron Scattering
Gray, Valerie M.
2013-10-01
Parity-violating electron scattering experiments allow for testing the Standard Model at low energy accelerators. Future parity-violating electron scattering experiments, like the P2 experiment at the Johannes Gutenberg University, Mainz, Germany, and the MOLLER and SoLID experiments at Jefferson Lab will measure observables predicted by the Standard Model to high precision. In order to make these measurements, we will need to determine the polarization of the electron beam to sub-percent precision. The present way of measuring the polarization, with Møller scattering in iron foils or using Compton laser backscattering, will not easily be able to reach this precision. The novel Hydrogen Møller Polarimeter presents a non-invasive way to measure the electron polarization by scattering the electron beam off of atomic hydrogen gas polarized in a 7 Tesla solenoidal magnetic trap. This apparatus is expected to be operational by 2016 in Mainz. Currently, simulations of the polarimeter are used to develop the detection system at College of William & Mary, while the hydrogen trap and superconducting solenoid magnet are being developed at the Johannes Gutenberg University, Mainz. I will discuss the progress of the design and development of this novel polarimeter system. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1206053.
CP violation in bilinear R-parity violation and its consequences for the early universe
International Nuclear Information System (INIS)
Supersymmetric models with bilinear R-parity violation (BRpV) provide a framework for neutrino masses and mixing angles to explain neutrino oscillation data. We consider CP violation within the new physical phases in BRpV and discuss their effect on the generation of neutrino masses and the decays of the lightest supersymmetric particle (LSP), being a light neutralino with mass ∝100 GeV, at next-to-leading order. The decays affect the lepton and via sphaleron transitions the baryon asymmetry in the early universe. For a rather light LSP, asymmetries generated before the electroweak phase transition via e.g. the Affleck-Dine mechanism are reduced up to two orders of magnitude, but are still present. On the other hand, the decays of a light LSP themselves can account for the generation of a lepton and baryon asymmetry, the latter in accordance to the observation in our universe, since the smallness of the BRpV parameters allows for an out-of-equilibrium decay and sufficiently large CP violation is possible consistent with experimental bounds from the non-observation of electric dipole-moments.
CP violation in bilinear R-parity violation and its consequences for the early universe
Cheriguene, Asma; Porod, Werner
2014-01-01
Supersymmetric models with bilinear R-parity violation (BRpV) provide a framework for neutrino masses and mixing angles to explain neutrino oscillation data. We consider CP violation within the new physical phases in BRpV and discuss their effect on the generation of neutrino masses and the decays of the lightest supersymmetric particle (LSP), being a light neutralino with mass $\\sim 100$ GeV, at next-to-leading order. The decays affect the lepton and via sphaleron transitions the baryon asymmetry in the early universe. For a rather light LSP, asymmetries generated before the electroweak phase transition via e.g. the Affleck-Dine mechanism are reduced up to two orders of magnitude, but are still present. On the other hand, the decays of a light LSP themselves can account for the generation of a lepton and baryon asymmetry, the latter in accordance to the observation in our universe, since the smallness of the BRpV parameters allows for an out-of-equilibrium decay and sufficiently large CP violation is possibl...
CP violation in bilinear R-parity violation and its consequences for the early universe
Energy Technology Data Exchange (ETDEWEB)
Cheriguene, Asma; Porod, Werner [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik; Liebler, Stefan [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2014-06-15
Supersymmetric models with bilinear R-parity violation (BRpV) provide a framework for neutrino masses and mixing angles to explain neutrino oscillation data. We consider CP violation within the new physical phases in BRpV and discuss their effect on the generation of neutrino masses and the decays of the lightest supersymmetric particle (LSP), being a light neutralino with mass ∝100 GeV, at next-to-leading order. The decays affect the lepton and via sphaleron transitions the baryon asymmetry in the early universe. For a rather light LSP, asymmetries generated before the electroweak phase transition via e.g. the Affleck-Dine mechanism are reduced up to two orders of magnitude, but are still present. On the other hand, the decays of a light LSP themselves can account for the generation of a lepton and baryon asymmetry, the latter in accordance to the observation in our universe, since the smallness of the BRpV parameters allows for an out-of-equilibrium decay and sufficiently large CP violation is possible consistent with experimental bounds from the non-observation of electric dipole-moments.
Search for R-parity violating supersymmetry using the CMS detector
International Nuclear Information System (INIS)
In this talk, the latest results from CMS on R-parity violating Supersymmetry are reviewed. We present results using up to 20/fb of data from the 8 TeV LHC run of 2012. Interpretations of the experimental results in terms of production of squarks, gluinos, charginos, neutralinos, and sleptons within RP violating SUSY models are presented. (authors)
Parity violation in nuclei: studies of the weak nucleon-nucleon interaction
International Nuclear Information System (INIS)
The Weinberg-Salam Unified Model of weak and electromagnetic interactions has been very successful in explaining parity violation and neutral current effects in neutrino-nucleon, electron-nucleon and neutrino-electron interactions. A wide variety of nuclear physics parity violation experiments are in progress to measure effects of the weak nucleon-nucleon interaction in few nucleon systems and certain heavier nuclei where enhancements are expected. The current status of these experiments will be reviewed, including details of an experiment at Chalk River to search for parity violation in the photodisintegration of deuterium and an extension of our previous measurements of parity mixing in 21Ne. The interpretation of results in terms of basic models of the weak interaction will be discussed. (Auth)
Parity-Violating Interaction Effects; 1, the Longitudinal Asymmetry in pp Elastic Scattering
Carlson, J; Brown, V R; Gibson, B F
2002-01-01
The proton-proton parity-violating longitudinal asymmetry is calculated in the lab-energy range 0--350 MeV, using a number of different, latest-generation strong-interaction potentials--Argonne V18, Bonn-2000, and Nijmegen-I--in combination with a weak-interaction potential consisting of rho- and omega-meson exchanges--the model known as DDH. The complete scattering problem in the presence of parity-conserving, including Coulomb, and parity-violating potentials is solved in both configuration- and momentum-space. The predicted parity-violating asymmetries are found to be only weakly dependent upon the input strong-interaction potential adopted in the calculation. Values for the rho- and omega-meson weak coupling constants $h^{pp}_\\rho$ and $h^{pp}_\\omega$ are determined by reproducing the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV.
Linear programming analysis of the $R$-parity violation within EDM-constraints
Yamanaka, Nodoka; Kubota, Takahiro
2014-01-01
The constraint on the $R$-parity violating supersymmetric interactions is discussed in the light of current experimental data of the electric dipole moment of neutron, $^{129}$Xe , $^{205}$Tl, and $^{199}$Hg atoms, and YbF and ThO molecules. To investigate the constraints without relying upon the assumption of the dominance of a particular combination of couplings over all the rest, an extensive use is made of the linear programming method in the scan of the parameter space. We give maximally possible values for the EDMs of the proton, deuteron, $^3$He nucleus, $^{211}$Rn, $^{225}$Ra, $^{210}$Fr, and the $R$-correlation of the neutron beta decay within the constraints from the current experimental data of the EDMs of neutron, $^{129}$Xe, $^{205}$Tl, and $^{199}$Hg atoms, and YbF and ThO molecules using the linear programming method. It is found that the $R$-correlation of the neutron beta decay and hadronic EDMs are very useful observables to constrain definite regions of the parameter space of the $R$-parity...
First Observation of the Parity Violating Asymmetry in Moller Scattering
Energy Technology Data Exchange (ETDEWEB)
Younus, Imran; /Syracuse U.
2005-07-06
This thesis reports on the E158 experiment at Stanford Linear Accelerator Center (SLAC), which has made the first observation of the parity non-conserving asymmetry in Moller scattering. Longitudinally polarized 48 GeV electrons are scattered off unpolarized (atomic) electrons in a liquid hydrogen target with an average Q{sup 2} of 0.027 GeV{sup 2}. The asymmetry in this process is proportional to (1/4 - sin{sup 2}{theta}{sub W}), where sin{sup 2} {theta}{sub W} gives the weak mixing angle. The thesis describes the experiment in detail, with a particular focus on the design and construction of the electromagnetic calorimeter. This calorimeter was the primary detector in the experiment used to measure the flux of the scattered Moller electrons and eP electrons. It employed the quartz fiber calorimetry technique, and was built at Syracuse University. The preliminary results from the first experimental data taken in spring 2002 give A{sub PV} = -151.9 {+-} 29.0(stat) {+-} 32.5(syst) parts per billion. This in turn gives sin{sup 2} {theta}{sub W} = 0.2371 {+-} 0.0025 {+-} 0.0027, which is consistent with the Standard Model prediction (0.2386 {+-} 0.0006).
International Nuclear Information System (INIS)
The generalization of the Vafa-Witten theorem, ruling out parity violation to QCD at finite temperature is considered. It is shown that this generalization of the theorem rules out Lorentz-invariant parity violating operators from spontaneously acquiring vacuum expectation values. However, it does not rule out Lorentz-noninvariant parity-violating operators from acquiring expectation values. Other situations, where the theorem is inapplicable, are also discussed
Experimental search for parity nonconservation in atomic thallium
International Nuclear Information System (INIS)
In the lecture an experimental search for parity nonconservation in the 62P/sub 1/2/--72P/sub 1/2/ transition in atomic thallium is described. The reason for the choice of this particular transition, a description of the method, the results to data, and a brief description of the future plans are given. The very preliminary results suggest that the Weinberg--Salam model correctly describes parity nonconservation effects in atoms. 5 references
Search for stop production in R-parity-violating supersymmetry at HERA
Chekanov, S; Magill, S; Miglioranzi, S; Musgrave, B; Nicholass, D; Repond, J; Yoshida, R; Mattingly, M C K; Pavel, N; Yagues-Molina, A G; Antonelli, S; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Bindi, M; Boscherini, D; Bruni, A; Bruni, G; Cifarelli, L; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Iacobucci, G; Margotti, A; Nania, R; Polini, A; Rinaldi, L; Sartorelli, G; Zichichi, A; Aghuzumtsyan, G; Bartsch, D; Brock, I; Goers, S; Hartmann, H; Hilger, E; Jakob, H P; Jüngst, M; Kind, O M; Paul, E; Rautenberg, J; Renner, R; Samson, U; Schonberg, V; Wang, M; Wlasenko, M; Brook, N H; Heath, G P; Morris, J D; Namsoo, T; Capua, M; Fazio, S; Mastroberardino, A; Schioppa, M; Susinno, G; Tassi, E; Kim, J Y; Ma, K J; Ibrahim, Z A; Kamaluddin, B; Wan-Abdullah, W A T; Ning, Y; Ren, Z; Sciulli, F; Chwastowski, J; Eskreys, A; Figiel, J; Galas, A; Gil, M; Olkiewicz, K; Stopa, P; Zaw, I; Adamczyk, L; Bold, T; Grabowska-Bold, I; Kisielewska, D; Lukasik, J; Przybycien, M B; Suszycki, L; Kotanski, A; Slominski, W; Adler, V; Behrens, U; Bloch, I; Bonato, A; Borras, K; Coppola, N; Fourletova, J; Geiser, A; Gladkov, D; Göttlicher, P; Gregor, I; Haas, T; Hain, W; Horn, C; Kahle, B; Kötz, U; Kowalski, H; Lobodzinska, E; Löhr, B; Mankel, R; Melzer-Pellmann, I A; Montanari, A; Notz, D; Nuncio-Quiroz, A E; Santamarta, R; Schneekloth, U; Spiridonov, A A; Stadie, H; Stösslein, U; Szuba, D; Szuba, J; Theedt, T; Wolf, G; Wrona, K; Youngman, C; Zeuner, W; Schlenstedt, S; Barbagli, G; Gallo, E; Pelfer, P G; Bamberger, A; Dobur, D; Karstens, F; Vlasov, N N; Germany; Bussey, P J; Doyle, A T; Dunne, W; Ferrando, J; Saxon, D H; Skillicorn, I O; Gialas, I; Gosau, T; Holm, U; Klanner, R; Lohrmann, E; Salehi, H; Schleper, P; Schörner-Sadenius, T; Sztuk, J; Wichmann, K; Wick, K; Foudas, C; Fry, C; Long, K R; Tapper, A D; Kataoka, M; Matsumoto, T; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Dossanov, A; Pokrovskiy, N S; Zhautykov, B O; Son, D; De Favereau, J; Piotrzkowski, K; Barreiro, F; Glasman, C; Jiménez, M; Labarga, L; Del Peso, J; Ron, E; Terron, J; Zambrana, M; Corriveau, F; Liu, C; Walsh, R; Zhou, C; Tsurugai, T; Antonov, A; Dolgoshein, B A; Rubinsky, I; Sosnovtsev, V V; Stifutkin, A; Suchkov, S; Dementiev, R K; Ermolov, P F; Gladilin, L K; Katkov, I I; Khein, L A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Zotkin, D S; Zotkin, S A; Abt, I; Büttner, C; Caldwell, A; Kollar, D; Schmidke, W B; Sutiak, J; Grigorescu, G; Keramidas, A; Koffeman, E; Kooijman, P; Pellegrino, A; Tiecke, H G; Vázquez, M; Wiggers, L; Brümmer, N; Bylsma, B; Durkin, L S; Lee, A; Ling, T Y; Allfrey, P D; Bell, M A; Cooper-Sarkar, A M; Cottrell, A; Devenish, R C E; Foster, B; Korcsak-Gorzo, K; Patel, S; Roberfroid, V; Robertson, A; Straub, P B; Uribe--, C; Estrada; Walczak, R; Bellan, P M; Bertolin, A; Brugnera, R; Carlin, R; Ciesielski, R; Dal Corso, F; Dusini, S; Garfagnini, A; Limentani, S; Longhin, A; Stanco, L; Turcato, M; Oh, B Y; Raval, A; Ukleja, J; Whitmore, J J; Iga, Y; D'Agostini, G; Marini, G; Nigro, A; Cole, J E; Hart, J C; Abramowicz, H; Gabareen, A; Ingbir, R; Kananov, S; Levy, A; Kuze, M; Hori, R; Kagawa, S; Shimizu, S; Tawara, T; Hamatsu, R; Kaji, H; Kitamura, S; Ota, O; Ri, Y D; Ferrero, M I; Monaco, V; Sacchi, R; Solano, A; Arneodo, M; Ruspa, M; Fourletov, S; Martin, J F; Boutle, S K; Butterworth, J M; Gwenlan, C; Jones, T W; Loizides, J H; Sutton, M R; Targett-Adams, C; Wing, M; Brzozowska, B; Ciborowski, J; Grzelak, G; Kulinski, P; Luzniak, P; Malka, J; Nowak, R J; Pawlak, J M; Tymieniecka, T; Ukleja, A; Zarnecki, A F; Adamus, M; Plucinsky, P P; Eisenberg, Y; Giller, I; Hochman, D; Karshon, U; Rosin, M; Brownson, E; Danielson, T; Everett, A; Kcira, D; Reeder, D D; Ryan, P; Savin, A A; Smith, W H; Wolfe, H; Bhadra, S; Catterall, C D; Cui, Y; Hartner, G; Menary, S; Noor, U; Soares, M; Standage, J; Whyte, J
2006-01-01
A search for stop production in R-parity-violating supersymmetry has been performed in $e^{+}p$ interactions with the ZEUS detector at HERA, using an integrated luminosity of 65 pb$^{-1}$. At HERA, the R-parity-violating coupling $\\lambda'$ allows resonant squark production, $e^+d\\to\\tilde{q}$. Since the lowest-mass squark state in most supersymmetry models is the light stop, $\\tilde{t}$, this search concentrated on production of $\\tilde{t}$, followed either by a direct R-parity-violating decay, or by the gauge decay to $b\\tilde{\\chi}^+_{1}$. No evidence for stop production was found and limits were set on $\\lambda'_{131}$ as a function of the stop mass in the framework of the Minimal Supersymmetric Standard Model. The results have also been interpreted in terms of constraints on the parameters of the minimal Supergravity model.
Measurement of Parity-Violating Asymmetry in Electron-Deuteron Inelastic Scattering
Wang, D; Subedi, R; Ahmed, Z; Allada, K; Aniol, K A; Armstrong, D S; Arrington, J; Bellini, V; Beminiwattha, R; Benesch, J; Benmokhtar, F; Bertozzi, W; Camsonne, A; Canan, M; Cates, G D; Chen, J -P; Chudakov, E; Cisbani, E; Dalton, M M; de Jager, C W; De Leo, R; Deconinck, W; Deng, X; Deur, A; Dutta, C; Fassi, L El; Erler, J; Flay, D; Franklin, G B; Friend, M; Frullani, S; Garibaldi, F; Gilad, S; Giusa, A; Glamazdin, A; Golge, S; Grimm, K; Hafidi, K; Hansen, J -O; Higinbotham, D W; Holmes, R; Holmstrom, T; Holt, R J; Huang, J; Hyde, C E; Jen, C M; Jones, D; Kang, Hoyoung; King, P M; Kowalski, S; Kumar, K S; Lee, J H; LeRose, J J; Liyanage, N; Long, E; McNulty, D; Margaziotis, D J; Meddi, F; Meekins, D G; Mercado, L; Meziani, Z -E; Michaels, R; Mihovilovic, M; Muangma, N; Mesick, K E; Nanda, S; Narayan, A; Nelyubin, V; Nuruzzaman, A; Oh, Y; Parno, D; Paschke, K D; Phillips, S K; Qian, X; Qiang, Y; Quinn, B; Rakhman, A; Reimer, P E; Rider, K; Riordan, S; Roche, J; Rubin, J; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Širca, S; Souder, P A; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Urciuoli, G M; Waidyawansa, B; Wojtsekhowski, B; Ye, L; Zhao, B; Zheng, X
2014-01-01
The parity-violating asymmetries between a longitudinally-polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.
Constrained gamma-Z interference corrections to parity-violating electron scattering
Energy Technology Data Exchange (ETDEWEB)
Hall, Nathan Luke [Adelaide U.; Blunden, Peter Gwithian [Manitoba U.; Melnitchouk, Wally [JLAB; Thomas, Anthony W. [Adelaide U.; Young, Ross D. [Adelaide U.
2013-07-01
We present a comprehensive analysis of gamma-Z interference corrections to the weak charge of the proton measured in parity-violating electron scattering, including a survey of existing models and a critical analysis of their uncertainties. Constraints from parton distributions in the deep-inelastic region, together with new data on parity-violating electron scattering in the resonance region, result in significantly smaller uncertainties on the corrections compared to previous estimates. At the kinematics of the Qweak experiment, we determine the gamma-Z box correction to be Re\\box_{gamma-Z}^V = (5.61 +- 0.36) x 10^{-3}. The new constraints also allow precise predictions to be made for parity-violating deep-inelastic asymmetries on the deuteron.
Saleh, Nidal; Roisnel, Thierry; Guy, Laure; Bast, Radovan; Saue, Trond; Darquié, Benoît; Crassous, Jeanne
2015-01-01
With their rich electronic, vibrational, rotational and hyperfine structure, molecular systems have the potential to play a decisive role in precision tests of fundamental physics. For example, electroweak nuclear interactions should cause small energy differences between the two enantiomers of chiral molecules, a signature of parity symmetry breaking. Enantioenriched oxorhenium(VII) complexes S-(-)- and R-(+)-3 bearing a chiral 2-methyl-1-thio-propanol ligand have been prepared as potential candidates for probing molecular parity violation effects via high resolution laser spectroscopy of the Re=O stretching. Although the rhenium atom is not a stereogenic centre in itself, experimental vibrational circular dichroism (VCD) spectra revealed a surrounding chiral environment, evidenced by the Re=O bond stretching mode signal. The calculated VCD spectrum of the R enantiomer confirmed the position of the sulfur atom cis to the methyl, as observed in the solid-state X-ray crystallographic structure, and showed the ...
Search for R-parity violating decays of sfermions at LEP
Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Büsser, K; Burckhart, H J; Campana, S; Carnegie, R K; Caron, B; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Csilling, Akos; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Fürtjes, A; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harder, K; Harel, A; Harin-Dirac, M; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Hensel, C; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karapetian, G V; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klein, K; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kormos, L L; Kramer, T; Krieger, P; Von, J H; Krogh, A; Krüger, K; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Layter, J G; Leins, A; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, J; MacPherson, A; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McMahon, T J; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Okpara, A N; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Patrick, G N; Pilcher, J E; Pinfold, J L; Plane, D E; Poli, B; Polok, J; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rosati, S; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Siroli, G P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Stephens, K; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Taylor, R J; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L
2004-01-01
A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scena...
Parity violation in quasielastic electron scattering from closed-shell nuclei
International Nuclear Information System (INIS)
The electromagnetic and weak neutral current matrix elements that enter in the analysis of parity-violating quasielastic electron scattering are calculated using a continuum nuclear shell model. New approximations to the on-shell relativistic one-body currents and relativistic kinematics for use in such models are developed and discussed in detail. Results are presented for three closed-shell nuclei of interest: 16O, 40Ca and 208Pb. The current work concludes with a study of the sensitivity of the resulting parity-violating asymmetries to properties of the nucleon form factors including the possible strangeness content of the nucleon. (orig.)
Probing $(g-2)_{\\mu}$ at the LHC in the paradigm of R-parity violating MSSM
Chakraborty, Amit
2015-01-01
The measurement of the anomalous magnetic moment of the muon exhibits a long standing discrepancy compared to the Standard model prediction. In this paper we consider the framework of effective supersymmetric theory with relevant $R$-parity violating operators, which can provide substantially large anomalous magnetic moment of the muon. In addition, we point out that the implication of such operators satisfying muon $g-2$ are immense from the perspective of the LHC experiment, leading to a spectacular four muon final state. We propose an analysis in this particular channel which might help to settle the debate of $R$-parity violation as an probable explanation for $(g-2)_{\\mu}$.
Atomic parity nonconservation in Ra+-ion
Wansbeek, L. W.; Sahoo, B. K.; Timmermans, R. G. E.; Jungmann, K.; Das, B. P.; Mukherjee, D
2008-01-01
We report on a theoretical analysis of the suitability of the 7s 2S1=2 $ 6d 2D3=2 transition in singly ionized radium to measure parity nonconservation, in the light of an experiment planned at the KVI of the University of Groningen. Relativistic coupled-cluster theory has been employed to perform an ab initio calculation of the parity nonconserving electric dipole amplitude of this transition, including single, double, and leading triple excitations. We discuss the prospects for a sub-1% pre...
Search for supersymmetric particles with R-parity violation in Z decays
Buskulic, D.; Casper, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Ariztizabal, F.; Chmeissani, M.; Crespo, J. M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Palla, F.; Pascual, A.; Perlas, J. A.; Sanchez, F.; Teubert, F.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Marinelli, N.; Natali, S.; Nuzzo, S.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Engelhardt, A.; Forty, R. W.; Frank, M.; Girone, M.; Hagelberg, R.; Harvey, J.; Jacobsen, R.; Janot, P.; Jost, B.; Knobloch, J.; Lehraus, I.; Maggi, M.; Markou, C.; Martin, E. B.; Mato, P.; Meinhard, H.; Minten, A.; Miquel, R.; Oest, T.; Palazzi, P.; Pater, J. R.; Perrodo, P.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Barres, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Passalacqua, L.; Rougé, A.; Rumpf, M.; Tanaka, R.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Parrini, G.; Corden, M.; Delfino, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Pepe-Altarelli, M.; Dorris, S. J.; Halley, A. W.; Ten Have, I.; Knowles, I. G.; Lynch, J. G.; Morton, W. T.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Braun, O.; Geweniger, C.; Graefe, G.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Colling, D. J.; Dornan, P. J.; Konstantinidis, N.; Moneta, L.; Moutoussi, A.; Nash, J.; San Martin, G.; Sedgbeer, J. K.; Stacey, A. M.; Dissertori, G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Colrain, P.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Raab, J.; Renk, B.; Sander, H.-G.; Wanke, R.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Thulasidas, M.; Nicod, D.; Payre, P.; Rousseau, D.; Talby, M.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Dietl, H.; Dydak, F.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Denis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Courault, F.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Musolino, G.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Abbaneo, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Blair, G. A.; Bryant, L. M.; Gao, Y.; Green, M. G.; Johnson, D. L.; Medcalf, T.; Mir, Ll. M.; Strong, J. A.; Bertin, V.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Edwards, M.; Maley, P.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Trabelsi, A.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Beddall, A.; Booth, C. N.; Boswell, R.; Cartwright, S.; Combley, F.; Dawson, I.; Koksal, A.; Letho, M.; Newton, W. M.; Rankin, C.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Feigl, E.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Bosisio, L.; Della Marina, R.; Ganis, G.; Giannini, G.; Gobbo, B.; Pitis, L.; Ragusa, F.; Kim, H. Y.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1995-02-01
Searches for supersymmetric particles produced in e +e - interactions at the Z peak have been performed under the assumptions that R-parity is not conserved, that the dominant R-parity violating coupling involves only leptonic fields, and that the lifetime of the lightest supersymmetric particle can be neglected. In a data sample collected by the ALEPH detector at LEP up to 1993, and corresponding to almost two million hadronic Z decays, no signal was observed. As a result, supersymmetric particle masses and couplings are at least as well constrained as under the usual assumption of R-parity conservation.
Top searches and R-parity violation at hadron colliders
International Nuclear Information System (INIS)
In Rp-violating supersymmetric theories there are new 2-body top quark decays which can substantially suppress the branching fraction of the Standard Model process t → bW+ → bl+υ1. With some choices of the dominant Rp-violating operator the CDF top-quark mass bound can be lowered below the LEP bound. With other choices, however, leptonic signals from top decay become much stronger; in such scenarios the bounds on the top quark mass become more stringent than the Standard Model bounds. In future top quark searches Rp-violating decays could lead to the most prominent signals. (author)
LEP sensitivities to spontaneous r-parity violating signals
Romão, J C; García-Jareño, M A; Magro, M B; Valle, José W F
1996-01-01
We illustrate the sensitivities of LEP experiments to leptonic signals associated to models where supersymmetry (SUSY) is realized with spontaneous breaking of R-parity. We focus on missing transverse momentum plus acoplanar muon events arising from lightest neutralino single production \\chi \
Bounds on R-Parity Violation from Leptonic and Semi-Leptonic Meson Decays
Dreiner, H K; O'Leary, B; Leary, Ben O'
2006-01-01
We present a comprehensive update of the bounds on R-Parity violating supersymmetric couplings from lepton-flavour- and lepton-number-violating decay processes. We consider tau and mu decays as well as leptonic and semi-leptonic decays of mesons. We present several new bounds resulting from tau, eta and Kaon decays and correct some results in the literature concerning B-meson decays.
Parity violation in proton-proton scattering from chiral effective field theory
International Nuclear Information System (INIS)
We present a calculation of the parity-violating longitudinal asymmetry in proton-proton scattering. The calculation is performed in the framework of chiral effective field theory which is applied systematically to both the parity-conserving and parity-violating interactions. The asymmetry is calculated up to next-to-leading order in the parity-odd nucleon-nucleon potential. At this order the asymmetry depends on two parity-violating low-energy constants: the weak pion-nucleon coupling constant hπ and one four-nucleon contact coupling. By comparison with the existing data, we obtain a rather large range for hπ=(1.1±2).10-6. This range is consistent with theoretical estimations and experimental limits, but more data are needed to pin down a better constrained value. We conclude that an additional measurement of the asymmetry around 125MeV lab energy would be beneficial to achieve this goal. (orig.)
The rare decays B --> K(*) anti-K(*) and R-parity violating supersymmetry
Wang, R; Wang, E K; Yang, Y D; Wang, Rumin; Wang, En-Ke; Yang, Ya-Dong
2006-01-01
We study the branching ratios, the direct CP asymmetries in $B\\to K^{(*)}\\bar{K}^{(*)}$ decays and the polarization fractions of $B\\to K^{*}\\bar{K}^{*}$ decays by employing the QCD factorization in the minimal supersymmetric standard model with R-parity violation. We derive the new upper bounds on the relevant R-parity violating couplings from the latest experimental data of $B\\to K^{(*)}\\bar{K}^{(*)}$, and some of these constraints are stronger than the existing bounds. Using the constrained parameter spaces, we predict the R-parity violating effects on the other quantities in $B\\to K^{(*)}\\bar{K}^{(*)}$ decays which have not been measured yet. We find that the R-parity violating effects on the branching ratios and the direct $CP$ asymmetries could be large, nevertheless their effects on the longitudinal polarizations of $B\\to K^{*}\\bar{K}^{*}$ decays are small. Near future experiments can test these predictions and shrink the parameter spaces.
Z0 pole direct measurements of the parity violation parameters Ab and Ac at SLD
International Nuclear Information System (INIS)
This report presents three different techniques used at SLD to measure directly the parity violation parameters of Zb bar b and Zc bar c couplings from the left-right forward-backward asymmetries. The results have been obtained using 150,000 hadronic Z0 decays accumulated during the 1993-95 runs with high electron beam polarization
Z0 Pole Measurements of Parity Violation Parameters Ab and Ac at SLC/SLD
International Nuclear Information System (INIS)
SLC/SLD provides the ideal experimental environment to directly measure the parity violation parameters at the Zb anti b, Zc anti c vertex decays. Three different analysis techniques exploit the multi-purpose detector capabilities and are briefly described; the updated result obtained with the semileptonic decay method is presented
Renormalization group running of dimension-six sources of parity and time-reversal violation
Dekens, W.; de Vries, J.
2013-01-01
We perform a systematic study of flavor-diagonal parity- and time-reversal-violating operators of dimension six which could arise from physics beyond the SM. We begin at the unknown high-energy scale where these operators originate. At this scale the operators are constrained by gauge invariance whi
Parity violation in the nucleon-nucleon interaction
International Nuclear Information System (INIS)
A short review is presented of experiments designed to detect parity nonconservation (PNC) in the interaction between nucleons. A recent measurement of PNC in proton-proton scattering is described, and some of the methods which were developed to reduce systematic errors to less than or equal to 2 x 10-8 are discussed. The results of this experiment and of other measurements on PNC are compared to theoretical predictions
R-Parity Violating Signals for Chargino Production at LEP II
De Campos, F; García-Jareño, M A; Valle, José W F
1999-01-01
We study chargino pair production at LEP II in supersymmetric models with spontaneously broken R-parity. We perform a detailed signal and background analyses, showing that a large region of the parameter space of these models can be probed through chargino searches at LEP II. We determine the limits on the chargino mass as a function of the magnitude of the effective R-parity violation parameter $\\epsilon$. As $\\epsilon \\to 0$ we recover the usual MSSM chargino mass limits, however, for $\\epsilon$ sufficiently large, the bounds on the chargino mass can be about 15 GeV weaker than in the MSSM due to the dominance of the two-body chargino decay mode $\\chi^+ \\to \\tau^+ J$, where J denotes the Majoron. Moreover, we show that LEP II can detect signals of spontaneous R-parity violation in a large region of the parameter space if charginos are observed.
Measurement of parity violation in the early universe using gravitational-wave detectors
Energy Technology Data Exchange (ETDEWEB)
Crowder, S.G., E-mail: crowder@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Namba, R., E-mail: namba@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Mandic, V. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Mukohyama, S. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Peloso, M. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); INFN Sezione di Padova, I-35131 Padova (Italy)
2013-10-07
A stochastic gravitational-wave background (SGWB) is expected to arise from the superposition of many independent and unresolved gravitational-wave signals, of either cosmological or astrophysical origin. Some cosmological models (characterized, for instance, by a pseudo-scalar inflaton, or by some modification of gravity) break parity, leading to a polarized isotropic SGWB. We present the first upper limit on this parity violation from direct gravitational-wave measurements by measuring polarization of the SGWB in recent LIGO data and by assuming a generic power-law SGWB spectrum across the LIGO-sensitive frequency region. We also estimate sensitivity to parity violation for future generations of gravitational-wave detectors, both for a power-law spectrum and for a specific model of axion inflation. Since astrophysical sources are not expected to produce a polarized SGWB, measurements of polarization in the SGWB would provide a new way of differentiating between the cosmological and astrophysical SGWB sources.
Minimal gauged U(1) B-L model with spontaneous R parity violation.
Barger, Vernon; Pérez, Pavel Fileviez; Spinner, Sogee
2009-05-01
We study the minimal gauged U(1) B-L supersymmetric model and show that it provides an attractive theory for spontaneous R-parity violation. Both U(1) B-L and R parity are broken by the vacuum expectation value of the right-handed sneutrino (proportional to the soft supersymmetry masses), thereby linking the B-L and soft SUSY scales. In this context we find a consistent mechanism for generating neutrino masses and a realistic mass spectrum, all without extending the Higgs sector of the minimal supersymmetry standard model. We discuss the most relevant collider signals and the connection between the Z' gauge boson and R-parity violation. PMID:19518859
Single superparticle production via $\\gamma\\gamma$ collision with explicit R-parity violation
Chaichian, Masud; Yu, Z H
2001-01-01
We study the single production of scalar neutrinos or charginos via $\\gamma\\gamma$ collision in an R-parity ($R_{p}$) violating supersymmetric model. It may be possible to detect a sneutrino or a chargino at a Linear Collider (LC) in $\\gamma \\gamma$ operation mode, as a test of supersymmetry and $R_p$-violation. Because of the clean background in LC, stringent constraints on $R_p$ violating parameters can be obtained even if the process cannot be observed at the future Linear Collider.
Time reversal violating nuclear polarizability and atomic electric dipole moment
International Nuclear Information System (INIS)
Full text: We propose a nuclear mechanism which can induce an atomic electric dipole moment (EDM). The interaction of external electric E and magnetic H fields with nuclear electric and magnetic dipole moments, d and ,u, gives rise to an energy shift, U= -βik Ei Hk, where βik is the nuclear polarizability. Parity and time invariance violating (P,T-odd) nuclear forces generate a mixed P,T-odd nuclear polarizability, whereψ0 and ψn are P,T-odd perturbed ground and excited nuclear states, respectively. In the case of a heavy spherical nucleus with a single unpaired nucleon, the perturbed wavefunctions are U = -βikEiHk, where ξis a constant proportional to the strength of the nuclear P,T-odd interaction, σ is the nuclear spin operator, and ψn is an unperturbed wavefunction. There are both scalar and tensor contributions to the nuclear P,T-odd polarizability. An atomic EDM is induced by the interaction of the fields of an unpaired electron in an atom with the P,T-odd perturbed atomic nucleus. An estimate for the value of this EDM has been made. The measurements of atomic EDMs can provide information about P,T-odd nuclear forces and test models of CP-violation
Gauge models of planar high-temperature superconductivity without parity violation
International Nuclear Information System (INIS)
A status report is given of a parity-invariant model of two-dimensional superconductivity. The model consists of two-species of fermions coupled with opposite sign to an Abelian gauge field and is closely related to QED3. The dynamical generation of a parity-conserving fermion mass and the finite temperature symmetry restoration transition is studied, and it is shown, how the parity-invariant model arises as an effective long-wavelength theory of the dynamics of holes in a two-dimensional quantum antiferromagnetic system on a bi-partite lattice. The model exhibits type-II superconductivity without parity or time-reversal symmetry violation, a high value of 2Δ/kBTc, flux quantization with quantum hc/2e and a two-dimensional Meissner effect. (author) 82 refs.; 15 figs.; 4 tabs
Searches for Prompt R-Parity-Violating Supersymmetry at the LHC
International Nuclear Information System (INIS)
Searches for supersymmetry (SUSY) at the LHC frequently assume the conservation of R-parity in their design, optimization, and interpretation. In the case that R-parity is not conserved, constraints on SUSY particle masses tend to be weakened with respect to R-parity-conserving models. We review the current status of searches for R-parity-violating (RPV) supersymmetry models at the ATLAS and CMS experiments, limited to 8 TeV search results published or submitted for publication as of the end of March 2015. All forms of renormalisable RPV terms leading to prompt signatures have been considered in the set of analyses under review. Discussing results for searches for prompt R-parity-violating SUSY signatures summarizes the main constraints for various RPV models from LHC Run I and also defines the basis for promising signal regions to be optimized for Run II. In addition to identifying highly constrained regions from existing searches, also gaps in the coverage of the parameter space of RPV SUSY are outlined
B -> tau nu: Opening up the Charged Higgs Parameter Space with R-parity Violation
Bose, Roshni
2011-01-01
The theoretically clean channel B+ -> tau+ nu shows a close to 3sigma discrepancy between the Standard Model prediction and the data. This in turn puts a strong constraint on the parameter space of a two-Higgs doublet model, including R-parity conserving supersymmetry. The constraint is so strong that it almost smells of fine-tuning. We show how the parameter space opens up with the introduction of suitable R-parity violating interactions, and release the tension between data and theory.
The measurements of parity violation in resonant neutron-capture reactions
Energy Technology Data Exchange (ETDEWEB)
Sharapov, E.I.; Popov, Y.P. (Joint Inst. for Nuclear Research, Dubna (USSR)); Wender, S.A.; Seestrom, S.J.; Bowman, C.D. (Los Alamos National Lab., NM (USA)); Postma, H. (Technische Hogeschool Delft (Netherlands)); Gould, C.R. (North Carolina State Univ., Raleigh, NC (USA)); Wasson, A. (National Inst. of Standards and Technology, Gaithersburg, MD (USA))
1990-01-01
The study of parity violation in total (n,{gamma}) cross sections on {sup 139}La and {sup 117}Sn targets was performed at the LANSCE pulsed neutron source using longitudinally polarized neutrons and a BaF{sub 2} detector. The effect of parity nonconservation in the {sup 139}La(n,{gamma}) reaction for the resonance at E{sub n}=0.73 eV was confirmed. New results for p-wave resonances in the {sup 117}Sn(n, {gamma}) reaction were obtained. A comparison between the capture and transmission techniques is presented. 12 refs., 5 figs., 1 tab.
International Nuclear Information System (INIS)
We stressed the importance of searching for deviations from the full parity-violation postulated by the Standard Model in weak-interaction processes as a means of restoring parity at some new energy-domain and outlined a number of associated theoretical scenarios for new physics. Discussing various complementary experimental approaches to this problem, we described their status and perspectives. In this written version of the talk we restrict ourselves to some recent developments which were not discussed as yet in a recent review-paper (1)
Wang, D; Subedi, R; Deng, X; Ahmed, Z; Allada, K; Aniol, K A; Armstrong, D S; Arrington, J; Bellini, V; Beminiwattha, R; Benesch, J; Benmokhtar, F; Camsonne, A; Canan, M; Cates, G D; Chen, J -P; Chudakov, E; Cisbani, E; Dalton, M M; de Jager, C W; De Leo, R; Deconinck, W; Deur, A; Dutta, C; Fassi, L El; Flay, D; Franklin, G B; Friend, M; Frullani, S; Garibaldi, F; Giusa, A; Glamazdin, A; Golge, S; Grimm, K; Hafidi, K; Hansen, O; Higinbotham, D W; Holmes, R; Holmstrom, T; Holt, R J; Huang, J; Hyde, C E; Jen, C M; Jones, D; Kang, H; King, P; Kowalski, S; Kumar, K S; Lee, J H; LeRose, J J; Liyanage, N; Long, E; McNulty, D; Margaziotis, D J; Meddi, F; Meekins, D G; Mercado, L; Meziani, Z -E; Michaels, R; Mihovilovic, M; Muangma, N; Myers, K E; Nanda, S; Narayan, A; Nelyubin, V; Nuruzzaman,; Oh, Y; Parno, D; Paschke, K D; Phillips, S K; Qian, X; Qiang, Y; Quinn, B; Rakhman, A; Reimer, P E; Rider, K; Riordan, S; Roche, J; Rubin, J; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Sirca, S; Souder, P A; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Waidyawansa, B; Wojtsekhowski, B; Ye, L; Zhao, B; Zheng, X
2013-01-01
We report on parity-violating asymmetries in the nucleon resonance region measured using $5 - 6$ GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the $\\Delta(1232)$, and provide a verification of quark-hadron duality in the nucleon electroweak $\\gamma Z$ interference structure functions at the 10-15% level. The results are of particular interest to models relevant for calculating the $\\gamma Z$ box-diagram corrections to elastic parity-violating electron scattering measurements.
Energy Technology Data Exchange (ETDEWEB)
Chauvat, D
1997-10-15
While Parity Violation (PV) experiments on highly forbidden transitions have been using detection of fluorescence signals; our experiment uses a pump-probe scheme to detect the PV signal directly on a transmitted probe beam. A pulsed laser beam of linear polarisation {epsilon}{sub 1} excites the atoms on the 6S-7S cesium transition in a colinear electric field E || k(ex). The probe beam (k(pr) || k(ex)) of linear polarisation {epsilon}{sub 2} tuned to the transition 7S-6P(3/2) is amplified. The small asymmetry ({approx} 10{sup -6}) in the gain that depends on the handedness of the tri-hedron (E, {epsilon}{sub 1}, {epsilon}{sub 2}) is the manifestation of the PV effect. This is measured as an E-odd apparent rotation of the plane of polarization of the probe beam; using balanced mode polarimetry. New criteria of selection have been devised, that allow us to distinguish the true PV-signal against fake rotations due to electromagnetic interferences, geometrical effects, polarization imperfections, or stray transverse electric and magnetic fields. These selection criteria exploit the symmetry of the PV-rotation - linear dichroism - and the revolution symmetry of the experiment. Using these criteria it is not only possible to reject fake signals, but also to elucidate the underlying physical mechanisms and to measure the relevant defects of the apparatus. The present signal-to-noise ratio allows embarking in PV measurements to reach the 10% statistical accuracy. A 1% measurement still requires improvements. Two methods have been demonstrated. The first one exploits the amplification of the asymmetry at high gain - one major advantage provided by our detection method based on stimulated emission. The second method uses both a much higher incident intensity and a special dichroic component which magnifies tiny polarization rotations. (author)
Search of parity violation effects in neutron reaction on natural Lead
Oprea, A I; Sedyshev, P V; Gledenov, Yu M
2014-01-01
Parity violation effects (PV) in nuclear reaction were discovered in the 60 years of the last century in the capture of thermal transversal polarized neutrons by 113Cd nucleus. In this reaction experimentally was measured a non zero asymmetry of emitted gamma quanta and the results was interpreted by the existence of weak non leptonic interaction between nucleons in the compound nucleus. This first experimental result gave a serious impulse of theoretical and experimental developments of parity violation question in nuclear reactions. The weak interaction acts in the background of strong interaction (with order of magnitude higher) and therefore it is very difficult to observe and evidence it. One possibility is the evaluation of asymmetry effects induced by PV phenomena. For neutrons scattering there are a few asymmetry effects (like polarization of incident neutron beam, spin rotation and emitted neutrons asymmetry of incident transversal polarized neutrons) explained by the presence of weak interaction. In...
González-Jiménez, R; Donnelly, T W
2015-01-01
We study parity violation in quasielastic (QE) electron-nucleus scattering using the relativistic impulse approximation. Different fully relativistic approaches have been considered to estimate the effects associated with the final-state interactions. We have computed the parity-violating quasielastic (PVQE) asymmetry and have analyzed its sensitivity to the different ingredients that enter in the description of the reaction mechanism: final-state interactions, nucleon off-shellness effects, current gauge ambiguities. Particular attention has been paid to the description of the weak neutral current form factors. The PVQE asymmetry is proven to be an excellent observable when the goal is to get precise information on the axial-vector sector of the weak neutral current. Specifically, from measurements of the asymmetry at backward scattering angles good knowledge of the radiative corrections entering in the isovector axial-vector sector can be gained. Finally, scaling properties shown by the interference $\\gamma...
Detailed analysis of two-boson exchange in parity-violating e-p scattering
Energy Technology Data Exchange (ETDEWEB)
J. A. Tjon, P. G. Blunden, W. Melnitchouk
2009-05-01
We present a comprehensive study of two-boson exchange (TBE) corrections in parity-violating electron-proton elastic scattering. Within a hadronic framework, we compute contributions from box (and crossed box) diagrams in which the intermediate states are described by nucleons and Delta baryons. The Delta contribution is found to be much smaller than the nucleon one at backward angles (small epsilon), but becomes dominant in the forward scattering limit (epsilon near 1), where the nucleon contribution vanishes. The dependence of the corrections on the input hadronic form factors is small for Q^2 < 1 GeV^2, but becomes significant at larger Q^2. We compute the nucleon and Delta TBE corrections relevant for recent and planned parity-violating experiments, with the total corrections ranging from -1% for forward angles to 1-2% at backward kinematics.
Hyun, Chang Ho; Lee, Hee-Jung
2016-01-01
We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.
Effect of two-boson exchange on parity-violating e-p scattering
International Nuclear Information System (INIS)
We compute the corrections from two-photon and γ-Z exchange in parity-violating elastic electron--proton scattering, used to extract the strange form factors of the proton. We use a hadronic formalism that successfully reconciled the earlier discrepancy in the proton's electron to magnetic form factor ratio, suitably extended to the weak sector. Implementing realistic electroweak form factors, we find effects of the order 2-3% at Q2 2, which are largest at backward angles, and have a strong Q2 dependence at low Q2. Two-boson contributions to the weak axial current are found to be enhanced at low Q2 and for forward angles. We provide corrections at kinematics relevant for recent and upcoming parity-violating experiments
Experiments probing parity violation using electrons at GeV energy
Zheng, Xiaochao
2016-03-01
Sixty years after the first discovery of parity violation in electroweak interactions, parityviolating electron scattering (PVES) has become a tool not only in establishing the Standard Model of electroweak physics and studying the subatomic structure of the nucleon, but also in exploring possible new physics beyond the Standard Model. In this talk, I will review progress of PVES using GeV-energy electron beams focusing on recent results from Jefferson Lab. At the end of the talk, I'd like to keep the prospective that as we progress more and more towards a thorough understanding of electroweak physics, we may also want to investigate how parity violation could affect our everyday life.
Parity violation and dynamical relativistic effects in $(\\vec{e},e'N)$ reactions
González-Jiménez, R; Donnelly, T W
2015-01-01
It is well known that coincidence quasielastic $(\\vec{e},e'N)$ reactions are not appropriate to analyze effects linked to parity violation due the presence of the fifth electromagnetic (EM) response $R^{TL'}$. Nevertheless, in this work we develop a fully relativistic approach to be applied to parity-violating (PV) quasielastic $(\\vec{e},e'N)$ processes. This is of importance as a preliminary step in the subsequent study of inclusive quasielastic PV $(\\vec{e},e')$ reactions. Moreover, our present analysis allows us to disentangle effects associated with the off-shell character of nucleons in nuclei, gauge ambiguities and the role played by the lower components in the nucleon wave functions, i.e., dynamical relativistic effects. This study can help in getting clear information on PV effects. Particular attention is paid to the relativistic plane-wave impulse approximation where the explicit expressions for the PV single-nucleon responses are shown for the first time.
Two-pion-exchange parity-violating potential and $\\vec{n} p \\to d \\gamma$
Hyun, C H; Desplanques, B
2006-01-01
We calculate the parity-violating nucleon-nucleon potential in heavy-baryon chiral perturbation theory up to the next-to-next-to-leading order. The one-pion exchange comes in the leading order and the next-to-next-to-leading order consists of two-pion-exchange and the two-nucleon contact terms. In order to investigate the effect of the higher order contributions, we calculate the parity-violating asymmetry in $\\vec{n} p \\to d \\gamma$ at the threshold. The one-pion dominates the physical observable and the two-pion contribution is about or less than 10% of the one-pion contribution.
International Nuclear Information System (INIS)
Nucleons are bound states of three valence quarks (up and down quarks) surrounded by a sea of gluons and quark pairs (mainly up, down and strange quarks). The PVA4 experiment (Parity Violation in hall A4) aims at determining at MAMI (Mainzer Mikrotron) the contribution of the ss pairs to the electric charge and magnetic moment of the nucleon. This requires the extraction of information from the weak coupling in the elastic scattering of polarized electrons off target protons. The parity non-conserving Z0 exchange leads to a parity violating asymmetry in the count rates for left and right helicity states. Comparison of the measured asymmetry to the predictions of the Standard Model allows then to extract the strange content of the proton. The success of the experiment essentially lies in the ability of controlling the beam parameters and evaluating the physical background. For this purpose, a Monte Carlo simulation has been developed: it simulates the PVA4 electron-proton scattering (including geometry and detection) for different processes (elastic scattering and pion electroproduction) thus allowing to correct the experimental asymmetry from physical background processes. In addition, an optical polarimeter has been developed to get a precise, on-line and fast measurement of the electron beam polarization. The optical polarimeter (POLO) is based on the collision of polarized electrons on atoms such that spin angular momentum is transferred to the excited atoms, which subsequently decays by emitting a circularly polarized fluorescence. The degree of circular polarization is directly related to the electron polarization. Analyzing the fluorescence's Stokes parameters is equivalent to a measurement of the electron beam polarization. (author)
Measurement of the Neutron Radius of ^{208}Pb Through Parity Violation in Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Saenboonruang, Kiadtisak [Univ. of Virginia, Charlottesville, VA (United States)
2013-05-01
In contrast to the nuclear charge densities, which have been accurately measured with electron scattering, the knowledge of neutron densities still lack precision. Previous model-dependent hadron experiments suggest the difference between the neutron radius, R_{n}, of a heavy nucleus and the proton radius, R_{p}, to be in the order of several percent. To accurately obtain the difference, R_{n}-R_{p}, which is essentially a neutron skin, the Jefferson Lab Lead (^{208}Pb) Radius Experiment (PREX) measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from ^{208}Pb at an energy of 1.06 GeV and a scattering angle of 5° . Since Z^{0} boson couples mainly to neutrons, this asymmetry provides a clean measurement of R_{n} with respect to R_{p}. PREX was conducted at the Jefferson lab experimental Hall A, from March to June 2010. The experiment collected a final data sample of 2x 10^{7} helicity-window quadruplets. The measured parity-violating electroweak asymmetry A_{PV} = 0.656 ± 0.060 (stat) ± 0.014 (syst) ppm corresponds to a difference between the radii of the neutron and proton distributions, R_{n}-R_{p} = 0.33^{+0.16}_{-0.18} fm and provides the first electroweak observation of the neutron skin as expected in a heavy, neutron-rich nucleus. The value of the neutron radius of ^{208}Pb has important implications for models of nuclear structure and their application in atomic physics and astrophysics such as atomic parity non-conservation (PNC) and neutron stars.
Effects of R-parity Violation on the Charged Higgs Boson Decays
Institute of Scientific and Technical Information of China (English)
SONG Yi-Ping; LI Chong-Sheng; LI Qiang; LIU Jian-Jun
2005-01-01
We calculate one-loop R-parity-violating coupling corrections to the processes H- → Tv-τ and H- → bt-.We find that the corrections to the H- →τv-τ decay mode are generally about 0.1%, and can be negligible. But the corrections to the H- → bt- decay mode can reach a few percent for the favored parameters.
Parity-Violating Excitation of the \\Delta(1232): Hadron Structure and New Physics
Mukhopadhyay, N.C.; Ramsey-Musolf, M. J.; Pollock, S. J.; Liu, J; Hammer, H. -W.
1998-01-01
We consider prospects for studying the parity-violating (PV) electroweak excitation of the \\Delta(1232) resonance with polarized electron scattering. Given present knowledge of Standard Model parameters, such PV experiments could allow a determination of the N -> \\Delta electroweak helicity amplitudes. We discuss the experimental feasibility and theoretical interpretability of such a determination as well as the prospective implications for hadron structure theory. We also analyze the extent ...
Parity-Violating $\\Delta$(1232) Electroweak Production: Axial Structure and New Physics
Pollock, S. J.; Mukhopadhyay, Nimai C.; Ramsey-Musolf, M.; Hammer, H. -W.; Liu, J
1998-01-01
We consider prospects for studying the parity-violating electroweak excitation of the $\\Delta (1232) $ resonance with polarized electron scattering (see nucl-th/9801025). We discuss the experimental feasibility and theoretical interpretability of such a measurement as well as the prospective implications for hadron structure theory. We also analyze the extent to which a PV $N\\to\\Delta$ measurement could constrain various extensions of the Standard Model.
A framework for baryonic R-parity violation in grand unified theories
Di Luzio, Luca; Romanino, Andrea
2013-01-01
We investigate the possibility of obtaining sizeable R-parity breaking interactions violating baryon number but not lepton number within supersymmetric grand unified theories. Such a possibility allows to ameliorate the naturalness status of supersymmetry while maintaining successful gauge coupling unification, one of its main phenomenological motivations. We show that this can be achieved without fine-tuning or the need of large representations in simple SO(10) models.
Parity-violating DIS and the flavour dependence of the EMC effect
Cloët, I. C.; Bentz, W.; Thomas, A. W.
2012-01-01
Isospin-dependent nuclear forces play a fundamental role in nuclear structure. In relativistic models of nuclear structure constructed at the quark level these isovector nuclear forces affect the u and d quarks differently, leading to non-trivial flavour dependent modifications of the nuclear parton distributions. We explore the effect of isospin dependent forces for parity-violating deep inelastic scattering on nuclear targets and demonstrate that the cross-sections for nuclei with N /= Z ar...
Theoretical study of parity violating asymmetry in proton-proton (pp) scattering
International Nuclear Information System (INIS)
Measurements of parity violating asymmetries in the pp scattering and proton-nucleus scattering with polarised protons provide a very useful tool to study the interplay of weak and strong interactions between the nucleons and within the nucleus. In order to understand these processes in terms of the conventional nucleon-nucleon interaction models, new experiments at the intermediate energies of 221 and 450 MeV and in the higher energy of multi GeV range are to be carried out
GUTs with exclusively $\\Delta$B=1, $\\Delta$L=0 R-parity violation
Tamvakis, Kyriakos
1996-01-01
We study R-parity violation in the framework of GUTs, focusing on the case that R-parity is broken exclusively through \\Delta B=1, \\Delta L=0 effective interactions. We construct two such models, an SU(5) and an SU(5)\\times U(1)_{X} model, in which R-parity breaking is induced through interactions with extra supermassive fields. The presence of only the Baryon Number violating operators {d^c}{d^c}{u^c} requires an asymmetry between quarks and leptons, which is achieved either by virtue of the Higgs representations used or by modifications in the matter multiplets. The latter possibility is realized in the second of the above models, where the left-handed leptons have been removed from the representation in which they normaly cohabit with the right-handed up quarks and enter as a combination of the isodoublets in (\\bf {{\\overline{5}},-3}) and (\\bf {5,-2}) representations. In both models the particle content below the GUT scale is unaffected by the introduced R-parity breaking sector.
Measurement of parity violation in the 6S-7S transition of cesium using stimulated emission
International Nuclear Information System (INIS)
This document describes the design and implementation of a pump-probe polarimetry experiment in a cesium vapor, aiming at a 1% precision measurement of atomic parity violation (APV) induced by Z0 boson exchange. The experimental scheme, relying on induced emission by a probe laser, allows a detection efficiency close to unity, and the left-right asymmetry to be measured is amplified during the propagation of the probe beam in the excited vapour. The interest of the result presented here is to cross-check the unique previous result by an experiment with a completely different design, and hence with completely different systematics, that also allows measurements on long-lived isotopes especially 135Cs (nuclear spin 7/2 like 133Cs, half-life 3 million years). We have demonstrated improvements in polarimetry techniques (rejection of instrumental errors, implementation of a polarization magnifier), especially in pulsed polarimetry (doubly-differential, balanced-mode polarization analysis). But most importantly, the expected pump-probe chiral optical gain has been observed in a Cs vapor. The precision on the θpv measurement has been improved to 2.6%, and the achieved signal/noise ratio allows measurements at the 1% precision level. The achieved precision on lm E1pv is 2 x 10-13 ea0, 15 times better than the measurements obtained with the lead and thallium atoms. Our result is in agreement with the more precise Boulder result. The required amount of cesium is small enough to allow a measurement with 135Cs provided one takes reasonable radioprotection measures. (author)
Search for R-parity violating supersymmetry in multilepton final states with the DOe detector
International Nuclear Information System (INIS)
Results obtained from a search for the trilepton signature μμL (with l=e, or μ) are combined with two complementary searches for the trilepton signatures eel and eeτ and interpreted in the framework of R-parity violating Supersymmetry. Pairwise, R-parity conserving production of the supersymmetric particles is assumed, followed by R-parity violating decays via an LL anti E-operator with one dominant coupling λ122. An LL anti E-operator couples two weak isospin doublet and one singlet (s)lepton fields and thus violates lepton number conservation. The data, corresponding to an integrated luminosity of ∫ L=360±23 pb-1, was collected with the DOe detector at the Fermilab Tevatron Collider between April 2002 and August 2004. No event is observed in the data, while 0.41 ± 0.11 (stat) ± 0.07(sys) events are expected from Standard Model processes. The 95 % confidence level cross section upper limits are in the range of 0.020 to 0.136 pb. From these, lower bounds on the masses of the lightest neutralino (χ10) and chargino (χ±1) are extracted and interpreted in tow different SUSY models. (orig.)
Search for R-parity violating supersymmetry in multilepton final states with the DOe detector
Energy Technology Data Exchange (ETDEWEB)
Kaefer, D.
2006-10-27
Results obtained from a search for the trilepton signature {mu}{mu}L (with l=e, or {mu}) are combined with two complementary searches for the trilepton signatures eel and ee{tau} and interpreted in the framework of R-parity violating Supersymmetry. Pairwise, R-parity conserving production of the supersymmetric particles is assumed, followed by R-parity violating decays via an LL anti E-operator with one dominant coupling {lambda}{sub 122}. An LL anti E-operator couples two weak isospin doublet and one singlet (s)lepton fields and thus violates lepton number conservation. The data, corresponding to an integrated luminosity of {integral} L=360{+-}23 pb{sup -1}, was collected with the DOe detector at the Fermilab Tevatron Collider between April 2002 and August 2004. No event is observed in the data, while 0.41 {+-} 0.11 (stat) {+-} 0.07(sys) events are expected from Standard Model processes. The 95 % confidence level cross section upper limits are in the range of 0.020 to 0.136 pb. From these, lower bounds on the masses of the lightest neutralino ({chi}{sub 1}{sup 0}) and chargino ({chi}{sup {+-}}{sub 1}) are extracted and interpreted in tow different SUSY models. (orig.)
Phenomenology of R-parity violating minimal supergravity
Energy Technology Data Exchange (ETDEWEB)
Bernhardt, M.A.
2008-02-15
We investigate in detail the low-energy spectrum of the P{sub 6} violating minimal supergravity model using the SOFTSUSY spectrum code. We impose the experimental constraints from the measurement of the anomalous magnetic moment of the muon (g-2){sub {mu}}, the b{yields}s{gamma} decay, the branching ration of B{sub s}{yields}{mu}{sup +}{mu}{sup -}, as well as the mass bound from direct searches at colliders, in particular the Higgs boson and the lightest Chargino. We focus on regions, where the lightest neutralino is not the lightest supersymmetric particle (LSP). In these regions of parameter space either the lightest scalar tau or one of the sneutrinos is the LSP. We suggest four benchmark points with typical spectra and novel collider signatures which we investigate with a parton level Monte-Carlo simulation. We give an outlook for their detailed phenomenological analysis and simulation by the LHC collaborations, then including detector effects. In addition, we discuss a full Monte-Carlo simulation for single slepton production in association with a single top quark via an LQD type operator at the hadron colliders LHC and Tevatron. We present these results and show a predicted range of detectability for this process- for small couplings in various minimal supergravity models at the LHC. (orig.)
Phenomenology of R-parity violating minimal supergravity
International Nuclear Information System (INIS)
We investigate in detail the low-energy spectrum of the P6 violating minimal supergravity model using the SOFTSUSY spectrum code. We impose the experimental constraints from the measurement of the anomalous magnetic moment of the muon (g-2)μ, the b→sγ decay, the branching ration of Bs→μ+μ-, as well as the mass bound from direct searches at colliders, in particular the Higgs boson and the lightest Chargino. We focus on regions, where the lightest neutralino is not the lightest supersymmetric particle (LSP). In these regions of parameter space either the lightest scalar tau or one of the sneutrinos is the LSP. We suggest four benchmark points with typical spectra and novel collider signatures which we investigate with a parton level Monte-Carlo simulation. We give an outlook for their detailed phenomenological analysis and simulation by the LHC collaborations, then including detector effects. In addition, we discuss a full Monte-Carlo simulation for single slepton production in association with a single top quark via an LQD type operator at the hadron colliders LHC and Tevatron. We present these results and show a predicted range of detectability for this process- for small couplings in various minimal supergravity models at the LHC. (orig.)
International Nuclear Information System (INIS)
Hall A at Jefferson Lab has recently completed three experiments done using the technique of parity-violating electron scattering. Taken together these experiments are a good demonstration of the versatility of this approach. Looking forward, there are two very large scale parity-violation experiments approved to run in Hall A in the 12 GeV era. These experiments represent a significant increase in precision and technical requirements
Wulsin, H Wells
2015-01-01
Supersymmetric particles that are long-lived or violate R-parity could evade many conventional searches for supersymmetry. This talk presents the latest results of searches for supersymmetry with long-lived particles or R-parity violation performed by the ATLAS and CMS collaborations using $\\sim$20 fb$^{-1}$ of proton-proton collisions at center-of-mass energy of 8 TeV delivered by the LHC.
PROCEEDINGS FROM RIKEN-BNL RESEARCH CENTER WORKSHOP: PARITY-VIOLATING SPIN ASYMMETRIES AT RHIC.
Energy Technology Data Exchange (ETDEWEB)
VOGELSANG,W.; PERDEKAMP, M.; SURROW, B.
2007-04-26
The RHIC spin program is now fully underway. Several runs have been successfully completed and are producing exciting first results. Luminosity and polarization have improved remarkably and promising advances toward the higher RHIC energy of {radical}s = 500 GeV have been made. At this energy in particular, it will become possible to perform measurements of parity-violating spin asymmetries. Parity violation occurs in weak interactions, and in combination with the unique polarization capabilities at RHIC fascinating new opportunities arise. In particular, parity-violating single- and double-spin asymmetries give new insights into nucleon structure by allowing probes of up and down sea and anti-quark polarizations. Such measurements at RHIC are a DOE performance milestone for the year 2013 and are also supported by a very large effort from RIKEN. With transverse polarization, charged-current interactions may be sensitive to the Sivers effect. Parity-violating effects at RHIC have been proposed even as probes of physics beyond the Standard Model. With the era of measurements of parity-violating spin asymmetries at RHIC now rapidly approaching, we had proposed a small workshop that would bring together the main experts in both theory and experiment. We are very happy that this worked out. The whole workshop contained 17 formal talks, both experiment (10) and theory (7), and many fruitful discussions. The physics motivations for, the planned measurements were reviewed first. The RHIC machine prospects regarding polarized 500 GeV running were discussed, as well as the plans by the RHIC experiments for the vital upgrades of their detectors needed for the W physics program. We also had several talks on the topic of ''semi-inclusive deep-inelastic scattering'', which provides different access to related physics observables. On the theory side, new calculations were presented, for example in terms of QCD all-order resummations of perturbation theory
Parity conservation in atoms: testing laporte's rule
International Nuclear Information System (INIS)
The successful development of unified theories of weak and electromagnetic interactions and the experimental discovery of the elastic scattering of high energy neutrinos from nucleons has provided strong motivation to the search for weak electron-nucleon interactions in ordinary atoms, through a breakdown of Laporte's rule. A review is presented of recent developments in this field, including a qualitative discussion of this type of weak interaction and a short summary of the experiments in progress. A more detailed discussion of one particular experiment is given, involving microwave transitions in a metastable hydrogen beam. Presently no evidence contradicts Laporte's rule. Data from optical activity in bismuth vapor, has probably ruled out the gauge model of Weinberg-Salam. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Jacquet, M.
1995-12-01
Searches for new particles are presented under the assumption that the R-parity, taking the value +1 for all the ordinary particles and -1 for their supersymmetric partners, is not conserved. We suppose that the dominant R-parity violating couplings involve only leptonic fields and that the lifetime of the lightest supersymmetric particle can be neglected. Sleptons, squarks and neutralinos pairs searches have been performed in a data sample collected by the ALEPH detector, at the e{sup +}e{sup -} collider LEP, from 1989 to 1993. In this statistic, corresponding to almost two million hadronic {Zeta} decays, no signal was observed. As a result, supersymmetric particle masses and couplings are at least as well constrained as under the usual assumption of R-parity conservation. In a second part, the ALEPH Beam Monitor system (BOMs) is studied. The BOMs, located at 65 m from the ALEPH interaction region, allow the determination of the beam position at the interaction point. The comparison of the 1994 BOM measurements, with the beam position measured by the ALEPH vertex detector, shows sizeable systematic differences. A position monitoring system of the quadrupoles closet to the interaction point has been installed in 1995 and allows the agreement between the BOMs and ALEPH vertex detector data to be improved. Moreover, a new method for the calibration of the electronic ALEPH BOMs system is developed. (author). 54 refs., 75 figs. 15 tabs.
Search for r-parity violating supersymmetry in the multilepton final state
Energy Technology Data Exchange (ETDEWEB)
Attal, Alon J.; /UCLA
2006-11-01
This thesis presents a search for physics beyond the standard model of elementary particles in events containing three or more charged leptons in the final state. The search is based on an R-parity violating supersymmetric model that assumes supersymmetric particles are pair produced at hadron colliders and the R-parity violating coupling is small enough so that these particles ''cascade'' decay into the lightest supersymmetric particle. The lightest supersymmetric particle may only decay into two charged leptons (electrons or muons) plus a neutrino through a lepton number violating interaction. Proton-antiproton collision events produced with {radical} s= 1.96 TeV are collected between March 2002 and August 2004 with an integrated luminosity of 346 pb{sup -1}. R-parity violating supersymmetry is sought for in two data samples, one with exactly three leptons and one with four or more leptons. The trilepton sample has a modest background primarily from Drell-Yan events where an additional lepton is a result of photon conversions or jet misidentification while the four or more lepton sample has an extremely low background. In the three lepton samples 6 events are observed while in the four or more lepton sample zero events are observed. These results are consistent with the standard model expectation and are interpreted as mass limits on the lightest neutralino and lightest chargino particles. The neutralino mass is constrained to be heavier than 97.7 to 110.4 GeV/c{sup 2}, while the chargino mass is constrained to be heavier than 185.3 to 202.7 GeV/c{sup 2}, depending on the supersymmetry scenario.
Bilinear R-parity Violation and Small Neutrino Masses a Self-consistent Framework
Mira, J M; Restrepo, D A; Valle, José W F
2000-01-01
We study extensions of supersymmetric models without R-parity which include an anomalous U(1)_H horizontal symmetry. Bilinear R-parity violating terms induce a neutrino mass at tree level of approximately $(\\theta^2)^\\delta$ eV where $\\theta\\approx 0.22$ is the U(1)_H breaking parameter and $\\delta$ is an integer number that depends on the horizontal charges of the leptons. For $\\delta=1$ a unique self-consistent model arises in which i) all the superpotential trilinear R-parity violating couplings are forbidden by holomorphy; ii) the tree level neutrino mass falls in the range suggested by the atmospheric neutrino problem; iii) radiative contributions to neutrino masses are strongly suppressed resulting in a squared solar mass difference of few 10^{-8} eV^2 which only allows for the LOW (or quasi-vacuum) solution to the solar neutrino problem; iv) the neutrino mixing angles are not suppressed by powers of $\\theta$ and can naturally be large.
Exploring neutrino physics at LHC via R-parity violating SUSY
Mitsou, Vasiliki A
2015-01-01
R-parity violating supersymmetric models (RPV SUSY) are becoming increasingly more appealing than its R-parity conserving counterpart in view of the hitherto non-observation of SUSY signals at the LHC. In this talk, RPV scenarios where neutrino masses are naturally generated are discussed, namely RPV through bilinear terms (bRPV) and the "mu from nu" supersymmetric standard model. The latter is characterised by a rich Higgs sector that easily accommodates a 125-GeV Higgs boson. The phenomenology of such models at the LHC is reviewed, giving emphasis on final states with displaced objects, and relevant results obtained by LHC experiments are presented. The implications for dark matter for these theoretical proposals is also addressed.
Search for R-parity violating or long-living SUSY particles
Axen, Bradley; The ATLAS collaboration
2016-01-01
The proton-proton collisions at "sqrt{s}" = 13 TeV at the LHC have increased the ATLAS sensitivity to production of strongly produced supersymmetric particles. If R-parity is not conserved, these particles may decay to jets and leptons, and lightest supersymmetric particles may decay into many leptons with or without missing transverse momentum. Several supersymmetric models also predict massive long-lived supersymmetric particles. Such particles may be detected through abnormal specific energy loss, appearing or disappearing tracks, displaced vertices, long time-of-flight or late calorimetric energy deposits. The talk presents recent results from searches of supersymmetry in resonance production, R-parity violating signatures and events with long-lived particles with the ATLAS detector using LHC Run 2 data.
Planck intermediate results. XLIX. Parity-violation constraints from polarization data
Aghanim, N; Aumont, J; Baccigalupi, C; Ballardini, M; Banday, A J; Barreiro, R B; Bartolo, N; Basak, S; Benabed, K; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Burigana, C; Calabrese, E; Cardoso, J -F; Carron, J; Chiang, H C; Colombo, L P L; Comis, B; Contreras, D; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Désert, F -X; Di Valentino, E; Dickinson, C; Diego, J M; Doré, O; Ducout, A; Dupac, X; Dusini, S; Elsner, F; Enßlin, T A; Eriksen, H K; Fantaye, Y; Finelli, F; Forastieri, F; Frailis, M; Franceschi, E; Frolov, A; Galeotta, S; Galli, S; Ganga, K; Génova-Santos, R T; Gerbino, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gruppuso, A; Gudmundsson, J E; Hansen, F K; Henrot-Versillé, S; Herranz, D; Hivon, E; Huang, Z; Jaffe, A H; Jones, W C; Keihänen, E; Keskitalo, R; Kiiveri, K; Krachmalnicoff, N; Kunz, M; Kurki-Suonio, H; Lamarre, J -M; Langer, M; Lasenby, A; Lattanzi, M; Lawrence, C R; Jeune, M Le; Leahy, J P; Levrier, F; Liguori, M; Lilje, P B; Lindholm, V; López-Caniego, M; Ma, Y -Z; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Maris, M; Martin, P G; Martínez-González, E; Matarrese, S; Mauri, N; McEwen, J D; Meinhold, P R; Melchiorri, A; Mennella, A; Migliaccio, M; Miville-Deschênes, M -A; Molinari, D; Moneti, A; Morgante, G; Moss, A; Natoli, P; Pagano, L; Paoletti, D; Patanchon, G; Patrizii, L; Perotto, L; Pettorino, V; Piacentini, F; Polastri, L; Polenta, G; Rachen, J P; Racine, B; Reinecke, M; Remazeilles, M; Renzi, A; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Ruiz-Granados, B; Sandri, M; Savelainen, M; Scott, D; Sirignano, C; Sirri, G; Spencer, L D; Suur-Uski, A -S; Tauber, J A; Tavagnacco, D; Tenti, M; Toffolatti, L; Tomasi, M; Tristram, M; Trombetti, T; Valiviita, J; Van Tent, F; Vielva, P; Villa, F; Vittorio, N; Wandelt, B D; Wehus, I K; Zacchei, A; Zonca, A
2016-01-01
Parity violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, impacts the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing $T$--$B$ and $E$--$B$ correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle $\\alpha$, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for $\\alpha$ that are in agreement within statistical uncertainties and very stable against several consistency tests. Considering the $T$--$B$ and $E$--$B$ information jointly, we find $\\alpha = 0.31^{\\circ} \\pm 0.05^{\\circ} \\, ({\\rm stat.})\\, \\pm 0.28^{\\circ} \\, ({\\rm syst.})$ from the harmon...
Apparatus for parity-violation study via capture gamma-ray measurements
Seestrom, S J; Bowman, J D; Crawford, B C; Haseyama, T; Masaike, A; Matsuda, A; Penttilae, S I; Roberson, R N; Sharapov, E I; Stephenson, S L
1999-01-01
The Time Reversal and Parity at Low Energy (TRIPLE) Collaboration uses a short-pulsed longitudinally polarized epithermal neutron beam at the Los Alamos Neutron Science Center to study spatial parity violation (PV) in the compound nucleus. The typical PV experiment measures the longitudinal cross-section asymmetry by the neutron transmission method through thick samples. Neutron capture gamma-ray measurement provides an alternative method for the study of PV, which enables the use of smaller amounts of isotopically pure target material. In 1995 TRIPLE commissioned a new neutron-capture detector consisting of 24 pure CsI scintillators arranged in a cylindrical geometry around the neutron beam. The characteristics and the performance of the detector and spin transport are described.
Flavor-changing top quark decays in R-parity-violating supersymmetric models
International Nuclear Information System (INIS)
The flavor-changing top quark decays t→cV (V=Z,γ,g) induced by R-parity-violating couplings in the minimal supersymmetric standard model are evaluated. We find that the decays t→cV can be significantly enhanced relative to those in the R-parity-conserving supersymmetric model. Our results show that the top quark flavor-changing neutral current decay can be as large as Br(t→cg)∼10-3, Br(t→cZ)∼10-4, and Br(t→cγ)∼10-5, which may be observable at the upgraded Fermilab Tevatron and/or the CERN LHC. copyright 1998 The American Physical Society
Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation
Energy Technology Data Exchange (ETDEWEB)
STAR Collaboration; Abelev, Betty
2010-07-05
Parity-odd domains, corresponding to non-trivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system's orbital momentum axis. We investigate a three particle azimuthal correlator which is a {Rho} even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 200 GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation.
Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation
Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bnzarov, I.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Cai, X. Z.; Caines, H.; Calderón de La Barca Sánchez, M.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, P.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Silva, L. C.; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Derradi de Souza, R.; Didenko, L.; Djawotho, P.; Dzhordzhadze, V.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Dutta Mazumdar, M. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; Heinz, M.; Heppelmann, S.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lee, J. H.; Leight, W.; Levine, M. J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu. A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Semertzidis, Y.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Tram, V. N.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.
2009-12-01
Parity-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the system’s orbital momentum axis. We investigate a three-particle azimuthal correlator which is a P even observable, but directly sensitive to the charge separation effect. We report measurements of charged hadrons near center-of-mass rapidity with this observable in Au+Au and Cu+Cu collisions at sNN=200GeV using the STAR detector. A signal consistent with several expectations from the theory is detected. We discuss possible contributions from other effects that are not related to parity violation.
Parity-time-antisymmetric atomic lattices without gain
Wu, Jin-Hui; Artoni, M.; La Rocca, G. C.
2015-03-01
Lossy atomic photonic crystals can be suitably tailored so that the real and imaginary parts of the susceptibility are, respectively, an odd and an even function of position. Such a parity-time (P T ) space antisymmetry in the susceptibility requires neither optical gain nor negative refraction, but is rather attained by a combined control of the spatial modulation of both the atomic density and their dynamic level shift. These passive photonic crystals made of dressed atoms are characterized by a tunable unidirectional reflectionlessness accompanied by an appreciable degree of transmission. Interestingly, such peculiar properties are associated with non-Hermitian degeneracies of the crystal scattering matrix, which can then be directly observed through reflectivity measurements via a straightforward phase modulation of the atomic dynamic level shift and even off resonance.
Measurement of parity-violating asymmetry in deep inelastic scattering at Jefferson Lab
Zheng, Xiaochao
2015-04-01
Symmetry permeates nature and is fundamental to all laws of physics. One example is mirror symmetry, also called ``parity symmetry''. It implies that flipping left and right does not change the laws of physics. Laws for electromagnetism, gravity and the subatomic strong force respect parity symmetry, but the subatomic weak force does not. Historically, parity violation in electron scattering played a key role in establishing, and now testing, the Standard Model of particle physics. One particular set of the quantities accessible through measurements of parity-violating electron scattering are the vector-electron axial-vector-quark weak couplings, called C2 q's, measured directly only once in the past 40 years. We report here on a new measurement of the parity-violating asymmetry in electron-quark scattering, that has yielded a specific combination 2C2 u -C2 d five times more precise than the earlier result. (Here u and d stand respectively for the up and the down quarks.) These results are the first evidence, at more than the 95% confidence level, that the C2 q's are non-zero as predicted by the electroweak theory. They lead to constraints on new interactions beyond the Standard Model, particularly on those whose laws change when the quark chirality is flipped between left and right. In today's particle physics research that is focused on colliders such as the LHC, our results provide specific chirality information on electroweak theory that is difficult to obtain at high energies. In addition to deep inelastic scattering, we will report on measurement of the asymmetry in the nucleon resonance region. These data exhibit for the first time that the quark-hadron duality may work for electroweak observables at the (10--15)% level throughout the whole resonance region. At the end I will give a brief outlook on the future PVDIS program using the Jefferson Lab 12 GeV beam, which will not only provide more precise measurement of C2 q, but also for sin2 θW and for
Parity violating NN forcES in the quark compound bag model
International Nuclear Information System (INIS)
Parity violation (PV) in the interaction is considered as due to the Weinberg-Salam quark-quark interaction inside the six-quark bag. The initial and final strong interaction is described within the same quark compound bag (QCB) model, where the NN coupling to the six quark QCB is defined from the NN experimental data. The resulting PV amplitude contains no free parameters and allows therefore an unambiguous test of the QCB model. An estimate of the 1S0 → 3P0 contribution to the proton-proton asymmetry is in a rough agreement with experimental data
A new evaluation of the parity violating pion-nucleon coupling
International Nuclear Information System (INIS)
The authors evaluate the parity violating pion-nucleon coupling, Asub(π), in the framework of the standard model of weak and electromagnetic interactions, including QCD corrections. It is pointed out that important contributions to Asub(π) have been overlooked previously. Taking into account the uncertainties in the determination of the coefficients of the effective Hamiltonian, Asub(π)=(16-29)(Asub(π))sub(C), where (Asub(π))sub(C) is the prediction of the Cabibbo theory, related to hyperon decay S-wave amplitudes. The sign of Asub(π) with respect to the strong pion-nucleon coupling is also determined. (Auth.)
R-Parity Violation and Light Neutralinos at SHiP and the LHC
de Vries, Jordy; Schmeier, Daniel
2015-01-01
We study the sensitivity of the proposed SHiP experiment to the LQD operator in R-parity violating supersymmetric theories. We focus on single neutralino production via rare meson decays and the observation of downstream neutralino decays into charged mesons inside the SHiP decay chamber. We provide a generic list of effective operators and decay width formulae for any LQD coupling and show the resulting expected SHiP sensitivity for a widespread list of benchmark scenarios via numerical simulations. We compare this sensitivity to expected limits from testing the same decay topology at the LHC with ATLAS.
Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering
Abrahamyan, S; Albataineh, H; Aniol, K; Armstrong, D S; Armstrong, W; Averett, T; Babineau, B; Barbieri, A; Bellini, V; Beminiwattha, R; Benesch, J; Benmokhtar, F; Bielarski, T; Boeglin, W; Camsonne, A; Canan, M; Carter, P; Cates, G D; Chen, C; Chen, J -P; Hen, O; Cusanno, F; Dalton, M M; De Leo, R; de Jager, K; Deconinck, W; Decowski, P; Deng, X; Deur, A; Dutta, D; Etile, A; Flay, D; Franklin, G B; Friend, M; Frullani, S; Fuchey, E; Garibaldi, F; Gasser, E; Gilman, R; Giusa, A; Glamazdin, A; Gomez, J; Grames, J; Gu, C; Hansen, O; Hansknecht, J; Higinbotham, D W; Holmes, R S; Holmstrom, T; Horowitz, C J; Hoskins, J; Huang, J; Hyde, C E; Itard, F; Jen, C -M; Jensen, E; Jin, G; Johnston, S; Kelleher, A; Kliakhandler, K; King, P M; Kowalski, S; Kumar, K S; Leacock, J; Leckey, J; Lee, J H; LeRose, J J; Lindgren, R; Liyanage, N; Lubinsky, N; Mammei, J; Mammoliti, F; Margaziotis, D J; Markowitz, P; McCreary, A; McNulty, D; Mercado, L; Meziani, Z -E; Michaels, R W; Mihovilovic, M; Muangma, N; Muñoz-Camacho, C; Nanda, S; Nelyubin, V; Nuruzzaman, N; Oh, Y; Palmer, A; Parno, D; Paschke, K D; Phillips, S K; Poelker, B; Pomatsalyuk, R; Posik, M; Puckett, A J R; Quinn, B; Rakhman, A; Reimer, P E; Riordan, S; Rogan, P; Ron, G; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Sirca, S; Slifer, K; Solvignon, P; Souder, P A; Sperduto, M L; Subedi, R; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Troth, W; Urciuoli, G M; Waidyawansa, B; Wang, D; Wexler, J; Wilson, R; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yim, V; Zana, L; Zhan, X; Zhang, J; Zhang, Y; Zheng, X; Zhu, P
2012-01-01
We report the first measurement of the parity-violating asymmetry A_PV in the elastic scattering of polarized electrons from 208Pb. A_PV is sensitive to the radius of the neutron distribution (Rn). The result A_PV = 0.656 \\pm 0.060 (stat) \\pm 0.013 (syst) corresponds to a difference between the radii of the neutron and proton distributions Rn - Rp = 0.33 +0.16 -0.18 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.
Indian Academy of Sciences (India)
Sujoy Poddar
2007-11-01
In a -parity violating (RPV) model of neutrino mass with three bilinear couplings and three trilinear couplings ′33, where is the lepton index, we find six generic scenarios each with a distinctive pattern of the trilinear couplings consistent with the neutrino oscillation data. These patterns may be reflected in direct RPV decays of the lighter top squark or in the RPV decays of the lightest superparticle, assumed to be the lightest neutralino. Typical signal sizes at the Tevatron RUN II and the LHC have been estimated and the results turn out to be encouraging.
Charge Symmetry Breaking in the Nucleon and Parity Violating Elastic Electron-Proton Scattering
Miller, Gerald A
2014-01-01
The basic facts of charge symmetry breaking (CSB) phenomena are reviewed. The relevance of CSB to parity-violating electron-proton scattering experiments that seek to extract strange elastic form factors is discussed. Experimentalists have stated and written that the current uncertainty in our knowledge of CSB limits the ability to push further on the strange form factors. I discuss recent calculations using relativistic chiral perturbation theory and realistic values of strong coupling constants which show that the uncertainties due to lack of knowledge of CSB are at least ten times smaller than present experimental uncertainties. Estimates of CSB effects are made for the JLab Qweak and Mainz P2 experiments.
Bounds on Leptoquark and Supersymmetric, R-parity violating Interactions from Meson Decays
Herz, M
2003-01-01
We present constraints on products of two leptoquark (LQ) coupling constants. The bounds are obtained from meson decays, in particular leptonic \\pi, K, D, D_s, B, B_s decays. Furthermore semileptonic meson decays and mixing in neutral meson systems are discussed. We use the Buchmueller-Rueckl-Wyler-model for scalar and vector LQs. Bounds on R-parity violation can be extracted directly from the corresponding LQ bounds. Our results are listed in the Tables 6 (for LQs) and 7 (for SUSY particles) with english captions. The bounds of Davidson/Bailey/Campbell were updated. The SUSY-bounds of Dreiner/Polesello/Thormeier were reproduced.
Realizing the supersymmetric inverse seesaw model in the framework of R-parity violation
Pires, C. A. de S.; Rodrigues, J. G.; Rodrigues da Silva, P. S.
2016-01-01
If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw mechanism, on the other it is a challenge to find scenarios capable of realizing it. In this work we propose a scenario, based on the framework of R-parity violation, that realizes minimally the supersymmetric inverse seesaw mechanism. In it the energy scale parameters involved in the mechanism are recognized as the vacuum expectation values of the scalars that compose the singlet superfields NˆC and Sˆ. We develop also t...
Leptophobic Z′ boson and parity-violating eD scattering
González-Alonso, Martín; Ramsey-Musolf, Michael J.
2013-01-01
We study the impact of a leptophobic Z' gauge boson on the C_{1q} and C_{2q} parameters that describe the low-energy, parity-violating electron-quark neutral current interaction. We complement previous work by including the penguin-like vertex corrections, thereby completing the analysis of one-loop calculation up to O(m^2_q'/M^2_Z') terms. We analyze the sensitivity of these probes to the different couplings Z'\\bar{u}q (q=u,c,t) and Z'\\bar{d}q (q=d,s,b), in a model-independent way that can b...
Parity violating asymmetry with nuclear medium effects in deep inelastic $\\vec e$ scattering
Haider, H; Singh, S K; Simo, I Ruiz
2014-01-01
Recently at JLab using polarised electron beam on unpolarised deuteron target measurements have been performed for the parity violating asymmetry($A_{PV}$) and there are future plans to measure this asymmetry using various nuclear targets. In this paper, we study $A_{PV}$ in nuclear targets like $^{12}C$, $^{56}Fe$ and $^{208}Pb$, in a local density approximation using spectral function which takes into account Fermi motion, binding energy correction and nucleon correlations. Furthermore, the pion and rho cloud contributions have also been taken into account. The present model has been used earlier to study medium effects in electromagnetic as well as weak interaction induced processes in the DIS region.
The g0 parity violation experiment:overview and status after the first commissioning run
International Nuclear Information System (INIS)
The basis of the G 0 experiment is a parity-violating process giving access to the strange form factors of the proton. It requires the measurement of a set of asymmetries, in elastic electron scattering from hydrogen and quasi-elastic scattering from deuterium, at different Q2 and at different angles. The experimental site is the Thomas Jefferson National Accelerator Facility (J Lab.), Newport News, VA (USA). The formalism that connects asymmetries with the proton properties at the quark level, the experimental set-up and the present status are described. A section is devoted to a special electronic module, built at the IPN-Orsay, using Digital Signal Processors (DSPs)
Weak charge of the proton: loop corrections to parity-violating electron scattering
Energy Technology Data Exchange (ETDEWEB)
Wally Melnitchouk
2011-05-01
I review the role of two-boson exchange corrections to parity-violating elastic electron–proton scattering. Direct calculations of contributions from nucleon and Delta intermediate states show generally small, [script O](1–2%), effects over the range of kinematics relevant for proton strangeness form factor measurements. For the forward angle Qweak experiment at Jefferson Lab, which aims to measure the weak charge of the proton, corrections from the gammaZ box diagram are computed within a dispersive approach and found to be sizable at the E~1 GeV energy scale of the experiment.
A luminosity monitor for the A4 parity violation experiment at MAMI
Energy Technology Data Exchange (ETDEWEB)
Hammel, T. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Achenbach, P. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Baunack, S. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Capozza, L. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Diefenbach, J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Grimm, K. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Harrach, D. von [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Imai, Y. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Kabuss, E. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Kothe, R. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Lee, J.H. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Lopes Ginja, A. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Maas, F.E. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany)]. E-mail: maas@kph.uni-mainz.de; Sanchez Lorente, A. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Schilling, E. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Stephan, G. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Weinrich, C. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Altarev, I. [Technische Universitaet Muenchen, D-85748 Munich (Germany)
2006-08-01
A water Cherenkov luminosity monitor system with associated electronics has been developed for the A4 parity violation experiment at MAMI. The detector system measures the luminosity of the hydrogen target hit by the MAMI electron beam and monitors the stability of the liquid hydrogen target. Both are required for the precise study of the count rate asymmetries in the scattering of longitudinally polarized electrons on unpolarized protons. Any helicity correlated fluctuation of the target density leads to false asymmetries. The performance of the luminosity monitor, investigated in about 2000 h with electron beam, and the results of its application in the A4 experiment are presented.
A neutron beam polarizer for study of parity violation in neutron-nucleus interactions
International Nuclear Information System (INIS)
A dynamically-polarized proton target operating at 5 Tesla and 1 K has been built to, neutron beam for studies of parity violation in compound-nuclear resonances. Nearly 0.9 proton polarization was obtained in an electron-beam irradiated ammonia target. This was used to produce a neutron beam polarization of 0.7 at epithermal energies. The combination of the polarized proton target and the LANSCE spallation neutron source produces the most intense pulsed polarized epithermal neutron beam in the world. The neutron-beam polarizer is described and methods to determine neutron beam polarization are presented
Electroweak radiative corrections to parity-violating electroexcitation of the Delta
Energy Technology Data Exchange (ETDEWEB)
C.M. Maekawa; Michael Ramsey-Musolf; Barry Holstein; Shi-Lin Zhu; Gianfranco Sacco
2001-12-01
We analyze the degree to which parity-violating (PV) electroexcitation of the {Delta}(1232)$ resonance may be used to extract the weak neutral axial vector transition form factors. We find that the axial vector electroweak radiative corrections are large and theoretically uncertain, thereby modifying the nominal interpretation of the PV asymmetry in terms of the weak neutral form factors. We also show that, in contrast to the situation for elastic electron scattering, the axial N {yields} {Delta} PV asymmetry does not vanish at the photon point as a consequence of a new term entering the radiative corrections. We argue that an experimental determination of these radiative corrections would be of interest for hadron structure theory, possibly shedding light on the violation of Hara's theorem in weak, radiative hyperon decays.
Search for parity non-conservation in the hydrogen atom
International Nuclear Information System (INIS)
A search for parity non-conservation was made in the hydrogen atom by looking for a small admixture of the 2P/sub 1/2/ state in the 2S/sub 1/2/ state. Since the predicted effect due to neutral current interaction is exceedingly small an interference technique was used. The two 2S/sub 1/2/(m;sub J/ = 1/2) → 2S/sub 1/2/(m/sub J/ = -1/2) parity conserving and parity non-conserving amplitudes were driven in two separate microwave cavities. A cylindrical geometry is chosen for the apparatus for a great reduction of the contributions from spurious amplitudes. The difference in the transition rate, when the relative sign of the two amplitudes are changed, is the PNC signal. The apparatus, control system and the different measurement techniques are discussed. The present results are limited by the systematic errors due to the presence of stray electric fields. The observed asymmetry when expressed in terms of C2/sub p/ was found to be equal to 430 +- 500. Possible modifications for further improvement and the feasibility of an experiment in zero magnetic field is discussed in the context of future use of a thermal beam
Anti-Parity-Time Symmetric Optics via Flying Atoms
Peng, Peng; Shen, Ce; Qu, Weizhi; Wen, Jianming; Jiang, Liang; Xiao, Yanhong
2015-01-01
The recently-developed notion of 'parity-time (PT) symmetry' in optical systems with a controlled gain-loss interplay has spawned an intriguing way of achieving optical behaviors that are presently unattainable with standard arrangements. In most experimental studies so far, however, the implementations rely highly on the advances of nanotechnologies and sophisticated fabrication techniques to synthesize solid-state materials. Here, we report the first experimental demonstration of optical anti-PT symmetry, a counterpart of conventional PT symmetry, in a warm atomic-vapor cell. By exploiting rapid coherence transport via flying atoms, our scheme illustrates essential features of anti-PT symmetry with an unprecedented precision on phase-transition threshold, and substantially reduces experimental complexity and cost. This result represents a significant advance in non-Hermitian optics by bridging a firm connection with the field of atomic, molecular and optical physics, where novel phenomena and applications i...
R -parity violation in a warped GUT scale Randall-Sundrum framework
Allanach, B. C.; Iyer, A. M.; Sridhar, K.
2016-03-01
We consider a modified Randall-Sundrum (RS) framework between the Planck scale and the grand unified theory (GUT) scale. In this scenario, RS works as a theory of flavor and not as a solution to the hierarchy problem. The latter is resolved by supersymmetrizing the bulk, so that the minimal supersymmetric standard model is the effective four-dimensional theory. Matter fields are localized in the bulk in order to fit fermion-mass and mixing data. If R -parity violating (Rp) terms are allowed in the superpotential, their orders of magnitude throughout flavor space are then predicted, resulting in rich flavor textures. If the Rp contributions to neutrino masses are somewhat suppressed, then lepton-number violating models exist which explain the neutrino oscillation data while not being in contradiction with current experimental bounds. Another promising model is one where baryon number is violated and Dirac neutrino masses result solely from fermion localization. We sketch the likely discovery signatures of the baryon-number and the lepton-number violating cases.
Search for Squarks in R-parity Violating Supersymmetry in ep Collisions at HERA
Aaron, F D; Andreev, V; Backovic, S; Baghdasaryan, A; Baghdasaryan, S; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Britzger, D; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Ceccopieri, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cvach, J; Dainton, J B; Daum, K; Delcourt, B; Delvax, J; De Wolf, E A; Diaconu, C; Dobre, M; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Egli, S; Eliseev, A; Elsen, E; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, S; Glazov, A; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Grebenyuk, A; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C.W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Huber, F; Jacquet, M; Janssen, X; Jonsson, L; Jung, A W; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Kostka, P; Kraemer, M; Kretzschmar, J; Kruger, K; Kutak, K; Landon, M P.J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Lendermann, V; Levonian, S; Lipka, K; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Makankine, A; Malinovski, E; Marage, P; Martyn, H U; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, J; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Mudrinic, M; Muller, K; Naumann, Th; Newman, P R; Niebuhr, C; Nikitin, D; Nowak, G; Nowak, K; Olsson, J E; Osman, S; Ozerov, D; Pahl, P; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pirumov, H; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Radescu, V; Raicevic, N; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rusakov, S; Salek, D; Sankey, D P.C; Sauter, M; Sauvan, E; Schmitt, S; Schoeffel, L; Schoning, A; Schultz-Coulon, H C; Sefkow, F; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, I; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, A; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U; Sunar, D; Sykora, T; Thompson, G; Thompson, P D; Toll, T; Tran, T H; Traynor, D; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vazdik, Y; von den Driesch, M; Wegener, D; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zohrabyan, H; Zomer, F
2011-01-01
A search for squarks in R-parity violating supersymmetry is performed in e^+- p collisions at HERA using the H1 detector. The full data sample taken at a centre-of-mass energy sqrt{s}=319 GeV is used for the analysis, corresponding to an integrated luminosity of 255 pb^-1 of e^+ p and 183 pb^-1 of e^- p collision data. The resonant production of squarks via a Yukawa coupling lambda' is considered, taking into account direct and indirect R-parity violating decay modes. Final states with jets and leptons are investigated. No evidence for squark production is found and mass dependent limits on lambda' are obtained in the framework of the Minimal Supersymmetric Standard Model and in the Minimal Supergravity Model. In the considered part of the parameter space, for a Yukawa coupling of electromagnetic strength lambda'= 0.3, squarks of all flavours are excluded up to masses of 275 GeV at 95% confidence level, with down-type squarks further excluded up to masses of 290 GeV.
The effective chiral Lagrangian from dimension-six parity and time-reversal violation
International Nuclear Information System (INIS)
We classify the parity- and time-reversal-violating operators involving quark and gluon fields that have effective dimension six: the quark electric dipole moment, the quark and gluon chromo-electric dipole moments, and four four-quark operators. We construct the effective chiral Lagrangian with hadronic and electromagnetic interactions that originate from them, which serves as the basis for calculations of low-energy observables. The form of the effective interactions depends on the chiral properties of these operators. We develop a power-counting scheme and calculate within this scheme, as an example, the parity- and time-reversal-violating pion–nucleon form factor. We also discuss the electric dipole moments of the nucleon and light nuclei. -- Highlights: •Classification of T-odd dimension-six sources based on impact on observables. •Building of the chiral Lagrangian for each dimension-six source. •Calculation of the PT-odd pion–nucleon form factor for each source. •Discussion of hadronic EDMs for each source and comparison with the theta term
International Nuclear Information System (INIS)
The G0 (G-Zero) forward angle experiment completed in Hall C of the Thomas Jefferson National Accelerator Facility (TJNAF) has measured the parity violating asymmetries in elastic electron-proton scattering over a Q2 range of 0.12 < Q2 < 1.0 (GeV/c)2. A linear combination of the strange electric (GsE) and magnetic (GsM) form factors calculated from these asymmetries indicate a non-zero contribution of the strange quark to the charge and magnetization structure of the proton in the above kinematic range at a 89% confidence level. The results show a previously unmeasured Q2 dependence of the strange form factors. Combining the G0 results with previous parity violating experiments show that at Q2 = 0.1 (GeV/c)2 GsM = 0.62+-0.31 GsE = -0.013+-0.028 At intermediate Q2 of about 0.23 (GeV/c)2, a consistent value of GsM is seen compared to previous experiments, together with a measurement that may imply a negative value of GsE. For Q2 above 0.5 (GeV/c)2 a consistently positive value for the linear combination of the strange form factors is seen
Search for Squark Production in R-Parity Violating Supersymmetry at HERA
Aktas, A; Anthonis, T; Asmone, A; Babaev, A; Backovic, S; Bähr, J; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berger, N; Berndt, T; Bizot, J C; Böhme, J; Boenig, M O; Boudry, V; Bracinik, J; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Cerny, K; Chekelian, V; Collard, Caroline; Contreras, J G; Coppens, Y R; Coughlan, J A; Cousinou, M C; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Delcourt, B; Demirchyan, R; de Roeck, A; Desch, Klaus; De Wolf, E A; Diaconu, C; Dingfelder, J; Dodonov, V; Dubak, A; Duprel, C; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garutti, E; Garvey, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Görlich, L; Gogitidze, N; Gorbounov, S; Grab, C; Grässler, Herbert; Greenshaw, T; Gregori, M; Grindhammer, G; Gwilliam, C; Haidt, Dieter; Hajduk, L; Haller, J; Hansson, M; Heinzelmann, G; Henderson, R C W; Henschel, H; Henshaw, O; Heremans, R; Herrera-Corral, G; Herynek, I; Heuer, R D; Hildebrandt, M; Hiller, K H; Hladky, J; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A V; Ibbotson, M; Ismail, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Katzy, J; Keller, N; Kennedy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knies, G; Knutsson, A; Koblitz, B; Korbel, V; Kostka, P; Koutouev, R; Kropivnitskaya, A; Kroseberg, J; Kuckens, J; Kuhr, T; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; Lindfeld, L; Lipka, K; List, B; Lobodzinska, E; Loktionova, N A; López-Fernandez, R; Lubimov, V; Lüders, H; Lüke, D; Lux, T; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martisikova, M; Martyn, H U; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Michine, S; Mikocki, S; Milcewicz, I; Milstead, D; Mohamed, A; Moreau, F; Morozov, A; Morozov, I; Morris, J V; Mozer, M U; Müller, K; Murn, P; Nagovizin, V; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebuhr, C B; Nikiforov, A; Nikitin, D K; Nowak, G; Nozicka, M; Oganezov, R; Olivier, B; Olsson, J E; Ossoskov, G; Ozerov, D; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Perieanu, A; Petrukhin, A; Pitzl, D; Placakyte, R; Pöschl, R; Portheault, B; Povh, B; Raicevic, N; Ratiani, Z; Reimer, P; Reisert, B; Rimmer, A; Risler, C; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A A; Rurikova, Z; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V N; Specka, A E; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Utkin, D; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Vargas-Trevino, A; Vasilev, S; Vazdik, Ya A; Veelken, C; Vest, A; Vichnevski, A; Vinokurova, S; Volchinski, V; Wacker, K; Wagner, J; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wessling, B; Winter, G G; Wissing, C; Woerling, E E; Wolf, R; Wünsch, E; Xella, S M; Yan, W; Zaicek, J; Zaleisak, J; Zhang, Z; Zhokin, A; Zohrabyan, H G; Zomer, F
2004-01-01
A search for squarks in R-parity violating supersymmetry is performed in e+/- p collisions at HERA using the H1 detector. The data were taken at a centre-of-mass energy of 319 GeV and correspond to an integrated luminosity of 64.3 pb-1 for e+p collisions and 13.5 pb-1 for e-p collisions. The resonant production of squarks via a Yukawa coupling lambda' is considered, taking into account direct and indirect R-parity violating decay modes. No evidence for squark production is found in the multi-lepton and multi-jet final state topologies investigated. Mass dependent limits on lambda' are obtained in the framework of the Minimal Supersymmetric Standard Model. In addition, the results are interpreted in terms of constraints on the parameters of the minimal Supergravity model. At the 95% confidence level squarks of all flavours with masses up to 275 GeV are excluded in a large part of the parameter space for a Yukawa coupling of electromagnetic strength. For a coupling strength 100 times smaller, masses up to 220 G...
Search for squarks in R-parity violating supersymmetry in ep collisions at HERA
Energy Technology Data Exchange (ETDEWEB)
Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Andreev, V. [Lebedev Physical Institute, Moscow (RU)](and others)
2010-10-15
A search for squarks in R-parity violating supersymmetry is performed in e{sup {+-}}p collisions at HERA using the H1 detector. The full data sample taken at a centre-of-mass energy {radical}(s)=319 GeV is used for the analysis, corresponding to an integrated luminosity of 255 pb{sup -1} of e{sup +}p and 183 pb{sup -1} of e{sup -}p collision data. The resonant production of squarks via a Yukawa coupling {lambda}{sup '} is considered, taking into account direct and indirect R-parity violating decay modes. Final states with jets and leptons are investigated. No evidence for squark production is found and mass dependent limits on {lambda}{sup '} are obtained in the framework of the Minimal Supersymmetric Standard Model and in the Minimal Supergravity Model. In the considered part of the parameter space, for a Yukawa coupling of electromagnetic strength {lambda}{sup '}=0.3, squarks of all flavours are excluded up to masses of 275 GeV at 95% confidence level, with down.type squarks further excluded up to masses of 290 GeV. (orig.)
A new $G$-parity violating amplitude in the $J/\\psi$ decay
Ferroli, R Baldini; Destefanis, M; Maggiora, M; Pacetti, S; Yan, L; Bertani, M; Calcaterra, A; Felici, G; Patteri, P; Wang, Y D; Zallo, A; Bettoni, D; Cibinetto, G; Farinelli, R; Fioravanti, E; Garzia, I; Mezzadri, G; Santoro, V; Savrié, M; Bianchi, F; Greco, M; Marcello, S; Spataro, S; Calame, C M Carloni; Montagna, G; Nicrosini, O; Piccinini, F
2016-01-01
The $J/\\psi$ meson has negative $G$-parity so that, in the limit of isospin conservation, its decay into $\\pi^+\\pi^-$ should be purely electromagnetic. However, the measured branching fraction $\\mathcal{B}(J/\\psi\\to\\pi^+\\pi^-)$ exceeds by more than 3.9 standard deviations the expectation computed according to BaBar data on the $e^+e^-\\to\\pi^+\\pi^-$ cross section. The possibility that the two-gluon plus one-photon decay mechanism is not suppressed by $G$-parity conservation is discussed, even by considering other multi-pion decay channels. As also obtained by phenomenological computation, such a decay mechanism could be responsible for the observed discrepancy. Finally, we notice that the BESIII experiment, having the potential to perform an accurate measurement of the $e^+e^-\\to\\pi^+\\pi^-$ cross section in the 3 GeV energy region, can definitely prove or disprove this strong $G$-parity-violating mechanism by confirming or confuting the BaBar data.
Parity Violation Inelastic Scattering Experiments at 6 GeV and 12 GeV Jefferson Lab
Energy Technology Data Exchange (ETDEWEB)
Sulkosky, Vincent A. [University of Virginia, Charlottesville, VA; Jefferson Lab, Newport News, VA; et. al.,
2015-03-01
We report on the measurement of parity-violating asymmetries in the deep inelastic scattering and nucleon resonance regions using inclusive scattering of longitudinally polarized electrons from an unpolarized deuterium target. The effective weak couplings C$_{2q}$ are accessible through the deep-inelastic scattering measurements. Here we report a measurement of the parity-violating asymmetry, which yields a determination of 2C$_{2u}$ - C$_{2d}$ with an improved precision of a factor of five relative to the previous result. This result indicates evidence with 95% confidence that the 2C$_{2u}$ - C$_{2d}$ is non-zero. This experiment also provides the first parity-violation data covering the whole resonance region, which provide constraints on nucleon resonance models. Finally, the program to extend these measurements at Jefferson Lab in the 12 GeV era using the Solenoidal Large Intensity Device was also discussed.
Allanach, Ben; Mondal, Subhadeep; Mitra, Manimala
2014-01-01
The recent CMS searches for the right handed gauge boson $W_R$ reports an interesting deviation from the Standard Model. The search has been conducted in the $eejj$ channel and has shown an excess around $m_{eejj} \\sim 2$ TeV. In this work, we explain the reported CMS excess with R-parity violating supersymmetry (SUSY). We consider the resonant slepton and sneutrino production, followed by the three body decays of neutralino and chargino via R-parity violating coupling. These fit the excess for slepton and sneutrino masses around 2 TeV. This scenario can further be tested in neutrinoless double beta decay experiment ($0\
Realizing the supersymmetric inverse seesaw model in the framework of R-parity violation
de S. Pires, C. A.; Rodrigues, J. G.; Rodrigues da Silva, P. S.
2016-08-01
If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw mechanism, on the other it is a challenge to find scenarios capable of realizing it. In this work we propose a scenario, based on the framework of R-parity violation, that realizes minimally the supersymmetric inverse seesaw mechanism. In it the energy scale parameters involved in the mechanism are recognized as the vacuum expectation values of the scalars that compose the singlet superfields NˆC and S ˆ . We develop also the scalar sector of the model and show that the Higgs mass receives a new tree-level contribution that, when combined with the standard contribution plus loop correction, is capable of attaining 125 GeV without resort to heavy stops.
Parity violation effects in the Josephson junction of a p-wave superconductor
Energy Technology Data Exchange (ETDEWEB)
Belov, Nikolay A.; Harman, Zoltan [Max Planck Institute for Nuclear Physics, Heidelberg (Germany)
2014-07-01
The electroweak theory describes nuclear beta-decay and weak effects in particle physics. One of the most characteristic properties of the electroweak interaction is spatial parity violation (PV). PV was experimentally observed in β decay, however, PV terms of the electroweak interaction also affect the interaction of electrons with the nuclei of the crystal lattice in solid state. Possible solid state systems where one may detect PV are superconductors. The main advantage of the investigation of PV effects with superconductors is the compact size and relatively low price of the experimental apparatus as compared to high-energy experiments. While the electroweak contribution is negligibly low in conventional s-wave superconductors, we show that the effect is significantly increased in unconventional p-wave ferromagnetic superconductors. We predict values several orders of magnitude higher than for the s-wave case, forecasting that the PV effect may be observed in superconductors in future.
Limit on parity violation on p-water scattering at 6 Ge V/c
International Nuclear Information System (INIS)
Preliminary results of an experiment aimed at a direct measurement of the weak interaction contributions to nucleon-nucleon scattering are reported. The transmission of a polarized proton beam through a water target has been measured as a function of the beam helicity. The experiment has been designed to exclude the hyperon effect to be sure that observed variations of the cross sections deal with a parity-violation in the p-water interaction. Preliminary analysis of the data shows the systematic error problems to be substantial. A regression analyais is outlined of the data planned to extract the transmission variations due to beam motion, intensity changes and residual transverse polarization. Preliminary results for the cross-section change (before regression) are of the 10-6 order
Role of particle masses in the magnetic field generation driven by the parity violating interaction
Dvornikov, Maxim
2016-01-01
Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven by the parity violating interaction, was proposed. In this model, the magnetic field instability results from the modification of the chiral magnetic effect in presence of the electroweak interaction between ultrarelativistic electrons and nucleons. In the present work we study how a nonzero mass of charged particles, which are degenerate relativistic electrons and nonrelativistic protons, influences the generation of the magnetic field in frames of this approach. For this purpose we calculate the induced electric current of these charged particles, electroweakly interacting with background neutrons and an external magnetic field, exactly accounting for the particle mass. This current is calculated by two methods: using the exact solution of the Dirac equation for a charged particle in external fields and computing the polarization operator of a photon in matter composed of background neutrons. We show tha...
6 GeV Parity Violating Deep Inelastic Scattering at Jefferson Laboratory
Energy Technology Data Exchange (ETDEWEB)
Ramesh R. Subedi, Xiaoyan Deng, Robert Michaels, Kai Pan, Paul E. Reimer, Diancheng Wang, Xiaochao Zheng
2011-10-01
The 6 GeV Parity Violating Deep Inelastic Scattering (PVDIS) experiment has measured a 10^-4 level asymmetry through polarized electron scattering off a liquid deuterium target with a beam energy of 6 GeV. This experiment has a goal of measuring a combination of the product of the weak neutral couplings of the electron and the quark with a factor of six improvement in precision over world data. Precise data for the couplings are essential to search for physics beyond the Standard Model. The experiment took place in Hall A at Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) and data collection was completed in the end of 2009. A highly specialized counting data acquisition system with an inherent particle identification was developed and utilized. We have taken data at two Q2 points in order to possibly address the hadronic correction due to higher twist effects. An overview of the experiment will be presented.
6 GeV Parity Violating Deep Inelastic Scattering at Jefferson Laboratory
International Nuclear Information System (INIS)
The 6 GeV Parity Violating Deep Inelastic Scattering (PVDIS) experiment has measured a 10-4 level asymmetry through polarized electron scattering off a liquid deuterium target with a beam energy of 6 GeV. This experiment has a goal of measuring a combination of the product of the weak neutral couplings of the electron and the quark with a factor of six improvement in precision over world data. Precise data for the couplings are essential to search for physics beyond the Standard Model. The experiment took place in Hall A at Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) and data collection was completed in the end of 2009. A highly specialized counting data acquisition system with an inherent particle identification was developed and utilized. We have taken data at two Q2 points in order to possibly address the hadronic correction due to higher twist effects. An overview of the experiment will be presented.
Parity violation effects in the Josephson junction of a p-wave superconductor
International Nuclear Information System (INIS)
The electroweak theory describes nuclear beta-decay and weak effects in particle physics. One of the most characteristic properties of the electroweak interaction is spatial parity violation (PV). PV was experimentally observed in β decay, however, PV terms of the electroweak interaction also affect the interaction of electrons with the nuclei of the crystal lattice in solid state. Possible solid state systems where one may detect PV are superconductors. The main advantage of the investigation of PV effects with superconductors is the compact size and relatively low price of the experimental apparatus as compared to high-energy experiments. While the electroweak contribution is negligibly low in conventional s-wave superconductors, we show that the effect is significantly increased in unconventional p-wave ferromagnetic superconductors. We predict values several orders of magnitude higher than for the s-wave case, forecasting that the PV effect may be observed in superconductors in future.
Roca-Maza, X; Bortignon, P F; Brenna, M; Cao, Li-Gang; Centelles, M; Colò, G; Paar, N; Viñas, X; Vretenar, D; Warda, M
2013-01-01
Experimental and theoretical efforts are being devoted to the study of observables that can shed light on the properties of the nuclear symmetry energy. We present our new results on the excitation energy [X. Roca-Maza et al., Phys. Rev. C 87, 034301 (2013)] and polarizability of the Isovector Giant Quadrupole Resonance (IVGQR), which has been the object of new experimental investigation [S. S. Henshaw et al., Phys. Rev. Lett. 107, 222501 (2011)]. We also present our theoretical analysis on the parity violating asymmetry at the kinematics of the Lead Radius Experiment [S. Abrahamyan et al. (PREx Collaboration), Phys. Rev. Lett. 108, 112502 (2012)] and highlight its relation with the density dependence of the symmetry energy [X. Roca-Maza et al., Phys. Rev. Lett. 106, 252501 (2011)].
Realizing the supersymmetric inverse seesaw model in the framework of R-parity violation
Pires, C A de S; da Silva, P S Rodrigues
2016-01-01
If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw mechanism, on the other it is a challenge to find scenarios capable of realizing it. In this work we propose a scenario, based on the framework of R-parity violation, that realizes minimally the supersymmetric inverse seesaw mechanism. In it the energy scale parameters involved in the mechanism are recognized as the vacuum expectation values of the scalars that compose the superfields $\\hat N^C$ and $\\hat S$. We develop also the scalar sector of the model and show that the Higgs mass receives a new tree-level contribution that, when combined with the standard contribution plus loop correction, is capable of attaining $125$GeV without resort to heavy stops.
International Nuclear Information System (INIS)
The nuclear symmetry energy is a basic ingredient of the nuclear equation of state: it accounts for the energy cost per nucleon to convert all protons into neutrons in symmetric nuclear matter. Experimental and theoretical efforts are being devoted to the study of observables that can shed light on the properties of the nuclear symmetry energy. We present our new results on the excitation energy and polarizability of the Isovector Giant Quadrupole Resonance (IVGQR), which has been the object of new experimental investigation. We also present our theoretical analysis on the parity violating asymmetry at the kinematics of the Lead Radius Experiment (PREx) and highlight its relation with the density dependence of the symmetry energy. Most results deal with 208Pb nucleus
Parity Violation in Deep Inelastic Scattering at JLab 6 GeV
Energy Technology Data Exchange (ETDEWEB)
Xiaochao Zheng
2006-05-16
The parity-violating asymmetry in e-$^2$H deep inelastic scattering (DIS) can be used to extract the weak neutral-current coupling constants $C_{2q}$. A measurement of this asymmetry at two $Q^2$ values is planned at Jefferson Lab. Results from this experiment will provide a value of $2C_{2u}-C_{2d}$ to a precision of $\\pm 0.03$, a factor of eight improvement over our current knowledge. If all hadronic effects can be understood, this results will provide information on possible extensions of the Standard Model, complementary to other experiments dedicated to new physics searches. Presented here are the physics motivation, experimental setup, potential hadronic effects and their implications, and the future of PV DIS at Jefferson Lab.
On the theory of the decaying developed turbulence with spontaneous parity violation
International Nuclear Information System (INIS)
The statistical approach of maximal randomness of the velocity field is extended for the case of decaying turbulence with spontaneous parity violation. The set of self-consistent equations in one-loop approximation is obtained. It is without the infrared and ultraviolet divergences and has a scaling solution which leads to Kolmogorov spectrum in inertial range of wave numbers K and gives the well-known time-dependence laws for integral turbulence scale rc(t)∼t2/5 and turbulent energy per mass e(t) ∼ t-6/5. The set of equations for scaling functions of energy and helicity spectral density, depending only on dimensionless parameter krc, is presented. (author). 8 refs
Yamanaka, Nodoka; Kubota, Takahiro
2012-01-01
We reexamine the R-parity violating contribution to the fermion electric and chromo-electric dipole moments (EDM and cEDM) in the two-loop diagrams. It is found that the leading Barr-Zee type two-loop contribution is smaller than the result found in previous works, and that EDM experimental data provide looser limits on RPV couplings.
Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV
International Nuclear Information System (INIS)
The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries APV of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q2 values of 1.1 and 1.9 (GeV/c)2. The asymmetry at Q2=1.9 (GeV/c)2 can be used to extract the weak coupling combination 2C2u - C2d, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q2 values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first APV data in the resonance region beyond the Δ(1232). They provide evidence that the quark hadron duality works for APV at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements
Search for bosonic stop decays in R-parity violating supersymmetry in e+ p collisions at HERA
Aktas, A.; Andreev, V.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bähr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, Ch.; Berger, N.; Berndt, T.; Bizot, J. C.; Böhme, J.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brisson, V.; Bröker, H.-B.; Brown, D. P.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Caron, S.; Cassol-Brunner, F.; Cerny, K.; Chekelian, V.; Contreras, J. G.; Coppens, Y. R.; Coughlan, J. A.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; Delcourt, B.; Demirchyan, R.; De Roeck, A.; Desch, K.; De Wolf, E. A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dubak, A.; Duprel, C.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y. H.; Flucke, G.; Flügge, G.; Fomenko, A.; Foresti, I.; Formánek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garutti, E.; Garvey, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grässler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hajduk, L.; Haller, J.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Henshaw, O.; Herrera, G.; Herynek, I.; Heuer, R.-D.; Hildebrandt, M.; Hiller, K. H.; Höting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keller, N.; Kennedy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Koblitz, B.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Krüger, K.; Kückens, J.; Kuhr, T.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laycock, P.; Lebedev, A.; Leißner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Lüke, D.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morozov, I.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nagovizin, V.; Nankov, K.; Naroska, B.; Naumann, J.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nikitin, D.; Nowak, G.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Ossoskov, G.; Ozerov, D.; Paramonov, A.; Pascaud, C.; Patel, G. D.; Peez, M.; Perez, E.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Pöschl, R.; Portheault, B.; Povh, B.; Raicevic, N.; Reimer, P.; Reisert, B.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Sauvan, E.; Schätzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlák, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L. N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Uraev, A.; Urban, M.; Usik, A.; Utkin, D.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Van Remortel, N.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vest, A.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Wagner, J.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winter, G.-G.; Wissing, Ch.; Woehrling, E.-E.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zohrabyan, H.; Zomer, F.; H1 Collaboration
2004-10-01
A search for scalar top quarks in R-parity violating supersymmetry is performed in e+ p collisions at HERA using the H1 detector. The data, taken at √{ s} = 319GeV and 301 GeV, correspond to an integrated luminosity of 106pb-1. The resonant production of scalar top quarks t˜ in positron quark fusion via an R-parity violating Yukawa coupling λ‧ is considered with the subsequent bosonic stop decay t˜ →b˜ W. The R-parity violating decay of the sbottom quark b˜ → dνbare and leptonic and hadronic W decays are considered. No evidence for stop production is found in the search for bosonic stop decays nor in a search for the direct R-parity violating decay t˜ → eq. Mass dependent limits on λ‧ are obtained in the framework of the minimal supersymmetric Standard Model. Stop quarks with masses up to 275GeV can be excluded at the 95% confidence level for a Yukawa coupling of electromagnetic strength.
Search for bosonic stop decays in R-parity violating supersymmetry in e$^{+}$ p collisions at HERA
Aktas, A; Anthonis, T; Asmone, A; Babaev, A; Backovic, S; Bähr, J; Baranov, P; Barrelet, E; Bartel, Wulfrin; Baumgartner, S; Becker, J; Beckingham, M; Behnke, O; Behrendt, O; Belousov, A; Berger, C; Berger, N; Berndt, T; Bizot, J C; Böhme, J; Boenig, M O; Boudry, V; Bracinik, J; Brisson, V; Broker, H B; Brown, D P; Bruncko, Dusan; Büsser, F W; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Caron, S; Cassol-Brunner, F; Cerny, K; Chekelian, V; Contreras, J G; Coppens, Y R; Coughlan, J A; Cox, B E; Cozzika, G; Cvach, J; Dainton, J B; Dau, W D; Daum, K; Delcourt, B; Demirchyan, R; de Roeck, A; Desch, Klaus; De Wolf, E A; Diaconu, C; Dingfelder, J; Dodonov, V; Dubak, A; Duprel, C; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, F; Ellerbrock, M; Elsen, E; Erdmann, M; Erdmann, W; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Ferencei, J; Fleischer, M; Fleischmann, P; Fleming, Y H; Flucke, G; Flügge, G; Fomenko, A; Foresti, I; Formánek, J; Franke, G; Frising, G; Gabathuler, Erwin; Gabathuler, K; Garutti, E; Garvey, J; Gayler, J; Gerhards, R; Gerlich, C; Ghazaryan, S; Ginzburgskaya, S; Görlich, L; Gogitidze, N; Gorbounov, S; Grab, C; Grässler, Herbert; Greenshaw, T; Gregori, M; Grindhammer, G; Gwilliam, C; Haidt, D; Hajduk, L; Haller, J; Hansson, M; Heinzelmann, G; Henderson, R C W; Henschel, H; Henshaw, O; Herrera-Corral, G; Herynek, I; Heuer, R D; Hildebrandt, M; Hiller, K H; Hoting, P; Hoffmann, D; Horisberger, R P; Hovhannisyan, A; Ibbotson, M; Ismail, M; Jacquet, M; Janauschek, L; Janssen, X; Jemanov, V; Jönsson, L B; Johnson, D P; Jung, H; Kant, D; Kapichine, M; Karlsson, M; Katzy, J; Keller, N; Kennedy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Klimkovich, T; Kluge, T; Knies, G; Knutsson, A; Koblitz, B; Korbel, V; Kostka, P; Koutouev, R; Kropivnitskaya, A; Kroseberg, J; Krüger, K; Kuckens, J; Kuhr, T; Landon, M P J; Lange, W; Lastoviicka, T; Laycock, P; Lebedev, A; Leiner, B; Lemrani, R; Lendermann, V; Levonian, S; Lindfeld, L; Lipka, K; List, B; Lobodzinska, E; Loktionova, N A; López-Fernandez, R; Lubimov, V; Lüders, H; Lüke, D; Lux, T; Lytkin, L; Makankine, A; Malden, N; Malinovskii, E I; Mangano, S; Marage, P; Marks, J; Marshall, R; Martisikova, M; Martyn, H U; Maxfield, S J; Meer, D; Mehta, A; Meier, K; Meyer, A B; Meyer, H; Meyer, J; Mikocki, S; Milcewicz-Mika, I; Milstead, D; Mohamed, A; Moreau, F; Morozov, A; Morozov, I; Morris, J V; Mozer, M U; Müller, K; Murn, P; Nagovizin, V; Nankov, K; Naroska, Beate; Naumann, J; Naumann, T; Newman, P R; Niebuhr, C B; Nikiforov, A; Nikitin, D K; Nowak, G; Nozicka, M; Oganezov, R; Olivier, B; Olsson, J E; Ossoskov, G; Ozerov, D; Paramonov, A A; Pascaud, C; Patel, G D; Peez, M; Pérez, E; Perieanu, A; Petrukhin, A; Pitzl, D; Placakyte, R; Pöschl, R; Portheault, B; Povh, B; Raicevic, N; Reimer, P; Reisert, B; Rimmer, A; Risler, C; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A A; Rurikova, Z; Rusakov, S V; Rybicki, K; Sankey, D P C; Sauvan, E; Schatzel, S; Scheins, J; Schilling, F P; Schleper, P; Schmidt, S; Schmitt, S; Schneider, M; Schoeffel, L; Schöning, A; Schröder, V; Schultz-Coulon, H C; Schwanenberger, C; Sedlak, K; Sefkow, F; Shevyakov, I; Shtarkov, L N; Sirois, Y; Sloan, T; Smirnov, P; Soloviev, Yu; South, D; Spaskov, V; Specka, A; Spitzer, H; Stamen, R; Stella, B; Stiewe, J; Strauch, I; Straumann, U; Tchoulakov, V; Thompson, G; Thompson, P D; Tomasz, F; Traynor, D; Truöl, P; Tsipolitis, G; Tsurin, I; Turnau, J; Tzamariudaki, E; Uraev, A; Urban, M; Usik, A; Utkin, D; Valkár, S; Valkárová, A; Vallée, C; Van Mechelen, P; Van Remortel, N; Vargas, A; Trevino; Vazdik, Ya A; Veelken, C; Vest, A; Vinokurova, S; Volchinski, V; Wacker, K; Wagner, J; Weber, G; Weber, R; Wegener, D; Werner, C; Werner, N; Wessels, M; Wessling, B; Winter, G G; Wissing, C; Woerling, E E; Wolf, R; Wünsch, E; Xella, S M; Yan, W; Yeganov, V; Zaicek, J; Zaleisak, J; Zhang, Z; Zhelezov, A; Zhokin, A; Zohrabyan, H G; Zomer, F
2004-01-01
A search for scalar top quarks in R-parity violating supersymmetry is performed in e^+ p collisions at HERA using the H1 detector. The data, taken at sqrt{s}=319 GeV and 301 GeV, correspond to an integrated luminosity of 106 pb^-1. The resonant production of scalar top quarks \\tilde{t} in positron quark fusion via an R-parity violating Yukawa coupling lambda' is considered with the subsequent bosonic stop decay \\tilde{t} -> \\tilde{b} W. The R-parity violating decay of the sbottom quark tilde{b} -> d \\bar{nu_e} and leptonic and hadronic W decays are considered. No evidence for stop production is found in the search for bosonic stop decays nor in a search for the direct R-parity violating decay \\tilde{t} -> eq. Mass dependent limits on lambda' are obtained in the framework of the Minimal Supersymmetric Standard Model. Stop quarks with masses up to 275 GeV can be excluded at the 95% confidence level for a Yukawa coupling of electromagnetic strength.
A search for R-parity violating squark production with the H1 experiment at HERA
Energy Technology Data Exchange (ETDEWEB)
Herbst, Michael Clemens
2011-12-15
A search for R-parity violating supersymmetry is performed in the complete HERA data set taken at a centre-of-mass energy of {radical}(s)=319 GeV with the H1 detector. The integrated luminosity of the data sets corresponds to 255 pb{sup -1} of positron-proton, and 183 pb{sup -1} of electron-proton collision data. By introducing a lepton-quark-squark coupling {lambda}{sup '} the resonant production of single squarks is expected. Several exclusive selection channels, based on the topologies of final states expected from direct squark decays, and squark decays via gauginos are defined. The selection channels are based on an electron or a neutrino in the final state, and may contain further jets and leptons. All of the selection channels show a good agreement with the background expectation from standard model processes. The results are interpreted in terms of exclusion limits, obtained for the minimal supersymmetric standard model, and for the minimal supergravity model, constraining the strength of the R-parity violating couplings {lambda}{sub 1j1}{sup '} and {lambda}{sub 11k}{sup '}, and the supersymmetric model parameters, under the single coupling dominance hypothesis. For an R{sub p} coupling strength comparable to the electromagnetic coupling strength, {lambda}{sub 1j1}{sup '} or {lambda}{sub 11k}{sup '}={radical}(4{pi}{alpha}{sub em})=0.3, squark masses up to 275 GeV are excluded for u{sup j}{sub L} squarks, with d{sup k}{sub R} squarks further excluded up to 290 GeV, for all three squark generations j,k=1,2,3 at the 95% confidence level. (orig.)
Hadronic parity violation in $\\vec{n} p \\to d \\gamma$ with effective field theory
Hyun, C H; Desplanques, B
2006-01-01
The parity-violating nucleon-nucleon ($NN$) potential is considered up to next-to-next-to leading order in heavy-baryon chiral perturbation theory. We include the one-pion exchange at the leading order and the two-pion exchange and two-nucleon contact terms at the next-to-next-to-leading order. The effects of intermediate (two-pion exchange) and short-range (two-nucleon contact) terms are probed by calculating the photon asymmetry $A_\\gamma$ in $\\vec{n} p \\to d \\gamma$ employing Siegert's theorem and an accurate phenomenological potential for the parity-conserving $NN$ interaction. We explore in detail the uncertainties due to the parameters that control the contribution of the short-range interaction. We obtain about 20% uncertainty in the value of $A_\\gamma$ up to the next-to-next-to leading order. We discuss its implication for the determination of the weak pion-nucleon coupling constant and how the uncertainty can be reduced.
Isospin violating decays of positive parity $B_s$ mesons in HM$\\chi$PT
Brdnik, Anita Prapotnik
2016-01-01
Recent lattice QCD results suggest that the masses of the first two positive parity $B_s$ mesons lie below the BK threshold, similar to the case of $D^*_{s0}(2317)^+$ and $D_{s1}(2460)^+$ mesons. The mass spectrum of $B_s$ mesons seems to follow pattern of $D_s$ mass spectrum. As in the case of charmed mesons, the structure of positive parity $B_s$ mesons is very intriguing. To shed more light on this issue, we investigate strong isospin violating decays $B_s(0^+) \\to B_s^0 \\pi^0$, $B_s(1^+) \\to B_s^{*0} \\pi^0$ and $B_s(1^+) \\to B_s^0 \\pi \\pi$ within heavy meson chiral perturbation theory. The two body decay amplitude arises at the tree level and we show that the loop corrections give significant contributions. On the other hand, in the case of three body decay $B_s(1^+) \\to B_s^0 \\pi \\pi$ amplitude occurs only at the loop level. We find that the decay widths for these decays are: $\\Gamma (B_s(1^+) \\to B_s^0 \\pi \\pi)\\sim 10^{-3}\\,$keV and $\\Gamma (B_s(0^+) \\to B_s^0 \\pi^0) \\leq 55\\,$keV, $\\Gamma (B_s(1^+) \\to...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In the minimal supersymmetric standard model with R-parity violation, the lepton number violating top quark interactions can contribute to the top pair production at a linear collider via tree-level u-channel squark exchange diagrams. We calculate such contributions and find that in the allowed range of these R-violating couplings, the top pair production rate as well as the top quark polarization and the forward-backward asymmetry can be significantly altered.By comparing the unpolarized beams with the polarized beams, we find that the polarized beams are more powerful in probing such new physics.
Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Mercado, Luis [Univ. of Massachusetts, Amherst, MA (United States)
2012-05-01
This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z^{0} boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q^{2} = 0.62 GeV^{2}. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (G^{s}_{E,M} ) to the nucleon electromagnetic form factors. A value of A_{PV} = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in G^{s}_{E} + 0.517G^{s}_{M} = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q^{2} = 0.009 GeV^{2}. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the ^{208}Pb nucleus. The Z^{0} boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.
Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krstic, J; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Masik, J; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwering, B; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Solovyanov, O; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stanic, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C F; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G
2000-01-01
Searches for pair production of supersymmetric particles in e$^{+}$e$^{-}$ collisions at centre-of-mass energy of 183~GeV have been performed on DELPHI data under the assumption that $R$-parity is not conserved. Only one $R$-parity violating coupling of $\\lambda$ type, which couples the sleptons to the leptons ($LL \\bar{E}$ term), is considered to be dominant at a time. Since in models with $R$-parity violation any supersymmetric particle can be the lightest one, searches for charginos, neutralinos, sleptons and squarks have been performed both for direct $R$-parity violating decays and for indirect cascade decays. Morever, it is assumed that the strength of the $R$-parity violating couplings is such that the lifetimes can be neglected. The present study?base=prep
Measurement of the parity nonconserving neutral weak interaction in atomic thallium
International Nuclear Information System (INIS)
This thesis describes an experiment to measure parity nonconservation in atomic thallium. A frequency doubled, flashlamp pumped tunable dye laser is used to excite the 6P/sub 1/2/(F = 0) → 7P/sub 1/2/(F = 1) transition at 292.7 nm, with circularly polarized light. An electrostatic field E of 100 to 300 V/cm causes this transition to occur via Stark induced electric dipole. Two field free transitions may also occur: a highly forbidden magnetic dipole M, and a parity nonconserving electric dipole epsilon/sub P/. The latter is presumed to be due to the presence of a weak neutral current interaction between the 6p valence electron and the nucleus, as predicted by gauge theories which unite the electromagnetic and weak interactions. Both M and epsilon/sub P/ interfere with the Stark amplitude βE to produce a polarization of the 7P/sub 1/2/ state. This is measured with a circularly polarized infrared laser beam probe, tuned to the 7P/sub 1/2/ → 8S/sub 1/2/ transition. This selectively excites m/sub F/ = +1 or -1 components of the 7P/sub 1/2/ state, and the polarization is seen as an asymmetry in 8S → 6P/sub 3/2/ fluorescence when the probe helicity is reversed. The polarization due to M is Δ/sub M/ = -2M/(BETAE). It is used to calibrate the analyzing efficiency. The polarization due to epsilon/sub P/ is Δ/sub P/ = 2i epsilon/sub P//(βE), and can be distinguished from Δ/sub M/ by its properties under reversal of the 292.7 nm photon helicity and reversal of the laser direction. A preliminary measurement yielded a parity violation in agreement with the gauge theory of Weinberg and Salam
A novel string-derived Z' with stable proton, light neutrinos and R-parity violation
International Nuclear Information System (INIS)
The standard model indicates the realization of grand unified structures in nature, and it can only be viewed as an effective theory below a higher energy cutoff. While the renormalizable standard model forbids proton decay mediating operators due to accidental global symmetries, many extensions of the standard model introduce such dimension 4, 5 and 6 operators. Furthermore, quantum gravity effects are expected to induce proton instability, indicating that the higher energy cutoff scale must be above 1016 GeV. Quasi-realistic heterotic string models provide the arena to explore how perturbative quantum gravity affects the particle physics phenomenology. An appealing explanation for the proton longevity is provided by the existence of an Abelian gauge symmetry that suppresses the proton decay mediating operators. Additionally, such a low scale U(1) symmetry should feature the following: it should allow for the suppression of the left-handed neutrino masses by a seesaw mechanism; allow for fermion Yukawa couplings to the electroweak Higgs doublets; be anomaly free; and finally be family universal. These requirements render the existence of such U(1) symmetries in quasi-realistic heterotic string models highly non-trivial. We demonstrate the existence of a U(1) symmetry that satisfies all of the above requirements in a class of left-right symmetric heterotic string models in the free fermionic formulation. The existence of the extra Z' in the energy range accessible to future experiments is motivated by the requirement of adequate suppression of proton decay mediation. We further show that, while the extra U(1) forbids dimension 4 baryon number violating operators, it allows dimension 4 lepton number violating operators and R-parity violation. (orig.)
Search for R-Parity violating effects at $\\sqrt{s}$ 161 and 172 GeV
Arnoud, Y; Berat, C; Witek, M; Vassilopoulos, N; Sajot, G; Richard, F; Nicolaidou, R; Pimenta M; Papadopoulou, Th D; Palka, H; Onofre, A; Lola, S; Kluit, P; Katsanevas, S; Gris, P; Fichet, S; Cieslik, K; Boonekamp, M
1997-01-01
Searches for charginos, neutralinos and sleptons in e+ e collisions at center-of-mass energies of 161 and 172 GeV have been performed on DELPHI data, under the assumptions that R-Parity is not conserved and that the dominant R-Parity violating couplings involve only leptonic or only quark elds. Particular emphasis is given in decays involving, the minimally constrained by low-energy studies, third generation couplings including 's and b quarks in the decay products. Squark decays are also studied for the same energies assuming that the dominant R-Parity violating couplings involve a mixture of leptonic and quark elds. In the above studies, it is assumed that the strength of the couplings is such that the lifetimes can be neglected. These searches are used to constraint domains of the parameter space, previously explored under the assumption of R-Parity conservation. Further, the single sparticle production, possible when R-parity is not conserved, is studied. In particular the single squark production and the...
Search for charginos and neutralinos with R-parity violation at $\\sqrt{s}$ = 130 and 136 GeV
Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palla, Fabrizio; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Greene, A M; Hoffmann, C; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
Searches for charginos and neutralinos produced in e+e- collisions at centre-of-mass energies of 130 and 136 GeV have been performed under the assumptions that R-parity is not conserved, that the dominant R-parity violating coupling involves only leptonic fields, and that the lifetime of the lightest supersymmetric particle can be neglected. In the 5.7 pb-1 data sample collected by ALEPH, no candidate events were found. As a result, chargino and neutralino masses and couplings are constrained and the domains previously excluded at LEP1 are extended.
Search for Spontaneous R-parity violation at $\\sqrt{s}$ = 183 GeV and 189 GeV
Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Bracko, M; Branchini, P; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Charpentier, P; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Costa, M; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Hondt, J; Dalmau, J; Davenport, M; Da Silva, W; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Engel, J P; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fernández, J; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Geralis, T; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Gracco, Valerio; Grahl, J; Graziani, E; Gris, P; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hauler, F; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Higón, E; Holmgren, Sven Olof; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huber, M; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Jeans, D; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Jungermann, L; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kernel, G; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Kluit, P M; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Leinonen, L; Leisos, A; Leitner, R; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liebig, W; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Merle, E; Meroni, C; Meyer, W T; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moraes, D; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Mundim, L M; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Negri, P; Neufeld, N; Nicolaidou, R; Nielsen, B S; Niezurawski, P; Nikolenko, M; Nomokonov, V P; Nygren, A; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pavel, T; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Rehn, J; Reid, D; Reinertsen, P L; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Ripp-Baudot, I; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Savoy-Navarro, Aurore; Schwemling, P; Schwering, B; Schwickerath, U; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seibert, N; Sekulin, R L; Sette, G; Shellard, R C; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stanitzki, M; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Terranova, F; Timmermans, J; Tinti, N; Tkatchev, L G; Tobin, M; Todorova-Nová, S; Tomé, B; Tonazzo, A; Tortora, L; Tortosa, P; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Ullaland, O; Valenti, G; Vallazza, E; van Dam, P; Van den Boeck, W; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verdier, P; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vodopyanov, A S; Voulgaris, G; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zinchenko, A I; Zoller, P; Zumerle, G; Zupan, M
2001-01-01
Searches for spontaneous $R$-parity violating signals at $\\sqrt{s}=183$\\,GeV and \\mbox{$\\sqrt{s}=189$\\,GeV} have been performed using 1997 and 1998 DELPHI data, under the assumption of $R$-parity breaking in the third lepton family. The expected topology for the decay of a pair of charginos into two acoplanar taus plus missing energy was investigated and no evidence for a signal was found. The results were used to derive a limit on the chargino mass and to constrain the allowed domains of the MSSM parameter sp.
Yamanaka, Nodoka; Kubota, Takahiro
2013-01-01
The contribution of the R-parity violating supersymmetric model to the fermion electric dipole moment at the two-loop level is analyzed. We show that in general, the Barr-Zee type contribution to the fermion electric dipole moment with the exchange of W and Z bosons is not small compared to the currently known photon exchange one with R-parity violating interactions. We will then give new upper bounds on the imaginary parts of R-parity violating couplings from the experimental data of the electric dipole moments of the electron and of the neutron.
Yang, Ya-Dong; Wang, Rumin; Lu, G.R.
2005-01-01
Recent experiments suggest that certain data of $B \\to \\pi\\pi,\\pi K$ decays are inconsistent with the standard model expectations. We try to explain the discrepancies with R-parity violating suppersymmetry. By employing the QCD factorization approach, we study these decays in the minimal supersymmetric standard model with R-parity violation. We show that R-parity violation can resolve the discrepancies in both $B \\to \\pi\\pi$ and $B \\to \\pi K$ decays, and find that in some regions of parameter...
Search for r-parity violating supersymmetry in multilepton final states with the D0 detector
Energy Technology Data Exchange (ETDEWEB)
Kaefer, Daniela; /Aachen, Tech. Hochsch.
2006-11-01
Results obtained from a search for the trilepton signature {mu}{mu}{ell} (with {ell} = e, or {mu}) are combined with two complementary searches for the trilepton signatures ee{ell} and eer and interpreted in the framework of R-parity violating Supersymmetry. Pairwise, R-parity conserving production of the supersymmetric particles is assumed, followed by R-parity violating decays via an LL{bar E}-operator with one dominant coupling {lambda}{sub 122}. An LL{bar E}-operator couples two weak isospin doublet and one singlet (s)lepton fields and thus violates lepton number conservation. The data, collected with the D0 detector at the Fermilab proton-antiproton collider Tevatron, corresponds to an integrated luminosity of {integral} L dt = 360 {+-} 23 pb{sup -1}. No evident is observed, while 0.41 {+-} 0.11(stat) {+-} 0.07(sys) events are expected from Standard Model processes. The resulting 95% confidence level cross section limits on new physics producing a {mu}{mu}{ell} signature in the detector are of the order of 0.020 to 0.136 pb. They are interpreted in two different supersymmetry scenarios: the mSUGRA and the MSSM model. The corresponding lower limits on the masses of the lightest neutralino ({tilde {chi}}{sub 1}{sup 0}) and the lightest chargino ({tilde {chi}}{sub 1}{sup {+-}}) in case of the mSUGRA model are found to be in the range of: mSUGRA, {mu} > 0: M({tilde {chi}}{sub 1}{sup 0}) {approx}> 115-128 GeV and M({tilde {chi}}{sub 1}{sup {+-}}) {approx}> 215-241 GeV; mSUGRA, {mu} < 0: ({tilde {chi}}{sub 1}{sup 0}) {approx}> 101-114 GeV and M({tilde {chi}}{sub 1}{sup {+-}}) {approx}> 194-230 GeV, depending on the actual values of the model parameters: m{sub 0}, m{sub 1/2}, A{sub 0}, tan{beta}, and {mu}. The first and second parameters provide the boundary conditions for the masses of the supersymmetric spin-0 and spin-1/2 particles, respectively, while A{sub 0} gives the universal value for the trilinear couplings at the GUT scale. The parameter tan {beta} denotes
International Nuclear Information System (INIS)
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from the proton. The result is A = -15.05 +- 0.98(stat) ± 0.56(syst) ppm at the kinematic point thetalab = 12.3 degrees and Q2 = 0.477 (GeV/c)2. The measurement implies that the value for the strange form factor (GEs + 0.392 GMs)/(GMp μp) = 0.069 +- 0.056 +- 0.039, where the first error is experimental and the second arises from the uncertainties in electromagnetic form factors. This measurement is the first fixed-target parity violation experiment that used either a ''strained'' GaAs photocathode to produce highly polarized electrons or a Compton polarimeter to continuously monitor the electron beam polarization
Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Kalogeropoulos, Alexis; Keaveney, James; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Selvaggi, Michele; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sgandurra, Louis; Sordini, Viola; Tschudi, Yohann; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Heine, Kristin; Höing, Rebekka Sophie; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Marchesini, Ivan; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Troendle, Daniel; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Kornmayer, Andreas; Lobelle Pardo, Patricia; Martschei, Daniel; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Radics, Balint; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Mittal, Monika; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Saxena, Pooja; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Tosi, Silvano; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Passaseo, Marina; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Triossi, Andrea; Zotto, Pierluigi; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Oh, Young Do; Park, Hyangkyu; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Grigelionis, Ignas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Almeida, Nuno; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Jorda, Clara; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Roeck, Albert; De Visscher, Simon; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hartl, Christian; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lee, Yen-Jie; Lourenco, Carlos; Magini, Nicolo; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mulders, Martijn; Musella, Pasquale; Nesvold, Erik; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Quertenmont, Loic; Racz, Attila; Reece, William; Rolandi, Gigi; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Chiochia, Vincenzo; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Tupputi, Salvatore; Verzetti, Mauro; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarlı, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Takasugi, Eric; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Hanson, Gail; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Veverka, Jan; Wilkinson, Richard; Xie, Si; Yang, Yong; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Lacroix, Florent; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Griffiths, Scott; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Hu, Guofan; Maksimovic, Petar; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Stringer, Robert; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Peterman, Alison; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Kim, Yongsun; Klute, Markus; Lai, Yue Shi; Levin, Andrew; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Gonzalez Suarez, Rebeca; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Wolfe, Homer; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Jung, Kurt; Koybasi, Ozhan; Kress, Matthew; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Wang, Fuqiang; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Cerizza, Giordano; Hollingsworth, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Kaadze, Ketino; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Loveless, Richard; Mohapatra, Ajit; Mozer, Matthias Ulrich; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua
2013-01-01
A search for anomalous production of events with three or more isolated leptons and bottom-quark jets produced in pp collisions at $\\sqrt{s}$ = 8 TeV is presented. The analysis is based on a data sample corresponding to an integrated luminosity of 19.5 inverse femtobarns collected by the CMS experiment at the LHC in 2012. No excess above the standard model expectations is observed. The results are interpreted in the context of supersymmetric models with signatures that have low missing transverse energy arising from light top-squark pair production with R-parity-violating decays of the lightest supersymmetric particle. In two models with different R-parity-violating couplings, top-squarks are excluded below masses of 1020 GeV and 820 GeV, respectively, when the lightest supersymmetric particle has a mass of 200 GeV.
A high power liquid hydrogen target for the Mainz A4 parity violation experiment
Altarev, I S; Baunack, S; Capozza, L; Diefenbach, J; Grimm, K; Hammel, T; Imai, Y; Kabuss, E M; Kothe, R; Lee, J H; Lopes-Ginja, A; Maas, F E; Sanchez-Lorente, A; Stephan, G; Weinrich, C; Hammel, Th.
2006-01-01
We present a new powerful liquid hydrogen target developed for the precise study of parity violating electron scattering on hydrogen and deuterium. This target has been designed to have minimal target density fluctuations under the heat load of a 20$\\mu$A CW 854.3 MeV electron beam without rastering the electron beam. The target cell has a wide aperture for scattered electrons and is axially symmetric around the beam axis. The construction is optimized to intensify heat exchange by a transverse turbulent mixing in the hydrogen stream, which is directed along the electron beam. The target is constructed as a closed loop circulating system cooled by a helium refrigerator. It is operated by a tangential mechanical pump with an optional natural convection mode. The cooling system supports up to 250 watts of the beam heating removal. Deeply subcooled liquid hydrogen is used for keeping the in-beam temperature below the boiling point. The target density fluctuations are found to be at the level 10$^{-3}$ at a beam ...
Role of particle masses in the magnetic field generation driven by the parity violating interaction
Dvornikov, Maxim
2016-09-01
Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven by the parity violating interaction, was proposed. In this model, the magnetic field instability results from the modification of the chiral magnetic effect in presence of the electroweak interaction between ultrarelativistic electrons and nucleons. In the present work we study how a nonzero mass of charged particles, which are degenerate relativistic electrons and nonrelativistic protons, influences the generation of the magnetic field in frames of this approach. For this purpose we calculate the induced electric current of these charged particles, electroweakly interacting with background neutrons and an external magnetic field, exactly accounting for the particle mass. This current is calculated by two methods: using the exact solution of the Dirac equation for a charged particle in external fields and computing the polarization operator of a photon in matter composed of background neutrons. We show that the induced current is vanishing in both approaches leading to the zero contribution of massive particles to the generated magnetic field. We discuss the implication of our results for the problem of the magnetic field generation in compact stars.
Constraints on parity violation from ACTpol and forecasts for forthcoming CMB experiments
Molinari, Diego; Natoli, Paolo
2016-01-01
We use the ACTpol published cosmic microwave background (CMB) polarization data to constrain cosmological birefringence, a tracer of parity violation beyond the standard model of particle physics. To this purpose, we employ all the polarized ACTpol spectra, including the cross-correlations between temperature anisotropy and B mode polarization (TB) and between E mode and B mode (EB), which are most sensitive to the effect. We build specific, so-called D-estimators for birefringence and assess their performances and error budgets by using realistic Monte Carlo simulations based on the experimental characteristics provided by the ACTpol collaboration. We determine the optimal multipole range for our analysis to be $250 < \\ell < 3025$ over which we find a null result for the birefringence angle $\\alpha = 0.29^\\circ \\pm 0.28^\\circ$ (stat.) $\\pm 0.5^\\circ$ (syst.), the latter uncertainty being the estimate published by the ACTpol team on their global systematic error budget. We show that this result holds co...
Weijo, Ville; Bast, Radovan; Manninen, Pekka; Saue, Trond; Vaara, Juha
2007-02-21
We examine the quantum chemical calculation of parity-violating (PV) electroweak contributions to the spectral parameters of nuclear magnetic resonance (NMR) from a methodological point of view. Nuclear magnetic shielding and indirect spin-spin coupling constants are considered and evaluated for three chiral molecules, H2O2, H2S2, and H2Se2. The effects of the choice of a one-particle basis set and the treatment of electron correlation, as well as the effects of special relativity, are studied. All of them are found to be relevant. The basis-set dependence is very pronounced, especially at the electron correlated ab initio levels of theory. Coupled-cluster and density-functional theory (DFT) results for PV contributions differ significantly from the Hartree-Fock data. DFT overestimates the PV effects, particularly with nonhybrid exchange-correlation functionals. Beginning from third-row elements, special relativity is of importance for the PV NMR properties, shown here by comparing perturbational one-component and various four-component calculations. In contrast to what is found for nuclear magnetic shielding, the choice of the model for nuclear charge distribution--point charge or extended (Gaussian)--has a significant impact on the PV contribution to the spin-spin coupling constants. PMID:17328593
Subedi, Ramesh; Pan, Kai; Deng, Xiaoyan; Michaels, Robert; Reimer, Paul E; Shahinyan, Albert; Wojtsekhowski, Bogdan; Zheng, Xiaochao
2013-01-01
An experiment that measured the parity violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the $10^{-4}$ level needed to be measured at event rates up to 500 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: The pion contamination in the electron samples was controlled at the order of $2\\times 10^{-4}$ or below with an electron efficiency of higher than 91% throughout the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.2%, and the statistical quality of the asymmetry measuremen...
Measurement Of Neutron Radius In Lead By Parity Violating Scattering Flash ADC DAQ
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Zafar [Christopher Newport Univ., Newport News, VA (United States)
2012-06-01
This dissertation reports the experiment PREx, a parity violation experiment which is designed to measure the neutron radius in {sup 208}Pb. PREx is performed in hall A of Thomas Jefferson National Accelerator Facility from March 19th to June 21st. Longitudionally polarized electrons at energy 1 GeV scattered at and angle of {theta}{sub lab} = 5.8 {degrees} from the Lead target. Beam corrected pairty violaing counting rate asymmetry is (A{sub corr} = 594 ± 50(stat) ± 9(syst))ppb at Q{sup 2} = 0.009068GeV {sup 2}. This dissertation also presents the details of Flash ADC Data Acquisition(FADC DAQ) system for Moller polarimetry in Hall A of Thomas Jefferson National Accelerator Facility. The Moller polarimeter measures the beam polarization to high precision to meet the specification of the PREx(Lead radius experiment). The FADC DAQ is part of the upgrade of Moller polarimetery to reduce the systematic error for PREx. The hardware setup and the results of the FADC DAQ analysis are presented
Parity-Violating Electron Deuteron Scattering and the Proton's Neutral Axial Vector Form Factor
International Nuclear Information System (INIS)
The authors report on a new measurement of the parity-violating asymmetry in quasielastic electron scattering from the deuteron at the backward angles at electron beam energy of 125 MeV [Q2=0.038 (GeV/c)2]. This quantity provides a determination of the neutral weak axial vector form factor of the nucleon. In addition to the tree level amplitude associated with Z-exchange, the neutral weak axial vector form factor as measured in electron scattering can potentially receive large electroweak corrections, including the anapole moment, that are absent in neutrino scattering. The measured asymmetry A -3.51 ± 0.57 (stat) ± 0.58 (sys) ppm is consistent with theoretical predictions. We also report on updated results of the previous experiment at 200 MeV [Q2 = 0.091 (GeV/c)2] on a deuterium target. The updated results are also consistent with theoretical predictions on the neutral weal axial vector form factor
A measurement of the parity violating parameter Ab with a muon tag at the SLD
International Nuclear Information System (INIS)
We present a direct measurement of the parity violation parameter Ab, derived from the left-right forward-backward asymmetry of b quarks tagged via unions from semileptonic decays. The value of Ab is extracted using a maximum likelihood fit to the differential cross section for fermion production. The novelty of this measurement consists in the use of topological vertexing information alongside the more traditional decay kinematics to discriminate among the different sources of tagged leptons. The small and stable SLC beam spot and the CCD based vertex detector are used to reconstruct secondary decay vertices and to provide precise kinematic information and a highly efficient and pure B mass tag. A multivariate approach has been used, with a total of 4 tagging variables, whose correlation with each other has been taken into account. The final result has been cross-checked both with a classical cut-and-count method and combining all the information into a neural net. Based on the full SLD dataset of 550K Z0 events with highly polarized electron beams, this measurement represents an improvement of a factor of 2 with respect to the previously published result (1993-1995 only and with no vertexing information). The statistical sensitivity achieved is around 4% for Ab, making this a world-class single measurement. An estimate of Ac has been simultaneously derived from a common fit, with a precision of about 10%. (author)
Parity Violating Deep Inelastic Electron Scattering from the Deuteron at 6 GeV
International Nuclear Information System (INIS)
An experiment that measured the parity violating (PV) asymmetry Ad in e-2H deep inelastic scattering (DIS) at Q2 ~ 1.10 and 1.90 (GeV/c)2 and xB ~ 0.3 was completed in experimental Hall A at the Thomas Jefferson National Accelerator Facility. The asymmetry can be used to extract the neutral weak coupling combination (2C2u-C2d), providing a factor of five to six improvement over the current world data. To achieve this precision, asymmetries of the 10-4 level needed to be measured at event rates up to 500 kHz with high electron detection efficiency and high pion background rejection capability. A specialized scaler-based counting data acquisition system (DAQ) with hardware-based particle identification was successfully implemented. The statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes and the experimental goal of 3-4% statistical uncertainty was achieved. The design and performance of the new DAQ system is presented with the preliminary asymmetry results given in the end
A measurement of parity-violating asymmetries in the G0 experiment in forward mode
Energy Technology Data Exchange (ETDEWEB)
Silviu Doru Covrig
2004-09-28
The G0 experiment in Hall C at Jefferson Lab measures the parity-violating asymmetry in elastic electron scattering off hydrogen and quasielastic electron scattering off deuterium in the Q^2 range from 0.1 to 1 (GeV)^2 in both forward and backward running modes by using a longitudinally polarized electron beam on unpolarized liquid targets. By measuring three independent asymmetries, one in forward running mode off liquid hydrogen and two in backward running mode, one off liquid hydrogen and one off liquid deuterium, the experiment aims to perform for the first time a complete separation and mapping of the strange vector form factors of the nucleon (G_M^s, G_E^s) and the isovector axial form factor (G_A^e(T=1)) in three Q^2 bins over the Q^2 range from 0.1 to 1 (GeV/c)^2. To complete the physics program in both forward and backward modes it will take about five years. To accomplish the forward running mode program some 100 C of data are needed. This thesis is based on 9 C of physics data taken during the first chekout of the G^0 apparatus during October 2002 - January 2003.
Searches for R-Parity Violating Supersymmetry in Multilepton Final States with the ATLAS Detector
AUTHOR|(SzGeCERN)704343; Kroha, Hubert
This thesis presents two searches for signs of R-parity-violating supersymmetry (SUSY) through decays of the lightest supersymmetric particle (LSP) into two charged leptons and one neutrino. The searches are performed with the ATLAS experiment at the Large Hadron Collider (LHC) using a data set of $pp$ collisions at $\\sqrt{s} = 8\\TeV$ recorded during the 2012 LHC run, corresponding to an integrated luminosity of $20.3\\ifb$. As a prerequisite for these studies, which rely heavily on efficient reconstruction of charged leptons, a tag-and-probe method based on $Z\\to\\mu\\mu$ decays is developed to measure the muon reconstruction efficiency of the ATLAS experiment with an accuracy of $0.1\\%$ and validate the predictions made by the detector simulation. If the decay of the LSP occurs with a lifetime of less than about $1\\mm/c$, the standard reconstruction of leptons within ATLAS is efficient. A search for anomalous events with at least four charged leptons is presented. Since processes with four or more charg...
Parity Violating Deep Inelastic Electron Scattering from the Deuteron at 6 GeV
Energy Technology Data Exchange (ETDEWEB)
Pan, Kai [Massachusetts Institute of Technology, Cambridge, MA (United States)
2013-02-01
An experiment that measured the parity violating (PV) asymmetry A_{d} in e-^{2}H deep inelastic scattering (DIS) at Q^{2} ~ 1.10 and 1.90 (GeV/c)^{2} and x_{B} ~ 0.3 was completed in experimental Hall A at the Thomas Jefferson National Accelerator Facility. The asymmetry can be used to extract the neutral weak coupling combination (2C_{2u}-C_{2d}), providing a factor of five to six improvement over the current world data. To achieve this precision, asymmetries of the 10^{-4} level needed to be measured at event rates up to 500 kHz with high electron detection efficiency and high pion background rejection capability. A specialized scaler-based counting data acquisition system (DAQ) with hardware-based particle identification was successfully implemented. The statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes and the experimental goal of 3-4% statistical uncertainty was achieved. The design and performance of the new DAQ system is presented with the preliminary asymmetry results given in the end.
Weak charge form factor and radius of 208Pb through parity violation in electron scattering
Horowitz, C J; Jen, C -M; Rakhman, A; Souder, P A; Dalton, M M; Liyanage, N; Paschke, K D; Saenboonruang, K; Silwal, R; Franklin, G B; Friend, M; Quinn, B; Kumar, K S; McNulty, D; Mercado, L; Riordan, S; Wexler, J; Michaels, R W; Urciuoli, G M
2012-01-01
We use distorted wave electron scattering calculations to extract the weak charge form factor F_W(q), the weak charge radius R_W, and the point neutron radius R_n, of 208Pb from the PREX parity violating asymmetry measurement. The form factor is the Fourier transform of the weak charge density at the average momentum transfer q=0.475 fm$^{-1}$. We find F_W(q) =0.204 \\pm 0.028 (exp) \\pm 0.001 (model). We use the Helm model to infer the weak radius from F_W(q). We find R_W= 5.826 \\pm 0.181 (exp) \\pm 0.027 (model) fm. Here the exp error includes PREX statistical and systematic errors, while the model error describes the uncertainty in R_W from uncertainties in the surface thickness \\sigma of the weak charge density. The weak radius is larger than the charge radius, implying a "weak charge skin" where the surface region is relatively enriched in weak charges compared to (electromagnetic) charges. We extract the point neutron radius R_n=5.751 \\pm 0.175 (exp) \\pm 0.026 (model) \\pm 0.005 (strange) fm$, from R_W. Her...
A high power liquid hydrogen target for the Mainz A4 parity violation experiment
Energy Technology Data Exchange (ETDEWEB)
Altarev, I. [Technische Universitaet Muenchen, D-85748 Munich (Germany); Schilling, E. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Baunack, S. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Capozza, L. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Diefenbach, J. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Grimm, K. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Hammel, T. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Harrach, D. von [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Imai, Y. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Kabuss, E.M. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Kothe, R. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Lee, J.H. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Lopes Ginja, A. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Maas, F.E. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany)]. E-mail: maas@kph.uni-mainz.de; Sanchez Lorente, A. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Stephan, G. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany); Weinrich, C. [Institut fuer Kernphysik, Universitaet Mainz, D-55099 Mainz (Germany)
2006-08-01
We present a new powerful liquid hydrogen target developed for the precise study of parity violating electron scattering on hydrogen and deuterium. This target has been designed to have minimal target density fluctuations under the heat load of a 20{mu}A CW 854.3MeV electron beam without rastering the electron beam. The target cell has a wide aperture for scattered electrons and is axially symmetric around the beam axis. The construction is optimized to intensify heat exchange by a transverse turbulent mixing in the hydrogen stream, which is directed along the electron beam. The target is constructed as a closed loop circulating system cooled by a helium refrigerator. It is operated by a tangential mechanical pump with an optional natural convection mode. The cooling system supports removal of up to 250W of beam heating removal. Deeply subcooled liquid hydrogen is used to keep the in-beam temperature below the boiling point. The target density fluctuations are found to be at the level of 10{sup -3} at a beam current of 20{mu}A.
Mantry, Sonny; Ramsey-Musolf, Michael J.; Sacco, Gian Franco
2010-01-01
We show that parity-violating deep-inelastic scattering (PVDIS) of longitudinally polarized electrons from deuterium can in principle be a relatively clean probe of higher twist quark-quark correlations beyond the parton model. As first observed by Bjorken and Wolfenstein, the dominant contribution to the electron polarization asymmetry, proportional to the axial vector electron coupling, receives corrections at twist four from the matrix element of a single ...
Measurement of the Parity-Violating Asymmetry in Deep Inelastic Scattering at JLab 6 GeV
Energy Technology Data Exchange (ETDEWEB)
Wang, Diancheng [Univ. of Virginia, Charlottesville, VA (United States)
2013-12-01
The parity-violating asymmetry in deep inelastic scattering (PVDIS) offers us a useful tool to study the weak neutral couplings and the hadronic structure of the nucleon, and provides high precision tests on the Standard Model. During the 6 GeV PVDIS experiment at the Thomas Jefferson National Accelerator Facility, the parity-violating asymmetries A{sub PV} of a polarized electron beam scattering off an unpolarized deuteron target in the deep inelastic scattering region were precisely measured at two Q^{2} values of 1.1 and 1.9 (GeV/c)^{2}. The asymmetry at Q^{2}=1.9 (GeV/c)^{2} can be used to extract the weak coupling combination 2C_{2u} - C_{2d}, assuming the higher twist effect is small. The extracted result from this measurement is in good agreement with the Standard Model prediction, and improves the precision by a factor of five over previous data. In addition, combining the asymmetries at both Q^{2} values provides us extra knowledge on the higher twist effects. The parity violation asymmetries in the resonance region were also measured during this experiment. These results are the first A_{PV} data in the resonance region beyond the Δ (1232). They provide evidence that the quark hadron duality works for A_{PV} at the (10-15)% level, and set constraints on nucleon resonance models that are commonly used for background calculations to other parity-violating electron scattering measurements.
Yang, Y D; Yang, Ya-Dong; Wang, Rumin
2006-01-01
Recent experiments suggest that certain data of $B \\to \\pi\\pi,~\\pi K$ decays are inconsistent with the standard model expectations. We try to explain the puzzles in context of R-parity violating suppersymmetry. By employing the QCD factorization approach, we study these decays in the minimal supersymmetric standard model with R-parity violation. We show that R-parity violating can resolve the discrepancies in both $B \\to \\pi\\pi$ and $B \\to \\pi K$, and find some parameter spaces satisfying all these requirements including the CP averaged branching ratios and the direct CP asymmetries. Furthermore, we have derived stringent bounds on relevant R-parity violating couplings from the latest experimental data, the most of these constraints are stronger than the existing bounds.
Yamanaka, Nodoka; Sato, Toru; Kubota, Takahiro
2013-06-01
The contribution of the R-parity violating trilinear couplings in the supersymmetric model to the fermion electric dipole moment is analyzed at the two-loop level. We show that in general, the Barr-Zee type contribution to the fermion electric dipole moment with the exchange of W and Z bosons is not small compared to the currently known photon exchange one with R-parity violating interactions. We will then give new upper bounds on the imaginary parts of R-parity violating couplings from the experimental data of the electric dipole moments of the electron and of the neutron. The effect due to bilinear R-parity violating couplings, which needs to be investigated separately, is not included in our analyses.
Vanasse, Jared; Schindler, Matthias
2015-10-01
At low energies parity-violating interactions between nucleons are described by five low energy constants. The aim of hadronic parity-violation is to cleanly obtain these from experiment, for which few-body systems and pionless effective field theory are ideally suited. In this talk I will discuss the calculation of the parity violating asymmetry in the cross sections for circularly polarized photons on an unpolarized deuteron target in dγ-> --> np using pionless effective field theory. Using this calculation with estimates for the parity-violating low energy constants I will show the ideal energy at which such an experiment should be performed. This experiment is of particular interest as it is a possible future experiment at an upgraded High Intensity Gamma-Ray Source at the Triangle Universities Nuclear Laboratory.
Subedi, Adesh
The Qweak experiment has taken data to make a 2.5% measurement of parity violating elastic e+p asymmetry in the four momentum transfer region of 0.0250 (GeV/c)2. This asymmetry is proportional to the weak charge of the proton, which is related to the weak mixing angle, sin2θ W. The final Qweak measurement will provide the most precise measurement of the weak mixing angle below the Z° pole to test the Standard Model prediction. A description of the experimental apparatus is provided in this dissertation. The experiment was carried out using a longitudinally polarized electron beam of up to 180 muA on a 34.5 cm long unpolarized liquid hydrogen target. The Qweak target is not only the world's highest cryogenic target ever built for a parity experiment but also is the least noisy target. This dissertation provides a detailed description of this target and presents a thorough analysis of the target performance. Statistical analysis of Run 1 data, collected between Feb--May 2011, is done to extract a blinded parity violating asymmetry of size--299.7 +/- 13.4 (stat.) +/- 17.2 (syst.) +/- 68 (blinding) parts-per-billion. This resulted in a preliminary proton's weak charge of value 0.0865 +/- 0.0085, a 9% measurement. Based on this blinded asymmetry, the weak mixing angle was determined to be sin2θW = 0.23429 +/- 0.00211.
Energy Technology Data Exchange (ETDEWEB)
Dietiker, P.; Miloglyadov, E.; Quack, M., E-mail: Martin@Quack.ch; Schneider, A.; Seyfang, G. [Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland)
2015-12-28
We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference Δ{sub pv}E between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν{sub 1} and ν{sub 3} fundamentals as well as the 2ν{sub 4} overtone of {sup 14}NH{sub 3}, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν{sub 1}, ν{sub 3}, and 2ν{sub 4} levels in the context of previously known data for ν{sub 2} and its overtone, as well as ν{sub 4}, and the ground state. Thus, now, {sup 14}N quadrupole coupling constants for all
International Nuclear Information System (INIS)
We have set up an experiment for the efficient population transfer by a sequential two photon—absorption and stimulated emission—process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of 14NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, 14N quadrupole coupling constants for all fundamentals and some overtones of 14NH3 are known and can be used for
Dietiker, P; Miloglyadov, E; Quack, M; Schneider, A; Seyfang, G
2015-12-28
We have set up an experiment for the efficient population transfer by a sequential two photon-absorption and stimulated emission-process in a molecular beam to prepare quantum states of well defined parity and their subsequent sensitive detection. This provides a proof of principle for an experiment which would allow for parity selection and measurement of the time evolution of parity in chiral molecules, resulting in a measurement of the parity violating energy difference ΔpvE between enantiomers of chiral molecules. Here, we present first results on a simple achiral molecule demonstrating efficient population transfer (about 80% on the average for each step) and unperturbed persistence of a selected excited parity level over flight times of about 1.3 ms in the beam. In agreement with model calculations with and without including nuclear hyperfine structure, efficient population transfer can be achieved by a rather simple implementation of the rapid adiabatic passage method of Reuss and coworkers and considering also the stimulated Raman adiabatic passage technique of Bergmann and coworkers as an alternative. The preparation step uses two powerful single mode continuous wave optical parametric oscillators of high frequency stability and accuracy. The detection uses a sensitive resonantly enhanced multiphoton ionization method after free flight lengths of up to 0.8 m in the molecular beam. Using this technique, we were able to also resolve the nuclear hyperfine structure in the rovibrational levels of the ν1 and ν3 fundamentals as well as the 2ν4 overtone of (14)NH3, for which no previous data with hyperfine resolution were available. We present our new results on the quadrupole coupling constants for the ν1, ν3, and 2ν4 levels in the context of previously known data for ν2 and its overtone, as well as ν4, and the ground state. Thus, now, (14)N quadrupole coupling constants for all fundamentals and some overtones of (14)NH3 are known and can be used for
Mantry, Sonny; Ramsey-Musolf, Michael J.; Sacco, Gian Franco
2010-12-01
We show that parity-violating deep-inelastic scattering (PVDIS) of longitudinally polarized electrons from deuterium can in principle be a relatively clean probe of higher twist quark-quark correlations beyond the parton model. As first observed by Bjorken and Wolfenstein, the dominant contribution to the electron polarization asymmetry, proportional to the axial vector electron coupling, receives corrections at twist four from the matrix element of a single four-quark operator. We reformulate the Bjorken-Wolfenstein argument in a matter suitable for the interpretation of experiments planned at the Thomas Jefferson National Accelerator Facility (JLab). In particular, we observe that because the contribution of the relevant twist-four operator satisfies the Callan-Gross relation, the ratio of parity-violating longitudinal and transverse cross sections, RγZ, is identical to that for purely electromagnetic scattering, Rγ, up to perturbative and power-suppressed contributions. This result simplifies the interpretation of the asymmetry in terms of other possible novel hadronic and electroweak contributions. We use the results of MIT Bag Model calculations to estimate contributions of the relevant twist-four operator to the leading term in the asymmetry as a function of Bjorken x and Q2. We compare these estimates with possible leading twist corrections from violation of charge symmetry in the parton distribution functions.
International Nuclear Information System (INIS)
We study the parity breaking effective action in 2+1 dimensions, generated, at finite temperature, by massive fermions interacting with a non-Abelian gauge background. We explicitly calculate, in the static limit, parity violating amplitudes up to the seven point function, which allows us to determine the corresponding effective actions. There are two classes of such actions that arise: namely, terms that do not manifestly depend on E(vector sign) and ones that do. We derive the exact effective action that is not manifestly dependent on E(vector sign). For the other class that depends explicitly on E(vector sign), there are families of terms that can be determined order by order in perturbation theory. We attempt to generalize our results to nonstatic backgrounds through the use of time ordered exponentials and prove gauge invariance, both small and large, of the resulting effective action. We also point out some open questions that need to be further understood
Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems
Energy Technology Data Exchange (ETDEWEB)
Viviani, Michele [INFN; Baroni, Alessandro [ODU; Girlanda, Luca [Lecce U.; Kievsky, Alejandro [Pisa U,; Marcucci, Laura E. [Pisa U,; Schiavilla, Rocco [ODU, JLAB
2014-06-01
Background: Weak interactions between quarks induce a parity-violating (PV) component in the nucleonnucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (chiEFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the p-p longitudinal asymmetry, the neutron spin rotation in n-p and n-d scattering, and the longitudinal asymmetry in the {sup 3}He( {vector n},p){sup 3}H chargeexchange reaction. Methods: The chiEFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A = 2-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from chiEFT. In the case of the A = 3-4 systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant h^1_pi and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The chiEFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.
Searches for R-parity violating supersymmetry in multilepton final states with the ATLAS detector
International Nuclear Information System (INIS)
This thesis presents two searches for signs of R-parity-violating supersymmetry (SUSY) through decays of the lightest supersymmetric particle (LSP) into two charged leptons and one neutrino. The searches are performed with the ATLAS experiment at the Large Hadron Collider (LHC) using a data set of pp collisions at √(s)=8 TeV recorded during the 2012 LHC run, corresponding to an integrated luminosity of 20.3 fb-1. As a prerequisite for these studies, which rely heavily on efficient reconstruction of charged leptons, a tag-and-probe method based on Z→μμ decays is developed to measure the muon reconstruction efficiency of the ATLAS experiment with an accuracy of 0.1% and validate the predictions made by the detector simulation. If the decay of the LSP occurs with a lifetime of less than about 1 mm/c, the standard reconstruction of leptons within ATLAS is efficient. A search for anomalous events with at least four charged leptons is presented. Since processes with four or more charged leptons are rare in the Standard Model, a very low level of background is achieved. A special effort is made to provide sensitivity to decays of an LSP that is very light compared to the initially produced supersymmetric particles. No sign of a signal is observed, and strong exclusion limits in the parameter space defined by the supersymmetric particle masses are derived. A second search targets scenarios where the LSP lifetime is much greater than 1 mm/c, using the signature of a high-mass displaced vertex with two associated charged leptons. The reconstruction of such displaced vertices requires a non-standard event reconstruction. Signal vertices do not occur naturally in the Standard Model, leading to a negligible level of background. A novel technique is developed to estimate the dominant residual background from lepton tracks that randomly cross inside the tracking volume. No signal vertices are observed, in agreement with the background prediction, and upper limits on the
Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon
Airapetian, A; Akopov, Z; Amarian, M; Ammosov, V V; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Balin, D; Baturin, V; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Bouwhuis, M; Brack, J; Brüll, A; Bryzgalov, V; Capitani, G P; Chen, T; Chiang, H C; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E G; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Feshchenko, A; Felawka, L; Fox, B; Frullani, S; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Garutti, E; Gaskell, D; Gavrilov, G; Karibian, V; Graw, G; Grebenyuk, O; Greeniaus, L G; Gregor, I M; Hafidi, K; Hartig, M; Hasch, D; Heesbeen, D; Henoch, M; Hertenberger, R; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Kinney, E; Kiselev, A; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Laziev, A; Lenisa, P; Liebing, P; Linden-Levy, L A; Lipka, K; Lorenzon, W; Lü, H; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Nass, A; Negodaev, M; Nowak, Wolf-Dieter; Oganessyan, K; Ohsuga, H; Pickert, N; Potashov, S Yu; Potterveld, D H; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schill, C; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shanidze, R; Shearer, C; Shibata, T A; Shutov, V; Simani, M C; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Stösslein, U; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Tkabladze, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Vetterli, M C; Vikhrov, V; Vincter, M G; Vogel, C; Vogt, M; Volmer, J; Weiskopf, C; Wendland, J; Wilbert, J; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P; Aniol, K A; Armstrong, D S; Averett, T; Benaoum, H; Bertin, P Y; Burtin, E; Cahoon, J; Cates, G D; Chang, C C; Chao Yu Chiu; Chen, J P; Seonho Choi; Chudakov, E; Craver, B; Cusanno, F; Decowski, P; Deepa, D; Ferdi, C; Feuerbach, R J; Finn, J M; Fuoti, K; Gilman, R; Glamazdin, A; Gorbenko, V; Grames, J M; Hansknecht, J; Higinbotham, D W; Holmes, R; Holmstrom, T; Humensky, T B; Ibrahim, H; De Jager, C W; Jiang, X; Kaufman, L J; Kelleher, A; Kolarkar, A; Kowalski, S; Kumar, K S; Lambert, D; La Violette, P; Le Rose, J; Lhuillier, D; Liyanage, N; Margaziotis, D J; Mazouz, M; McCormick, K; Meekins, D G; Meziani, Z E; Michaels, R; Moffit, B; Monaghan, P; Munoz-Camacho, C; Nanda, S; Nelyubin, V V; Neyret, D; Paschke, K D; Poelker, M; Pomatsalyuk, R I; Qiang, Y; Reitz, B; Roche, J; Saha, A; Singh, J; Snyder, R; Souder, P A; Subedi, R; Suleiman, R; Sulkosky, V; Tobias, W A; Urciuoli, G M; Vacheret, A; Voutier, E; Wang, K; Wilson, R; Wojtsekhowski, B; Zheng, X
2006-01-01
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from ^4He at an average scattering angle = 5.7 degrees and a four-momentum transfer Q^2 = 0.091 GeV^2. From these data, for the first time, the strange electric form factor of the nucleon G^s_E can be isolated. The measured asymmetry of A_PV = (6.72 +/- 0.84 (stat) +/- 0.21 (syst) parts per million yields a value of G^s_E = -0.038 +/- 0.042 (stat) +/- 0.010 (syst), consistent with zero.
International Nuclear Information System (INIS)
We have measured parity-violating asymmetries in elastic electron-proton and quasielastic electron-deuteron scattering at Q2=0.22 and 0.63 GeV2. They are sensitive to strange quark contributions to currents in the nucleon and the nucleon axial-vector current. The results indicate strange quark contributions of < or approx. 10% of the charge and magnetic nucleon form factors at these four-momentum transfers. We also present the first measurement of anapole moment effects in the axial-vector current at these four-momentum transfers.
Yang, Bingfang; Liu, Ning
2016-01-01
Inspired by the recent CMS $h \\to \\mu\\tau$ excess, we calculate the lepton flavor violating Higgs decay $h \\to \\mu\\tau$ in the littlest Higgs model with T-parity (LHT). Under the constraints of $\\ell_i \\to \\ell_j \\gamma$, $Z \\to \\ell_i \\bar{\\ell}_j$ and Higgs data, we find that the branching ratio of $h \\to \\mu\\tau$ can maximally reach $\\mathcal O(10^{-6})$. We also investigate the correlation between $h \\to \\mu\\tau $, $\\tau \\to \\mu \\gamma$ and $Z \\to \\mu\\tau$, which can be used to test LHT model at future $e^+e^-$ colliders.
Yamanaka, Nodoka
2012-01-01
We evaluate the Barr-Zee type two-loop level contribution to the fermion electric and chromo-electric dipole moments with sfermion loop in R-parity violating supersymmetric models. It is found that the Barr-Zee type fermion dipole moment with sfermion loop acts destructively to the currently known fermion loop contribution, and that it has small effect when the mass of squarks or charged sleptons in the loop is larger than or comparable to that of the sneutrinos, but cannot be neglected if the sneutrinos are much heavier than loop sfermions.
Energy Technology Data Exchange (ETDEWEB)
David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; R. Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; C. Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; R. Hasty; A. Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; J. Liu; Berenice Loupias; A. Lung; Glen MacLachlan; Dominique Marchand; J.W. Martin; Kenneth McFarlane; Daniella Mckee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Melissa Nakos; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; G.R. Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; G. Warren; S.P. Wells; Steven Williamson; S.A. Wood; Chen Yan; Junho Yun; Valdis Zeps
2005-06-01
We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q{sup 2} < 1.0 GeV{sup 2}. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q{sup 2} dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.
Armstrong, D S; Asaturyan, R; Averett, T; Bailey, S L; Batigne, G; Beck, D H; Beise, E J; Benesch, J; Bimbot, L; Birchall, J; Biselli, A; Bosted, P; Boukobza, E; Breuer, H; Carlini, R; Carr, R; Chant, N; Chao Yu Chiu; Chattopadhyay, S; Clark, R; Covrig, S D; Cowley, A; Dale, D; Davis, C; Falk, W; Finn, J M; Forest, T; Franklin, G; Furget, C; Gaskell, D; Grames, J; Griffioen, K A; Grimm, K; Guillon, B; Guler, H; Hannelius, L; Hasty, R; Hawthorne Allen, A; Horn, T; Johnston, K; Jones, M; Kammel, P; Kazimi, R; King, P M; Kolarkar, A; Korkmaz, E; Korsch, W; Kox, S; Kühn, J; Lachniet, J; Lee, L; Lenoble, J; Liatard, E; Liu, J; Loupias, B; Lung, A; MacLachlan, G A; Marchand, D; Martin, J W; McFarlane, K W; McKee, D W; McKeown, R D; Merchez, F; Mkrtchyan, H G; Moffit, B; Morlet, M; Nakagawa, I; Nakahara, K; Nakos, M; Neveling, R; Niccolai, S; Ong, S; Page, S; Papavassiliou, V; Pate, S F; Phillips, S K; Pitt, M L; Poelker, M; Porcelli, T A; Quéméner, G; Quinn, B; Ramsay, W D; Rauf, A W; Real, J S; Roche, J; Roos, P; Rutledge, G A; Secrest, J; Simicevic, N; Smith, G R; Spayde, D T; Stepanyan, S; Stutzman, M; Sulkosky, V; Tadevosyan, V; Tieulent, R; Van der Wiele, J; Van Oers, W T H; Voutier, E; Vulcan, W; Warren, G; Wells, S P; Williamson, S E; Wood, S A; Yan, C; Yun, J; Zeps, V
2005-01-01
We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q^2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.
Parity-Violating Electron Scattering from 4He and the Strange Electric Form Factor of the Nucleon
International Nuclear Information System (INIS)
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from 4He at an average scattering angle θlab = 5.7 degrees and a four-momentum transfer Q2 = 0.091 GeV2. From these data, for the first time, the strange electric form factor of the nucleon GEs can be isolated. The measured asymmetry of APV = 6.72 ± 0.84 (stat) ± 0.21 (syst) parts per million yields a value of GEs = -0.038 ± 0.042 (stat) ± 0.010 (syst), consistent with zero
The particle spectrum of parity-violating Poincar\\'e gravitational theory
Karananas, Georgios K
2014-01-01
In this paper we investigate the physical spectrum of the gravitational theory based on the Poincar\\'e group with terms which are at most quadratic in tetrad and spin connection, allowing for the presence of parity-even as well as parity-odd invariants. We determine restrictions on the parameters of the action so that all degrees of freedom propagate and are neither ghosts nor tachyons. We show that the addition of parity non-conserving invariants extends the healthy parameter space of the theory. To accomplish our goal, we apply the weak field approximation around flat spacetime and in order to facilitate the analysis, we separate the bilinear action for the excitations into completely independent spin sectors. For this purpose, we employ the spin-projection operator formalism and extend the original basis built previously, to be able to handle the parity-odd pieces.
The particle spectrum of parity-violating Poincaré gravitational theory
International Nuclear Information System (INIS)
In this paper we investigate the physical spectrum of the gravitational theory based on the Poincaré group with terms that are at most quadratic in tetrad and spin connection, allowing for the presence of parity-even as well as parity-odd invariants. We determine restrictions on the parameters of the action so that all degrees of freedom propagate and are neither ghosts nor tachyons. We show that the addition of parity non-conserving invariants extends the healthy parameter space of the theory. To accomplish our goal, we apply the weak field approximation around flat spacetime and in order to facilitate the analysis, we separate the bilinear action for the excitations into completely independent spin sectors. For this purpose, we employ the spin-projection operator formalism and extend the original basis built previously, to be able to handle the parity-odd pieces. (paper)
[Laser resonance ionization spectroscopy of even-parity autoionization states of cerium atom].
Li, Zhi-ming; Zhu, Feng-rong; Zhang, Zi-bin; Ren, Xiang-jun; Deng, Hu; Zhai, Li-hua; Zhang, Li-xing
2004-12-01
This paper describes the investigation of even-parity autoionization states of cerium atoms by three-step three-color resonance ionization spectroscopy (RIS). Twenty-seven odd-parity highly excited levels, whose transition probability is high, were used in this research. One hundred and forty-one autoionization states were found by these channels with the third-step laser scanning in the wavelength range of 634-670 nm. The ionization probabilities of different channels, which had higher cross sections, were compared. On the basis of this, eight optimal photoionization schemes of cerium atom have been given. PMID:15828309
Androić, D; Arvieux, J; Bailey, S L; Beck, D H; Beise, E J; Benesch, J; Benmokhtar, F; Bimbot, L; Birchall, J; Bosted, P; Breuer, H; Capuano, C L; Chao, Y -C; Coppens, A; Davis, C A; Ellis, C; Flores, G; Franklin, G; Furget, C; Gaskell, D; Gericke, M T W; Grames, J; Guillard, G; Hansknecht, J; Horn, T; Jones, M K; King, P M; Korsch, W; Kox, S; Lee, L; Liu, J; Lung, A; Mammei, J; Martin, J W; McKeown, R D; Micherdzinska, A; Mihovilovic, M; Mkrtchyan, H; Muether, M; Page, S A; Papavassiliou, V; Pate, S F; Phillips, S K; Pillot, P; Pitt, M L; Poelker, M; Quinn, B; Ramsay, W D; Real, J -S; Roche, J; Roos, P; Schaub, J; Seva, T; Simicevic, N; Smith, G R; Spayde, D T; Stutzman, M; Suleiman, R; Tadevosyan, V; van Oers, W T H; Versteegen, M; Voutier, E; Vulcan, W; Wells, S P; Williamson, S E; Wood, S A
2011-01-01
The parity-violating (PV) asymmetry of inclusive $\\pi^-$ production in electron scattering from a liquid deuterium target was measured at backward angles. The measurement was conducted as a part of the G0 experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these kinematics is quasi-free photoproduction off the neutron via the $\\Delta^0$ resonance. In the context of heavy-baryon chiral perturbation theory (HB$\\chi$PT), this asymmetry is related to a low energy constant $d_\\Delta^-$ that characterizes the parity-violating $\\gamma$N$\\Delta$ coupling. Zhu et al. calculated $d_\\Delta^-$ in a model benchmarked by the large asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this process, ranging from $A_\\gamma^-=-5.2$ to $+5.2$ ppm. The measurement performed in this work leads to $A_\\gamma^-=-0.36\\pm 1.06\\pm 0.37\\pm 0.03$ ppm (where sources of statistical, systematic and theoretical uncertainties are included), which would disfav...
International Nuclear Information System (INIS)
We investigate the discovery potential of the LHC experiments for R-parity violating supersymmetric models with a stau as the lightest supersymmetric particle (LSP) in the framework of minimal supergravity. We classify the final states according to their phenomenology for different R-parity violating decays of the LSP. We then develop event selection cuts for a specific benchmark scenario with promising signatures for the first beyond the standard model discoveries at the LHC. For the first time in this model, we perform a detailed signal over background analysis. We use fast detector simulations to estimate the discovery significance taking the most important standard model backgrounds into account. Assuming an integrated luminosity of 1 fb-1 at a center-of-mass energy of √(s)=7 TeV, we perform scans in the parameter space around the benchmark scenario we consider. We then study the feasibility to estimate the mass of the stau LSP. We briefly discuss difficulties, which arise in the identification of hadronic tau decays due to small tau momenta and large particle multiplicities in our scenarios.
Probing R -parity violating supersymmetric effects in the exclusive b →c ℓ-ν¯ℓ decays
Wang, Ru-Min; Zhu, Jie; Gan, Hua-Min; Fan, Ying-Ying; Chang, Qin; Xu, Yuan-Guo
2016-05-01
Motivated by recent results from the LHCb, BABAR, and Belle Collaborations on B →D(*)ℓ-ν¯ ℓ decays, which significantly deviate from the Standard Model and hint at the possible new physics beyond the Standard Model, we probe the R -parity violating supersymmetric effects in Bc-→ℓ-ν¯ ℓ and B →D(*)ℓ-ν¯ ℓ decays. We find the following: (i) B (Bc-→e-ν¯ e) and B (Bc-→μ-ν¯ μ) are sensitive to the constrained slepton exchange couplings. (ii) The normalized forward-backward asymmetries of B →D e-ν¯ e decays have been greatly affected by the constrained slepton exchange couplings, and their signs could be changed. (iii) All relevant observables in the exclusive b →c τ-ν¯ τ decays and ratios R (D(*)) are sensitive to the slepton exchange coupling, and R (D*) could be enhanced by the constrained slepton exchange coupling to reach each 95% confidence level experimental ranges from BABAR, Belle, and LHCb but not the lower limit of the 95% confidence level experimental average. Our results in this work could be used to probe R -parity violating effects and will correlate with searches for direct supersymmetric signals at the running LHCb and the forthcoming Belle-II.
Silva, A; Kim, H C; Urbano, D; Goeke, Klaus; Kim, Hyun-Chul; Silva, Antonio; Urbano, Diana
2006-01-01
We investigate parity-violating electroweak asymmetries in the elastic scattering of polarized electrons off protons within the framework of the chiral quark-soliton model ($\\chi$QSM). We use as input the former results of the electromagnetic and strange form factors and newly calculated SU(3) axial-vector form factors, all evaluated with the same set of four parameters adjusted several years ago to general mesonic and baryonic properties. Based on this scheme, which yields positive electric and magnetic strange form factors with a $\\mu_s=(0.08-0.13)\\mu_N$, we determine the parity-violating asymmetries of elastic polarized electron-proton scattering. The results are in a good agreement with the data of the A4, HAPPEX, and SAMPLE experiments and reproduce the full $Q^2$-range of the G0-data. We also predict the parity-violating asymmetries for the backward G0 experiment.
Energy Technology Data Exchange (ETDEWEB)
Subedi, Adesh [Mississippi State Univ., Mississippi State, MS (United States)
2014-12-01
The Qweak experiment has taken data to make a 2.5% measurement of parity violating elastic e+p asymmetry in the four momentum transfer region of 0.0250 (GeV/c)^{2}. This asymmetry is proportional to the weak charge of the proton, which is related to the weak mixing angle, sin^{2}(theta_W). The final Qweak measurement will provide the most precise measurement of the weak mixing angle below the Z^{0} pole to test the Standard Model prediction. A description of the experimental apparatus is provided in this dissertation. The experiment was carried out using a longitudinally polarized electron beam of up to 180 microampere on a 34.5 cm long unpolarized liquid hydrogen target. The Qweak target is not only the world's highest cryogenic target ever built for a parity experiment but also is the least noisy target. This dissertation provides a detailed description of this target and presents a thorough analysis of the target performance. Statistical analysis of Run 1 data, collected between Feb - May 2011, is done to extract a blinded parity violating asymmetry of size -299.7 ± 13.4 (stat.) ± 17.2 (syst.) ± 68 (blinding) parts-per-billion. This resulted in a preliminary proton's weak charge of value 0.0865 ± 0.0085, a 9% measurement. Based on this blinded asymmetry, the weak mixing angle was determined to be sin^{2}(theta_W) = 0.23429 ± 0.00211.
Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y; Akimoto, R.; Alexander, J.; Al-Taani, H.; Andrews, K. R.; Angerami, A.(Nevis Laboratory, Columbia University, Irvington, NY, U.S.A.); Aoki, K.; Apadula, N.; Appelt, E.; Aramaki, Y.; Armendariz, R.
2010-01-01
Large parity violating longitudinal single spin asymmetries A^{e^-}_L= -0.86^{+0.14}_{-0.30} and A^{e^+}_L= 0.88^{+0.12}_{-0.71} are observed for inclusive high transverse momentum electrons and positrons in polarized pp collisions at a center of mass energy of \\sqrt{s}=500\\ GeV with the PHENIX detector at RHIC. These e^{+/-} come mainly from the decay of W^{+/-} and Z^0 bosons, and the asymmetries directly demonstrate parity violation in the couplings of the W^{\\pm} to the light quarks. The ...
Nahrwold, Sophie; Schwerdtfeger, Peter
2014-01-01
Density functional theory within the two-component quasi-relativistic zeroth-order regular approximation (ZORA) is used to predict parity violation shifts in 183W nuclear magnetic resonance shielding tensors of chiral, tetrahedrally bonded tungsten complexes of the form NWXYZ (X, Y, Z = H, F, Cl, Br or I). The calculations reveal that sub-mHz accuracy is required to detect such tiny effects in this class of compounds, and that parity violation effects are very sensitive to the choice of ligands.
International Nuclear Information System (INIS)
We report here on a new measurement of the parity-violating (PV) asymmetry in the scattering of polarized electrons on unpolarized protons performed at the MAMI accelerator facility in Mainz. This experiment is the first to use counting techniques in a parity violation experiment. The kinematics of the experiment is complementary to the earlier measurements of the SAMPLE Collaboration at the MIT-Bates accelerator and the HAPPEX Collaboration at Jefferson Lab. After discussing the experimental context of the experiments, the setup at MAMI and preliminary results are presented. (orig.)
Stadnik, Y V
2013-01-01
We show that the interaction of an axion field, or in general a pseudoscalar field, with the axial-vector current generated by an electron through a derivative-type coupling can give rise to a time-dependent mixing of opposite-parity states in atomic and molecular systems. Likewise, the analogous interaction of an axion field with the axial-vector current generated by a nucleon can give rise to time-dependent mixing of opposite-parity states in nuclear systems. This mixing can induce oscillating electric dipole moments, oscillating parity non-conservation effects and oscillating anapole moments in such systems. By adjusting the energy separation between the opposite-parity states of interest to match the axion mass energy, axion-induced experimental observables can be enhanced by many orders of magnitude. Oscillating atomic electric dipole moments can also be generated by axions through hadronic mechanisms, namely the P,T-violating nucleon-nucleon interaction and through the axion-induced electric dipole mome...
International Nuclear Information System (INIS)
In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part-per-million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cherenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.
Mir, Azeem
2009-01-01
We study the decay rate of process B->K l+ l- (l=e,mu) and some of its other related observables, like forward backward asymmetry (A_{FB}), polarization asymmetry (PA) and CP-asymmetry (A_{CP}) in R-parity violating (R_{p}) Minimal Supersymmetric Standard Model (MSSM). The analysis shows that R_{p}Yukawa coupling products contribute significantly to the branching fraction of B->K l+ l- within 1 sigma and 2 sigma. Study shows that PA and A_{FB} are sensitive enough to R_{p}Yukawa coupling products and turn out to be good predictions for measurement in future experiments.The CP-asymmetry calculated in this framework agrees well with the recently reported value(i.e. 7%).
Androic, D; Arvieux, J; Asaturyan, R; Averett, T D; Bailey, S L; Batigne, G; Beck, D H; Beise, E J; Benesch, J; Benmokhtar, F; Bimbot, L; Birchall, J; Biselli, A; Bosted, P; Breuer, H; Brindza, P; Capuano, C L; Carlini, R D; Carr, R; Chant, N; Chao, Y -C; Clark, R; Coppens, A; Covrig, S D; Cowley, A; Dale, D; Davis, C A; Ellis, C; Falk, W R; Fenker, H; Finn, J M; Forest, T; Franklin, G; Frascaria, R; Furget, C; Gaskell, D; Gericke, M T W; Grames, J; Griffioen, K A; Grimm, K; Guillard, G; Guillon, B; Guler, H; Gustafsson, K; Hannelius, L; Hansknecht, J; Hasty, R D; Allen, A M Hawthorne; Horn, T; Ito, T M; Johnston, K; Jones, M; Kammel, P; Kazimi, R; King, P M; Kolarkar, A; Korkmaz, E; Korsch, W; Kox, S; Kuhn, J; Lachniet, J; Laszewski, R; Lee, L; Lenoble, J; Liatard, E; Liu, J; Lung, A; MacLachlan, G A; Mammei, J; Marchand, D; Martin, J W; Mack, D J; McFarlane, K W; McKee, D W; McKeown, R D; Merchez, F; Mihovilovic, M; Micherdzinska, A; Mkrtchyan, H; Moffit, B; Morlet, M; Muether, M; Musson, J; Nakahara, K; Neveling, R; Niccolai, S; Nilsson, D; Ong, S; Page, S A; Papavassiliou, V; Pate, S F; Phillips, S K; Pillot, P; Pitt, M L; Poelker, M; Porcelli, T A; Quemener, G; Quinn, B P; Ramsay, W D; Rauf, A W; Real, J -S; Ries, T; Roos, J Roche P; Rutledge, G A; Schaub, J; Secrest, J; Seva, T; Simicevic, N; Smith, G R; Spayde, D T; Stepanyan, S; Stutzman, M; Suleiman, R; Tadevosyan, V; Tieulent, R; van de Wiele, J; van Oers, W T H; Versteegen, M; Voutier, E; Vulcan, W F; Wells, S P; Warren, G; Williamson, S E; Woo, R J; Wood, S A; Yan, C; Yun, J; Zeps, V
2011-01-01
In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.
e-vector-2H Parity Violating Deep Inelastic Scattering at Jefferson Laboratory at 6 GeV
International Nuclear Information System (INIS)
The upcoming parity violating deep inelastic scattering (PVDIS) experiment E08-011 in Hall A at Thomas Jefferson National Accelerator Facility (Jefferson Lab) aims to measure a combination of the axial hadronic couplings of the electron with a factor of six improvement in precision over world data. Precise data for the couplings are essential to search for physics beyond the Standard Model. The experiment will measure a 10-4 asymmetry using polarized electron scattering from deuterium with a beam energy of 6 GeV. Recent progress on the preparation for this experiment, with an emphasis on the tests of the data acquisition system and the capability of measuring a small asymmetry, deadtime, and pileup effects are presented.
The Qweak Experiment: Measurement of the Elastic Parity-Violating e-p Asymmetry at Low Q2
Subedi, Adesh; Qweak Collaboration
2013-10-01
Q-weak part 1. The Qweak experiment at Jefferson laboratory has measured the parity-violating asymmetry in e-p elastic scattering at Q2 = 0.025 (GeV/c)2, employing longitudinally polarized electrons incident on a 34.5 cm long liquid hydrogen target. The measurement was performed using an integrating mode apparatus with a set of eight quartz Cerenkov detectors placed radially along the beam axis. The resulting measured asymmetry is then corrected for various effects, including false asymmetries generated by helicity-correlated beam properties, backgrounds from aluminum target windows and the beamline, and the beam polarization. The results of the experiment's commissioning run will be reported, which consist of approximately 1/25th of the total data collected during the full measurement. This talk will focus on the Qweak apparatus and the analysis to determine the asymmetry. A value of the physics asymmetry from the experiment's commissioning run will be presented.
International Nuclear Information System (INIS)
We study the leading electroweak corrections in the precision measurement of the strange form factors. Specifically, we calculate the two-boson exchange (TBE), two-photon exchange (TPE) plus γZ exchange (γZE), and corrections with Δ(1232) excitation to the parity-violating asymmetry of the elastic electron-proton scattering. The interplay between nucleon and Δ contributions is found to depend strongly on the kinematics, as δΔ begins as negligible at backward angles but becomes very large and negative and dominant at forward angles, while δN always stays positive and decreases monotonically with increasing ε. The total TBE corrections to the extracted values of GEs+βGMs in recent experiments of HAPPEX and G0 are, depending on kinematics, found to be large and range between 13% and -75%, but are found to be small in the case of A4 experiments.
Energy Technology Data Exchange (ETDEWEB)
Aniol, Konrad; Armstrong, David; Averett, Todd; Benaoum, Hachemi; Bertin, Pierre; Burtin, Etienne; Cahoon, Jason; Cates, Gordon; Chang, C; Chao, Yu-Chiu; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Craver, Brandon; Cusanno, Francesco; Decowski, Piotr; Deepa, Deepa; Ferdi, Catherine; Feuerbach, Robert; Finn, John; Frullani, Salvatore; Fuoti, Kirsten; Garibaldi, Franco; Gilman, Ronald; Glamazdin, Oleksandr; Gorbenko, V; Grames, Joseph; Hansknecht, John; Higinbotham, Douglas; Holmes, Richard; Holmstrom, Timothy; Humensky, Thomas; Ibrahim, Hassan; Jager, Cornelis De; Jiang, Xiaodong; Kaufman, Lisa; Kelleher, Aidan; Kolarkar, Ameya; Kowalski, Stanley; Kumar, Krishna; Lambert, Daniel; Laviolette, Peter; LeRose, John; Lhuillier, David; Liyanage, Nilanga; Margaziotis, Demetrius; Mazouz, Malek; McCormick, Kathy; Meekins, David; Meziani, Zein-Eddine; Michaels, Robert; Moffit, Bryan; Monaghan, Peter; Camacho, Carlos Munoz; Nanda, Sirish; Nelyubin, Vladimir; Neyret, Damien; Paschke, Kent; Poelker, Benard; Pomatsalyuk, Roman; Qiang, Yi; Reitz, Bodo; Roche, Julie; Saha, Arunava; Singh, Jaideep; Snyder, Ryan; Souder, Paul; Subedi, Ramesh; Suleiman, Riad; Sulkosky, Vincent; Tobias, William; Urciuoli, Guido; Vacheret, Antonin; Voutier, Eric; Wang, Kebin; Wilson, R; Wojtsekhowski, Bogdan; Zheng, Xiaochao
2005-06-01
We have measured the parity-violating electroweak asymmetry in the elastic scattering of polarized electrons from {sup 4}He at an average scattering angle {theta}{sub lab} = 5.7 degrees and a four-momentum transfer Q{sup 2} = 0.091 GeV{sup 2}. From these data, for the first time, the strange electric form factor of the nucleon G{sub E}{sup s} can be isolated. The measured asymmetry of A{sub PV} = 6.72 {+-} 0.84 (stat) {+-} 0.21 (syst) parts per million yields a value of G{sub E}{sup s} = -0.038 {+-} 0.042 (stat) {+-} 0.010 (syst), consistent with zero.
International Nuclear Information System (INIS)
We address the typical strengths of hadronic parity-violating three-nucleon interactions in ''pion-less'' Effective Field Theory (EFT) in the nucleon-deuteron (iso-doublet) system. By analysing the superficial degree of divergence of loop diagrams, we conclude that no such interactions are needed at leading order, O(εQ-1). The only two distinct parity-violating three-nucleon structures with one derivative mix 2S(1)/(2) and 2P(1)/(2) waves with iso-spin transitions Δ I = 0 or 1. Due to their structure, they cannot absorb any divergence ostensibly appearing at next-to-leading order, O(εQ0). This observation is based on the approximate realisation of Wigner's combined SU(4) spin-isospin symmetry in the two-nucleon system, even when effective-range corrections are included. Parity-violating three-nucleon interactions thus only appear beyond next-to-leading order. This guarantees renormalisability of the theory to that order without introducing new, unknown coupling constants and allows the direct extraction of parity-violating two-nucleon interactions from three-nucleon experiments. (orig.)
Search for R-parity Violating Decays of Supersymmetric Particles in $e^+ e^-$ Collisions at LEP
Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Duinker, P; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Valle, R T; De Walle, M; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M
2002-01-01
A search, in $e^+ e^-$ collisions, for chargino, neutralino, scalar lepton and scalar quark pair-production is performed, without assuming R-parity conservation in decays, in the case that only one of the coupling constants $\\lambda_{ijk}$ or $\\lambda''_{ ijk}$ is non-negligible. No signal is found in data up to a centre-of-mass energy of 208 \\GeV. Limits on the production cross sections and on the masses of supersymmetric particles are derived.
Deppisch, Frank F; Patra, Sudhanwa; Sahu, Narendra; Sarkar, Utpal
2014-01-01
We propose a class of left-right symmetric models (LRSMs) with spontaneous D parity breaking, where SU(2)_R breaks at the TeV scale while discrete left-right symmetry breaks around 10^9 GeV. By embedding this framework in a non-supersymmetric SO(10) Grand Unified Theory (GUT) with Pati-Salam symmetry as the highest intermediate breaking step, we obtain g_R / g_L ~ 0.6 between the right- and left-handed gauge couplings at the TeV scale. This leads to a suppression of beyond the Standard Model phenomena induced by the right-handed gauge coupling. Here we focus specifically on the consequences for neutrinoless double beta decay, low energy lepton flavour violation and LHC signatures due to the suppressed right handed currents. Interestingly, the reduced g_R allows us to interpret an excess of events observed recently in the range of 1.9 TeV to 2.4 TeV by the CMS group at the LHC as the signature of a right handed gauge boson in LRSMs with spontaneous D parity breaking. Moreover, the reduced right-handed gauge co...
Embedding the DFSZ-axino in mSUGRA with R-parity violation and its implications for dark matter
International Nuclear Information System (INIS)
We embed the DFSZ axion in supersymmetry with broken R-parity. As Supersymmetry provides hundreds of free parameters we restrict ourselves to the lepton-number violating scenario in minimal supergravity models with baryon-triality B3. In such models the axino is the lightest supersymmetric particle, it is not stable and its mass is kept to be a free parameter. The axino mixes with the three neutrinos and four neutralinos to form eight mass eigenstates. We introduce an appropiate notation, present briefly the full Langrangian and all axino interactions. This also induces a modification of the renormalization group equations which we compute. Based on this preliminary work we calculate all two- and three-body axino decays to Standard Model particles, e.g. leptons and mesons. Depending on the origin of the R-parity operator and the mass of the axino we obtain different final state combinations. Taking this into account we study the corresponding decay widths and branching ratios as a function of the superymmetric unification scale parameters as well as the axino mass. We then in particular focus on the implications for axino cold dark matter. We concentrate on the axino energy density in the light of the WMAP data. These analyses are performed in detail at the benchmark point SPS1a. Representative examples are also chosen for benchmark points SPS2 and SPS4. From this we offer a more general conclusion to other benchmark scenarios. (orig.)
Embedding the DFSZ-axino in mSUGRA with R-parity violation and its implications for dark matter
Energy Technology Data Exchange (ETDEWEB)
Poletanovic, Branislav
2010-12-15
We embed the DFSZ axion in supersymmetry with broken R-parity. As Supersymmetry provides hundreds of free parameters we restrict ourselves to the lepton-number violating scenario in minimal supergravity models with baryon-triality B{sub 3}. In such models the axino is the lightest supersymmetric particle, it is not stable and its mass is kept to be a free parameter. The axino mixes with the three neutrinos and four neutralinos to form eight mass eigenstates. We introduce an appropiate notation, present briefly the full Langrangian and all axino interactions. This also induces a modification of the renormalization group equations which we compute. Based on this preliminary work we calculate all two- and three-body axino decays to Standard Model particles, e.g. leptons and mesons. Depending on the origin of the R-parity operator and the mass of the axino we obtain different final state combinations. Taking this into account we study the corresponding decay widths and branching ratios as a function of the superymmetric unification scale parameters as well as the axino mass. We then in particular focus on the implications for axino cold dark matter. We concentrate on the axino energy density in the light of the WMAP data. These analyses are performed in detail at the benchmark point SPS1a. Representative examples are also chosen for benchmark points SPS2 and SPS4. From this we offer a more general conclusion to other benchmark scenarios. (orig.)
Searches for Prompt $R$ -Parity-Violating Supersymmetry at the LHC
Andreas Redelbach
2015-01-01
Searches for supersymmetry (SUSY) at the LHC frequently assume the conservation of R -parity in their design, optimization, and interpretation. In the case that R -parity is not conserved, constraints on SUSY particle masses tend to be weakened with respect to R -parity-conserving models. We review the current status of searches for R -parity-violating (RPV) supersymmetry models at the ATLAS and CMS experiments, limited to 8 TeV search results published or submitted for publicatio...
The single-atom box: bosonic staircase and effects of parity
Averin, D. V.; Bergeman, T.; Hosur, P. R.; Bruder, C.
2008-01-01
We have developed a theory of a Josephson junction formed by two tunnel-coupled Bose-Einstein condensates in a double-well potential in the regime of strong atom-atom interaction for an arbitrary total number $N$ of bosons in the condensates. The tunnel resonances in the junction are shown to be periodically spaced by the interaction energy, forming a single-atom staircase sensitive to the parity of $N$ even for large $N$. One of the manifestations of the staircase structure is the periodic m...
Search for R-parity violating supersymmetry in multi-lepton final states with the ATLAS detector
International Nuclear Information System (INIS)
The benchmark scenario BC1 is an example of an R-parity violating supersymmetric (SUSY) model with one lepton number violating coupling, λ121. Its lightest supersymmetric particle is the τ1, which decays promptly into multiple charged leptons and a neutrino. In this thesis prior phenomenological studies of the parameter space surrounding BC1 were extended. To search for evidence of such models, a final state with four leptons and moderate missing transverse momentum was analyzed, using first 2,06 fb-1 of data recorded by the ATLAS experiment at a center-of-mass energy of 7 TeV in 2011. Since no excess of events was found in the signal region, 95 % confidence level (CL2) upper limits were set on the visible cross section of new physics. The same results were interpreted in terms of BC1-like models, resulting in a exclusion region given by m1/2< or similar 800 GeV and tan β< or similar 40.
New example of CP violation from search for the permanent electric dipole moment of Cs atoms
You, Pei-Lin
2008-01-01
Using special capacitors three experiments to search for a permanent electric dipole moment (EDM) of Cesium atom were completed. The electric susceptibility xe of Cs vapor varies in direct proportion to the density N, where xe =70 when N=7.37*1022 m-3! The relationship between xe of Cs vapor and the absolute temperatures T is xe =B/T, where the slope B=320(k) as polar molecules H2O(B=1.50(k)). Its capacitance C at different voltage V was measured. The C-V curve shows that the saturation polarization of Cs vapor has be observed when the field E=7.4*104V/m. Our measurements give the EDM of an Cs atom : dCs=2.97*10-29 C.m=1.86*10-8 e.cm. New example of CP (charge conjugation and parity) violation occurred in Cs atoms. Our results are easy to be repeated because the details of the experiment are described in the article.
Lightest Higgs boson masses in the R-parity violating supersymmetry
Góźdź, Marek
2012-01-01
The first results on the searches of the Higgs boson appeared this Summer from the LHC and Tevatron groups, and has been recently backed up by the ATLAS and CMS experiments taking data at CERN's LHC. Even though the excitement that this particle has been detected is still premature, the new data constrain the mass of the lightest Higgs boson $m_{h^0}$ to a very narrow 120-140 GeV region with a possible peak at approximately 125 GeV. In this communication we shortly present the Higgs sector in a minimal supergravity model with broken R-parity. Imposing the constraint on $m_{h^0}$ we show that there is a relatively large set of free parameters of the model, for which that constraint is fulfilled. We indetify also points which result in the lightest Higgs boson mass being approximately 125 GeV. Also the dependence on the magnitude of the R-parity admixture to the model is discussed.
Vacuum-Polarization Corrections to Parity-Nonconserving Effects in Atomic Systems
International Nuclear Information System (INIS)
The dominant one-loop vacuum-polarization correction to atomic wave functions are evaluated for the 6s-7s parity nonconserving (PNC) E1 transition amplitude in cesium. This correction increases the size of the PNC amplitude by 0.4% and thus increases the difference between the experimental value of the weak charge QW and the one predicted by the standard model.
Energy Technology Data Exchange (ETDEWEB)
Khachatryan, Vardan; et al.
2016-06-26
Results are presented from searches for R-parity-violating supersymmetry in events produced in pp collisions at sqrt(s)=8 TeV at the LHC. Final states with 0, 1, 2, or multiple leptons are considered independently. The analysis is performed on data collected by the CMS experiment corresponding to an integrated luminosity of 19.5 inverse femtobarns. No excesses of events above the standard model expectations are observed, and 95% confidence level limits are set on supersymmetric particle masses and production cross sections. The results are interpreted in models featuring R-parity-violating decays of the lightest supersymmetric particle, which in the studied scenarios can be either the gluino, a bottom squark, or a neutralino. In a gluino pair production model with baryon number violation, gluinos with a mass less than 0.98 and 1.03 TeV are excluded, by analyses in a fully hadronic and one-lepton final state, respectively. An analysis in a dilepton final state is used to exclude bottom squarks with masses less than 307 GeV in a model considering bottom squark pair production. Multilepton final states are considered in the context of either strong or electroweak production of superpartners, and are used to set limits on the masses of the lightest supersymmetric particles. These limits range from 300 to 900 GeV in models with leptonic and up to approximately 700 GeV in models with semileptonic R-parity-violating couplings.
Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Baksay, L; Balandras, A; Ball, R C; Banerjee, S; Banerjee, Sw; Banicz, K; Barczyk, A; Barillère, R; Barone, L; Bartalini, P; Basile, M; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brigljevic, V; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Busenitz, J K; Button, A M; Cai, X D; Campanelli, M; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada-Canales, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chéreau, X J; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colijn, A P; Colino, N; Costantini, S; Cotorobai, F; Cozzoni, B; de la Cruz, B; Csilling, Akos; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Van Dierendonck, D N; Di Lodovico, F; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; Durán, I; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Extermann, Pierre; Fabre, M; Faccini, R; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Ferroni, F; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Fredj, L; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grünewald, M W; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Kamrad, D; Kapustinsky, J S; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, D H; Kim, J K; Kim, S C; Kinnison, W W; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopp, A; Korolko, I; Koutsenko, V F; Krämer, R W; Krenz, W; Kunin, A; Lacentre, P E; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lassila-Perini, K M; Laurikainen, P; Lavorato, A; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Leonardi, E; Levchenko, P M; Li Chuan; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Majumder, G; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Marchesini, P A; Marian, G; Martin, J P; Marzano, F; Massaro, G G G; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Migani, D; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Molnár, P; Monteleoni, B; Moulik, T; Muanza, G S; Muheim, F; Muijs, A J M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Oh, Yu D; Organtini, G; Ostonen, R; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Park, H K; Park, I H; Pascale, G; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Peach, D; Pedace, M; Pei, Y J; Pensotti, S; Perret-Gallix, D; Petersen, B; Petrak, S; Piccolo, D; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Produit, N; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Raja, N; Rancoita, P G; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Van Rhee, T; Riemann, S; Riles, K; Robohm, A; Rodin, J; Roe, B P; Romero, L; Rosier-Lees, S; Rubio, Juan Antonio; Ruschmeier, D; Rykaczewski, H; Sakar, S; Salicio, J; Sánchez, E; Sanders, M P; Sarakinos, M E; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Scholz, N; Schopper, Herwig Franz; Schotanus, D J; Schwenke, J; Schwering, G; Sciacca, C; Sciarrino, D; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shukla, J; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stone, H; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tauscher, Ludwig; Taylor, L; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; You, J M; Zalite, A; Zalite, Yu; Zemp, P; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, Antonino; Ziegler, F; Zilizi, G; Zöller, M
1999-01-01
A search for chargino and neutralino pair production in $\\mathrm{ e^+e^-}$ collisions at center-of-mass energies between 161~\\textrm{Ge\\kern -0.1em V} and 183~\\textrm{Ge\\kern -0.1em V} is performed under the assumptions that R-parity is not conserved and that only purely leptonic or hadronic R-parity violating decays are allowed. No signal is found in the data. Limits on the production cross sections, on the Minimal Supersymmetric Standard Model parameters and on the masses of the supersymmetric particles are derived.
Search for gravitinos in R-parity violating supersymmetry at HERA
International Nuclear Information System (INIS)
In this thesis a search for gravitinos in RP-violating supersymmetry is presented using data recorded with the ZEUS detector in the years 1996 to 2005, corresponding to an integrated luminosity of 300 pb-1. Collisions are recorded from e-p and e+p scattering at center-of-mass energies of 300 GeV and 318 GeV, using unpolarised as well as polarised lepton beams. Gravitinos are naturally expected in Gauge Mediated Supersymmetry Breaking (GMSB) models where the gravitino is the lightest supersymmetric particle. At HERA gravitinos may result from the GMSB decay of neutralinos (χ0→γG) produced in t-channel slepton exchange processes (eq→q'χ) via an RP-violating (RP) Yukawa coupling λ'ijk. It was assumed that only one of the RP couplings λ'111, λ'121, λ'112 or λ'113 is different from zero at a time. To extend the investigated GMSB parameter space, also the two dominant RP-violating decay channels (χ→e±qq and χ→νqq) were taken into account. For the signal-to-background optimisation a dynamic discriminant method was developed. The data was observed to be well described by the expected Standard Model processes and no evidence for the production of supersymmetric particles was found. Limits were calculated for the masses of the left-handed selectron and the lightest neutralino and the variation of these limits was investigated in the entire GMSB parameter space. For some parameter regions, selectron masses of up to 360 GeV and neutralino masses of up to 190 GeV can be excluded at 95% CL. Similar mass limits were found to hold for large regions of GMSB parameter space. (orig.)
Measuring the Weak Charge of the Proton and the Hadronic Parity Violation of the N → Δ Transition
Energy Technology Data Exchange (ETDEWEB)
Leacock, John D. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
2012-10-16
Qweak will determine the weak charge of the proton, Q^{p}{sub W}, via an asymmetry measurement of parity-violating elastic electron-proton scattering at low four momentum transfer to a precision of 4%. Q^{p}_{W} has a firm Standard Model prediction and is related to the weak mixing angle, sin^{2} Φ_{W}, a well-defined Standard Model parameter. Qweak will probe a subset of new physics to the TeV mass scale and test the Standard Model. The details of how this measurement was performed and the analysis of the 25% elastic dataset will be presented in this thesis. Also, an analysis of an auxiliary measurement of the parity-violating asymmetry in the N → Δ transition is presented. It is used as a systematic inelastic background correction in the elastic analysis and to extract information about the hadronic parity violation through the low energy constant, d_{Δ}. The elastic asymmetry at Q^{2} = 0.0252 ± 0.0007 GeV^{2} was measured to be A_{ep} = -265 ± 40 ± 22 ± 68 ppb (stat., sys., and blinding). Extrapolated to Q^{2} = 0, the value of the proton's weak charge was measured to be Q^{p}_{W} = 0.077 ± 0.019 (stat. and sys.) ± 0.026 (blinding). This is within 1 σ of the Standard Model prediction of Q^{p}_{W} = 0.0705 ± 0.0008. The N → Δ inelastic asymmetry at Q^{2} = 0.02078 ± 0.0005 GeV^{2} and W = 1205 MeV was measured to be A_{inel} = -3.03 ± 0.65 ± 0.73 ± 0.07 ppm (stat., sys., and blinding). This result constrains the low energy constant to be d_{Δ} = 5.8 ± 22g_{π}, and, if the result of the G0 experiment is included, d_{Δ} = 5.8 ± 17g_{π}. This result rules out suggested large values of d_{Δ} motivated by radiative hyperon decays. The elastic measurement is the first direct measurement of the weak charge of the proton while the inelastic measurement is only the second
Parity-violating macroscopic force between chiral molecules and source mass
Hu, Yonghong; Xu, Qing; Luo, Jun
2008-01-01
A theory concerning non-zero macroscopic chirality-dependent force between a source mass and homochiral molecules due to the exchange of light particles is presented in this paper. This force is proposed to have opposite sign for molecules with opposite chirality. Using the central field approximation, we calculate this force between a copper block and a vessel of chiral molecules (methyl phenyl carbinol nitrite). The magnitude of force is estimated with the published limits of the scalar and pseudo-scalar coupling constants. Based on our theoretical model, this force may violate the equivalence principle when the homochiral molecules are used to be the test masses.
Energy Technology Data Exchange (ETDEWEB)
Fleischmann, Sebastian
2012-10-15
This thesis investigates the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) for R-parity violating (RPV) supersymmetric (SUSY) models in the framework of mSUGRA, where the stau ({tau}) is the lightest supersymmetric particle (LSP). Hence, the LSP is charged and decays in contrast to R-parity conserving models. For the first time in the framework of this RPV model a detailed signal to background analysis is performed for a specific benchmark scenario using a full Monte Carlo simulation of the ATLAS detector. Furthermore a feasibility study for an estimate of the stau LSP mass is given. The fast track simulation FATRAS is a new approach for the Monte Carlo simulation of particles in the tracking systems of the ATLAS experiment. Its results are compared to first data at {radical}(s) = 900 GeV. Additionally, two generic detector simulations are compared to the full simulation. The reconstruction of tau leptons is crucial for many searches for new physics with ATLAS. Therefore, the reconstruction of tracks for particles from tau decays is studied. A novel method, PanTau, is presented for the tau reconstruction in ATLAS. It is based on the energy flow algorithm eflowRec. Its performance is evaluated in Monte Carlo simulations. The dependency of the identification variables on the jet energy are studied in detail. Finally, the energy flow quantities and the identification variables are compared between Monte Carlo simulations and measured multijet events with first ATLAS data at {radical}(s) = 7 TeV.
International Nuclear Information System (INIS)
This thesis investigates the discovery potential of the ATLAS experiment at the Large Hadron Collider (LHC) for R-parity violating (RPV) supersymmetric (SUSY) models in the framework of mSUGRA, where the stau (τ) is the lightest supersymmetric particle (LSP). Hence, the LSP is charged and decays in contrast to R-parity conserving models. For the first time in the framework of this RPV model a detailed signal to background analysis is performed for a specific benchmark scenario using a full Monte Carlo simulation of the ATLAS detector. Furthermore a feasibility study for an estimate of the stau LSP mass is given. The fast track simulation FATRAS is a new approach for the Monte Carlo simulation of particles in the tracking systems of the ATLAS experiment. Its results are compared to first data at √(s) = 900 GeV. Additionally, two generic detector simulations are compared to the full simulation. The reconstruction of tau leptons is crucial for many searches for new physics with ATLAS. Therefore, the reconstruction of tracks for particles from tau decays is studied. A novel method, PanTau, is presented for the tau reconstruction in ATLAS. It is based on the energy flow algorithm eflowRec. Its performance is evaluated in Monte Carlo simulations. The dependency of the identification variables on the jet energy are studied in detail. Finally, the energy flow quantities and the identification variables are compared between Monte Carlo simulations and measured multijet events with first ATLAS data at √(s) = 7 TeV.
Search for gravitinos in R-parity violating supersymmetry at HERA
Energy Technology Data Exchange (ETDEWEB)
Horn, C.
2006-07-15
In this thesis a search for gravitinos in R{sub P}-violating supersymmetry is presented using data recorded with the ZEUS detector in the years 1996 to 2005, corresponding to an integrated luminosity of 300 pb{sup -1}. Collisions are recorded from e{sup -}p and e{sup +}p scattering at center-of-mass energies of 300 GeV and 318 GeV, using unpolarised as well as polarised lepton beams. Gravitinos are naturally expected in Gauge Mediated Supersymmetry Breaking (GMSB) models where the gravitino is the lightest supersymmetric particle. At HERA gravitinos may result from the GMSB decay of neutralinos ({chi}{sup 0}{yields}{gamma}G) produced in t-channel slepton exchange processes (eq{yields}q'{chi}) via an R{sub P}-violating (R{sub P}) Yukawa coupling {lambda}'{sub ijk}. It was assumed that only one of the R{sub P} couplings {lambda}'{sub 111}, {lambda}'{sub 121}, {lambda}'{sub 112} or {lambda}'{sub 113} is different from zero at a time. To extend the investigated GMSB parameter space, also the two dominant R{sub P}-violating decay channels ({chi}{yields}e{sup {+-}}qq and {chi}{yields}{nu}qq) were taken into account. For the signal-to-background optimisation a dynamic discriminant method was developed. The data was observed to be well described by the expected Standard Model processes and no evidence for the production of supersymmetric particles was found. Limits were calculated for the masses of the left-handed selectron and the lightest neutralino and the variation of these limits was investigated in the entire GMSB parameter space. For some parameter regions, selectron masses of up to 360 GeV and neutralino masses of up to 190 GeV can be excluded at 95% CL. Similar mass limits were found to hold for large regions of GMSB parameter space. (orig.)
Searching for R-parity violation at run-II of the tevatron.
Energy Technology Data Exchange (ETDEWEB)
Allanach, B.; Banerjee, S.; Berger, E. L.; Chertok, M.; Diaz, M. A.; Dreiner, H.; Eboli, O. J. P.; Harris, B. W.; Hewett, J.; Magro, M. B.; Mondal, N. K.; Narasimham, V. S.; Navarro, L.; Parua, N.; Porod, W.; Restrepo, D. A.; Richardson, P.; Rizzo, T.; Seymour, M. H.; Sullivan, Z.; Valle, J. W. F.; de Campos, F.
1999-06-22
The authors present an outlook for possible discovery of supersymmetry with broken R-parity at Run II of the Tevatron. They first present a review of the literature and an update of the experimental bounds. In turn they then discuss the following processes: (1) resonant slepton production followed by R{sub P} decay, (a) via LQD{sup c} and (b) via LLE{sup c}; (2) how to distinguish resonant slepton production from Z{prime} or W{prime} production; (3) resonant slepton production followed by the decay to neutralino LSP, which decays via LQD{sup c}; (4) resonant stop production followed by the decay to a chargino, which cascades to the neutralino LSP; (5) gluino pair production followed by the cascade decay to charm squarks which decay directly via L{sub 1}Q{sub 2}D{sub 1}{sup c}; (6) squark pair production followed by the cascade decay to the neutralino LSP which decays via L{sub 1}Q{sub 2}D{sub 1}{sup c}; (7) MSSM pair production followed by the cascade decay to the LSP which decays (a) via LLE{sup c}, (b) via LQD{sup c}, and (c) via U{sup c}D{sup c}D{sup c}, respectively; and (8) top quark and top squark decays in spontaneous R{sub P}.
Bilinear R Parity Violation at the ILC - Neutrino Physics at Colliders
List, Jenny
2013-01-01
Supersymmetry (SUSY) with bilinearly broken R parity (bRPV) offers an attractive possibility to explain the origin of neutrino masses and mixings. Thereby neutralinos become a probe to the neutrino sector since studying neutralino decays gives access to neutrino parameters at colliders. We present the study of a bRPV SUSY model at the International Linear Collider (ILC), with the bRPV parameters determined from current neutrino data. The ILC offers a very clean environment to study the neutralino properties as well as their subsequent decays, which typically involve a W/Z and a lepton. This study is based on ILC beam parameters according to the Technical Design Report for a center of mass energy of 500 GeV. Full detector simulation of the International Large Detector (ILD) was performed for SUSY and Standard Model processes. We show for the fully simulated example point that the chi10 mass can be reconstructed with an uncertainty of less than 0.2% for an integrated luminosity of 100 fb-1 from direct chi10 pai...
Searching for R-parity violation at run-II of the tevatron
International Nuclear Information System (INIS)
The authors present an outlook for possible discovery of supersymmetry with broken R-parity at Run II of the Tevatron. They first present a review of the literature and an update of the experimental bounds. In turn they then discuss the following processes: (1) resonant slepton production followed by RP decay, (a) via LQDc and (b) via LLEc; (2) how to distinguish resonant slepton production from Zprime or Wprime production; (3) resonant slepton production followed by the decay to neutralino LSP, which decays via LQDc; (4) resonant stop production followed by the decay to a chargino, which cascades to the neutralino LSP; (5) gluino pair production followed by the cascade decay to charm squarks which decay directly via L1Q2D1c; (6) squark pair production followed by the cascade decay to the neutralino LSP which decays via L1Q2D1c; (7) MSSM pair production followed by the cascade decay to the LSP which decays (a) via LLEc, (b) via LQDc, and (c) via UcDcDc, respectively; and (8) top quark and top squark decays in spontaneous RP
Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices
Zhang, Zhaoyang; Sheng, Jiteng; Yang, Liu; Miri, Mohammad-Ali; Christodoulides, Demetrios N; He, Bing; Zhang, Yanpeng; Xiao, Min
2016-01-01
A wide class of non-Hermitian Hamiltonians can possess entirely real eigenvalues when they have parity-time (PT) symmetric potentials. Due to their unusual properties, this family of non-Hermitian systems has recently attracted considerable attention in diverse areas of physics, especially in coupled gain-loss waveguides and optical lattices. Given that multi-level atoms can be quite efficient in judiciously synthesizing refractive index profiles, schemes based on atomic coherence have been recently proposed to realize optical potentials with PT-symmetric properties. Here, we experimentally demonstrate for the first time PT-symmetric optical lattices in a coherently-prepared four-level N-type atomic system. By appropriately tuning the pertinent atomic parameters, the onset of PT symmetry breaking is observed through measuring an abrupt phase-shift jump. The experimental realization of such readily reconfigurable and effectively controllable PT-symmetric periodic lattice structures sets a new stage for further...
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Curtis; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guido, Elisa; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2012-01-01
A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb$^{-1}$ of $\\sqrt{s}$ = 7 TeV proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of $m_{1/2}$ up to 820 GeV are excluded for 10 < tan $\\beta$ < 40.
Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akiimoto, R; Alexander, J; Al-Taani, H; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramak, Y; Armendariz, R; Aschenauer, E C; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belmont, R; Bennett, R; Berdnikov, A; Berdnikov, Y; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; del Valle, Z Conesa; Connors, M; Csanád, M; Csörgő, T; Dairaku, S; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Orazio, L D; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Efremenko, Y V; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Jr.,; Finger, M; Fleuret, F; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gunji, T; Guo, L; Gustafsson, H -Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Hanks, J; Han, R; Haslum, E; Hayano, R; Hemmick, T K; Hester, T; He, X; Hill, J C; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, PHENIX: J; Jiang, X; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D J; Kim, E J; Kim, J S; Kim, Y -J; Kim, Y K; Kinney, E; Kiss, Á; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S R; Leitch, M J; Leite, M A L; Lichtenwalner, P; Lim, S H; Levy, L A Linden; Litvinenko, A; Liu, H; Liu, M X; Li, X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Ogilvie, C A; Okada, K; Oka, M; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Pate, S F; Pei, H; Peng, J -C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosendahl, S S E; Rukoyatkin, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T -A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Togawa, M; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Wei, F; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; Young, G R; Younus, I; You, Z; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S; Zolin, L
2010-01-01
Large parity violating longitudinal single spin asymmetries A^{e^-}_L= -0.86^{+0.14}_{-0.30} and A^{e^+}_L= 0.88^{+0.12}_{-0.71} are observed for inclusive high transverse momentum electrons and positrons in polarized pp collisions at a center of mass energy of \\sqrt{s}=500\\ GeV with the PHENIX detector at RHIC. These e^{+/-} come mainly from the decay of W^{+/-} and Z^0 bosons, and the asymmetries directly demonstrate parity violation in the couplings of the W^{\\pm} to the light quarks. The observed electron and positron yields were used to estimate W^\\pm boson production cross sections equal to \\sigma(pp --> W^+ X) \\times BR(W^ --> \
Adare, A; Ajitanand, N N; Akiba, Y; Akimoto, R; Alexander, J; Alfred, M; Aoki, K; Apadula, N; Aramaki, Y; Asano, H; Aschenauer, E C; Atomssa, E T; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bai, X; Bandara, N S; Bannier, B; Barish, K N; Bassalleck, B; Bathe, S; Baublis, V; Baumann, C; Baumgart, S; Bazilevsky, A; Beaumier, M; Beckman, S; Belmont, R; Berdnikov, A; Berdnikov, Y; Black, D; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Bryslawskyj, J; Buesching, H; Bumazhnov, V; Butsyk, S; Campbell, S; Chen, C -H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choi, S; Choudhury, R K; Christiansen, P; Chujo, T; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Connors, M; Cronin, N; Crossette, N; Csanád, M; Csörgő, T; Dairaku, S; Danley, D; Datta, A; Daugherity, M S; David, G; DeBlasio, K; Dehmelt, K; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Ding, L; Dion, A; Diss, P B; Do, J H; Donadelli, M; D'Orazio, L; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Edwards, S; Efremenko, Y V; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Feege, N; Fields, D E; Finger, M; Jr., \\,; Fleuret, F; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fusayasu, T; Gainey, K; Gal, C; Gallus, P; Garg, P; Garishvili, A; Garishvili, I; Ge, H; Giordano, F; Glenn, A; Gong, X; Gonin, M; Goto, Y; de Cassagnac, R Granier; Grau, N; Greene, S V; Perdekamp, M Grosse; Gu, Y; Gunji, T; Guragain, H; Hachiya, T; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamilton, H F; Han, S Y; Hanks, J; Hasegawa, S; Haseler, T O S; Hashimoto, K; Hayano, R; Hayashi, S; He, X; Hemmick, T K; Hester, T; Hill, J C; Hollis, R S; Homma, K; Hong, B; Horaguchi, T; Hoshino, T; Hotvedt, N; Huang, J; Huang, S; Ichihara, T; Iinuma, H; Ikeda, Y; Imai, K; Imazu, Y; Imrek, J; Inaba, M; Iordanova, A; Isenhower, D; Isinhue, A; Ivanishchev, D; Jacak, B V; Javani, M; Jeon, S J; Jezghani, M; Jia, J; Jiang, X; Johnson, B M; Joo, E; Joo, K S; Jouan, D; Jumper, D S; Kamin, J; Kanda, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kawall, D; Kazantsev, A V; Kempel, T; Key, J A; Khachatryan, V; Khandai, P K; Khanzadeev, A; Kihara, K; Kijima, K M; Kim, B I; Kim, C; Kim, D H; Kim, D J; Kim, E -J; Kim, G W; Kim, H -J; Kim, M; Kim, Y -J; Kim, Y K; Kimelman, B; Kinney, E; Kistenev, E; Kitamura, R; Klatsky, J; Kleinjan, D; Kline, P; Koblesky, T; Kofarago, M; Komkov, B; Koster, J; Kotchetkov, D; Kotov, D; Krizek, F; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, G H; Lee, J; Lee, K B; Lee, K S; Lee, S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Leitgab, M; Lewis, B; Li, X; Lim, S H; Levy, L A Linden; Liu, M X; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Manion, A; Manko, V I; Mannel, E; Maruyama, T; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Midori, J; Mignerey, A C; Miller, A J; Milov, A; Mishra, D K; Mitchell, J T; Miyasaka, S; Mizuno, S; Mohanty, A K; Mohapatra, S; Montuenga, P; Moon, H J; Moon, T; Morrison, D P; Moskowitz, M; Moukhanova, T V; Murakami, T; Murata, J; Mwai, A; Nagae, T; Nagamiya, S; Nagashima, K; Nagle, J L; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nattrass, C; Netrakanti, P K; Nihashi, M; Niida, T; Nishimura, S; Nouicer, R; Novak, T; Novitzky, N; Nukariya, A; Nyanin, A S; Obayashi, H; O'Brien, E; Ogilvie, C A; Oide, H; Okada, K; Koop, J D Orjuela; Osborn, J D; Oskarsson, A; Ozaki, H; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, I H; Park, J S; Park, S; Park, S K; Pate, S F; Patel, L; Patel, M; Pei, H; Peng, J -C; Perepelitsa, D V; Perera, G D N; Peressounko, D Yu; Perry, J; Petti, R; Pinkenburg, C; Pinson, R; Pisani, R P; Purschke, M L; Qu, H; Rak, J; Ramson, B J; Ravinovich, I; Read, K F; Reynolds, D; Riabov, V; Riabov, Y; Richardson, E; Rinn, T; Riveli, N; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rowan, Z; Rubin, J G; Ryu, M S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sako, H; Samsonov, V; Sarsour, M; Sato, S; Sawada, S; Schaefer, B; Schmoll, B K; Sedgwick, K; Seele, J; Seidl, R; Sekiguchi, Y; Sen, A; Seto, R; Sett, P; Sexton, A; Sharma, D; Shaver, A; Shein, I; Shibata, T -A; Shigaki, K; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Singh, B K; Singh, C P; Singh, V; Skolnik, M; Slunečka, M; Snowball, M; Solano, S; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Steinberg, P; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Stone, M R; Sugitate, T; Sukhanov, A; Sumita, T; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Tieulent, R; Timilsina, A; Todoroki, T; Tomášek, M; Torii, H; Towell, C L; Towell, M; Towell, R; Towell, R S; Tserruya, I; Tsuchimoto, Y; Vale, C; van Hecke, H W; Vargyas, M
2015-01-01
We present measurements from the PHENIX experiment of large parity-violating single spin asymmetries of high transverse momentum electrons and positrons from $W^\\pm/Z$ decays, produced in longitudinally polarized $p$$+$$p$ collisions at center of mass energies of $\\sqrt{s}$=500 and 510~GeV. These asymmetries allow direct access to the anti-quark polarized parton distribution functions due to the parity-violating nature of the $W$-boson coupling to quarks and anti-quarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb$^{-1}$, which exceeds previous PHENIX published results by a factor of more than 27. These high $Q^2$ data provide an important addition to our understanding of anti-quark parton helicity distribution functions.
AUTHOR|(CDS)2093982; Flowerdew, Michael
Supersymmetry with R-parity violation, where the lightest supersymmetric particle can decay into Standard Model particles is an attractive target for collider-based searches for physics beyond the Standard Model. In this thesis, four-lepton events are studied as a possible signature of R-parity-violating supersymmetry, using proton- proton collision events collected by the ATLAS experiment at $\\sqrt{s}$ = 13 TeV. The event selection is optimized for events with low-mass collimated lepton pairs, and the viability of estimating the important $t\\bar{t}Z$ background process from $t\\bar{t}\\gamma$ events is shown. Using the optimized selection, it is found that pair-produced charginos with masses above 1 TeV can be discovered with $3\\sigma$ significance in $10~\\text{fb}^{-1}$ of data.
International Nuclear Information System (INIS)
We present a solution of the solar neutrino deficit using three flavors of neutrinos and R-parity non-conserving supersymmetry. In this model, in vacuum, the νe is massless and unmixed, mass and mixing being restricted to the νμ-ντ sector only, which we choose in consistency with the requirements of the atmospheric neutrino anomaly. The flavor changing and flavor diagonal neutral currents present in the model and the three-flavor picture together produce an energy dependent resonance-induced νe-νμ mixing in the sun. This mixing plays a key role in the new solution to the solar neutrino problem. The best fit to the solar neutrino rates and spectrum (1258-day SK and 241-day SNO data) requires a mass square difference of ∝10-5 eV2 in vacuum between the two lightest neutrinos. This solution cannot accommodate a significant day-night effect for solar neutrinos nor CP violation in terrestrial neutrino experiments. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Subedi, Ramesh R. [Virginia U.; Wang, Diancheng [Virginia U.; Pan, Kai [MIT; Deng, Xiaoyan [Virginu U.; Michaels, Robert W. [JLAB; Shahinyan, Albert [Yerevan Institute; Wojtsekhowski, Bogdan B. [JLAB; Zheng, Xiaochao [JLAB
2013-10-01
An experiment that measured the parity violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the 10^-4 level needed to be measured at event rates up to 500 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: The pion contamination in the electron samples was controlled at the order of 2 × 10^-4 or below with an electron efficiency of higher than 91% throughout the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.2%, and the statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes. The DAQ system is presented here with an emphasis on its design scheme, the achieved PID performance, deadtime effect and the capability of measuring small asymmetries.
Energy Technology Data Exchange (ETDEWEB)
Subedi, R.; Wang, D. [University of Virginia, Charlottesville, VA 22904 (United States); Pan, K. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Deng, X. [University of Virginia, Charlottesville, VA 22904 (United States); Michaels, R. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Reimer, P.E. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Shahinyan, A. [Yerevan Physics Institute, Yerevan 0036 (Armenia); Wojtsekhowski, B. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Zheng, X., E-mail: xiaochao@jlab.org [University of Virginia, Charlottesville, VA 22904 (United States)
2013-10-01
An experiment that measured the parity-violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the 10{sup −4} level needed to be measured at event rates up to 600 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: the pion contamination in the electron samples was controlled at the order of 2×10{sup −4} or below with an electron efficiency of higher than 91% during most of the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.5%, and the statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes. The DAQ system is presented here with an emphasis on its design scheme, the achieved PID performance, deadtime effect and the capability of measuring small asymmetries.
International Nuclear Information System (INIS)
An experiment that measured the parity-violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the 10−4 level needed to be measured at event rates up to 600 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: the pion contamination in the electron samples was controlled at the order of 2×10−4 or below with an electron efficiency of higher than 91% during most of the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.5%, and the statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes. The DAQ system is presented here with an emphasis on its design scheme, the achieved PID performance, deadtime effect and the capability of measuring small asymmetries
Subedi, R.; Wang, D.; Pan, K.; Deng, X.; Michaels, R.; Reimer, P. E.; Shahinyan, A.; Wojtsekhowski, B.; Zheng, X.
2013-10-01
An experiment that measured the parity-violating asymmetries in deep inelastic scattering was completed at the Thomas Jefferson National Accelerator Facility in experimental Hall A. From these asymmetries, a combination of the quark weak axial charge could be extracted with a factor of five improvement in precision over world data. To achieve this, asymmetries at the 10-4 level needed to be measured at event rates up to 600 kHz and the high pion background typical to deep inelastic scattering experiments needed to be rejected efficiently. A specialized data acquisition (DAQ) system with intrinsic particle identification (PID) was successfully developed and used: the pion contamination in the electron samples was controlled at the order of 2×10-4 or below with an electron efficiency of higher than 91% during most of the production period of the experiment, the systematic uncertainty in the measured asymmetry due to DAQ deadtime was below 0.5%, and the statistical quality of the asymmetry measurement agreed with the Gaussian distribution to over five orders of magnitudes. The DAQ system is presented here with an emphasis on its design scheme, the achieved PID performance, deadtime effect and the capability of measuring small asymmetries.
Charged Higgs Mass Bounds from $b \\to s \\gamma $in a Bilinear R-Parity Violating Model
Díaz, M A; Valle, José W F; Diaz, Marco A.
1999-01-01
The experimental measurement of the branching ratio $B(b\\to s\\gamma)$ imposes important constraints on the charged Higgs boson mass within the MSSM. We show that by adding bilinear R--Parity violation (BRpV) in the tau sector, these bounds are relaxed. In this model, a non--zero tau neutrino mass is induced. If squark masses are of a few TeV, the charged Higgs boson mass in the MSSM has to satisfy $m_{H^{\\pm}}\\gsim 570$ GeV. This bound on $m_{H^{\\pm}}$ is $\\sim 100$ GeV smaller in MSSM--BRpV. If squarks are lighter, then light charged Higgs bosons can be reconciled with $B(b\\to s\\gamma)$ only if there is also a light chargino. In the MSSM if we impose $m_{\\chi^{\\pm}_1}>90$ GeV then we need $m_{H^{\\pm}}\\gsim 110$ GeV. This bound on $m_{H^{\\pm}}$ is $\\sim 30$ GeV smaller in MSSM--BRpV. The relaxation of the bounds is due to the fact that charged Higgs bosons mix with staus and they contribute importantly to $B(b\\to contribution to $B(b\\to s\\gamma)$ can be safely neglected.
International Nuclear Information System (INIS)
In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q2 = 0.5 (GeV/c)2, a strange quarks contribution of (1.0 ± 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)
A measurement of the parity violating parameter A sub b with a muon tag at the SLD
Bellodi, G
2000-01-01
We present a direct measurement of the parity violation parameter A sub b , derived from the left-right forward-backward asymmetry of b quarks tagged via unions from semileptonic decays. The value of A sub b is extracted using a maximum likelihood fit to the differential cross section for fermion production. The novelty of this measurement consists in the use of topological vertexing information alongside the more traditional decay kinematics to discriminate among the different sources of tagged leptons. The small and stable SLC beam spot and the CCD based vertex detector are used to reconstruct secondary decay vertices and to provide precise kinematic information and a highly efficient and pure B mass tag. A multivariate approach has been used, with a total of 4 tagging variables, whose correlation with each other has been taken into account. The final result has been cross-checked both with a classical cut-and-count method and combining all the information into a neural net. Based on the full SLD dataset of...
Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B. D.; Arkhipkin, D.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baumgart, S.; Beavis, D. R.; Bellwied, R.; Benedosso, F.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Biritz, B.; Bland, L. C.; Bnzarov, I.; Bonner, B. E.; Bouchet, J.; Braidot, E.; Brandin, A. V.; Bridgeman, A.; Bruna, E.; Bueltmann, S.; Burton, T. P.; Cai, X. Z.; Caines, H.; Calderón de La Barca Sánchez, M.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K. E.; Christie, W.; Chung, P.; Clarke, R. F.; Codrington, M. J. M.; Corliss, R.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Dash, S.; Daugherity, M.; de Silva, L. C.; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Derradi de Souza, R.; Didenko, L.; Djawotho, P.; Dzhordzhadze, V.; Dogra, S. M.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunlop, J. C.; Dutta Mazumdar, M. R.; Efimov, L. G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Ganti, M. S.; Garcia-Solis, E. J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y. N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; Heinz, M.; Heppelmann, S.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Hofman, D. J.; Hollis, R. S.; Huang, H. Z.; Humanic, T. J.; Huo, L.; Igo, G.; Iordanova, A.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jena, C.; Jin, F.; Jones, C. L.; Jones, P. G.; Joseph, J.; Judd, E. G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitan, J.; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V. Yu.; Kikola, D. P.; Kiryluk, J.; Kisiel, A.; Klein, S. R.; Knospe, A. G.; Kocoloski, A.; Koetke, D. D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kouchpil, V.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Krus, M.; Kumar, L.; Kurnadi, P.; Lamont, M. A. C.; Landgraf, J. M.; Lapointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lee, J. H.; Leight, W.; Levine, M. J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Ma, G. L.; Ma, Y. G.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; Matulenko, Yu. A.; McDonald, D.; McShane, T. S.; Meschanin, A.; Milner, R.; Minaev, N. G.; Mioduszewski, S.; Mischke, A.; Mohanty, B.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Ng, M. J.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Pile, P.; Planinic, M.; Ploskon, M. A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A. M.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Pruthi, N. K.; Pujahari, P. R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seele, J.; Seger, J.; Selyuzhenkov, I.; Semertzidis, Y.; Seyboth, P.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S. S.; Shi, X.-H.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Skoby, M. J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Subba, N. L.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Timoshenko, S.; Tlusty, D.; Tokarev, M.; Tram, V. N.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A., Jr.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, I.-K.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W. M.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J. X.; STAR Collaboration
2010-05-01
Parity (P)-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in noncentral collisions. To study this effect, we investigate a three-particle mixed-harmonics azimuthal correlator which is a P-even observable, but directly sensitive to the charge-separation effect. We report measurements of this observable using the STAR detector in Au+Au and Cu+Cu collisions at sNN=200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators and discuss in detail possible contributions from other effects that are not related to P violation.
Bilinear R parity violation at the ILC. Neutrino physics at colliders
International Nuclear Information System (INIS)
Supersymmetry (SUSY) with bilinearly broken R parity (bRPV) offers an attractive possibility to explain the origin of neutrino masses and mixings. Thereby neutralinos become a probe to the neutrino sector since studying neutralino decays gives access to neutrino parameters at colliders. We present the study of a bRPV SUSY model at the International Linear Collider (ILC), with the bRPV parameters determined from current neutrino data. The ILC offers a very clean environment to study the neutralino properties as well as their subsequent decays, which typically involve a W/Z and a lepton. This study is based on ILC beam parameters according to the Technical Design Report for a center of mass energy of 500 GeV. Full detector simulation of the International Large Detector (ILD) was performed for SUSY and Standard Model processes. We show for the fully simulated example point that the χ01 mass can be reconstructed with an uncertainty of less than 0.2% for an integrated luminosity of 100 fb-1 from direct χ01 pair production, thus to a large extent independently of the rest of the SUSY spectrum. We also demonstrate that the achievable precision on the atmospheric neutrino mixing angle sin2 θ23 from measuring the neutralino branching fractions BR(χ01→Wμ) and BR(χ01→Wτ) at the ILC is comparable to current uncertainties from neutrino experiments. Thus the ILC could have the opportunity to unveil the mechanism of neutrino mass generation.
Schindler, Matthias R.; Springer, Roxanne P.; Vanasse, Jared
2016-02-01
The symmetries of the standard model dictate that for very low energies, where nucleon dynamics can be described in terms of a pionless effective field theory ( EFT(π / ) ) , the leading-order parity-violating nucleon-nucleon Lagrangian contains five independent unknown low-energy constants (LECs). We find that imposing the approximate symmetry of QCD that appears when the number of colors Nc becomes large reduces the number of independent LECs to two at leading order in the combined EFT(π / ) and large-Nc expansions. We also find a relation between the two isoscalar LECs in the large-Nc limit. This has important implications for the number of experiments and/or lattice calculations necessary to confirm this description of physics. In particular, we find that a future measurement of the parity-violating asymmetry in γ ⃗d →n p together with the existing result for parity-violating p ⃗p scattering would constrain all leading-order (in the combined expansion) LECs. This is a considerable improvement on the previous understanding of the system.
Energy Technology Data Exchange (ETDEWEB)
Magee, Joshua Allen [College of William and Mary, Williamsburg, VA (United States)
2016-05-01
The Q_weak experiment, which ran at the Thomas Jefferson National Accelerator Facility, made a precision measurement of the proton's weak charge, Q^p_W. The weak charge is extracted via a measurement of the parity-violating asymmetry in elastic electron-proton scattering from hydrogen at low momentum transfer (Q^2=0.025 GeV^2). This result is directly related to the electroweak mixing angle, sin^2(Theta_W), a fundamental parameter in the Standard Model of particle physics. This provides a precision test sensitive to new, as yet unknown, fundamental physics. This dissertation focuses on two central corrections to the Q_weak measurement: the target window contribution and sub-percent determination of the electron beam polarization. The aluminum target windows contribute approximately 30% of the measured asymmetry. Removal of this background requires precise measurements of both the elastic electron-aluminum scattering rate and its parity-violating asymmetry. The results reported here are the most precise measurement of the Q_weak target dilution and asymmetry to date. The parity-violating asymmetry for the aluminum alloy was found to be 1.6174 +/- 0.0704 (stat.) +/- 0.0113 (sys.) parts-per-million. The first sub-percent precision polarization measurements made from the Hall C Moller polarimeter are also reported, with systematic uncertainties of 0.84%.
The single-atom box: bosonic staircase and effects of parity
Bruder, Christoph; Averin, D. V.; Bergeman, T.; Hosur, P. R.
2009-03-01
We have developed [1] a theory of a Josephson junction formed by two tunnel-coupled Bose-Einstein condensates in a double-well potential in the regime of strong atom-atom interaction for an arbitrary total number N of bosons in the condensates. The tunnel resonances in the junction are shown to be periodically spaced by the interaction energy, forming a single-atom staircase sensitive to the parity of N even for large N. One of the manifestations of the staircase structure is the periodic modulation with the bias energy of the visibility of the interference pattern in lattices of junctions. A different, e.g. fermionic, additional particle in the junction leads to non-trivial modifications of the staircase, that can be experimentally observed in the visibility of the interference pattern. [1] D.V. Averin, T. Bergeman, P.R. Hosur, and C. Bruder, Phys. Rev. A 78, 031601(R) (2008).
Parity nonconservation and nuclear polarizabilities
International Nuclear Information System (INIS)
The hadronic weak interaction contributes to parity nonconserving observables in semileptonic interactions. Weak nuclear polarizabilities are frequently important in such interactions. Some of the interesting physics is illustrated by 18F, a nucleus that provides an important constraint on the neutral weak hadronic current. One observable where the nuclear polarizability is expected to dominate is the nuclear anapole moment. The long-range pion contribution to this weak radiative correction is explored for both nucleons and nuclei. Similar polarizabilities that arise for time-reversal-odd hadronic interactions that conserve or violate parity are discussed in connection with atomic electric dipole moments. 20 refs., 4 figs
αZ-expansion for self-energy radiative corrections to parity nonconservation in atoms
International Nuclear Information System (INIS)
The self-energy and vertex QED radiative corrections to the parity nonconservation (PNC) amplitude in atoms are calculated, using the perturbation theory in powers of αZ. The calculated term linear in αZ gives -0.6% for the PNC amplitude in Cs. The estimated nonlinear terms make corrections larger, -0.9(2)%. This result brings the experimental data for the 6s-7s transition in 133Cs into agreement with the standard model. (letter to the editor)
Energy Technology Data Exchange (ETDEWEB)
Lintz, M
2005-11-15
This document describes the design and implementation of a pump-probe polarimetry experiment in a cesium vapor, aiming at a 1% precision measurement of atomic parity violation (APV) induced by Z{sup 0} boson exchange. The experimental scheme, relying on induced emission by a probe laser, allows a detection efficiency close to unity, and the left-right asymmetry to be measured is amplified during the propagation of the probe beam in the excited vapour. The interest of the result presented here is to cross-check the unique previous result by an experiment with a completely different design, and hence with completely different systematics, that also allows measurements on long-lived isotopes especially {sup 135}Cs (nuclear spin 7/2 like {sup 133}Cs, half-life 3 million years). We have demonstrated improvements in polarimetry techniques (rejection of instrumental errors, implementation of a polarization magnifier), especially in pulsed polarimetry (doubly-differential, balanced-mode polarization analysis). But most importantly, the expected pump-probe chiral optical gain has been observed in a Cs vapor. The precision on the {theta}{sup pv} measurement has been improved to 2.6%, and the achieved signal/noise ratio allows measurements at the 1% precision level. The achieved precision on lm E{sub 1}{sup pv} is 2 x 10{sup -13} ea{sub 0}, 15 times better than the measurements obtained with the lead and thallium atoms. Our result is in agreement with the more precise Boulder result. The required amount of cesium is small enough to allow a measurement with {sup 135}Cs provided one takes reasonable radioprotection measures. (author)
Study on even-parity highly excited states of the Sm atom
Energy Technology Data Exchange (ETDEWEB)
Zhao Yanhong; Dai Changjian; Ye Shiwei, E-mail: daicj@126.com [School of Science, Tianjin University of Technology, Tianjin 300384 (China)
2011-10-14
Spectra of even-parity highly excited states of the Sm atom have been systematically studied using the two-color three-step excitation and photoionization detection method. With three different excitation paths distinguished by three different intermediate states with the 4f{sup 6}6s6p configuration, the atom is resonantly excited to given highly excited states in the energy region between 30 040 and 38 065 cm{sup -1}, where it is detected by photoionization. The wavelength of the second laser is scanned from 440 to 700 nm, while that of the first laser is fixed at 638.96, 636.92 or 627.50 nm. Based on precise calibration of the wavelength, the energy levels of 198 even-parity states are determined with the relative line intensities of the related transitions. A unique value of J, the total angular momentum, is assigned to all detected states by comparing the three spectra obtained with the different excitation paths. Except that the energy levels of 113 states are confirmed in this work, the rest of the information mentioned above has not been previously reported.
Towards a Precision Measurement of Parity-Violating e-p Elastic Scattering at Low Momentum Transfer
Energy Technology Data Exchange (ETDEWEB)
Pan, Jie [Univ. of Manitoba, Winnipeg (Canada)
2012-01-01
The goal of the Q-weak experiment is to make a measurement of the proton's weak charge Q_{W}^{p} = 1 - 4 sin^{2}(θ_{W2(θW2(θWWp by measuring the parity violating asymmetry in elastic electron-proton scattering at low momentum transfer Q2 = 0.026 (GeV/c)2 and forward angles (8 degrees). The anticipated size of the asymmetry, based on the SM, is about 230 parts per billion (ppb). With the proposed accuracy, the experiment may probe new physics beyond Standard Model at the TeV scale. This thesis focuses on my contributions to the experiment, including track reconstruction for momentum transfer determination of the scattering process, and the focal plane scanner, a detector I designed and built to measure the flux profile of scattered electrons on the focal plane of the Q-weak spectrometer to assist in the extrapolation of low beam current tracking results to high beam current. Preliminary results from the commissioning and the first run period of the Q-weak experiment are reported and discussed.}
Photoionization spectra of even-parity states of Sm atom with multistep excitation
International Nuclear Information System (INIS)
Two-color stepwise excitation and photoionization schemes are adopted to study the spectra of bound even-parity high-lying states of the Sm atom with three different excitation paths via the 4f66s6p 7DJ (J=1, 2 and 3) intermediate states. In order to obtain the information of these high-lying states, the Sm atom in these high-lying states is photoionized with an extra photon. Among 231 states detected in the energy region between 35,545 and 44,225 cm-1, 108 states are newly discovered, while the rest can be identified as the same with the literature. In most cases, comparisons of the spectra corresponding to the three different excitation paths may partially determine the total angular momentum of the observed peaks with the selection rules. In addition, the relative intensities of all related transition lines are given.
Search for SUSY with R-parity violating $LL\\overline{E}$ couplings at $\\sqrt{s}$=189 GeV
Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Belous, K S; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Bracko, M; Branchini, P; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Cortina, E; Cosme, G; Cossutti, F; Costa, M; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Hondt, J; Dalmau, J; Davenport, M; Da Silva, W; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Engel, J P; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fernández, J; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Geralis, T; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Gris, P; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hauler, F; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Higón, E; Holmgren, Sven Olof; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huber, M; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Jeans, D; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Jungermann, L; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kernel, G; Kersevan, Borut P; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Kluit, P M; Kokkinias, P; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liebig, W; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Merle, E; Meroni, C; Meyer, W T; Myagkov, A; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moraes, D; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Mundim, L M; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Negri, P; Neufeld, N; Nicolaidou, R; Nielsen, B S; Niezurawski, P; Nikolenko, M; Nomokonov, V P; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pavel, T; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Rehn, J; Reid, D; Reinertsen, P L; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Ripp-Baudot, I; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Savoy-Navarro, Aurore; Schwemling, P; Schwering, B; Schwickerath, U; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seibert, N; Sekulin, R L; Sette, G; Shellard, R C; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnova, O G; Smith, G R; Solovyanov, O; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stanitzki, M; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Terranova, F; Timmermans, J; Tinti, N; Tkatchev, L G; Tobin, M; Todorova-Nová, S; Tomé, B; Tonazzo, A; Tortora, L; Tortosa, P; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Dam, P; Van den Boeck, W; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verdier, P; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Voulgaris, G; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zinchenko, A I; Zoller, P; Zumerle, G; Zupan, M
2000-01-01
Searches for pair production of supersymmetric particlesunder the assumption that $R$--parity is not conserved are presented,based on data recorded by the DELPHI detector in 1998from e$^{+}$e$^{-}$ collisions at a centre-of-mass energy of189~GeV. Only one $R$--parity violating $\\rm{LL} \\bar{\\rm E}$term (i.e. one $\\lambda$ coupling), which couples\\mbox{scalar} leptons to leptons,is considered to be dominant at a time.Moreover, it is assumed that the strength of the $R$--parityviolating couplings is such that the lifetimes can be neglected.The search for pair production of neutralinos, charginos and sleptonshas been performed for both direct $R$--parity violating decaysand indirect cascade decays.The results are in agreement with Standard Model expectations, andare used to update the constraints on the MSSM parametervalues and the mass limits previously derived at \\mbox{$\\sqrt{s}$~=~183~GeV.}\\\\The present 95\\% C.L. limits on supersymmetric particle masses are:\\begin{malist}\\item $m_{\\tilde{\\chi}^0}>~$30~\\GeVcc\\...
Energy Technology Data Exchange (ETDEWEB)
Blaise, C
2002-11-01
Nucleons are bound states of three valence quarks (up and down quarks) surrounded by a sea of gluons and quark pairs (mainly up, down and strange quarks). The PVA4 experiment (Parity Violation in hall A4) aims at determining at MAMI (Mainzer Mikrotron) the contribution of the ss pairs to the electric charge and magnetic moment of the nucleon. This requires the extraction of information from the weak coupling in the elastic scattering of polarized electrons off target protons. The parity non-conserving Z{sup 0} exchange leads to a parity violating asymmetry in the count rates for left and right helicity states. Comparison of the measured asymmetry to the predictions of the Standard Model allows then to extract the strange content of the proton. The success of the experiment essentially lies in the ability of controlling the beam parameters and evaluating the physical background. For this purpose, a Monte Carlo simulation has been developed: it simulates the PVA4 electron-proton scattering (including geometry and detection) for different processes (elastic scattering and pion electroproduction) thus allowing to correct the experimental asymmetry from physical background processes. In addition, an optical polarimeter has been developed to get a precise, on-line and fast measurement of the electron beam polarization. The optical polarimeter (POLO) is based on the collision of polarized electrons on atoms such that spin angular momentum is transferred to the excited atoms, which subsequently decays by emitting a circularly polarized fluorescence. The degree of circular polarization is directly related to the electron polarization. Analyzing the fluorescence's Stokes parameters is equivalent to a measurement of the electron beam polarization. (author)
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Schöfbeck, Robert; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Forthomme, Laurent; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Leggat, Duncan; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; El-khateeb, Esraa; Elkafrawy, Tamer; Mahmoud, Mohammed; Calpas, Betty; Kadastik, Mario
2016-01-01
Results are presented from searches for $R$-parity-violating supersymmetry in events produced in pp collisions at $\\sqrt{s}= $ 8 TeV at the LHC. Final states with 0, 1, 2, or multiple leptons are considered independently. The analysis is performed on data collected by the CMS experiment corresponding to an integrated luminosity of 19.5 fb$^{-1}$. No excesses of events above the standard model expectations are observed, and 95% confidence level limits are set on supersymmetric particle masses and production cross sections. The results are interpreted in models featuring $R$-parity-violating decays of the lightest supersymmetric particle, which in the studied scenarios can be either the gluino, a bottom squark, or a neutralino. In a gluino pair production model with baryon number violation, gluinos with a mass less than 0.98 and 1.03 TeV are excluded, by analyses in a fully hadronic and one-lepton final state, respectively. An analysis in a dilepton final state is used to exclude bottom squarks with masses les...
International Nuclear Information System (INIS)
We present a direct measurement of the parity-violation parameter Ab using a self-calibrating track-charge technique. In the SLAC Linear Collider Large Detector (SLD) experiment we observe hadronic decays of Z0 bosons produced in collisions between longitudinally polarized electrons and unpolarized positrons at the SLAC Linear Collider. A sample of b bar b events is selected using the topologically reconstructed mass of B hadrons. From our 1993 endash 1995 sample of approximately 150000 hadronic Z0 decays, we obtain Ab=0.911±0.045(stat) ±0.045(syst) . copyright 1998 The American Physical Society
International Nuclear Information System (INIS)
Calculations are presented of the E1 amplitude expected in forbidden M1 transitions of Tl and Cs if parity is violated in the neutral weak e-N interaction, as proposed in a number of gauge models, including that of Weinberg and Salam. Valence electron wave functions are generated as numerical solutions to the Dirac equation in a modified Tietz central potential. These wave functions are used to calculate allowed E1 transition rates, hfs splittings, and Stark E1 transition ampitudes. These results are compared with experiment and the agreement is generally good. The relativistic Tl 62P/sub 1/2/-72P/sub 1/2/ M1 transition amplitude M is also calculated, and corrections due to interconfiguration interaction, Breit interaction, and hfs mixing are included. The parity violating E1 amplitude E/sub PV/ is calculated and a value for the circular dichroism in the Weinberg model delta = -2.6 x 10-3 is obtained. Parity violating effects in other Tl transitions are discussed. Contributions to the M1 amplitude for the forbidden Cs 62S/sub 1/2/-72S/sub 1/2/ and 62S/sub 1/2/-82S/sub 1/2/ transitions and to the Cs 62S/sub 1/2/ g-factor anomaly from relativistic effects, Breit interaction, interconfiguration interaction, and hfs mixing are calculated, and it is found that this current theoretical description is not entirely adequate. The parity violating E1 amplitude E/sub PV/ for the 6S/sub 1/2/-72S/sub 1/2/ and 6S/sub 1/2/-82S/sub 1/2/ transitions is evaluated. With a measured value M/sub expt/ and the Weinberg value Q/sub W/ = -99, a circular dichroism delta = 1.64 x 10-4 for the 62S/sub 1/2/-72S/sub 1/2/ transition is found
Barate, R.; Decamp, D.; Ghez, P.; Goy, C.; Jezequel, S.; Lees, J. P.; Martin, F.; E. Merle; M.N. Minard; Pietrzyk, B; Przysiezniak, H.; Alemany, R; Casado, M. P.; M. Chmeissani; Crespo, J M.
2000-01-01
Searches for pair-production of supersymmetric particles under the assumption that R-parity is violated via a single dominant $LL{\\bar E}$, $LQ{\\bar D}$ or ${\\bar U} {\\bar D} {\\bar D}$ coupling are performed using the data collected by the \\ALEPH\\ collaboration at centre-of-mass energies of 181--184~$\\gev$. The observed candidate events in the data are in agreement with the Standard Model expectations. Upper limits on the production cross-sections and lower limits on the masses of charginos, ...
Li, Jiaming; Liu, Ji; de Melo, Leonardo; Joglekar, Yogesh N; Luo, Le
2016-01-01
Open physical systems with balanced loss and gain exhibit a transition, absent in their solitary counterparts, which engenders modes that exponentially decay or grow with time and thus spontaneously breaks the parity-time PT symmetry. This PT-symmetry breaking is induced by modulating the strength or the temporal profile of the loss and gain, but also occurs in a pure dissipative system without gain. It has been observed that, in classical systems with mechanical, electrical, and electromagnetic setups with static loss and gain, the PT-symmetry breaking transition leads to extraordinary behavior and functionalities. However, its observation in a quantum system is yet to be realized. Here we report on the first quantum simulation of PT-symmetry breaking transitions using ultracold Li-6 atoms. We simulate static and Floquet dissipative Hamiltonians by generating state-dependent atom loss in a noninteracting Fermi gas, and observe the PT-symmetry breaking transitions by tracking the atom number for each state. W...
Search for parity and time reversal violating effects in HgH: Relativistic coupled-cluster study.
Sasmal, Sudip; Pathak, Himadri; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav
2016-03-28
The high effective electric field (Eeff) experienced by the unpaired electron in an atom or a molecule is one of the key ingredients in the success of electron electric dipole moment (eEDM) experiment and its precise calculation requires a very accurate theory. We, therefore, employed the Z-vector method in the relativistic coupled-cluster framework and found that HgH has a very large Eeff value (123.2 GV/cm) which makes it a potential candidate for the next generation eEDM experiment. Our study also reveals that it has a large scalar-pseudoscalar (S-PS) P,T-violating interaction constant, Ws = 284.2 kHz. To judge the accuracy of the obtained results, we have calculated parallel and perpendicular magnetic hyperfine structure (HFS) constants and compared with the available experimental values. The results of our calculation are found to be in nice agreement with the experimental values. Therefore, by looking at the HFS results, we can say that both Eeff and Ws values are also very accurate. Further, We have derived the relationship between these quantities and the ratio which will help to get model independent value of eEDM and S-PS interaction constant. PMID:27036448
Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Alexander, J; Al-Ta'ani, H; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belmont, R; Ben-Benjamin, J; Bennett, R; Berdnikov, A; Berdnikov, Y; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa del Valle, Z; Connors, M; Csanád, M; Csörgo, T; Dairaku, S; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; D'Orazio, L; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Efremenko, Y V; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fusayasu, T; Garishvili, I; Glenn, A; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Hanks, J; Han, R; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; Hemmick, T K; Hester, T; He, X; Hill, J C; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kim, B I; Kim, D J; Kim, E J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, Á; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Lichtenwalner, P; Lim, S H; Linden Levy, L A; Litvinenko, A; Liu, H; Liu, M X; Li, X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malakhov, A; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Ogilvie, C A; Okada, K; Oka, M; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosendahl, S S E; Rukoyatkin, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Togawa, M; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; Young, G R; Younus, I; You, Z; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S; Zolin, L
2011-02-11
Large parity-violating longitudinal single-spin asymmetries A(L)(e+) = -0.86(-0.14) (+0.30) and A(L)(e-) = 0.88(-0.71) (+0.12) are observed for inclusive high transverse momentum electrons and positrons in polarized p+p collisions at a center-of-mass energy of sqrt[s] = 500 GeV with the PHENIX detector at RHIC. These e± come mainly from the decay of W± and Z0 bosons, and their asymmetries directly demonstrate parity violation in the couplings of the W± to the light quarks. The observed electron and positron yields were used to estimate W± boson production cross sections for the e± channels of σ(pp → W+ X) × BR(W+ → e+ ν(e)) = 144.1 ± 21.2(stat)(-10.3) (+3.4) (syst) ± 21.6(norm) pb, and σ(pp → W- X) × BR(W- → e- ν[over ¯](e)) = 31.7 ± 12.1(stat)(-8.2) (+10.1) (syst) ± 4.8(norm) pb. PMID:21405459
International Nuclear Information System (INIS)
We combine a simulation program for Laser Compton Scattering (LCS) with another for deuteron photodisintegration to simulate an experiment to search for parity violation in the d(γ→,n)p reaction using a LCS source. We extract the differential cross-section for d(γ→,n)p near threshold from fits to all relevant available d(γ→,n)p experimental data. We use this information along with theoretical estimates of parity violation in this reaction to calculate neutron yields and PV asymmetries in d(γ→,n)p near threshold using the weight method. This work lays a foundation for us to study the feasibility of this experiment, the optimization of experimental conditions, and systematic effects and false asymmetries in detail. -- Highlights: • We have built up a set of MC simulation codes to study the feasibility of d(γ→,n)p. • The accurate cross-section near threshold is obtained by fitting data. • The weight method is employed to improve the efficiency of simulation. • The neutron yields and asymmetry are simulated by our code. • This work lays a foundation to study the d(γ→,n)p PV experiment
Search for R-parity violating decays of a top squark in proton-proton collisions at √{ s} = 8 TeV
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.
2016-09-01
The results of a search for a supersymmetric partner of the top quark (top squark), pair-produced in proton-proton collisions at √{ s} = 8 TeV, are presented. The search, which focuses on R-parity violating, chargino-mediated decays of the top squark, is performed in final states with low missing transverse momentum, two oppositely charged electrons or muons, and at least five jets. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb-1 collected with the CMS detector at the LHC in 2012. The data are found to be in agreement with the standard model expectation, and upper limits are placed on the top squark pair production cross section at 95% confidence level. Assuming a 100% branching fraction for the top squark decay chain, t ˜ → t χ˜1±, χ˜1± →ℓ± + jj, top squark masses less than 890 (1000) GeV for the electron (muon) channel are excluded for the first time in models with a single nonzero R-parity violating coupling λijk‧ (i, j, k ≤ 2), where i, j, k correspond to the three generations.
Search for R-parity violating decays of a top squark in proton-proton collisions at √{ s} = 8 TeV
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Rurua, L.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Montecassiano, F.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Gecit, F. H.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozcan, M.; Ozdemir, K.; Ozturk, S.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2016-09-01
The results of a search for a supersymmetric partner of the top quark (top squark), pair-produced in proton-proton collisions at √{ s} = 8 TeV, are presented. The search, which focuses on R-parity violating, chargino-mediated decays of the top squark, is performed in final states with low missing transverse momentum, two oppositely charged electrons or muons, and at least five jets. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb-1 collected with the CMS detector at the LHC in 2012. The data are found to be in agreement with the standard model expectation, and upper limits are placed on the top squark pair production cross section at 95% confidence level. Assuming a 100% branching fraction for the top squark decay chain, t ˜ → t χ˜1 ± , χ˜1 ± →ℓ± + jj , top squark masses less than 890 (1000) GeV for the electron (muon) channel are excluded for the first time in models with a single nonzero R-parity violating coupling λijk‧ (i , j , k ≤ 2), where i , j , k correspond to the three generations.
Even-parity states of the Sm atom with stepwise excitation
International Nuclear Information System (INIS)
Two-colour stepwise excitation and photoionization schemes are adopted to study the spectra of high-lying states of the Sm atom. These bound even-parity states are excited with three different excitation paths from the 4f66s6p7DJ (J = 1, 2, 3) intermediate states, respectively. They are probed by photoionization process with an extra photon driving them to the continuum states. In this experiment, 270 states are detected in an energy range from 36160 cm−1 to 42250 cm−1, 109 of which are newly discovered, while the rest of them are confirmed to be the energy levels reported previously. Furthermore, based on the J-momentum selection rules of three excitation paths, a unique assignment of J-momentum for all observed states is determined, eliminating all remaining ambiguities in the literature. Finally, 53 single-colour transitions originating from the scanning laser are also identified. For all the relevant transitions, the information about their relative intensities is also given in the paper. (atomic and molecular physics)
International Nuclear Information System (INIS)
The A4 collaboration at the MAMI facilities has measured the parity-violating asymmetry in the quasi-elastic scattering of longitudinally polarized electron on deuteron at backward angles and at a four momentum transfer of Q2=0.23 (GeV/c)2. This measurement is sensitive to a linear combination of the strange magnetic vector form factor GMs and the axial form factor GA. Combined with the measurement of the parity-violating asymmetry on proton at backwards and at the same four momentum transfer it allows the experimental determination of the axial form factor GA.
R-parity violating decays of the Top-Quark and the Top-Squark at the Tevatron
De Campos, F; Éboli, Oscar J P; Magro, M B; Navarro, L; Porod, Werner; Restrepo, D A; Valle, José W F
1999-01-01
We study unconventional decays of the top-quark and the top-squark in the framework of SUSY models with broken R-parity. The model under study is the MSSM with an additional bilinear term that breaks R-parity. In this model the top-squark behaves similar to a third generation leptoquark. We demonstrate that existing Tevatron data on the top give rise to restrictions on the SUSY parameter space. In particular, we focus on scenarios where the tau-neutrino mass is smaller than 1 eV. We give an exclusion plot derived from the leptoquark searches at Tevatron.
International Nuclear Information System (INIS)
which is capable to transmit an angular momentum to atoms on the path of its propagation. The observation of orientation effects at registration of electrons in our spectrometer, finding out the time function and the energy threshold, testifies to formation in a near-surface layer of the structure, channeling the ordered electrons which are pulled out from 'traps'. As the energy threshold ≅210 keV, the structure interplanar interval is estimated as 1.5·1010 cm, i.e. considerably smaller, than, for example, in a W monocrystal (3·10-8 cm). The change of a spectrum of the ordered electrons is interesting in the energy threshold area: the ratio of registered electrons in the first counter and arranged after it the second one, greater diameter, sharply varies, that it is possible to consider as a visual display of angular momentum transfer by focalized electrons to atoms of working mixture of the counters and by un-sufficient spin correction of their focusing by the spectrometer magnetic field. Apparently, based on these facts it is possible to suspect, that we experimentally observe the dynamic nonintegrable system, in which one the Hamiltonian function cannot be expressed with the help of unitary transformations, and by virtue of symmetry violation by electromagnetic and weak interactions for its description it is necessary to use the mathematical apparatus including stochasticity, complexity, space parity violation and the time boom turn
Even-parity states of the Sm atom with stepwise excitation
Institute of Scientific and Technical Information of China (English)
Li Ming; Dai Chang-Jian; Xie Jun
2011-01-01
Two-colour stepwise excitation and photoionization schemes are adopted to study the spectra of high-lying states of the Sm atom. These bound even-parity states are excited with three different excitation paths from the 4f66s6p7DJ (J = 1, 2, 3) intermediate states, respectively. They are probed by photoionization process with an extra photon driving them to the continuum states. In this experiment, 270 states are detected in an energy range from 36160 cm-1 to 42250 cm-1, 109 of which are newly discovered, while the rest of them are confirmed to be the energy levels reported previously. Furthermore, based on the J-momentum selection rules of three excitation paths, a unique assignment of J-momentum for all observed states is determined, eliminating all remaining ambiguities in the literature. Finally, 53 single-colour transitions originating from the scanning laser are also identified. For all the relevant transitions, the information about their relative intensities is also given in the paper.
International Nuclear Information System (INIS)
The A4-collaboration at the Mainzer Mikrotron MAMI studies the structure of the proton using the elastic scattering of polarized electrons off an unpolarized hydrogen target. When the electrons are longitudinally polarized, the parity violating asymmetry in the cross section can be measured. From this measurement the contribution of the strange quarks to the form factors of the proton can be extracted. In particular, a new measurement at backward angles and a beam energy of 319 MeV allows in combination with a recent value measured at the same Q2 under forward angles, to separate the magnetic and electric strange form factors via the Rosenbluth method. As part of this work, an electronic system implementing the trigger, analog signal processing, A/D-conversion and event counting was developed. This system contains a locally coupled network structure of the 1022 single channels and was designed to process rates in the range of 100 MHz. For the experimental operation it was necessary to examine the quality and stability of the system and to extract characteristic calibration values. The reliable operation of the system in a parity violating experiment measuring at the 10-6 level was demonstrated. Moreover, the system was successfully upgraded to incorporate an electron tagger system, which was necessary to supress the dominating inelastic background of photons at backward angles. The preliminary value for the parity violating asymmetry for the elastic scattering of longitudinal polarized electrons off an unpolarized hydrogen target under backward angles for Q2=0.23 GeV2/c2 is APV=(-16.37±0.93stat±0.69syst) ppm. This determines the difference of the measured asymmetry APV and the theoretical prediction A0=(-16.27±1.22) ppm to be AS=APV-A0=(-0.10±1.68) ppm. In combination with the value measured at forward angles, APV=(-5.59±0.57stat±0.29syst) ppm, the separation of the magnetic and electric strange form factors results in GMs=-0.01±0.15 and GEs=0.034±0
Li, X; Wang, R; Yang, Y D; Wang, Rumin
2003-01-01
We present the first study of the rare annihilation decay $\\bar{B}^0_d \\to \\phi\\gamma$ in the Standard Model. Using QCD factorization formalism, we find ${\\cal B}(\\bar{B}^0_d \\to\\phi\\gamma)=3.6\\times 10^{-12}$. The smallness of the decay rate in the Standard Model make the decay a sensitive probe of new physics contributions. As an example, we calculate the effects of R-parity violating couplings. Within the available upper bounds for $|\\lambda^{''}_{i23}\\lambda^{''}_{i12}|$, ${\\cal B}(\\bar{B}^0_d \\to\\phi\\gamma )$ could be enhanced to order of $10^{-9}$, which could be measured at LHCB, B-TeV and the planning super high luminosity B factories at KEK and SLAC.
Acosta, D; Akimoto, H; Albrow, M G; Ambrose, D; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W F; Bailey, S; De Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, Giorgio; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Berryhill, J W; Bhatti, A A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, A; Bölla, G; Bolshov, A; Bonushkin, Yu; Bortoletto, Daniela; Boudreau, J; Brandl, A; Bromberg, C; Brozovic, M; Brubaker, E; Bruner, N L; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Byrum, K L; Cabrera, S; Calafiura, P; Campbell, M; Carithers, W C; Carlson, J; Carlsmith, D; Caskey, W; Castro, A; Cauz, D; Cerri, A; Cerrito, L; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I E; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Chung, J Y; Chung, H W; Chung, Y S; Ciobanu, C I; Clark, A G; Coca, M; Colijn, A P; Connolly, A; Convery, M; Conway, J; Cordelli, M; Cranshaw, J; Culbertson, R; Dagenhart, D; D'Auria, S; De Cecco, S; De Jongh, F; Dell'Agnello, S; Dell'Orso, Mauro; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Devlin, T; Dionisi, C; Dittmann, J R; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, T; Eddy, N; Einsweiler, K F; Engels, E; Erbacher, R D; Errede, D; Errede, S; Eusebi, R; Fan, Q; Farrington, S; Feild, R G; Fernández, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B; Flores-Castillo, L R; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I K; Galeotti, S; Gallas, A; Gallinaro, M; Gao, T; García-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Gerstein, E; Giagu, S; Giannetti, P; Giolo, K; Giordani, M; Giromini, P; Glagolev, V; Glenzinski, D A; Gold, M; Goldschmidt, N; Goldstein, J; Gómez, G; Goncharov, M; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Green, C; Gresele, A; Grim, G; Grosso, C; Pilcher, J E; Günther, M; Guillian, G; Guimarães da Costa, J; Haas, R M; Haber, C; Hahn, S R; Halkiadakis, E; Hall, C; Handa, T; Handler, R; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Hennecke, M; Herndon, M; Hill, C; Höcker, A; Hoffman, K D; Hollebeek, R J; Holloway, L E; Hou, S; Huffman, B T; Hughes, R; Huston, J; Huth, J; Ikeda, H; Issever, C; Incandela, J R; Introzzi, G; Iori, M; Ivanov, A; Iwai, J; Iwata, Y; Iyutin, B; James, E; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Kang, J; Karagoz-Unel, M; Karr, K M; Kartal, S; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R D; Khazins, D; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Kondo, K; Konigsberg, J; Korn, A J; Korytov, A; Kotelnikov, K A; Kovács, E; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kurino, K; Kuwabara, T; Kuznetsova, N; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lancaster, J; Lannon, K; Lancaster, M; Lander, R; Lath, A; Latino, G; LeCompte, T J; Le, Y; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C S; Lindgren, M; Liss, T M; Liu, J B; Liu, T; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N S; Loginov, A; Loken, J; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, Michelangelo L; Manca, G; Mariotti, M; Martignon, G; Martin, M; Martin, A; Martin, V; Martínez, M; Matthews, J A J; Mazzanti, P; McFarland, K S; McIntyre, P; Menguzzato, M; Menzione, A; Merkel, P; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Miyazaki, Y; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Müller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakano, I; Napora, R; Niell, F; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Neuberger, D; Newman-Holmes, C; Ngan, C Y P; Nigmanov, T; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Oh, Y D; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, Aldo L; Pescara, L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Pratt, T; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Rademacker, J; Rakitine, A; Ratnikov, F; Ray, H; Reher, D; Reichold, A; Renton, P B; Rescigno, M; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Roy, A; Ruiz, A; Ryan, D; Safonov, A; Saint-Denis, R; Sakumoto, W K; Saltzberg, D; Sánchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, H; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M J; Sidoti, A; Siegrist, J L; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Snider, F D; Snihur, R; Solodsky, A; Spalding, J; Speer, T; Spezziga, M; Sphicas, Paris; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sukhanov, A; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P; Tanaka, M; Tannenbaum, B; Tecchio, M; Tesarek, R J; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Thurman, R; Keup; Tipton, P; Tkaczyk, S M; Toback, D; Tollefson, K; Tonelli, D; Tonnesmann, M; Toyoda, H; Trischuk, W; De Trocóniz, J F; Tseng, J; Tsybychev, D; Turini, N; Ukegawa, F; Unverhau, T; Vaiciulis, T; Valls, J; Varganov, A V; Vataga, E; Vejcik, S; Velev, G V; Veramendi, G; Vidal, R; Vila, I; Vilar, R; Volobuev, I P; Von der Mey, M; Vucinic, D; Wagner, R G; Wagner, R L; Wagner, W; Wallace, N B; Wan, Z; Wang, C; Wang, M J; Wang, S M; Ward, B; Waschke, S; Watanabe, T; Waters, D; Watts, T; Weber, M; Wenzel, H; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Wolinski, S; Wolter, M; Worm, S; Wu, X; Würthwein, F; Wyss, J; Yang, U K; Yao, W; Yeh, G P; Yeh, P; Yi, K; Yoh, J K; Yosef, C; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zetti, F; Zucchelli, S
2003-01-01
We present the results of a search for pair production of scalar top quarks in an R-parity violating supersymmetry scenario in 106 pb-1 of ppbar collisions at $\\sqrt{s} = 1.8$ TeV collected by the Collider Detector at Fermilab. In this mode each scalar top quark decays into a tau lepton and a b quark. We search for events with two tau's, one decaying leptonically (e or mu) and one decaying hadronically, and two jets. No candidate events pass our final selection criteria. We set a 95% confidence level lower limit on the scalar top quark mass at 122 GeV/c2 for Br (stop-> tau + b) = 1.
CMS Collaboration
2016-01-01
Preliminary results are reported from a search for physics beyond the standard model in proton-proton collisions at $\\sqrt{s}=13$~TeV, focusing on the signature of large multiplicity of jets and b-tagged jets, in a final state with zero or one reconstructed lepton. The data sample corresponds to an integrated luminosity of 2.7~fb$^{-1},$ recorded by the CMS experiment at the Large Hadron Collider. The results are interpreted in terms of limits on the parameter space for the $R$-parity-violating supersymmetric extension of the standard model in a benchmark model of gluino pair production where each gluino decays via $\\widetilde{\\rm g} \\rightarrow {\\rm tbs}$. Assuming the gluino decays solely to tbs, gluino masses smaller than 1360~GeV are excluded at a 95\\% confidence level.
Energy Technology Data Exchange (ETDEWEB)
Beminiwattha, Rakitha [Ohio Univ., Athens, OH (United States)
2013-08-01
After a decade of preparations, the Qweak experiment at Jefferson Lab is making the first direct measurement of the weak charge of the proton, Q^p_W. This quantity is suppressed in the Standard Model making a good candidate for search for new physics beyond the SM at the TeV scale. Operationally, we measure a small (about -0.200 ppm) parity-violating asymmetry in elastic electron-proton scattering in integrating mode while flipping the helicity of the electrons 1000 times per second. Commissioning took place Fall 2010, and we finished taking data in early summer 2012. This dissertation is based on the data taken on an initial two weeks period (Wien0). It will provide an overview of the Qweak apparatus, description of the data acquisition and analysis software systems, and final analysis and results from the Wien0 data set. The result is a 16% measurement of the parity violating electron-proton scattering asymmetry, A = -0.2788 +/- 0.0348 (stat.) +/- 0.0290 (syst.) ppm at Q^2 = 0.0250 +/- 0.0006 (GeV)^2. From this a 21% measurement of the weak charge of the proton, Q_w^p(msr)= +0.0952 +/- 0.0155 (stat.) +/- 0.0131 (syst.) +/- 0.0015 (theory) is extracted. From this a 2% measurement of the weak mixing angle, sin^2theta_W(msr)= +0.2328 +/- 0.0039 (stat.) +/- 0.0033 (syst.) +/- 0.0004 (theory) and improved constraints on isoscalar/isovector effective coupling constants of the weak neutral hadronic currents are extracted. These results deviate from the Standard Model by one standard deviation. The Wien0 results are a proof of principle of the Qweak data analysis and a highlight of the road ahead for obtaining full results.
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Calpas, Betty
2016-01-01
The results of a search for a supersymmetric partner of the top quark (top squark), pair-produced in proton-proton collisions at $\\sqrt{s} =$ 8 TeV, are presented. The search, which focuses on R-parity violating, chargino-mediated decays of the top squark, is performed in final states with low missing transverse momentum, two oppositely charged electrons or muons, and at least five jets. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb$^{-1}$ collected with the CMS detector at the LHC in 2012. The data are found to be in agreement with the standard model expectation, and upper limits are placed on the top squark pair production cross section at 95% confidence level. Assuming a 100% branching fraction for the top squark decay chain, $ \\mathrm{ \\tilde{t} \\to t \\tilde{\\chi}^{\\pm}_1,\\, \\tilde{\\chi}^{\\pm}_1 \\to \\ell^\\pm+jj } $, top squark masses less than 890 (1000) GeV for the electron (muon) channel are excluded for the first time in models with a single nonzero R-parity viola...
International Nuclear Information System (INIS)
We consider the sneutrino resonance reaction ell +ell -→ν →τ+τ- in the minimal supersymmetric standard model (MSSM) without R parity. We introduce CP-violating and CP-conserving τ-spin asymmetries which are generated at tree level if there is ν-anti ν mixing and are forbidden in the standard model. At the CERN e+e- collider LEP2, these asymmetries may reach ∼75% around resonance for sneutrino mass splitting of Δm∼Γνμ and ∼10% for splitting as low as Δm∼0.1Γνμ . They may be easily detectable if the beam energy is within ∼10 GeV around the νμ mass and may therefore serve as powerful probes of sneutrino mixing. Future colliders are also discussed. copyright 1998 The American Physical Society
The Littlest Higgs Model with T-Parity Facing CP-Violation in B_s - anti-B_s Mixing
Blanke, Monika; Recksiegel, Stefan; Tarantino, Cecilia
2008-01-01
The non-minimal flavour violating interactions of mirror quarks and new heavy gauge bosons in the Littlest Higgs model with T-parity (LHT) give rise to naturally large CP-violating effects in the B_s system. In view of a large new CP phase in B_s - anti-B_s mixing hinted by the CDF and D0 data and the recent UTfit analysis, we update our 2006 analysis of particle-antiparticle mixing and rare K and B decays in the LHT model, using the most recent values of a number of input parameters and performing a more careful error analysis. We find that the CP-asymmetry S_{psi phi} can easily reach values ~ 0.15-0.20, compared to the SM value ~ 0.04, while higher values are rather unlikely though not excluded. Large enhancements are also possible in the branching ratios for K_L -> pi0 nu anti-nu, K+ -> pi+ nu anti-nu and K_L -> pi0 l+ l- with much more modest effects in B_{s,d} -> mu+ mu-. We perform a detailed study of correlations between the latter decays and S_{psi phi} as well as of the correlation between S_{psi ph...
The embedded atom method ansatz: validation and violation
International Nuclear Information System (INIS)
The addition of the embedding energy term to pair interaction contribution has made the embedded atom method (EAM) potentials a simple and vastly superior alternative to popular classical pair potentials. EAM relies on the ansatz that the embedding energy is a function of a linear superposition of spherically averaged atomic electron densities. This ansatz is taken to be self-evident and inviolate. Using density functional theory (DFT) calculations of a model face-centered cubic (fcc) Cu system, we systematically investigate the validity of this foundational ansatz of EAM. We conclude that it (1) agrees well with DFT calculations along a path with changing coordination and symmetry, (2) captures the exponential decrease of the background electron density with respect to distance, (3) demonstrates transferability as seen by agreement of electron densities for other non-fcc structures with first nearest neighbor (NN) coordination ranging from 4 to 12 and (4) fails to explain the behavior of background electron density with respect to second NN distance and arrangements. This failure may be remedied by including a fraction of the second NN atomic electron density in the background electron density, including angular contributions to the density, or including electron density rearrangement. These insights likely make EAM approaches more broadly applicable, more predictive and perhaps unique, and in the process broadly impact atomistic modeling. A new EAM potential is presented that for the first time reproduces electron densities from DFT calculations as well as experimental properties of Cu in the potential fitting. (paper)
Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation
Engel, J.; Friar, J. L.; Hayes, A. C.
1999-01-01
We examine the time-reversal-violating nuclear ``Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell...
An overview of some experimental and theoretical aspects of fundamental symmetry violations in atoms
Indian Academy of Sciences (India)
D Budker; B K Sahoo; D Angom; B P Das
2010-12-01
We present some of the advances in our experimental and theoretical studies of violations in fundamental symmetries in atoms. A part of this work was performed under the auspices of a NSF–DST project. During this period, a number of experimental techniques and theoretical methods were developed and employed for precision measurements and their interpretation from first principles. Future directions of these studies are briefly mentioned.
Czech Academy of Sciences Publication Activity Database
Brauner, Tomáš
2008-01-01
Roč. 78, č. 12 (2008), 125027/1-125027/19. ISSN 1550-7998 R&D Projects: GA ČR GA202/06/0734 Institutional research plan: CEZ:AV0Z10480505 Keywords : Color superconductivity * Helical ordering * Ginzburg-Landau theory Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.050, year: 2008
International Nuclear Information System (INIS)
Experiments that show the breaking of parity invariance in atoms can be considered as valid tests of the electroweak theory complementary to those made at high energies. The accurate measurement of the weak charge of a cesium nucleus would bring useful information on radiative corrections. The experiment, that is proposed in this work concerns the strongly forbidden 6S-7S transition of cesium at 540 nm, aims at reaching an accuracy of 1% for this measurement. Cesium atoms are first excited from 6S level to 7S level by a pulsed laser (10 ns) in the presence of a longitudinal electrical field. Then they are detected through induced emission by a probe laser set on 7S-6P(3/2) transition at 1.470 μm. The transitory amplification of the probe beam can be over 100%.The vapour presents a strong plane dichroism due to the alignment of 7S level through the linear polarization of the pumping beam. The weak interaction in the atom makes this alignment tilt by a small angle (1 to 10 micro-radians) that the measurement of the polarization of the amplified probe enables us to determine. In this work we have described the 3 steps we have passed through: the test with a transverse field and a continuous laser beam, the use of a pulsed laser, and the setting of a longitudinal configuration. Preliminary results show that the experiment will be useful and feasible
Czech Academy of Sciences Publication Activity Database
Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B.D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bnzarov, I.; Bombara, M.; Bonner, B.E.; Bouchet, J.; Braidot, E.; Brandin, A.V.; Bruna, E.; Bueltmann, S.; Burton, T.P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Calderon, M.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Chen, J.Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Cosentino, M.R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dogra, S.M.; Dong, X.; Drachenberg, J.L.; Draper, J. E.; Dunlop, J.C.; Mazumdar, M.R.D.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L. (ed.); Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangaharan, D.R.; Ganti, M.S.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Huo, L.; Igo, G..; Lordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H.S.; Matulenko, Yu.A.; McDonald, D.; McShane, T.S.; Meschanin, A.; Millner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mohanty, B.; Mondal, M.M.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Pile, P.; Planinic, M.; Ploskon, M.A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Pujahari, P.R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarini, L.H.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tlustý, David; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; van Nieuwenhuizen, G.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.M.S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, K.-Y.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.
2010-01-01
Roč. 81, č. 5 (2010), 054908/1-054908/15. ISSN 0556-2813 R&D Projects: GA ČR GA202/07/0079; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : RELATIVISTIC NUCLEAR COLLISIONS * TIME PROJECTION CHAMBER * QUARK-GLUON PLASMA Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.416, year: 2010
Energy Technology Data Exchange (ETDEWEB)
Jardillier, Johann [Lab. de Physique Corpusculaire, Clermont-Ferrand-2 Univ., 63 - Aubiere (France)
1999-09-21
In the quark model, the proton is described as a system of three quarks UUD. However, recent experiments (CERN, SLAC) have shown that the strange quarks may contribute in a significant way to the mass and the spin of the proton. The HAPPEX experiment gives one further knowledge about the question of the role the strange quarks play inside the proton. It measures parity violating asymmetry in the scattering of polarized electrons from a proton because the latter is sensitive to the contribution of the strange quarks to the electromagnetic form factors of the nucleon. The observed asymmetry is in the order of a few ppm (part per million). The main difficulty of the experiment is to identify, to estimate and to minimize, as much as possible, all the systematic effects which could give rise to false asymmetries. This thesis discusses the principle of the HAPPEX experiment, its implementation at the Jefferson Lab (JLab), the processing and the analysis of the data, the systematic errors, and finally presents the result of the first data taking (1999) and its present interpretation. The HAPPEX experiment has measured, at Q{sup 2} = 0.5 (GeV/c){sup 2}, a strange quarks contribution of (1.0 {+-} 2.3)% to the electromagnetic form factors of the nucleon. The statistics and the systematic effects (measure of the electron beam polarization and knowledge of the neutron electric form factor) contribute equally to the error. (author)
Search for parity and time reversal violating effects in HgH: Relativistic coupled-cluster study
Sasmal, Sudip; Pathak, Himadri; Nayak, Malaya K.; Vaval, Nayana; Pal, Sourav
2015-01-01
The high effective electric field ($E_\\mathrm{eff}$) experienced by the unpaired electron in an atom or a molecule is one of the key ingredients in the success of electron electric dipole moment (eEDM) experiment and its precise calculation require a very accurate theory. We, therefore, employed the Z-vector method in the relativistic coupled-cluster framework and found that HgH has a very large $E_\\mathrm{eff}$ value (123.2 GV/cm) which makes it a potential candidate for the next generation ...
Flambaum, V V
2016-08-12
Local Lorentz invariance violating (LLIV) and Einstein equivalence principle violating (EEPV) effects in atomic experiments are discussed. The EEPV effects are strongly enhanced in the narrow 7.8 eV transition in the _{90}^{229}Th nucleus. The nuclear LLIV tensors describing the anisotropy in the maximal attainable speed for massive particles (analog of the Michelson-Morley experiment for light) are expressed in terms of the experimental values of the nuclear quadrupole moments. Calculations for nuclei of experimental interest _{55}^{133}Cs, _{37}^{85}Rb, _{37}^{87}Rb, _{80}^{201}Hg, _{54}^{131}Xe, and _{10}^{21}Ne are performed. The results for _{10}^{21}Ne are used to improve the limits on the proton LLIV interaction constants by 4 orders of magnitude. PMID:27563955
Probing CP violation with the electric dipole moment of atomic mercury
Latha, K V P; Das, B P; Mukherjee, D
2009-01-01
The electric dipole moment of atomic $^{199}$Hg induced by the nuclear Schiff moment and tensor-pseudotensor electron-nucleus interactions has been calculated. For this, we have developed and employed a novel method based on the relativistic coupled-cluster theory. The results of our theoretical calculations combined with the latest experimental result of $^{199}$Hg electric dipole moment, provide new bounds on the T reversal or CP violation parameters $\\theta_{\\rm QCD}$, the tensor-pseudotensor coupling constant $C_T$ and $(\\widetilde{d}_u - \\widetilde{d}_d)$. This is the most accurate calculation of these parameters to date. We highlight the the crucial role of electron correlation effects in their interplay with the P,T violating interactions. Our results demonstrate substantial changes in the results of earlier calculations of these parameters which can be attributed to the more accurate inclusion of important correlation effects in the present work.
Flambaum, V. V.
2016-08-01
Local Lorentz invariance violating (LLIV) and Einstein equivalence principle violating (EEPV) effects in atomic experiments are discussed. The EEPV effects are strongly enhanced in the narrow 7.8 eV transition in the Th22990 nucleus. The nuclear LLIV tensors describing the anisotropy in the maximal attainable speed for massive particles (analog of the Michelson-Morley experiment for light) are expressed in terms of the experimental values of the nuclear quadrupole moments. Calculations for nuclei of experimental interest Cs13355 , Rb8537 , Rb8737 , Hg20180 , Xe13154 , and Ne2110 are performed. The results for Ne2110 are used to improve the limits on the proton LLIV interaction constants by 4 orders of magnitude.
International Nuclear Information System (INIS)
This thesis is dedicated to the study of the first data taken by the D0 detector during the Run II of the Tevatron. Supersymmetric particles have been search for in proton-antiproton collisions, with a center of mass energy of 1.96 TeV. In the framework of supersymmetry with R-parity violation, I have studied the pair production of Gauginos, leading to a pair of LSP (0,χ1), each one decaying into eeνμ or eμνe with a λ(121) coupling. The final state contains at least two electrons: I have thus paid special attention in this work to the methods concerning identification and mis-identification of electromagnetic particles, as well as reconstruction, triggering, and correction (of the reconstructed energy). In a selection of tri-leptons, with at least two electrons, and some transverse missing energy, we observed 0 event in the 350 pb-1 of analyzed data, for 0.4 + 0.35 - 0.05 (sta) ± 0.16 (sys) expected from the Standard Model contributions. In the signal considered in this analysis, the selection efficiency is around 12 per cent. Results have been studied in two models: mSUGRA and MSSM. In mSUGRA model, limits on m(1/2) and lightest gauginos's masses have been obtained, with tan(β) = 5, A0 = 0, m0 = 100 and 1000 GeV.c-2 and both signs of μ. In MSSM, with the hypothesis of massive sfermions (1000 GeV.c-2), we can exclude, at 95% Confidence Level, the region m(χ1±) -2 for all masses of χ10 LSP. (author)
Parity- and Time-Reversal Tests in Nuclear Physics
Hertzog, David
2013-01-01
Nuclear physics tests of parity- and time-reversal invariance have both shaped the development of the Standard Model and provided key tests of its predictions. These studies now provide vital input in the search for physics beyond the Standard Model. We give a brief review of a few key experimental and theoretical developments in the history of this sub-field of nuclear physics as well as a short outlook, focusing on weak decays, parity-violation in electron scattering, and searches for permanent electric dipole moments of the neutron and neutral atoms.
International Nuclear Information System (INIS)
Research activities in atomic physics at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: experiments on stored ions; test for parity violation in neutral weak currents; energy conservation and astrophysics; atomic absorption spectroscopy, atomic and molecular detectors; theoretical studies of quantum electrodynamics and high-z ions; atomic beam magnetic resonance; radiative decay from the 23Po,2 levels of helium-like argon; quenching of the metastable 2S/sub 1/2/ state of hydrogen-like argon in an external electric field; and lifetime of the 23Po level of helium-like krypton
Woutersen, S.; Milan, J. B.; Buma, W. J.; de Lange, C. A.
1996-12-01
A (2+1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy study of the sulfur atom was performed in the one-photon energy region between 260 and 240 nm. Some 20 previously unobserved even-parity Rydberg states of the sulfur atom are reported, which were accessed by two-photon transitions from the 3P ground state of the atom, prepared by in situ photodissociation of H2S. The (4So)np 3P series could be followed up to n=25. This series is perturbed around n=7 by an interloping Rydberg state converging to the first excited ionic limit 2Do. A two-channel quantum defect theory analysis was performed in order to estimate the composition of the wave functions of the perturbed series members, which is compared with the ionic state branching ratios obtained from photoelectron spectra. This analysis, moreover, enabled the determination of the ionization energy of the lowest ionic state 4So with an improved accuracy as compared to the previously reported value.
Indian Academy of Sciences (India)
A K Pulhani; M L Shah; G P Gupta; B M Suri
2010-12-01
Spectrally resolved laser-induced fluorescence technique was used to uniquely assign total angular momentum () values to high-lying even-parity energy levels of atomic samarium. Unique value assignment was done for seven energy levels in the energy region 34,800–36,200 cm-1 , recently observed and reported in the literature.
Spectral Dependence of CMB Polarization and Parity
Balaji, K R S; Easson, D A; Brandenberger, Robert H.; Easson, Damien A.
2003-01-01
The polarization of the cosmic microwave background radiation (CMBR) can serve as a probe for nonstandard parity violating interactions. Many such interactions are predicted in particle physics models arising from theories with extra dimensions such as superstring theory. These interactions produce an optical activity that depends on the space-time nature of the parity violating field. In particular, it is possible to obtain a frequency-dependent differential rotation of the polarization axis. The form of the frequency dependence is sensitive to the time evolution of the parity odd background field. Thus, one may be able to study a broad class of parity violating operators through polarization measurements of the CMBR.
Dzuba, V A
2016-01-01
Sun's gravitation potential at earth varies during a year due to varying Earth-Sun distance. Comparing the results of very accurate measurements of atomic clock transitions performed at different time in the year allows us to study the dependence of the atomic frequencies on the gravitational potential. We examine the measurement data for the ratio of the frequencies in Hg$^+$ and Al$^+$ clock transitions and absolute frequency measurements (with respect to caesium frequency standard) for Dy, Sr, H, hyperfine transitions in Rb and H, and obtain significantly improved limits on the values of the gravity related parameter of the Einstein Equivalence Principle violating term in the Standard Model Extension Hamiltonian $c_{00} = (3.0 \\pm 5.7) \\times 10^{-7}$ and the parameter for the gravity-related variation of the fine structure constant $\\kappa_{\\alpha} = (-5.3 \\pm 10) \\times 10^{-8}$.
International Nuclear Information System (INIS)
Within the A4 experiment the contributions of the strange quark to the electromagnetic form factors of the proton are measured. These see-quark effects in low energy observables are very important for the understanding of hadron structure, because they are a direct manifestation of QCD degrees of freedom in the non-perturbative regime. Linear combinations of the strangeness vector form factors of the proton (GEs and GMs) are accessible experimentally by measuring the parity violating asymmetry in the cross section of the elastic scattering of longitudinal polarised electrons off unpolarised nucleons. Two such measurements were published by the A4 collaboration before this work. Both of them were forward angle measurements at the Q2 values of 0.23 and 0.10 (GeV/c)2, respectively. A measurement at backward angle with a beam energy of 315 MeV was performed for separating GEs and GMs at the higher of these Q2 values. In the A4 experiment a longitudinally polarised electron beam scatters on a liquid hydrogen target. Single scattered electrons are counted with a Cherenkov calorimeter. The separation of elastic from inelastic events is achieved by means of calorimetric energy measurement. For the backward angle measurement a plastic scintillator was installed as electron tagger for suppressing the γ background coming from the decay of π0 mesons. In order to make the data analysis possible the energy spectra needed to be studied thoroughly. This was done in this work using detailed simulations of both the scattering processes suffered by beam electrons and of the response of the detectors. A method for handling the remaining background due to γ conversion before the scintillator has been also developed. The simulation results agree with the measured spectra at the 5% level and the strategy for handling the background was shown to be feasible. The asymmetry value obtained by handling the background as proposed in this work was combined with the previous A4 forward angle
The ATLAS collaboration
2016-01-01
We present a search for direct production of pairs of stop quarks, each decaying into a b- and an s- quark through R-parity violating couplings. The analysis uses 3.2 fb−1 of pp collision data recorded at $\\sqrt{s}=13$ TeV by the ATLAS experiment in 2015. No significant excess is observed above the background prediction and 95% CL limits on the mass of the stop quark between $250
International Nuclear Information System (INIS)
Using an impact parameter tag to select an enriched sample of Z0→bbbar events, and the net momentum-weighted track charge to identify the sign of the charge of the underlying b quark, we have measured the left-right forward-backward asymmetry for b quark production as a function of polar angle. Based on 1.8pb-1 of Z0 decay data produced with a mean electron beam polarization of Pe=63%, this yields a direct measurement of the extent of parity violation in the Zbb coupling of Ab=0.87±0.11(stat)±0.09(syst)
HYPERFINE STRUCTURE CONSTANTS OF ENERGETICALLY HIGH-LYING LEVELS OF ODD PARITY OF ATOMIC VANADIUM
International Nuclear Information System (INIS)
High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm–1). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d 34s4p and 55 to the configuration 3d 44p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d 34s4p and 44 to 3d 44p
Energy Technology Data Exchange (ETDEWEB)
Kothe, Rainer
2008-01-07
The A4-collaboration at the Mainzer Mikrotron MAMI studies the structure of the proton using the elastic scattering of polarized electrons off an unpolarized hydrogen target. When the electrons are longitudinally polarized, the parity violating asymmetry in the cross section can be measured. From this measurement the contribution of the strange quarks to the form factors of the proton can be extracted. In particular, a new measurement at backward angles and a beam energy of 319 MeV allows in combination with a recent value measured at the same Q{sup 2} under forward angles, to separate the magnetic and electric strange form factors via the Rosenbluth method. As part of this work, an electronic system implementing the trigger, analog signal processing, A/D-conversion and event counting was developed. This system contains a locally coupled network structure of the 1022 single channels and was designed to process rates in the range of 100 MHz. For the experimental operation it was necessary to examine the quality and stability of the system and to extract characteristic calibration values. The reliable operation of the system in a parity violating experiment measuring at the 10{sup -6} level was demonstrated. Moreover, the system was successfully upgraded to incorporate an electron tagger system, which was necessary to supress the dominating inelastic background of photons at backward angles. The preliminary value for the parity violating asymmetry for the elastic scattering of longitudinal polarized electrons off an unpolarized hydrogen target under backward angles for Q{sup 2}=0.23 GeV{sup 2}/c{sup 2} is A{sub PV}=(-16.37{+-}0.93{sub stat}{+-}0.69{sub syst}) ppm. This determines the difference of the measured asymmetry A{sub PV} and the theoretical prediction A{sub 0}=(-16.27{+-}1.22) ppm to be A{sub S}=A{sub PV}-A{sub 0}=(-0.10{+-}1.68) ppm. In combination with the value measured at forward angles, A{sub PV}=(-5.59{+-}0.57{sub stat}{+-}0.29{sub syst}) ppm, the
Can Four-fermion Contact Interactions at One-loop Explain the New Atomic Parity Violation Results?
Gusso, André
2000-01-01
We investigate the possibility that four-fermion contact interactions give rise to the observed deviation from the Standard Model prediction for the weak charge of Cesium, through one-loop contributions. We show that the presence of loops involving the third generation quarks can explain such deviation.
Nuclear octupole correlations and the enhancement of atomic time-reversal violation
International Nuclear Information System (INIS)
We examine the time-reversal-violating nuclear ''Schiff moment'' that induces electric dipole moments in atoms. After presenting a self-contained derivation of the form of the Schiff operator, we show that the distribution of Schiff strength, an important ingredient in the ground-state Schiff moment, is very different from the electric-dipole-strength distribution, with the Schiff moment receiving no strength from the giant dipole resonance in the Goldhaber-Teller model. We then present shell-model calculations in light nuclei that confirm the negligible role of the dipole resonance and show the Schiff strength to be strongly correlated with low-lying octupole strength. Next, we turn to heavy nuclei, examining recent arguments for the strong enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg, for example. We concur that there is a significant enhancement while pointing to effects neglected in previous work (both in the octupole-deformed nuclides and 199Hg) that may reduce it somewhat, and emphasizing the need for microscopic calculations to resolve the issue. Finally, we show that static octupole deformation is not essential for the development of collective Schiff moments; nuclei with strong octupole vibrations have them as well, and some could be exploited by experiment. (c) 2000 The American Physical Society
Veeraraghavan, Venkatesh; The ATLAS collaboration
2016-01-01
We present a search for direct production of pairs of stops, each decaying into a $b$- and an $s$-quark through R-parity violating couplings. The analysis uses $3.2$ fb$^{-1}$ of proton-proton collision data recorded at $\\sqrt{s} = 13$~TeV by the ATLAS experiment at the LHC in 2015. Four jets, two of which are $b$-tagged, are selected and paired according to their angular separation. Signal regions are defined by imposing requirements on the masses of the two resonance candidates and their angular distribution. The average mass of the resonances is then used as the final discriminant. No significant excess is observed above the background prediction and 95\\% CL limits on the mass of the stop of 345~GeV are derived.
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmad, Ashfaq; Ahmadov, Faig; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Gareth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Crispin Ortuzar, Mireia; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobos, Daniel; Dobson, Ellie; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gandrajula, Reddy Pratap; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Grybel, Kai; Guan, Liang; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Gunther, Jaroslav; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageboeck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Heisterkamp, Simon; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hofmann, Julia Isabell; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Ideal, Emma; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javůrek, Tomáš; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Karnevskiy, Mikhail; Karpov, Sergey; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le, Bao Tran; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Meera-Lebbai, Razzak; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Ne