Effective atomic numbers and electron density of dosimetric material
Directory of Open Access Journals (Sweden)
Kaginelli S
2009-01-01
Full Text Available A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, m/r, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates. The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes.
Influence of the electron's anomalous magnetic dipole moment on high-atomic number atoms
International Nuclear Information System (INIS)
Super heavy atoms ( Z > 100 ) are usually studied in the context of the so-called Quantum Electrodynamics of Strong Fields. In this theory the problem of the singularity in the electron energy whenever Z > 137 is overcome. This is done by considering the finite size of the nucleus and leads to interesting phenomena, such as the spontaneous production of positrons. Here, we show that, taking into account the contribution from the Anomalous Magnetic Dipole Moment of the electron ( by means of an effective theory ), within a point nucleus model, is a sufficient condition to obtain regular wave functions and physically acceptable energy values for Z > 137. (author)
Effective atomic numbers and electron densities of bioactive glasses for photon interaction
Shantappa, Anil; Hanagodimath, S. M.
2015-08-01
This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO2-Na2O, SiO2-Na2O-CaO and SiO2-Na2O-P2O5 in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (ZPI, eff) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.
International Nuclear Information System (INIS)
Highlights: • The gamma shielding properties of eight shielding materials have been investigated. • We calculated the total mass attenuation coefficients by using WinXCom program. • The values of effective atomic number and electron density are also calculated. • All parameters depend on chemical content and the incident photon energy. • The Field castable Heat Resistant is the most effective shielding material. - Abstract: In this paper, the interaction of gamma rays with some shielding materials has been studied. The total mass attenuation coefficient (μt) for eight shielding materials has been calculated by using WinXCOM program in the energy range from 1 keV to 100 GeV. Also, the effective atomic number (Zeff) and the effective electron density (Neff) were calculated using the values of the total mass attenuation coefficient. The dependence of these parameters on the incident photon energy and the chemical composition has been examined
Quantitative imaging of electron density and effective atomic number using phase contrast CT
Qi, Zhihua; Zambelli, Joseph; Bevins, Nicholas; Chen, Guang-Hong
2010-05-01
Compared to single energy CT, which only provides information for x-ray linear attenuation coefficients, dual-energy CT is able to obtain both the electron density and effective atomic number for different materials in a quantitative way. In this study, as an alternative to dual-energy CT, a novel quantitative imaging method based on phase contrast CT is presented. Rather than requiring two projection data sets with different x-ray energy spectra, diffraction-grating-based phase contrast CT is capable of reconstructing images of both linear attenuation and refractive index decrement from the same projection data using a single x-ray energy spectra. From the two images, quantitative information of both the electron density and effective atomic number can be extracted. Two physical phantoms were constructed and used to validate the presented method. Experimental results demonstrate that (1) electron density can be accurately determined from refractive index decrement through a linear relationship, and (2) the effective atomic number can be explicitly derived from the ratio of the linear attenuation to refractive index decrement using a power function plus a constant. The presented method will provide insight into the technique of material separation and find its use in medical and industrial applications.
Indian Academy of Sciences (India)
Shivalinge Gowda; S Krishnaveni; T Yashoda; T K Umesh; Ramakrishna Gowda
2004-09-01
Photon mass attenuation coefficients of some thermoluminescent dosimetric (TLD) compounds, such as LiF, CaCO3, CaSO4, CaSO4·2H2O, SrSO4, CdSO4, BaSO4, C4H6BaO4 and 3CdSO4·8H2O were determined at 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The attenuation coefficient data were then used to compute the effective atomic number and the electron density of TLD compounds. The interpolation of total attenuation cross-sections of photons of energy in elements of atomic number was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon energy range of 279.2 to 320.07 keV, 514.0 to 661.6 keV and 1115.5 to 1332.5 keV by a piece-wise interpolation method were then used to find the effective atomic number and electron density of the compounds. These values are found to be in agreement with other available published values.
International Nuclear Information System (INIS)
The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids. - Highlights: • We report the values of mass attenuation coefficients (μ/ρ). • The values of (Zeff) i.e. effective atomic number are calculated. • Measurement of effective electron density (Neff) of some amino acids. • Comparison of all μ/ρ values with XCOM programme
International Nuclear Information System (INIS)
Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient, effective atomic, numbers (Zeff), effective electron densities (Ne) and photon interaction cross section (σa) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. (authors)
Kore, Prashant S.; Pawar, Pravina P.
2014-05-01
The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.
Damla, N; Baltas, H; Celik, A; Kiris, E; Cevik, U
2012-07-01
Some building materials, regularly used in Turkey, such as sand, cement, gas concrete (lightweight, aerated concrete), tile and brick, have been investigated in terms of mass attenuation coefficient (μ/ρ), effective atomic, numbers (Z(eff)), effective electron densities (N(e)) and photon interaction cross section (σ(a)) at 14 different energies from 81- to 1332-keV gamma-ray energies. The gamma rays were detected by using gamma-ray spectroscopy, a High Purity Germanium (HPGe) detector. The elemental compositions of samples were analysed using an energy dispersive X-ray fluorescence spectrometer. Mass attenuation coefficients of these samples have been compared with tabulations based upon the results of WinXcom. The theoretical mass attenuation coefficients were estimated using the mixture rule and the experimental values of investigated parameters were compared with the calculated values. The agreement of measured values of mass attenuation coefficient, effective atomic numbers, effective electron densities and photon interaction cross section with the theory has been found to be quite satisfactory. PMID:22128356
Institute of Scientific and Technical Information of China (English)
Cai Da-Feng; Gu Yu-Qiu; Zheng Zhi-Jian; Zhou Wei-Min; Jiao Chun-Ye; Chen Hao; Wen Tian-Shu; Chunyu Shu-Tai
2006-01-01
The effects of atomic number Z on the energy distribution of hot electrons generated by the interaction of 60fs,130m J, 800nm, and 7×1017W/cm2 laser pulses with metallic targets have been studied experimentally. The results show that the number and the effective temperature of hot electrons increase with the atomic number Z of metallic targets, and the temperature of hot electrons are in the range of 190-230keV, which is consistent with a scaling law of hot electrons temperature.
Effective atomic number, electron density and kerma of gamma radiation for oxides of lanthanides
Indian Academy of Sciences (India)
R S Niranjan; B Rudraswamy; N Dhananjaya
2012-03-01
An attempt has been made to estimate the effective atomic number, electron density (0.001 to 105 MeV) and kerma (0.001 to 20 MeV) of gamma radiation for a wide range of oxides of lanthanides using mass attenuation coefﬁcient from WinXCom and mass energy absorption coefﬁcient from Hubbell and Seltzer. The values of these parameters have been found to change with energy for different oxides of lanthanides. The lanthanide oxides ﬁnd remarkable applications in the ﬁeld of medicine, biology, nuclear engineering and space technology. Nano-oxides of lanthanide ﬁnd applications in display and lighting industry.
Dzuba, V A; Harabati, C; Flambaum, V V
2016-01-01
A version of the configuration interaction (CI) method is developed which treats highly excited many-electron basis states perturbatively, so that their inclusion does not affect the size of the CI matrix. This removes, at least in principle, the main limitation of the CI method in dealing with many-electron atoms or ions. We perform calculations of the spectra of iodine and its ions, tungsten, and ytterbium as examples of atoms with open $s$, $p$, $d$ and $f$-shells. Good agreement of the calculated data with experiment illustrates the power of the method. Its advantages and limitations are discussed.
DEFF Research Database (Denmark)
Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif
2008-01-01
The effective atomic number, Z(eff), the effective electron density, N-el, and kerma have been calculated for some fatty acids and carbohydrates for photon interaction in the extended energy range from 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the Win......XCom program. The significant variation of Z(eff) and N-el is due to the variations in the dominance of different interaction processes in different energy regions. The maximum values of Z(eff) and N-el are found in the low-energy range, where photoelectric absorption is the main interaction process...... is also made with the single values of the Z(eff) and N-el provided by the program XMuDat. It is also observed that carbohydrates have a larger kerma than fatty acids in the low-energy region, where photoelectric absorption dominates. In contrast, fatty acids have a larger kerma than carbohydrates...
International Nuclear Information System (INIS)
In this study, the total mass attenuation coefficients (mm) for some homo- and hetero-chain polymers, namely polyamide-6 (PA-6), poly-methyl methacrylate (PMMA), low-density polyethylene (LDPE), polypropylene (PP) and polystyrene (PS) were measured at 59.5, 511, 661.6, 1173.2, 1274.5 and 1332.5 keV photon energies. The samples were separately irradiated with 241Am, 22Na, 137Cs and 60Co (638 kBq) radioactive gamma sources. The measurements were made by performing transmission experiments with a '2 x 2' NaI(Tl) scintillation detector having an energy resolution of 7 % at 662 keV gamma ray from the decay of 137Cs. The effective atomic numbers (Zeff) and the effective electron densities (Neff) were determined experimentally and theoretically using the obtained μm values for the investigated samples. Furthermore, Zeff and Neff of each polymer were computed for total photon interaction cross-sections using theoretical data over a wide energy region from 1 keV to 10 MeV. The experimental values of the selected polymers were found to be in good agreement with the theoretical values. (authors)
Kucuk, Nil; Cakir, Merve; Isitman, Nihat Ali
2013-01-01
In this study, the total mass attenuation coefficients (μ(m)) for some homo- and hetero-chain polymers, namely polyamide-6 (PA-6), poly-methyl methacrylate (PMMA), low-density polyethylene (LDPE), polypropylene (PP) and polystyrene (PS) were measured at 59.5, 511, 661.6, 1173.2, 1274.5 and 1332.5 keV photon energies. The samples were separately irradiated with (241)Am, (22)Na, (137)Cs and (60)Co (638 kBq) radioactive gamma sources. The measurements were made by performing transmission experiments with a 2″×2″ NaI(Tl) scintillation detector having an energy resolution of 7 % at 662 keV gamma ray from the decay of (137)Cs. The effective atomic numbers (Z(eff)) and the effective electron densities (N(eff)) were determined experimentally and theoretically using the obtained μ(m) values for the investigated samples. Furthermore, Z(eff) and N(eff) of each polymer were computed for total photon interaction cross-sections using theoretical data over a wide energy region from 1 keV to 10 MeV. The experimental values of the selected polymers were found to be in good agreement with the theoretical values. PMID:22645382
Studies on effective atomic numbers and electron densities of nucleobases in DNA
Kumar, Ashok
2016-10-01
Various parameters of dosimetric importance such as effective atomic numbers (Zeff) and electron densities (Nel) of nucleobases in DNA have been calculated for the total and partial photon interaction processes in the wide energy range of 1 keV-100 GeV. The variations of Zeff and Nel with energy are shown graphically for all partial and total interaction processes and are found to be similar. Up to 10 keV, Zeff and Nel show a sharp increase for cytosine-guanine and thymine-adenine whereas for all the other nucleobases, it is almost constant. Then there is sharp decrease in Zeff and Nel with energy up to 100 keV for all the nucleobases. From 100 keV to 6 MeV, Zeff and Nel are almost independent of energy. From 6 MeV to 100 MeV, there is regular increase in Zeff and Nel with photon energy. Above 400 MeV, Zeff and Nel remain almost constant. The obtained results are due to the dominance of photoelectric absorption, Compton scattering and pair production in different energy regions as respectively stated above and their dependences on the chemical compositions of the interacting media.
Han, I; Demir, L
2010-01-01
The total mass attenuation coefficients (mu/rho) for pure Au and Au99Be1, Au88Ge12, Au95Zn5 alloys were measured at 59.5 and 88.0 keV photon energies. The samples were irradiated with 241Am and 109Cd radioactive point source using transmission arrangement. The gamma- rays were counted by a Si(Li) detector with resolution of 160 eV at 5.9 keV. Total atomic and electronic cross-sections (sigmat and sigmae), effective atomic and electron densities (Zeff and Nel) were determined using the obtained mass attenuation coefficients for investigated Au alloys. The theoretical mass attenuation coefficients of each alloy were estimated using mixture rule. PMID:20421703
A new method to measure electron density and effective atomic number using dual-energy CT images
Ramos Garcia, Luis Isaac; Pérez Azorin, José Fernando; Almansa, Julio F.
2016-01-01
The purpose of this work is to present a new method to extract the electron density ({ρ\\text{e}} ) and the effective atomic number (Z eff) from dual-energy CT images, based on a Karhunen-Loeve expansion (KLE) of the atomic cross section per electron. This method was used to calibrate a Siemens Definition CT using the CIRS phantom. The predicted electron density and effective atomic number using 80 kVp and 140 kVp were compared with a calibration phantom and an independent set of samples. The mean absolute deviations between the theoretical and calculated values for all the samples were 1.7 % ± 0.1 % for {ρ\\text{e}} and 4.1 % ± 0.3 % for Z eff. Finally, these results were compared with other stoichiometric method. The application of the KLE to represent the atomic cross section per electron is a promising method for calculating {ρ\\text{e}} and Z eff using dual-energy CT images.
Apaydın, G.; Cengiz, E.; Tıraşoğlu, E.; Aylıkcı, V.; Bakkaloğlu, Ö. F.
2009-05-01
The mass attenuation coefficients for the elements Co, Cu and Ag and a thin film of CoCuAg alloy were measured in the energy range 4.029-38.729 keV. Effective atomic numbers and electron densities were calculated by using these coefficients. The energies were obtained by using secondary targets that were irradiated with gamma-ray photons of 241Am. The x-rays were counted by using a Canberra Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The results were compared with theoretical calculated values and fairly good agreement was found between them within an average experimental error. The mass attenuation coefficients, effective atomic numbers and electron densities were plotted versus photon energy.
International Nuclear Information System (INIS)
The mass attenuation coefficients for the elements Co, Cu and Ag and a thin film of CoCuAg alloy were measured in the energy range 4.029-38.729 keV. Effective atomic numbers and electron densities were calculated by using these coefficients. The energies were obtained by using secondary targets that were irradiated with gamma-ray photons of 241Am. The x-rays were counted by using a Canberra Ultra-LEGe detector with a resolution of 150 eV at 5.9 keV. The results were compared with theoretical calculated values and fairly good agreement was found between them within an average experimental error. The mass attenuation coefficients, effective atomic numbers and electron densities were plotted versus photon energy.
Akman, F; Durak, R; Turhan, M F; Kaçal, M R
2015-07-01
The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. PMID:25880612
Analysis and theoretical description of a number of atomic systems with optical 3d-electrons
International Nuclear Information System (INIS)
The goal of the investigation was to obtain knowledge of spectra of multiple ionized atoms in which 3d electrons play an important role. Two vacuum spectrographs were used: a 6.650 m normal incidence spectrograph for the region 400 A < lambda < 2400 A and a 6.600 m grazing incidence spectrograph for the region below 600 A. In the first five chapters the classification of several thousands of lines in the spectra Co V, Ni V, Cu V, Ni VI and Cu VI is given together with the determination of levels in the 3dsup(n), 3dsup(n-1)4s and 3dsup(n-1)4p configurations in these spectra. The position of the levels has been calculated by means of the parameter method. The calculated level values have been fitted to the experimentally determined values by means of a least squares fit procedure, resulting in optimum parameter values. The parameter values of this final diagonalization have been compared with each other along the sequence Cr-Cu for the 2-5 times ionized atoms. This comparison is discussed in chapter VI. In the last chapter (VII) the application of data, obtained from the analyses of spectra of Fe and Ni ions is considered in the field of astrophysics. The presence of forbidden lines, due to magnetic dipole transitions, of Fe IV, V, VI and VII and Ni IV, V, VI and VII in the spectra of the variable stars RR Telescopii and Eta Carinae is discussed. (Auth.)
International Nuclear Information System (INIS)
The number distribution of secondary electrons emitted through energetic ion impact on a thin carbon foil was measured. Projectile ions of 1-MeV/u He2+ or He+ passed through a carbon foil with thickness of 1 μ g/cm2 in a direction of 45o to its surface. Electrons emitted in the forward and backward directions were accelerated by a potential applied to the foil and detected by two solid state detectors (SSDs) in which pulses proportional to the electron number were formed. Transmitted ions were charge analyzed by an electrostatic deflector and detected by the third SSD. The measurement was performed in coincidence with transmitted He2+ ions and in the event-recording mode. For molecular ions, Coulomb explosion fragments, i.e., two He2+ ions were detected after passing an annular slit or conventional circular slit which selects incident molecules with molecular axes perpendicular to or parallel to the ion velocity. The average numbers of electrons emitted in the forward direction are about 1.5 times as large as those in the backward direction for atomic and molecular ions with both orientations. The width of the number distribution is generally wider than that of Poisson distribution with the same average number. Orientation dependence is not recognized in the backward direction but a slight enhancement is found for parallel orientation in the forward direction. The fact that the vicinage effect is observed only for the parallel orientation seems consistent with the density enhancement of the target electrons behind the leading ion. A negative correlation between numbers of electrons emitted in the forward and backward directions is found. (Author)
International Nuclear Information System (INIS)
Highlights: • Measurement of linear attenuation coefficient by simplified ATM method for the oxides of Lanthanides. • Atomic parameters are calculated from linear attenuation coefficients. • Geometrical setup has been validated with metallic targets of uniform thickness. • Experimental results are in good agreement with theoretical results within error limits. - Abstract: The linear and mass attenuation coefficient of non-uniform thick samples of oxides of lanthanide (Pr6O11, Nd2O3, Gd2O3, Tb4O7, Ho2O3 and Er2O3) has been measured by gamma ray photons of energy 59.54 keV obtained from 100 mCi radioactive source of 241Am. Advanced Two Media (ATM) methods Gupta et al. (2013) is simplified by considering air as first medium and metallic foil as second medium. In the present measurements this consideration simplifies the mathematical complexities and laboratory work to find the attenuation coefficients of non-uniform thick samples. The values of attenuation coefficient were then used to calculate effective atomic numbers (Zeff), interaction cross-section (σ) and effective electron densities (Neff) of lanthanide oxides. The method is validated by measuring linear/mass attenuation coefficient and other parameters for Mo, Ag, Sn, W and Pb of uniform thickness. The measured results are compared with the theoretical values from WinXcom Gerward et al. (2001). It is found that measured values are in agreement within 2% of theoretical results. The measurement of linear attenuation coefficient, effective atomic numbers (Zeff), interaction cross-section and effective electron densities (Neff) enhances the understanding of material characteristics. Presently studied materials i.e. oxides of Lanthanide are widely used as glass colouring agent and in electronic sensing devices
Energy Technology Data Exchange (ETDEWEB)
Singh, Gurinderjeet; Gupta, Manoj Kumar, E-mail: mkgupta.sliet@gmail.com; Dhaliwal, A.S.; Kahlon, K.S.
2015-01-15
Highlights: • Measurement of linear attenuation coefficient by simplified ATM method for the oxides of Lanthanides. • Atomic parameters are calculated from linear attenuation coefficients. • Geometrical setup has been validated with metallic targets of uniform thickness. • Experimental results are in good agreement with theoretical results within error limits. - Abstract: The linear and mass attenuation coefficient of non-uniform thick samples of oxides of lanthanide (Pr{sub 6}O{sub 11}, Nd{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, Tb{sub 4}O{sub 7}, Ho{sub 2}O{sub 3} and Er{sub 2}O{sub 3}) has been measured by gamma ray photons of energy 59.54 keV obtained from 100 mCi radioactive source of {sup 241}Am. Advanced Two Media (ATM) methods Gupta et al. (2013) is simplified by considering air as first medium and metallic foil as second medium. In the present measurements this consideration simplifies the mathematical complexities and laboratory work to find the attenuation coefficients of non-uniform thick samples. The values of attenuation coefficient were then used to calculate effective atomic numbers (Z{sub eff}), interaction cross-section (σ) and effective electron densities (N{sub eff}) of lanthanide oxides. The method is validated by measuring linear/mass attenuation coefficient and other parameters for Mo, Ag, Sn, W and Pb of uniform thickness. The measured results are compared with the theoretical values from WinXcom Gerward et al. (2001). It is found that measured values are in agreement within 2% of theoretical results. The measurement of linear attenuation coefficient, effective atomic numbers (Z{sub eff}), interaction cross-section and effective electron densities (N{sub eff}) enhances the understanding of material characteristics. Presently studied materials i.e. oxides of Lanthanide are widely used as glass colouring agent and in electronic sensing devices.
Calculations of effective atomic number
Energy Technology Data Exchange (ETDEWEB)
Kaliman, Z. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia); Orlic, N. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia)], E-mail: norlic@ffri.hr; Jelovica, I. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia)
2007-09-21
We present and discuss effective atomic number (Z{sub eff}) obtained by different methods of calculations. There is no unique relation between the computed values. This observation led us to the conclusion that any Z{sub eff} is valid only for given process. We illustrate calculations for different subshells of atom Z=72 and for M3 subshell of several other atoms.
DEFF Research Database (Denmark)
Manohara, S.R.; Hanagodimath, S.M.; Thind, K.S.;
2008-01-01
A comprehensive and consistent set of formulas is given for calculating the effective atomic number and electron density for all types of materials and for all photon energies greater than 1 keV. The are derived from first principles using photon interaction cross sections of the constituent atoms...
Burcu Akça; Erzeneoğlu, Salih Z.
2014-01-01
The mass attenuation coefficients for compounds of biomedically important some elements (Na, Mg, Al, Ca, and Fe) have been measured by using an extremely narrow collimated-beam transmission method in the energy 59.5 keV. Total electronic, atomic, and molecular cross sections, effective atomic numbers, and electron densities have been obtained by using these results. Gamma-rays of 241Am passed through compounds have been detected by a high-resolution Si(Li) detector and by using energy dispers...
Energy Technology Data Exchange (ETDEWEB)
Almeida J, A. T. [FUNDACENTRO, Centro Regional de Minas Gerais, Brazilian Institute for Safety and Health at Work, Belo Horizonte, 30180-100 Minas Gerais (Brazil); Nogueira, M. S. [Center of Development of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Santos, M. A. P., E-mail: mnogue@cdtn.br [Regional Center for Nuclear Science / CNEN, 50.740-540 Recife, Pernambuco (Brazil)
2015-10-15
Full text: In this paper, the interaction of X-rays with some shielding materials has been studied for materials containing different amounts of barite and aggregates. The total mass attenuation coefficient (μ{sub t}) for three shielding materials has been calculated by using WinXCOM program in the energy range from RQR qualities (RQR-4, RQR-6, RQR-9, and RQR-10). They were: cream barite (density 2.99 g/cm{sup 3} collected in the State of Sao Paulo), purple barite (density 2.95 g/cm{sup 3} collected in the State of Bahia) and white barite (density 3.10 g/cm{sup 3} collected in the State of Paraiba). The chemical analysis was carried out by an X-ray fluorescence spectrometer model EDX-720, through dispersive energy. The six elements of the higher concentration found in the sample and analyzed by Spectrophotometry of Energy Dispersive X-ray for the samples were Ba(60.9% - white barite), Ca(17,92% - cream barite), Ce(3,60% - white barite), Fe(17,16% - purple barite), S(12,11% - white barite) and Si(29,61% - purple barite). Also, the effective atomic number (Z{sub eff}) and the effective electron density (N{sub eff}) were calculated using the values of the total mass attenuation coefficient. The dependence of these parameters on the incident photon energy and the chemical composition has been examined. (Author)
International Nuclear Information System (INIS)
Full text: In this paper, the interaction of X-rays with some shielding materials has been studied for materials containing different amounts of barite and aggregates. The total mass attenuation coefficient (μt) for three shielding materials has been calculated by using WinXCOM program in the energy range from RQR qualities (RQR-4, RQR-6, RQR-9, and RQR-10). They were: cream barite (density 2.99 g/cm3 collected in the State of Sao Paulo), purple barite (density 2.95 g/cm3 collected in the State of Bahia) and white barite (density 3.10 g/cm3 collected in the State of Paraiba). The chemical analysis was carried out by an X-ray fluorescence spectrometer model EDX-720, through dispersive energy. The six elements of the higher concentration found in the sample and analyzed by Spectrophotometry of Energy Dispersive X-ray for the samples were Ba(60.9% - white barite), Ca(17,92% - cream barite), Ce(3,60% - white barite), Fe(17,16% - purple barite), S(12,11% - white barite) and Si(29,61% - purple barite). Also, the effective atomic number (Zeff) and the effective electron density (Neff) were calculated using the values of the total mass attenuation coefficient. The dependence of these parameters on the incident photon energy and the chemical composition has been examined. (Author)
Directory of Open Access Journals (Sweden)
Singh Vishwanath P.
2012-01-01
Full Text Available Total mass attenuation coefficients, µm, effective atomic number, Zeff, and effective electron density, Neff, of different gases - carbon dioxide, methane, acetylene, propane, butane, and pentane used in radiation detectors, have been calculated for the photon energy of 1 keV to 100 GeV. Each gas has constant Zeff values between 0.10 to 10 MeV photon energies; however, these values are way far away from ICRU tissue. Carbon dioxide gas shows the closest tissue equivalence in the entire photon energy spectrum. Relative tissue equivalences of the mixtures of gases with respect to ICRU tissue are in the range of 0.998-1.041 for air, argon (4.5% + methane (95.5%, argon (0.5% + carbon dioxide (99.5%, and nitrogen (5% + methane (7% + carbon dioxide (88%. The gas composition of xenon (0.5% + carbon dioxide (99.5% shows 1.605 times higher tissue equivalence compared to the ICRU tissue. The investigated photon interaction parameters are useful for exposure and energy absorption buildup factors calculation and design, and fabrication of gaseous detectors for ambient radiation measurement by the Geiger-Muller detector, ionization chambers and proportional counters.
Energy Technology Data Exchange (ETDEWEB)
Saito, Masatoshi, E-mail: masaito@clg.niigata-u.ac.jp [Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518 (Japan); Tsukihara, Masayoshi [Division of Radiological Technology, Graduate School of Health Sciences, Niigata University, Niigata 951-8518 (Japan)
2014-07-15
Purpose: For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted CT number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide ρ{sub e} range. The purpose of this study is to address the limitations of the conversion method with respect to atomic number (Z) by elucidating the role of partial photon interactions in the ΔHU–ρ{sub e} conversion process. Methods: The authors performed numerical analyses of the ΔHU–ρ{sub e} conversion for 105 human body tissues, as listed in ICRU Report 46, and elementary substances with Z = 1–40. Total and partial attenuation coefficients for these materials were calculated using the XCOM photon cross section database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80–140 kV/Sn under well-calibrated and poorly calibrated conditions. Results: The accuracy of the resultant calibrated electron density,ρ{sub e}{sup cal}, for the ICRU-46 body tissues fully satisfied the IPEM-81 tolerance levels in radiotherapy treatment planning. If a criterion of ρ{sub e}{sup cal}/ρ{sub e} − 1 is assumed to be within ±2%, the predicted upper limit of Z applicable for the ΔHU–ρ{sub e} conversion under the well-calibrated condition is Z = 27. In the case of the poorly calibrated condition, the upper limit of Z is approximately 16. The deviation from the ΔHU–ρ{sub e} linearity for higher Z substances is mainly caused by the anomalous variation in the photoelectric-absorption component. Conclusions: Compensation among the three partial components of the photon interactions provides for sufficient linearity of the ΔHU–ρ{sub e} conversion to be applicable for most human tissues even for poorly conditioned scans in which there exists a large variation of effective x
International Nuclear Information System (INIS)
Purpose: For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted CT number to an electron density (ΔHU–ρe conversion), which provides a single linear relationship between ΔHU and ρe over a wide ρe range. The purpose of this study is to address the limitations of the conversion method with respect to atomic number (Z) by elucidating the role of partial photon interactions in the ΔHU–ρe conversion process. Methods: The authors performed numerical analyses of the ΔHU–ρe conversion for 105 human body tissues, as listed in ICRU Report 46, and elementary substances with Z = 1–40. Total and partial attenuation coefficients for these materials were calculated using the XCOM photon cross section database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80–140 kV/Sn under well-calibrated and poorly calibrated conditions. Results: The accuracy of the resultant calibrated electron density,ρecal, for the ICRU-46 body tissues fully satisfied the IPEM-81 tolerance levels in radiotherapy treatment planning. If a criterion of ρecal/ρe − 1 is assumed to be within ±2%, the predicted upper limit of Z applicable for the ΔHU–ρe conversion under the well-calibrated condition is Z = 27. In the case of the poorly calibrated condition, the upper limit of Z is approximately 16. The deviation from the ΔHU–ρe linearity for higher Z substances is mainly caused by the anomalous variation in the photoelectric-absorption component. Conclusions: Compensation among the three partial components of the photon interactions provides for sufficient linearity of the ΔHU–ρe conversion to be applicable for most human tissues even for poorly conditioned scans in which there exists a large variation of effective x-ray energies owing to beam-hardening effects arising from the mismatch between the
Directory of Open Access Journals (Sweden)
Burcu Akça
2014-01-01
Full Text Available The mass attenuation coefficients for compounds of biomedically important some elements (Na, Mg, Al, Ca, and Fe have been measured by using an extremely narrow collimated-beam transmission method in the energy 59.5 keV. Total electronic, atomic, and molecular cross sections, effective atomic numbers, and electron densities have been obtained by using these results. Gamma-rays of 241Am passed through compounds have been detected by a high-resolution Si(Li detector and by using energy dispersive X-ray fluorescence spectrometer (EDXRF. Obtained results have been compared with theoretically calculated values of WinXCom and FFAST. The relative difference between the experimental and theoretical values are −9.4% to +11.9% with WinXCom and −11.8% to +11.7% FFAST. Results have been presented and discussed in this paper.
International Nuclear Information System (INIS)
A survey of the literature shows that the values found for the excitation parameters (temperature and electron number density) in an inductively coupled radio-frequency argon plasma at atmospheric pressure (ICP) depend on the plasma configuration and the measuring procedure. The present study proposes a novel method for measuring excitation temperatures that does not require a knowledge of transition probabilities. The experimental work concerns measurements of the spatial distributions of the temperature, the number densities of the electrons and various atomic and ionic species in a low-power (approximately o.5kW) ICP for analytical purposes operated at either of two extreme carrier gas flow rates. Observations were made at three different heights above the induction coil. At high flow rate (approximately 51/min) the familiar hollow configuration of the plasma is demonstrated by off-axis maxima for the temperature and the number densities of electrons and atomic species at all observation heights. At low flow rate (approximately 1 l./min), the radial atom number density distributions are parabolically shaped and constricted to a smaller channel at all observation heights. The authors conclude from the results that both the plasma configurations are not in a state of complete local thermal equilibrium at observation heights used for analytical work (i.e., above the coil)
Manjunathaguru, V.; Umesh, T. K.
2006-09-01
A semi-empirical relation which can be used to determine the total attenuation cross sections of samples containing H, C, N and O in the energy range 145-1332 keV has been derived based on the total attenuation cross sections of several sugars, amino acids and fatty acids. The cross sections have been measured by performing transmission experiments in a narrow beam good geometry set-up by employing a high-resolution hyperpure germanium detector at seven energies of biological importance such as 145.4 keV, 279.2 keV, 514 keV, 661.6 keV, 1115.5 keV, 1173.2 keV and 1332.1 keV. The semi-empirical relation can reproduce the experimental values within 1-2%. The total attenuation cross sections of five elements carbon, aluminium, titanium, copper and zirconium measured in the same experimental set-up at the energies mentioned above have been used in a new matrix method to evaluate the effective atomic numbers and the effective electron densities of samples such as cholesterol, fatty acids, sugars and amino acids containing H, C, N and O atoms from their effective atomic cross sections. The effective atomic cross sections are the total attenuation cross sections divided by the total number of atoms of all types in a particular sample. Further, a quantity called the effective atomic weight was defined as the ratio of the molecular weight of a sample to the total number of atoms of all types in it. The variation of the effective atomic number was systematically studied with respect to the effective atomic weight and a new semi-empirical relation for Zeff has been evolved. It is felt that this relation can be very useful to determine the effective atomic number of any sample having H, C, N and O atoms in the energy range 145-1332 keV irrespective of its chemical structure.
Pawar, Pravina P.; Bichile, Govind K.
2013-11-01
The total mass attenuation coefficients of some amino acids, such as Glycine (C2H5NO2), DL-Alanine (C3H7NO2), Proline (C5H9NO2), L-Leucine (C6H13NO2 ), L-Arginine (C6H14N4O2) and L-Arginine Monohydrochloride (C6H15ClN4O2), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma rays were detected using NaI (Tl) scintillation detection system with a resolution of 10.2% at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff) and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) tend to be almost constant as a function of gamma-ray energy. The results show that, the experimental values of mass attenuation coefficients, effective atomic numbers and effective electron densities are in good agreement with the theoretical values with less than 1% error.
Mohammad W. Marashdeh; Ibrahim F. Al-Hamarneh; Eid M. Abdel Munem; A.A. Tajuddin; Alawiah Ariffin; Saleh Al-Omari
2015-01-01
Rhizophora spp. wood has the potential to serve as a solid water or tissue equivalent phantom for photon and electron beam dosimetry. In this study, the effective atomic number (Zeff) and effective electron density (Neff) of raw wood and binderless Rhizophora spp. particleboards in four different particle sizes were determined in the 10–60 keV energy region. The mass attenuation coefficients used in the calculations were obtained using the Monte Carlo N-Particle (MCNP5) simulation code. The M...
Energy Technology Data Exchange (ETDEWEB)
Gowda, Shivalinge [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006 (India); Krishnaveni, S. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006 (India); Gowda, Ramakrishna [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006 (India)]. E-mail: ramakrishnagowda@yahoo.com
2005-10-15
The effective atomic numbers and electron densities of the amino acids glycine, alanine, serine, valine, threonine, leucine, isoleucine, aspartic acid, lysine, glutamic acid, histidine, phenylalanine, arginine, tyrosine, tryptophane and the sugars arabinose, ribose, glucose, galactose, mannose, fructose, rhamnose, maltose, melibiose, melezitose and raffinose at the energies 30.8, 35.0, 81.0, 145, 276.4, 302.9, 356, 383.9, 661.6, 1173 and 1332.5 keV were calculated by using the measured total attenuation cross-sections. The interpolations of total attenuation cross-sections for photons of energy E in elements of atomic number Z was performed using the logarithmic regression analysis of the XCOM data in the photon energy region 30-1500 keV. The best-fit coefficients obtained by a piece wise interpolation method were used to find the effective atomic number and electron density of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.
Areshkin, Denis A.; Nikolić, Branislav K.
2010-04-01
The recent fabrication of graphene nanoribbon (GNR) field-effect transistors poses a challenge for first-principles modeling of carbon nanoelectronics due to many thousand atoms present in the device. The state of the art quantum transport algorithms, based on the nonequilibrium Green function formalism combined with the density-functional theory (NEGF-DFT), were originally developed to calculate self-consistent electron density in equilibrium and at finite bias voltage (as a prerequisite to obtain conductance or current-voltage characteristics, respectively) for small molecules attached to metallic electrodes where only a few hundred atoms are typically simulated. Here we introduce combination of two numerically efficient algorithms which make it possible to extend the NEGF-DFT framework to device simulations involving large number of atoms. Our first algorithm offers an alternative to the usual evaluation of the equilibrium part of electron density via numerical contour integration of the retarded Green function in the upper complex half-plane. It is based on the replacement of the Fermi function f(E) with an analytic function f˜(E) coinciding with f(E) inside the integration range along the real axis, but decaying exponentially in the upper complex half-plane. Although f˜(E) has infinite number of poles, whose positions and residues are determined analytically, only a finite number of those poles have non-negligible residues. We also discuss how this algorithm can be extended to compute the nonequilibrium contribution to electron density, thereby evading cumbersome real-axis integration (within the bias voltage window) of NEGFs which is very difficult to converge for systems with large number of atoms while maintaining current conservation. Our second algorithm combines the recursive formulas with the geometrical partitioning of an arbitrary multiterminal device into nonuniform segments in order to reduce the computational complexity of the retarded Green
Tatsugami, Fuminari; Higaki, Toru; Kiguchi, Masao; Tsushima, So; Taniguchi, Akira; Kaichi, Yoko; Yamagami, Takuji; Awai, Kazuo
2014-01-01
We evaluated the accuracy of the electron densities and effective atomic numbers determined by raw data-based dual-energy analysis on a 320-detector computed tomography scanner. The mean (SD) errors between the measured and true electron densities and between the measured and true effective atomic numbers were 1.3% (1.5%) and 3.1% (3.2%), respectively. Electron densities and effective atomic numbers can be determined with high accuracy, which may help to improve accuracy in radiotherapy treatment planning. PMID:24983439
Kurudirek, Murat
2014-09-01
Effective atomic numbers, Zeff, and electron densities, neff, are convenient parameters used to characterise the radiation response of a multi-element material in many technical and medical applications. Accurate values of these physical parameters provide essential data in medical physics. In the present study, the effective atomic numbers and electron densities have been calculated for some human tissues and dosimetric materials such as Adipose Tissue (ICRU-44), Bone Cortical (ICRU-44), Brain Grey/White Matter (ICRU-44), Breast Tissue (ICRU-44), Lung Tissue (ICRU-44), Soft Tissue (ICRU-44), LiF TLD-100H, TLD-100, Water, Borosilicate Glass, PAG (Gel Dosimeter), Fricke (Gel Dosimeter) and OSL (Aluminium Oxide) using mean photon energies, Em, of various radiation sources. The used radiation sources are Pd-103, Tc-99, Ra-226, I-131, Ir-192, Co-60, 30 kVp, 40 kVp, 50 kVp (Intrabeam, Carl Zeiss Meditec) and 6 MV (Mohan-6 MV) sources. The Em values were then used to calculate Zeff and neff of the tissues and dosimetric materials for various radiation sources. Different calculation methods for Zeff such as the direct method, the interpolation method and Auto-Zeff computer program were used and agreements and disagreements between the used methods have been presented and discussed. It has been observed that at higher Em values agreement is quite satisfactory (Dif.<5%) between the adopted methods.
More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina P.
2016-08-01
Photon attenuation coefficient calculation methods have been widely used to accurately study the properties of amino acids such as n-acetyl-L-tryptophan, n-acetyl-L-tyrosine, D-tryptophan, n-acetyl-L-glutamic acid, D-phenylalanine, and D-threonine. In this study, mass attenuation coefficients (μm) of these amino acids for 0.122-, 0.356-, 0.511-, 0.662-, 0.884-, 1.170, 1.275-, 1.330-MeV photons are determined using the radio-nuclides Co57, Ba133, Cs137, Na22, Mn54, and Co60. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The calculated attenuation coefficient values were then used to determine total atomic cross sections (σt), molar extinction coefficients (ε), electronic cross sections (σe), effective atomic numbers (Zeff), and effective electron densities (Neff) of the amino acids. Theoretical values were calculated based on the XCOM data. Theoretical and experimental values are found to be in a good agreement (error<5%). The variations of μm, σt, ε, σe, Zeff, and Neff with energy are shown graphically. The values of μm, σt, ε, σe are higher at lower energies, and they decrease sharply as energy increases; by contrast, Zeff and Neff were found to be almost constant.
Energy Technology Data Exchange (ETDEWEB)
Ahmadi, Morteza; Lunscher, Nolan [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada); Yeow, John T.W., E-mail: jyeow@uwaterloo.ca [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada)
2013-04-01
Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10–200 keV and 1–20 MeV) in which X-ray imaging and radiotherapy machines work.
Ahmadi, Morteza; Lunscher, Nolan; Yeow, John T. W.
2013-04-01
Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10-200 keV and 1-20 MeV) in which X-ray imaging and radiotherapy machines work.
Gounhalli, Shivraj G.; Shantappa, Anil; Hanagodimath, S. M.
2013-04-01
Effective atomic numbers for photon energy absorption ZPEA,eff, photon interaction ZPI,eff and for electron density Nel, have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for narcotic drugs, such as Heroin (H), Cocaine (CO), Caffeine (CA), Tetrahydrocannabinol (THC), Cannabinol (CBD), Tetrahydrocannabivarin (THCV). The ZPEA,eff, ZPI,eff and Nel values have been found to change with energy and composition of the narcotic drugs. The energy dependence ZPEA,eff, ZPI,eff and Nel is shown graphically. The maximum difference between the values of ZPEA,eff, and ZPI,eff occurs at 30 keV and the significant difference of 2 to 33% for the energy region 5-100 keV for all drugs. The reason for these differences is discussed.
International Nuclear Information System (INIS)
Effective atomic numbers, Zeff, and electron densities, neff, are convenient parameters used to characterise the radiation response of a multi-element material in many technical and medical applications. Accurate values of these physical parameters provide essential data in medical physics. In the present study, the effective atomic numbers and electron densities have been calculated for some human tissues and dosimetric materials such as Adipose Tissue (ICRU-44), Bone Cortical (ICRU-44), Brain Grey/White Matter (ICRU-44), Breast Tissue (ICRU-44), Lung Tissue (ICRU-44), Soft Tissue (ICRU-44), LiF TLD-100H, TLD-100, Water, Borosilicate Glass, PAG (Gel Dosimeter), Fricke (Gel Dosimeter) and OSL (Aluminium Oxide) using mean photon energies, Em, of various radiation sources. The used radiation sources are Pd-103, Tc-99, Ra-226, I-131, Ir-192, Co-60, 30 kVp, 40 kVp, 50 kVp (Intrabeam, Carl Zeiss Meditec) and 6 MV (Mohan-6 MV) sources. The Em values were then used to calculate Zeff and neff of the tissues and dosimetric materials for various radiation sources. Different calculation methods for Zeff such as the direct method, the interpolation method and Auto-Zeff computer program were used and agreements and disagreements between the used methods have been presented and discussed. It has been observed that at higher Em values agreement is quite satisfactory (Dif.<5%) between the adopted methods. - Highlights: • Mean energies for different radiation sources have been determined. • Human tissues and dosimetric materials have been investigated according to different sources. • Different methods were applied for calculation of Eeff, Zeff and neff
Directory of Open Access Journals (Sweden)
Mohammad W. Marashdeh
2015-01-01
Full Text Available Rhizophora spp. wood has the potential to serve as a solid water or tissue equivalent phantom for photon and electron beam dosimetry. In this study, the effective atomic number (Zeff and effective electron density (Neff of raw wood and binderless Rhizophora spp. particleboards in four different particle sizes were determined in the 10–60 keV energy region. The mass attenuation coefficients used in the calculations were obtained using the Monte Carlo N-Particle (MCNP5 simulation code. The MCNP5 calculations of the attenuation parameters for the Rhizophora spp. samples were plotted graphically against photon energy and discussed in terms of their relative differences compared with those of water and breast tissue. Moreover, the validity of the MCNP5 code was examined by comparing the calculated attenuation parameters with the theoretical values obtained by the XCOM program based on the mixture rule. The results indicated that the MCNP5 process can be followed to determine the attenuation of gamma rays with several photon energies in other materials.
Marashdeh, Mohammad W.; Al-Hamarneh, Ibrahim F.; Abdel Munem, Eid M.; Tajuddin, A. A.; Ariffin, Alawiah; Al-Omari, Saleh
Rhizophora spp. wood has the potential to serve as a solid water or tissue equivalent phantom for photon and electron beam dosimetry. In this study, the effective atomic number (Zeff) and effective electron density (Neff) of raw wood and binderless Rhizophora spp. particleboards in four different particle sizes were determined in the 10-60 keV energy region. The mass attenuation coefficients used in the calculations were obtained using the Monte Carlo N-Particle (MCNP5) simulation code. The MCNP5 calculations of the attenuation parameters for the Rhizophora spp. samples were plotted graphically against photon energy and discussed in terms of their relative differences compared with those of water and breast tissue. Moreover, the validity of the MCNP5 code was examined by comparing the calculated attenuation parameters with the theoretical values obtained by the XCOM program based on the mixture rule. The results indicated that the MCNP5 process can be followed to determine the attenuation of gamma rays with several photon energies in other materials.
Kurudirek, Murat; Aygun, Murat; Erzeneoğlu, Salih Zeki
2010-06-01
The trommel sieve waste (TSW) which forms during the boron ore production is considered to be a promising building material with its use as an admixture with Portland cement and is considered to be an alternative radiation shielding material, also. Thus, having knowledge on the chemical composition and radiation interaction properties of TSW as compared to other building materials is of importance. In the present study, chemical compositions of the materials used have been determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Also, TSW, some commonly used building materials (Portland cement, lime and pointing) and their admixtures with TSW have been investigated in terms of total mass attenuation coefficients (mu/rho), photon interaction cross sections (sigma(t)), effective atomic numbers (Z(eff)) and effective electron densities (N(e)) by using X-rays at 22.1, 25keV and gamma-rays at 88keV photon energies. Possible conclusions were drawn with respect to the variations in photon energy and chemical composition. PMID:20080413
Exotic atoms and their electron shell
Energy Technology Data Exchange (ETDEWEB)
Simons, L.M.; Abbot, D.; Bach, B.; Bacher, R.; Badertscher, A.; Bluem, P.; DeCecco, P.; Eades, J.; Egger, J.; Elsener, K.; Gotta, D.; Hauser, P.; Heitlinger, K.; Horvath, D.; Kottmann, F.; Morenzoni, E.; Missimer, J.; Reidy, J.J.; Siegel, R.; Taqqu, D.; Viel, D. (Paul Scherrer Inst., Villigen (Switzerland) Coll. of William and Mary, Williamsburg, VA (United States) Kernforschungszentrum Karlsruhe GmbH, Inst. fuer Kernphysik, Karlsruhe (Germany) Inst. fuer Experimentelle Kernphysik, Univ. Karlsruhe (Germany) CERN, Geneva (Switzerland) Forschungszentrum Juelich GmbH, Inst. fuer Kernphysik (Germany) KFKI Research Inst. for Particle and Nuclear Physics, Budapest (Hungary) Univ. Pisa (Italy) INFN - Pisa (Italy) ETH Zuerich, Villigen (Switzerland) Physics Dept., Univ. of Mississippi, University, MS (United States))
1994-04-01
Progress in the field of exotic atoms seems to increase proportionally with the number of exotic atoms produced and the increase in energy resolution with which the transition energies are determined. Modern experiments use high resolution crystal spectrometers or even aim at laser spectroscopy. The accuracy of these methods is limited by the interaction of the exotic atoms with their surroundings. The most important source of errors is the energy shift caused by the not well known status of the atomic electron shell. A novel method to eliminate these sources of error is presented and the possibilities for further high precision experiments is outlined. (orig.)
Exotic atoms and their electron shell
Simons, L. M.; Abbot, D.; Bach, B.; Bacher, R.; Badertscher, A.; Blüm, P.; DeCecco, P.; Eades, J.; Egger, J.; Elsener, K.; Gotta, D.; Hauser, P.; Heitlinger, K.; Horváth, D.; Kottmann, F.; Morenzoni, E.; Missimer, J.; Reidy, J. J.; Siegel, R.; Taqqu, D.; Viel, D.
1994-04-01
Progress in the field of exotic atoms seems to increase proportionally with the number of exotic atoms produced and the increase in energy resolution with which the transition energies are determined. Modern experiments use high resolution crystal spectrometers or even aim at laser spectroscopy. The accuracy of these methods is limited by the interaction of the exotic atoms with their surroundings. The most important source of errors is the energy shift caused by the not well known status of the atomic electron shell. A novel method to eliminate these sources of error is presented and the possibilities for further high precision experiments is outlined.
Photonic, Electronic and Atomic Collisions
Fainstein, Pablo D.; Lima, Marco Aurelio P.; Miraglia, Jorge E.; Montenegro, Eduardo C.; Rivarola, Roberto D.
2006-11-01
Plenary. Electron collisions - past, present and future / J. W. McConkey. Collisions of slow highly charged ions with surfaces / J. Burgdörfer ... [et al.]. Atomic collisions studied with "reaction-microscopes" / R. Moshammer ... [et al.]. Rydberg atoms: a microscale laboratory for studying electron-molecule tnteractions / F. B. Dunning -- Collisions involvintg photons. Quantum control of photochemical reaction dynamics and molecular functions / M. Yamaki ... [et al.]. Manipulating and viewing Rydberg wavepackets / R. R. Jones. Angle-resolved photoelectrons as a probe of strong-field interactions / M. Vrakking. Ultracold Rydberg atoms in a structured environment / I. C. H. Liu and J. M. Rost. Synchrotron-radiation-based recoil ion momentum spectroscopy of laser cooled and trapped cesium atoms / L. H. Coutinho. Reconstruction of attosecond pulse trains / Y. Mairesse ... [et al.]. Selective excitation of metastable atomic states by Femto- and attosecond laser pulses / A. D. Kondorskiy. Accurate calculations of triple differential cross sections for double photoionization of the hygrogen molecule / W. Vanroose ... [et al.]. Double and triple photoionization of Li and Be / J. Colgan, M. S. Pindzola and F. Robicheaux. Few/many body dynamics in strong laser fields / J. Zanghellini and T. Brabec. Rescattering-induced effects in electron-atom scattering in the presence of a circularly polarized laser field / A. V. Flegel ... [et al.]. Multidimensional photoelectron spectroscopy / P. Lablanquie ... [et al.]. Few photon and strongly driven transitions in the XUV and beyond / P. Lambropoulos, L. A. A. Nikolopoulos and S. I. Themelis. Ionization dynamics of atomic clusters in intense laser pulses / U. Saalmann and J. M. Rost. On the second order autocorrelation of an XUV attosecond pulse train / E. P. Benis ... [et al.]. Evidence for rescattering in molecular dissociation / I. D. Williams ... [et al.]. Photoionizing ions using synchrotron radiation / R. Phaneuf. Photo double
International Nuclear Information System (INIS)
The coupled-channels-optical method has been implemented using two different approximations to the optical potential. The half-on-shell optical potential involves drastic approximations for numerical feasibility but still gives a good semiquantitative description of the effect of uncoupled channels on electron scattering from hydrogen, helium and sodium. The distorted-wave optical potential makes no approximations other than the weak coupling approximation for uncoupled channels. In applications to hydrogen and sodium it shows promise of describing scattering phenomena excellently at all energies. 27 refs., 5 figs
Doping Scheme in Atomic Chain Electronics
Toshishige, Yamada
1997-01-01
Due to the dramatic reduction in MOS size, there appear many unwanted effects. In these small devices, the number of dopant atoms in the channel is not macroscopic and electrons may suffer significantly different scattering from device to device since the spatial distribution of dopant atoms is no longer regarded as continuous. This prohibits integration, while it is impossible to control such dopant positions within atomic scale. A fundamental solution is to create electronics with simple but atomically precise structures, which could be fabricated with recent atom manipulation technology. All the constituent atoms are placed as planned, and then the device characteristics are deviation-free, which is mandatory for integration. Atomic chain electronics belongs to this category. Foreign atom chains or arrays form devices, and they are placed on the atomically flat substrate surface. We can design the band structure and the resultant Fermi energy of these structures by manipulating the lattice constant. Using the tight-binding theory with universal parameters, it has been predicted that isolated Si chains and arrays are metallic, Mg chains are insulating, and Mg arrays have metallic and insulating phases [1]. The transport properties along a metallic chain have been studied, emphasizing the role of the contact to electrodes [2]. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along die chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome
International Nuclear Information System (INIS)
The total mass attenuation coefficients of some amino acids, such as Glycine (C2H5NO2), DL-Alanine (C3H7NO2), Proline (C5H9NO2), L-Leucine (C6H13NO2 ), L-Arginine (C6H14N4O2) and L-Arginine Monohydrochloride (C6H15ClN4O2), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma rays were detected using NaI (Tl) scintillation detection system with a resolution of 10.2% at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff) and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) tend to be almost constant as a function of gamma-ray energy. The results show that, the experimental values of mass attenuation coefficients, effective atomic numbers and effective electron densities are in good agreement with the theoretical values with less than 1% error. - Highlights: • Compute the Mass Attenuation Coefficient, effective atomic number and electron density of some amino acids. • Gamma ray attenuation studies on biologically important molecules have been carried out using narrow beam good geometry set up. • The values of Mass Attenuation Coefficient, effective atomic number and electron density of some amino acids are in agreement with the XCOM programme. • The measured mass attenuation coefficient for some amino acids are useful in medical field. • The data is useful in radiation dosimetry and other fields
Atomic structure and electron correlations
International Nuclear Information System (INIS)
Synchrotron experiments combined with theoretical calculations have already given much information on atomic structure and the effects of electron correlations, and this combination of theory and experiment is expected to yield much new information in coming years. In the calculations of photoabsorption cross sections, it is almost always necessary to include electron correlations in both initial and final states to obtain good agreement with experiment. The main theoretical approaches which include effects of electron correlations have been R-matrix theory, random phase approximation with exchange (RPAE), relativistic random phase approximation with exchange, and many-body perturbation theory
Successive change regularity of actinide properties with atomic number
International Nuclear Information System (INIS)
The development and achievements on chemistry of actinide elements are summarised. The relations of properties of actinides to their electronic configurations of valence electronic shells are discussed. Some anomalies of solid properties, the radius contraction, the stable state effect of f7n-orbits (n = 0, 1, 2) and the tetrad effect of oxidation states, etc., with atomic number (Z) are described. 31 figures appended show directly the successive change regularity of actinide properties with Z
Effective atomic number of dental smalt
International Nuclear Information System (INIS)
The effective atomic numbers Z are enough utilized for to characterize the interactions of ionizing radiation with matter. Particularly for the Z calculation in biological tissues and/or composed materials we need to know the relationship between the cross sections of the diverse radiations interactions with mattera and the atomic numbers Z of the constituent elements in the tissue or composed material. Normally the cross section by atom σ 2 is proportional to Zm. The m value depends of the iterative process type and the energy of the incident photons. In the case of the photoelectric interaction, the m vary will vary between 4,698 and 4,799 for energies between 10 to 200 keV. It was verified that constituent elements with high Z (>20) they had a major contribution. The m values for the Compton interation and the coherent scattering were calculated of similar way. Knowing the m values, we calculate the partials Z of a composed material. For the calculation of total Z, we can use alternatives starting from the equivalent atomic number corresponding to the total cross section σ d tot, mc of the composed material. In this work for the calculation of Z values corresponding to diverse interations, we applied a linear regression at the values of Ln σ a x LnZ for different energies. In general, to characterize a simulator material of a tissue or composed material we need to know the total Z in function of the photon energy applied to dental smalt increases until some hundreds of keV the partial values of Z owing to photoelectric effect and the coherent scattering this is owing to the smalt has a great concentration of elements with high Z. (Author)
International Nuclear Information System (INIS)
Effective atomic numbers (Zeff) of 107 different materials of dosimetric interest have been calculated for total electron interactions in the wide energy region 10 keV–1 GeV. The stopping cross sections of elements and dosimetric materials were used to calculate Zeff of the materials. Differences (%) in Zeff relative to water have been calculated in the entire energy region to evaluate the water equivalency of the used materials. Moreover, the tissue equivalent materials have been compared with the tissues and dosimetric materials in terms of Zeff to reveal their ability to use as tissue substitutes. Possible conclusions were drawn based on the variation of Zeff through the entire energy region and water and tissue equivalency comparisons in terms of Zeff. - Highlights: • Effective atomic number for total electron interaction. • Water and tissue equivalences of dosimetric materials
Atom Probe Tomography of Nanoscale Electronic Materials
Energy Technology Data Exchange (ETDEWEB)
Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.
2016-01-01
Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.
Atomic Ionization by Electron Impact
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The field of atomic ionization by electron impact is several decades old. In that period of time, significant progress has been made in several aspects of the problem and we have learned a lot about ionizing collisions as a result of this work. Over the years, both the experiments and theories have improved dramatically. Experiments are now able to measure absolute triple differential cross sections for both in-plane or out-of-plane geometries. Theories have been getting better and better at including all the 3-body interactions in the wavefunction for the system. However, during the history of the field, experiment has been ahead of theory and it is just very recently that theory has started to catch up. In this paper, we will show that theory is now able to accurately predict the results of electron impact ionization of hydrogen for intermediate and higher energies.
Energy Technology Data Exchange (ETDEWEB)
Tognoni, E. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: tognoni@ipcf.cnr.it; Hidalgo, M.; Canals, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia. Universidad de Alicante. Apdo. 99, 03080, Alicante (Spain); Cristoforetti, G.; Legnaioli, S.; Salvetti, A.; Palleschi, V. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)
2007-05-15
In Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) spectrochemical analysis, the MgII(280.270 nm)/MgI(285.213 nm) ionic to atomic line intensity ratio is commonly used as a monitor of the robustness of operating conditions. This approach is based on the univocal relationship existing between intensity ratio and plasma temperature, for a pure argon atmospheric ICP in thermodynamic equilibrium. In a multi-elemental plasma in the lower temperature range, the measurement of the intensity ratio may not be sufficient to characterize temperature and electron density. In such a range, the correct relationship between intensity ratio and plasma temperature can be calculated only when the complete plasma composition is known. We propose the combination of the line intensity ratios of two test elements (double ratio) as an effective diagnostic tool for a multi-elemental low temperature LTE plasma of unknown composition. In particular, the variation of the double ratio allows us discriminating changes in the plasma temperature from changes in the electron density. Thus, the effects on plasma excitation and ionization possibly caused by introduction of different samples and matrices in non-robust conditions can be more accurately interpreted. The method is illustrated by the measurement of plasma temperature and electron density in a specific analytic case.
Many-electron tunneling in atoms
Zon, B A
1999-01-01
A theoretical derivation is given for the formula describing N-electron ionization of atom by a dc field and laser radiation in tunneling regime. Numerical examples are presented for noble gases atoms.
International Nuclear Information System (INIS)
Highlights: ► Gamma-ray interaction parameters of some low Z compounds have been measured at 59.54 keV. ► Values of effective atomic numbers (Zeff) have been obtained using an alternative approach based upon interpolation method. ► Composite materials investigated behave as incoherent scatters. ► Selected compounds can be represented by single (valued) mean atomic number 〈Z〉 at incident photon energy. ► Data presented is expected to be useful in medical based applications of nuclear radiation. - Abstract: Total mass attenuation coefficient, total photon interaction cross-section, effective atomic numbers (Zeff) and electron densities (Ne) of Aniline (C6H5NH2), Cyclohexane (C6H12), Glycerine (C3H5(OH)3), Butyl alcohol N-(C4H9OH), DMSO – dimethyl sulfoxide (C2H6OS), Methyl ethyl-ketone (C4H8O), Xylene (C8H10), Acetophenone (C8H8O) and Triethyl amine (C6H15N) have been measured at 59.54 keV energy photon emitted by 100 mCi 241Am point source employing narrow beam transmission geometry. Obtained results have been compared with theoretically calculated values of XCOM (Berger and Hubbel, 1987) and FFAST (). Mixture rule was employed to calculated theoretical mass attenuation coefficient values for each sample. Good agreement has been observed between experimental and theoretical values within experimental uncertainties.
Electron-Atom Collisions in Gases
Kraftmakher, Yaakov
2013-01-01
Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.
Analysis of the atom-number correlation function in a few-atom trap
Choi, Youngwoon; Yoon, Seokchan; Kang, Sungsam; Kim, Woongnae; Lee, Jai-Hyung; An, Kyungwon
2006-01-01
Stochastic properties of loading and loss mechanism in a few atom trap are analyzed. An approximate formula is derived for the atom-number correlation function for the trapped atoms in the limit of reasonably small two-atom loss rate. Validity of the approximate formula is confirmed by numerical simulations.
Kurudirek, Murat
2013-02-01
A previously proposed procedure has been applied to some water equivalent phantoms namely PMMA, Polystyrene, Solid Water (WT1), RW3 and ABS for the first time to compute effective photon energy (Eeff), effective atomic numbers (Zeff) and electron densities (neeff) for different MV X-ray beams and Co-60 gamma beam which are heterogeneous in energy. For the purpose of the present investigation, effective atomic cross-sections of the given materials have been determined first to obtain effective photon energies which were further used for calculation of Zeff and neeff. Similar procedure was adopted for Co-60 γ-rays to check the validity of the present method. Results were found to be quite satisfactory. When it comes to the water equivalence, the Eeff results showed that the RW3 and ABS phantoms are more effective for 6 MV beam whereas RW3 and Polystyrene are more effective for 15 MV and Co-60 beams, respectively. The ABS and WT1 phantoms have better water equivalences than the others according to the Zeff and neeff results, respectively.
Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations.
Garofalo, Anthony
1997-01-01
Presents an activity that combines the concepts of quantum numbers and probability locations, energy levels, and electron configurations in a concrete, hands-on way. Uses model houses constructed out of foam board and colored beads to represent electrons. (JRH)
Gaseous Electronics Tables, Atoms, and Molecules
Raju, Gorur Govinda
2011-01-01
With the constant emergence of new research and application possibilities, gaseous electronics is more important than ever in disciplines including engineering (electrical, power, mechanical, electronics, and environmental), physics, and electronics. The first resource of its kind, Gaseous Electronics: Tables, Atoms, and Molecules fulfills the author's vision of a stand-alone reference to condense 100 years of research on electron-neutral collision data into one easily searchable volume. It presents most--if not all--of the properly classified experimental results that scientists, researchers,
Electron affinities of atoms, molecules, and radicals
International Nuclear Information System (INIS)
We review briefly but comprehensively the theoretical, semiempirical and experimental methods employed to determine electron affinities (EAs) of atoms, molecules and radicals, and summarize the EA data obtained by these methods. The detailed processes underlying the principles of the experimental methods are discussed very briefly. It is, nonetheless, instructive to recapitulate the definition of EA and those of the related quantities, namely, the vertical detachment energy, VDE, and the vertical attachment energy, VAE. The EA of an atom is defined as the difference in total energy between the ground state of the neutral atom (plus the electron at rest at infinity) and its negative ion. The EA of a molecule is defined as the difference in energy between the neutral molecule plus an electron at rest at infinity and the molecular negative ion when both, the neutral molecules and the negative ion, are in their ground electronic, vibrational and rotational states. The VDE is defined as the minimum energy required to eject the electron from the negative ion (in its ground electronic and nuclear state) without changing the internuclear separation; since the vertical transition may leave the neutral molecule in an excited vibrational/rotational state, the VDE, although the same as the EA for atoms is, in general, different (larger than), from the EA for molecules. Similarly, the VAE is defined as the difference in energy between the neutral molecule in its ground electronic, vibrational and rotational states plus an electron at rest at infinity and the molecular negative ion formed by addition of an electron to the neutral molecule without allowing a change in the intermolecular separation of the constituent nuclei; it is a quantity appropriate to those cases where the lowest negative ion state lies above the ground states of the neutral species and is less or equal to EA
Natural occupation numbers in two-electron quantum rings.
Tognetti, Vincent; Loos, Pierre-François
2016-02-01
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Natural occupation numbers in two-electron quantum rings.
Tognetti, Vincent; Loos, Pierre-François
2016-02-01
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems. PMID:26851909
Natural occupation numbers in two-electron quantum rings
Energy Technology Data Exchange (ETDEWEB)
Tognetti, Vincent, E-mail: vincent.tognetti@univ-rouen.fr [Normandy Univ., COBRA UMR 6014 & FR 3038, Université de Rouen, INSA Rouen, CNRS, 1 rue Tesniére, 76821 Mont Saint Aignan, Cedex (France); Loos, Pierre-François [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)
2016-02-07
Natural orbitals (NOs) are central constituents for evaluating correlation energies through efficient approximations. Here, we report the closed-form expression of the NOs of two-electron quantum rings, which are prototypical finite-extension systems and new starting points for the development of exchange-correlation functionals in density functional theory. We also show that the natural occupation numbers for these two-electron paradigms are in general non-vanishing and follow the same power law decay as atomic and molecular two-electron systems.
Electron transport through monovalent atomic wires
DEFF Research Database (Denmark)
Lee, Y. J.; Brandbyge, Mads; Puska, M. J.;
2004-01-01
at the chain determine the conductance. As a result, the conductance for noble-metal chains is close to one quantum of conductance, and it oscillates moderately so that an even number of chain atoms yields a higher value than an odd number. The conductance oscillations are large for alkali-metal chains...
Calculations of electron screening in muonic atoms
International Nuclear Information System (INIS)
The electron screening in mounic atoms (O, Al, Fe, In, Ho, Au, Th) has been calculated for p3/2, d5/2 and f7/2 levels with nμ=3/2, d5/2 and f7/2 muons up to nμ=30. Screening corrections are also given for electron configurations with holes in the K and L3 shell. (orig.)
The electron-atom ionization problem
Energy Technology Data Exchange (ETDEWEB)
McCarthy, I.E.
1995-02-01
Methods of calculating electron-atom ionization as a three-body problem with Coulomb boundary conditions are considered. In the absence of a fully-valid computational method for a time-independent experiment the approximation is made that the incident electron experiences a screened potential. Approximations involving a final state that obeys the three-body Coulomb boundary condition are compared with the distorted-wave Born approximation and the convergent close-coupling method. 24 refs., 6 figs.
Properties of few-electron artificial atoms
Varga, K.; Navratil, P.; Usukura, J.; Suzuki, Y
2000-01-01
The spectra of quantum dots of different geometry (``quantum ring'', ``quantum cylinder'', ``spherical square-well'' and ``parabolic confinement'') are studied. The stochastic variational method on correlated Gaussian basis functions and a large scale shell-model approach have been used to investigate these ``artificial'' atoms and their properties in magnetic field. Accurate numerical results are presented for $N$=2-8 electron systems.
Prospects of linear reconstruction in atomic resolution electron holographic tomography
International Nuclear Information System (INIS)
Tomography commonly requires a linear relation between the measured signal and the underlying specimen property; for Electron Holographic Tomography this is given by the Phase Grating Approximation (PGA). While largely valid at medium resolution, discrepancies arise at high resolution imaging conditions. We set out to investigate the artefacts that are produced if the reconstruction still assumes the PGA even with an atomic resolution tilt series. To forego experimental difficulties the holographic tilt series was simulated. The reconstructed electric potential clearly shows peaks at the positions of the atoms. These peaks have characterisitic deformations, which can be traced back to the defocus a particular atom has in the holograms of the tilt series. Exchanging an atom for one of a different atomic number results in a significant change in the reconstructed potential that is well contained within the atom's peak. - Highlights: • We simulate a holographic tilt series of a nanocrystal with atomic resolution. • Using PGA-based Holographic Tomography we reconstruct the atomic structure. • The reconstruction shows characteristic artefacts, chiefly caused by defocus. • Changing one atom's Z produces a well localised in the reconstruction
Prospects of linear reconstruction in atomic resolution electron holographic tomography
Energy Technology Data Exchange (ETDEWEB)
Krehl, Jonas, E-mail: Jonas.Krehl@triebenberg.de; Lubk, Axel
2015-03-15
Tomography commonly requires a linear relation between the measured signal and the underlying specimen property; for Electron Holographic Tomography this is given by the Phase Grating Approximation (PGA). While largely valid at medium resolution, discrepancies arise at high resolution imaging conditions. We set out to investigate the artefacts that are produced if the reconstruction still assumes the PGA even with an atomic resolution tilt series. To forego experimental difficulties the holographic tilt series was simulated. The reconstructed electric potential clearly shows peaks at the positions of the atoms. These peaks have characterisitic deformations, which can be traced back to the defocus a particular atom has in the holograms of the tilt series. Exchanging an atom for one of a different atomic number results in a significant change in the reconstructed potential that is well contained within the atom's peak. - Highlights: • We simulate a holographic tilt series of a nanocrystal with atomic resolution. • Using PGA-based Holographic Tomography we reconstruct the atomic structure. • The reconstruction shows characteristic artefacts, chiefly caused by defocus. • Changing one atom's Z produces a well localised in the reconstruction.
Simulated mixed absorbers and effective atomic numbers for attenuation
Indian Academy of Sciences (India)
K Karunakaran Nair; N Ramachandran; K K Abdullah; K M Varier
2006-09-01
The total -ray interaction crosss-sections on mixed absorbers were determined at 662 keV with a view to study the effective atomic numbers for -ray absorption under narrow beam good geometry set-up. The measurements were taken for the combination of metallic absorbers like aluminium, copper, lead and mercury and also for the simulated absorbers by rotating the targets. ORTEC HPGe and NaI(Tl) detectors were used for detection of -rays.The experimental results compare favourably with theoretical values derived from XCOM package and suggest the usefulness of the concept of effective atomic numbers and the utility of the rotating absorbers technique.
Electron collisions with coherently prepared atomic targets
Energy Technology Data Exchange (ETDEWEB)
Trajmar, S.; Kanik, I.; LeClair, L.R.; Khakoo, M.S. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.; Bray, I.; Fursa, D. [Flinders Univ. of South Australia, Adelaide (Australia). Electronics Structure of Materials Centre; Csanak, G. [Los Alamos National Lab., NM (United States)
1998-02-01
The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can be expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.
The splitting of atomic orbitals with a common principal quantum number revisited: np vs. ns.
Katriel, Jacob
2012-04-14
Atomic orbitals with a common principal quantum number are degenerate, as in the hydrogen atom, in the absence of interelectronic repulsion. Due to the virial theorem, electrons in such orbitals experience equal nuclear attractions. Comparing states of several-electron atoms that differ by the occupation of orbitals with a common principal quantum number, such as 1s(2) 2s vs. 1s(2) 2p, we find that although the difference in energies, ΔE, is due to the interelectronic repulsion term in the Hamiltonian, the difference between the interelectronic repulsions, ΔC, makes a smaller contribution to ΔE than the corresponding difference between the nuclear attractions, ΔL. Analysis of spectroscopic data for atomic isoelectronic sequences allows an extensive investigation of these issues. In the low nuclear charge range of pertinent isoelectronic sequences, i.e., for neutral atoms and mildly positively charged ions, it is found that ΔC actually reverses its sign. About 96% of the nuclear attraction difference between the 6p (2)P and the 6s (2)S states of the Cs atom is cancelled by the corresponding interelectronic repulsion difference. From the monotonic increase of ΔE with Z it follows (via the Hellmann-Feynman theorem) that ΔL > 0. Upon increasing the nuclear charge along an atomic isoelectronic sequence with a single electron outside a closed shell from Z(c), the critical charge below which the outmost electron is not bound, to infinity, the ratio ΔC/ΔL increases monotonically from lim(Z→Z(c)(+))ΔC/ΔL=-1 to lim(Z→∞)ΔC/ΔL=1. These results should allow for a more nuanced discussion than is usually encountered of the crude electronic structure of many-electron atoms and the structure of the periodic table. PMID:22502506
The splitting of atomic orbitals with a common principal quantum number revisited: np vs. ns.
Katriel, Jacob
2012-04-14
Atomic orbitals with a common principal quantum number are degenerate, as in the hydrogen atom, in the absence of interelectronic repulsion. Due to the virial theorem, electrons in such orbitals experience equal nuclear attractions. Comparing states of several-electron atoms that differ by the occupation of orbitals with a common principal quantum number, such as 1s(2) 2s vs. 1s(2) 2p, we find that although the difference in energies, ΔE, is due to the interelectronic repulsion term in the Hamiltonian, the difference between the interelectronic repulsions, ΔC, makes a smaller contribution to ΔE than the corresponding difference between the nuclear attractions, ΔL. Analysis of spectroscopic data for atomic isoelectronic sequences allows an extensive investigation of these issues. In the low nuclear charge range of pertinent isoelectronic sequences, i.e., for neutral atoms and mildly positively charged ions, it is found that ΔC actually reverses its sign. About 96% of the nuclear attraction difference between the 6p (2)P and the 6s (2)S states of the Cs atom is cancelled by the corresponding interelectronic repulsion difference. From the monotonic increase of ΔE with Z it follows (via the Hellmann-Feynman theorem) that ΔL > 0. Upon increasing the nuclear charge along an atomic isoelectronic sequence with a single electron outside a closed shell from Z(c), the critical charge below which the outmost electron is not bound, to infinity, the ratio ΔC/ΔL increases monotonically from lim(Z→Z(c)(+))ΔC/ΔL=-1 to lim(Z→∞)ΔC/ΔL=1. These results should allow for a more nuanced discussion than is usually encountered of the crude electronic structure of many-electron atoms and the structure of the periodic table.
Electron-electron correlation in highly charged atoms
International Nuclear Information System (INIS)
The relativistic random-phase approximation (RRPA) is introduced to account for electron-electron correlation in atoms and ions of high nuclear charge where non-relativistic many-body methods are inadequate. To provide a basis for this study of the RRPA, the Dirac-Fock (DF) theory is reviewed. Applications of the DF equations to determine inner-electron binding energies in heavy atoms are given illustrating the influence of relativistic effects in situations where correlations are unimportant. The RRPA equations are derived as natural generalizations of the DF equations. Examples of RRPA calculations of discrete excitations and of photoionization are given illustrating situations where both relativistic and correlation effects play important roles
Electron spectroscopy of collisional excited atoms
International Nuclear Information System (INIS)
In this thesis measurements are described in which coincidences are detected between scattered projectiles and emitted electrons. This yields information on two-electron excitation processes. In order to show what can be learnt from coincidence experiments a detailed theoretical analysis is given. The transition amplitudes, which contain all the information, are introduced (ch.2). In ch.3 the experimental set-up is shown. The results for the Li+-He system are shown in ch. 7 and are compared with predictions based on the Molecular-Orbitalmodel which however does not account for two-excitation mechanisms. With the transition amplitudes also the wave function of the excited atom has been completely determined. In ch.8 the shape of the electron cloud, induced by the collision, is derived from the amplitudes. The relation between the oscillatory motion of this cloud after the collision and the correlation between the two electrons of the excited atom is discussed. In ch. 6 it is shown that the broad structures in the non-coincident energy spectra of the Li+-He system are erroneously interpretated as a result of electron emission from the (Li-He)+-quasimolecule. A model is presented which explains, based on the results obtained from the coincidence measurements, these broad structures. In ch. 4 the Post-Collision Interaction process is treated. It is shown that for high-energy collisions, in contrast with general assumptions, PCI is important. In ch. 5 the importance of PCI-processes in photoionization of atoms, followed by Auger decay, are studied. From the formulas derived in ch. 4 simple analytical results are obtained. These are applied to recent experiments and good agreement is achieved. 140 refs.; 55 figs.; 9 tabs
Atomic and Electronic Structures of Zr Atomic Chains
Institute of Scientific and Technical Information of China (English)
林益寿; 李爱玉; 朱梓忠
2004-01-01
The atomic, binding and electronic structures of very thin Zr chains are studied by the first-principles densityfunctional method. The present calculations reveal that zirconium can form planar chains in zigzag, dimer and ladder structures. The zigzag geometry has two minima. The most stable geometry is the zigzag one with a unit cell rather close to equilateral triangles with four nearest neighbours. The other stable zigzag structure has a wide bond angle and allows for two nearest neighbours. An intermediary structure has the ladder geometry and is formed by two strands. The dimer structure is also found to be more stable than the truly linear chain. All these planar geometries are more favourable energetically than the linear chain. We also show that by going from Zr bulk to a Zr chain, the characters of bonding do not change significantly.
Topological Numbers and Edge State of Hierarchical State in Rapidly Rotating Ultracold Atoms
Institute of Scientific and Technical Information of China (English)
ZHAO Bo; CHEN Zeng-Bing
2005-01-01
The effective theory for the hierarchical fractional quantum Hall (FQH) effect is proposed. We also derive the topological numbers K matrix and t vector and the general edge excitation from the effective theory. One can find that the two issues in rapidly rotating ultracold atoms are similar to those in electron FQH liquid.
Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un
2011-11-01
The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind
Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un
2011-11-01
The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind
METHODS OF CALCULATING THE ELECTRONIC AND ATOMIC STRUCTURES OF INTERFACES
Sutton, A
1985-01-01
Methods of calculating the electronic and atomic structures of interfaces are described. An introduction to pseudopotentials and LCAO methods is given. Methods of calculating the electronic structure of an interface with a given atomic structure are considered. The feasibility of total energy calculations, in which the atomic and electronic structures are calculated simultaneously, is discussed.
Determination of atomic number and composition of human enamel
International Nuclear Information System (INIS)
The teeth are organs of complicated structure that consist, partly, of hard tissue containing in its interior the dental pulp, rich in vases and nerves. The main mass of the tooth is constituted by the dentine, which is covered with hard tissues and of epithelial origin called enamel. The dentine of the human teeth used in this work were completely removed and the teeth were cut with a device with a diamond disc. In this work the chemical composition of the human enamel was determined, which showed a high percentage of Ca and P, in agreement with the results found in the literature. The effective atomic number of the material and the half-value layer in the energy range of diagnostic X-ray beams were determined. Teeth could be used to evaluated the public's individual doses as well as for retrospective dosimetry what confirms the importance of their effective atomic number and composition determination. (author)
Scattering of electrons from neon atoms
Dasgupta, A.; Bhatia, A. K.
1984-01-01
Scattering of electrons from neon atoms is investigated by the polarized-orbital method. The perturbed orbitals calculated with use of the Sternheimer approximation lead to the polarizability 2.803 a(0)-cube in fairly good agreement with the experimental value 2.66 a(0)-cube. Phase shifts for various partial waves are calculated in the exchange, exchange-adiabatic, and polarized-orbital approximations. They are compared with the previous results. The calculated elastic differential, total, and momentum-transfer cross sections are compared with the experimental results. The polarized-orbital approximation yields results which show general improvement over the exchange-adiabatic approximation.
Kriging atomic properties with a variable number of inputs.
Davie, Stuart J; Di Pasquale, Nicodemo; Popelier, Paul L A
2016-09-14
A new force field called FFLUX uses the machine learning technique kriging to capture the link between the properties (energies and multipole moments) of topological atoms (i.e., output) and the coordinates of the surrounding atoms (i.e., input). Here we present a novel, general method of applying kriging to chemical systems that do not possess a fixed number of (geometrical) inputs. Unlike traditional kriging methods, which require an input system to be of fixed dimensionality, the method presented here can be readily applied to molecular simulation, where an interaction cutoff radius is commonly used and the number of atoms or molecules within the cutoff radius is not constant. The method described here is general and can be applied to any machine learning technique that normally operates under a fixed number of inputs. In particular, the method described here is also useful for interpolating methods other than kriging, which may suffer from difficulties stemming from identical sets of inputs corresponding to different outputs or input biasing. As a demonstration, the new method is used to predict 54 energetic and electrostatic properties of the central water molecule of a set of 5000, 4 Å radius water clusters, with a variable number of water molecules. The results are validated against equivalent models from a set of clusters composed of a fixed number of water molecules (set to ten, i.e., decamers) and against models created by using a naïve method of treating the variable number of inputs problem presented. Results show that the 4 Å water cluster models, utilising the method presented here, return similar or better kriging models than the decamer clusters for all properties considered and perform much better than the truncated models. PMID:27634248
Kriging atomic properties with a variable number of inputs
Davie, Stuart J.; Di Pasquale, Nicodemo; Popelier, Paul L. A.
2016-09-01
A new force field called FFLUX uses the machine learning technique kriging to capture the link between the properties (energies and multipole moments) of topological atoms (i.e., output) and the coordinates of the surrounding atoms (i.e., input). Here we present a novel, general method of applying kriging to chemical systems that do not possess a fixed number of (geometrical) inputs. Unlike traditional kriging methods, which require an input system to be of fixed dimensionality, the method presented here can be readily applied to molecular simulation, where an interaction cutoff radius is commonly used and the number of atoms or molecules within the cutoff radius is not constant. The method described here is general and can be applied to any machine learning technique that normally operates under a fixed number of inputs. In particular, the method described here is also useful for interpolating methods other than kriging, which may suffer from difficulties stemming from identical sets of inputs corresponding to different outputs or input biasing. As a demonstration, the new method is used to predict 54 energetic and electrostatic properties of the central water molecule of a set of 5000, 4 Å radius water clusters, with a variable number of water molecules. The results are validated against equivalent models from a set of clusters composed of a fixed number of water molecules (set to ten, i.e., decamers) and against models created by using a naïve method of treating the variable number of inputs problem presented. Results show that the 4 Å water cluster models, utilising the method presented here, return similar or better kriging models than the decamer clusters for all properties considered and perform much better than the truncated models.
Correlation effects in a two-electron atom
International Nuclear Information System (INIS)
A new approach is given to the problem of a two-electron atom in the non-relativistic limit. Atomic 'quasi-particles', which are 'freer' than single electrons, are described by the substitution of variables which makes it possible to use perturbation theory. A high-energy absorption spectrum with the resulting emission and decay of a two-electron atom has been predicted. Generalisation of this method to the case of multielectron atoms is discussed. (author)
Electronic properties of incommensurate atomic layers
International Nuclear Information System (INIS)
We present a brief theoretical overview of electronic properties of incommensurate multilayer systems, i.e., a pair of two-dimensional atomic layers stacked in an arbitrary orientation. We introduce the general theoretical scheme to describe the interlayer interaction between incommensurate crystal structures, and apply the formula to two specific examples, the twisted bilayer graphene and graphene–hBN composite bilayer. In each case, we calculate the electronic band structure and demonstrate that the low-energy electronic properties are significantly modified by the interlayer interaction, particularly when the two lattice structures are close to each other. We also study the energy spectrum and the quantum Hall effect in magnetic fields, where we see that the spectral structure exhibits a fractal nature, as known as the Hofstadter butterfly. We argue about the optical absorption properties of the twisted bilayer graphene and show that the interlayer interaction gives rise to the characteristic spectroscopic features in zero magnetic field and also in strong magnetic field. (author)
Simulik, V M; Tymchyk, R V
2016-01-01
The beginning of the application of the method of interacting configurations in the complex number representation to the compound atomic systems has been presented. The spectroscopic characteristics of the Be atom in the problem of the electron-impact ionization of this atom are investigated. The energies and the widths of the lowest autoionizing states of Be atom are calculated.
Low atomic number coating for XEUS silicon pore optics
DEFF Research Database (Denmark)
Lumb, D.H.; Cooper-Jensen, Carsten P.; Krumrey, M.;
2008-01-01
We describe a set of measurements on coated silicon substrates that are representative of the material to be used for the XEUS High Performance Pore Optics (HPO) technology. X-ray angular reflectance measurements at 2.8 and 8 keV, and energy scans of reflectance at a fixed angle representative...... of XEUS graze angles are presented. Reflectance is significantly enhanced for low energies when a low atomic number over-coating is applied. Modeling of the layer thicknesses and roughness is used to investigate the dependence on the layer thicknesses, metal and over coat material choices. We compare...
Three L-subshells atomic model to compute counting efficiency of electron-capture nuclides
International Nuclear Information System (INIS)
The present paper develops a three L-subshell a and K, M-a hells atomic model in order to obtain the counting efficiency in liquid scintillation counting. Mathematical expressions are given to calculate the probabilities of 264 different atomic rearrangement way so as the corresponding effective energies. This new model will permit to test the influence of the different atomic and nuclear parameters upon the counting efficiency nuclides of low and medium atomic number decaying by electron capture. (Author) 8 refs
Electron--photon coincidence technique for electron impact on atoms
International Nuclear Information System (INIS)
A brief introduction is given to the general theory of the electron photon coincidence technique, and the specific application to 1P and 3P excitations in helium is described. The relation between the complex excitation amplitudes which characterize the collision process and the alignment and orientation of the excited atoms is emphasized. The data from the first electron photon angular correlation measurements are presented. These data yield values for the ratio of differential cross sections for exciting the degenerate sublevels and the relative phase of the corresponding amplitudes, or, equivalently, the alignment and orientation parameters. The results are obtained in dimensionless form and are free from absolute calibration or normalization difficulties. They are compared with various theoretical approximations. The application of the coincidence technique to a measurement of threshold polarization is described and results for 31P excitations are discussed
Convergent Close-Coupling Approach to Electron-Atom Collisions
Bray, Igor; Stelbovics, Andris
2007-01-01
It was with great pleasure and honour to accept the invitation to make a presentation at the symposium celebrating the life-long work of Aaron Temkin and Richard Drachman. The work of Aaron Temkin was particularly influential on our own during the development of the CCC method for electron-atom collisions. There are a number of key problems that need to be dealt with when developing a general computational approach to such collisions. Traditionally, the electron energy range was subdivided into the low, intermediate, and high energies. At the low energies only a finite number of channels are open and variational or close-coupling techniques could be used to obtain accurate results. At high energies an infinite number of discrete channels and the target continuum are open, but perturbative techniques are able to yield accurate results. However, at the intermediate energies perturbative techniques fail and computational approaches need to be found for treating the infinite number of open channels. In addition, there are also problems associated with the identical nature of electrons and the difficulty of implementing the boundary conditions for ionization processes. The beauty of the Temkin-Poet model of electron-hydrogen scattering is that it simplifies the full computational problem by neglecting any non-zero orbital angular momenta in the partial-wave expansion, without loosing the complexity associated with the above-mentioned problems. The unique nature of the problem allowed for accurate solution leading to benchmark results which could then be used to test the much more general approaches to electron-atom collision problems. The immense value of the Temkin-Poet model is readily summarised by the fact that the initial papers of Temkin and Poet have been collectively cited around 250 times to date and are still being cited in present times. Many of the citations came from our own work during the course of the development of the CCC method, which we now describe.
The effective atomic number for gamma ray interactions with heavy metal oxide glasses
DEFF Research Database (Denmark)
Manohara, S. R.; Hanagodimath, S.M.; Gerward, Leif
2010-01-01
The effective atomic number, Z(eff), and the effective electron density, N-el,N-eff, have been calculated at photon energies from 1 keV to 100 GeV for CaO-SrO-B2O3, ZnO-PbO-B2O3, and CdO-PbO-B2O3 glasses with potential applications as gamma ray shielding materials. Appreciable variations are note...
Comparison of effective atomic numbers of the cancerous and normal kidney tissue
International Nuclear Information System (INIS)
The effective atomic number (Zeff) and electron density (Ne) of normal kidney and cancerous kidney have been computed for total and partial photon interactions by computing the molecular, atomic, and electronic cross section in the wide energy range of 1 keV-100 GeV using WinXCOM. The mean Zeff and Ne of normal kidney and cancerous kidney in the various energy ranges and for total and partial photon interactions are tabulated. The variation of effective Ne with energy is shown graphically for all photon interactions. In addition to this computer tomography (CT), numbers of normal kidney and cancerous kidney for photon interaction and energy absorption is also computed. The role of Zeff in the dual-energy dividing radiography is also discussed. The values of Zeff and Ne for cancerous kidney are higher than normal kidney. This is due to the levels of elements K, Ca, Fe, Ni, and Se are lower and those of the elements Ti, Co, Zn, As, and Cd are higher in the cancer tissue of kidney than those observed in the normal tissue. The soft tissue and cancerous tissue are very similar, but their atomic number differs. The cancerous tissue exhibits a higher Zeff than the normal tissue. This fact helps in the dual-energy dividing radiography which enables to improve the diagnosis of the kidney cancer. Hence, the computed values may be useful in the diagnosis of the kidney cancer. CT numbers for normal kidney are higher than cancerous kidney. (author)
Electronic transport properties of copper and gold at atomic scale
Energy Technology Data Exchange (ETDEWEB)
Mohammadzadeh, Saeideh
2010-11-23
The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)
The effect of atomic electrons on nuclear fission
Dzuba, V. A.; Flambaum, V. V.
2008-01-01
We calculate correction to the nuclear fission barrier produced by the atomic electrons. The result presented in analytical form is convenient to use in future nuclear calculations. The atomic electrons have a small stabilizing effect on nuclei, increasing lifetime in nuclear fission channel. This effect gives a new instrument to study the fission process.
Dynamics of a single-atom electron pump
van der Heijden, J.; Tettamanzi, G. C.; Rogge, S.
2016-01-01
Single-electron pumps based on isolated impurity atoms have recently been experimentally demonstrated. In these devices the Coulomb potential of an atom creates a localised electron state with a large charging energy and considerable orbital level spacings, enabling robust charge capturing processes. In these single-atom pumps, the confinement potential is hardly affected by the periodic driving of the system. This is in contrast to the often used gate-defined quantum dot pumps, for which a s...
Atomic Electronic Contract Protocol Based on Convertible Signature
Institute of Scientific and Technical Information of China (English)
LIU Yi-chun; WANG Li-na; ZHANG Huan-guo
2005-01-01
A new class of atomicity, namely contract atomicity is presented. A new technical strategy based on convertible signature and two-phase commitment is proposed for implementing atomicity of electronic contract protocol. A new atomic contract signing protocol is given out by using ElGamal-like convertible undeniable signature and commitment of conversion key, and another new atomic contract signing protocol is brought forward by using RSA-based convertible undeniable signature scheme and commitment of conversion key.These two new protocols are proved to be of atomicity, fairness, privacy, non-repudiation.
Study of the mass attenuation coefficients and effective atomic numbers in some gemstones
International Nuclear Information System (INIS)
The total mass attenuation coefficients for natural beryl, corundum, garnet, pearl, and tourmaline gemstones were measured at 81, 356.5, 661.6, 1173.2, and 1332.5 keV photon energies. The samples were irradiated with 133Ba, 137Cs and 60Co radioactive point sources using gamma ray transmission method. Total atomic and electronic cross-sections, effective atomic numbers and electron densities were determined experimentally and theoretically. The experimental values were compared with the calculated values for all samples. The calculations were extended for total photon interactions in a wide energy range (1 keV-100 GeV) using WinXCom program of the most commonly irradiated gemstones with different sources of ionized radiation. The values of these parameters have been found to vary with photon energy and chemical composition of the gemstones. All variations of these parameters against energy are shown graphically for total photon interactions. (author)
Quick-Determination of the Average Atomic Number Z by X-Ray Scattering
DEFF Research Database (Denmark)
Kunzendorf, Helmar
1972-01-01
X-ray scattering ratio measurements are proposed for a quick determination of the average atomic number of rock powders.......X-ray scattering ratio measurements are proposed for a quick determination of the average atomic number of rock powders....
Precision calculations of atoms with few valence electrons
Kozlov, M G
2003-01-01
We discuss the possibility of using pair-equations for the construction of the effective Hamiltonian $H_{\\rm eff}$ for valence electrons of an atom. The low-energy part of atomic spectrum is found by solving the eigenvalue problem for $H_{\\rm eff}$. In this way it is possible to account efficiently for the valence-valence and core-valence correlations. We tested this method on a toy model of a four-electron atom with the core $1s^2$. The spectrum obtained with $H_{\\rm eff}$ for two valence electrons is in a perfect agreement with the full configuration interaction for all four electrons.
Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter
Whelan, Colm T
2005-01-01
Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.
International Nuclear Information System (INIS)
Highlights: ► Mass attenuation coefficient of Inconel 738 superalloy was measured. ► Gamma-ray energies were changed by Compton scattering technique. ► Effective atomic number and electron density are also calculated. ► All parameters decrease with increased energy. ► The experimental values are in good agreement with theoretical ones. - Abstract: The mass attenuation coefficient of Inconel 738 superalloy has been measured at different gamma ray energies by using the Compton scattering technique. The theoretical values of mass attenuation coefficient of a glass sample were calculated using WinXCom program. The effective atomic number and electron density are also calculated. The results showed that the mass attenuation coefficients, effective atomic number and electron density increase with the decrease in gamma ray energies which is in good agreement with theoretical values (less than 2% error)
On the nuclear $(n;t)-$reaction in the three-electron ${}^{6}$Li atom
Frolov, Alexei M
2012-01-01
The nuclear $(n;t)-$reaction of the three-electron ${}^{6}$Li atom with thermal/slow neutrons is considered. An effective method has been developed for determining the probabilities of formation of various atoms and ions in different bound states. We discuss a number of fundamental questions directly related to numerical computations of the final state atomic probabilities. A few appropriate variational expansions for atomic wave functions of the incident lithium atom and final helium atom and/or tritium negatively charged ion are discussed. It appears that the final ${}^4$He atom arising during the nuclear $(n,{}^{6}$Li; ${}^4$He$,t)$-reaction in the three-electron Li atom can also be created in its triplet states. The formation of the quasi-stable three-electron $e^{-}_3$ during the nuclear $(n; t)-$reaction at the Li atom is briefly discussed. Bremsstrahlung emitted by atomic electrons accelerated by the rapidly moving fragments from this reaction is analyzed. The frequency spectrum of the emitted radiatio...
Electronically induced atom motion in engineered CoCun nanostructures.
Stroscio, Joseph A; Tavazza, Francesca; Crain, Jason N; Celotta, Robert J; Chaka, Anne M
2006-08-18
We have measured the quantum yield for exciting the motion of a single Co atom in CoCu(n) linear molecules constructed on a Cu(111) surface. The Co atom switched between two lattice positions during electron excitation from the tip of a scanning tunneling microscope. The tip location with highest probability for inducing motion was consistent with the position of an active state identified through electronic structure calculations. Atom motion within the molecule decreased with increased molecular length and reflected the corresponding variation in electronic structure.
Negative differential resistance in a one-dimensional molecular wire with odd number of atoms
Indian Academy of Sciences (India)
S Lakshmi; Swapan K Pati
2005-10-01
We have investigated the effects of electron{phonon coupling on the current-voltage characteristics of a one-dimensional molecular wire with odd number of atoms. The wire has been modelled using the Su-Schreiffer-Heeger (SSH) Hamiltonian and the current{voltage characteristics have been obtained using the Landauer's formalism. In the presence of strong electron-lattice coupling, we find that there are regions of negative differential resistance (NDR) at some critical bias, due to the degeneracy in the energies of the frontier molecular orbitals. The presence of the applied bias and the electron{lattice coupling results in the delocalization of these low-lying molecular states leading to the NDR behaviour.
[Electron transfer, ionization, and excitation in atomic collisions]: Progress report
International Nuclear Information System (INIS)
The fundamental processes of electron transfer, ionization, and excitation in ion-atom collisions are being studied. These collision processes are treated in the context of simple one- or two-electron systems in order to provide unambiguous results and reveal more clearly the collisional mechanisms. As outlined in the original proposal, three coupled-state calculations are being carried out over the present three-year period: a Sturmian-pseudostate study of ionization in collisions between protons and the hydrogenic ions He+, Li2+, Be3+, ...; a triple-center, atomic-state study of ionization in collisions between α particles and H(ls) atoms and between protons and He+(ls) ions; and an atomic-state study of electron transfer and excitation in collisions between protons and neutral He atoms. 12 refs
Energy Technology Data Exchange (ETDEWEB)
Amusia, Miron [Hebrew Univ., Jerusalem (Israel). Racah Inst. of Physics; Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Chernysheva, Larissa [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation); Yarzhemsky, Victor [Kurnakov Institute of General and Inorganic Chemistry, Moscow (Russian Federation)
2012-07-01
The aim of this book is to present highly accurate and extensive theoretical Atomic data and to give a survey of selected calculational methods for atomic physics, used to obtain these data. The book presents the results of calculations of cross sections and probabilities of a broad variety of atomic processes with participation of photons and electrons, namely on photoabsorption, electron scattering and accompanying effects. Included are data for photoabsorption and electron scattering cross-sections and probabilities of vacancy decay formed for a large number of atoms and ions. Attention is also given to photoionization and vacancy decay in endohedrals and to positron-atom scattering. The book is richly illustrated. The methods used are one-electron Hartree-Fock and the technique of Feynman diagrams that permits to include many-electron correlations. This is done in the frames of the Random Phase approximation with exchange and the many-body perturbation theory. Newly obtained and previously collected atomic data are presented. The atomic data are useful for investigating the electronic structure and physical processes in solids and liquids, molecules and clusters, astronomical objects, solar and planet atmospheres and atomic nucleus. Deep understanding of chemical reactions and processes is reached by deep and accurate knowledge of atomic structure and processes with participation of atoms. This book is useful for theorists performing research in different domains of contemporary physics, chemistry and biology, technologists working on production of new materials and for experimentalists performing research in the field of photon and electron interaction with atoms, molecules, solid bodies and liquids.
Electron-impact ionization of heavy atomic ions
International Nuclear Information System (INIS)
General theoretical methods for the calculation of direct and indirect processes in the electron-impact ionization of heavy atomic ions are reviewed. Cross section results for Xe8+ and U89+ are presented. 12 refs., 4 figs
Raman Sideband Cooling of Two-Valence-Electron Fermionic Atoms
Institute of Scientific and Technical Information of China (English)
LI Guo-Hui; XU Xin-Ye
2011-01-01
We propose a method for laser cooling two-valence-electron fermionic atoms. Our protocol employs resolved-sideband cooling on the stimulated Raman transition between the two magnetic sublevels (m = F and m = F - 1) of the ground state with total anguiar momentum F. The optical pumping from m = F - 1 to 1 Pi are used to decouple atoms in the m = F - 1 state. We calculate the Raman coupling generated by an engineered optical lattice. The result shows that it is possible to laser cool the two-valence-electron fermionic atoms to the ground state. The atoms in the ground state provide a new system for quantum optics.%@@ We propose a method for laser cooling two-valence-electron fermionic atoms.Our protocol employs resolved- sideband cooling on the stimulated Raman transition between the two magnetic sublevels (m=F and m = F- 1) of the ground state with total angular momentum F.The optical pumping from m = F - 1 to p are used to decouple atoms in the m = F - 1 state.We calculate the Raman coupling generated by an engineered optical lattice.The result shows that it is possible to laser cool the two-valence-electron fermionic atoms to the ground state.The atoms in the ground state provide a new system for quantum optics.
Multichannel eikonal treatment of electron--atom collisions
International Nuclear Information System (INIS)
A multichannel treatment of atomic collisions is presented and applied to the excitation of atomic hydrogen and helium by electrons with incident energy above the ionization threshold. The calculated cross sections compare very favorably with other refined theoretical procedures and with various experiments
Measurement of atomic number and mass attenuation coefficient in magnesium ferrite
Indian Academy of Sciences (India)
R H Kadam; S T Alone; G K Bichile; K M Jadhav
2007-05-01
Pure magnesium ferrite sample was prepared by standard ceramic technique and characterized by X-ray diffraction method. XRD pattern revealed that the sample possess single-phase cubic spinel structure. The linear attenuation coefficient (), mass attenuation coefficient (/ρ), total atomic cross-section (tot), total electronic cross-section (ele) and the effective atomic number (eff) were calculated for pure magnesium ferrite (MgFe2O4). The values of -ray mass attenuation coeﬃcient were obtained using a NaI energy selective scintillation counter with radioactive -ray sources having energy 0.36, 0.511, 0.662, 1.17 and 1.28 MeV. The experimentally obtained values of /ρ and eff agreed fairly well with those obtained theoretically.
Partial as Well as Total Photon Interaction Effective Atomic Numbers for Some Concretes
Directory of Open Access Journals (Sweden)
Tejbir Singh
2013-08-01
Full Text Available Photon interaction effective atomic number (Zeff for partial as well as total photon interaction processes has been computed using logarithmic interpolation method for seven different concretes viz. (i Ordinary, (ii Hematite - Serpentine, (iii Ilmenite - Limonite, (iv Basalt - magnetite, (v Ilmenite, (vi Steel - scrap and (vii Steel - magnetite concrete in the wide energy range from 10.0 keV to 100 GeV. It has been concluded that this method has an advantage over the atomic to electronic cross-section ratio method especially for mixtures in the intermediate energy level. However, due to lack of experimental data in the higher energy region, it is difficult to discuss, its validity in these energy regions.
Spin Effects in Collisions of Electrons with Atoms and Molecules
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Some recent experimental and theoretical work on spin-dependent electron-atom and electron-molecule collisions is reviewed. The spin is involved in such collisions by explicit spin-dependent interactions such as the spin-orbit interaction of the continuum electron (Mott scattering) but also by exchange, which, in conjunction with the Pauli principle, gives rise to observable spin exchange effects. We present results for Mn and Na atoms and experiments in which electron dichroism with chiral molecules has been studied.
Troitskaya, E. P.; Gorbenko, Ie. Ie.; Pilipenko, E. A.
2016-05-01
The lattice dynamics of compressed atomic cryocrystals are based on ab initio quantum-mechanical theories of deformable and polarizable atoms (Tolpygo model), while taking into account the many-body interaction. The parameters of the three-particle interaction and deformation of the atomic electron shells, which are calculated in terms of the overlap integrals of atomic orbitals and their derivatives, have the same order of magnitude thus demonstrating that they must be considered in tandem. Accounting for the deformation effects of the electron shells in the dipole approximation when calculating phonon frequencies leads to a "softening" of the longitudinal modes at points L and X, for an entire series of Ne-Xe crystals, and of the transverse modes in the directions Σ and Λ for Xe, under high compression. It is shown that it impossible to adequately reproduce the observed deviation from the Cauchi relation δ(p) for compressed atomic cryocrystals, without accounting for the deformation of electron shells of atoms in a quadrupole approximation. The inputs from a three-particle and quadrupole interaction for Ne, Kr, and Xe crystals are mutually compensated, which provides a weak dependence on pressure for δ(p). We found a good agreement between the calculated phonon frequencies, Birch and Fuchs elastic moduli, the deviation from the Cauchi relation for the total number of Ne-Xe crystals in a wide range of pressures, and existing experiments.
Sixteenth International Conference on the physics of electronic and atomic collisions
International Nuclear Information System (INIS)
This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter
Sixteenth International Conference on the physics of electronic and atomic collisions
Energy Technology Data Exchange (ETDEWEB)
Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B. (eds.)
1989-01-01
This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.
Electron and positron atomic elastic scattering cross sections
Energy Technology Data Exchange (ETDEWEB)
Stepanek, Jiri E-mail: jiri.stepanek@psi.ch
2003-02-01
A method was developed to calculate the total and differential elastic-scattering cross sections for incident electrons and positrons in the energy range from 0.01 eV to 1 MeV for atoms of Z=1-100. For electrons, hydrogen, helium, nitrogen, oxygen, krypton, and xenon, and for positrons, helium, neon, and argon atoms were considered for comparison with experimental data. First, the variationally optimized atomic static potentials were calculated for each atom by solving the Dirac equations for bound electron states. Second, the Dirac equations for a free electron or positron are solved for an atom using the previously calculated static potential accomplished (in the case of electrons) by 'adjusted' Hara's exchange potential for a free-state particle. Additional to the exchange effects, the charge cloud polarization effects are considered applying the correlation-polarization potential of O'Connell and Lane (with correction of Padial and Norcross) for incident electrons, and of Jain for incident positrons. The total, cutoff and differential elastic-scattering cross sections are calculated for incident electrons and positrons with the help of the relativistic partial wave analysis. The solid state effects for scattering in solids are described by means of a muffin-tin model, i.e. the potentials of neighboring atoms are superpositioned in such a way that the resulting potential and its derivative are zero in the middle distance between the atoms. The potential of isolated atom is calculated up to the radius at which the long-range polarization potential becomes a value of -10{sup -8}.
Electron quantum dynamics in atom-ion interaction
Sabzyan, H.; Jenabi, M. J.
2016-04-01
Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, which define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.
Two-electron photoionization of endohedral atoms
Amusia, M Ya; Mandelzweig, V B
2006-01-01
Using $He@C_{60}$ as an example, we demonstrate that static potential of the fullerene core essentially alters the cross section of the two-electron ionization differential in one-electron energy $d\\sigma ^{++}(\\omega )/d\\epsilon $. We found that at high photon energy prominent oscillations appear in it due to reflection of the second, slow electron wave on the $% C_{60}$ shell, which "dies out" at relatively high $\\epsilon $ values, of about 2$\\div $3 two-electron ionization potentials. The results were presented for ratios $R_{C_{60}}(\\omega ,\\epsilon)\\equiv d\\sigma ^{++}(\\omega ,\\epsilon)/d\\sigma ^{a++}(\\omega,\\epsilon)$, where $d\\sigma ^{a++}(\\omega,\\epsilon)/d\\epsilon$ is the two-electron differential photoionization cross section. We have calculated the ratio $R_{i,ful}= \\sigma_{i} ^{++}(\\omega)/\\sigma_{i}^{a++}(\\omega)$, that accounts for reflection of both photoelectrons by the $C_{60}$ shell. We have calculated also the value of two-electron photoionization cross section $\\sigma ^{++}(\\omega)$ and fo...
Gamma attenuation characteristics and effective atomic numbers of polypropylene and polystyrene
International Nuclear Information System (INIS)
Gamma attenuation characteristics of polymer materials polypropylene and polystyrene are studied along with lead, iron and aluminum by subjecting them to gamma ray fields of known energies. A precise method for determination of mass attenuation coefficient of gamma rays using NaI (Tl) detector with 8k MCA is described in this paper. In order to minimize the effect of multiple scattering on the mass attenuation coefficient (μ/ρ) value, a good geometry arrangement was setup. For standardization purposes the mass attenuation coefficients of elemental shields like lead, iron and aluminum were measured and then, this method is applied for polymers of interest. The total atomic cross-section (σt,a) and total electronic cross-section (σt,el) were determined and by knowing the values of (σt,a) and (σt,el) the effective atomic numbers were estimated using the NIST XCOM. The experimental values were compared with the theoretical values. The agreement of experimental values of mass attenuation coefficients and effective atomic numbers with the theory has been found to be quite satisfactory. (author)
Recent progress in electron scattering from atoms and molecules
Energy Technology Data Exchange (ETDEWEB)
Brunger, M. J. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur (Malaysia); Buckman, S. J. [Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur, Malaysia and Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Sullivan, J. P.; Palihawadana, P. [Centre for Antimatter-Matter Studies, AMPL, Australian National University, Canberra, ACT 0200 (Australia); Jones, D. B. [School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Chiari, L.; Pettifer, Z. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001 (Australia); Silva, G. B. da [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Universidade Federal de Mato Grosso, Barra do Garças, Mato Grosso (Brazil); Lopes, M. C. A. [Centre for Antimatter-Matter Studies, CAPS, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia and Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Duque, H. V. [Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG (Brazil); Masin, Z.; Gorfinkiel, J. D. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Garcia, G. [Instituto de Fisica Fundamental, CSIC, Madrid E-28006 (Spain); Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, Tokyo, 102-8554 (Japan); Limão-Vieira, P. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)
2014-03-05
We present and discuss recent results, both experimental and theoretical (where possible), for electron impact excitation of the 3s[3/2 ]{sub 1} and 3s′[1/2 ]{sub 1} electronic states in neon, elastic electron scattering from the structurally similar molecules benzene, pyrazine, and 1,4-dioxane and excitation of the electronic states of the important bio-molecule analogue α-tetrahydrofurfuryl alcohol. While comparison between theoretical and experimental results suggests that benchmarked cross sections for electron scattering from atoms is feasible in the near-term, significant further theoretical development for electron-molecule collisions, particularly in respect to discrete excitation processes, is still required.
Electron transfer in ion-atom collisions
Energy Technology Data Exchange (ETDEWEB)
Lin, C D
1979-01-01
Recent theoretical development in the understanding of electron transfer processes is reviewed. K-K electron transfer processes are studied for projectiles (nuclear charge Z/sub B/) and targets (nuclear charge Z/sub A/) in which Z/sub A/ and Z/sub B/ range from Z/sub A/ much greater than Z/sub B/ to Z/sub A/ approx. = Z/sub B/, over the energy range 0.1 < v/v/sub e/ < 2. (GHT)
Resonances in Electron Impact on Atomic Oxygen
Institute of Scientific and Technical Information of China (English)
WANG Yang; ZHOU Ya-Jun; JIAO Li-Guang; Kuru Ratnavelu
2008-01-01
The momentum-space coupled-channels-optical (CCO) method is used to study the resonances in electron-oxygen collision in the energy region of 9-12 e V. Present results have shown agreement with the available experimental and theoretical results, and new positions of resonances are found by the comparison of total cross sections.
DFT reactivity indices in confined many-electron atoms
Indian Academy of Sciences (India)
Jorge Garza; Rubicelia Vargas; Norberto Aquino; K D Sen
2005-09-01
The density functional descriptors of chemical reactivity given by electronegativity, global hardness and softness are reported for a representative set of spherically confined atoms of IA, IIA, VA and VIIIA series in the periodic table. The atomic electrons are confined within the impenetrable spherical cavity defined by a given radius of confinement satisfying the Dirichlet boundary condition such that the electron density vanishes at the radius of confinement. With this boundary condition the non-relativistic spin-polarized Kohn-Sham equations were solved. The electronegativity in a confined atom is found to decrease as the radius of confinement is reduced suggesting that relative to the free state the atom loses its capacity to attract electrons under confined conditions. While the global hardness of a confined atom increases as the radius of confinement decreases, due to the accompanying orbital energy level crossing, it does not increase infinitely. At a certain confinement radius, the atomic global hardness is even reduced due to such crossover. General trends of the atomic softness parameter under spherically confined conditions are reported and discussed.
Coherent Transfer of Electronic Wavepacket Motion Between Atoms
Zhou, Tao; Richards, B. G.; Jones, R. R.
2016-05-01
We have shown that electron correlations, induced by controlled dipole-dipole (DD) interactions, can enable the coherent transfer of electronic wavepacket motion from atoms to their neighbors. In the experiment, a 5 ns tunable dye laser excites Rb atoms in a MOT to the 25s state in a weak static electric field for which the tunable 25s 33 s 24p34p DD interaction is resonant. A picosecond THz pulse then further excites each Rydberg atom into a coherent superposition, of 25s and 24p states. The evolution of this mixed-parity wavepacket is characterized by time-dependent oscillations in the electric dipole moment, with a period of 2.9 ps. Approximately 5 ns after the wavepacket creation, a second 5 ns dye-laser promotes a second set of atoms from the 5p level into the 33s state. Because of the DD interaction, the second dye laser actually creates atom pairs whose electronic states are correlated via the resonant DD coupling. A 33 s + 34p wavepacket, oscillating with the same 2.9 ps period as the 25 s + 24p wavepacket, develops on the second set of atoms as a result of the correlation. A second, time-delayed ps THz pulse enables the detection of the coherent wavepacket motion on the two sets of atoms. This research has been supported by the NSF.
An Empirical Formula of Atomic K-Shell Ionization Cross Sections by Electron Impact
Institute of Scientific and Technical Information of China (English)
唐昶环; 安竹; 罗正明; 范晓强
2001-01-01
An empirical formula is proposed to describe the K-shell ionization cross sections by electron impact over a wide range of atomic numbers and overvoltages U (the ratio between the electron incident energy and the bindingenergy of the electrons in the K-shell). The study is based on the analysis of existing experimental data of K-shell ionization cross sections. The expression shows the results in good agreement with the data for Z＜6 atoms as well as for 6＜Z＜79.
Imaging population transfer in atoms with ultrafast electron pulses
Shao, Hua-Chieh; Starace, Anthony F.
2016-05-01
Ultrafast electron diffraction and microscopy have made significant progress recently in investigating atomic-scale structural dynamics in gas-phase and condensed materials. With these advances, direct imaging of electronic motions in atoms and molecules by ultrafast electron diffraction is anticipated. We propose imaging a laser-driven coherent population transfer in lithium atoms by femtosecond ultrafast electron pulses. Valuable information and insight can be obtained from studying such a system in order to refine ultrafast electron techniques and to interpret experimental results. Adiabatic passage by level crossing is used to transfer the electron population from the 2 s to the 2 p state. Our simulations demonstrate the ability of ultrafast electron diffraction to image this population transfer, as the time-dependent diffraction images reflect the electronic motion in the scattering intensity and angular distribution. Furthermore, asymmetric diffraction patterns indicate that even the relative phases of the electronic wave function can be resolved, provided there is sufficient temporal resolution. This work has been supported in part by DOE Award No. DE-SC0012193 [H.-C.S.] and by NSF Grant No. PHYS-1505492 [A.F.S.].
Rule, D. W.
1977-01-01
The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.
Electron-impact ionization of atomic hydrogen
International Nuclear Information System (INIS)
Since the invention of quantum mechanics, even the simplest example of collisional breakup in a system of charged particles, e- + H -> H+ + e- + e-, has stood as one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculating the energies and directions for a final state in which three charged particles are moving apart. Advances in the formal description of three-body breakup have yet to lead to a viable computational method. Traditional approaches, based on two-body formalisms, have been unable to produce differential cross sections for the three-body final state. Now, by using a mathematical transformation of the Schrodinger equation that makes the final state tractable, a complete solution has finally been achieved, Under this transformation, the scattering wave function can be calculated without imposing explicit scattering boundary conditions. This approach has produced the first triple differential cross sections that agree on an absolute scale with experiment as well as the first ab initio calculations of the single differential cross section
Single-atom electron energy loss spectroscopy of light elements
Senga, Ryosuke; Suenaga, Kazu
2015-01-01
Light elements such as alkali metal (lithium, sodium) or halogen (fluorine, chlorine) are present in various substances and indeed play significant roles in our life. Although atomic behaviours of these elements are often a key to resolve chemical or biological activities, they are hardly visible in transmission electron microscope because of their smaller scattering power and higher knock-on probability. Here we propose a concept for detecting light atoms encaged in a nanospace by means of e...
Studying Atomic Structures by Aberration-Corrected Transmission Electron Microscopy
Urban, Knut W.
2008-07-01
Seventy-five years after its invention, transmission electron microscopy has taken a great step forward with the introduction of aberration-corrected electron optics. An entirely new generation of instruments enables studies in condensed-matter physics and materials science to be performed at atomic-scale resolution. These new possibilities are meeting the growing demand of nanosciences and nanotechnology for the atomic-scale characterization of materials, nanosynthesized products and devices, and the validation of expected functions. Equipped with electron-energy filters and electron-energy loss spectrometers, the new instruments allow studies not only of structure but also of elemental composition and chemical bonding. The energy resolution is about 100 milli electron volts, and the accuracy of spatial measurements has reached a few picometers. However, understanding the results is generally not straightforward and only possible with extensive quantum-mechanical computer calculations.
Exact wave functions for atomic electron interacting with photon fields
Institute of Scientific and Technical Information of China (English)
Dong-Sheng Guo
2013-01-01
Many nonlinear quantum optical physics phenomena need more accurate wave functions and corresponding energy or quasienergy levels to account for. An analytic expression of wave functions with corresponding energy levels for an atomic electron interacting with a photon field is presented as an exact solution to the SchrSdinger-like equation involved with both atomic Coulomb interaction and electron-photon interaction. The solution is a natural generalization of the quantum-field Volkov states for an otherwise free electron interacting with a photon field. The solution shows that an N- level atom in light form stationary states without extra energy splitting in addition to the Floquet mechanism. The treatment developed here with computing codes can be conveniently transferred to quantum optics in classical-field version as research tools to benefit the whole physics community.
Single-Shot Electron Diffraction using a Cold Atom Electron Source
Speirs, Rory W; Nugent, Keith A; Sparkes, Benjamin M; Scholten, Robert E
2015-01-01
Cold atom electron sources are a promising alternative to traditional photocathode sources for use in ultrafast electron diffraction due to greatly reduced electron temperature at creation, and the potential for a corresponding increase in brightness. Here we demonstrate single-shot, nanosecond electron diffraction from monocrystalline gold using cold electron bunches generated in a cold atom electron source. The diffraction patterns have sufficient signal to allow registration of multiple single-shot images, generating an averaged image with significantly higher signal-to-noise ratio than obtained with unregistered averaging. Reflection high-energy electron diffraction (RHEED) was also demonstrated, showing that cold atom electron sources may be useful in resolving nanosecond dynamics of nanometre scale near-surface structures.
Electron capture by fluorinated fullerene anions in collisions with Xe atoms
DEFF Research Database (Denmark)
Boltalina, OV; Hvelplund, P; Jørgensen, Thomas J. D.;
2000-01-01
Electron capture by 50-keV fluorinated fullerene anions (C60Fn- 18
Electron-atom scattering in a circularly polarized laser field
Cionga, Aurelia; Zloh, Gabriela; 10.1103/PhysRevA.61.063417
2013-01-01
We consider electron-atom scattering in a circularly polarized laser field at sufficiently high electron energies, permitting to describe the scattering process by the first order Born approximation. Assuming the radiation field has sufficiently moderate intensities, the laser-dressing of the hydrogen target atom in its ground state will be treated in second order perturbation theory. Within this approximation scheme, it is shown that the nonlinear differential cross sections of free-free transitions do neither depend on the {\\it dynamical phase} $\\phi$ of the radiative process nor on the {\\it helicity} of the circularly polarized laser light. Relations to the corresponding results for linear laser polarization are established.
Cold electron sources using laser-cooled atoms
McCulloch, Andrew J.; Sparkes, Ben M.; Scholten, Robert E.
2016-08-01
Since the first observation of electron diffraction in 1927, electrons have been used to probe the structure of matter. High-brightness sources of thermal electrons have recently emerged that are capable of simultaneously providing high spatial resolving power along with ultrafast temporal resolution, however they are yet to demonstrate the holy grail of single-shot diffraction of non-crystalline objects. The development of the cold atom electron source, based around the ionisation of laser cooled atoms, has the potential to contribute to this goal. Electron generation from laser cooled atoms is in its infancy, but in just ten years has moved from a proposal to a source capable of performing single-shot diffraction imaging of crystalline structures. The high brightness, high transverse coherence length, and small energy spread of cold electron sources are also potentially advantageous for applications ranging from seeding of x-ray free-electron lasers and synchrotrons to coherent diffractive imaging and microscopy. In this review we discuss the context which motivates the development of these sources, the operating principles of the source, and recent experimental results. The achievements demonstrated thus far combined with theoretical proposals to alleviate current bottlenecks in development promise a bright future for these sources.
Effective atomic numbers of some tissue substitutes by different methods: A comparative study
Directory of Open Access Journals (Sweden)
Vishwanath P Singh
2014-01-01
Full Text Available Effective atomic numbers of some human organ tissue substitutes such as polyethylene terephthalate, red articulation wax, paraffin 1, paraffin 2, bolus, pitch, polyphenylene sulfide, polysulfone, polyvinylchloride, and modeling clay have been calculated by four different methods like Auto-Z eff, direct, interpolation, and power law. It was found that the effective atomic numbers computed by Auto-Z eff , direct and interpolation methods were in good agreement for intermediate energy region (0.1 MeV < E < 5 MeV where the Compton interaction dominates. A large difference in effective atomic numbers by direct method and Auto-Z eff was observed in photo-electric and pair-production regions. Effective atomic numbers computed by power law were found to be close to direct method in photo-electric absorption region. The Auto-Z eff , direct and interpolation methods were found to be in good agreement for computation of effective atomic numbers in intermediate energy region (100 keV < E < 10 MeV. The direct method was found to be appropriate method for computation of effective atomic numbers in photo-electric region (10 keV < E < 100 keV. The tissue equivalence of the tissue substitutes is possible to represent by any method for computation of effective atomic number mentioned in the present study. An accurate estimation of Rayleigh scattering is required to eliminate effect of molecular, chemical, or crystalline environment of the atom for estimation of gamma interaction parameters.
Laser Assisted Free-Free Transition in Electron - Atom Collision
Sinha, C.; Bhatia, A. K.
2011-01-01
Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.
International Nuclear Information System (INIS)
The cross sections of intercombination transitions (ICT) between high-excited levels of atoms during the collisions of the latter with electrons are considered. A method is proposed for calculating ICT cross sections which are orbital quantum number totals. A comparison with the cross section calculated within the scope of quasiclassic approach is performed. Both methods yield close results
Numerical Studies of Collective Phenomena in Two-Dimensional Electron and Cold Atom Systems
Energy Technology Data Exchange (ETDEWEB)
Rezayi, Edward
2013-07-25
Numerical calculations were carried out to investigate a number of outstanding questions in both two-dimensional electron and cold atom systems. These projects aimed to increase our understanding of the properties of and prospects for non-Abelian states in quantum Hall matter.
Coherence and correlation in electron-atom collisions
Energy Technology Data Exchange (ETDEWEB)
Slevin, J.A. (Saint Patrick' s Coll., Maynooth (Ireland)); Chwirot, S. (Uniwersytet Mikolaja Kopernika, Torun (Poland). Inst. Fizyki)
1990-01-28
Recent developments in the field of alignment and orientation studies of electron impact excitation of atoms are discussed. This article reviews experiments which have a well defined planar symmetry, i.e. in which the initial and final momenta of electrons are determined. The experimental results obtained by different groups during the last four years are presented after a brief theoretical introduction followed by a description of typical experimental arrangements. (author).
Coherence and correlation in electron-atom collisions
International Nuclear Information System (INIS)
Recent developments in the field of alignment and orientation studies of electron impact excitation of atoms are discussed. This article reviews experiments which have a well defined planar symmetry, i.e. in which the initial and final momenta of electrons are determined. The experimental results obtained by different groups during the last four years are presented after a brief theoretical introduction followed by a description of typical experimental arrangements. (author)
Electron radiative self-energy of highly stripped heavy atoms
International Nuclear Information System (INIS)
A new algorithm is presented for the evaluation of the electron radiative self-energy in heavy atoms, for which Zα is not a perturbative expansion parameter. The algorithm for hydrogenic ions is presented in detail. The terms to be evaluated numerically are finite, free of spurious gauge dependent parts, and are not in the form of a subtraction. The extension to many electron ions is also discussed. copyright 1991 Academic Press, Inc
Atomic and electronic structure of exfoliated black phosphorus
Energy Technology Data Exchange (ETDEWEB)
Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
2015-11-15
Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.
Atomic and electronic structure of exfoliated black phosphorus
International Nuclear Information System (INIS)
Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO3 or H3PO3 during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time
Sub-Poissonian atom number fluctuations by three-body loss in mesoscopic ensembles
Whitlock, S; Spreeuw, R J C
2009-01-01
We show that three-body loss of trapped atoms leads to sub-Poissonian atom number fluctuations. We prepare hundreds of dense ultracold ensembles in an array of magnetic microtraps which undergo rapid three-body decay. The shot-to-shot fluctuations of the number of atoms per trap are sub-Poissonian, for ensembles comprising 50--300 atoms. The measured relative variance or Fano factor $F=0.53\\pm 0.22$ agrees very well with the prediction by an analytic theory ($F=3/5$) and numerical calculations. These results will facilitate studies of quantum information science with mesoscopic ensembles.
Sub-Poissonian atom-number fluctuations by three-body loss in mesoscopic ensembles.
Whitlock, S; Ockeloen, C F; Spreeuw, R J C
2010-03-26
We show that three-body loss of trapped atoms leads to sub-Poissonian atom-number fluctuations. We prepare hundreds of dense ultracold ensembles in an array of magnetic microtraps which undergo rapid three-body decay. The shot-to-shot fluctuations of the number of atoms per trap are sub-Poissonian, for ensembles comprising 50-300 atoms. The measured relative variance or Fano factor F=0.53+/-0.22 agrees very well with the prediction by an analytic theory (F=3/5) and numerical calculations. These results will facilitate studies of quantum information science with mesoscopic ensembles. PMID:20366518
Study of Effective Atomic Number in Compounds Using Gamma-Ray Interaction
Rudraswamy, B.; Dhananjaya, N.
2009-03-01
In view of low cost, hydrogenous materials such as Polyethylene and CH2 have been developed and being used currently by NASA as an effective galactic cosmic radiation shields in place of aluminum for hull design of spacecraft. Lead, steel and concrete which are currently being used as effective radiation shields for the treatment of rooms equipped with Electron accelerators are found be quite expensive. Hence, it is necessary to use alternative low cost material which serves as an effective radiation shield. In the present study, an attempt has been made to measure gamma-ray mass attenuation coefficient, effective atomic number and absorbed dose rate of the compounds such as NH4Cl, KCl, and CdO using various gamma sources of energies 356, 511, 662, 1173, and 1332 keV. These parameters are expected to gives vital information on the selection of shielding materials.
Contacting nanowires and nanotubes with atomic precision for electronic transport
Qin, Shengyong
2012-01-01
Making contacts to nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Existing contacting techniques use top-down lithography and chemical etching, but lack atomic precision and introduce the possibility of contamination. Here, we report that a field-induced emission process can be used to make local contacts onto individual nanowires and nanotubes with atomic spatial precision. The gold nano-islands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable method to ensure both electrically conductive and mechanically reliable contacts. To demonstrate the wide applicability of the technique, nano-contacts are fabricated on silicide atomic wires, carbon nanotubes, and copper nanowires. The electrical transport measurements are performed in situ by utilizing the nanocontacts to bridge the nanostructures to the transport probes. © 2012 American Institute of Physics.
State selective electron capture by highly stripped ions from atoms
International Nuclear Information System (INIS)
An experimental study on final-state distribution in one-electron capture from slow fully-stripped and hydrogen-like projectile ions from H and He atoms is discussed. After a short review of the available results, state-selectiveness of the process is interpreted using the Landau-Zener model
δ-electron spectroscopy and the atomic clock effect in heavy-ion collisions
International Nuclear Information System (INIS)
The properties of strongly bound electrons in superheavy quasimolecular systems with combined nuclear charge numbers Z = ZP + ZT ≥ 110 are investigated. The emission of δ-electrons may serve as an atomic clock for nuclear reactions which is associated with the large overlap of the electron probability density with the nuclear interior. Excitation and emission rates of inner-shell electrons in collisions of very heavy ions with beam energies at or above the nuclear Coulomb barrier depend explicitly on details of the nuclear dynamics. Theoretical and experimental results are reviewed. (orig.)
Multiple electron capture in close ion-atom collisions
International Nuclear Information System (INIS)
Multiple electron capture is reported for Ca17+ in Ar. Close collisions are defined by the observation of a coincident Ca K or Ar K x-ray. A large number of electrons is transferred to the projectile in a single close collision when the Ca ion projectile is of the order of the Ar L-shell electron velocity. The cross section for electron capture is reported
Small angle elastic scattering of electrons by noble gas atoms
International Nuclear Information System (INIS)
In this thesis, measurements are carried out to obtain small angle elastic differential cross sections in order to check the validity of Kramers-Kronig dispersion relations for electrons scattered by noble gas atoms. First, total cross sections are obtained for argon, krypton and xenon. Next, a parallel plate electrostatic energy analyser for the simultaneous measurement of doubly differential cross section for small angle electron scattering is described. Also absolute differential cross sections are reported. Finally the forward dispersion relation for electron-helium collisions is dealt with. (Auth.)
Atomic and nuclear parameters of single electron capture decaying nuclides
International Nuclear Information System (INIS)
Atomic and nuclear parameters of the following nuclides which decay by electron capture have been calculated: 37Ar, 41Ca, 49V, 53Mn, 55Fe,59Ni, 68Ge,82Sr, 97Tc, 118Te, 131Cs, 137La, 140Nd, 157Tb, 165Er, 193pt, 194Hg, and 205Ph The evaluation rules are included in the first part of the paper. The values and the associated uncertainties of the following parameters have been tabulated: decay energy, electron capture probabilities, fluorescence yield, electron emission and X-ray emission. (Author) 27 refs
Variational methods in electron-atom scattering theory
Nesbet, Robert K
1980-01-01
The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Cha...
Collective electronic pulsation of compressed atoms in Thomas-Fermi model
Ludwig, Hendrik; Xue, She-Sheng
2014-01-01
Based on the Thomas-Fermi solution for compressed atoms, we study electric pulsations of electron number-density, pressure and electric fields, which can be caused by an external perturbations acting on the atom. We numerically obtain the eigen-frequencies and eigen-functions for stationary pulsation modes that fulfill the boundary-value problem established by electron-number and energy-momentum conservation, equation of state, laws of thermodynamics, and Maxwell's equations, as well as physical boundary conditions. The lowest-lying eigen-frequency is about a few $\\rm{keV}$ depending on the atomic number $Z$ and the radius of the compressed atoms. In addition, assuming all electrons compressed to the nuclear core, which can be of either microscopic or macroscopic dimension, we obtain an analytical solution. For large Z the lowest-lying eigen-frequency of this solution $\\omega_1\\approx2\\alpha^{1/2} \\langle {\\bar n}_e\\rangle^{1/3}\\approx 2.1\\, {\\rm MeV}$, when the average electron-density $\\langle {\\bar n}_e\\ra...
Electronically excited rubidium atom in a helium cluster or film
Leino, Markku; Viel, Alexandra; Zillich, Robert E.
2008-11-01
We present theoretical studies of helium droplets and films doped with one electronically excited rubidium atom Rb∗ (P2). Diffusion and path integral Monte Carlo approaches are used to investigate the energetics and the structure of clusters containing up to 14 helium atoms. The surface of large clusters is approximated by a helium film. The nonpair additive potential energy surface is modeled using a diatomic in molecule scheme. Calculations show that the stable structure of Rb∗Hen consists of a seven helium atom ring centered at the rubidium, surrounded by a tirelike second solvation shell. A very different structure is obtained when performing a "vertical Monte Carlo transition." In this approach, a path integral Monte Carlo equilibration starts from the stable configuration of a rubidium atom in the electronic ground state adsorbed to the helium surface after switching to the electronically excited surface. In this case, Rb∗Hen relaxes to a weakly bound metastable state in which Rb∗ sits in a shallow dimple. The interpretation of the results is consistent with the recent experimental observations [G. Auböck et al., Phys. Rev. Lett. 101, 035301 (2008)].
International Nuclear Information System (INIS)
We have measured the electron spectra following the excitation and ionization of laser-excited atoms by impact of 1.5 keV electrons: 2p excitation and 2s ionization of Na(3p3/2), 1s excitation of Li(2p3/2) and 5p ionization of Ba(6s5d 1,3D). Except for Ba the intensities of ejected electrons are directly proportional to the cross sections of Auger and autoionizing states. Theoretical excitation cross sections (Na 2p, Li 1s) are obtained in first Born approximation including the full relaxation of the atomic electrons. Relative ionization cross sections (Na 2s, Ba 5p) are evaluated in sudden approximation as a two-step process: pure 2s(5p) ionization plus relaxation of the rest of the atomic electrons. The experimental spectra are compared to theoretical spectra
Sub-Poissonian atom number fluctuations using light-assisted collisions
Sortais, Y R P; Bourgain, R; Browaeys, A
2011-01-01
We investigate experimentally the number statistics of a mesoscopic ensemble of cold atoms in a microscopic dipole trap, and find that the atom number fluctuations are reduced with respect to a Poisson distribution due to light-assisted two-body collisions. For numbers of atoms larger than 2, we measure a reduction factor (Fano factor) close to 0.75. We analyze this fact by a general stochastic model describing the competition between the loading of the trap from a reservoir of cold atoms and multi-body losses, which leads to a master equation. The model indicates that we have reached the ultimate level of reduction in number fluctuations achievable in our experimental regime.
International Nuclear Information System (INIS)
The photon mass attenuation coefficient of a newly prepared 15Al2O3-35P2O5- xCaO-(50-x)Na2CO3 glass system (symbolized as APCN), where x=5, 10, 15, 20, 25, 30, 35, 40 all in mol%, have been calculated at photon energies of 0.662 MeV (137Cs source) and 1.25 MeV (60Co source). In addition, the photon mass attenuation coefficient of 15Al2O3-35P2O5-25CaO-25Na2CO3 glass system (symbolized as APCN25-25), all in mol%, doped with different concentrations of SiO2 have been calculated. The WinXCOM software program on the basis of mixture rule was utilized in calculations. The total atomic (σt) and electronic (σe) cross sections, effective atomic number (Zeff) and electron density (Nel) were calculated. The results showed that the total mass attenuation coefficient showed an extremely dependence on incoherent scattering processes where it varies with Na2CO3 contents in the APCN composition while changing the concentrations of SiO2 in APCN25-25 glass showed slight changes in the values. Otherwise, the mass attenuation coefficient (µm) had higher values at 0.662 MeV than those of 1.25 MeV in both APCN and APCN25-25 glass systems. The values of Zeff showed a decrease with increasing Na2CO3 contents in the APCN composition. The should highly be considered in dealing with such prepared APCN glass system as a gamma ray detector, specially as thermoluminescence dosimeter.
The role of Co atoms in spin dependent electronic properties of graphite-like ZnO structures
Energy Technology Data Exchange (ETDEWEB)
Caliskan, S., E-mail: scaliskan@fatih.edu.tr; Guner, S.
2015-01-01
A first principles study is employed to reveal the electronic properties of graphite-like Co doped ZnO structures composed of atomic layers when spin property of electrons is involved. The influence of Co atoms, which are substituting the Zn atoms, was addressed through distinct atomic arrangements formed by specific atomic configurations and various Co concentrations. We obtained that the spin dependent behavior is largely determined by the atomic arrangement which can crucially impact the electronic structure for a certain spin orientation. It was observed that atomic configuration is an essential factor which may reduce or enhance the minority-spin energy gap relative to majority one. It was shown that the emerging spin polarization can be manipulated by the atomic arrangement of the layered structures. Both the spin polarization and the magnetic moment were found to be contributed by both Co and O atoms. The stability of a system via formation energy, the role of Co dopants positioned at different Zn sites, the number of both Co atoms and layers in a supercell, and the mechanisms governing the spin dependent behavior of these structures are discussed. - Highlights: • Co dopants at distinct locations yield crucial changes in spin dependent behavior. • Spin dependent behavior is determined by atomic arrangement in Co doped ZnO systems. • Atomic configuration and Co concentration play a crucial role on minority band gap. • The magnetic moment is mostly contributed by Co-3d and O-2p orbitals.
A discrete variable representation for electron-hydrogen atom scattering
Energy Technology Data Exchange (ETDEWEB)
Gaucher, L.F.
1994-08-01
A discrete variable representation (DVR) suitable for treating the quantum scattering of a low energy electron from a hydrogen atom is presented. The benefits of DVR techniques (e.g. the removal of the requirement of calculating multidimensional potential energy matrix elements and the availability of iterative sparse matrix diagonalization/inversion algorithms) have for many years been applied successfully to studies of quantum molecular scattering. Unfortunately, the presence of a Coulomb singularity at the electrically unshielded center of a hydrogen atom requires high radial grid point densities in this region of the scattering coordinate, while the presence of finite kinetic energy in the asymptotic scattering electron also requires a sufficiently large radial grid point density at moderate distances from the nucleus. The constraints imposed by these two length scales have made application of current DVR methods to this scattering event difficult.
Parity Violation in Atoms and Polarized Electron Scattering
Bouchiat, Marie-Anne; PAVI'97
1999-01-01
This work is an extensive review of the advances in the field of parity violation experiments in electron scattering at high energy and and in atomic physics. The results are a challenge to the standard electroweak theory and the understanding of hadron structure. The theoretical framework is presented at a pedagogical level, experiments and future projects are reviewed, and the results and their interpretation are discussed.
Ultrafast Electron Diffraction with Spatiotemporal Resolution of Atomic Motion
Institute of Scientific and Technical Information of China (English)
LIANG Wen-Xi; ZHU Peng-Fei; WANG Xuan; NIE Shou-Hua; ZHANG Zhong-Chao; Clinite Rick; CAO Jian-Ming; SHENG Zheng-Ming; ZHANG Jie
2009-01-01
Ultrafast electron diffraction (UED) is a rapidly advancing technique capable of recording the atomic-detail structural dynamics in real time. We report the establishment of the first UED system in China. Employing this UED apparatus, both the coherent and the concurrent thermal lattice motions in an aluminium thin-film, trigged by ultrafast laser heating, have been observed. These results demonstrate its ability to directly measure a sub-milli-angstrom lattice spacing change on a sub-picosecond time scale.
Variational calculation of electron elastic scattering by atomic helium
Chernek, P. J.
1982-12-01
The elastic-scattering of electrons from atomic helium in the ground state is investigated. It is shown that for low energy incident electrons the scattering problem reduced to solving an ordinary integro-differential equation for the scattering wave-function. A method is discussed to obtain approximate solutions to the integro-differential equation by variational principles. The extremum condition of the variational method is formulated into a general N x N matrix equation which reduces to a 2 x 2 eigen-value matrix problem for the phase-shift of the scattering electron. An algorithm is presented to obtain the collisional cross-section for elastic scattering as a function of incident electron energy.
Atomic arrangements and electronic properties of semiconductor surfaces and interfaces
Chadi, D. J.; Martin, R. M.
1982-05-01
The areas of research during the past 12 months have included: step-formation energies and domain orientation at Si(111) surfaces; the electronic structure of the Al-GaAs(110) surface chemisorption system; density-functional calculations of bulk properties of GaAs and of (100)GaAs-Ge interfaces; demonstration of the importance of correlation effects on the atomic and electronic structure of Si(111) surfaces; and derivation of an exact scaling law for the resistance of a thin wire for the one dimensional Anderson model containing Loth diagonal and off-diagonal disorder.
Low-energy scattering of electrons by atomic oxygen
International Nuclear Information System (INIS)
The method of polarized pseudostates has been used to calculate cross sections for the elastic scattering of electrons by atomic oxygen. These pseudostates are added to the close-coupling expansion to give a polarization potential in agreement with experimental values of polarizability. The resulting elastic cross sections are in good agreement with other theoretical calculations as well as with experiment for energies up to 10 eV. The reactance matrices obtained in this calculation have been used to calculate collision strengths for fine-structure transitions in the ground-state 3P term for electron temperatures above 5000 degree K
Two measured completely different electron affinities for atomic Eu?
Msezane, A. Z.; Felfli, Z.
2016-05-01
Recently, the electron affinity (EA) of atomic Eu was measured to be 0.116?eV. This value is in outstanding agreement with the theoretically calculated values using the Regge pole and MCDF-RCI methods. Previously, the EA of Eu was measured to be 1.053 eV. In an attempt to resolve the discrepancy between the two measured values, we have adopted the complex angular momentum (CAM) method and investigated in the electron energy range 0.11 eV methane to methanol without CO2 emission. These new results call for immediate experimental and theoretical verification.
Power spectrum of electron number density perturbations at cosmological recombination epoch
Venhlovska, B
2008-01-01
The power spectrum of number density perturbations of free electrons is obtained for the epoch of cosmological recombination of hydrogen. It is shown that amplitude of the electron perturbations power spectrum of scales larger than acoustic horizon exceeds by factor of 17 the amplitude of baryon matter density ones (atoms and ions of hydrogen and helium). In the range of the first and second acoustic peaks such relation is 18, in the range of the third one 16. The dependence of such relations on cosmological parameters is analysed too.
Tuning electronic properties of metallic atom in bondage to a nanospace.
Tang, Jun; Xing, Gengmei; Yuan, Hui; Cao, Wenbin; Jing, Long; Gao, Xingfa; Qu, Li; Cheng, Yue; Ye, Chang; Zhao, Yuliang; Chai, Zhifang; Ibrahim, Kurash; Qian, Haijie; Su, Run
2005-05-12
The possibility of modulating the electronic configurations of the innermost atoms inside a nanospace, nano sheath with chemical modification was investigated using synchrotron X-ray photoelectron spectroscopy. Systems of definite nanostructures were chosen for this study. Systematic variations in energy, intensity, and width of pi and sigma O 1s core level spectra, in absorption characteristics of C 1s-->pi transition, in photoabsorption of pre-edge and resonance regions of the Gd 4d-->4f transition, were observed for Gd@C(82) (an isolated nanospace for Gd), Gd@C(82)(OH)(12) (a modified nanospace for Gd), and Gd@C(82)(OH)(22) (a differently modified nanospace for Gd), and the reference materials Gd-DTPA (a semi-closed space for Gd) and Gd(2)O(3). A sandwich-type electronic interaction along [outer modification group]-[nano sheaths]-[inner metallic atom] was observed in the molecules of modifications. This makes it possible to control electron-donation directions, either from the innermost metallic atom toward the outer nano sheaths or the reverse. The results suggest that one may effectively tune the fine structures of electronic configurations of such a metallic atom being astricted into nanostructures through changing the number or category of outer groups of chemical modifications. This may open a door to realizing the desired designs for electronic and magnetic properties of functionalized nanomaterials. PMID:16852042
Electron Stark Broadening Database for Atomic N, O, and C Lines
Liu, Yen; Yao, Winifred M.; Wray, Alan A.; Carbon, Duane F.
2012-01-01
A database for efficiently computing the electron Stark broadening line widths for atomic N, O, and C lines is constructed. The line width is expressed in terms of the electron number density and electronatom scattering cross sections based on the Baranger impact theory. The state-to-state cross sections are computed using the semiclassical approximation, in which the atom is treated quantum mechanically whereas the motion of the free electron follows a classical trajectory. These state-to-state cross sections are calculated based on newly compiled line lists. Each atomic line list consists of a careful merger of NIST, Vanderbilt, and TOPbase line datasets from wavelength 50 nm to 50 micrometers covering the VUV to IR spectral regions. There are over 10,000 lines in each atomic line list. The widths for each line are computed at 13 electron temperatures between 1,000 K 50,000 K. A linear least squares method using a four-term fractional power series is then employed to obtain an analytical fit for each line-width variation as a function of the electron temperature. The maximum L2 error of the analytic fits for all lines in our line lists is about 5%.
Computer simulation of electronic excitation in atomic collision cascades
Energy Technology Data Exchange (ETDEWEB)
Duvenbeck, A.
2007-04-05
The impact of an keV atomic particle onto a solid surface initiates a complex sequence of collisions among target atoms in a near-surface region. The temporal and spatial evolution of this atomic collision cascade leads to the emission of particles from the surface - a process usually called sputtering. In modern surface analysis the so called SIMS technology uses the flux of sputtered particles as a source of information on the microscopical stoichiometric structure in the proximity of the bombarded surface spots. By laterally varying the bombarding spot on the surface, the entire target can be scanned and chemically analyzed. However, the particle detection, which bases upon deflection in electric fields, is limited to those species that leave the surface in an ionized state. Due to the fact that the ionized fraction of the total flux of sputtered atoms often only amounts to a few percent or even less, the detection is often hampered by rather low signals. Moreover, it is well known, that the ionization probability of emitted particles does not only depend on the elementary species, but also on the local environment from which a particle leaves the surface. Therefore, the measured signals for different sputtered species do not necessarily represent the stoichiometric composition of the sample. In the literature, this phenomenon is known as the Matrix Effect in SIMS. In order to circumvent this principal shortcoming of SIMS, the present thesis develops an alternative computer simulation concept, which treats the electronic energy losses of all moving atoms as excitation sources feeding energy into the electronic sub-system of the solid. The particle kinetics determining the excitation sources are delivered by classical molecular dynamics. The excitation energy calculations are combined with a diffusive transport model to describe the spread of excitation energy from the initial point of generation. Calculation results yield a space- and time-resolved excitation
Subshell momentum splitting and double-zeta description of many-electron atoms
International Nuclear Information System (INIS)
When two subshell electrons are considered simultaneously in many-electron atoms, the average subshell momentum (p)nl splits into two different momenta, low momentum (p)nl and high momentum (p>)nl, where n and l are the principal and azimuthal quantum numbers. For the 102 atoms He through Lr in their ground states, the momenta (p)nl and (p>)nl, as well as the momentum separation (|p1 - p2|)nl, are systematically examined at the Hartree-Fock limit level. For a subshell nl, two exponents ζnl(est) and ζnl>(est) estimated from the low and high momenta have good linear correlations with variationally determined exponents ζnl(var) and ζnl>(var) used in the double-zeta description of atoms with Slater-type basis functions
Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics
International Nuclear Information System (INIS)
Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the
Femtosecond electron diffraction. Next generation electron sources for atomically resolved dynamics
Energy Technology Data Exchange (ETDEWEB)
Hirscht, Julian
2015-08-15
Three instruments for femtosecond electron diffraction (FED) experiments were erected, partially commissioned and used for first diffraction experiments. The Relativistic Electron Gun for Atomic Exploration (REGAE) was completed by beamline elements including supports, a specimen chamber and dark current or electron beam collimating elements such that the commissioning process, including first diffraction experiments in this context, could be started. The temporal resolution of this machine is simulated to be 25 fs (fwhm) short, while a transverse coherence length of 30 nm (fwhm) is feasible to resolve proteins on this scale. Whether this machine is capable of meeting these predictions or whether the dynamics of the electron beam will stay limited by accelerator components, is not finally determined by the end of this work, because commissioning and improvement of accelerator components is ongoing. Simultaneously, a compact DC electron diffraction apparatus, the E-Gun 300, designed for solid and liquid specimens and a target electron energy of 300 keV, was built. Fundamental design issues of the high potential carrying and beam generating components occurred and are limiting the maximum potential and electron energy to 120 keV. Furthermore, this is limiting the range of possible applications and consequently the design and construction of a brand new instrument began. The Femtosecond Electron Diffraction CAmera for Molecular Movies (FED-CAMM) bridges the performance problems of very high electric potentials and provides optimal operational conditions for all applied electron energies up to 300 keV. The variability of gap spacings and optimized manufacturing of the high voltage electrodes lead to the best possible electron pulse durations obtainable with a compact DC setup, that does not comprise of rf-structures. This third apparatus possesses pulse durations just a few tenth femtoseconds apart from the design limit of the highly relativistic REGAE and combines the
Resonance structure in elastic scattering of electrons from atomic hydrogen
Energy Technology Data Exchange (ETDEWEB)
Warner, C.D.; King, G.C.; Hammond, P.; Slevin, J.
1986-10-28
High-energy-resolution spectra of electrons scattered elastically from atomic hydrogen have been obtained for incident electron energies of 9.2-10.4 eV and at angles of 33/sup 0/, 54/sup 0/, 70/sup 0/ and 90/sup 0/. The energy spread of the incident electron beam is estimated to be typically 25 meV FWHM. In addition to the /sup 1/S and /sup 3/P resonances which have been reported in earlier studies, a /sup 1/D resonance can be clearly seen and there is some evidence of a resonance state at a higher energy, probably corresponding to a /sup 1/S resonance state. The energies and resonance widths of all these features have been determined.
Calculation of electron scattering on atoms and ions
Energy Technology Data Exchange (ETDEWEB)
Bray, I.
1995-02-01
This paper reviews the applications of the convergent close-coupling (CCC) method to electron scattering on light atoms and ions. Particular emphasis is given to those areas where other theories have difficulty, e g. total ionization cross sections and the associated spin asymmetries. It begins with the simplest application to the Temkin-Poet model problem of electron-hydrogen scattering, which is used to validate the CCC approach. Subsequently, results are given for electron impact ionization of various initial states of the targets H(1s,2s), He(1{sup 1}S,2{sup 3.1}S), He{sup +}(1s), Li(2s), O{sup 5+}(2s) and Na(3s). 50 refs., 10 figs.
Resonance structure in elastic scattering of electrons from atomic hydrogen
International Nuclear Information System (INIS)
High-energy-resolution spectra of electrons scattered elastically from atomic hydrogen have been obtained for incident electron energies of 9.2-10.4 eV and at angles of 330, 540, 700 and 900. The energy spread of the incident electron beam is estimated to be typically 25 meV FWHM. In addition to the 1S and 3P resonances which have been reported in earlier studies, a 1D resonance can be clearly seen and there is some evidence of a resonance state at a higher energy, probably corresponding to a 1S resonance state. The energies and resonance widths of all these features have been determined. (author)
Biprism Electron Interferometry with a Single Atom Tip Source
Schütz, Georg; Pooch, Andreas; Meier, Simon; Schneeweiss, Philipp; Rauschenbeutel, Arno; Günther, Andreas; Chang, Wei-Tse; Hwang, Ing-Shouh; Stibor, Alexander
2013-01-01
Experiments with electron or ion matter waves require a coherent, monochromatic and long-term stable source with high brightness. These requirements are best fulfilled by single atom tip (SAT) field emitters. The performance of an iridium covered W(111) SAT is demonstrated and analyzed for electrons in a biprism interferometer. Furthermore we characterize the emission of the SAT in a separate field electron and field ion microscope and compare it with other emitter types. A new method is presented to fabricate the electrostatic charged biprism wire that separates and combines the matter wave. In contrast to other biprism interferometers the source and the biprism size are well defined within a few nanometers. The setup has direct applications in ion interferometry and Aharonov-Bohm physics.
Biprism electron interferometry with a single atom tip source.
Schütz, G; Rembold, A; Pooch, A; Meier, S; Schneeweiss, P; Rauschenbeutel, A; Günther, A; Chang, W T; Hwang, I S; Stibor, A
2014-06-01
Experiments with electron or ion matter waves require a coherent, monochromatic and long-term stable source with high brightness. These requirements are best fulfilled by single atom tip (SAT) field emitters. The performance of an iridium covered W(111) SAT is demonstrated and analyzed for electrons in a biprism interferometer. Furthermore we characterize the emission of the SAT in a separate field electron and field ion microscope and compare it with other emitter types. A new method is presented to fabricate the electrostatic charged biprism wire that separates and combines the matter wave. In contrast to other biprism interferometers the source and the biprism size are well defined within a few nanometers. The setup has direct applications in ion interferometry and Aharonov-Bohm physics. PMID:24704604
Screening Effects on Nonrelativistic Bremsstrahlung in the Scattering of Electrons by Neutral Atoms
Jung, Young-Dae; Lee, Kun-Sang
1995-01-01
Atomic screening effects on nonrelativistic electron-atom bremsstrahlung radiation are investigated using a simple analytic solution of the Thomas-Fermi model for many-electron atoms. The Born approximation is assumed for the initial and final states of the projectile electron. The results show that the screening effect is important in the soft radiation region and is decreasing with increasing radiation. These results help provide correct information about the behavior of bound electrons in the target atom in bremsstrahlung processes.
Atomic precision etch using a low-electron temperature plasma
Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.
2016-03-01
Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.
Effect of electron exchange on atomic ionization in a strong electric field
Amusia, M Ya
2009-01-01
Hartree-Fock atom in a strong electric static field is considered. It is demonstrated that exchange between outer and inner electrons, taken into account by the so-called Fock term affects strongly the long-range behavior of the inner electron wave function. As a result, it dramatically increases its probability to be ionized. A simple model is analyzed demonstrating that the decay probability, compared to the case of a local (Hartree) atomic potential, increases by many orders of magnitude. As a result of such increase, the ratio of inner to outer electrons ionization probability became not too small. It is essential that the effect of exchange upon probability of inner electron ionization by strong electric field is proportional to the square of the number of outer electrons. It signals that in clusters the inner electron ionization by strong field, the very fact of which is manifested by e.g. high energy quanta emission, has to be essentially increased as compared to this process in gaseous atomic objects.
Measurement of effective atomic number of gunshot residues using scattering of gamma rays
International Nuclear Information System (INIS)
Better understanding of gunshot residues and the major elemental composition would be valuable to forensic scientists for their analysis work and interpretation of results. In the present work, the effective atomic numbers of gunshot residues (cartridge case, bullet core, bullet jacket and gunpowder) were analyzed using energy dispersive X-ray analysis (EDX). The scattering of 59.54 keV gamma rays is studied using a high-resolution HPGe detector. The experiment is performed on various elements with atomic number in the 4≤Z≤82. The intensity ratio of coherent to Compton scattered peaks, corrected for photo-peak efficiency of gamma detector and absorption of photons in the sample and air, is plotted as a function of atomic number and constituted a best-fit-curve. From this fit-curve, the respective effective atomic numbers of gunshot residues are determined. - Highlights: • Values of Zeff depend on the chemical content of the investigated gunshot residues. • The agreement of measured values of effective atomic numbers with theoretical calculations is quite satisfactory. • The present calculations of Zeff have thrown new light on forensic science
Institute of Scientific and Technical Information of China (English)
郑仕标
2003-01-01
We propose a quantum nondemolition measurement of the photon-number distribution for a weak cavity field with no more than two photons. The scheme is based on the resonant interaction of atoms with the cavity field, and thus the required interaction time is much shorter than that using dispersive interaction. This is important in view of decoherence. Our scheme can also be used to generate even and odd coherent states for a weak cavity field with resonant atoms.
SEPARATION OF PLUTONIUM FROM ELEMENTS HAVING AN ATOMIC NUMBER NOT LESS THAN 92
Fitch, F.T.; Russell, D.S.
1958-09-16
other elements having atomic numbers nnt less than 92, It has been proposed in the past to so separate plutonium by solvent extraction iato an organic solvent using triglycoldichlcride as the organic solvent. The improvement lies in the discovery that triglycoldichloride performs far more efflciently as an extractant, wher certain second organie compounds are added to it. Mentioned as satisfactory additive compounds are benzaldehyde, saturated aliphatic aldehydes containtng at least twc carbon atoms, and certain polyhydric phenols.
Discontinuity of Shannon information entropy for two-electron atoms
Energy Technology Data Exchange (ETDEWEB)
Shi Qicun [Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, IN 47907 (United States); Kais, Sabre [Department of Chemistry, Purdue University, 1393 Brown Building, West Lafayette, IN 47907 (United States)]. E-mail: kais@purdue.edu
2005-03-14
Atomic Shannon information entropies are computed using Hyllerass-type basis functions for the helium isoelectronic series. As one varies the nuclear charge Z for the two-electron atoms, finite size scaling analysis shows that the system exhibits a critical point of the ground state energy at {lambda}{sub c}=1/Z{sub c}=1.0971+/-0.0005 with a critical exponent {alpha}=1, E({lambda}){approx}({lambda}-{lambda}{sub c}){sup {alpha}}. At the critical point, the ground state energy becomes degenerate with the hydrogenic threshold. The Shannon information entropy develops a step-like discontinuity at {lambda}{sub c}. Further analysis indicates that the entropy as a function of {lambda} is proportional to the first derivative of the energy with respect to {lambda}. The critical exponent for the entropy {alpha}{sub s}=0, S({lambda}){approx}({lambda}-{lambda}c){alpha}s.
Temperature and number evolution of cold cesium atoms inside a wall-coated glass cell
Institute of Scientific and Technical Information of China (English)
黄家强; 张建伟; 王时光; 王力军
2015-01-01
We report an experimental study on the temperature and number evolution of cold cesium atoms diffusively cooled inside a wall-coated glass cell by measuring the absorption profile of the 62S1/2 (F=4)→62P3/2(F0=5) transition line with a weak probe laser in the evolution process. We found that the temperature of the cold atoms first gradually decreases from 16 mK to 9 mK, and then rapidly increases. The number of cold atoms first declines slowly from 2.1 × 109 to 3.7 × 108 and then falls drastically. A theoretical model for the number evolution is built and includes the instantaneous temperature of the cold atoms and a fraction p, which represents the part of cold cesium atoms elastically reflected by the coated cell wall. The theory is overall in good agreement with the experimental result, and a nonzero value is obtained for the fraction p, which indicates that the cold cesium atoms are not all heated to the ambient temperature by a single collision with the coated cell wall. These results can provide helpful insight for precision measurements based on diffuse laser cooling.
Influence of the dynamic screening on single-electron ionization of multi-electron atoms
Energy Technology Data Exchange (ETDEWEB)
Monti, J M; Fojon, O A; Rivarola, R D [Instituto de FIsica Rosario (CONICET-UNR) and Facultad de Ciencias Exactas, IngenierIa y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario (Argentina); Hanssen, J, E-mail: monti@ifir-conicet.gov.a [Institut de Chimie, Physique et Materiaux, Laboratoire de Physique Moleculaire et des Collisions, Universite Paul Verlaine - Metz, 1 Bv. Arago, 57078 Metz Cedex 3 (France)
2010-10-28
A complete formulation of the post-version of the continuum distorted wave-eikonal initial state model to investigate single-electron ionization of multi-electron atoms by fast bare ion beams is considered. The influence of the non-ionized electrons on the dynamic evolution of the ejected electron is analysed showing that the corresponding interaction plays a main role in the determination of double differential cross sections. It is demonstrated that its inclusion as an additional term in the perturbative potential of the exit channel avoids discrepancies between the pre- and post-versions of the studied distorted wave model.
Properties of Auger electrons following excitation of polarized atoms by polarized electrons
Energy Technology Data Exchange (ETDEWEB)
Kupliauskiene, A. [Institute of Theoretical Physics and Astronomy of Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania)], E-mail: akupl@itpa.lt; Tutlys, V. [Institute of Theoretical Physics and Astronomy of Vilnius University, A. Gostauto 12, LT-01108 Vilnius (Lithuania)
2009-01-15
In non-relativistic approximation, the most general expression for differential cross sections describing the properties of Auger-electron emission induced in the excitation of polarized atoms by polarized electrons is obtained for the first time. The ways of the application of the general expressions suitable for the specific experimental conditions are outlined by deriving the expressions for the asymmetry parameters and the magnetic dichroism of the angular distribution of the Auger electrons as well as of the angular correlations between the scattered and Auger electrons.
International Nuclear Information System (INIS)
Effective atomic numbers for total gamma-ray interaction with some selected thermoluminescent dosimetric compounds such as barium acetate, barium sulfate, calcium carbonate, calcium sulfate, calcium sulfate dihydrate, cadmium sulfate (anhydrous), cadmium sulfate, strontium sulfate, and lithium fluoride have been calculated in the 1-keV to 20-MeV energy region. Experimental mass attenuation coefficients and effective atomic numbers for these compounds at selected photon energies of 26.3, 33.2, 59.54, and 661.6 keV have been obtained from good geometry transmission measurements and compared with theoretical values. The effect of absorption edge on effective atomic numbers and its variation with energy, and nonvalidity of the Bragg's mixture rule at incident photon energies closer to the absorption edges of constituent elements of compounds are discussed
International Nuclear Information System (INIS)
Effective atomic numbers for photon energy absorption (ZPEAeff) and effective atomic numbers for photon interaction (ZPIeff) of some low-Z substances of dosimetric interest such as A-150 tissue-equivalent plastic (A150TEP), alanine, bakelite, Gafchromic sensor (GS), plastic scintillator (PS), polyethylene, mylar, polystyrene, perspex, radiochromic dye film nylon base (RDF : NB), tissue-equivalent gas-methane based (TEG : MB) and tissue-equivalent gas-propane based (TEG : PB) have been calculated by a direct method in the energy region of 1 keV-20 MeV. Experimental mass attenuation coefficients and ZPIeff of some of these substances at selected photon energies of 26.34, 33.2, and 59.54 keV have been obtained and compared with theoretical values. The ZPEAeff and ZPIeff values steadily increases up to 6-15 keV, and then they steadily decrease up to 600-1500 keV for all the substances studied. From 1.5 MeV, the values increases with increase in energy up to 20 MeV. Significant differences up to 33.68% exist between ZPIeff and the ZPEAeff in the energy region of 10-150 keV. The single effective atomic numbers obtained using the program XMuDat (ZXMUDATeff ) are found to be significantly higher compared to those of ZPEAeff and ZPIeff values in the entire energy of interest for all the substances studied. The directly calculated ZPEAeff and ZPIeff values vary with energy compared to the energy-independent effective atomic numbers predicted by various theoretical expressions. The effects of absorption edges on effective atomic numbers and their variation with photon energy and the possibility of defining two set values of effective atomic numbers below the absorption edges of elements present in the composite substances are discussed
Two-potential eikonal approximation for electron-atom collisions
International Nuclear Information System (INIS)
The Glauber approximation is known to be in appreciable error at all angles when applied to the elastic electron-atom scattering at medium and lower energies. It is shown that this is not due to the frozen-target approximation but mainly a result of the inadequate semiclassical treatment of close-encounter collisions in the Glauber approximation. A simple method is proposed to correct this inadequacy and is applied to e-H elastic scattering at energies from 20 to 100 eV. A remarkable improvement over the Glauber approximation is obtained, and the results agree with experiments very well at all angles where measurements are available
Electronic effects in the length distribution of atom chains.
Crain, J N; Stiles, M D; Stroscio, J A; Pierce, D T
2006-04-21
Gold deposited on Si(553) leads to self-assembly of atomic chains, which are broken into finite segments by defects. Scanning tunneling microscopy is used to investigate the distribution of chain lengths and the correlation between defects separating the chains. The length distribution reveals oscillations that indicate changes in the cohesive energy as a function of chain length. We present a possible interpretation in terms of the electronic scattering vectors at the Fermi surface of the surface states. The pairwise correlation function between defects shows long-range correlations that extend beyond nearest-neighbor defects, indicating coupling between chains.
Detection of atomic force microscopy cantilever displacement with a transmitted electron beam
Wagner, R.; Woehl, T. J.; Keller, R. R.; Killgore, J. P.
2016-07-01
The response time of an atomic force microscopy (AFM) cantilever can be decreased by reducing cantilever size; however, the fastest AFM cantilevers are currently nearing the smallest size that can be detected with the conventional optical lever approach. Here, we demonstrate an electron beam detection scheme for measuring AFM cantilever oscillations. The oscillating AFM tip is positioned perpendicular to and in the path of a stationary focused nanometer sized electron beam. As the tip oscillates, the thickness of the material under the electron beam changes, causing a fluctuation in the number of scattered transmitted electrons that are detected. We demonstrate detection of sub-nanometer vibration amplitudes with an electron beam, providing a pathway for dynamic AFM with cantilevers that are orders of magnitude smaller and faster than the current state of the art.
Dynamical decoherence in a cavity with a large number of two-level atoms
Frasca, Marco
2003-01-01
We consider a large number of two-level atoms interacting with the mode of a cavity in the rotating-wave approximation (Tavis-Cummings model). We apply the Holstein-Primakoff transformation to study the model in the limit of the number of two-level atoms, all in their ground state, becoming very large. The unitary evolution that we obtain in this approximation is applied to a macroscopic superposition state showing that, when the coherent states forming the superposition are enough distant, t...
Electron capture in collisions of S4+ with atomic hydrogen
International Nuclear Information System (INIS)
Charge transfer processes due to collisions of ground state S4+(3s21S) ions with atomic hydrogen are investigated for energies between 1 meV u-1 and 10 MeV u-1 using the quantum mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC) and continuum distorted wave methods. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially stripped S3+ excited classical states. Hydrogen target isotope effects are explored and rate coefficients for temperatures between 100 and 106 K are also presented. (author)
Clusters of EAS with electron number >~ 10^4
Fomin, Y A; Zotov, M Yu; Fomin, Yu. A.
2002-01-01
We perform cluster analysis of arrival times of extensive air showers (EAS) registered with the EAS-1000 Prototype array in the period from August, 1997 till February, 1999. We present twenty cluster events each consisting of one or several EAS clusters, study the dynamics of their development, and analyze the angular distribution of EAS in clusters. We find that there may be certain correlation between EAS clusters with mean electron number $\\sim10^5$ on the one hand and gamma-ray bursts and ultrahigh energy cosmic rays on the other.
Voitkiv, A. B.; Najjari, B.; Shevelko, S. P.
2010-01-01
At impact energies $ \\stackrel{>}{\\sim}1$ GeV/u the projectile-electron excitation and loss occurring in collisions between highly charged ions and neutral atoms is already strongly influenced by the presence of atomic electrons. In order to treat these processes in collisions with heavy atoms we generalize the symmetric eikonal model, used earlier for considerations of electron transitions in ion-atom collisions within the scope of a three-body Coulomb problem. We show that at asymptotically...
Electron densities and alkali atoms in exoplanet atmospheres
Energy Technology Data Exchange (ETDEWEB)
Lavvas, P. [GSMA, Université de Reims Champagne Ardenne, CNRS UMR 7331, Reims, 51687 France (France); Koskinen, T.; Yelle, R. V., E-mail: panayotis.lavvas@univ-reims.fr [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85719 (United States)
2014-11-20
We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations, though, result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of clouds, which could potentially explain the observed HD 209458b alkali properties. We find that most of these scenarios cannot explain the observations, with the exception of a heterogeneous source (i.e., clouds or aerosols) under specific conditions, but we also note the discrepancies among the available observations.
Electronic Structure of Helium Atom in a Quantum Dot
Jayanta, K. Saha; Bhattacharyya, S.; T. K., Mukherjee
2016-03-01
Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) (n = 1-6) states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns (n = 2-5) and 2pnp (n = 2-5) configurations of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential due to the quantum dot. It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here. TKM Gratefully Acknowledges Financial Support under Grant No. 37(3)/14/27/2014-BRNS from the Department of Atomic Energy, BRNS, Government of India. SB Acknowledges Financial Support under Grant No. PSW-160/14-15(ERO) from University Grants Commission, Government of India
Electron densities and alkali atoms in exoplanet atmospheres
Lavvas, Panayotis; Yelle, Roger V
2014-01-01
We describe a detailed study on the properties of alkali atoms in extrasolar giant planets, and specifically focus on their role in generating the atmospheric free electron densities, as well as their impact on the transit depth observations. We focus our study on the case of HD 209458 b, and we show that photoionization produces a large electron density in the middle atmosphere that is about two orders of magnitude larger than the density anticipated from thermal ionization. Our purely photochemical calculations though result in a much larger transit depth for K than observed for this planet. This result does not change even if the roles of molecular chemistry and excited state chemistry are considered for the alkali atoms. In contrast, the model results for the case of exoplanet XO-2 b are in good agreement with the available observations. Given these results we discuss other possible scenarios, such as changes in the elemental abundances, changes in the temperature profiles, and the possible presence of cl...
Positron-Lithium Atom and Electron-Lithium Atom Scattering Systems at Intermediate and High Energies
Institute of Scientific and Technical Information of China (English)
K. Ratnavelu; S. Y. Ng
2006-01-01
@@ The coupled-channel optical method is used to study positron scattering by atomic lithium at energies ranging from the ionization threshold to 60 eV. The present method simultaneously treats the target channels and the positronium (Ps) channels in the coupled-channel method together with the continuum effects via an ab-initio optical potential. Ionization, elastic and inelastic cross sections in target channels, and the total cross section are also reported and compared with other theoretical and experimental data. A comparative study with the corresponding electron-lithium data is also reported.
International Nuclear Information System (INIS)
Full text: The technique of atom location by channelling enhanced microanalysis (ALCHEMI) using cross section data, measured as a function of electron beam orientation, has been widely implemented by many researchers. The accurate application of ALCHEMI, usually based on energy dispersive x-ray analysis (EDX), requires knowledge, from first principles, of the relative delocalization of the inner-shell ionization interaction (see for example Oxley and Allen, 1998; Oxley et al., 1999). Scanning transmission electron microscopy (STEM) based on electron energy loss spectroscopy (EELS) also provides information about the location of atoms of different types within the crystal lattice. Unlike high angle annular dark field (HAADF), EELS provides a unique signal for each atom type. In conjunction with highly focused probes, allowing near atomic resolution, this makes possible, in principle, the application of ALCHEMI like techniques to STEM images to determine the distribution of impurities within the unit cell. The accurate interpretation of STEM results requires that both the inner-shell ionization interaction and resulting ionization cross section or image be correctly modelled. We present model calculations demonstrating the in principle application of ALCHEMI type techniques to STEM images pertinent to EELS. The inner-shell ionisation interaction is modelled using Hartree-Fock wave functions to describe the atomic bound states and Hartree-Slater wave functions to describe the continuum states. The wave function within the crystal is calculated using boundary conditions appropriate for a highly focussed probe (Rossouw and Allen, 2001) and STEM images or ionisation cross sections are simulated using an inelastic cross section formulation that correctly accounts for the contribution from both dynamical electrons and those dechannelled by absorptive scattering processes such as thermal diffuse scattering (TDS). Copyright (2002) Australian Society for Electron Microscopy
Theoretical study of atoms by the electronic kinetic energy density and stress tensor density
Nozaki, Hiroo; Tachibana, Akitomo
2016-01-01
We analyze the electronic structure of atoms in the first, second and third periods using the electronic kinetic energy density and stress tensor density, which are local quantities motivated by quantum field theoretic consideration, specifically the rigged quantum electrodynamics. We compute the zero surfaces of the electronic kinetic energy density, which we call the electronic interfaces, of the atoms. We find that their sizes exhibit clear periodicity and are comparable to the conventional atomic and ionic radii. We also compute the electronic stress tensor density and its divergence, tension density, of the atoms, and discuss how their electronic structures are characterized by them.
PREPARATION OF OXALATES OF METALS OF ATOMIC NUMBER GREATER THAN 88
Duffield, R.B.
1959-02-01
A method is presented for the preparation of oxalates of metals of atomic number greater than 88. A solid peroxide of the heavy metal is contacted with an aqueous oxalic acid solution ai a temperature of about 50 C for a period of time sufficient to form the insoluble metal oxalate which is subsequentiy recovered as a pures crystalline compound.
The effective atomic numbers of some biomolecules calculated by two methods: A comparative study
DEFF Research Database (Denmark)
Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif
2009-01-01
The effective atomic numbers Z(eff) of some fatty acids and amino acids have been calculated by two numerical methods, a direct method and an interpolation method, in the energy range of 1 keV-20 MeV. The notion of Z(eff) is given a new meaning by using a modern database of photon interaction cross...
Moreno, Luis F.; Hincapié, Gina; Alzate, María Victoria
2014-01-01
Cheminoes is a didactic game that enables the meaningful learning of some relations between concepts such as chemical element, valence, atomic number, and chemical symbol for the first 36 chemical elements of the periodic system. Among the students who have played the game, their opinions of the activity were positive, considering the game to be a…
Selected K and L X-Ray mass attenuation coefficients for low atomic number materials
International Nuclear Information System (INIS)
X-ray attenuation coefficients for low atomic mumbers elements were obtained for characteristic K and L X-ray of a number of selected elements using the fitting of a third degree polynomial to the values tabulated by Storm and Israel
Low-energy electron elastic scattering from Os atom: New electron affinity
Felfli, Z.; Kiros, F.; Msezane, A. Z.
2013-05-01
Bilodeau and Haugan measured the binding energies (BEs) of the ground state and the excited state of the Os- ion to be 1.07780(12) eV and 0.553(3) eV, respectively. These values are consistent with those calculated in. Here our investigation, using the recent complex angular momentum methodology wherein is embedded the crucial electron-electron correlations and the vital core polarization interaction, has found that the near threshold electron-Os elastic scattering total cross section (TCS) is characterized by three stable bound states of the Os- ion formed as resonances during the slow electron collision, with BEs of 1.910 eV, 1.230 eV and 0.224 eV. The new extracted electron affinity (EA) value from the TCS of 1.910 eV for the Os atom is significantly different from that measured in. Our calculated elastic differential cross sections (DCSs) also yield the relevant BEs for the ground and the two excited states of the Os- ion. The complex characteristic resonance structure in the TCS for the Os atom is ideal for catalysis, but makes it difficult to execute the Wigner threshold law in describing the threshold detachment behavior of complex atoms and extracting the reliable attendant EAs. Supported by U.S. DOE, AFOSR and CAU CFNM, NSF-CREST Program.
Effective atomic number and mass attenuation coefficient of PbO-BaO-B2O3 glass system
Issa, Shams A. M.
2016-03-01
Gamma-rays attenuation coefficient, half-value layer, mean free path, effective atomic number and electron density have been measured in glass system of xPbO-(50-x) BaO-50B2O3 (where 5≤x≤45 mol%) for gamma ray photon energies of 0.356, 0.662, 1.173 and 1.33 MeV. The emitted gamma ray was detected by 3×3 in. NaI(Tl) scintillation gamma ray spectrometers. The results were found in good agreement with the theoretical values which calculated from WinXcom.
Winter, H.; Lederer, S.; Maass, K.; Mertens, A.; Aumayr, F.; Winter, HP
2002-08-01
The energy loss of kilo-electronvolt hydrogen atoms for scattering from a LiF(001) surface under a grazing angle of incidence is measured in coincidence with the number of emitted electrons. The combined time-of-flight and electron number distributions show discrete features which are attributed to specific numbers for emitted electrons and production of surface excitons. The distributions are fairly well reproduced in terms of binomial distributions. The corresponding probabilities for electron and exciton production can consistently be related to a model where the formation of negative hydrogen atoms via local electron capture from halogen lattice sites is considered as a precursor for both processes.
Electron dynamics in the carbon atom induced by spin-orbit interaction
Rey, H F
2014-01-01
We use R-Matrix theory with Time dependence (RMT) to investigate multiphoton ionization of ground-state atomic carbon with initial orbital magnetic quantum number $M_L$=0 and $M_L$=1 at a laser wavelength of 390 nm and peak intensity of 10$^{14}$ W cm$^{-2}$. Significant differences in ionization yield and ejected-electron momentum distribution are observed between the two values for $M_L$. We use our theoretical results to model how the spin-orbit interaction affects electron emission along the laser polarization axis. Under the assumption that an initial C atom is prepared at zero time delay with $M_L=0$, the dynamics with respect to time delay of an ionizing probe pulse modelled using RMT theory is found to be in good agreement with available experimental data.
Secondary electron emission from Au by medium energy atomic and molecular ions
Itoh, A; Obata, F; Hamamoto, Y; Yogo, A
2002-01-01
Number distributions of secondary electrons emitted from a Au metal surface have been measured for atomic and molecular ions of H sup + , He sup + , C sup + , N sup + , O sup + , H sup + sub 2 , H sup + sub 3 , HeH sup + , CO sup + and O sup + sub 2 in the energy range 0.3-2.0 MeV. The emission statistics obtained are described fairly well by a Polya function. The Polya parameter b, determining the distribution shape, is found to decrease monotonously with increasing emission yield gamma, revealing a surprising relationship of b gamma approx 1 over the different projectile species and impact energies. This finding supports certainly the electron cascading model. Also we find a strong negative molecular effect for heavier molecular ions, showing a significant reduction of gamma compared to the estimated values using constituent atomic projectile data.
Handshake electron transfer from hydrogen Rydberg atoms incident at a series of metallic thin films
Gibbard, Jemma A
2016-01-01
Thin metallic films have a 1D quantum well along the surface normal direction, which yields particle-in-a-box style electronic quantum states. However the quantum well is not infinitely deep and the wavefunctions of these states penetrate outside the surface where the electron is bound by its own image-charge attraction. Therefore a series of discrete, vacant states reach out from the thin film into the vacuum increasing the probability of electron transfer from an external atom or molecule to the thin film, especially for the resonant case where the quantum well energy matches that of the Rydberg atom. We show that `handshake' electron transfer from a highly excited Rydberg atom to these thin-film states is experimentally measurable. Thicker films, have a wider 1D box, changing the energetic distribution and image-state contribution to the thin film wavefunctions, resulting in more resonances. Calculations successfully predict the number of resonances and the nature of the thin-film wavefunctions for a given...
International Nuclear Information System (INIS)
A bibliographies of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for xenon (Xe). About 1180 papers were compiled. A comprehensive author index is included. The bibliography covers the period 1921 through 2000 for Xe. Finally, author's recommended Xe electron collision cross section set is given by number tables. (author)
Low-voltage coherent electron imaging based on a single-atom electron
Chang, Wei-Tse; Hsu, Wei-Hao; Chang, Mu-Tung; Chen, Yi-Sheng; Hwu, En-Te; Hwang, Ing-Shouh
2015-01-01
It has been a general trend to develop low-voltage electron microscopes due to their high imaging contrast of the sample and low radiation damage. Atom-resolved transmission electron microscopes with voltages as low as 15-40 kV have been demonstrated. However, achieving atomic resolution at voltages lower than 10 kV is extremely difficult. An alternative approach is coherent imaging or phase retrieval imaging, which requires a sufficiently coherent source and an adequately small detection area on the sample as well as the detection of high-angle diffracted patterns with a sufficient resolution. In this work, we propose several transmission-type schemes to achieve coherent imaging of thin materials (less than 5 nm thick) with atomic resolution at voltages lower than 10 kV. Experimental schemes of both lens-less and lens-containing designs are presented and the advantages and challenges of these schemes are discussed. Preliminary results based on a highly coherent single-atom electron source are presented. The ...
Temperature and number evolution of cold cesium atoms inside a glass cell
Huang, J Q; Wang, S G; Wang, Z B; Wang, L J
2015-01-01
We report an experimental study on the temperature and number evolution of the cold cesium atoms diffusively cooled inside a wall-coated glass cell by measuring the absorption profile of the 62S1/2 (F=4)-62P3/2 (F'=5) transition line with a weak probe laser in the evolution process. We found that the temperature of the cold atoms first gradually decreases from 16 mK to 9 mK, and then rapidly increases. A theoretical model of the number evolution is built, which includes the temperature of the cold atoms and the fraction p of the cold cesium atoms elastically reflected by the cell wall. The theoretical model is consistent with the experimental result very well, and the fraction p is obtained to be (0.58 +/- 0.03), which reveals that the cold cesium atoms are not all heated to the ambient temperature by a single collision with the cell wall.
Bezugly, Viktor; Wielgus, Pawel; Wagner, Frank R; Kohout, Miroslav; Grin, Yuri
2008-06-01
Electron localizability indicators based on the same-spin electron pair density and the opposite-spin electron pair density are studied for correlated wavefunctions of the argon atom. Different basis sets and reference spaces are used for the multireference configuration interaction method following the complete active space calculations aiming at the understanding of the effect of local electron correlation when approaching the exact wavefunction. The populations of the three atomic shells of Ar atom in real space are calculated for each case.
Electron emission from a two-dimensional crystal with atomic thickness
Xianlong Wei; Qing Chen; Lianmao Peng
2013-01-01
Electron emission from a two-dimensional (2D) crystal with atomic thickness is theoretically studied with all the features associated with the low dimensionality and the atomic thickness being well considered. It is shown that, the atomic thickness results in quantum confinement of electrons in the crystal along thickness direction, and consequently two different ways of electron emission from it without and with quantum confinement of electrons normal to emission boundary: edge emission and ...
Ten-no, Seiichiro; Iwata, Suehiro
1996-09-01
We present a multiconfiguration self-consistent field (MCSCF) procedure employing recently developed approximations for electron repulsion integrals. Molecular charge distributions in the two-electron interaction part are expanded into atomic-electron distributions without linear dependencies, and the four-center quantities of electron repulsion integrals are reduced to two- and three-center quantities. The method is plugged into the approximate second-order MCSCF procedure and applied to calculations of the HNO molecule. This procedure enables us to reduce the CPU time of the integral transformation step which is usually the most time consuming. It is also shown that the present approximation is very accurate not only for the ground state but also for the low-lying excited states, even after a substantial reduction of the number of required integrals.
Shevlin, S A
2001-01-01
transport properties of the line are also calculated. Finally we find which of the two models of the (4x1)-Si(111)-ln reconstruction is thermodynamically favoured in a supercell geometry. We use ab initio plane wave techniques in the Local-Density-Approximation, and calculate and compare the electronic structure of the two models with respect to the characteristic energies for electron dispersion along and across the chain structures. We also consider the effects of electronic structure on the in-plane transport properties of the indium lines. The structural and electronic properties of several candidate atomic scale wires are analysed. Three candidates are studied: the trans-polyacetylene molecule, the silicon line on the (001) face of cubic silicon carbide (the (nx2) series of reconstructions) and the indium chain on the (111) face of silicon carbide (the (4x1) reconstruction). We use the polyacetylene molecule as a test-bed for the techniques that we use to calculate transport properties in an empirically ...
Reactive scattering of electronically excited alkali atoms with molecules
International Nuclear Information System (INIS)
Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl- repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O2 is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO2 is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed
K-LL Auger transition probabilities for elements with low and intermediate atomic numbers
Chen, M. H.; Crasemann, B.
1973-01-01
Radiationless K-LL transition probabilities have been calculated nonrelativistically in j-j coupling and in intermediate coupling, without and with configuration interaction, for elements with atomic numbers from 13 to 47. The system is treated as a coupled two-hole configuration. The single-particle radial wave functions required in the calculation of radial matrix elements, and in the calculation of mixing coefficients in the intermediate-coupling scheme, were obtained from Green's atomic independent-particle model. Comparison with previous theoretical work and with experimental data is made. The effects of intermediate coupling, configuration interaction, and relativity are noted.
An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements
Ross, H. Richard
1993-01-01
A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.
Analogs of Basic Electronic Circuit Elements in a Free-Space Atom Chip
Lee, Jeffrey G.; McIlvain, Brian J.; Lobb, C. J.; Hill, W. T., III
2013-01-01
Using a thermal sample of laser-cooled rubidium atoms, we have constructed a neutral-atom circuit analogous to an electronic capacitor discharged through a resistor. The atoms are confined using what we call a free-space atom chip, an optical dipole trap created using a generalized phase-contrast imaging technique. We have also calculated theoretical values for the capacitance and resistance, which agree with our experiments, as well as theoretical value for an atomic analog of electrical inductance. We show that atomic capacitance is analogous to the quantum capacitance, the atomic resistance is analogous to the ballistic, or Sharvin resistance, and the atomic inductance is analogous to kinetic inductance.
Electron-impact ionization of the N atom
International Nuclear Information System (INIS)
Electron-impact ionization cross sections for the ground and excited states of the N atom are calculated using the non-perturbative R-matrix with pseudo-states and time-dependent close-coupling (TDCC) methods, as well as the perturbative distorted-wave method. The TDCC and distorted-wave results for the 1s22s22p23l (l=0−2) excited configurations are much larger than for the ground configuration. In all cases the TDCC results are substantially lower than the distorted-wave results. The ionization cross section results will lead to a better understanding of moderately dense astrophysical and laboratory plasmas containing nitrogen. (paper)
Electronic and Atomic-Scale Properties of Ultraflat CVD Graphene
Gutierrez, Christopher; Rosenthal, Ethan; Dadgar, Ali; Brown, Lola; Lochocki, Edward; Shen, Kyle; Park, Jiwoong; Pasupathy, Abhay
2014-03-01
Chemical vapor deposition (CVD) growth on copper foils has proven to be a reliable and cost-effective method for the production of graphene. However, most films grown by this method suffer from misoriented graphene grains as well as topographic roughness due to the polycrystallinity of the underlying copper foil substrate. Recent methods of copper foil treatment have allowed for the growth of graphene predominantly on large single crystal Cu(111) facets. In this talk we discuss scanning tunneling microscope (STM) measurements on such samples that reveal large terraces and atomically-resolved images that allow us to analyze the graphene-copper interaction during the growth. Scanning tunneling spectroscopy (STS) measurements and mapping are further employed to probe the electronic interaction between the graphene and copper substrate.
Atomic and electronic structure of surfaces theoretical foundations
Lannoo, Michel
1991-01-01
Surfaces and interfaces play an increasingly important role in today's solid state devices. In this book the reader is introduced, in a didactic manner, to the essential theoretical aspects of the atomic and electronic structure of surfaces and interfaces. The book does not pretend to give a complete overview of contemporary problems and methods. Instead, the authors strive to provide simple but qualitatively useful arguments that apply to a wide variety of cases. The emphasis of the book is on semiconductor surfaces and interfaces but it also includes a thorough treatment of transition metals, a general discussion of phonon dispersion curves, and examples of large computational calculations. The exercises accompanying every chapter will be of great benefit to the student.
The effect of atoms excited by electron beam on metal evaporation
Xie Guo Feng; Ying Chun Tong
2002-01-01
In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases
Atomic and electronic structure of MoS2 nanoparticles
Bollinger, Mikkel; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet
2003-01-01
Using density-functional theory (DFT) we present a detailed theoretical study of MoS2 nanoparticles. We focus on the edge structures, and a number of different edge terminations are investigated. Several, but not all, of these configurations have one-dimensional metallic states localized at the edges. The electronic structure of the edge states is studied and we discuss their influence on the chemical properties of the edges. In particular, we study the reactivity towards hydrogen and show th...
Energy Technology Data Exchange (ETDEWEB)
De Backer, A.; Martinez, G.T. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); MacArthur, K.E.; Jones, L. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Béché, A. [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Nellist, P.D. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)
2015-04-15
Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. - Highlights: • Limited size and beam sensitivity of nano-particles challenge their quantification. • Keeping the electron dose to a minimum is therefore important. • Reliability of quantitative ADF STEM for atom-counting is demonstrated. • Limits for single atom sensitivity are discussed. • Limits are diagnosed by combining simulations and a statistical method.
Directory of Open Access Journals (Sweden)
Robert F. Tournier
2014-08-01
Full Text Available A few experiments have detected icosahedral superclusters in undercooled liquids. These superclusters survive above the crystal melting temperature Tm because all their surface atoms have the same fusion heat as their core atoms, and are melted by liquid homogeneous and heterogeneous nucleation in their core, depending on superheating time and temperature. They act as heterogeneous growth nuclei of crystallized phase at a temperature Tc of the undercooled melt. They contribute to the critical barrier reduction, which becomes smaller than that of crystals containing the same atom number n. After strong superheating, the undercooling rate is still limited because the nucleation of 13-atom superclusters always reduces this barrier, and increases Tc above a homogeneous nucleation temperature equal to Tm/3 in liquid elements. After weak superheating, the most stable superclusters containing n = 13, 55, 147, 309 and 561 atoms survive or melt and determine Tc during undercooling, depending on n and sample volume. The experimental nucleation temperatures Tc of 32 liquid elements and the supercluster melting temperatures are predicted with sample volumes varying by 18 orders of magnitude. The classical Gibbs free energy change is used, adding an enthalpy saving related to the Laplace pressure change associated with supercluster formation, which is quantified for n = 13 and 55.
The atomic and electronic structure of dislocations in Ga based nitride semiconductors
BELABBAS, Imad; Ruterana, Pierre; Chen, Jun; NOUET, Gérard
2006-01-01
Abstract The atomic and electronic properties of dislocations in III-N semiconductor layers, especially GaN are presented. The atomic structure of the edge threading dislocation is now well established with three different cores (8 or full core, 5/7 or open core and 4 atom ring). The use of atomistic simulations has confirmed these atomic structures and has given a good understanding of the electronic structure of the screw dislocation. Partial dislocations which are mostly confin...
Towards weighing individual atoms by high-angle scattering of electrons
Energy Technology Data Exchange (ETDEWEB)
Argentero, G.; Mangler, C.; Kotakoski, J.; Eder, F.R.; Meyer, J.C., E-mail: Jannik.Meyer@univie.ac.at
2015-04-15
We consider theoretically the energy loss of electrons scattered to high angles when assuming that the primary beam can be limited to a single atom. We discuss the possibility of identifying the isotopes of light elements and of extracting information about phonons in this signal. The energy loss is related to the mass of the much heavier nucleus, and is spread out due to atomic vibrations. Importantly, while the width of the broadening is much larger than the energy separation of isotopes, only the shift in the peak positions must be detected if the beam is limited to a single atom. We conclude that the experimental case will be challenging but is not excluded by the physical principles as far as considered here. Moreover, the initial experiments demonstrate that the separation of gold and carbon based on a signal that is related to their mass, rather than their atomic number. - Highlights: • We explore how energy loss spectroscopy could be used to obtain information about the mass, rather than the charge, of atoms. • The dose and precision that would be needed to distinguish between the two isotopes of carbon, C12 and C13, is estimated. • Signal broadening due to phonons is included in the calculation. • Initial experiments show the separation between gold and carbon based on their mass rather than charge.
Correlated electron-ion dynamics: the excitation of atomic motion by energetic electrons
International Nuclear Information System (INIS)
Correlated electron-ion dynamics (CEID) is an extension of molecular dynamics that allows us to introduce in a correct manner the exchange of energy between electrons and ions. The formalism is based on a systematic approximation: small amplitude moment expansion. This formalism is extended here to include the explicit quantum spread of the ions and a generalization of the Hartree-Fock approximation for incoherent sums of Slater determinants. We demonstrate that the resultant dynamical equations reproduce analytically the selection rules for inelastic electron-phonon scattering from perturbation theory, which control the mutually driven excitations of the two interacting subsystems. We then use CEID to make direct numerical simulations of inelastic current-voltage spectroscopy in atomic wires, and to exhibit the crossover from ionic cooling to heating as a function of the relative degree of excitation of the electronic and ionic subsystems
Single electron capture in fast ion-atom collisions
Milojević, Nenad
2014-12-01
Single-electron capture cross sections in collisions between fast bare projectiles and heliumlike atomic systems are investigated by means of the four-body boundary-corrected first Born (CB1-4B) approximation. The prior and post transition amplitudes for single charge exchange encompassing symmetric and asymmetric collisions are derived in terms of twodimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The dielectronic interaction V12 = 1/r12 = 1/|r1 - r2| explicitly appears in the complete perturbation potential Vf of the post transition probability amplitude T+if. An illustrative computation is performed involving state-selective and total single capture cross sections for the p - He (prior and post form) and He2+, Li3+Be4+B5+C6+ - He (prior form) collisions at intermediate and high impact energies. We have also studied differential cross sections in prior and post form for single electron transfer from helium by protons. The role of dynamic correlations is examined as a function of increased projectile energy. Detailed comparisons with the measurements are carried out and the obtained theoretical cross sections are in reasonable agreement with the available experimental data.
Dynamical decoherence in a cavity with a large number of two-level atoms
Frasca, M
2004-01-01
We consider a large number of two-level atoms interacting with the mode of a cavity in the rotating-wave approximation (Tavis-Cummings model). We apply the Holstein-Primakoff transformation to study the model in the limit of the number of two-level atoms, all in their ground state, becoming very large. The unitary evolution that we obtain in this approximation is applied to a macroscopic superposition state showing that, when the coherent states forming the superposition are enough distant, then the state collapses on a single coherent state describing a classical radiation mode. This appear as a true dynamical effect that could be observed in experiments with cavities.
Quantum number dimensional scaling analysis for excited states of multielectron atoms
Murawski, R K; Murawski, Robert K.; Svidzinsky, Anatoly A.
2006-01-01
A new dimensional scaling method for the calculation of excited states of multielectron atoms is introduced. By including the principle and orbital quantum numbers in the dimension parameter, we obtain an energy expression for excited states including high angular momentum states. The method is tested on He, Li, and Be. We obtain good agreement with more orthodox quantum mechanical treatments even in the zeroth order.
Some new developments in the field of high atomic number semiconductor materials
International Nuclear Information System (INIS)
A presentation of the main properties of high atomic number materials able to work as room temperature dectectors is made, including present status of synthesis. We summarize some applications in nuclear medical probe, tomography scanners, dosimetry and instrumentation. Mainly focused on CdTe and Hg I2 in monocrystal form the presentation will include some industrial applications. Hg I2 is also presented as a photodetector associated with scintillators
Improved atom number with a dual color magneto-optical trap
Institute of Scientific and Technical Information of China (English)
Cao Qiang; Luo Xin-Yu; Gao Kui-Yi; Wang Xiao-Rui; Chen Dong-Min; Wang Ru-Quan
2012-01-01
We demonstrate a novel dual color magneto-optical trap (MOT),which uses two sets of overlapping laser beams to cool and trap 87Rb atoms.The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams.Our experiment shows that the dual color MOT has the same loading rate as the normal MOT,but much longer loading time,leading to threefold increase in the number of trapped atoms.This indicates that the larger number is caused by reduced light induced loss.The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required,such as single chamber quantum memory and Bose Einstein condensation (BEC) experiments.Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique,our approach is technically simpler and more suitable to low power laser systems.
Frolov, Alexei M
2016-01-01
We discuss a possibility to observe fast secondary electrons ($\\delta-$electrons) during nuclear $\\beta^{-}$-decay in few-electron atoms and ions. Formulas for the corresponding probabilities and explicit expression for the energy spectrum of $\\delta-$electrons are derived in the closed analytical forms.
Béguin, J -B; Christensen, S L; Sørensen, H L; Müller, J H; Appel, J; Polzik, E S
2014-01-01
We demonstrate preparation and detection of an atom number distribution in a one-dimensional atomic lattice with the variance $-14$ dB below the Poissonian noise level. A mesoscopic ensemble containing a few thousand atoms is trapped in the evanescent field of a nanofiber. The atom number is measured through dual-color homodyne interferometry with a pW-power shot noise limited probe. Strong coupling of the evanescent probe guided by the nanofiber allows for a real-time measurement with a precision of $\\pm 8$ atoms on an ensemble of some $10^3$ atoms in a one-dimensional trap. The method is very well suited for generating collective atomic entangled or spin-squeezed states via a quantum non-demolition measurement as well as for tomography of exotic atomic states in a one-dimensional lattice.
Effective atomic number of dental smalt; Numero atomico efetivo do esmalte dentario
Energy Technology Data Exchange (ETDEWEB)
Rodas D, J.E.; Nogueira, M.S. [Departamento de Fisica e Matematica da FFCLRP-USP. 14040-901 Ribeirao Preto, Sao Paulo (Brazil)
1998-12-31
The effective atomic numbers Z are enough utilized for to characterize the interactions of ionizing radiation with matter. Particularly for the Z calculation in biological tissues and/or composed materials we need to know the relationship between the cross sections of the diverse radiations interactions with mattera and the atomic numbers Z of the constituent elements in the tissue or composed material. Normally the cross section by atom {sigma} {sup 2} is proportional to Z{sup m}. The m value depends of the iterative process type and the energy of the incident photons. In the case of the photoelectric interaction, the m vary will vary between 4,698 and 4,799 for energies between 10 to 200 keV. It was verified that constituent elements with high Z (>20) they had a major contribution. The m values for the Compton interation and the coherent scattering were calculated of similar way. Knowing the m values, we calculate the partials Z of a composed material. For the calculation of total Z, we can use alternatives starting from the equivalent atomic number corresponding to the total cross section {sigma} {sup d} tot, mc of the composed material. In this work for the calculation of Z values corresponding to diverse interations, we applied a linear regression at the values of Ln {sigma} {sup a} x LnZ for different energies. In general, to characterize a simulator material of a tissue or composed material we need to know the total Z in function of the photon energy applied to dental smalt increases until some hundreds of keV the partial values of Z owing to photoelectric effect and the coherent scattering this is owing to the smalt has a great concentration of elements with high Z. (Author)
Wilson, S.
1977-01-01
A method is presented for the determination of the representation matrices of the spin permutation group (symmetric group), a detailed knowledge of these matrices being required in the study of the electronic structure of atoms and molecules. The method is characterized by the use of two different coupling schemes. Unlike the Yamanouchi spin algebraic scheme, the method is not recursive. The matrices for the fundamental transpositions can be written down directly in one of the two bases. The method results in a computationally significant reduction in the number of matrix elements that have to be stored when compared with, say, the standard Young tableaux group theoretical approach.
A vortex line for K-shell ionization of a carbon atom by electron impact
Ward, S. J.; Macek, J. H.
2014-10-01
We obtained using the Coulomb-Born approximation a deep minimum in the TDCS for K-shell ionization of a carbon atom by electron impact for the electron ejected in the scattering plane. The minimum is obtained for the kinematics of the energy of incident electron Ei = 1801.2 eV, the scattering angle θf = 4°, the energy of the ejected electron Ek = 5 . 5 eV, and the angle for the ejected electron θk = 239°. This minimum is due to a vortex in the velocity field. At the position of the vortex, the nodal lines of Re [ T ] and Im [ T ] intersect. We decomposed the CB1 T-matrix into its multipole components for the kinematics of a vortex, taking the z'-axis parallel to the direction of the momentum transfer vector. The m = +/- 1 dipole components are necessary to obtain a vortex. We also considered the electron to be ejected out of the scattering plane and obtained the positions of the vortex for different values of the y-component of momentum of the ejected electron, ky. We constructed the vortex line for the kinematics of Ei = 1801.2 eV and θf = 4°. S.J.W. and J.H.M. acknowledge support from NSF under Grant No. PHYS- 0968638 and from D.O.E. under Grant Number DE-FG02-02ER15283, respectively.
Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact
Attaourti, Y
2004-01-01
Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the $(e,2e)$ reaction and in the presence of a circularly polarized laser field, we introduce as a first step the DVRPWBA1 (Dirac-Volkov Plane Wave Born Approximation1) where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the DVRPWBA2 (Dirac-Volkov Plane Wave Born Approximation2) where we take totally into account the relativistic dressing of the incident, scattered and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the non relativistic and the relativistic regime.
International Nuclear Information System (INIS)
The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed in detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials
Energy Technology Data Exchange (ETDEWEB)
Lee, Y.S.
1977-11-01
The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed in detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.
The role of electronic excitation in cold atom-ion chemistry
Sullivan, Scott T.; Rellergert, Wade G.; Kotochigova, Svetlana; Hudson, Eric R.
2012-01-01
The role of electronic excitation in charge exchange chemical reactions between ultracold Ca atoms and Ba$^+$ ions, confined in a hybrid trap, is studied. This prototypical system is energetically precluded from reacting in its ground state, allowing a particularly simple interpretation of the influence of electronic excitation. It is found that while electronic excitation of the ion can critically influence the chemical reaction rate, electronic excitation of the neutral atom is less importa...
Metastable states' population of uranium atoms produced by electron-beam heating
Energy Technology Data Exchange (ETDEWEB)
Ohba, Hironori; Shibata, Takemasa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nishimura, Akihiko; Ogura, Koichi [Japan Atomic Energy Research Inst., Kansai Research Establishment, Advanced Photon Research Center, Kyoto (Japan)
2000-08-01
The metastable states' population densities of uranium atoms produced by electron-beam heating were measured by the laser induced fluorescence method. The atomic excitation temperature derived from the metastable state distribution was lower than the evaporation surface temperature. With increasing deposition rate, the atomic excitation temperature decreased to about 2000 K. (author)
Multiple Electron Capture Processes in Slow Collisions of Ar9＋ Ions with Na Atoms
Institute of Scientific and Technical Information of China (English)
ZhuXiaolong; ShaShan; LiuHuiping; WeiBaoren; MaXinwen; WangZhengling; CaoShiping; QianDongbing; YangZhihu
2003-01-01
Slow collisions of highly charged ions with neutral atoms and molecules are of great importance in basic atomic collision physics, Recently, we built a new research facility for atomic physics at the Institute of Modern Physics. We report here the multiple electron transfer processes in collisions of Ar9+ with Na gas target at energy of 180 keV.
Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source
Energy Technology Data Exchange (ETDEWEB)
Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)
2016-03-15
In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.
Conduction of molecular electronic devices: Qualitative insights through atom-atom polarizabilities
Energy Technology Data Exchange (ETDEWEB)
Stuyver, T.; Fias, S., E-mail: sfias@vub.ac.be; De Proft, F.; Geerlings, P. [ALGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel (Belgium); Fowler, P. W. [Department of Chemistry, University of Sheffield, Sheffield S3 7HF (United Kingdom)
2015-03-07
The atom-atom polarizability and the transmission probability at the Fermi level, as obtained through the source-and-sink-potential method for every possible configuration of contacts simultaneously, are compared for polycyclic aromatic compounds. This comparison leads to the conjecture that a positive atom-atom polarizability is a necessary condition for transmission to take place in alternant hydrocarbons without non-bonding orbitals and that the relative transmission probability for different configurations of the contacts can be predicted by analyzing the corresponding atom-atom polarizability. A theoretical link between the two considered properties is derived, leading to a mathematical explanation for the observed trends for transmission based on the atom-atom polarizability.
International Nuclear Information System (INIS)
A comprehensive and critically assessed cross section database for the inelastic collision processes of ground state and excited helium atoms colliding with electrons, protons and multiply-charged ions has been prepared at the Data and Planning Center at NIFS. The present report describes the first part of the database containing the recommended data for electron impact excitation and ionization of neutral helium. An states (atomic terms) with n ≤ 4 are treated individually while the states with n > 4 are considered degenerate. For the processes involving transitions to and from n > 4 levels, suitable cross section scaling relations are presented. For a large number of electron impact transitions, both from the ground and excited states, new convergent close coupling (CCC) calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in a graphical form. (author)
International Nuclear Information System (INIS)
In consideration the radiological properties of materials and studying the scattering processes in atomic and nuclear physics, the effective atomic and mass numbers is widely employed. These numbers have been calculated for any mixed or composite materials in interaction with high energy photons (Linac in radiation therapy). A pair equation in terms of these numbers is obtained. The first equation has been derived from the conservation of mass energy law and the second by minimizing the binding energy from the semiempirical mass formula (Myers and Swiatecki formula) that gives a relation between atomic and mass numbers for stable nuclei approximately. By these equations one can obtain the effective atomic and mass numbers for any compound or mixed materials uniquely. These numbers are calculated for some materials and compared with the other studies. (author)
Directory of Open Access Journals (Sweden)
Alberto Milani
2015-02-01
Full Text Available Graphene, nanotubes and other carbon nanostructures have shown potential as candidates for advanced technological applications due to the different coordination of carbon atoms and to the possibility of π-conjugation. In this context, atomic-scale wires comprised of sp-hybridized carbon atoms represent ideal 1D systems to potentially downscale devices to the atomic level. Carbon-atom wires (CAWs can be arranged in two possible structures: a sequence of double bonds (cumulenes, resulting in a 1D metal, or an alternating sequence of single–triple bonds (polyynes, expected to show semiconducting properties. The electronic and optical properties of CAWs can be finely tuned by controlling the wire length (i.e., the number of carbon atoms and the type of termination (e.g., atom, molecular group or nanostructure. Although linear, sp-hybridized carbon systems are still considered elusive and unstable materials, a number of nanostructures consisting of sp-carbon wires have been produced and characterized to date. In this short review, we present the main CAW synthesis techniques and stabilization strategies and we discuss the current status of the understanding of their structural, electronic and vibrational properties with particular attention to how these properties are related to one another. We focus on the use of vibrational spectroscopy to provide information on the structural and electronic properties of the system (e.g., determination of wire length. Moreover, by employing Raman spectroscopy and surface enhanced Raman scattering in combination with the support of first principles calculations, we show that a detailed understanding of the charge transfer between CAWs and metal nanoparticles may open the possibility to tune the electronic structure from alternating to equalized bonds.
Critical radius and critical number of gas atoms for cavities containing a Van der Waals gas
International Nuclear Information System (INIS)
The effect of gas on void nucleation and growth is particularly important for structural materials in fusion reactors because of the high production of helium by neutron-induced transmutation reactions. Gas reduces the critical radius for bias driven growth and there is a critical number of gas atoms, n/sub g/*, at which the critical radius is reduced essentially to zero. The significance of this is that the time interval to the accumulation of n/sub g/* gas atoms may determine the time to the onset of bias driven swelling where n/sub g/* is large. In previous papers these critical quantities were given for an ideal gas. Recently, we presented the results for a Van der Waals gas. Here the derivation of these relations is presented and further results of calculations are given. At low temperatures (high pressures) the results depart from those of the ideal gas, with the critical number affected more strongly than the critical radius. Comparisons are made with earlier calculations
Kurudirek, M.; Büyükyıldız, M.
2016-06-01
The Rayleigh to Compton scattering ratio (R/C) is a very convenient parameter, which can be utilized in material analysis and estimating effective atomic number (Zeff). In the case for a relatively low scattering angle, for which the energy of the Compton scattered photons is not very much different from that of incident photons, the corrections due to self-absorption for Rayleigh and Compton scattering will be roughly equal. Therefore, it enables a result to be obtained which is almost independent of X-ray attenuation inside the sample and it will depend only on the material under investigation. The most frequently used method for calculation of Zeff available in literature is plotting R/C of elements as a function of atomic number and constituting the best fit curve. From this fit curve, the respective Zeff can be determined using R/C of the material. In the present study, we report Zeff of different materials using different methods such as interpolation and direct methods as possible alternatives to the most common fitting method. The results were compared with the experiments wherever possible. The agreement between interpolation method and the fitting method was found to be very satisfactory as relative changes (%) were always less than 9% while the direct method results with somehow significantly higher values of Zeff when compared to the other methods.
Son, Sang-Kil; 10.1103/PhysRevA.85.063415
2013-01-01
When atoms and molecules are irradiated by an x-ray free-electron laser (XFEL), they are highly ionized via a sequence of one-photon ionization and relaxation processes. To describe the ionization dynamics during XFEL pulses, a rate equation model has been employed. Even though this model is straightforward for the case of light atoms, it generates a huge number of coupled rate equations for heavy atoms like xenon, which are not trivial to solve directly. Here, we employ the Monte Carlo method to address this problem and we investigate ionization dynamics of xenon atoms induced by XFEL pulses at a photon energy of 4500 eV. Charge state distributions, photo-/Auger electron spectra, and fluorescence spectra are presented for x-ray fluences of up to $10^{13}$ photons/$\\mu$m$^2$. With the photon energy of 4500 eV, xenon atoms can be ionized up to +44 through multiphoton absorption characterized by sequential one-photon single-electron interactions.
Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact
Chaudhry, Afzal
2011-01-01
Analysis of Excitation and Ionization of Atoms and Molecules by Electron Impact, by Afzal Chaudhry and Hans Kleinpoppen, describes in detail the measurements of the partial and total doubly differential cross sections for the multiple-ionization of rare gas atoms by electron impact. These measurements show, among other trends, the role of Auger transitions in the production of multiply ionized atoms in the region where the incident electron energy is sufficient to produce inner shell ionization. Other processes like Coster-Kronig transitions and shake off also contribute towards increasing the charge of the ions. As discussed in the book, an incident electron having energy of 6 keV, for example, in a collision with xenon atom can remove up to nine electrons! The measurements of doubly differential cross sections for the dissociative and non-dissociative ionization of hydrogen, sulfur dioxide and sulfur hexa fluoride molecular gases are also explored. The results of the measurements for the sulfur dioxide mole...
Time-evolution of many active electrons in slow ion-atom collisions
Energy Technology Data Exchange (ETDEWEB)
Runge, K.; Micha, D.A.
1996-05-01
The previously developed Eikonal/Time-dependent Hartree-Fock method is applied to slow ionic and atomic collisions involving many active electrons. The electronic density matrix is written in a basis of traveling atomic orbitals including s, p, and d-type atomic basis functions. One- and two-electron integrals are calculated in a static basis and transformed to the traveling basis. Electronic orbital polarization parameters are calculated during the collision to determine the degree of electonic orientation and alignment as a function of time. This method is currently being applied to slow collisions of hydrogen, alkali, alkali earth and rare gas atoms and ions, to calculate the time evolution of electronic energy and charge transfer, as well as orbital polarization.
On the proton exchange contribution to electron-hydrogen atom elastic scattering
International Nuclear Information System (INIS)
It is shown that the exchange contribution to the electron-proton potential Born term in elastic electron-hydrogen atom scattering arises as the non relativistic limit from the exchange of a proton between the two participant electrons - calculated from quantum electrodynamics including properly bound states (as solution of Bethe - Salpeter equation). (Author)
International Nuclear Information System (INIS)
In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90o (x=0.99 A-1). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Zeff) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Zeff of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.
Energy Technology Data Exchange (ETDEWEB)
Antoniassi, M.; Conceicao, A.L.C. [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil); Poletti, M.E., E-mail: poletti@ffclrp.usp.br [Departamento de Fisica e Matematica, Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo (Brazil)
2011-10-01
In this work we have measured Compton and Rayleigh scattering radiation from normal (adipose and fibroglandular), benign (fibroadenoma) and malignant (ductal carcinoma) breast tissues using a monoenergetic beam of 17.44 keV and a scattering angle of 90{sup o} (x=0.99 A{sup -1}). A practical method using the area of Rayleigh and Compton scattering was used for determining the effective atomic number (Z{sub eff}) of the samples, being validated through measurements of several reference materials. The results show that there are differences in the distributions of Z{sub eff} of breast tissues, which are mainly related to the elemental composition of carbon (Z=6) and oxygen (Z=8) of each tissue type. The results suggest that is possible to use the method to characterize the breast tissues permitting study histological features of the breast tissues related to their elemental composition.
Atomic structure and electronic properties of the SixSb100-x phase-change memory material
DEFF Research Database (Denmark)
Verma, Ashok K.; Modak, Paritosh; Svane, Axel;
2011-01-01
The electronic and structural properties of SixSb100-x (x∼16) materials are investigated using first-principles molecular dynamics simulations. Crystalline-liquid-amorphous phase transitions are examined and remarkable changes in the local structure around the Si atoms are found. The average Si...... coordination number 6 (3 long + 3 short Si-Sb bonds) of the crystalline phase changes to 4 (3 long Si-Sb + 1 short Si-Si bonds) by preserving three Si-Sb bonds in both the liquid and the amorphous phases. In the amorphous phase ∼90% of the Si atoms are fourfold coordinated compared to 40% in the liquid. The...
Local atomic and electronic structure of boron chemical doping in monolayer graphene.
Zhao, Liuyan; Levendorf, Mark; Goncher, Scott; Schiros, Theanne; Pálová, Lucia; Zabet-Khosousi, Amir; Rim, Kwang Taeg; Gutiérrez, Christopher; Nordlund, Dennis; Jaye, Cherno; Hybertsen, Mark; Reichman, David; Flynn, George W; Park, Jiwoong; Pasupathy, Abhay N
2013-10-01
We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per dopant. Density functional theory calculations indicate that boron dopants interact strongly with the underlying copper substrate while nitrogen dopants do not. The local bonding differences between graphitic boron and nitrogen dopants lead to large scale differences in dopant distribution. The distribution of dopants is observed to be completely random in the case of boron, while nitrogen displays strong sublattice clustering. Structurally, nitrogen-doped graphene is relatively defect-free while boron-doped graphene films show a large number of Stone-Wales defects. These defects create local electronic resonances and cause electronic scattering, but do not electronically dope the graphene film. PMID:24032458
Rule, D. W.
1977-01-01
The first Born approximation (FBA) is applied to the calculation of single-electron-loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions are used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors are used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge is explored in the case of hydrogenlike ions. Also examined is the scaling of the cross section with respect to the target nuclear charge for electron loss by Fe(25+) in collision with neutral atoms ranging from H to Fe. These results are compared with those of the binary-encounter approximation (BEA) and with the FBA for the case of ionization by completely stripped target ions. Electron-loss cross sections are also calculated for the ions O(i+) (i = 3-7) and N(i+) (i = 0-6) in collision with He targets in the energy range of approximately 0.1 to 100 MeV/nucleon. These results are found to be in excellent agreement with the available data near the peak of the ionization cross section.
Additional Quantum Numbers for Electron Orbitals of Nanoparticles
Yarzhemsky, V. G.
2011-01-01
It is shown that in large symmetrical nanoparticles additional quantum numbers are required to label unambiguously symmetry adapted linear combinations of the wave functions. It is obtained that the labels of irreducible representations (IRs) of intermediate subgroups (between the whole symmetry group and local subgroup) can be used for complete classification of states in the case of repeating IRs. The examples of Oh and Ih groups are considered and the connection of additional quantum numbe...
Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets
Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.
2014-06-01
Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A
Dopita, Michael A; Nicholls, David C; Kewley, Lisa J; Vogt, Frédéric P A
2013-01-01
Recently, \\citet{Nicholls12}, inspired by \\emph{in situ} observations of solar system astrophysical plasmas, suggested that the electrons in \\HII regions are characterised by a $\\kappa$-distribution of electron energies rather than by a simple Maxwell-Boltzmann distribution. Here we have collected together the new atomic data within a modified photoionisation code to explore the effects of both the new atomic data and the $\\kappa$-distribution on the strong-line techniques used to determine chemical abundances in \\HII regions. By comparing the recombination temperatures ($T_{\\rm rec}$) with the forbidden line temperatures ($T_{\\rm FL}$) we conclude that $ \\kappa \\sim 20$. While representing only a mild deviation from equilibrium, this is sufficient to strongly influence abundances determined using methods which depend on measurements of the electron temperature from forbidden lines. We present a number of new emission line ratio diagnostics which cleanly separate the two parameters determining the optical spe...
Electron spin polarization in strong-field ionization of xenon atoms
Hartung, Alexander; Morales, Felipe; Kunitski, Maksim; Henrichs, Kevin; Laucke, Alina; Richter, Martin; Jahnke, Till; Kalinin, Anton; Schöffler, Markus; Schmidt, Lothar Ph. H.; Ivanov, Misha; Smirnova, Olga; Dörner, Reinhard
2016-08-01
As a fundamental property of the electron, the spin plays a decisive role in the electronic structure of matter, from solids to molecules and atoms, for example, by causing magnetism. Yet, despite its importance, the spin dynamics of the electrons released during the interaction of atoms with strong ultrashort laser pulses has remained experimentally unexplored. Here, we report the experimental detection of electron spin polarization by the strong-field ionization of xenon atoms and support our results with theoretical analysis. We found up to 30% spin polarization changing its sign with electron energy. This work opens the new dimension of spin to strong-field physics. It paves the way to the production of sub-femtosecond spin-polarized electron pulses with applications ranging from probing the magnetic properties of matter at ultrafast timescales to testing chiral molecular systems with sub-femtosecond temporal and sub-ångström spatial resolutions.
A novel route to Bose-Einstein condensation of two-electron atoms
Halder, Purbasha; Yang, Chih-Yun; Hemmerich, Andreas
2012-01-01
We present a novel route to Bose-Einstein condensation devised for two-electron atoms, which do not admit practicable cooling techniques based upon narrow intercombination lines. A dipole trap for $^{40}$Ca atoms in the singlet ground state is loaded from a moderately cold source of metastable triplet atoms via spatially and energetically selective optical pumping permitting four orders of magnitude increase of the phase space density. Further cooling to quantum degeneracy is achieved by forc...
Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement
DEFF Research Database (Denmark)
Fernholz, Thomas; Krauter, Hanna; Jensen, Kasper;
2008-01-01
We demonstrate spin squeezing in a room temperature ensemble of 1012 Cesium atoms using their internal structure, where the necessary entanglement is created between nuclear and electronic spins of each individual atom. This state provides improvement in measurement sensitivity beyond the standard...... quantum limit for quantum memory experiments and applications in quantum metrology and is thus a complementary alternative to spin squeezing obtained via inter-atom entanglement. Squeezing of the collective spin is verified by quantum state tomography....
Ionization of hydrogen atom by electron impact in the presence of elliptically polarized laser field
International Nuclear Information System (INIS)
The problem of ionization in electron hydrogen atom collision in the presence of elliptically polarized laser field, is investigated. The use of the higher order modification of the atomic bound state wave function shows that there is a strong enhancement in the cross section when the laser frequency is half the atomic transition frequency. The dependence of the cross section on the polarization of the laser field is also discussed. (author). 3 refs., 2 figs
Serov, Vladislav V; Sergeeva, Tatiana A; Vinitsky, Sergue I
2012-01-01
A review of some recently developed methods of calculating multiple differential cross-sections of photoionization and electron impactionization of atoms and molecules having two active electrons is presented. The methods imply original approaches to calculating three-particle Coulomb wave functions. The external complex scaling method and the formalism of the Schroedinger equation with a source in the right-hand side are considered. Efficiency of the time-dependent approaches to the scattering problem, such as the paraxial approximation and the time-dependent scaling, is demonstrated. An original numerical method elaborated by the authors for solving the 6D Schroedinger equation for an atom with two active electrons, based on the Chang-Fano transformation and the discrete variable representation, is formulated. Basing on numerical simulations, the threshold behavior of angular distributions of two-electron photoionization of the negative hydrogen ion and helium atom, and multiple differential cross-sections ...
Investigation of Linear Tetra-Atomic Negative Ion by Photodetached-Electron Spectra
Institute of Scientific and Technical Information of China (English)
A.Rahman; Iftikhar Ahmad; A.Afaq; M.Haneef; H.J.Zhao
2011-01-01
@@ Photodetachment spectra from a linear tetra-atomic negative ion is investigated by treating the detached-electron wave function quantum mechanically.A plane polarized laser light, perpendicular to the axis of the ion, is used to detach the electron from the ion.Analytical expressions for the electron flux and total photodetachment cross section are derived.The electron flux on screen shows strong-energy-dependent oscillations with different frequencies.The total cross section of the tetra-atomic negative ion reduces the cross section of mono-atomic,diatomic and triatomic negative ions for high energy photons, while for low energy photons it becomes four times the cross section of mono-atomic negative ions.
Electronic, mechanical and optical properties of atomically thin tow-dimensional crystals
Directory of Open Access Journals (Sweden)
A. Castellanos-Gómez
2012-03-01
Full Text Available This work is devoted to the study of electronic and mechanical properties of crystalline atomically thin two-dimensional sheets, such as graphene, MoS2, NbSe2 and mica by scanning probe microscopy.
On the relativistic and nonrelativistic electron descriptions in high-energy atomic collisions
Energy Technology Data Exchange (ETDEWEB)
Voitkiv, A.B [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)
2007-07-28
We consider the relativistic and nonrelativistic descriptions of an atomic electron in collisions with point-like charged projectiles moving at relativistic velocities. We discuss three different forms of the fully relativistic first-order transition amplitude. Using the Schroedinger-Pauli equation to describe the atomic electron we establish the correct form of the nonrelativistic first-order transition amplitude. We also show that the so-called semi-relativistic treatment, in which the Darwin states are used to describe the atomic electron, is in fact fully equivalent to the nonrelativistic consideration. The comparison of results obtained with the relativistic and nonrelativistic electron descriptions shows that the latter is accurate within 20-30% up to Z{sub a}{approx}< 50-60, where Z{sub a} is the atomic nuclear charge.
On the relativistic and nonrelativistic electron descriptions in high-energy atomic collisions
Voitkiv, A. B.
2007-07-01
We consider the relativistic and nonrelativistic descriptions of an atomic electron in collisions with point-like charged projectiles moving at relativistic velocities. We discuss three different forms of the fully relativistic first-order transition amplitude. Using the Schrödinger-Pauli equation to describe the atomic electron we establish the correct form of the nonrelativistic first-order transition amplitude. We also show that the so-called semi-relativistic treatment, in which the Darwin states are used to describe the atomic electron, is in fact fully equivalent to the nonrelativistic consideration. The comparison of results obtained with the relativistic and nonrelativistic electron descriptions shows that the latter is accurate within 20-30% up to Za<~ 50-60, where Za is the atomic nuclear charge.
Desorption of H atoms from graphite (0001) using XUV free electron laser pulses
DEFF Research Database (Denmark)
Siemer, B.; Olsen, Thomas; Hoger, T.;
2010-01-01
The desorption of neutral H atoms from graphite with femtosecond XUV pulses is reported. The velocity distribution of the atoms peaks at extremely low kinetic energies. A DFT-based electron scattering calculation traces this distribution to desorption out of specific adsorption sites on graphite...
Schweinzer, J; Brandenburg, R; Bray, [No Value; Hoekstra, R; Aumayr, F; Janev, RK; Winter, HP
1999-01-01
New experimental and theoretical cross-section data for inelastic collision processes of Li atoms in the ground state and excited states (up to n = 4) with electrons, protons, and multiply charged ions have been reported since the database assembled by Wutte et al. [ATOMIC DATA AND NUCLEAR DATA TABL
Proceedings of the 2. Latin American Meeting on Atomic, Molecular and Electronic Collisions
International Nuclear Information System (INIS)
Annals of the II Latin American Meeting on Atomic, Molecular and Electronic Collisions. Over than 50 people from Latin America participated on this meeting giving talks on different subjects (theoretical and experimental), related to atomic and molecular physics, as well as, nuclear physics. (A.C.A.S.)
Electron-Stimulated Emission of Na Atoms from NaCl Nanocube Corners
Ceresoli, D.; Zykova-Timan, T.; Tosatti, E.
2006-01-01
We performed first principles density functional calculations and simulations of magic-size neutral NaCl nanocubes, and computed the the extraction of a Na neutral corner atom after donating an electron. The atomic structure of the resulting Na corner vacancy is presented.
Atomic-Scale Control of Electron Transport through Single Molecules
DEFF Research Database (Denmark)
Wang, Y. F.; Kroger, J.; Berndt, R.;
2010-01-01
Tin-phthalocyanine molecules adsorbed on Ag(111) were contacted with the tip of a cryogenic scanning tunneling microscope. Orders-of-magnitude variations of the single-molecule junction conductance were achieved by controllably dehydrogenating the molecule and by modifying the atomic structure of...
Electronic interaction anisotropy between atoms in arbitrary angular momentum states
Krems, R.V.; Groenenboom, G.C.; Dalgarno, A.
2004-01-01
A general tensorial expansion for the interaction potential between two atoms in arbitrary angular momentum states is derived and the relations between the expansion coefficients and the Born-Oppenheimer potentials of the diatomic molecule are obtained. It is demonstrated that a complete expansion o
Effect of electron exchange on atomic ionization in a strong electric field
Amusia, M. Ya.
2009-01-01
Hartree-Fock atom in a strong electric static field is considered. It is demonstrated that exchange between outer and inner electrons, taken into account by the so-called Fock term affects strongly the long-range behavior of the inner electron wave function. As a result, it dramatically increases its probability to be ionized. A simple model is analyzed demonstrating that the decay probability, compared to the case of a local (Hartree) atomic potential, increases by many orders of magnitude. ...
International Nuclear Information System (INIS)
We report the first atomic scale imaging and spectroscopic measurements of electron trap states in completely non-conducting surfaces by dynamic tunnelling force microscopy/spectroscopy. Single electrons are dynamically shuttled to/from individual states in thick films of hafnium silicate and silicon dioxide. The new method opens up surfaces that are inaccessible to the scanning tunnelling microscope for imaging and spectroscopy on an atomic scale.
International Nuclear Information System (INIS)
In a previous study of projectile Rydberg state excitations in the collisions Be+, Mg+-He at 10-75 keV it was found, for a fixed value of the principal quantum number n, that the ratio of the s, p, and d level cross sections was close to 1:3:5, whereas the f and g level cross sections drop to approximately the same value as for s levels. Blaney and Berry (1976) found essentially the same increase in cross section for electron transfer into excited Li I states in the Li+-H2 collision. In contrast to this behavior, beam-foil excitations oscillate as a function of the orbital angular momentum quantum number with maxima at odd values of l (p, f,...) and minima at even l (s, d, g,...). Since no model is available to describe these features, the measurements have been extended to other systems to test their general validity. A large conjugated molecule (benzene) was chosen as target gas in one experiment to bridge the gap between ion-atom and ion-foil excitations. The data presented here have all been obtained by optical spectrometry. A quasi molecular approach is used to explain the results. (Auth.)
Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule
Joshi, Foram M.; Joshipura, K. N.; Chaudhari, Asha S.
2016-05-01
Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Qion and the summed-electronic excitation cross section ΣQexc in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incident electron energy along with available comparisons.
Influence of electron motion in target atom on stopping power for low-energetic ions
Directory of Open Access Journals (Sweden)
Stevanović Nenad
2012-01-01
Full Text Available In this paper the stopping power was calculated, representing the electrons of the target atom as an assembly of quantum oscillators. It was considered that the electrons in the atoms have some velocity before interaction with the projectile, which is the main contribution of this paper. The influence of electron velocity on stopping power for different projectiles and targets was investigated. It was found that the velocity of the electron stopping power has the greatest influence at low energies of the projectile.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Recently bacterial cells have become attractive biological templates for the fabrication of metal nano- structures or nanomaterials due to their inherent small size, various standard geometrical shapes and abundant source. In this paper, nickel-coated bacterial cells (gram-negative bacteria of Escherichia coli) were fabricated via electroless chemical plating. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) characterization results reveal evident morphological difference between bacterial cells before and after deposition with nickel. The bare cells with smooth surface presented transverse outspreading effect at mica surface. Great changes took place in surface roughness for those bacterial cells after metallization. A large number of nickel nanoparticles were observed to be equably distributed at bacterial surface after activation and subsequent metallization. Furthermore, ultra thin section analytic results validated the presence and uniformity of thin nickel coating at bacterial surface after metallization.
International Nuclear Information System (INIS)
The absolute number densities of helium atoms in the 2s 3S1 metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 1012 cm−3 and 0.011 × 1012 cm−3, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 1012 cm−3 and 0.97 × 1012 cm−3 were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges
X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays
Energy Technology Data Exchange (ETDEWEB)
Sanford, T.W.L.; Nash, T.J.; Marder, B.M. [and others
1996-03-01
Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E{sub c}, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E{sub c}. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production.
X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays
International Nuclear Information System (INIS)
Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, Ec, below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below Ec. These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production
Probing electronic state at atomic scale on the surface of SrVO3 film
Okada, Yoshinori; Shimizu, Ryota; Shiraki, Susumu; Hitosugi, Taro
2014-03-01
Probing electronic structure of atomically well controlled surface of Perovskite-type 3d transition-metal oxides have been attracting much interest because of their intriguing emergent physical properties by heterostructure engineering. In this study, we have especially focused on SrVO3, where importance of correlation effects has been considered. We successfully obtained atomically flat surfaces of SrVO3, which gave us the great opportunity to visualize correlated electronic state at atomic scale by means of spectroscopic imaging scanning tunneling spectroscopy. Based on the experimental data, we discuss spectroscopic signature of many body effects on the surface of SrVO3 system.
Development of francium atomic beam for the search of the electron electric dipole moment
Directory of Open Access Journals (Sweden)
Sato Tomoya
2014-03-01
Full Text Available For the measurement of the electron electric dipole moment using Fr atoms, a Fr ion-atom conversion is one of the most critical process. An ion-atom converter based on the “orthotropic” type of Fr source has been developed. This converter is able to convert a few keV Fr ion beam to a thermal atomic beam using a cycle of the surface ionization and neutralization. In this article, the development of the converter is reported.
Atomic holography with electrons and x-rays: Theoretical and experimental studies
International Nuclear Information System (INIS)
Gabor first proposed holography in 1948 as a means to experimentally record the amplitude and phase of scattered wavefronts, relative to a direct unscattered wave, and to use such a open-quotes hologramclose quotes to directly image atomic structure. But imaging at atomic resolution has not yet been possible in the way he proposed. Much more recently, Szoeke in 1986 noted that photoexcited atoms can emit photoelectron of fluorescent x-ray wavefronts that are scattered by neighboring atoms, thus yielding the direct and scattered wavefronts as detected in the far field that can then be interpreted as holographic in nature. By now, several algorithms for directly reconstructing three-dimensional atomic images from electron holograms have been proposed (e.g. by Barton) and successfully tested against experiment and theory. Very recently, Tegze and Faigel, and Grog et al. have recorded experimental x-ray fluorescence holograms, and these are found to yield atomic images that are more free of the kinds of aberrations caused by the non-ideal emission or scattering of electrons. The basic principles of these holographic atomic imaging methods are reviewed, including illustrative applications of the reconstruction algorithms to both theoretical and experimental electron and x-ray holograms. The author also discusses the prospects and limitations of these newly emerging atomic structural probes
A consistent relativistic theory of electron scattering by atoms
International Nuclear Information System (INIS)
We show that the (N + 1)-electron problem defined by the elastic scattering of a projectile electron from a target of N electrons can be reduced to a Dirac-type one-particle equation which has to be solved self-consistently for the (N + 1)-electron states in question. The derivation rests on a relativistic extension of the generalized density functional theory recently put forward by one of the present authors. The four-component spinor equation can be further reduced to a two-component Pauli-type equation without loss of generality. Calculated differential cross sections and scattering induced polarization show very satisfactory agreement with experimental data. This favourable state of affairs can be further improved by applying the refined version of our theory in the present paper. (author)
The stability and electronic structure of Fe atoms embedded in zigzag graphene nanoribbons
International Nuclear Information System (INIS)
The stability and electronic properties of the Fe atoms embedded in divacancy defects in graphene nanoribbons (GNR) with zigzag-shaped edges have been studied by first-principles calculations. When Fe is positioned in the middle of the ribbon, it has little effect on the edge C atoms, which reserves the flat edges of graphene nanoribbons. On the other hand, when Fe atom is near the edge, structural distortion takes place resulting in tilted-edge structure with low energies. This indicates that the Fe atoms prefer to occupy divacancy sites near the edges. This is also in consistent with the analyses of electronic structures. Meanwhile, our results reveal that embedding Fe atom in the graphene nanoribbons is an effective method to make the GNR possessing metallic properties.
Four shells atomic model to computer the counting efficiency of electron-capture nuclides
International Nuclear Information System (INIS)
The present paper develops a four-shells atomic model in order to obtain the efficiency of detection in liquid scintillation courting, Mathematical expressions are given to calculate the probabilities of the 229 different atomic rearrangements so as the corresponding effective energies. This new model will permit the study of the influence of the different parameters upon the counting efficiency for nuclides of high atomic number. (Author) 7 refs
Energy Technology Data Exchange (ETDEWEB)
Lopez-Bezanilla, Alejandro
2016-01-20
By means of a multi-scale first-principles approach, a description of the local electronic structure of 2D and narrow phosphorene sheets with various types of modifications is presented. Firtly, a rational argument based on the geometry of the pristine and modified P network, and supported by the Wannier functions formalism is introduced to describe a hybridization model of the P atomic orbitals. Ab initio calculations show that non-isoelectronic foreign atoms form quasi-bound states at varying energy levels and create different polarization states depending on the number of valence electrons between P and the doping atom. The quantum transport properties of modified phosphorene ribbons are further described with great accuracy. The distortions on the electronic bands induced by the external species lead to strong backscattering effects on the propagating charge carriers. Depending on the energy of the charge carrier and the type of doping, the conduction may range from the diffusive to the localized regime. Interstitial defects at vacant sites lead to homogeneous transport fingerprints across different types of doping atoms. We suggest that the relatively low values of charge mobility reported in experimental measurements may have its origin in the presence of defects.
Energy Technology Data Exchange (ETDEWEB)
Matsushita, Tomohiro, E-mail: matusita@spring8.or.jp [Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, Hyogo 679-5198 (Japan); Matsui, Fumihiko [Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192 (Japan)
2014-08-15
Highlights: • We develop a 3D atomic image reconstruction algorithm for photoelectron, Auger electron, and internal detector holography. • We examine the shapes of the atomic images reconstructed by using a developed kernel function. • We examine refraction effect at surface, limitation effect of the hologram data, energy resolution effect, and angular resolution effect. • These discussions indicate the experimental requirements to obtain the clear 3D atomic image. - Abstract: Three-dimensional atomic images can be reconstructed from photoelectron, Auger electron, and internal detector electron holograms using a scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM) that utilizes an integral transform. An integral kernel function for the integral transform is the key to clear atomic image reconstruction. We composed the kernel function using a scattering pattern function and estimated its ability. Image distortion caused by multiple scattering was also evaluated. Four types of Auger electron wave functions were investigated, and the effect of these wave function types was estimated. In addition, we addressed refraction at the surface, the effects of data limitation, and energy and angular resolutions.
Amano, Ken-Ichi; Liang, Yunfeng; Miyazawa, Keisuke; Kobayashi, Kazuya; Hashimoto, Kota; Fukami, Kazuhiro; Nishi, Naoya; Sakka, Tetsuo; Onishi, Hiroshi; Fukuma, Takeshi
2016-06-21
Atomic force microscopy (AFM) in liquids can measure a force curve between a probe and a buried substrate. The shape of the measured force curve is related to hydration structure on the substrate. However, until now, there has been no practical theory that can transform the force curve into the hydration structure, because treatment of the liquid confined between the probe and the substrate is a difficult problem. Here, we propose a robust and practical transform theory, which can generate the number density distribution of solvent molecules on a substrate from the force curve. As an example, we analyzed a force curve measured by using our high-resolution AFM with a newly fabricated ultrashort cantilever. It is demonstrated that the hydration structure on muscovite mica (001) surface can be reproduced from the force curve by using the transform theory. The transform theory will enhance AFM's ability and support structural analyses of solid/liquid interfaces. By using the transform theory, the effective diameter of a real probe apex is also obtained. This result will be important for designing a model probe of molecular scale simulations.
Chaudhuri, Supriya K.; Modesto-Costa, Lucas; Mukherjee, Prasanta K.
2016-05-01
Detailed investigations on the frequency dependent polarizabilities, transition energies, oscillator strengths, and transition probabilities of two electron systems He, B e2 +, C4 + , and O6 + under electric dipolar (E1) and quadrupolar (E2) excitations have been performed using exponential cosine screened coulomb potential with a view to understand the structural behaviour of such systems due to external confinement produced by plasma environment. Time dependent coupled Hartree-Fock theory within a variational framework has been adopted for studying the first three low lying excited states 1 s2:1Se→1 s n p :1Po (n = 2, 3, 4) and 1 s n d :1De (n = 3, 4, 5) under such excitations. Quantitatively, the effect of confinement produced by the external plasma has been taken care of by considering the change in atomic potential through plasma screening, directly related to the coupling strength of the plasma with the atomic charge cloud. With increased plasma screening, a gradual destabilisation of the energy levels with subsequent reduction of the ionization potential and number of excited states has been observed. Behavioral pattern of the frequency dependent polarizabilities, excitation energies, oscillator strengths, and transition probabilities under systematic increase of the screening has been investigated. Results have been compared thoroughly with those available for free systems and under confinement by exponential cosine screened and screened Coulomb potential.
Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.
Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L
2016-05-10
Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme. PMID:27057643
International Nuclear Information System (INIS)
This work is composed of 2 parts. The first part is dedicated to the study of ion collisions with atoms or molecules and the second part deals with electron-atom collisions in intense laser radiation. The 2 issues are not so independent as it seems since both involve diffusion processes or the dynamic of electronic structures of atoms and molecules in a non-perturbative framework. The first chapter describes the main collisional processes that happen in ion collisions with atoms and molecules. The eikonal method that is used to compute integral and differential cross-sections is presented in the second chapter. The third chapter reports the various concepts and methods used for studying the dynamics of quantum systems. The fourth chapter deals with the electronic capture in a mono-electronic molecular system and with the interference phenomena that may take place in the differential cross-sections. The fifth chapter studies the ionizing ion-molecule collisions with high impact energy, in such collisions very low amplitude interference structures have been observed experimentally. These structures can be explained by the multiple scattering of the wave packet representing the ejected electron by the 2 centers of the molecular target. The sixth chapter deals with ion-atom collisions in which 2 electrons are active for simple and double electronic capture. The second part of this work begins with chapter 7. The study of electron-atom collisions in intense laser radiation field implies to take into account 3 different interactions: first the interaction between the free electron and the atom, secondly the interaction between the laser field and the incident electron and thirdly, the interaction between the atom and the laser field. The seventh chapter presents a mathematical formalism able to describe the interaction of the atom with the laser field. This formalism is a non-perturbative approach based on the Floquet theorem. In chapter 8 we present an application to
Atomic-scale nanowires: physical and electronic structure
International Nuclear Information System (INIS)
The technology to build and study nanowires with sizes ranging from individual atoms to tens of nanometres has been developing rapidly over the last few years. We survey the motivation behind these developments, and summarize the basics behind quantized conduction. Several of the different experimental techniques and materials systems used in the creation of nanowires are examined, and the range of theoretical methods developed both for examining open systems (especially their conduction properties) and for modelling large systems are considered. We present various noteworthy example results from the field, before concluding with a look at future directions. (topical review)
On the behavior of scattering phases in collisions of electrons with multi-atomic objects
Amusia, M Ya
2015-01-01
We have studied the energy dependence of several first scattering phases with multi-atomic object. As concrete examples representing the general trends endohedrals Neon inside C60 and Argon inside C60 are considered. It appeared that the presence of an inner atom, either Ne or Ar, qualitatively affects the scattering phases, in spite of the fact that the fullerene consists of 60 carbon atoms, while the atom staffed inside is only one. Calculations are performed in the one-electron Hartree-Fock (HF) and random phase approximation with exchange (RPAE) for the inner atom while the fullerenes shell is substituted by static potential without and with the polarization potential. It appeared that the total endohedral scattering phase is simply a sum of atomic, Ne or Ar, and fullerenes C60 phases, contrary to the intuitive assumption that the total phases on C60 and Neon inside C60 or Ar inside C60 has to be the same.
Institute of Scientific and Technical Information of China (English)
刘洪毓
2007-01-01
Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what
Shuttling electrons on and off As donor atoms in silicon
Tyryshkin, A. M.; Lyon, S. A.; Lo, C. C.; Lo Nardo, R.; Morton, J. J. L.; Simmons, S.; Weis, C. D.; Schenkel, T.; Bokor, J.; Meijer, J.; Rogalla, D.
2013-03-01
Hybrid quantum devices where electron spins are used for state initialization, fast manipulation, long range entanglement and detection, while nuclear spins are used for long term storage promise revolutionary advantages. Here we report our first experiments using a silicon-based device that utilizes electron and nuclear spins of arsenic donors. The device is a large-area, parallel-plate capacitor fabricated on a silicon-on-insulator (SOI) wafer where the SOI layer is implanted with arsenic donors, and a back gate is formed in the silicon below the buried oxide by a high-energy boron implantation. The electrons can be controllably stripped from the donors and then reintroduced to the ionized donors by applying appropriate gate voltages. We use ensemble ESR experiments (X-band, magnetic field of 0.35 T) to track the occupancy of the donors during these operations. Pulsed ESR is used to characterize the spin state of the donor electrons and the effect of applied electric fields below the ionization threshold. The spin state of the arsenic nuclei, and the effect of electron removal and reintroduction on the nuclear state is expected to be observable in pulsed ENDOR experiments. The work is funded by LPS and NSF-MWN.
Effect of vacuum polarization on the excitation of hydrogen atom by electron impact
Directory of Open Access Journals (Sweden)
Sujata Bhattacharyya
1981-01-01
for 1S−2S excitation of the hydrogen atom by electron impact. The excitation amplitude calculated field theoretically is found to be lowered by 0.47t2/(t2+93 where t2=4|P−Q|2, P and Q being the momenta of the incident and scattered electrons respectively.
ELECTRON-CAPTURE IN HIGHLY-CHARGED ION-ATOM COLLISIONS
MORGENSTERN, R
1993-01-01
An attempt is made to identify the most important mechanisms responsible for the rearrangement of electrons during collisions between multiply charged ions and atoms at keV energies. It is discussed to which extent the influence of binding energy, angular momentum of heavy particles and electrons, a
A simple model for atomic layer doped field-effect transistor (ALD-FET) electronic states
Energy Technology Data Exchange (ETDEWEB)
Mora R, M.E. [Centro de Investigaciones en Optica, Unidad Aguascalientes. Juan de Montoro 207, Zona Centro, 20000 Aguascalientes (Mexico); Gaggero S, L.M. [Escuela de Fisica, Universidad Autonoma de Zacatecas, Av. Preparatoria 301, 98060 Zacatecas (Mexico)
1998-12-31
We propose a simple potential model based on the Thomas-Fermi approximation to reproduce the main properties of the electronic structure of an atomic layer doped field effect transistor. Preliminary numerical results for a Si-based ALD-FET justify why bound electronic states are not observed in the experiment. (Author)
Hydrogen atom ionization by fast electrons in an external electric field
International Nuclear Information System (INIS)
Hydrogen atom ionization by fast electrons in an external electric field is considered. The oscillative character of ionization is referred to interference effects, occuring under electron transition to states of continuous energy spectrum. These states are described by wave functions in the form of standing waves
International Nuclear Information System (INIS)
The Born-Hartree-Bethe approximation for the calculation of total (elastic + inelastic) integral cross section for high-energy electron-atom and electron-molecule scattering containing no free parameter is formulated. Corresponding results are obtained for He, Ne, Ar, Kr, Xe, H2 and N2 and compared with experimental data.
You, Pei-Lin
2008-01-01
The linear Stark effect shows that the first excited state of hydrogen atom has large permanent electric dipole moment (EDM), d(H)=3eao (ao is Bohr radius). Using special capacitors our experiments discovered that the ground state K, Rb or Cs atom is polar atom with a large EDM of the order of eao as hydrogen atom of excited state. Their capacitance(C) at different voltage (V) was measured. The C-V curve shows that the saturation polarization of K, Rb or Cs vapor has be observed when the field E more than ten to the fifth power V/m. When the saturation polarization appeared, nearly all K, Rb or Cs atoms(more than 98 percent) turned toward the direction of the field, and C is approximately equal to Co (Co is vacuum capacitance) or their dielectric constant is nearly the same as vacuum! K, Rb or Cs vapor just exist in the lowest energy state, so we see the vacuum state containing a large number of atoms! Due to the saturation polarization of hydrogen vapor of excited state is easily appears, we conjecture that ...
Atomic-level Electron Microscopy of Metal and Alloy Electrocatalysts
DEFF Research Database (Denmark)
Deiana, Davide
This thesis presents the application of transmission electron microscopy techniques towards the characterisation of novel metal nanoparticle catalysts. Two main subjects have been covered: first, the sintering-resistance behaviour of monomodal mass-selected Pt cluster catalysts have been studied...... by means of ex situ Scanning Transmission Electron Microscopy (STEM) in combination with in situ indirect nanoplasmonic sensing. Secondly, electron microscopy imaging and spectroscopy have been used for the characterisation of novel metal alloy nanoparticle electrocatalysts for the Oxygen Reduction...... and its dissolution into the electrolyte. The formed Pt-rich shell prevents further dissolution of the rare earth metal protecting the alloyed core. Pt−Hg and Pd−Hg have been identified by Density Functional Theory (DFT) calculations as promising candidates for the electrochemical production of hydrogen...
Electron Rydberg wave packets in one-dimensional atoms
Indian Academy of Sciences (India)
Supriya Chatterjee; Amitava Choudhuri; Aparna Saha; B Talukdar
2010-09-01
An expression for the transition probability or form factor in one-dimensional Rydberg atom irradiated by short half-cycle pulse was constructed. In applicative contexts, our expression was found to be more useful than the corresponding result given by Landau and Lifshitz. Using the new expression for the form factor, the motion of a localized quantum wave packet was studied with particular emphasis on its revival and super-revival properties. Closed form analytical expressions were derived for expectation values of the position and momentum operators that characterized the widths of the position and momentum distributions. Transient phase-space localization of the wave packet produced by the application of a single impulsive kick was explicitly demonstrated. The undulation of the uncertainty product as a function of time was studied in order to visualize how the motion of the wave packet in its classical trajectory spreads throughout the orbit and the system becomes nonclassical. The process, however, repeats itself such that the atom undergoes a free evolution from a classical, to a nonclassical, and back to a classical state.
Antibinding of atomic electrons in strong inhomogeneous magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Jakubassa-Amundsen, D. H. [Mathematics Institute, University of Munich, Theresienstrasse 39, D-80333 Munich (Germany)
2011-08-15
The ground-state energy of heavy one-electron ions in an inhomogeneous locally bounded magnetic field is estimated by the variational principle. The ions are described by means of the pseudorelativistic Herbst-Chandrasekhar operator. Two classes of magnetic fields are considered which model a field-free region around the central charge. It is shown that for a certain size of this region the ground-state energy becomes positive and increases strongly with the magnetic field strength. This behavior is in contrast to the two-dimensional case where electrons can be bound by such a field-free region.
Stimulated Raman Adiabatic Passage for Improved Performance of a Cold Atom Electron and Ion Source
Sparkes, B M; Taylor, R J; Spiers, R W; McCulloch, A J; Scholten, R E
2016-01-01
We experimentally implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold atom electron and ion source, leading to a peak efficiency of 85%, a 1.7 times improvement in excitation probability relative to incoherent pulsed-laser excitation. Using streak measurements and pulsed electric field ionization of the Rydberg atoms we demonstrate electron bunches with duration of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, while using coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single ion source.
Exact semi-relativistic model for ionization of atomic hydrogen by electron impact
Attaourti, Y.; Taj, S.; Manaut, B.
2004-01-01
We present a semi-relativistic model for the description of the ionization process of atomic hydrogen by electron impact in the first Born approximation by using the Darwin wave function to describe the bound state of atomic hydrogen and the Sommerfeld-Maue wave function to describe the ejected electron. This model, accurate to first order in $Z/c$ in the relativistic correction, shows that, even at low kinetic energies of the incident electron, spin effects are small but not negligible. Thes...
The ionized electron return phenomenon of Rydberg atom in crossed-fields
Dong, Chengwei; Wang, Peijie; Du, Mengli; Uzer, Turgay; Lan, Yueheng
2016-05-01
Rydberg atom is highly excited with one valence electron being in a high quantum state, which is very far away from the nucleus. The energy level is similar to that of the hydrogen atom. Introducing externally perpendicular electric and magnetic fields breaks the rotation symmetry and the traditional view is that the ionized electron crosses from the bound into the unbound region and will never return. However, we find that when the field is strong enough, the electron does not move off to infinity and there is a certain possibility of return. Three new periodic orbits are found by the variational method and the physical significance of the phenomenon is also discussed.
Atomic resolution electrostatic potential mapping of graphene sheets by off-axis electron holography
Energy Technology Data Exchange (ETDEWEB)
Cooper, David, E-mail: david.cooper@cea.fr [University Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38054, Grenoble (France); Pan, Cheng-Ta; Haigh, Sarah [School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom)
2014-06-21
Off-axis electron holography has been performed at atomic resolution with the microscope operated at 80 kV to provide electrostatic potential maps from single, double, and triple layer graphene. These electron holograms have been reconstructed in order to obtain information about atomically resolved and mean inner potentials. We propose that off-axis electron holography can now be used to measure the electrical properties in a range of two-dimensional semiconductor materials and three dimensional devices comprising stacked layers of films to provide important information about their electrical properties.
Ding, Yi; Wang, Yanli
2016-08-17
Germanium monochalcogenides, i.e. GeS and GeSe sheets, are isoelectronic analogues of phosphorene, which have been synthesized in recent experiments (P. Ramasamy et al., J. Mater. Chem. C, 2016, 4, 479). Utilizing first-principles calculations, we have investigated their tunable electronic and magnetic properties via light non-metallic atom (B, C, N, O, Si, P, S) functionalization. We find that on these GeS and GeSe sheets O and S adatoms prefer to locate at the top site above the Ge atom, while the other ones like to occupy the anion site, which push the original S/Se atom to the hollow site instead. O and S adatoms slightly affect the semiconducting behaviour of the doped systems, while B, C, N, Si, P ones will drastically modify their band structures and induce versatile spintronic properties. Through the supercell calculations, B and C adatoms are found to induce a bipolar semiconducting behaviour in the decorated systems, while the N/P adatom will cause a spin-gapless-semiconducting/nearly-half-metallic feature in them. The B/C/N/Si/P-substituted GeS/GeSe sheet can be formed by removing the hollow-site S/Se atom from the adatom-decorated structures, which exhibit an opposite semiconducting/metallic behaviour to their phosphorene counterparts. A general odd-even rule is proposed for this phenomenon, which shows that an odd (even) number of valence electron difference between the substitution and host atoms would cause a metallic (semiconducting) feature in the substituted systems. Our study demonstrates that atom functionalization is an efficient way to tailor the properties of GeS and GeSe nanosheets, which have adaptable electronic properties for potential applications in nanoelectronics and spintronics. PMID:27491896
Ding, Yi; Wang, Yanli
2016-08-17
Germanium monochalcogenides, i.e. GeS and GeSe sheets, are isoelectronic analogues of phosphorene, which have been synthesized in recent experiments (P. Ramasamy et al., J. Mater. Chem. C, 2016, 4, 479). Utilizing first-principles calculations, we have investigated their tunable electronic and magnetic properties via light non-metallic atom (B, C, N, O, Si, P, S) functionalization. We find that on these GeS and GeSe sheets O and S adatoms prefer to locate at the top site above the Ge atom, while the other ones like to occupy the anion site, which push the original S/Se atom to the hollow site instead. O and S adatoms slightly affect the semiconducting behaviour of the doped systems, while B, C, N, Si, P ones will drastically modify their band structures and induce versatile spintronic properties. Through the supercell calculations, B and C adatoms are found to induce a bipolar semiconducting behaviour in the decorated systems, while the N/P adatom will cause a spin-gapless-semiconducting/nearly-half-metallic feature in them. The B/C/N/Si/P-substituted GeS/GeSe sheet can be formed by removing the hollow-site S/Se atom from the adatom-decorated structures, which exhibit an opposite semiconducting/metallic behaviour to their phosphorene counterparts. A general odd-even rule is proposed for this phenomenon, which shows that an odd (even) number of valence electron difference between the substitution and host atoms would cause a metallic (semiconducting) feature in the substituted systems. Our study demonstrates that atom functionalization is an efficient way to tailor the properties of GeS and GeSe nanosheets, which have adaptable electronic properties for potential applications in nanoelectronics and spintronics.
Naydenov, S V; Smith, C F; Naydenov, Sergey V.; Ryzhikov, Vladimir D.; Smith, Craig F.
2004-01-01
A direct method is proposed for reconstruction of the effective atomic number by means of multi-energy radiography of the material. The accuracy of the method is up to 95% . Advantages over conventional radiographic methods, which ensure accuracy of just about 50%, are discussed. A physical model has been constructed, and general expressions have been obtained for description of the effective atomic number in a two-energy monitoring scheme. A universal dependence has been predicted for the effective atomic number as a function of relative (two-energy) radiographic reflex. The established theoretical law is confirmed by the experimental data presented. The proposed development can find multiple applications in non-destructive testing and related fields, including those in the civil sphere as well as anti-terrorist activities.
Numbers of Electrons in Solar Flares as Deduced from Microwave and X-Ray Bursts
Institute of Scientific and Technical Information of China (English)
YU Xing-Feng; YAO Jin-Xing
2001-01-01
We discuss whether the numbers of x-ray and radio-produced electrons in solar flares are the same. The number of radio-produced electrons that is estimated with an inhomogeneous source increases by a factor of 103 - 104because of the inhomogeneity and the decreased magnetic field (B ＝ 120 G) of the radio source. The number of x-ray-produced electrons decreases by a factor of 10 - 30 due to the increase of the number density of ions (3 × 1010 cm-3). These are the reasons why the number of radio-produced electrons is approximately equal tothat of x-ray-produced electrons in the 1981 April 27 burst.
Atomic Theory and Multiple Combining Proportions: The Search for Whole Number Ratios.
Usselman, Melvyn C; Brown, Todd A
2015-04-01
John Dalton's atomic theory, with its postulate of compound formation through atom-to-atom combination, brought a new perspective to weight relationships in chemical reactions. A presumed one-to-one combination of atoms A and B to form a simple compound AB allowed Dalton to construct his first table of relative atomic weights from literature analyses of appropriate binary compounds. For such simple binary compounds, the atomic theory had little advantages over affinity theory as an explanation of fixed proportions by weight. For ternary compounds of the form AB2, however, atomic theory made quantitative predictions that were not deducible from affinity theory. Atomic theory required that the weight of B in the compound AB2 be exactly twice that in the compound AB. Dalton, Thomas Thomson and William Hyde Wollaston all published within a few years of each other experimental data that claimed to give the predicted results with the required accuracy. There are nonetheless several experimental barriers to obtaining the desired integral multiple proportions. In this paper I will discuss replication experiments which demonstrate that only Wollaston's results are experimentally reliable. It is likely that such replicability explains why Wollaston's experiments were so influential.
International Nuclear Information System (INIS)
Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were also measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra of the ejected electrons. The double-angle-TOF method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collection efficiency and the elimination of certain systematic errors. An electron spectroscopy study of inner-shell photoexcitation and ionization of Xe, photoelectron angular distributions from H2 and D2, and photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO are reported
Institute of Scientific and Technical Information of China (English)
Shao Qing-Yi; Zhang Juan
2011-01-01
In vapour deposition,single atoms(adatoms)on the substrate surface are the main source of growth.The change in its density plays a decisive role in the growth of thin films and quantum size islands.In the nucleation and cluster coalescence stages of vapour deposition,the growth of stable clusters occurs on the substrate surface covered by stable clusters.Nucleation occurs in the non-covered part,while the total area covered by stable clusters on the substrate surface will gradually increase.Carefully taking into account the coverage effect,a revised single atom density rate equation is given for the famous and widely used thin-film rate equation theory,but the work of solving the revised equation has not been done.In this paper,we solve the equation and obtain the single-atom density and capture number by using a uniform depletion approximation.We determine that the single atom density is much lower than that evaluated from the single atom density rate equation in the traditional rate equation theory when the stable cluster coverage fraction is large,and it goes down very fast with an increase in the coverage fraction.The revised equation gives a higher value for the 'average' capture number than the present equation. It also increases with increasing coverage.That makes the preparation of single crystalline thin film materials difficult and the size control of quantum size islands complicated.We also discuss the effect of the revision on coalescence and the number of stable clusters in vapour deposition.
X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays
International Nuclear Information System (INIS)
Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single-exploded-wire discharges on Gamble-II suggest a common nonthermal-production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission. (author). 3 figs., 10 refs
X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays
International Nuclear Information System (INIS)
Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single- exploded-wire discharges on Gamble-II suggest a common nonthermal- production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly- collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission
International Nuclear Information System (INIS)
We investigate the structural properties and ionized spin electrons of an Fe–graphene system, in which the time-dependent density functional theory (TDDFT) within the generalized gradient approximation is used. The electron dynamics, including electron ionization and ionized electron spin polarization, is described for Fe atom adsorbed graphene under femtosecond laser irradiation. The theoretical results show that the electron ionization and ionized electron spin polarization are sensitive to the laser parameters, such as the incident angle and the peak intensity. The spin polarization presents the maximum value under certain laser parameters, which may be used as a source of spin-polarized electrons. - Highlights: • The structural properties of Fe–graphene system are investigated. • The electron dynamics of Fe–graphene system under laser irradiation are described. • The Fe–graphene system may be used as a source of spin-polarized electrons
Electron elastic scattering off $A$@C$_{60}$: The role of atomic polarization under confinement
Dolmatov, V K; Chernysheva, L V
2015-01-01
The present paper explores possible features of electron elastic scattering off endohedral fullerenes $A$@C$_{60}$. It focuses on how dynamical polarization of the encapsulated atom $A$ by an incident electron might alter scattering off $A$@C$_{60}$ compared to the static-atom-$A$ case, as well as how the C$_{60}$ confinement modifies the impact of atomic polarization on electron scattering compared to the free-atom case. The aim is to provide researchers with a "relative frame of reference" for understanding which part of the scattering processes could be due to electron scattering off the encapsulated atom and which due to scattering off the C$_{60}$ cage. To meet the goal, the C$_{60}$ cage is modeled by an attractive spherical potential of a certain inner radius, thickness, and depth which is a model used frequently in a great variety of fullerene studies to date. Then, the Dyson equation for the self-energy part of the Green's function of an incident electron moving in the combined field of an encapsulat...
International Nuclear Information System (INIS)
The theoretical or practical dosimetry involving radiation interactions in humans needs the reliable elemental composition data of body tissues. The object of this research was to obtain the characterization dental hard tissues and to determine its effective atomic number. An analytical research of inorganic composition, from 30 intact human molars, extracted for periodontal reasons, was performed by Neutron Activation Analysis (NAA), ICP/AES, Thermogravimetric (TG) and Differential Thermal Analysis (DTA). The coronal dentin and enamel were separated by two techniques: (1) - mechanically by chipping and breaking by chirurgic hammer, allowed to dry in an electric oven for 5 hours at 160oC. (2) - through by high-running round steel burs. The samples were thoroughly cleaned with distilled deionizer water and sent for analysis in CDTN/CNEN laboratories, Belo Horizonte, Minas Gerais, Brazil. The results showed concentrations of 11 elements measured in dentin and enamel. The five elements of the higher concentration by neutron activation analysis and ICP/AES were Ca, P, Na, Mg and Al. Thermogravimetric analysis of enamel showed a loss of water of hydroxyapatite to 500oC. Thermogravimetric analyses of dentin showed tree temperatures at which mass loss occur. These processes are related to superficial water loss (100oC); organic decomposition and water liberation from hydroxyapaptite (100oC to 600oC); and the beginning of hydroxyapatite decomposition (600oC to 850oC). Differences, in mineral concentration, were found between enamel and dentin, with higher concentrations in enamel. The two techniques proposed to separate dentin and enamel, did not present differences in elements concentration, statement that the high-running round steel burs technique didn't affect the samples. (author)
Atomic and electronic structure of MoS2 nanoparticles
DEFF Research Database (Denmark)
Bollinger, Mikkel; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet
2003-01-01
Using density-functional theory (DFT) we present a detailed theoretical study of MoS2 nanoparticles. We focus on the edge structures, and a number of different edge terminations are investigated. Several, but not all, of these configurations have one-dimensional metallic states localized at the e......Using density-functional theory (DFT) we present a detailed theoretical study of MoS2 nanoparticles. We focus on the edge structures, and a number of different edge terminations are investigated. Several, but not all, of these configurations have one-dimensional metallic states localized...
Electron correlation effects on photoionization time delay in atomic Ar and Xe
Ganesan, A.; Saha, S.; Decshmukh, P. C.; Manson, S. T.; Kheifets, A. S.
2016-05-01
Time delay studies in photoionization processes have stimulated much interest as they provide valuable dynamical information about electron correlation and relativistic effects. In a recent work on Wigner time delay in the photoionization of noble gas atoms, it was found that correlations resulting from interchannel coupling involving shells with different principal quantum numbers have significant effects on 2s and 2p photoionization of Ne, 3s photoionization of Ar, and 3d photoionization of Kr. In the present work, photoionization time delay in inner and outer subshells of the noble gases Ar and Xe are examined by including electron correlations using different many body techniques: (i) the relativistic-random-phase approximation (RRPA), (ii) RRPA with relaxation, to include relaxation effects of the residual ion and (iii) the relativistic multiconfiguration Tamm-Dancoff (RMCTD) approximation. The (sometimes substantial) effects of the inclusion of non-RPA correlations on the photoionization Wigner time delay are reported. Work supported by DOE, Office of Chemical Sciences and DST (India).
UROX 2.0: an interactive tool for fitting atomic models into electron-microscopy reconstructions
International Nuclear Information System (INIS)
UROX is software designed for the interactive fitting of atomic models into electron-microscopy reconstructions. The main features of the software are presented, along with a few examples. Electron microscopy of a macromolecular structure can lead to three-dimensional reconstructions with resolutions that are typically in the 30–10 Å range and sometimes even beyond 10 Å. Fitting atomic models of the individual components of the macromolecular structure (e.g. those obtained by X-ray crystallography or nuclear magnetic resonance) into an electron-microscopy map allows the interpretation of the latter at near-atomic resolution, providing insight into the interactions between the components. Graphical software is presented that was designed for the interactive fitting and refinement of atomic models into electron-microscopy reconstructions. Several characteristics enable it to be applied over a wide range of cases and resolutions. Firstly, calculations are performed in reciprocal space, which results in fast algorithms. This allows the entire reconstruction (or at least a sizeable portion of it) to be used by taking into account the symmetry of the reconstruction both in the calculations and in the graphical display. Secondly, atomic models can be placed graphically in the map while the correlation between the model-based electron density and the electron-microscopy reconstruction is computed and displayed in real time. The positions and orientations of the models are refined by a least-squares minimization. Thirdly, normal-mode calculations can be used to simulate conformational changes between the atomic model of an individual component and its corresponding density within a macromolecular complex determined by electron microscopy. These features are illustrated using three practical cases with different symmetries and resolutions. The software, together with examples and user instructions, is available free of charge at http://mem.ibs.fr/UROX/
Shamlouei, Hamid Reza; Nouri, Amin; Mohammadi, Asghar; Tehrani, Abbas Dadkhah
2016-03-01
Using density functional theory, we investigated the effect of transition metal doping on structural, electronic, energetic, linear and nonlinear optical properties of Mg12O12 nanocluster. The result revealed that transition metal atoms doping lead to reduce the Eg and increase the dipole moment. The doping of transition metal atom on Mg12O12 nanocluster enhances its polarizability value. Also polarizability values for doped nanoclusters decrease as the atomic number of transition metal increase. The first hyperpolarizability value dramatically increases as substitute a magnesium atom with a transition metal atom. Among the transition metal atom doped nanocage, scandium has the largest first hyperpolarizability value (β◦≈47,872 au). The stability and remarkable values of β◦ (for Sc, Ti and V doped of nanocage) suggest that these compounds may be applicable as NLO material in industrial.
Magnetic dipole-dipole sensing at atomic scale using electron spin resonance STM
Choi, T.; Paul, W.; Rolf-Pissarczyk, S.; MacDonald, A.; Yang, K.; Natterer, F. D.; Lutz, C. P.; Heinrich, A. J.
Magnetometry having both high magnetic field sensitivity and atomic resolution has been an important goal for applications in diverse fields covering physics, material science, and biomedical science. Recent development of electron spin resonance STM (ESR-STM) promises coherent manipulation of spins and studies on magnetic interaction of artificially built nanostructures, leading toward quantum computation, simulation, and sensors In ESR-STM experiments, we find that the ESR signal from an Fe atom underneath a STM tip splits into two different frequencies when we position an additional Fe atom nearby. We measure an ESR energy splitting that decays as 1/r3 (r is the separation of the two Fe atoms), indicating that the atoms are coupled through magnetic dipole-dipole interaction. This energy and distance relation enables us to determine magnetic moments of atoms and molecules on a surface with high precision in energy. Unique and advantageous aspects of ESR-STM are the atom manipulation capabilities, which allow us to build atomically precise nanostructures and examine their interactions. For instance, we construct a dice cinque arrangement of five Fe atoms, and probe their interaction and energy degeneracy. We demonstrate the ESR-STM technique can be utilized for quantum magnetic sensors.
Butson, J. M.; Curtis, S.; Mayer, P. M.
2016-05-01
The atomic metal anions Fe-, Cs-, Cu- and Ag- were reacted with NO, NO2 and SO2 to form intact NO-, NO2- and SO2- with no fragmentation. Yields for the molecular anions ranged from 4 to 97% and were found to correlate to the exothermicity of the electron transfer process. Sequential oxygen atom extraction was found to take place between the metal anions and NO and NO2. Reactions between NO2 and Fe- resulted in FeO-, FeO2- and FeO3- while reactions of Cu- with NO2 resulted in CuO- and CuO2-. Reactions of Cu- and Ag- with NO resulted in CuO- and AgO- respectively.
Effects of strong magnetic fields on the electron distribution and magnetisability of rare gas atoms
Pagola, G. I.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.
2004-12-01
Strong uniform static magnetic fields compress the electronic distribution of rare gas atoms and cause a 'spindle effect', which can be illustrated by plotting charge-density functions which depend quadratically on the flux density of the applied field. The fourth rank hypermagnetisabilities of He, Ne, Ar and Kr are predicted to have small positive values. Accordingly, the diamagnetism of rare gas atoms diminishes by a very little amount in the presence of intense magnetic field.
Two-dimensional materials as a new platform for atomically thin electronics and optoelectronics
Cheng, Rui
GHz and a maximum oscillation frequency fMAX of 50 GHz. Furthermore, I will, for the first time, present the integration of multiple MoS2 transistors on quartz and flexible substrates to form a logic inverter or radio frequency amplifier with voltage gain in the gigahertz regime. Finally I will present the first demonstration of an atomically thin heterojunction p-n diode by vertically stacking p-type monolayer tungsten diselenide (WSe2) and n-type few-layer molybdenum disulfide (MoS2). Electrical measurement demonstrates excellent diode characteristics with well defined current rectification behaviour, and photocurrent mapping shows clear photoresponse in the entire overlapping region with an external quantum efficiency as large as 12 %. Electroluminescence studies show prominent emission with both excitonic and hot electron luminescence peaks. A systematic investigation of the emission spectra reveals distinct layer-number dependent and temperature dependent characteristics and can offer important insight about the electron-orbital interaction in the layered materials. These findings can open up exciting new opportunities for 2DLMs in the application of electronics and optoelectronics.
Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics
Energy Technology Data Exchange (ETDEWEB)
Krantz, Claude
2009-10-28
We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)
Quantum-mechanical calculations of cross sections for electron collisions with atoms and molecules
Bartschat, Klaus; Zatsarinny, Oleg
2016-01-01
An overview of quantum-mechanical methods to generate cross-section data for electron collisions with atoms and molecules is presented. Particular emphasis is placed on the time-independent close-coupling approach, since it is particularly suitable for low-energy collisions and also allows for systematic improvements as well as uncertainty estimates. The basic ideas are illustrated with examples for electron collisions with argon atoms and methane. For many atomic systems, such as e-Ar collisions, highly reliable cross sections can now be computed with quantified uncertainties. On the other hand, while electron collision calculations with molecules do provide key input data for plasma models, the methods and computer codes presently used require further development to make these inputs robust.
Saitoh, Koh; Tatara, Yoshihide; Tanaka, Nobuo
2010-01-01
Kikuchi patterns of an MgO crystal at the [110] incidence have been taken by a sub-angstrom electron beam focused on the single atom-column. A significant change in intensity has been observed in the 111 band; that is, the contrast in the central and side bands is reversed depending on the illuminated atom-column. The contrast reversal in the 111 band has been reproduced by multislice simulation using the frozen-phonon approach. The beam-position dependence of the 111 band intensity can be interpreted by electron channelling and the reciprocity theorem. The anomalous Kikuchi pattern can be a probe for identifying the illuminated atom-column, which is useful for column-by-column electron energy-loss spectroscopy and X-ray emission spectroscopy.
Theoretical calculations on the atomic and electronic structure of β-SiC(110) surface
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
We present a theoretical calculation of the atomic and electronic structure of β-SiC and its non-polar (110) surface using the full potential linear augmented plane wave (FPLAPW) approach. The calculated lattice constant and bulk modulus of β-SiC crystal are in excellent agreement with experimental data. The atomic and electronic structure of β-SiC(110) surface has been calculated by employing the slab and supercell model. It is found that the surface is characterized by a top-layer bond-length-contracting rotation relaxation in which the Si-surface atom moves closer towards the substrate while the C-surface atom moves outward. This relaxation is analogous to that of Ⅲ-Ⅴ semi-conductor surface. The driving mechanism for this atomic rearrangement is that the Si atom tends to a planar sp2-like bonding situation with its three N neighbors and the N atom tends to a p3-like bonding with its three Si neighbors. Furthermore, surface relaxation induces the change from metallic to semiconducting characterization.
Application of Ion and Electron Momentum Imaging to Atomic Collisions
Cocke, C. L.
2000-06-01
COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy) combines fast imaging detectors with a supersonically cooled gas target to allow the charged particles from any ionizing collision, including both recoil ions and electrons, to be collected with extremely high efficiency and with fully measured vector momenta. Since all particles are measured in event mode, the full multi-dimensional momentum space is mapped. We will review several examples of the use of this technique to study two- , three- and four-body final states created in ionizing interactions of photons and charged particles with He and D2 . The momentum spectra of electrons ejected from these targets by slow projectiles reveal the stucture of the molecular orbitals which are promoted into the continuum. Double photoionization of the same targets reveals patterns which can be interpreted in terms of collective coordinates. Two-electron removal from D2 by Xe ^26+ reveals the influence of the projectile field on the dissociation process. A recent application of the technique to ionization by high intensity laser fields will be discussed. Work performed in collaboration with M.A.Abdallah^1, I.Ali^1, Matthias Achler^2, H.Braeuning^2,3, Angela Braeuning-Deminian^2, Achim Czasch^2,3, R.Doerner^2,3, R.DuBois^6, A. Landers^1,5, V.Mergel^2, R.E.Olson^6, T.Osipov^1, M.Prior^3, H.Schmidt-Boecking^2, M.Singh^1, A.Staudte^2,3, T.Weber^2, W.Wolff^4, and H.E.Wolf^4 ^1J.R.Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506; ^2 Institut fuer Kernphysik, Univ. Frankfurt, August-Euler-Str.6,D-60486 Frankfurt, Germany ; ^3Lawrence Berkeley National Laboratory, Berkeley, CA 94720; ^4Instituto de Fisica, Universidade Federal do Rio de Janeiro Caixa Postal 68.528, 21945-970, Rio de Janeiro, Brazil; ^5Physics Dept., Western Michigan University, Kalamazoo, MI 49008; ^6Physics Dept., Univ. Missouri Rolla, Rolla, MO 65409 Work supported by the Division of Chemical Sciences, Office of Basic
Institute of Scientific and Technical Information of China (English)
Yuan Zhongcai; Shi Jiaming; Xu Bo
2005-01-01
The plasma diagnostic method using the transmission attenuation of microwaves at double frequencies (PDMUTAMDF) indicates that the frequency and the electron-neutral collision frequency of the plasma can be deduced by utilizing the transmission attenuation of microwaves at two neighboring frequencies in a non-magnetized plasma. Then the electron density can be obtained from the plasma frequency. The PDMUTAMDF is a simple method to diagnose the plasma indirectly. In this paper, the interaction of electromagnetic waves and the plasma is analyzed. Then, based on the attenuation and the phase shift of a microwave in the plasma, the principle of the PDMUTAMDF is presented. With the diagnostic method, the spatially mean electron density and electron collision frequency of the plasma can be obtained. This method is suitable for the elementary diagnosis of the atmospheric-pressure plasma.
Gibb, Ashley; Alem, Nasim; Song, Chengyu; Ciston, Jim; Zettl, Alex
2014-03-01
Monolayer sheets of sp2-bonded materials such as graphene and hexagonal boron nitride (h-BN) have been studied extensively due to their properties including high mechanical strength, thermal conductivity, stability, interesting electronic properties, and potential for integration into novel devices. Understanding the atomic scale structure of defects in these materials is important because defects can significantly affect the physical properties in these materials. In particular, understanding the dynamics of these defects explains much about the material's stability. We have synthesized h-BN and graphene using low pressure chemical vapor deposition and imaged defects using atomic resolution aberration corrected transmission electron microscopy.
Hochstuhl, David
2012-01-01
We introduce the time-dependent restricted active space Configuration Interaction method to solve the time-dependent Schr\\"odinger equation for many-electron atoms, and particularly apply it to the treatment of photoionization processes in atoms. The method is presented in a very general formulation and incorporates a wide range of commonly used approximation schemes, like the single-active electron approximation, time-dependent Configuration Interaction with single-excitations, or the time-dependent R-matrix method. We proof the applicability of the method by calculating the photoionization cross sections of Helium and Beryllium.
Wang, Hongtao
2012-01-01
Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. © 2012 The Royal Society of Chemistry.
Direct observation of electron propagation and dielectric screening on the atomic length scale.
Neppl, S; Ernstorfer, R; Cavalieri, A L; Lemell, C; Wachter, G; Magerl, E; Bothschafter, E M; Jobst, M; Hofstetter, M; Kleineberg, U; Barth, J V; Menzel, D; Burgdörfer, J; Feulner, P; Krausz, F; Kienberger, R
2015-01-15
The propagation and transport of electrons in crystals is a fundamental process pertaining to the functioning of most electronic devices. Microscopic theories describe this phenomenon as being based on the motion of Bloch wave packets. These wave packets are superpositions of individual Bloch states with the group velocity determined by the dispersion of the electronic band structure near the central wavevector in momentum space. This concept has been verified experimentally in artificial superlattices by the observation of Bloch oscillations--periodic oscillations of electrons in real and momentum space. Here we present a direct observation of electron wave packet motion in a real-space and real-time experiment, on length and time scales shorter than the Bloch oscillation amplitude and period. We show that attosecond metrology (1 as = 10(-18) seconds) now enables quantitative insight into weakly disturbed electron wave packet propagation on the atomic length scale without being hampered by scattering effects, which inevitably occur over macroscopic propagation length scales. We use sub-femtosecond (less than 10(-15) seconds) extreme-ultraviolet light pulses to launch photoelectron wave packets inside a tungsten crystal that is covered by magnesium films of varied, well-defined thicknesses of a few ångströms. Probing the moment of arrival of the wave packets at the surface with attosecond precision reveals free-electron-like, ballistic propagation behaviour inside the magnesium adlayer--constituting the semi-classical limit of Bloch wave packet motion. Real-time access to electron transport through atomic layers and interfaces promises unprecedented insight into phenomena that may enable the scaling of electronic and photonic circuits to atomic dimensions. In addition, this experiment allows us to determine the penetration depth of electrical fields at optical frequencies at solid interfaces on the atomic scale. PMID:25592539
Laser irradiated enhancement of the atomic electron capture rate in search of new physics
International Nuclear Information System (INIS)
Electron capture processes are important for new physics searches and therefore a high capture rate is inevitably desired. We investigate a possibility of enhancement of an atomic electron capture rate by irradiating laser beam to “an atom”. The possibility of the enhancement is shown as a consequence of an enhanced electron wave function at origin Ψ(0) through an effectively increased mass of the electron. We find that order of magnitude enhancement can be achieved using the laser with intensity 1010 W/mm2, and energy of photon, of O(10-3) eV. (author)
Energy Technology Data Exchange (ETDEWEB)
Piñera, Ibrahin, E-mail: ipinera@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Cruz, Carlos M.; Leyva, Antonio; Abreu, Yamiel; Cabal, Ana E. [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, CEADEN, 30 St. 502, Playa 11300, Havana (Cuba); Espen, Piet Van; Remortel, Nick Van [University of Antwerp, CGB, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)
2014-11-15
Highlights: • We present a calculation procedure for dpa cross section in solids under irradiation. • Improvement about 10–90% for the gamma irradiation induced dpa cross section. • Improvement about 5–50% for the electron irradiation induced dpa cross section. • More precise results (20–70%) for thin samples irradiated with electrons. - Abstract: Several authors had estimated the displacements per atom cross sections under different approximations and models, including most of the main gamma- and electron-material interaction processes. These previous works used numerical approximation formulas which are applicable for limited energy ranges. We proposed the Monte Carlo assisted Classical Method (MCCM), which relates the established theories about atom displacements to the electron and positron secondary fluence distributions calculated from the Monte Carlo simulation. In this study the MCCM procedure is adapted in order to estimate the displacements per atom cross sections for gamma and electron irradiation. The results obtained through this procedure are compared with previous theoretical calculations. An improvement in about 10–90% for the gamma irradiation induced dpa cross section is observed in our results on regard to the previous evaluations for the studied incident energies. On the other hand, the dpa cross section values produced by irradiation with electrons are improved by our calculations in about 5–50% when compared with the theoretical approximations. When thin samples are irradiated with electrons, more precise results are obtained through the MCCM (in about 20–70%) with respect to the previous studies.
Angle-resolved 2D imaging of electron emission processes in atoms and molecules
International Nuclear Information System (INIS)
A variety of electron emission processes have been studied in detail for both atomic and molecular systems, using a highly efficient experimental system comprising two time-of-flight (TOF) rotatable electron energy analyzers and a 3rd generation synchrotron light source. Two examples are used here to illustrate the obtained results. Firstly, electron emissions in the HCL molecule have been mapped over a 14 eV wide photon energy range over the Cl 2p ionization threshold. Particular attention is paid to the dissociative core-excited states, for which the Auger electron emission shows photon energy dependent features. Also, the evolution of resonant Auger to the normal Auger decay distorted by post-collision interaction has been observed and the resonating behavior of the valence photoelectron lines studied. Secondly, an atomic system, neon, in which excitation of doubly excited states and their subsequent decay to various accessible ionic states has been studied. Since these processes only occurs via inter-electron correlations, the many body dynamics of an atom can be probed, revealing relativistic effects, surprising in such a light atom. Angular distribution of the decay of the resonances to the parity unfavored continuum exhibits significant deviation from the LS coupling predictions
Jałochowski, M; Kwapiński, T; Łukasik, P; Nita, P; Kopciuszyński, M
2016-07-20
Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed. PMID:27228462
Robust validation of approximate 1-matrix functionals with few-electron harmonium atoms
Cioslowski, Jerzy; Piris, Mario; Matito, Eduard
2015-12-01
A simple comparison between the exact and approximate correlation components U of the electron-electron repulsion energy of several states of few-electron harmonium atoms with varying confinement strengths provides a stringent validation tool for 1-matrix functionals. The robustness of this tool is clearly demonstrated in a survey of 14 known functionals, which reveals their substandard performance within different electron correlation regimes. Unlike spot-testing that employs dissociation curves of diatomic molecules or more extensive benchmarking against experimental atomization energies of molecules comprising some standard set, the present approach not only uncovers the flaws and patent failures of the functionals but, even more importantly, also allows for pinpointing their root causes. Since the approximate values of U are computed at exact 1-densities, the testing requires minimal programming and thus is particularly suitable for rapid screening of new functionals.
Electronic torsional sound in linear atomic chains: chemical energy transport at 1000 km/s
Kurnosov, Arkady A; Maksymov, Andrii A; Burin, Alexander L
2016-01-01
We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so they can participate only in transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Molecular systems for experimental evaluation of the predictions are proposed.
Robust Validation Of Approximate 1-Matrix Functionals With Few-Electron Harmonium Atoms
Cioslowski, Jerzy; Matito, Eduard
2015-01-01
A simple comparison between the exact and approximate correlation components U of the electron-electron repulsion energy of several states of few-electron harmonium atoms with varying confinement strengths provides a superior validation tool for 1-matrix functionals. The robustness of this tool is clearly demonstrated in a survey of 14 known functionals, which reveals their substandard performance within different electron correlation regimes. Unlike spot-testing that employs dissociation curves of diatomic molecules or more extensive benchmarking against experimental atomization energies of molecules comprising one of standard sets, the present approach not only uncovers the flaws and patent failures of the functionals but, even more importantly, allows for pinpointing their root causes. Since the approximate values of U are computed at exact 1-densities, the testing requires minimal programming, and thus is particularly useful in quick screening of new functionals.
Tailoring atomic structure to control the electronic transport in zigzag graphene nanoribbon
Energy Technology Data Exchange (ETDEWEB)
Zeng, Hui [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zhao, Jun, E-mail: zhaojun@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Zeng, Xianliang [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Xu, Yang [Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China)
2012-10-01
We have performed ab initio density functional theory calculation to study the electronic transport properties of the tailored zigzag-edged graphene nanoribbon (ZGNR) with particular electronic transport channels. Our results demonstrated that tailoring the atomic structure had significantly influenced the electronic transport of the defective nanostructures, and could lead to the metal-semiconducting transition when sufficient atoms are tailored. The asymmetric I–V characteristics as a result of symmetry breaking have been exhibited, which indicates the route to utilize GNR as a basic component for novel nanoelectronics. -- Highlights: ► M–S transition induced by tailoring nanostructure. ► Asymmetric I–V curve due to symmetry breaking. ► Controllable electron transport by designing nanofiguration.
QED shift calculations in relativistic many-electron atoms and ions
Tupitsyn, I I; Safronova, M S; Shabaev, V M; Dzuba, V A
2016-01-01
We incorporated quantum electrodynamics (QED) corrections into the broadly-applicable high-precision relativistic method that combines configuration interaction (CI) and linearized coupled-cluster approaches. With the addition of the QED, this CI+all-order method allows one to accurately predict properties of heavy ions of particular interest to the design of precision atomic clocks and tests of fundamental physics. To evaluate the accuracy of the QED contributions and test various QED models, we incorporated four different one-electron QED potentials. We demonstrated that all of them give consistent and reliable results. For the strongly bound electrons (i.e. inner electrons of heavy atoms, or valence electrons in highly-charged ions), the nonlocal potentials are more accurate, than the local one. Results are presented for cases of particular experimental interest.
Ion Flux Measurements in Electron Beam Produced Plasmas in Atomic and Molecular Gases
Walton, S. G.; Leonhardt, D.; Blackwell, D. D.; Murphy, D. P.; Fernsler, R. F.; Meger, R. A.
2001-10-01
In this presentation, mass- and time-resolved measurements of ion fluxes sampled from pulsed, electron beam-generated plasmas will be discussed. Previous works have shown that energetic electron beams are efficient at producing high-density plasmas (10^10-10^12 cm-3) with low electron temperatures (Te < 1.0 eV) over the volume of the beam. Outside the beam, the plasma density and electron temperature vary due, in part, to ion-neutral and electron-ion interactions. In molecular gases, electron-ion recombination plays a significant role while in atomic gases, ion-neutral interactions are important. These interactions also determine the temporal variations in the electron temperature and plasma density when the electron beam is pulsed. Temporally resolved ion flux and energy distributions at a grounded electrode surface located adjacent to pulsed plasmas in pure Ar, N_2, O_2, and their mixtures are discussed. Measurements are presented as a function of operating pressure, mixture ratio, and electron beam-electrode separation. The differences in the results for atomic and molecular gases will also be discussed and related to their respective gas-phase kinetics.
Two-electron time-delay interference in atomic double ionization by attosecond pulses
Energy Technology Data Exchange (ETDEWEB)
Rescigno, Thomas N
2009-10-04
A two-color two-photon atomic double ionization experiment using subfemtosecond UV pulses can be designed such that the sequential two-color process dominates and one electron is ejected by each pulse. Nonetheless, ab initio calculations show that, for sufficiently short pulses, a prominent interference pattern in the joint energy distribution of the sequentially ejected electrons can be observed that is due to their indistinguishability and the exchange symmetry of the wave function.
Experimental search for the electron electric dipole moment with laser cooled francium atoms
Energy Technology Data Exchange (ETDEWEB)
Inoue, T., E-mail: inoue-t@cyric.tohoku.ac.jp [Tohoku University, Frontier Research Institute of Interdisciplinary Sciences (Japan); Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A. [Tohoku University, Cyclotron and Radioisotope Center (Japan); Aoki, T. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Hatanaka, K. [Osaka University, Research Center for Nuclear Physics (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency (Japan); Murakami, T. [Kyoto University, Department of Physics (Japan); Nataraj, H. S. [Indian Institute of Technology Roorkee (India); and others
2015-04-15
A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.
On accurate computations of bound state properties in three- and four-electron atomic systems
Frolov, Alexei M
2016-01-01
Results of accurate computations of bound states in three- and four-electron atomic systems are discussed. Bound state properties of the four-electron lithium ion Li$^{-}$ in its ground $2^{2}S-$state are determined from the results of accurate, variational computations. We also consider a closely related problem of accurate numerical evaluation of the half-life of the beryllium-7 isotope. This problem is of paramount importance for modern radiochemistry.
Demonstration of a Cold Atom Fountain Electron Electric Dipole Moment Experiment
Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey
2006-01-01
A Cs fountain electron electric dipole moment (EDM) experiment using electric-field quantization is demonstrated. With magnetic fields reduced to 200 pT or less, the electric field lifts the degeneracy between hyperfine levels of different|mF| and, along with the slow beam and fountain geometry, suppresses systematics from motional magnetic fields. Transitions are induced and the atoms polarized and analyzed in field-free regions. The feasibility of reaching a sensitivity to an electron EDM o...
Atomic electron motion for Møller polarimetry in a double-arm mode
Afanasiev, A M; Afanasev, Andrei; Glamazdin, Alexander
1996-01-01
We analyse an effect of electron Fermi motion at atomic shells on the accuracy of electron beam polarization measurements with a M\\"oller polarimeter operating in a double--arm mode. It is demonstrated that the effect can result in either {\\it increase} or {\\it decrease} of the measured polarization depending on the detector positions. The effect is simulated for the M\\"oller polarimeter to be installed at CEBAF Hall A.
Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin
2015-12-21
Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4pz atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Zhuoling; Wang, Hao [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Sanvito, Stefano [School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2 (Ireland); Hou, Shimin, E-mail: smhou@pku.edu.cn [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Beida Information Research (BIR), Tianjin 300457 (China)
2015-12-21
Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p{sub z} atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.
Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs
Ren, Juan; Zhang, Ning-Chao; Wang, Peng; Ning, Chao; Zhang, Hong; Peng, Xiao-Juan
2016-04-01
Stable geometries, electronic structures, and magnetic properties of (8,0) and (4,4) single-walled BN nanotubes (BNNTs) doped with rare-earth (RE) atoms are investigated using the first-principles pseudopotential plane wave method with density functional theory (DFT). The results show that these RE atoms can be effectively doped in BNNTs with favorable energies. Because of the curvature effect, the values of binding energy for RE-atom-doped (4,4) BNNTs are larger than those of the same atoms on (8,0) BNNTs. Electron transfer between RE-5 d, 6 s, and B-2 p, N-2 p orbitals was also observed. Furthermore, electronic structures and magnetic properties of BNNTs can be modified by such doping. The results show that the adsorption of Ce, Pm, Sm, and Eu atoms can induce magnetization, while no magnetism is observed when BNNTs are doped with La. These results are useful for spintronics applications and for developing magnetic nanostructures.
Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit
2016-06-01
We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.
Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit
2016-06-01
We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency. PMID:27155868
Thies, B.; Sepp, W.-D.; Fricke, B.
1989-07-01
The time dependence of a heavy-ion-atom collision system is solved via a set of coupled channel equations using energy eigen-values and matrix elements from a self-consistent field relativistic molecular many-electron Dirac-Fock-Slater calculation. Within this independent particle model we give a full many-particle interpretation by performing a small number of single-particle calculations. First results for the P( b) curves for the Ne K-hole excitation for the systems F 8+-Ne and F 6+-Ne as examples are discussed.
Electronic friction at the atomic scale: Conduction, electrostatic and magnetic effects
Krim, Jacqueline; Altfeder, Igor
2013-03-01
We have performed a magnetic probe microscopy study of levitation and atomic-scale friction for Fe on YBCO (Tc = 92.5K) in the temperature range 65 - 293 K, to explore electronic contributions to friction at the atomic scale. The samples were prepared with oxygen-depleted surfaces, with thin semiconducting surface layers present atop the bulk. Below Tc, the friction coefficient was observed to be constant at 0.19 and exhibited no correlation with the strength of superconducting levitation forces observed below Tc. The friction coefficient exhibited a change in slope within experimental error of Tc that increased progressively above Tc and reached 0.33 by room temperature. The results were analyzed within the context of underlying atomic-scale electronic and phononic mechanisms that give rise to friction we conclude that contact electrification and static electricity play a significant role above Tc. Supported by NSF and AFOSR.
Alaterre, P.; Pepin, H.; Fabbro, R.; Faral, B.
1986-11-01
Soft-X-ray low-resolution experimental spectra are obtained for a large set of targets irradiated at 2 x 10 to the 14th W/sq cm by 0.26-micron radiation. X-ray conversion efficiencies in various spectral ranges are studied as a function of atomic number. To calculate the emissivity, a simple, multiple-Z atomic-physics model is developed based on a screened-hydrogenic description for the atomic structure and on a non-LTE modified Saha approach to plasma-ionization properties. Experimental soft-X-ray spectra are replicated by using a discrete summation of emissivities over a few temperatures with appropriate weighting factors determined from the experiment or through a separate hydrodynamic-code simulation. The modulations in the Z dependence of the X-ray conversion efficiency in various spectral ranges are well described and interpreted.
Bibliography on electron transfer processes in ion-ion/atom/molecule collisions (updated 1993)
International Nuclear Information System (INIS)
Following our previous compilations [IPPJ-AM-45 (1986), NIFS-DATA-7 (1990)], bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1980-1992 are included. For easy finding references for particular combination of collision partners, a simple list is also provided. (author) 1542 refs
Nuclear excitation by positron annihilation with bound electrons in a screened atomic potential
Energy Technology Data Exchange (ETDEWEB)
Kaliman, Zoran E-mail: norlic@mapef.pefri.hr; Orlic, Nada
2001-06-01
We have calculated the total cross section for the process of nuclear excitation in positron-bound electron annihilation. The calculations presented in this work use a spherically symmetric screened atomic potential. Comparisons with more approximate treatments of the process are made. (author)
Relativistic effects in non-radiative electron capture in ion-atom collisions
International Nuclear Information System (INIS)
In this paper, a modified eikonal method (Blankenbecler-Goldberger) has been extended to perform calculations for the electron capture processes in relativistic ion-atom collisions. The results are compared with the first order Born approximation and the ordinary eikonal approximation. The relativistic effects are discussed. Some conclusions are drawn. (author)
Electron and X-ray emission in collisions of multiply charged ions and atoms
International Nuclear Information System (INIS)
The author presents experimental results of electron and X-ray emission following slow collisions of multiply charged ions and atoms. The aim of the investigation was to study the mechanisms which are responsible for the emission. (G.T.H.)
Directory of Open Access Journals (Sweden)
Minashin P.V.
2015-01-01
Full Text Available A method of spectroscopic diagnostics of the average perpendicular-to-magnetic-field momentum of the superthermal component of the electron velocity distribution (EVD, based on the high-number-harmonic electron cyclotron (EC radiation, is suggested for nuclear fusion-reactor plasmas under condition of a strong auxiliary heating (e.g. in tokamak DEMO, a next step after tokamak ITER. The method is based on solving an inverse problem for reconstruction of the EVD in parallel and perpendicular-to-magnetic-field components of electron momentum at high and moderate energies responsible for the emission of the high-number-harmonic EC radiation.
Photoionisation detection of single {sup 87}Rb-atoms using channel electron multipliers
Energy Technology Data Exchange (ETDEWEB)
Henkel, Florian Alexander
2011-09-02
Fast and efficient detection of single atoms is a universal requirement concerning modern experiments in atom physics, quantum optics, and precision spectroscopy. In particular for future quantum information and quantum communication technologies, the efficient readout of qubit states encoded in single atoms or ions is an elementary prerequisite. The rapid development in the field of quantum optics and atom optics in the recent years has enabled to prepare individual atoms as quantum memories or arrays of single atoms as qubit registers. With such systems, the implementation of quantum computation or quantum communication protocols seems feasible. This thesis describes a novel detection scheme which enables fast and efficient state analysis of single neutral atoms. The detection scheme is based on photoionisation and consists of two parts: the hyperfine-state selective photoionisation of single atoms and the registration of the generated photoion-electron pairs via two channel electron multipliers (CEMs). In this work, both parts were investigated in two separate experiments. For the first step, a photoionisation probability of p{sub ion}=0.991 within an ionisation time of t{sub ion}=386 ns is achieved for a single {sup 87}Rb-atom in an optical dipole trap. For the second part, a compact detection system for the ionisation fragments was developed consisting of two opposing CEM detectors. Measurements show that single neutral atoms can be detected via their ionisation fragments with a detection efficiency of {eta}{sub atom}=0.991 within a detection time of t{sub det}=415.5 ns. In a future combined setup, this will allow the state-selective readout of optically trapped, single neutral {sup 87}Rb-atoms via photoionisation detection with an estimated detection efficiency {eta}=0.982 and a detection time of t{sub tot} = 802 ns. Although initially developed for single {sup 87}Rb-atoms, the concept of photoionisation detection is in principle generally applicable to any
Energy Technology Data Exchange (ETDEWEB)
Southworth, Stephen H.
1982-01-01
Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were a 130 measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra o f the ejected electrons. The ''a double-angle-TOF'' method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collect ion efficiency and the elimination of certain systematic errors. Several results were obtained for Xe using photon energies in the range hv {approx_equal} 60-190 eV, where excitation and ionization of the inner-subshell 4d electrons dominates. The 4d asymmetry parameter {beta} exhibits strong oscillations with energy, in agreement with several theoretical calculations. As predicted, the 5p asymmetry parameter was observed to deviate strongly from that calculated using the independent-electron model, due to intershell correlation with the 4d electrons.
Interpolation of property-values between electron numbers is inconsistent with ensemble averaging
Miranda-Quintana, Ramón Alain; Ayers, Paul W.
2016-06-01
In this work we explore the physical foundations of models that study the variation of the ground state energy with respect to the number of electrons (E vs. N models), in terms of general grand-canonical (GC) ensemble formulations. In particular, we focus on E vs. N models that interpolate the energy between states with integer number of electrons. We show that if the interpolation of the energy corresponds to a GC ensemble, it is not differentiable. Conversely, if the interpolation is smooth, then it cannot be formulated as any GC ensemble. This proves that interpolation of electronic properties between integer electron numbers is inconsistent with any form of ensemble averaging. This emphasizes the role of derivative discontinuities and the critical role of a subsystem's surroundings in determining its properties.
Electron correlation in fast ion-impact single ionization of helium atoms
International Nuclear Information System (INIS)
A four-body distorted-wave approximation is applied for theoretical analysis of the fully differential cross sections (FDCS) for proton-impact single ionization of helium atoms in their ground states. The nine-dimensional integrals for the partial amplitudes are analytically reduced to closed-form expressions or some one-dimensional integrals which can be easily calculated numerically. Calculations are performed in the scattering and perpendicular planes. The influence of the target static electron correlations on the process is investigated using a number of different bound-state wave functions for the ground state of the helium targets. An illustrative computation is performed for 75-keV proton-helium collisions and the obtained results are compared with experimental data and other theoretical predictions. Although for small momentum transfers, the comparison shows a reasonable agreement with experiments in the scattering and perpendicular planes, some significant discrepancies are still present at large momentum transfers in these planes. However, our results are compatible and for some cases, better than those of the other sophisticated calculations. (paper)
Corsetti, Fabiano
2014-01-01
The implementation of the orbital minimization method (OMM) for solving the self-consistent Kohn-Sham (KS) problem for electronic structure calculations in a basis of non-orthogonal numerical atomic orbitals of finite-range is reported. We explore the possibilities for using the OMM as an exact cubic-scaling solver for the KS problem, and compare its performance with that of explicit diagonalization in realistic systems. We analyze the efficiency of the method depending on the choice of line search algorithm and on two free parameters, the scale of the kinetic energy preconditioning and the eigenspectrum shift. The results of several timing tests are then discussed, showing that the OMM can achieve a noticeable speedup with respect to diagonalization even for minimal basis sets for which the number of occupied eigenstates represents a significant fraction of the total basis size (>15%). We investigate the hard and soft parallel scaling of the method on multiple cores, finding a performance equal to or better ...
International Nuclear Information System (INIS)
An electron model is proposed explaining the physical reasons for its nonrelativistic quantum-mechanical behaviour, the origin of its own mechanical and magnetic momentum and field energy. As an example the main electron state in hydrogen atom is obtained
Energy Technology Data Exchange (ETDEWEB)
Blauth, D. [Institut fuer Physik der Humboldt, Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin-Adlershof (Germany); Winter, H., E-mail: winter@physik.hu-berlin.de [Institut fuer Physik der Humboldt, Universitaet zu Berlin, Newtonstr. 15, D-12489 Berlin-Adlershof (Germany)
2011-06-01
Negative ion fractions, projectile energy loss, and the emission of electrons is studied for grazing scattering of hydrogen and helium atoms/ions from a clean and oxidized NiAl(1 1 0) surface. Making use of translation energy spectroscopy and the coincident detection of the number of emitted electrons we have studied the electronic interaction mechanisms for the change from a clean metal target to an insulator surface via the preparation of a well defined ultrathin alumina film on top of the metal substrate. We find that already for a monolayer thick oxide film the characteristic different features of electronic processes for the surface of an insulator crystal are present.
PREFACE: XXVII International Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 2011)
Williams, I. D.; van der Hart, H. W.; McCann, J. F.; Crothers, D. S. F.
2012-11-01
The XXVII International Conference on Photonic, Electronic and Atomic Collisions was held at Queen's University Belfast, Northern Ireland, 27 July - 2 August 2011. Members of the Local Organising Committee were drawn from the School of Mathematics and Physics of Queen's University Belfast, the School of Physical Sciences at Dublin City University, the School of Physics at University College Dublin and the Department of Experimental Physics at the National University of Ireland, Maynooth. The Conference was attended by 566 participants with contributions from 54 countries. The meeting attracted 786 contributed papers for presentation in the poster sessions. The conference included 20 Special Reports selected from the contributed papers, and these are included in part 1 of this volume. During the meeting a total of 65 Progress Reports were also presented, and the authors invited to submit written versions of their talks (see Part 1). Of the total number of contributed papers, 663 are included as refereed abstracts in parts 2 to 15 of this volume of Journal of Physics: Conference Series. Part 1 of this volume includes detailed write-ups of the majority of plenary lectures, progress reports and special reports, constituting a comprehensive tangible record of the meeting, and is additionally published in hard-copy as the Conference Proceedings. There were 5 plenary lectures given by Margaret Murnane on Ultrafast processes in atomic dynamics; Chris Greene on Few-body highly-correlated dynamics; Michael Allan on Electron-molecule collisions; Yasunori Yamazaki on Antiproton and positron collisions and Thomas Stöhlker on Relativistic ion collisions. Ian Spielman, winner of the IUPAP Young Scientist Prize for 2011, gave a special lecture entitled Modifying interatomic interactions using Raman coupling: a tale of slowly colliding Bose-Einstein condensates. In addition an evening public lecture by Mike Baillie on How precise tree-ring dating raises issues concerning the
Ramachandra, Ranjan; Demers, Hendrix; de Jonge, Niels
2011-01-01
Silicon nitride membranes can be used for windows of environmental chambers for in situ electron microscopy. We report that aberration corrected scanning transmission electron microscopy (STEM) achieved atomic resolution on gold nanoparticles placed on both sides of a 50-nm-thick silicon nitride membrane at 200 keV electron beam energy. Spatial frequencies of 1∕1.2 Å were visible for a beam semi-angle of 26.5 mrad. Imaging though a 100-nm-thick membrane was also tested. The achieved imaging c...
Chauhan, Rabeet Singh
2016-01-01
Using an accurate semi-analytic wavefunction for two electron atoms, we construct the external potential for varying strength of electron-electron (e-e) interaction. Using this potential we explicitly calculate the energy of their positive ion and show that the ionization-potential of these systems remains unchanged with respect to the strength parameter for e-e interaction. Furthermore, using total energies of these systems as a function of strength parameter, we provide a new perspective into a variety of hybrid functionals.
Electron capture and ionization for ion-Rydberg atom collisions in a magnetic field
International Nuclear Information System (INIS)
Within the classical trajectory Monte Carlo (CTMC) model, we calculate electron transfer and ionization cross sections for 1.3-130 eV amu-1 singly charged ions colliding with Rydberg atoms in the presence of a laboratory-strength magnetic field of 4 tesla. A new method for generating a stationary microcanonical ensemble for a quasi-integrable initial-state Hamiltonian is presented. The calculated cross sections show signatures of electron capture and ionization mechanisms for the field-free case, e.g. multiple swaps and saddle-point electrons; their structure as well as their magnitude, however, are strongly modified by the presence of the magnetic field. (Author)
Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.
Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi
2015-03-17
Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.
Interatomic Coulombic electron capture in atomic, molecular, and quantum dot systems
Directory of Open Access Journals (Sweden)
Bande Annika
2015-01-01
Full Text Available The interatomic Coulombic electron capture (ICEC process has recently been predicted theoretically for clusters of atoms and molecules. For an atom A capturing an electron e(ε it competes with the well known photorecombination, because in an environment of neutral or anionic neighboring atoms B, A can transfer its excess energy in the ultrafast ICEC process to B which is then ionized. The cross section for e(ε + A + B → A− + B+ + e(ε′ has been obtained in an asymptotic approximation based on scattering theory for several clusters [1,2]. It was found that ICEC starts dominating the PR for distances among participating species of nanometers and lower. Therefore, we believe that the ICEC process might be of importance in the atmosphere, in biological systems, plasmas, or in nanostructured materials. As an example for the latter, ICEC has been investigated by means of electron dynamics in a model potential for semiconductor double quantum dots (QDs [3]. In the simplest case one QD captures an electron while the outgoing electron is emitted from the other. The reaction probability for this process was found to be relatively large.
Landry, Guillaume; Seco, Joao; Gaudreault, Mathieu; Verhaegen, Frank
2013-10-01
Dual energy computed tomography (DECT) can provide simultaneous estimation of relative electron density ρe and effective atomic number Zeff. The ability to obtain these quantities (ρe, Zeff) has been shown to benefit selected radiotherapy applications where tissue characterization is required. The conventional analysis method (spectral method) relies on knowledge of the CT scanner photon spectra which may be difficult to obtain accurately. Furthermore an approximate empirical attenuation correction of the photon spectrum through the patient is necessary. We present an alternative approach based on a parameterization of the measured ratio of low and high kVp linear attenuation coefficients for deriving Zeff which does not require the estimation of the CT scanner spectra. In a first approach, the tissue substitute method (TSM), the Rutherford parameterization of the linear attenuation coefficients was employed to derive a relation between Zeff and the ratio of the linear attenuation coefficients measured at the low and high kVp of the CT scanner. A phantom containing 16 tissue mimicking inserts was scanned with a dual source DECT scanner at 80 and 140 kVp. The data from the 16 inserts phantom was used to obtain model parameters for the relation between Zeff and \\mu \\big|_{140kVp}^{80kVp}. The accuracy of the method was evaluated with a second phantom containing 4 tissue mimicking inserts. The TSM was compared to a more complex approach, the reference tissue method (RTM), which requires the derivation of stoichiometric fit parameters. These were derived from the 16 inserts phantom scans and used to calculate CT numbers at 80 and 140 kVp for a set of tabulated reference human tissues. Model parameters for the parameterization of \\mu \\big|_{140\\;kVp}^{80\\;kVp} were estimated for this reference tissue dataset and compared to the results of the TSM. Residuals on Zeff for the reference tissue dataset for both TSM and RTM were compared to those obtained from the
Energy Technology Data Exchange (ETDEWEB)
Nogueira, M.S. [Centro Regional de Ciencias Nucleares (CRCN), Recife, PE (Brazil); Rodas Duran, J.E. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica
2001-07-01
The teeth are organs of complicated structure that consist, partly, of hard tissue containing in its interior the dental pulp, rich in vases and nerves. The main mass of the tooth is constituted by the dentine, which is covered with hard tissues and of epithelial origin called enamel. The dentine of the human teeth used in this work were completely removed and the teeth were cut with a device with a diamond disc. In this work the chemical composition of the human enamel was determined, which showed a high percentage of Ca and P, in agreement with the results found in the literature. The effective atomic number of the material and the half-value layer in the energy range of diagnostic X-ray beams were determined. Teeth could be used to evaluated the public's individual doses as well as for retrospective dosimetry what confirms the importance of their effective atomic number and composition determination. (author)
Fast and accurate conversion of atomic models into electron density maps
Directory of Open Access Journals (Sweden)
Carlos O.S. Sorzano
2015-03-01
Full Text Available New image processing methodologies and algorithms have greatly contributed to the signi cant progress in three-dimensional electron microscopy (3DEM of biological complexes we have seen over the last decades. Naturally, the availability of accurate procedures for the objective testing of new algorithms is a crucial requirement for the further advancement of the eld. A good and accepted testing work ow involves the generation of realistic 3DEM-like maps of biological macromolecules from which some measure of ground truth can be derived, ideally because their 3D atomic structure is already known. In this work we propose a very accurate generation of maps using atomic form factors for electron scattering. We thoroughly review current approaches in the eld, quantitatively demonstrating the bene ts of the new methodology. Additionally, we study a concrete example of the use of this approach for hypothesis testing in 3D Electron Microscopy.
Stimulated Raman adiabatic passage for improved performance of a cold-atom electron and ion source
Sparkes, B. M.; Murphy, D.; Taylor, R. J.; Speirs, R. W.; McCulloch, A. J.; Scholten, R. E.
2016-08-01
We implement high-efficiency coherent excitation to a Rydberg state using stimulated Raman adiabatic passage in a cold-atom electron and ion source. We achieve an efficiency of 60% averaged over the laser excitation volume with a peak efficiency of 82%, a 1.6 times improvement relative to incoherent pulsed-laser excitation. Using pulsed electric field ionization of the Rydberg atoms we create electron bunches with durations of 250 ps. High-efficiency excitation will increase source brightness, crucial for ultrafast electron diffraction experiments, and coherent excitation to high-lying Rydberg states could allow for the reduction of internal bunch heating and the creation of a high-speed single-ion source.
Cross-section measurements for electron-impact ionization of atoms
Freund, Robert S.; Wetzel, Robert C.; Shul, Randy J.; Hayes, Todd R.
1990-04-01
Absolute electron-impact cross sections have been measured from 0 to 200 eV for single ionization of 16 atoms (Mg, Fe, Cu, Ag, Al, Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se, and Te) with an estimated accuracy of +/-10%. Combined with our recent measurements of He, Ne, Ar, Kr, Xe, F, Cl, Br, I, Ga, and In [Wetzel et al., Phys. Rev. A 35, 559 (1987); Hayes et al., ibid. 35, 578 (1987); Shul, Wetzel, and Freund, ibid. 39, 5588 (1989)], a set of 27 atomic single-ionization cross sections has now been measured with the same apparatus. In addition, cross sections are reported for double ionization of ten atoms and triple ionization of eight atoms. The measurements are made by crossing an electron beam with a 3-keV beam of neutral atoms, prepared by charge-transfer neutralization of a mass-selected ion beam. The critical measurement of absolute neutral beam flux is made with a calibrated pyroelectric crystal. The magnitudes of the single-ionization-peak cross sections decrease monotonically across rows of the periodic table from group IIIA (Al,Ga,In) to group VIIIA (Ar,Kr,Xe), varying much more than predicted by various empirical formulas and classical and quantum-mechanical theories.
International Nuclear Information System (INIS)
The electronic structure and magnetic properties of the transition-metal (TM) atoms (Sc—Zn, Pt and Au) doped zigzag GaN single-walled nanotubes (NTs) are investigated using first-principles spin-polarized density functional calculations. Our results show that the bindings of all TM atoms are stable with the binding energy in the range of 6–16 eV. The Sc- and V-doped GaN NTs exhibit a nonmagnetic behavior. The GaN NTs doped with Ti, Mn, Ni, Cu and Pt are antiferromagnetic. On the contrary, the Cr-, Fe-, Co-, Zn- and Au-doped GaN NTs show the ferromagnetic characteristics. The Mn- and Co-doped GaN NTs induce the largest local moment of 4μB among these TM atoms. The local magnetic moment is dominated by the contribution from the substitutional TM atom and the N atoms bonded with it. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains.
An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun
2016-07-28
Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.
International Nuclear Information System (INIS)
Atomic ordering and site determination have been studied em areas of progressively smaller scale. In paper I we studied how AI and Si arc ordered in a π-AlFeMgSi matrix. Single crystal investigations were carried out using CBED for site-symmetry and refinement of atomic positions. Electron channelling was used to determine how Al and Si were arranged on atomic sites within the crystal. In paper III and IV, we studied MnO2 crystallites. The crystallites were of' nanometer size and therefore, in contrast to paper I and II, single crystal analysis could not be carried out. Instead, SAD was used to determine the arrangement of Mn atoms on the octahedral sites between oxygen hcp layers and also used to obtain information on how crystal and unit cell sizes vary within the film. The small size of nanocrystals generally limits the use of single crystal analysis techniques. However, electron channelling (or ALCHEMI) can be used to study the site arrangement of atoms in nanometer sized thin films if the film and substrate are coherent and if studied in plane view. This is explored m paper V. (Author)
The magnetism and spin-dependent electronic transport properties of boron nitride atomic chains
An, Yipeng; Zhang, Mengjun; Wu, Dapeng; Fu, Zhaoming; Wang, Tianxing; Jiao, Zhaoyong; Wang, Kun
2016-07-01
Very recently, boron nitride atomic chains were successively prepared and observed in experiments [O. Cretu et al., ACS Nano 8, 11950 (2015)]. Herein, using a first-principles technique, we study the magnetism and spin-dependent electronic transport properties of three types of BN atomic chains whose magnetic moment is 1 μB for BnNn-1, 2 μB for BnNn, and 3 μB for BnNn+1 type atomic chains, respectively. The spin-dependent electronic transport results demonstrate that the short BnNn+1 chain presents an obvious spin-filtering effect with high spin polarization ratio (>90%) under low bias voltages. Yet, this spin-filtering effect does not occur for long BnNn+1 chains under high bias voltages and other types of BN atomic chains (BnNn-1 and BnNn). The proposed short BnNn+1 chain is predicted to be an effective low-bias spin filters. Moreover, the length-conductance relationships of these BN atomic chains were also studied.
Zhou, Xia-Yu; Rong, Chunying; Lu, Tian; Zhou, Panpan; Liu, Shubin
2016-05-26
How to accurately predict electronic properties of a Columbic system with the electron density obtained from experiments such as X-ray crystallography is still an unresolved problem. The information-theoretic approach recently developed in the framework of density functional reactivity theory is one of the efforts to address the issue. In this work, using 27 atoms and 41 molecules as illustrative examples, we present a study to demonstrate that one is able to satisfactorily describe such electronic properties as the total energy and its components with information-theoretic quantities like Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, and Onicescu information energy. Closely related to the earlier attempt of expanding density functionals using simple homogeneous functionals, this work not only confirms Nagy's proof that Shannon entropy alone should contain all the information needed to adequately describe an electronic system but also provides a feasible pathway to map the relationship between the experimentally available electron density and various electronic properties for Columbic systems such as atoms and molecules. Extensions to other electronic properties are straightforward.
On the exchange of orbital angular momentum between twisted photons and atomic electrons
International Nuclear Information System (INIS)
We obtain an expression for the matrix element for scattering of a twisted (Laguerre–Gaussian profile) photon from a hydrogen atom. We consider photons incoming with an orbital angular momentum (OAM) of ℓħ, carried by a factor of eiℓϕ not present in a plane-wave or pure Gaussian profile beam. The nature of the transfer of +2ℓ units of OAM from the photon to the azimuthal atomic quantum number of the atom is investigated. We obtain simple formulas for these OAM flip transitions for elastic forward scattering of twisted photons when the photon wavelength λ is large compared with the atomic target size a, and small compared with the Rayleigh range zR, which characterizes the collimation length of the twisted photon beam. (paper)
Electronic relaxation dynamics of a metal atom deposited on argon cluster
International Nuclear Information System (INIS)
This thesis is a study on the interaction between electronically excited atomic states and a non-reactive environment. We have theoretically and experimentally studied situations where a metal atom (Ba or K) is placed in a finite size environment (argon cluster). The presence of the medium affects the electronic levels of the atom. On the other side, the excitation of the atom induces a relaxation dynamics of the electronic energy through the deformation of the cluster. The experimental part of this work focuses on two aspects: the spectroscopy and the dynamics. In both cases a first laser electronically excites the metal atom and the second ionizes the excited system. The observable is the photoelectron spectrum recorded after photoionization and possibly information on the photoion which are also produced. This pump/probe technique, with also two lasers, provide the ultrafast dynamic when the lasers pulses used are of ultrashort (60 fs). The use of nanosecond lasers leads to resonance spectroscopic measurement, unresolved temporally, which give information on the position of the energy levels of the studied system. From a theoretical point-of-view, the excited states of M-Arn were calculated at the ab initio level, using large core pseudo-potential to limit the active electrons of the metal to valence electrons. The study of alkali metals (potassium) is especially well adapted to this method since only one electron is active. The ab-initio calculation and a Monte-Carlo simulation where coupled to optimize the geometry of the KArn (n = 1-10) cluster when K is in the ground state of the neutral and the ion, or excited in the 4p or 5s state. Calculations were also conducted in collaboration with B. Gervais (CIMAP, Caen) on KArn clusters having several tens of argon atoms. Absorption spectra were also calculated. From an experimental point-of-view, we were able to characterize the excited states of potassium and barium perturbed by the clusters. In both cases a
Collisional transfer of electrons to the continuum of atomic and molecular ions
International Nuclear Information System (INIS)
The aim of this study was the systematic investigation of the differences that appear in the peaks of distribution of doubly differential (in angle an energy) 'convoy' electrons, when comparing spectra obtained by bombarding thin carbon foils with atomic (H+) and molecular (H2+) projectiles of equal velocity. The measurements show that the production yield of such electrons is inversely propotional to the ion dwell time in the solid. For long times, the yield ratio fluctuates around the unity value, and the amplitude of this dispersion decreases for longer times. A higher yield is measured for (H2+), but only near the peak cusp. The double differential cross section (DDCS) for electron capture is calculated in second order Born approximation. A transition from a 1s state to the continuum of two correlated protons as a function of their internuclear distance R is considered. As R decreases from approx. 0.5 atomic units towards zero, the DDCS value increases from that corresponding to the atomic projectil (Z=1) limit to the united atom value (Z=2). It is found that, the higher the projectil velocity, the better is the DDCS value agreement with both limits. The equipment used by the author is described. (M.E.L.)
Energy Technology Data Exchange (ETDEWEB)
Marinković, Bratislav P., E-mail: bratislav.marinkovic@ipb.ac.rs [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); School of Electrical and Computer Engineering of Applied Studies, Vojvode Stepe 283, 11000 Belgrade (Serbia); Vujčić, Veljko [Astronomical Observatory Belgade, Volgina 7, 11050 Belgrade (Serbia); Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Belgrade (Serbia); Sushko, Gennady [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Vudragović, Dušan [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Marinković, Dara B. [Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Belgrade (Serbia); Đorđević, Stefan; Ivanović, Stefan; Nešić, Milutin [School of Electrical and Computer Engineering of Applied Studies, Vojvode Stepe 283, 11000 Belgrade (Serbia); Jevremović, Darko [Astronomical Observatory Belgade, Volgina 7, 11050 Belgrade (Serbia); Solov’yov, Andrey V. [MBN Research Center, Altenhöferallee 3, 60438 Frankfurt am Main (Germany); Mason, Nigel J. [The Open University, Department of Physical Sciences, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)
2015-07-01
Highlights: • BEAMDB database maintaining electron/atom-molecule collisional data has been created. • The DB is MySQL, the web server is Nginx and Python application server is Gunicorn. • Only data that have been previously published and formally refereed are included. • Data protocol for exchanging and representing data is in the “xsams” xml format. • BEAMDB becomes a node within the VAMDC consortium and radiation damage RADAM basis. - Abstract: We present a progress report on the development of the Belgrade electron/molecule data base which is hosted by The Institute of Physics, University of Belgrade and The Astronomical Observatory Belgrade. The data base has been developed under the standards of Virtual Atomic Molecular Data Centre (VAMDC) project which provides a common portal for several European data bases that maintain atomic and molecular data. The Belgrade data base (BEAMDB) covers collisional data of electron interactions with atoms and molecules in the form of differential (DCS) and integrated cross sections as well as energy loss spectra. The final goal of BEAMDB becoming both a node within the VAMDC consortium and within the radiation damage RADAM data base has been achieved.
Reduced matrix elements of spin–spin interactions for the atomic f-electron configurations
Energy Technology Data Exchange (ETDEWEB)
Yeung, Y.Y., E-mail: yeungy@acm.org
2014-03-15
A re-examination of some major references on the intra-atomic magnetic interactions over the last six decades reveals that there exist some gaps or puzzles concerning the previous studies of the spin–spin interactions for the atomic f-shell electrons. Hence, tables are provided for the relevant reduced matrix elements of the four double-tensor operators z{sub r} (r=1,2,3, and 4) of rank 2 in both the orbital and spin spaces. The range of the tables covers all states of the configurations from f{sup 4} to f{sup 7}.
Spin-singlet Bose-Einstein condensation of two-electron atoms.
Takasu, Yosuke; Maki, Kenichi; Komori, Kaduki; Takano, Tetsushi; Honda, Kazuhito; Kumakura, Mitsutaka; Yabuzaki, Tsutomu; Takahashi, Yoshiro
2003-07-25
We report the observation of a Bose-Einstein condensation of ytterbium atoms by evaporative cooling in a novel crossed optical trap. Unlike the previously observed condensates, a ytterbium condensate is a two-electron system in a singlet state and has distinct features such as the extremely narrow intercombination transitions which are ideal for future optical frequency standard and the insensitivity to external magnetic field which is important for precision coherent atom optics, and the existence of the novel metastable triplet states generated by optical excitation from the singlet state. PMID:12906649
Calculating the energy of electron in H-atom using modified SUSY physics
Directory of Open Access Journals (Sweden)
U. V. S. Seshavatharam
2015-02-01
Full Text Available In this paper considering the authors previously proposed SUSY concept - ‘fermion and boson mass ratio is close to 2.26’ and considering the electroweak neutral boson, an attempt is made to understand the total energy of revolving electron in the Hydrogen atom. Thus in this paper authors succeeded in extending the basic applications of SUSY and Electroweak theory to atomic level. With further research and analysis, the hidden secrets of electroweak unification can be understood very easily.
Circular dichroism in free-free transitions of high energy electron-atom scattering
Cionga, Aurelia; Zloh, Gabriela; 10.1103/PhysRevA.62.063406
2013-01-01
We consider high energy electron scattering by hydrogen atoms in the presence of a laser field of moderate power and higher frequencies. If the field is a superposition of a linearly and a circularly polarized laser beam in a particular configuration, then we can show that circular dichroism in two photon transitions can be observed not only for the differential but also for the integrated cross sections, provided the laser-dressing of the atomic target is treated in second order perturbation theory and the coupling between hydrogenic bound and continuum states is involved.
Electron electric dipole moment experiment using electric-field quantized slow cesium atoms
Amini, Jason M.; Munger Jr., Charles T.; Gould, Harvey
2007-01-01
A proof-of-principle electron electric dipole moment (e-EDM) experiment using slow cesium atoms, nulled magnetic fields, and electric field quantization has been performed. With the ambient magnetic fields seen by the atoms reduced to less than 200 pT, an electric field of 6 MV/m lifts the degeneracy between states of unequal lbar mF rbar and, along with the low (approximately 3 m/s) velocity, suppresses the systematic effect from the motional magnetic field. The low velocity and small r...
Three-dimensional coordinates of individual atoms in materials revealed by electron tomography.
Xu, Rui; Chen, Chien-Chun; Wu, Li; Scott, M C; Theis, W; Ophus, Colin; Bartels, Matthias; Yang, Yongsoo; Ramezani-Dakhel, Hadi; Sawaya, Michael R; Heinz, Hendrik; Marks, Laurence D; Ercius, Peter; Miao, Jianwei
2015-11-01
Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. Here, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ∼19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field and the full strain tensor with a 3D resolution of ∼1 nm(3) and a precision of ∼10(-3), which are further verified by density functional theory calculations and molecular dynamics simulations. The ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.
Three-dimensional coordinates of individual atoms in materials revealed by electron tomography
Xu, Rui; Chen, Chien-Chun; Wu, Li; Scott, M. C.; Theis, W.; Ophus, Colin; Bartels, Matthias; Yang, Yongsoo; Ramezani-Dakhel, Hadi; Sawaya, Michael R.; Heinz, Hendrik; Marks, Laurence D.; Ercius, Peter; Miao, Jianwei
2015-11-01
Crystallography, the primary method for determining the 3D atomic positions in crystals, has been fundamental to the development of many fields of science. However, the atomic positions obtained from crystallography represent a global average of many unit cells in a crystal. Here, we report, for the first time, the determination of the 3D coordinates of thousands of individual atoms and a point defect in a material by electron tomography with a precision of ~19 pm, where the crystallinity of the material is not assumed. From the coordinates of these individual atoms, we measure the atomic displacement field and the full strain tensor with a 3D resolution of ~1 nm3 and a precision of ~10-3, which are further verified by density functional theory calculations and molecular dynamics simulations. The ability to precisely localize the 3D coordinates of individual atoms in materials without assuming crystallinity is expected to find important applications in materials science, nanoscience, physics, chemistry and biology.
Indian Academy of Sciences (India)
S Prasanna Kumar; T K Umesh
2011-08-01
In this paper, we report a new method to determine the effective atomic number, eff, of composite materials for Compton effect in the γ -ray region 280–1115 keV based on the theoretically obtained Klein–Nishina scattering cross-sections in the angular range 50°–100° as well as a method to experimentally measure differential incoherent (Compton) scattering cross-sections in this angular range. The method was employed to evaluate eff for different inorganic compounds containing elements in the range = 1–56, at three scattering angles 60°, 80° and 100° at three incident gamma energies 279.1 keV, 661.6 keV and 1115.5 keV and we have veriﬁed this method to be an appropriate method. Interestingly, the eff values so obtained for the inorganic compounds were found to be equal to the total number of electrons present in the sample as given by the atomic number of the elements constituting the sample in accordance with the chemical formula of the sample. This was the case at all the three energies.
Takahashi, Ryoji; Kaneko, Satoshi; Marqués-González, Santiago; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Kiguchi, Manabu
2016-07-22
A highly stable experimental setup was developed for the measurement of shot noise in atomic contacts and molecular junctions to determine the number of atoms or molecules present. The use of a nano-fabricated mechanically controllable break junction (MCBJ) electrode improved the overall stability of the experimental setup. The improved stability of the system and optimization of measurement system enabled us to comprehensively investigate the shot noise as well as charge transport properties in Au atomic contacts and molecular junctions. We present a solid proof that the number of atoms (cross sectional atom) in the Au atomic contacts was exactly one. In the atomic contacts, contribution from the additional channels was under the detection limit. Furthermore, the effect of molecular adsorption on the charge transport in the Au atomic contact was investigated. Additional transport channels were opened by exposing pyrazine molecules to the Au contacts, which gave rise to an increase in the Fano factor in the shot noise. PMID:27291763
Takahashi, Ryoji; Kaneko, Satoshi; Marqués-González, Santiago; Fujii, Shintaro; Nishino, Tomoaki; Tsukagoshi, Kazuhito; Kiguchi, Manabu
2016-07-01
A highly stable experimental setup was developed for the measurement of shot noise in atomic contacts and molecular junctions to determine the number of atoms or molecules present. The use of a nano-fabricated mechanically controllable break junction (MCBJ) electrode improved the overall stability of the experimental setup. The improved stability of the system and optimization of measurement system enabled us to comprehensively investigate the shot noise as well as charge transport properties in Au atomic contacts and molecular junctions. We present a solid proof that the number of atoms (cross sectional atom) in the Au atomic contacts was exactly one. In the atomic contacts, contribution from the additional channels was under the detection limit. Furthermore, the effect of molecular adsorption on the charge transport in the Au atomic contact was investigated. Additional transport channels were opened by exposing pyrazine molecules to the Au contacts, which gave rise to an increase in the Fano factor in the shot noise.
Technique for measuring the frequency of slow electron collisions with atoms and molecules
International Nuclear Information System (INIS)
The described technique was applied for registering the frequency of slow electrons collisions with molecules and atoms of substances. The registering is carried out through superpositioning of crossing high-frequency electrical and adjustable constant magnetic fields over the investigated media, through inserting in this media electrons with the necessary energy and by registering the forms of the curve that characterizes the electron-cyclotron resonance, by which a judgement can be made about the collision frequency. To lower the electrical field frequency, to simplify the apparatus and widen the nomenclature of the investigated substances a stationary flux of electrons is inserted in the investigated media with the help of thermoionic cathode, for example, hence the resonance curve of the electron power reaching the collector is registered. The described technique can be applied for investigating the plasma parameters. (author)
Effects of inner electrons on atomic strong-field ionization dynamics
Rapp, J
2013-01-01
The influence of inner electrons on the ionization dynamics in strong laser fields is investigated in a wavelength regime where the inner electron dynamics is usually assumed to be negligible. The role of inner electrons is of particular interest for the application of frozen-core approximations and pseudopotentials in time-dependent density functional theory (TDDFT) and the single-active-electron (SAE) approximation in strong-field laser physics. Results of TDDFT and SAE calculations are compared with exact ones obtained by the numerical ab initio solution of the three-electron time-dependent Schr\\"odinger equation for a lithium model atom. It is found that dynamical anti-screening may substantially alter the ionization rate in the single-photon regime. Requirements for the validity of the approximations in the single and multiphoton ionization domain are identified.
Double-electron capture by highly-ionized atoms isolated at very low energy
Fogwell Hoogerheide, Shannon; Dreiling, Joan M.; Sahiner, Arda; Tan, Joseph N.
2016-05-01
Charge exchange with background gases, also known as electron capture processes, is important in the study of comets, controlled fusion energy, anti-matter atoms, and proposed one-electron ions in Rydberg states. However, there are few experiments in the very low energy regime that could be useful for further theoretical development. At NIST, highly-charged ions extracted from an electron-beam ion trap can be isolated with energy state. Analysis using a system of rate equations yields information about the ion cloud expansion and single-electron capture rates. A substantial amount of double-electron capture is also observed. We present the relative rates and discuss the error budget. SFH and JMD were funded by National Research Council Research Associateship Awards during some of this work.
P ,T -odd electron-nucleus interaction in atomic systems as an exchange by Higgs bosons
Chubukov, D. V.; Labzowsky, L. N.
2016-06-01
Scalar-pseudoscalar P ,T -odd interaction between the electron and the nucleus in atomic systems is constructed within the standard model as an exchange by Higgs boson. The necessary P - and T -violating contribution is obtained at the three-loop level on the basis of Cabibbo-Kobayashi-Maskawa matrix. This contribution, unlike the corresponding contribution to the electron electric dipole moment (EDM), does not vanish since the "Higgs charges" of quarks, contrary to their electric charges, are flavor dependent. Order-of-magnitude estimates of the effect expressed as an "equivalent" electron EDM give the values within the range deeqv˜10-40-10-45e cm , depending on the known different estimates for the electron EDM. This can be compared with the known "benchmark" two-photon P ,T -odd electron-nucleus interaction effect, which provides deeqv˜10-38e cm .
State of the art in atomic resolution off-axis electron holography
Energy Technology Data Exchange (ETDEWEB)
Linck, Martin, E-mail: mlinck@lbl.gov [Triebenberg Laboratory, Institute of Structure Physics, Technische Universitaet Dresden, Zum Triebenberg 50, 01328 Dresden (Germany); Freitag, Bert; Kujawa, Stephan [FEI Company, Eindhoven, Building AAE, Achtseweg Noord 5, P.O. Box 80066, 5600 KA Eindhoven (Netherlands); Lehmann, Michael; Niermann, Tore [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Strasse des 17. Juni 135, 10623 Berlin (Germany)
2012-05-15
As proposed by Hannes Lichte, to resolve structure-property relations not only the question 'Which atom is where?' but also the question 'Which fields are around?' has to be answered. High-resolution off-axis electron holography opens up an access to these key questions in that it allows accessing the complete exit-wave of the object provided within the information limit of the microscope, i.e. amplitude and phase including atomic details such as position and species, and moreover, information about large area electric potentials and magnetic fields, which a conventional transmission electron microscope is blind for-also when using a Cs-corrector. For an excellent object exit-wave reconstruction, special care has to be taken on the hologram quality, i.e. interference fringe contrast and electron dose. Severe restrictions are given to signal resolution by the limited brightness of the electron source. Utilizing a new high-brightness Schottky field electron emitter in a state-of-the-art transmission electron microscope operated at 300 kV, the phase signal resolution at atomic resolution can significantly be enhanced. An improvement by at least a factor of 2.88 compared to the most recently reported single hologram at atomic resolution is found. To proof the applicability of this setup to real materials science problems, a grain boundary of gold has been investigated holographically. -- Highlights: Black-Right-Pointing-Pointer Impact of the brightness on the reconstructed signal in electron holography. Black-Right-Pointing-Pointer Factor 2.8 gain in signal quality by setup with a high brightness electron gun. Black-Right-Pointing-Pointer Investigation of a grain boundary in gold with a state-of-the-art holography setup. Black-Right-Pointing-Pointer A-posteriori aberration fine-tuning for true one Angstrom resolution in the object wave. Black-Right-Pointing-Pointer Mistilt analysis on the atomic scale by numerical wave optics.
International Nuclear Information System (INIS)
Interfacial science has received much attention recently based on the development of state-of-the-art analytical tools that can create and manipulate the charge, spin, orbital, and lattice degrees of freedom at interfaces. Motivated by the importance of nanoscale interfacial science that governs device operation, we present a technique to probe the electronic characteristics of heterointerfaces with atomic resolution. In this work, the interfacial characteristics of heteroepitaxial structures are investigated and the fundamental mechanisms that pertain in these systems are elucidated through cross-sectional scanning tunneling microscopy (XSTM). The XSTM technique is employed here to directly observe epitaxial interfacial structures and probe local electronic properties with atomic-level capability. Scanning tunneling microscopy and spectroscopy experiments with atomic precision provide insight into the origin and spatial distribution of electronic properties across heterointerfaces. The first part of this report provides a brief description of the cleavage technique and spectroscopy analysis in XSTM measurements. The second part addresses interfacial electronic structures of several model heterostructures in current condensed matter research using XSTM. Topics to be discussed include high-κ‘s/III–V’s semiconductors, polymer heterojunctions, and complex oxide heterostructures, which are all material systems whose investigation using this technique is expected to benefit the research community. Finally, practical aspects and perspectives of using XSTM in interface science are presented. (topical review)
Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface.
Sun, Ce; Paulauskas, Tadas; Sen, Fatih G; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K Y; Klie, Robert F; Kim, Moon J
2016-01-01
Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1-10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis. PMID:27255415
Atomic and electronic structure of Lomer dislocations at CdTe bicrystal interface
Sun, Ce; Paulauskas, Tadas; Sen, Fatih G.; Lian, Guoda; Wang, Jinguo; Buurma, Christopher; Chan, Maria K. Y.; Klie, Robert F.; Kim, Moon J.
2016-06-01
Extended defects are of considerable importance in determining the electronic properties of semiconductors, especially in photovoltaics (PVs), due to their effects on electron-hole recombination. We employ model systems to study the effects of dislocations in CdTe by constructing grain boundaries using wafer bonding. Atomic-resolution scanning transmission electron microscopy (STEM) of a [1–10]/(110) 4.8° tilt grain boundary reveals that the interface is composed of three distinct types of Lomer dislocations. Geometrical phase analysis is used to map strain fields, while STEM and density functional theory (DFT) modeling determine the atomic structure at the interface. The electronic structure of the dislocation cores calculated using DFT shows significant mid-gap states and different charge-channeling tendencies. Cl-doping is shown to reduce the midgap states, while maintaining the charge separation effects. This report offers novel avenues for exploring grain boundary effects in CdTe-based solar cells by fabricating controlled bicrystal interfaces and systematic atomic-scale analysis.
Energy Technology Data Exchange (ETDEWEB)
Belianinov, Alex, E-mail: belianinova@ornl.gov; Ganesh, Panchapakesan; Lin, Wenzhi; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V. [Oak Ridge National Laboratory, Institute for Functional Imaging of Materials, Center for Nanophase Material Science, Oak Ridge, Tennessee 37922 (United States); Sales, Brian C.; Sefat, Athena S. [Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee 37922 (United States)
2014-12-01
Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.
International Nuclear Information System (INIS)
We have analyzed differential cross sections (DCSs) for the elastic scattering of electrons by neutral atoms that have been derived from two commonly used atomic potentials: the Thomas-Fermi-Dirac (TFD) potential and the Dirac-Hartree-Fock (DHF) potential. DCSs from the latter potential are believed to be more accurate. We compared DCSs for six atoms (H, Al, Ni, Ag, Au, and Cm) at four energies (100, 500, 1000, and 10 000 eV) from two databases issued by the National Institute of Standards and Technology in which DCSs had been obtained from the TFD and DHF potentials. While the DCSs from the two potentials had similar shapes and magnitudes, there can be pronounced deviations (up to 70%) for small scattering angles for Al, Ag, Au, and Cm. In addition, there were differences of up to 400% at scattering angles for which there were deep minima in the DCSs; at other angles, the differences were typically less than 20%. The DCS differences decreased with increasing electron energy. DCSs calculated from the two potentials were compared with measured DCSs for six atoms (He, Ne, Ar, Kr, Xe, and Hg) at energies between 50 eV and 3 keV. For Ar, the atom for which experimental data are available over the largest energy range there is good agreement between the measured DCSs and those calculated from the TFD and DHF potentials at 2 and 3 keV, but the experimental DCSs agree better with the DCSs from the DHF potential at lower energies. A similar trend is found for the other atoms. At energies less than about 1 keV, there are increasing differences between the measured DCSs and the DCSs calculated from the DHF potential. These differences were attributed to the neglect of absorption and polarizability effects in the calculations. We compare transport cross sections for H, Al, Ni, Ag, Au, and Cm obtained from the DCSs for each potential. For energies between 200 eV and 1 keV, the largest differences are about 20% (for H, Au, and Cm); at higher energies, the differences are
Development and application of low Reynolds number turbulence models for air-cooled electronics
Dhinsa, Kulvir Kaur
2006-01-01
Semiconductors are at the heart of electronic devices such as computers, mobile phones, avionics systems, telecommunication racks, etc. Power dissipation from semiconductor devices is continuing to increase due to the growth in the number of transistors on the silicon chip as predicted by Moore's Law. Thermal management techniques, used to dissipate this power, are becoming more and more challenging to design. Air cooling of electronic components is the preferred method for many designs where...
Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider
Lindner, Manfred; Queiroz, Farinaldo S.; Rodejohann, Werner; Yaguna, Carlos E.
2016-01-01
We show that the proposed Large Hadron electron Collider (LHeC) will provide a great opportunity to search for left-right symmetry and establish lepton number violation, complementing current and planned searches based on LHC data and neutrinoless double beta decay. We consider several plausible configurations for the LHeC -- including different electron energies and polarizations, as well as distinct values for the charge misidentification rate. Within left-right symmetric theories we determ...
Evidence of Double-Electron Capture by Highly-ionized Atoms Isolated at Very Low Energy
Fogwell Hoogerheide, Shannon; Sahiner, Arda; Tan, Joseph N.
2015-05-01
Electron capture processes are important in the study of comets, controlled fusion energy, anti-matter atoms, and proposed one-electron ions in Rydberg states. There are few studies for low energy. At NIST, highly-charged ions extracted from an electron-beam ion trap can be isolated with stripped neon ions are held in the trap for varying lengths of time and allowed to interact with different background gases at multiple pressures. The ions are then pulsed to a time-of-flight detector, to count the population of each charge state. Analysis yields information about the trap loss and single-electron capture rates. Moreover, evidence of double-electron capture is observed at low background gas pressures. Related work involves the resonant charge exchange of fully-stripped neon ions with laser-excited rubidium atoms to produce highly-excited one-electron ions, enabling a new measurement of the Rydberg constant. SFH funded by a National Research Council Research Associateship Award
Relativistic Electron Shock Drift Acceleration in Low Mach Number Galaxy Cluster Shocks
Matsukiyo, Shuichi; Yamazaki, Ryo; Umeda, Takayuki
2011-01-01
An extreme case of electron shock drift acceleration in low Mach number collisionless shocks is investigated as a plausible mechanism of initial acceleration of relativistic electrons in large-scale shocks in galaxy clusters where upstream plasma temperature is of the order of 10 keV and a degree of magnetization is not too small. One-dimensional electromagnetic full particle simulations reveal that, even though a shock is rather moderate, a part of thermal incoming electrons are accelerated and reflected through relativistic shock drift acceleration and form a local nonthermal population just upstream of the shock. The accelerated electrons can self-generate local coherent waves and further be back-scattered toward the shock by those waves. This may be a scenario for the first stage of the electron shock acceleration occurring at the large-scale shocks in galaxy clusters such as CIZA J2242.8+5301 which has well defined radio relics.
Electronic structure and binding energy relaxation of ScZr atomic alloying
Bo, Maolin; Guo, Yongling; Yang, Xuexian; He, Junjie; Liu, Yonghui; Peng, Cheng; Huang, Yongli; Sun, Chang Q.
2016-07-01
We examined the combined effect of atomic under- and hetero-coordination on the bond relaxation and electronic binding energy of Sc, Zr, and ScZr alloying using a combination of the bond-order-length-strength (BOLS) correlation and density functional theory (DFT) calculations. Observations strongly emphasize the relevance of core-level shifts as reliable X-ray photoelectron spectroscopy experimental descriptors of core-shell catalysis reactivity, along with under-coordinated atoms in bimetallic transition metal systems. The BOLS-DFT method provides enhanced catalysis reactivity and detects surface and alloy configurations, opening up the possibility to investigate more complex systems with irregularly under- and hetero-coordinated atoms.
Spectroscopic approach for an electron EDM measurement using neutral cesium atoms
Zhu, Kunyan; Solmeyer, Neal; Weiss, David S.
2012-06-01
Observation of a permanent electric dipole moment of the electron (eEDM) would imply CP violating effects not contained in the Standard Model. We describe the state preparation and spectroscopy that will be used to measure the eEDM. Cesium atoms are guided into a measurement chamber, where they are laser-cooled and trapped in a pair of parallel one-dimensional optical lattices. The lattices thread three specially coated glass electric field plates. The measurement chamber is surrounded by a four layer magnetic shield inside of which eight magnetic field coils control the bias and gradient magnetic fields. A series of microwave and low frequency magnetic field pulses transfer the atoms into a superposition state that is sensitive to the eEDM signal. A measurement of the eEDM using neutral cesium atoms can obtain an ultimate shot noise limit of 3x10-30 e-cm.
Evidence for unnatural-parity contributions to electron-impact ionization of laser-aligned atoms
Armstrong, G. S. J.; Colgan, J.; Pindzola, M. S.; Amami, S.; Madison, D. H.; Pursehouse, J.; Nixon, K. L.; Murray, A. J.
2015-09-01
Recent measurements have examined the electron-impact ionization of excited-state laser-aligned Mg atoms. In this work we show that the ionization cross section arising from the geometry where the aligned atom is perpendicular to the scattering plane directly probes the unnatural parity contributions to the ionization amplitude. The contributions from natural parity partial waves cancel exactly in this geometry. Our calculations resolve the discrepancy between the nonzero measured cross sections in this plane and the zero cross section predicted by distorted-wave approaches. We demonstrate that this is a general feature of ionization from p -state targets by additional studies of ionization from excited Ca and Na atoms.
Energy Technology Data Exchange (ETDEWEB)
Lee, Eun J.; Oh, Sang Youp; Kim, Ho Y.; Yoon, Sam S. [Dept. of Mechanical, Korea University Anamdong, 5-Ga, Sungbukgu, 136-713 Seoul (Korea); James, Scott C. [Thermal/Fluid Science and Engineering, Sandia National Labs, PO Box 969, Livermore, CA 94551 (United States)
2010-11-15
Because of thermal fluid-property dependence, atomization stability (or flow regime) can change even at fixed operating conditions when subject to temperature change. Particularly at low temperatures, fuel's high viscosity can prevent a pressure-swirl (or simplex) atomizer from sustaining a centrifugal-driven air core within the fuel injector. During disruption of the air core inside an injector, spray characteristics outside the nozzle reflect a highly unstable, nonlinear mode where air core length, Sauter mean diameter (SMD), cone angle, and discharge coefficient variability. To better understand injector performance, these characteristics of the pressure-swirl atomizer were experimentally investigated and data were correlated to Reynolds numbers (Re). Using a transparent acrylic nozzle, the air core length, SMD, cone angle, and discharge coefficient are observed as a function of Re. The critical Reynolds numbers that distinguish the transition from unstable mode to transitional mode and eventually to a stable mode are reported. The working fluids are diesel and a kerosene-based fuel, referred to as bunker-A. (author)
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
We present the electronic structure and electron energy loss spectroscopy (EELS) for uranium, niobium and U3Nb in which uranium is substituted by niobium. Comparing the electronic structures and optical properties for uranium, niobium and U3Nb, we found that when niobium atom replaces uranium atom in the center lattice, density of state (DOS) of U3Nb shifts downward to low energy. Niobium affects DOS forfand d electrons more than that for p and s electrons. U3Nb is similar to uranium for the electronic energy loss spectra.
Paziresh, M.; Kingston, A. M.; Latham, S. J.; Fullagar, W. K.; Myers, G. M.
2016-06-01
Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073-2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127-135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260-1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (ρ) and
Institute of Scientific and Technical Information of China (English)
刘承东
2001-01-01
According to the Aufbau build-up principle and the order of filling atomic orbits, the valence electron configuration of ground state atoms of the d-block transition elements seems only to be (n-1) dx-2ns2(x here denotes the number of the electron in (n-1) d and ns orbits). But the result of the spectra test shows that the atomic electron structure of the d-block transition elements also has the configurations (n-1) dx-1 ns1 and (n-1) dx nso. These two types of electron configurations are usually considered as "out of the ordinary". In addition, the another important phenomenon is that the electronic structure of the atoms for all of the elements can not attain the configuration (n-1)d6 ns1. The reasons why these exceptional electron configurations can be formed and why the configuration (n-1) d 6 ns1 can not exist are not properly understood and at present no theory of the many-electron atom structure is entirely satisfactory[1-7]. For this, it seems that the theoretical difficulty lies in accounting for the diversification of electron configurations and for the non-existence of configuration (n-1) d6 ns1 as we did not pay more attention to the control effect of symmetry principle in atom structure. We know that the stability of a mass system depends on the mechanics conservation law in the system and each conservation law is always relative to the invariance of the certain symmetry. In atom structure, the main interaction is the electromagnetic interaction. So the stability of atom structure system must be bounded up with the symmetry of the electromagnetic interaction in the atom system. The direct expression of this interconnection is that,when the electrons are allotted to the orbits with energy equivalent or close to one another in many-electron atoms, they would always distribute themselves in such a way that there is a relative highest symmetry configuration. That is to say, the way of the distribution of electrons(include electron spin states) in orbits is
Studies on properties of low atomic number ceramics as limiter materials for fusion applications
International Nuclear Information System (INIS)
The present study deals with thermal shock and erosion-redeposition behaviour of low-Z-bulk-ceramics: SiC, SiC + Si, SiC + 3% Al, SiC + 2% AlN, AlN, Si3N4, BN with graphite as reference material. Also included are substrate-coating systems: TiC coated graphite, Cr2C3 coated graphite and TiN on Inconel. The properties are being investigated by electron beam and in-pile fusion machine tests in the KFA-Tokamak machine Textor. The electron-beam tests showed that sublimation was the dominant damaging effect for graphite, BN and SiN4. Materials with mediocre thermo-mechanical properties, such as SiC and AlN, showed cracks. The highest energy density values were tolerated by specimens of SiC alloyed with 2% AlN. In general, the in pile behaviour of the ceramics was comparable with the electron beam tests: BN and SiC + 2% AlN are at present regarded as the prime candidates for future irradiation tests. (author)
Electron capture into the 3s state of atomic hydrogen by H+ on Kr and Xe
International Nuclear Information System (INIS)
Absolute cross sections for electron capture into the 3s state of atomic hydrogen have been measured for 10-150-keV proton impact on Kr and Xe. The experimental procedure involved the quantitative measurement of the Balmer-alpha radiation emitted by the spontaneous decay of fast hydrogen atoms in flight. The 3s-state radiation was identified by its characteristic lifetime. The cross sections for both target gases reach a maximum in the projectile energy range under consideration. The Xe cross sections are approximately 40% higher than those for Kr near 25 keV but are similar above 80 keV. These values are consistent with existing 3s cross-section measurements and with an n-3 scaling of existing total electron-capture cross sections in accordance with Born-approximation predictions
Observation of the continuous stern-gerlach effect on an electron bound in an atomic Ion
Hermanspahn; Haffner; Kluge; Quint; Stahl; Verdu; Werth
2000-01-17
We report on the first observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. The measurement was performed on a single hydrogenlike ion ( 12C5+) in a Penning trap. The measured g factor of the bound electron, g = 2.001 042(2), is in excellent agreement with the theoretical value, confirming the relativistic correction at a level of 0.1%. This proves the possibility of g-factor determinations on atomic ions to high precision by using the continuous Stern-Gerlach effect. The result demonstrates the feasibility of conducting experiments on single heavy highly charged ions to test quantum electrodynamics in the strong electric field of the nucleus.
Observation of the continuous stern-gerlach effect on an electron bound in an atomic Ion
Hermanspahn; Haffner; Kluge; Quint; Stahl; Verdu; Werth
2000-01-17
We report on the first observation of the continuous Stern-Gerlach effect on an electron bound in an atomic ion. The measurement was performed on a single hydrogenlike ion ( 12C5+) in a Penning trap. The measured g factor of the bound electron, g = 2.001 042(2), is in excellent agreement with the theoretical value, confirming the relativistic correction at a level of 0.1%. This proves the possibility of g-factor determinations on atomic ions to high precision by using the continuous Stern-Gerlach effect. The result demonstrates the feasibility of conducting experiments on single heavy highly charged ions to test quantum electrodynamics in the strong electric field of the nucleus. PMID:11015930
Production of relativistic positronium in collisions of photons and electrons with nuclei and atoms
Gevorkyan, S R; Schiller, A; Serbo, V G; Tarasov, A V
1998-01-01
We consider the production of ultrarelativistic positronium (Ps) in $\\gamma A is an atom or a nucleus with charge $Ze$. For the photoproduction of para- and ortho-Ps and the electroproduction of para-Ps we obtain the most complete description compared with previous works. It includes high order $Z \\alpha$ corrections and polarization effects. The accuracy of the obtained cross sections is determined by omitted terms of the order of the inverse Ps Lorentz factor squared. The studied high order multi-photon electroproduction of ortho-Ps dominates for the collision of electrons with heavy atoms over the bremsstrahlung production from the electron via a virtual photon proposed by Holvik and Olsen. Our results complete and correct the studies of those authors.
Felfli, Z
2015-01-01
Core-polarization interactions are investigated in low-energy electron elastic scattering from the atoms In,Sn,Eu,Au and At through the calculation of their electron affinities. The complex angular momentum method wherein is embedded the vital electron-electron correlations is used. The core-polarization effects are studied through the well investigated rational function approximation of the Thomas-Fermi potential,which can be analytically continued into the complex plane. The EAs are extracted from the large resonance peaks in the calculated low-energy electron atom scattering total cross sections and compared with those from measurements and sophisticated theoretical methods. It is concluded that when the electron-electron correlation effects and core polarization interactions are accounted for adequately the importance of relativity on the calculation of the electron affinities of atoms can be assessed. For At, relativistic effects are estimated to contribute a maximum of about 3.6 percent to its (non-rela...
International Nuclear Information System (INIS)
Bibliographies of original and review reports of experiments or theories of electron and photon cross sections and also electron swarm data are presented for atomic or molecular species with specified targets. These works covered 17 atoms and 51 molecules. The present bibliography is only for methane (CH4). About 1050 papers were compiled. A comprehensive author index is included. The bibliography covers the period 1924 through 2000 for CH4. Finally, author's comments for CH4 electron collision cross sections are given. (author)
Effect of nuclear motion on the critical nuclear charge for two-electron atoms
King, Andrew W; Rhodes, Luke C; Readman, Charles A; Cox, Hazel
2015-01-01
A variational method for calculating the critical nuclear charge, Zc, required for the binding of a nucleus to two electrons is reported. The method is very effective and performs well compared to the traditional variational principle for calculating energy. The critical nuclear charge, which corresponds to the minimum charge required for the atomic system to have at least one bound state, has been calculated for helium-like systems both with infinite and finite nuclear masses. The value of $...
Maximal-acceleration corrections to the Lamb shift of one-electron atoms
Energy Technology Data Exchange (ETDEWEB)
Lambiase, G. [Salerno, Univ. (Italy). Dipt. di Scienze Fisiche `E. R. Caianiello`; Papini, G. [Regina, Univ. (Canada). Dept. of Physics; Scarpetta, G. [Salerno, Univ. (Italy). Dipt. di Scienze Fisiche ``E. R. Caianiello``]|[International Institute for Advanced Scientific Studies, Vetri (Italy)
1997-07-01
The maximal-acceleration corrections to the Lamb shift of one-electron atoms are calculated starting from the Dirac equation and splitting the spinor into large and small components. The results depend on Z{sup 8} and a cut-off {Lambda}. Sizeable values are obtained even at Z = 1 for {Lambda} {approx} a {sub 0}/2, where a{sub 0} is the Bohr radius. These values are compatible with theoretical and experimental results.
International Nuclear Information System (INIS)
One hundred enamel samples isolated from extracted teeth donated by atomic bomb survivors were subjected to free radical measurement by means of electron paramagnetic resonance (ESR). Results comparing ESR with the chromosome aberration frequency in lymphocytes of the tooth donors, and with the physically estimated DS86 dose suggested that ESR data correlated more closely with chromosome data than with the estimated DS86 doses, probably because DS86 may depend on erroneous memory in some cases. 9 refs, 4 figs
Quantum confined electronic states in atomically well-defined graphene nanostructures
Hämäläinen, Sampsa; Sun, Zhixiang; Boneschanscher, Mark P.; Uppstu, Andreas; Ijäs, Mari; Harju, Ari; Vanmaekelbergh, Daniël; Liljeroth, Peter
2011-01-01
Despite the enormous interest in the properties of graphene and the potential of graphene nanostructures in electronic applications, the study of quantum confined states in atomically well-defined graphene nanostructures remains an experimental challenge. Here, we study graphene quantum dots (GQDs) with well-defined edges in the zigzag direction, grown by chemical vapor deposition (CVD) on an iridium(111) substrate, by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS)...
Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997
International Nuclear Information System (INIS)
Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)
Laser-assisted multiphoton ionization of a hydrogen atom by electron impact
Deb, S. Ghosh; S Roy; Sinha, C.
2008-01-01
The dynamics of the electron impact multiphoton ionization of a hydrogen atom in the presence of an intense laser field has been studied theoretically, with a view to comparing (qualitatively) the results with the recent kinematically complete experiments of Horr et al [ Phys. Rev. Lett., vol. 94, 153201, (2005) ] for the He target. Significant laser modifications are noted in the present doubly (DDCS) and the fully differential cross sections (TDCS). For most of the explored kinematics (chos...
The regularities of the Rydberg energy levels of many-valence electron atom Al
Institute of Scientific and Technical Information of China (English)
郑能武; 孙育杰
2000-01-01
Within the scheme of the weakest bound electron potential model theory, the concept of spectral-level-like series is presented by reasonably classifying the Rydberg energy level of atom Al. Based on this concept, the regularities of the Rydberg energy levels are systematically studied. The deviations of the calculated values from the experimental values are generally about several percent of 1 cm, which is of high accuracy.
Bibliography on electron transfer processes in ion-ion/atom/molecule collisions, updated 1990
International Nuclear Information System (INIS)
Following a previous compilation, new bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1989 are surveyed. For easy finding references for particular combination of collision partners, a simple list is also provided. Furthermore, for convenience, a copy of the previous compilation (IPPJ-AM-45 (1986)) is included. (author) 1363 refs
Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997
Energy Technology Data Exchange (ETDEWEB)
Tawara, H.
1997-04-01
Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)
Indium-Free Fully Transparent Electronics Deposited Entirely by Atomic Layer Deposition.
Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N
2016-09-01
Indium-free, fully transparent thin-film transistors are fabricated entirely by the atomic layer deposition technique on rigid and flexible substrates at a low temperature of 160 °C. The transistors show high saturation mobility, large switching ratio, and small subthreshold swing value. The inverters and ring oscillators show large gain value and small propagation delay time, indicating the potential of this process in transparent electronic devices.
He, Li; Zhang, Pei; Besser, Matthew F; Kramer, Matthew Joseph; Voyles, Paul M
2015-08-01
Electron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature T g and the crystallization temperature, T x . τ determined from the mean diffraction intensity autocorrelation function g 2(t) decreases with temperature following an Arrhenius relationship between T g and T g +25 K, and then increases as temperature approaches T x . The distribution of τ determined from the g 2(t) of single speckles is broad and changes significantly with temperature.
Double ionization of a two-electron model atom in a single-cycle laser pulse
International Nuclear Information System (INIS)
We present theoretical results from the solution of a widely used model atom containing two interacting electrons in one dimension bound to a soft-Coulomb potential and ionized by an intense, short laser pulse. A half-cycle pulse leads to strong single but no double ionization (down to a probability density of 10-12). A full-cycle laser pulse at low frequency leads to double ionization which begins precisely at the classical return time for the first ejected electron. At weak field, double ionization occurs at the time of maximum return kinetic energy. When the excursion range for the first electron is truncated, the double ionization at later times, corresponding to longer excursions, disappears. When the field near the nucleus is turned off during the return of the first electron, double ionization persists
Selective electron capture into highly stripped Ne and N target atoms after heavy-ion impact
International Nuclear Information System (INIS)
Auger electron and x-ray spectra from Ne and N gas targets excited with 1.4 MeV amu-1 Ar12+, Kr15+, Xe24+, and Pb36+ ions are measured, varying the target pressure and mixing other gases into the target volume. A dramatic change of line intensities from outer-shell configurations having a KL two-electron core and a third electron in the n = 4,5,6 shell is observed, depending on the target pressure and systematically on the target ionisation potential. This effect is explained by highly selective electron capture from neutral target atoms or molecules into outer-shell orbitals of slowly (Esub(r) -14 cm2 is estimated from the experiment. (author)
Bartschat, Klaus; Kushner, Mark J.
2016-06-01
Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society.
The elastic scattering of electrons from atoms and ions containing core holes
Energy Technology Data Exchange (ETDEWEB)
Al-Mulla, S Y Yousif [College of Engineering, University of Boras, S-50190 Boras (Sweden)
2004-01-28
Differential cross sections for the elastic scattering of electrons from the ground states of the closed shell atomic systems Ne, Ar and Na{sup +}, and the excited states of the open shell systems containing a highly localized core hole obtained by removing a single electron from any one of the occupied shells of these closed shell systems, have been calculated. Local density approximations to the exchange and correlation potentials have been used in these calculations. A comparison of the calculated results with other experimental and theoretical data is shown and discussed.
International Nuclear Information System (INIS)
Based on the reaction windows of electron capture obtained by using the two-state Landau-Zener model, the electron capture processes in collision of bare ions and highly partially stripped ions with hydrogen atoms are analysed. The capture cross sections predicted by multichannel Landau-Zener method are reliable if the cross points between the initial and final diabatic potential energy curves are located in the corresponding reaction windows. The calculations by the multichannel Landau-Zener method show that the present theoretical results are in accord with the analyses for slow C3+ + H and 5+ + H collisions
Bartschat, Klaus; Kushner, Mark J
2016-06-28
Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society. PMID:27317740
Ordered many-electron motions in atoms and x-ray lasers
International Nuclear Information System (INIS)
Subpicosecond ultraviolet laser technology is enabling the exploration of nonlinear atomic interactions with electric field strengths considerably in excess of an atomic unit. As this regime is approached, experiments studying multiple ionization, photoelectron energy spectra, and harmonically produced radiation all exhibit strong nonlinear coupling. Peak total energy transfer rates on the order of ∼2 x 10-4 W/atom have been observed at an intensity of ∼1016 W/cm2, and it is expected that energy transfer rates approaching ∼0.1 to 1 W/atom will occur under more extreme conditions for which the ultraviolet electric field E is significantly greater than e/a02. In this high intensity regime, a wide range of new nonlinear phenomena will be open to study. These will include the possibility of ordered driven motions in atoms, molecules, and plasmas, mechanisms involving collisions, and relativistic processes such as electron-positron pair production. An understanding of these physical interactions may provide a basis for the generation of stimulated emission in the x-ray range. 100 refs., 8 figs
Models of atoms in plasmas based on common formalism for bound and free electrons
Blenski, T.; Piron, R.; Caizergues, C.; Cichocki, B.
2013-12-01
Atom-in-plasma models: Thomas-Fermi (TF) and INFERNO, AJCI and VAAQP, that use the same formalism for all electrons are briefly described and analyzed from the point of view of their thermodynamic consistence. While the TF and VAAQP models may be derived from variational principle and respect the virial theorem, it appears that two earlier quantum extensions of the quasi-classical TF model, INFERNO and AJCI, are not fully variational. The problems of the two latter approaches are analyzed from the point of view of the VAAQP model. However all quantum models seem to give unrealistic description of atoms in plasma at low temperature and high plasma densities. These difficulties are connected with the Wigner-Seitz cavity approach to non-central ions that is present in all considered models. Comparison of some equation-of-state data from TF, INFERNO and VAAQP models are shown on a chosen example. We report also on the status of our research on the frequency-dependent linear-response theory of atoms in plasma. A new Ehrenfest-type sum rule, originally proposed in the quantum VAAQP model, was proven in the case of the response of the TF atom with the Bloch hydrodynamics (TFB) and checked by numerical example. The TFB case allows one to have a direct insight into the rather involved mathematics of the self-consistent linear response calculations in situations when both the central atom and its plasma vicinity are perturbed by an electric field.
Bengio, S
2003-01-01
This thesis work has been concerned with adsorption properties of silicon surfaces.The atomic and electronic structure of molecules and atoms adsorbed on Si has been investigated by means of photoemission experiments combined with synchrotron radiation.The quantitative atomic structure determination was held applying the photoelectron diffraction technique.This technique is sensible to the local structure of a reference atomic specie and has elemental and chemical-state specificity.This approach has been applied to three quite different systems with different degrees of complexity, Sb/Si(111) sq root 3x sq root 3R30 sup 0 , H sub 2 O/Si(100)2x1 and NH sub 3 /Si(111)7x7.Our results show that Sb which forms a ( sq root 3 sq root 3)R30 sup 0 phase produces a bulklike-terminated Si(111)1x1 substrate free of stacking faults.Regarding the atomic structure of its interface, this study strongly favours the T4-site milkstool model over the H3 one.An important aspect regarding the H sub 2 O/Si(100)(2x1) system was esta...
Angular Distribution of Electrons in Photoionization of Atoms Adsorbed on a Graphene Sheet
Baltenkov, A S
2013-01-01
Within the framework of a model representing the potential of a graphene sheet U(z) as an electro-neutral layer formed by smeared carbon atoms, the effect of this potential on spectral characteristics of atoms adsorbed on a graphene sheet has been studied. Since the distance between the adsorbed atom nucleus and sheet surface significantly exceeds the radii of inner atomic shells the potential U(z) makes influence on the continuum wave functions only. Their behavior in the upper semi-space (z>0) and in the lower one (z<0) where the adsorbed atom is located is defined by a jump of the logarithmic derivative of the wave function for z=0. The photoelectron angular distributions have been calculated for different mutual positions of the polarization vector e and the axis Z normal to the sheet surface. It has been shown that the existence of the electron waves reflected from the potential U(z) leads to evident asymmetry of the angular distribution relative to the plane z=0. The experimental observation of this ...
Atomic-Scale Study Of Complex Cobalt Oxide Using Scanning Transmission Electron Microscope
Gulec, Ahmet
Cobalt oxides offer a rich ?eld for the formation of novel phases, including superconductors and exotic magnetic phases, involving a mixed valence state for cobalt and/or the presence of oxygen vacancies. Having spin states, such as, low spin (LS), high spin (HS), and intermediate spin (IS), cobalt oxides differ from other 3d metal oxides The presence of such spin states make the physics of the cobalt oxides so complicated that it has not yet been completely understood. In order to improve our understanding of the various phase transitions observed in Cobalt oxides and to comprehend the relationship between crystal and electronic structure, both high energy resolution and high spatial resolution are essential. Fortunately, transmission electron microscopy (TEM) is a technique which is capable of ful?lling both of these requirements. In this thesis, I have utilized unique techniques in a scanning transmission electron microscope (STEM) to analyze the atomic-scale structure-property relationship, both at room temperature and through insitu cooling to liquid nitrogen (LN2) temperature. In particular, by using correlated Z-contrast imaging, electron energy loss spectrum (EELS) and electron energy loss magnetic circular dichroism (EMCD), the structure, composition, bonding and magnetic behavior are characterized directly on the atomic scale.
Analysis of some integrals arising in the atomic three-electron problem
King, Frederick W.
1991-12-01
A detailed analysis is presented for the evaluation of atomic integrals of the form Fri1rj2rk3r-223rm31r12 ne-αr1-βr2-γr3dr1 dr2 dr3, which arise in several contexts of the three-electron atomic problem. All convergent integrals with i>=-2, j>=-2, k>=-2, m>=-1, and n>=-1 are examined. These integrals are solved by two distinct procedures. A majority of the integrals can be evaluated by a reduction of the three-electron integrals to integrals arising in the atomic two-electron integral problem. A second approach allows all integrals with the aforementioned indices to be evaluated by the use of Sack's expansion [J. Math. Phys. 5, 245 (1964)] of the interelectronic separation, which leads to a reduction of the above nine-dimensional integrals to a set of three-dimensional integrals. A discussion is given for the numerical evaluation of the three-dimensional integrals that arise.
Determination of Elemental Ratio in an Atomic Column by Electron Energy Loss Spectroscopy.
Haruta, Mitsutaka; Hosaka, Yoshiteru; Ichikawa, Noriya; Saito, Takashi; Shimakawa, Yuichi; Kurata, Hiroki
2016-07-26
Atomic-resolution quantification of the elemental ratio of Fe to Mn at the octahedral and tetrahedral sites in brownmillerite Ca2Fe1.07Mn0.93O5 was determined using electron energy-loss spectroscopy combined with aberration-corrected scanning transmission electron microscopy. The combined techniques revealed that oversampling of the spectral imaging data yielded a spatially resolved area that very nearly reflects atomic resolution (∼1.2 Å radius). The average experimental ratios of Fe to Mn within this region were 17.5:82.5 for the octahedral sites and 81.6:18.4 for the tetrahedral sites. The elemental ratio in an octahedral atomic column was successfully extracted by estimating the mixing of signals from nearest neighbor columns. The results indicated that the ratio of Fe to Mn was 13:87 at the octahedral site, which is in good agreement with the results of neutron diffraction analysis. In addition, the uncertainty of experimental results obtained by using an average 1.2 Å radius was less than 10% at octahedral sites, depending on the sample thickness. In contrast, the experimental error due to dechanneling of incident electrons was larger at the tetrahedral sites. This experimental procedure has wide application for determining the spatially resolved composition ratio of elements in perovskite-like compounds. PMID:27341006
Roberts, B M; Flambaum, V V; Pospelov, M; Stadnik, Y V
2016-01-01
We revisit the WIMP-type dark matter scattering on electrons that results in atomic ionization, and can manifest itself in a variety of existing direct-detection experiments. Unlike the WIMP-nucleon scattering, where current experiments probe typical interaction strengths much smaller than the Fermi constant, the scattering on electrons requires a much stronger interaction to be detectable, which in turn requires new light force carriers. We account for such new forces explicitly, by introducing a mediator particle with scalar or vector couplings to dark matter and to electrons. We then perform state of the art numerical calculations of atomic ionization relevant to the existing experiments. Our goals are to consistently take into account the atomic physics aspect of the problem (e.g., the relativistic effects, which can be quite significant), and to scan the parameter space: the dark matter mass, the mediator mass, and the effective coupling strength, to see if there is any part of the parameter space that c...
Roberts, B. M.; Dzuba, V. A.; Flambaum, V. V.; Pospelov, M.; Stadnik, Y. V.
2016-06-01
We revisit the WIMP-type dark matter scattering on electrons that results in atomic ionization and can manifest itself in a variety of existing direct-detection experiments. Unlike the WIMP-nucleon scattering, where current experiments probe typical interaction strengths much smaller than the Fermi constant, the scattering on electrons requires a much stronger interaction to be detectable, which in turn requires new light force carriers. We account for such new forces explicitly, by introducing a mediator particle with scalar or vector couplings to dark matter and to electrons. We then perform state-of-the-art numerical calculations of atomic ionization relevant to the existing experiments. Our goals are to consistently take into account the atomic physics aspect of the problem (e.g., the relativistic effects, which can be quite significant) and to scan the parameter space—the dark matter mass, the mediator mass, and the effective coupling strength—to see if there is any part of the parameter space that could potentially explain the DAMA modulation signal. While we find that the modulation fraction of all events with energy deposition above 2 keV in NaI can be quite significant, reaching ˜50 %, the relevant parts of the parameter space are excluded by the XENON10 and XENON100 experiments.
Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan; José I. Martínez; Man, Isabela C.; Koper, Marc T. M.; Kitchin, John R.; Rossmeisl, Jan
2013-01-01
The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains the existence of scaling relationships among these compounds.
DEFF Research Database (Denmark)
Calle-Vallejo, Federico; Inoglu, Nilay G.; Su, Hai-Yan;
2013-01-01
The trends in adsorption energies of the intermediates of the oxygen reduction and evolution reactions on transition metals and their oxides are smoothly captured by the number of outer electrons. This unique descriptor permits the construction of predictive adsorption-energy grids and explains the...
Lyashchenko, K N; Voitkiv, A B
2016-01-01
We study theoretically single electron loss from helium-like highly charged ions involving excitation and decay of autoionizing states of the ion. Electron loss is caused by either photo absorption or the interaction with a fast atomic particle (a bare nucleus, a neutral atom, an electron). The interactions with the photon field and the fast particles are taken into account in the first order of perturbation theory. Two initial states of the ion are considered: $1s^2$ and $(1s2s)_{J=0}$. We analyze in detail how the shape of the emission pattern depends on the atomic number $Z_{I}$ of the ion discussing, in particular, the inter-relation between electron loss via photo absorption and due to the impact of atomic particles in collisions at modest relativistic and extreme relativistic energies. According to our results, in electron loss from the $1s^2$ state autoionization may substantially influence the shape of the emission spectra only up to $Z_{I} \\approx 35-40$. A much more prominent role is played by autoi...
Surface modes of ultra-cold atomic clouds with very large number of vortices
Cazalilla, M A
2003-01-01
We study the surface modes of some of the vortex liquids recently found by means of exact diagonalizations in systems of rapidly rotating bosons. In contrast to the surface modes of Bose condensates, we find that the surface waves have a frequency linear in the excitation angular momentum, h-bar l > 0. Furthermore, in analogy with the edge waves of electronic quantum Hall states, these excitations are chiral, that is, they can be excited only for values of l that increase the total angular momentum of the vortex liquid. However, differently from the quantum Hall phenomena for electrons, we also find other excitations that are approximately degenerate in the laboratory frame with the surface modes, and which decrease the total angular momentum by l quanta. The surface modes of the Laughlin, as well as other scalar and vector boson states are analyzed, and their observable properties characterized. We argue that measurement of the response of a vortex liquid to a weak time-dependent potential that imparts angul...
Probing gluon number fluctuation effects in future electron-hadron colliders
Amaral, J T; Kugeratski, M S
2013-01-01
The description of the QCD dynamics in the kinematical range which will be probed in the future electron - hadron colliders is still an open question. Although phenomenological studies indicate that the gluon number fluctuations, which are related to discreteness in the QCD evolution, are negligible at HERA, the magnitude of these effects for the next generation of colliders still should be estimated. In this paper we investigate inclusive and diffractive $ep$ observables considering a model for the physical scattering amplitude which describes the HERA data. Moreover, we estimate, for the first time, the contribution of the fluctuation effects for the nuclear structure functions. In the case of electron-proton collisions, our results indicate that the study of the longitudinal and diffractive structure functions can be useful to constrain the presence of gluon number fluctuations. In the case of electron-ion collisions, these effects are small.
Padhy, Bholanath
2016-01-01
A simple method is outlined for analytic evaluation of the basic 2-electron atomic integral with integrand containing products of atomic s-type Slater orbitals and exponentially correlated function of the form $r_{ij} exp(-\\lambda_{ij}r_{ij})$, by employing the Fourier representation of $exp(-\\lambda_{ij}r_{ij})/r_{ij}$ without the use of either the spherical harmonic addition theorem or the Feynman technique. This method is applied to obtain closed-form expressions, in a simple manner, for certain other 2-,3- and 4-electron atomic integrals with integrands which are products of exponentially correlated functions and atomic s-type Slater orbitals.
Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.
1974-07-15
In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.
Kumar, Sandeep; Singh, Sukhpal
2016-05-01
Five samples of Bismuth-Ground granulated blast furnace slag (Bi-GGBFS) concretes were prepared using composition (0.6 cement + x Bi2O3 + (0.4-x) GGBFS, x = 0.05, 0.10, 0.15, 0.20 and 0.25) by keeping constant water (W) cement (C) ratio. Mass attenuation coefficients (μm) of these prepared samples were calculated using a computer program winXCOM at different gamma ray energies, whereas effective atomic numbers (Zeff) is calculated using mathematical formulas. The radiation shielding properties of Bi-GGBFS concrete has been compared with standard radiation shielding concretes.
Energy Technology Data Exchange (ETDEWEB)
Khezri, Khezrollah, E-mail: kh.khezri@ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of); Roghani-Mamaqani, Hossein [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of)
2014-11-15
Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric
Directory of Open Access Journals (Sweden)
Fedotkin Sergey
2015-01-01
Full Text Available We consider the process of the annihilation of a positron emitted at β+- decay and a K-electron of the daughter atom. A part of energy during this process is passed to another K- electron and it leaves the atom. The influence of the Coulomb field on the positron and the ejected electron is considered. It was calculated the probability of this process for an atom with arbitrary Z is calculated. For the nucleus Ti the effect of the Coulomb field essentially increases the probability of the considered process.
Directory of Open Access Journals (Sweden)
L. Galli
2015-07-01
Full Text Available Current hard X-ray free-electron laser (XFEL sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.
Galli, L; Son, S-K; Klinge, M; Bajt, S; Barty, A; Bean, R; Betzel, C; Beyerlein, K R; Caleman, C; Doak, R B; Duszenko, M; Fleckenstein, H; Gati, C; Hunt, B; Kirian, R A; Liang, M; Nanao, M H; Nass, K; Oberthür, D; Redecke, L; Shoeman, R; Stellato, F; Yoon, C H; White, T A; Yefanov, O; Spence, J; Chapman, H N
2015-07-01
Current hard X-ray free-electron laser (XFEL) sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed. PMID:26798803
Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s
Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L.
2016-07-01
We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.
Electronic properties of transition metal atoms on Cu2 N/Cu(100): a DFT comparative study
Ferron, Alejandro; Lado, José; Fernández-Rossier, Joaquín
2015-03-01
We study the electronic and magnetic properties of individual transition metal atoms (Ti, V, Cr, Mn, Fe, Co and Ni) deposited on a Cu2N /Cu(100) surface by means of spin-polarized density functional theory (DFT) calculations. We focus our work on a comparative study of the various quantities, such as magnetic moment, orbital occupation, structural properties, hybridization with the substrate and spin polarization of the substrate, paying attention to the trends as the transition metal is changed. In this work we try to go beyond existing theoretical works by providing a comprehensive and comparative study of the electronic, magnetic and structural properties of these seven atoms including also Ni, for which there are no published calculations to the best of our knowledge. In the case of Mn, Fe and Co, we connect our results with the existing scanning tunneling microscope experiments. A.F. acknowledges funding from the European Union's Seventh Framework Programme for research, technological development and demonstration, under the PEOPLE programme, Marie Curie COFUND Actions, grant agreement number 600375 and CONICET.
Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact
Attaourti, Y.; Taj, S.
2004-01-01
Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the $(e,2e)$ reaction and in the presence of a circularly polarized laser field, we introduce as a first step the DVRPWBA1 (Dirac-Volkov Plane Wave Born Approximation1) where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the DVRPWBA2 (Dirac-Volkov Plane Wave Born Approximation2) where we take totally into acco...