WorldWideScience

Sample records for atomic layer deposited

  1. films using atomic layer deposition

    Science.gov (United States)

    Chervinskii, Semen; Matikainen, Antti; Dergachev, Alexey; Lipovskii, Andrey A.; Honkanen, Seppo

    2014-08-01

    We fabricated self-assembled silver nanoisland films using a recently developed technique based on out-diffusion of silver from an ion-exchanged glass substrate in reducing atmosphere. We demonstrate that the position of the surface plasmon resonance of the films depends on the conditions of the film growth. The resonance can be gradually shifted up to 100 nm towards longer wavelengths by using atomic layer deposition of titania, from 3 to 100 nm in thickness, upon the film. Examination of the nanoisland films in surface-enhanced Raman spectrometry showed that, in spite of a drop of the surface-enhanced Raman spectroscopy (SERS) signal after the titania spacer deposition, the Raman signal can be observed with spacers up to 7 nm in thickness. Denser nanoisland films show slower decay of the SERS signal with the increase in spacer thickness.

  2. Atomic layer deposition of nanoporous biomaterials

    Directory of Open Access Journals (Sweden)

    Roger J Narayan

    2010-03-01

    Full Text Available Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  3. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  4. Perovskite thin films via atomic layer deposition.

    Science.gov (United States)

    Sutherland, Brandon R; Hoogland, Sjoerd; Adachi, Michael M; Kanjanaboos, Pongsakorn; Wong, Chris T O; McDowell, Jeffrey J; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J; Sargent, Edward H

    2015-01-01

    A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3 NH3 PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm(-1) .

  5. Complex Materials by Atomic Layer Deposition.

    Science.gov (United States)

    Schwartzberg, Adam M; Olynick, Deirdre

    2015-10-14

    Complex materials are defined as nanostructured materials with combinations of structure and/or composition that lead to performance surpassing the sum of their individual components. There are many methods that can create complex materials; however, atomic layer deposition (ALD) is uniquely suited to control composition and structural parameters at the atomic level. The use of ALD for creating complex insulators, semiconductors, and conductors is discussed, along with its use in novel structural applications.

  6. Spatial atomic layer deposition: a route towards further industrialization of atomic layer deposition

    NARCIS (Netherlands)

    Poodt, P.W.G.; Cameron, D.C.; Dickey, E.; George, S.M.; Kuznetsov, V.; Parsons, G.N.; Roozeboom, F.; Sundaram, G.; Vermeer, A.

    2012-01-01

    Atomic layer deposition (ALD) is a technique capable of producing ultrathin conformal films with atomic level control over thickness. A major drawback of ALD is its low deposition rate, making ALD less attractive for applications that require high throughput processing. An approach to overcome this

  7. Atomic layer deposition of nanostructured materials

    CERN Document Server

    Pinna, Nicola

    2012-01-01

    Atomic layer deposition, formerly called atomic layer epitaxy, was developed in the 1970s to meet the needs of producing high-quality, large-area fl at displays with perfect structure and process controllability. Nowadays, creating nanomaterials and producing nanostructures with structural perfection is an important goal for many applications in nanotechnology. As ALD is one of the important techniques which offers good control over the surface structures created, it is more and more in the focus of scientists. The book is structured in such a way to fi t both the need of the expert reader (du

  8. Atomic layer deposition of nanoporous biomaterials.

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  9. Atomic Layer Deposition from Dissolved Precursors.

    Science.gov (United States)

    Wu, Yanlin; Döhler, Dirk; Barr, Maïssa; Oks, Elina; Wolf, Marc; Santinacci, Lionel; Bachmann, Julien

    2015-10-14

    We establish a novel thin film deposition technique by transferring the principles of atomic layer deposition (ALD) known with gaseous precursors toward precursors dissolved in a liquid. An established ALD reaction behaves similarly when performed from solutions. "Solution ALD" (sALD) can coat deep pores in a conformal manner. sALD offers novel opportunities by overcoming the need for volatile and thermally robust precursors. We establish a MgO sALD procedure based on the hydrolysis of a Grignard reagent.

  10. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  11. Spatial atomic layer deposition of zinc oxide thin films

    NARCIS (Netherlands)

    Illiberi, A.; Roozeboom, F.; Poodt, P.W.G.

    2012-01-01

    Zinc oxide thin films have been deposited at high growth rates (up to ~1 nm/s) by spatial atomic layer deposition technique at atmospheric pressure. Water has been used as oxidant for diethylzinc (DEZ) at deposition temperatures between 75 and 250 °C. The electrical, structural (crystallinity and mo

  12. Atomic and molecular layer deposition for surface modification

    Science.gov (United States)

    Vähä-Nissi, Mika; Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija; Johansson, Leena-Sisko; Koskinen, Jorma T.; Harlin, Ali

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas-solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin - even non-uniform - atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid.

  13. A Review of Atomic Layer Deposition for Nanoscale Devices

    Directory of Open Access Journals (Sweden)

    Edy Riyanto

    2012-12-01

    Full Text Available Atomic layer deposition (ALD is a thin film growth technique that utilizes alternating, self-saturation chemical reactions between gaseous precursors to achieve a deposited nanoscale layers. It has recently become a subject of great interest for ultrathin film deposition in many various applications such as microelectronics, photovoltaic, dynamic random access memory (DRAM, and microelectromechanic system (MEMS. By using ALD, the conformability and extreme uniformity of layers can be achieved in low temperature process. It facilitates to be deposited onto the surface in many variety substrates that have low melting temperature. Eventually it has advantages on the contribution to the wider nanodevices.

  14. Electrochemical atomic layer deposition of copper nanofilms on ruthenium

    Science.gov (United States)

    Gebregziabiher, Daniel K.; Kim, Youn-Geun; Thambidurai, Chandru; Ivanova, Valentina; Haumesser, Paul-Henri; Stickney, John L.

    2010-04-01

    As ULSI scales to smaller and smaller dimensions, it has become necessary to form layers of materials only a few nm thick. In addition, trenches are now being incorporated in ULSI formation which require conformal coating and will not be amenable to CMP. Atomic layer deposition (ALD) is being developed to address such issues. ALD is the formation of materials layer by layer using self-limiting reactions. This article describes the formation of Cu seed layers (for the Cu damascene process) on a Ru barrier layer. The deposit was formed by the electrochemical analog of ALD, using electrochemical self-limiting reactions which are referred to as underpotential deposition (UPD). Monolayer restricted galvanic displacement was used to form atomic layers of Cu. First Pb UPD was deposited, forming a sacrificial layer, and then a Cu +2 solution was flushed into the cell and Pb was exchanged for Cu. A linear dependence was shown for Cu growth over 8 ALD cycles, and STM showed a conformal deposition, as expected for an ALD process. Relative Cu coverages were determined using Auger electron spectroscopy, while absolute Cu coverages were obtained from coulometry during oxidative stripping of the deposits. Use of a Cl - containing electrolyte results in Cu deposits covered with an atomic layer of Cl atoms, which have been shown to protect the surfaced from oxidation during various stages of the deposition process. The 10 nm thick Ru substrates were formed on Si(1 0 0) wafers, and were partially oxidized upon receipt. Electrochemical reduction, prior to Cu deposition, removed the oxygen and some traces of carbon, the result of transport. Ion bombardment proved to clean all oxygen and carbon traces from the surface.

  15. Method and apparatus for depositing atomic layers on a substrate

    NARCIS (Netherlands)

    Vermeer, A.J.P.M.; Roozeboom, F.; Deelen, J. van

    2016-01-01

    Method of depositing an atomic layer on a substrate. The method comprises supplying a precursor gas from a precursor-gas supply of a deposition head that may be part of a rotatable drum. The precursor gas is provided from the precursor-gas supply towards the substrate. The method further comprises m

  16. Iridium wire grid polarizer fabricated using atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Knez Mato

    2011-01-01

    Full Text Available Abstract In this work, an effective multistep process toward fabrication of an iridium wire grid polarizer for UV applications involving a frequency doubling process based on ultrafast electron beam lithography and atomic layer deposition is presented. The choice of iridium as grating material is based on its good optical properties and a superior oxidation resistance. Furthermore, atomic layer deposition of iridium allows a precise adjustment of the structural parameters of the grating much better than other deposition techniques like sputtering for example. At the target wavelength of 250 nm, a transmission of about 45% and an extinction ratio of 87 are achieved.

  17. An Introduction to Atomic Layer Deposition with Thermal Applications

    Science.gov (United States)

    Dwivedi, Vivek H.

    2015-01-01

    Atomic Layer Deposition (ALD) is a cost effective nano-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases thin films can be deposited on a myriad of substrates ranging from glass, polymers, aerogels, and metals to high aspect ratio geometries. This talk will focus on the utilization of ALD for engineering applications.

  18. Properties of Ultra-Thin Hafnium Oxide and Interfacial Layer Deposited by Atomic Layer Deposition

    Institute of Scientific and Technical Information of China (English)

    Taeho Lee; Young-Bae Kim; Kyung-Il Hong; Duck-Kyun Choi; Jinho Ahn

    2004-01-01

    Ultra-thin hafnium-oxide gate dielectric films deposited by atomic layer deposition technique using HfCl4 and H2O precursor on a hydrogen-terminated Si substrate were investigated. X-ray photoelectron spectroscopy indicates that the interface layer is Hf-silicate rather than phase separated Hf-silicide and silicon oxide structure. The Hf-silicate interfacial layer partially changes into SiOx after high temperature annealing, resulting in a complex HfO2-silicate-SiOx dielectric structure. Electrical measurements confirms that HfO2 on Si is stable up to 700 ℃ for 30 s under N2 ambient.

  19. Atomic and molecular layer deposition for surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Sievänen, Jenni; Salo, Erkki; Heikkilä, Pirjo; Kenttä, Eija [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland); Johansson, Leena-Sisko, E-mail: leena-sisko.johansson@aalto.fi [Aalto University, School of Chemical Technology, Department of Forest Products Technology, PO Box 16100, FI‐00076 AALTO (Finland); Koskinen, Jorma T.; Harlin, Ali [VTT Technical Research Centre of Finland, PO Box 1000, FI‐02044 VTT (Finland)

    2014-06-01

    Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjet printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.

  20. Nanostructure templating using low temperature atomic layer deposition

    Science.gov (United States)

    Grubbs, Robert K.; Bogart, Gregory R.; Rogers, John A.

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  1. Method and system for continuous atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Jeffrey W.; Yanguas-Gil, Angel; Libera, Joseph A.

    2017-03-21

    A system and method for continuous atomic layer deposition. The system and method includes a housing, a moving bed which passes through the housing, a plurality of precursor gases and associated input ports and the amount of precursor gases, position of the input ports, and relative velocity of the moving bed and carrier gases enabling exhaustion of the precursor gases at available reaction sites.

  2. Spatial Atomic Layer Deposition of transparent conductive oxides

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Poodt, P.; Roozeboom, F.

    2013-01-01

    Undoped and indium doped ZnO films have been grown by Spatial Atomic Layer Deposition at atmospheric pressure. The electrical properties of ZnO films are controlled by varying the indium content in the range from 0 to 15 %. A minimum resistivity value of 3 mΩ•cm is measured in 180 nm thick films for

  3. Cost-Effective Systems for Atomic Layer Deposition

    Science.gov (United States)

    Lubitz, Michael; Medina, Phillip A., IV; Antic, Aleks; Rosin, Joseph T.; Fahlman, Bradley D.

    2014-01-01

    Herein, we describe the design and testing of two different home-built atomic layer deposition (ALD) systems for the growth of thin films with sub-monolayer control over film thickness. The first reactor is a horizontally aligned hot-walled reactor with a vacuum purging system. The second reactor is a vertically aligned cold-walled reactor with a…

  4. Passivation effects of atomic-layer-deposited aluminum oxide

    Directory of Open Access Journals (Sweden)

    Kotipalli R.

    2013-09-01

    Full Text Available Atomic-layer-deposited (ALD aluminum oxide (Al2O3 has recently demonstrated an excellent surface passivation for both n- and p-type c-Si solar cells thanks to the presence of high negative fixed charges (Qf ~ 1012−1013 cm-2 in combination with a low density of interface states (Dit. This paper investigates the passivation quality of thin (15 nm Al2O3 films deposited by two different techniques: plasma-enhanced atomic layer deposition (PE-ALD and Thermal atomic layer deposition (T-ALD. Other dielectric materials taken into account for comparison include: thermally-grown silicon dioxide (SiO2 (20 nm, SiO2 (20 nm deposited by plasma-enhanced chemical vapour deposition (PECVD and hydrogenated amorphous silicon nitride (a-SiNx:H (20 nm also deposited by PECVD. With the above-mentioned dielectric layers, Metal Insulator Semiconductor (MIS capacitors were fabricated for Qf and Dit extraction through Capacitance-Voltage-Conductance (C-V-G measurements. In addition, lifetime measurements were carried out to evaluate the effective surface recombination velocity (SRV. The influence of extracted C-V-G parameters (Qf,Dit on the injection dependent lifetime measurements τ(Δn, and the dominant passivation mechanism involved have been discussed. Furthermore we have also studied the influence of the SiO2 interfacial layer thickness between the Al2O3 and silicon surface on the field-effect passivation mechanism. It is shown that the field effect passivation in accumulation mode is more predominant when compared to surface defect passivation.

  5. Passivation effects of atomic-layer-deposited aluminum oxide

    Science.gov (United States)

    Kotipalli, R.; Delamare, R.; Poncelet, O.; Tang, X.; Francis, L. A.; Flandre, D.

    2013-09-01

    Atomic-layer-deposited (ALD) aluminum oxide (Al2O3) has recently demonstrated an excellent surface passivation for both n- and p-type c-Si solar cells thanks to the presence of high negative fixed charges (Qf ~ 1012-1013 cm-2) in combination with a low density of interface states (Dit). This paper investigates the passivation quality of thin (15 nm) Al2O3 films deposited by two different techniques: plasma-enhanced atomic layer deposition (PE-ALD) and Thermal atomic layer deposition (T-ALD). Other dielectric materials taken into account for comparison include: thermally-grown silicon dioxide (SiO2) (20 nm), SiO2 (20 nm) deposited by plasma-enhanced chemical vapour deposition (PECVD) and hydrogenated amorphous silicon nitride (a-SiNx:H) (20 nm) also deposited by PECVD. With the above-mentioned dielectric layers, Metal Insulator Semiconductor (MIS) capacitors were fabricated for Qf and Dit extraction through Capacitance-Voltage-Conductance (C-V-G) measurements. In addition, lifetime measurements were carried out to evaluate the effective surface recombination velocity (SRV). The influence of extracted C-V-G parameters (Qf,Dit) on the injection dependent lifetime measurements τ(Δn), and the dominant passivation mechanism involved have been discussed. Furthermore we have also studied the influence of the SiO2 interfacial layer thickness between the Al2O3 and silicon surface on the field-effect passivation mechanism. It is shown that the field effect passivation in accumulation mode is more predominant when compared to surface defect passivation.

  6. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides

    Science.gov (United States)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeißer, Dieter; van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; de Gendt, Stefan

    2015-06-01

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the

  7. Plasma enhanced atomic layer deposition of silicon nitride using neopentasilane

    Energy Technology Data Exchange (ETDEWEB)

    Weeks, Stephen, E-mail: Stephen.Weeks@intermolecular.com; Nowling, Greg; Fuchigami, Nobi; Bowes, Michael; Littau, Karl [Intermolecular, 3011 North 1st Street, San Jose, California 95134 (United States)

    2016-01-15

    Progress in transistor scaling has increased the demands on the material properties of silicon nitride (SiN{sub x}) thin films used in device fabrication and at the same time placed stringent restrictions on the deposition conditions employed. Recently, low temperature plasma enhanced atomic layer deposition has emerged as a viable technique for depositing these films with a thermal budget compatible with semiconductor processing at sub-32 nm technology nodes. For these depositions, it is desirable to use precursors that are free from carbon and halogens that can incorporate into the film. Beyond this, it is necessary to develop processing schemes that minimize the wet etch rate of the film as it will be subjected to wet chemical processing in subsequent fabrication steps. In this work, the authors introduce low temperature deposition of SiN{sub x} using neopentasilane [NPS, (SiH{sub 3}){sub 4}Si] in a plasma enhanced atomic layer deposition process with a direct N{sub 2} plasma. The growth with NPS is compared to a more common precursor, trisilylamine [TSA, (SiH{sub 3}){sub 3 }N] at identical process conditions. The wet etch rates of the films deposited with NPS are characterized at different plasma conditions and the impact of ion energy is discussed.

  8. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides.

    Science.gov (United States)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeisser, Dieter; Van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; De Gendt, Stefan

    2015-06-28

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.

  9. Applications of atomic layer deposition in solar cells.

    Science.gov (United States)

    Niu, Wenbin; Li, Xianglin; Karuturi, Siva Krishna; Fam, Derrick Wenhui; Fan, Hongjin; Shrestha, Santosh; Wong, Lydia Helena; Tok, Alfred Iing Yoong

    2015-02-13

    Atomic layer deposition (ALD) provides a unique tool for the growth of thin films with excellent conformity and thickness control down to atomic levels. The application of ALD in energy research has received increasing attention in recent years. In this review, the versatility of ALD in solar cells will be discussed. This is specifically focused on the fabrication of nanostructured photoelectrodes, surface passivation, surface sensitization, and band-structure engineering of solar cell materials. Challenges and future directions of ALD in the applications of solar cells are also discussed.

  10. Blistering during the atomic layer deposition of iridium

    Energy Technology Data Exchange (ETDEWEB)

    Genevée, Pascal, E-mail: pascal-genevee@chimie-paristech.fr, E-mail: a.szeghalmi@uni-jena.de; Ahiavi, Ernest; Janunts, Norik; Pertsch, Thomas; Kley, Ernst-Bernhard; Szeghalmi, Adriana, E-mail: pascal-genevee@chimie-paristech.fr, E-mail: a.szeghalmi@uni-jena.de [Institut für Angewandte Physik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Oliva, Maria [Fraunhofer IOF, Albert-Einstein-Strasse 7, 07743 Jena (Germany)

    2016-01-15

    The authors report on the formation of blisters during the atomic layer deposition of iridium using iridium acetylacetonate and oxygen precursors. Films deposited on fused silica substrates led to sparsely distributed large blisters while in the case of silicon with native oxide additional small blisters with a high density was observed. It is found that the formation of blisters is favored by a higher deposition temperature and a larger layer thickness. Postdeposition annealing did not have a significant effect on the formation of blisters. Finally, changing purge duration during the film growth allowed us to avoid blistering and evidenced that impurities released from the film in gas phase were responsible for the formation of blisters.

  11. Characterization of hafnium oxide resistive memory layers deposited on copper by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.D.; Bishop, S.M. [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States); Leedy, K.D. [Air Force Research Laboratory, 2241 Avionics Circle, Wright Patterson Air Force Base, Dayton, OH 45433 (United States); Cady, N.C., E-mail: ncady@albany.edu [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States)

    2014-07-01

    Hafnium oxide-based resistive memory devices have been fabricated on copper bottom electrodes. The HfO{sub x} active layers in these devices were deposited by atomic layer deposition (ALD) at 250 °C with tetrakis(dimethylamido)hafnium(IV) as the metal precursor and an O{sub 2} plasma as the reactant. Depth profiles of the HfO{sub x} by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a copper concentration on the order of five atomic percent throughout the HfO{sub x} film. In addition to the Cu doped HfO{sub x}, a thin layer (20 nm) of Cu{sub x}O is present at the surface. This surface layer is believed to have formed during the ALD process, and greatly complicates the analysis of the switching mechanism. The resistive memory structures fabricated from the ALD HfO{sub x} exhibited non-polar resistive switching, independent of the top metal electrode (Ni, Pt, Al, Au). Resistive switching current voltage (I–V) curves were analyzed using Schottky emission and ionic hopping models to gain insight into the physical mechanisms underpinning the device behavior. During the forming process it was determined that, at voltages in excess of 2.5 V, an ionic hopping model is in good agreement with the I–V data. The extracted ion hopping distance ∼ 4 Å was within the range of interatomic spacing of HfO{sub 2} during the forming process consistent with ionic motion of Cu{sup 2+} ions. Lastly the on state I–V data was dominated at larger voltages by Schottky emission with an estimated barrier height of ∼ 0.5 eV and a refractive index of 2.59. The consequence of the Schottky emission analysis indicates the on state resistance to be a product of a Pt/Cu{sub 2}O/Cu filament(s)/Cu{sub 2}O/Cu structure. - Highlights: • HfO{sub 2} was grown via atomic layer deposition at 250 and 100 °C on Cu substrates. • A Cu{sub 2}O surface layer and Cu doping were observed in post-deposition of HfO{sub 2}. • Resistive memory devices were fabricated and

  12. Protective silicon coating for nanodiamonds using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lu, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Wang, Y.H. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China); Zang, J.B. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China) and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)]. E-mail: diamondzjb@163.com; Li, Y.N. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004 (China); College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004 (China)

    2007-01-30

    Ultrathin silicon coating was deposited on nanodiamonds using atomic layer deposition (ALD) from gaseous monosilane (SiH{sub 4}). The coating was performed by sequential reaction of SiH{sub 4} saturated adsorption and in situ decomposition. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were utilized to investigate the structural and morphological properties of the coating. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to compare the thermal stability of nanodiamonds before and after silicon coating. The results confirmed that the deposited cubic phase silicon coating was even and continuous. The protective silicon coating could effectively improve the oxidation resistance of nanodiamonds in air flow, which facilitates the applications of nanodiamonds that are commonly hampered by their poor thermal stability.

  13. Atomic layer deposition of alternative glass microchannel plates

    Energy Technology Data Exchange (ETDEWEB)

    O' Mahony, Aileen, E-mail: aom@incomusa.com; Craven, Christopher A.; Minot, Michael J.; Popecki, Mark A.; Renaud, Joseph M.; Bennis, Daniel C.; Bond, Justin L.; Stochaj, Michael E.; Foley, Michael R.; Adams, Bernhard W. [Incom, Inc., 294 Southbridge Road, Charlton, Massachusetts 01507 (United States); Mane, Anil U.; Elam, Jeffrey W. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439 (United States); Ertley, Camden; Siegmund, Oswald H. W. [Space Sciences Laboratory, University of California, 7 Gauss Way, Berkeley, California 94720 (United States)

    2016-01-15

    The technique of atomic layer deposition (ALD) has enabled the development of alternative glass microchannel plates (MCPs) with independently tunable resistive and emissive layers, resulting in excellent thickness uniformity across the large area (20 × 20 cm), high aspect ratio (60:1 L/d) glass substrates. Furthermore, the use of ALD to deposit functional layers allows the optimal substrate material to be selected, such as borosilicate glass, which has many benefits compared to the lead-oxide glass used in conventional MCPs, including increased stability and lifetime, low background noise, mechanical robustness, and larger area (at present up to 400 cm{sup 2}). Resistively stable, high gain MCPs are demonstrated due to the deposition of uniform ALD resistive and emissive layers on alternative glass microcapillary substrates. The MCP performance characteristics reported include increased stability and lifetime, low background noise (0.04 events cm{sup −2} s{sup −1}), and low gain variation (±5%)

  14. Atomic layer deposition of nanolaminate oxide films on Si

    Science.gov (United States)

    Tallarida, M.; Weisheit, M.; Kolanek, K.; Michling, M.; Engelmann, H. J.; Schmeisser, D.

    2011-11-01

    Among the methods for depositing thin films, atomic layer deposition is unique for its capability of growing conformal thin films of compounds with a control of composition and thickness at the atomic level. The conformal growth of thin films can be of particular interest for covering nanostructures since it assures the homogeneous growth of the ALD film in all directions, independent of the position of the sample with respect to the incoming precursor flow. Here we describe the technique for growing the HfO2/Al2O3 bilayer on Si substrate and our in situ approach for its investigation by means of synchrotron radiation photoemission. In particular, we study the interface interactions between the two oxides for various thickness compositions ranging from 0.4 to 2.7 nm. We find that the ALD of HfO2 on Si induces the increase of the interfacial SiO2 layer, and a change in the band bending of Si. On the contrary, the ALD of Al2O3 on HfO2 shows negligible interaction between layers as the binding energies of Hf4f, Si2p, and O1s core level peaks and the valence band maximum of HfO2 do not change and the interfacial SiO2 does not increase.

  15. Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Proslier, Th. [Illinois Institute of Technology; Zasadzinski, J. [Illinois Institute of Technology; Ciovati, Gianluigi [JLAB; Kneisel, Peter K. [JLAB; Elam, J. W. [ANL; Norem, J. [ANL; Pellin, M. J. [ANL

    2009-11-01

    We have shown previously that magnetic niobium oxides can influence the superconducting density of states at the surface of cavity-grade niobium coupons. We will present recent results obtained by Point Contact Tunneling spectroscopy (PCT) on coupons removed from hot and cold spots in a niobium cavity, as well as a comparative study of magnetic oxides on mild baked/unbaked electropolished coupons. We will also describe recent results obtained from coated cavities, ALD films properties and new materials using Atomic Layer Deposition (ALD).

  16. Silicon protected with atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Seger, Brian; Tilley, David S.; Pedersen, Thomas

    2013-01-01

    The semiconducting materials used for photoelectrochemical (PEC) water splitting must withstand the corrosive nature of the aqueous electrolyte over long time scales in order to be a viable option for large scale solar energy conversion. Here we demonstrate that atomic layer deposited titanium...... dioxide (TiO2) overlayers on silicon-based photocathodes generate extremely stable electrodes. These electrodes can produce an onset potential of +0.510 V vs. RHE and a hydrogen evolution saturation current of 22 mA cm−2 using the red part of the AM1.5 solar spectrum (λ > 635 nm, 38.6 mW cm−2). A PEC...

  17. Nanoscale Structuring of Surfaces by Using Atomic Layer Deposition.

    Science.gov (United States)

    Sobel, Nicolas; Hess, Christian

    2015-12-01

    Controlled structuring of surfaces is interesting for a wide variety of areas, including microelectronic device fabrication, optical devices, bio(sensing), (electro-, photo)catalysis, batteries, solar cells, fuel cells, and sorption. A unique feature of atomic layer deposition (ALD) is the possibility to form conformal uniform coatings on arbitrarily shaped materials with controlled atomic-scale thickness. In this Minireview, we discuss the potential of ALD for the nanoscale structuring of surfaces, highlighting its versatile application to structuring both planar substrates and powder materials. Recent progress in the application of ALD to porous substrates has even made the nanoscale structuring of high-surface-area materials now feasible, thereby enabling novel applications, such as those in the fields of catalysis and alternative energy.

  18. Atomic Layer Deposited Catalysts for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta

    layer deposition (ALD), on the other hand, is a highly suitable and still relatively unexplored approach for the synthesis of noble metal catalysts. It is a vapor phase growth method, primarily used to deposit thin lms. ALD is based on self-limiting chemical reactions of alternately injected precursors...... for the realization of such tiny devices. It is a mature technology, suitable for mass production, where versatile structuring is available at the micro and nano regime. Carbon black supported catalysts synthesized by wet chemistry methods are not readily applicable for standard microfabrication techniques. Atomic...... on the sample surface. Its unique growth characteristic enables conformal and uniform lms of controlled thickness and composition. In certain conditions ALD commences by island growth, resulting in discrete nanoparticle formation, which is generally preferred for catalytic applications. Pt-Ru is the best...

  19. Atomic-layer deposition of Lu2O3

    Science.gov (United States)

    Scarel, G.; Bonera, E.; Wiemer, C.; Tallarida, G.; Spiga, S.; Fanciulli, M.; Fedushkin, I. L.; Schumann, H.; Lebedinskii, Yu.; Zenkevich, A.

    2004-07-01

    Rare earth oxides could represent a valuable alternative to SiO2 in complementary metal-oxide-semiconductor devices. Lu2O3 is proposed because of its predicted thermodynamical stability on silicon and large conduction band offset. We report on the growth by atomic-layer deposition of lutetium oxide films using the dimeric {[C5H4(SiMe3)]2LuCl}2 complex, which has been synthesized for this purpose, and H2O. The films were found to be stoichiometric, with Lu2O3 composition, and amorphous. Annealing in nitrogen at 950°C leads to crystallization in the cubic bixbyite structure. The dielectric constant of the as-grown Lu2O3 layers is 12±1.

  20. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.

    Science.gov (United States)

    Stefik, Morgan

    2016-07-07

    The fabrication of porous nanocomposites is key to the advancement of energy conversion and storage devices that interface with electrolytes. Bismuth vanadate, BiVO4 , is a promising oxide for solar water splitting where the controlled fabrication of BiVO4 layers within porous, conducting scaffolds has remained a challenge. Here, the atomic layer deposition of bismuth vanadates is reported from BiPh3 , vanadium(V) oxytriisopropoxide, and water. The resulting films have tunable stoichiometry and may be crystallized to form the photoactive scheelite structure of BiVO4 . A selective etching process was used with vanadium-rich depositions to enable the synthesis of phase-pure BiVO4 after spinodal decomposition. BiVO4 thin films were measured for photoelectrochemical performance under AM 1.5 illumination. The average photocurrents were 1.17 mA cm(-2) at 1.23 V versus the reversible hydrogen electrode using a hole-scavenging sulfite electrolyte. The capability to deposit conformal bismuth vanadates will enable a new generation of nanocomposite architectures for solar water splitting.

  1. Atomic Layer Deposition Films as Diffusion Barriers for Silver Artifacts

    Science.gov (United States)

    Marquardt, Amy; Breitung, Eric; Drayman-Weisser, Terry; Gates, Glenn; Rubloff, Gary W.; Phaneuf, Ray J.

    2012-02-01

    Atomic layer deposition (ALD) was investigated as a means to create transparent oxide diffusion barrier coatings to reduce the rate of tarnishing for silver objects in museum collections. Accelerated aging by heating various thicknesses (5 to 100nm) of ALD alumina (Al2O3) thin films on sterling and fine silver was used to determine the effectiveness of alumina as a barrier to silver oxidation. The effect of aging temperature on the thickness of the tarnish layer (Ag2S) created at the interface of the ALD coating and the bulk silver substrate was determined by reflectance spectroscopy and X-Ray Photoelectric Spectroscopy (XPS). Reflectance spectroscopy was an effective rapid screening tool to determine tarnishing rates and the coating's visual impact. X-Ray Photoelectric Spectroscopy (XPS), and Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) analysis showed a phase transformation in the Ag2S tarnish layer at 177 C and saturation in the thickness of the silver sulfide layer, indicating possible self-passivation of the tarnish layer.

  2. Atomic layer deposition ultrathin film origami using focused ion beams

    Science.gov (United States)

    Supekar, O. D.; Brown, J. J.; Eigenfeld, N. T.; Gertsch, J. C.; Bright, V. M.

    2016-12-01

    Focused ion beam (FIB) micromachining is a powerful tool for maskless lithography and in recent years FIB has been explored as a tool for strain engineering. Ion beam induced deformation can be utilized as a means for folding freestanding thin films into complex 3D structures. FIB of high energy gallium (Ga+) ions induces stress by generation of dislocations and ion implantation within material layers, which create creases or folds upon mechanical relaxation enabled by motion of the material layers. One limitation on such processing is the ability to fabricate flat freestanding thin film structures. This capability is limited by the residual stresses formed during processing and fabrication of the films, which can result in initial curvature and deformation of films upon release from a sacrificial fabrication layer. This paper demonstrates folding in freestanding ultrathin films (1:1000) by ion-induced stress relaxation. The ultrathin flat structures are fabricated using atomic layer deposition on sacrificial polyimide. We have demonstrated vertical folding with 30 keV Ga+ ions in structures with lateral dimensions varying from 10 to 50 μm.

  3. Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition

    Science.gov (United States)

    Lubers, Alia Marie

    Demand for energy continues to increase, and without alternatives to fossil fuel combustion the effects on our environment will become increasingly severe. Fuel cells offer a promising improvement on current methods of energy generation; they are able to convert hydrogen fuel into electricity with a theoretical efficiency of up to 83% and interface smoothly with renewable hydrogen production. Fuel cells can replace internal combustion engines in vehicles and are used in stationary applications to power homes and businesses. The efficiency of a fuel cell is maximized by its catalyst, which is often composed of platinum nanoparticles supported on carbon. Economical production of fuel cell catalysts will promote adoption of this technology. Atomic layer deposition (ALD) is a possible method for producing catalysts at a large scale when employed in a fluidized bed. ALD relies on sequential dosing of gas-phase precursors to grow a material layer by layer. We have synthesized platinum nanoparticles on a carbon particle support (Pt/C) by ALD for use in proton exchange membrane fuel cells (PEMFCs) and electrochemical hydrogen pumps. Platinum nanoparticles with different characteristics were deposited by changing two chemistries: the carbon substrate through functionalization; and the deposition process by use of either oxygen or hydrogen as ligand removing reactants. The metal depositing reactant was trimethyl(methylcyclopentadienyl)platinum(IV). Functionalizing the carbon substrate increased nucleation during deposition resulting in smaller and more dispersed nanoparticles. Use of hydrogen produced smaller nanoparticles than oxygen, due to a gentler hydrogenation reaction compared to using oxygen's destructive combustion reaction. Synthesized Pt/C materials were used as catalysts in an electrochemical hydrogen pump, a device used to separate hydrogen fuel from contaminants. Catalysts deposited by ALD on functionalized carbon using a hydrogen chemistry were the most

  4. Oxygen-free atomic layer deposition of indium sulfide.

    Science.gov (United States)

    McCarthy, Robert F; Weimer, Matthew S; Emery, Jonathan D; Hock, Adam S; Martinson, Alex B F

    2014-08-13

    Atomic layer deposition (ALD) of indium sulfide (In2S3) films was achieved using a newly synthesized indium precursor and hydrogen sulfide. We obtain dense and adherent thin films free from halide and oxygen impurities. Self-limiting half-reactions are demonstrated at temperatures up to 225 °C, where oriented crystalline thin films are obtained without further annealing. Low-temperature growth of 0.89 Å/cycle is observed at 150 °C, while higher growth temperatures gradually reduce the per-cycle growth rate. Rutherford backscattering spectroscopy (RBS) together with depth-profiling Auger electron spectroscopy (AES) reveal a S/In ratio of 1.5 with no detectable carbon, nitrogen, halogen, or oxygen impurities. The resistivity of thin films prior to air exposure decreases with increasing deposition temperature, reaching In2S3 via ALD at temperatures up to 225 °C may allow high quality thin films to be leveraged in optoelectronic devices including photovoltaic absorbers, buffer layers, and intermediate band materials.

  5. Atomic layer deposition of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, Massimo; Dessmann, Nils; Staedter, Matthias; Friedrich, Daniel; Michling, Marcel; Schmeisser, Dieter [BTU-Cottbus, Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany)

    2011-07-01

    We present a study of the initial growth of TiO{sub 2} on Si(111) by atomic layer deposition (ALD). The Si substrate was etched with NH{sub 4}F before ALD to remove the native oxide film and to produce a Si-H termination. In-situ experiments by means of photoemission and X-ray absorption spectroscopy were conducted with synchrotron radiation on Ti-oxide films produced using Ti-tetra-iso-propoxide (TTIP) and water as precursors. O 1s, Ti 2p, C 1s, and S i2p core level, and O 1s and Ti 2p absorption edges show the transition of the Ti-oxide properties during the first layers. The growth starts with a very small growth rate (0.03 nm/cycle) due to the growth inhibition of the Si-H termination and proceeds with higher growth rate (0.1 nm/cycle) after 1.5 nm Ti-oxide has been deposited.

  6. Continuous production of nanostructured particles using spatial atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ommen, J. Ruud van, E-mail: j.r.vanommen@tudelft.nl; Kooijman, Dirkjan; Niet, Mark de; Talebi, Mojgan; Goulas, Aristeidis [Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft (Netherlands)

    2015-03-15

    In this paper, the authors demonstrate a novel spatial atomic layer deposition (ALD) process based on pneumatic transport of nanoparticle agglomerates. Nanoclusters of platinum (Pt) of ∼1 nm diameter are deposited onto titania (TiO{sub 2}) P25 nanoparticles resulting to a continuous production of an active photocatalyst (0.12–0.31 wt. % of Pt) at a rate of about 1 g min{sup −1}. Tuning the precursor injection velocity (10–40 m s{sup −1}) enhances the contact between the precursor and the pneumatically transported support flows. Decreasing the chemisorption temperature (from 250 to 100 °C) results in more uniform distribution of the Pt nanoclusters as it decreases the reaction rate as compared to the rate of diffusion into the nanoparticle agglomerates. Utilizing this photocatalyst in the oxidation reaction of Acid Blue 9 showed a factor of five increase of the photocatalytic activity compared to the native P25 nanoparticles. The use of spatial particle ALD can be further expanded to deposition of nanoclusters on porous, micron-sized particles and to the production of core–shell nanoparticles enabling the robust and scalable manufacturing of nanostructured powders for catalysis and other applications.

  7. Oxygen-free atomic layer deposition of indium sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.

    2016-07-05

    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately -30.degree. C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  8. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Science.gov (United States)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  9. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zuzuarregui, Ana, E-mail: a.zuzuarregui@nanogune.eu; Gregorczyk, Keith E. [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); Coto, Borja; Ruiz de Gopegui, Unai; Barriga, Javier [IK4-Tekniker, Iñaki Goenaga 5, 20600 Eibar (Spain); Rodríguez, Jorge [Torresol Energy (SENER Group), Avda. de Zugazarte 61, 48930 Las Arenas (Spain); Knez, Mato [CIC Nanogune Consolider, de Tolosa Hiribidea 76, 20018 San Sebastián (Spain); IKERBASQUE Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao (Spain)

    2015-08-10

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  10. Atomic layer deposition overcoating: tuning catalyst selectivity for biomass conversion.

    Science.gov (United States)

    Zhang, Hongbo; Gu, Xiang-Kui; Canlas, Christian; Kropf, A Jeremy; Aich, Payoli; Greeley, Jeffrey P; Elam, Jeffrey W; Meyers, Randall J; Dumesic, James A; Stair, Peter C; Marshall, Christopher L

    2014-11-01

    The terraces, edges, and facets of nanoparticles are all active sites for heterogeneous catalysis. These different active sites may cause the formation of various products during the catalytic reaction. Here we report that the step sites of Pd nanoparticles (NPs) can be covered precisely by the atomic layer deposition (ALD) method, whereas the terrace sites remain as active component for the hydrogenation of furfural. Increasing the thickness of the ALD-generated overcoats restricts the adsorption of furfural onto the step sites of Pd NPs and increases the selectivity to furan. Furan selectivities and furfural conversions are linearly correlated for samples with or without an overcoating, though the slopes differ. The ALD technique can tune the selectivity of furfural hydrogenation over Pd NPs and has improved our understanding of the reaction mechanism. The above conclusions are further supported by density functional theory (DFT) calculations.

  11. Damage evaluation in graphene underlying atomic layer deposition dielectrics.

    Science.gov (United States)

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A

    2015-08-27

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors.

  12. Very high frequency plasma reactant for atomic layer deposition

    Science.gov (United States)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kangsik; Lee, Zonghoon; Jung, Hanearl; Lee, Chang Wan; Kim, Hyungjun; Lee, Han-Bo-Ram

    2016-11-01

    Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al2O3 were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al2O3 shows superior physical and electrical properties over RF PE-ALD Al2O3, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al2O3 on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  13. Very high frequency plasma reactant for atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Tae Hyung; Yeom, Geun Young [Department of Advanced Materials Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Kangsik; Lee, Zonghoon [School Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 (Korea, Republic of); Jung, Hanearl; Lee, Chang Wan [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Han-Bo-Ram, E-mail: hbrlee@inu.ac.kr [Department of Materials Science and Engineering, Incheon National University, 406-840 Incheon (Korea, Republic of)

    2016-11-30

    Highlights: • Fundamental research plasma process for thin film deposition is presented. • VHF plasma source for PE-ALD Al{sub 2}O{sub 3} was employed to reduce plasma damage. • The use of VHF plasma improved all of the film qualities and growth characteristics. - Abstract: Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al{sub 2}O{sub 3} were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al{sub 2}O{sub 3} shows superior physical and electrical properties over RF PE-ALD Al{sub 2}O{sub 3}, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al{sub 2}O{sub 3} on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  14. ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide

    Energy Technology Data Exchange (ETDEWEB)

    Godlewski, M., E-mail: godlew@ifpan.edu.p [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Guziewicz, E.; Luka, G.; Krajewski, T. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Lukasiewicz, M.; Wachnicki, L.; Wachnicka, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Kopalko, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Sarem, A.; Dalati, B. [Department of Physics, Faculty of Science, Tishreen University, Latakia (Syrian Arab Republic)

    2009-12-15

    We demonstrate possibility of a control (by selection of zinc precursors and variation of a growth temperature) of electrical properties of ZnO films grown by Atomic Layer Deposition (ALD). ZnO films grown by ALD are used in test photovoltaic devices (solar cells) as transparent conductive oxides for upper, transparent layer in inorganic and organic solar cells, and as n-type partners of p-type CdTe.

  15. Buffer layer engineering on graphene via various oxidation methods for atomic layer deposition

    Science.gov (United States)

    Takahashi, Nobuaki; Nagashio, Kosuke

    2016-12-01

    The integration of a high-k oxide on graphene using atomic layer deposition requires an electrically reliable buffer layer. In this study, Y was selected as the buffer layer due to its highest oxidation ability among the rare-earth elements, and various oxidation methods (atmospheric, and high-pressure O2 and ozone annealing) were applied to the Y metal buffer layer. By optimizing the oxidation conditions of the top-gate insulator, we successfully improved the capacitance of the top gate Y2O3 insulator and demonstrated a large I on/I off ratio for bilayer graphene under an external electric field.

  16. Atomic Layer Deposition to Enable the Production, Optimization and Protection of Spaceflight Hardware Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Atomic Layer Deposition (ALD) is a cost effective nano-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign...

  17. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ives, Robert Lawrence [Calabazas Creek Research, Inc., San Mateo, CA (United States); Parsons, Gregory [North Carolina State Univ., Raleigh, NC (United States); Williams, Philip [North Carolina State Univ., Raleigh, NC (United States); Oldham, Christopher [North Carolina State Univ., Raleigh, NC (United States); Mundy, Zach [North Carolina State Univ., Raleigh, NC (United States); Dolgashev, Valery [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  18. Fabrication and Properties of Organic-Inorganic Nanolaminates Using Molecular and Atomic Layer Deposition Techniques

    Science.gov (United States)

    2012-02-01

    55, 1030-1039 (2009).* 2. B.B. Burton, D.N. Goldstein and S.M. George, "Atomic Layer Deposition of MgO Using Bis(ethylcyclopentadienyl) magnesium ...Atomic Layer Deposition Using Tin 2,4-Pentanedionate and Hydrogen Sulfide , J. Phys. Chem. C 114, 17597-17603 (2010).* 28. L.A. Riley, A.S

  19. Indium-Free Fully Transparent Electronics Deposited Entirely by Atomic Layer Deposition.

    Science.gov (United States)

    Nayak, Pradipta K; Wang, Zhenwei; Alshareef, Husam N

    2016-09-01

    Indium-free, fully transparent thin-film transistors are fabricated entirely by the atomic layer deposition technique on rigid and flexible substrates at a low temperature of 160 °C. The transistors show high saturation mobility, large switching ratio, and small subthreshold swing value. The inverters and ring oscillators show large gain value and small propagation delay time, indicating the potential of this process in transparent electronic devices.

  20. Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Lukas, E-mail: lhoffmann@uni-wuppertal.de; Theirich, Detlef; Hasselmann, Tim; Räupke, André; Schlamm, Daniel; Riedl, Thomas, E-mail: t.riedl@uni-wuppertal.de [Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-Str. 21, 42119 Wuppertal (Germany)

    2016-01-15

    This paper reports on aluminum oxide (Al{sub 2}O{sub 3}) thin film gas permeation barriers fabricated by atmospheric pressure atomic layer deposition (APPALD) using trimethylaluminum and an Ar/O{sub 2} plasma at moderate temperatures of 80 °C in a flow reactor. The authors demonstrate the ALD growth characteristics of Al{sub 2}O{sub 3} films on silicon and indium tin oxide coated polyethylene terephthalate. The properties of the APPALD-grown layers (refractive index, density, etc.) are compared to that deposited by conventional thermal ALD at low pressures. The films films deposited at atmospheric pressure show water vapor transmission rates as low as 5 × 10{sup −5} gm{sup −2}d{sup −1}.

  1. Atomic layer deposition of W - based layers on SiO2

    NARCIS (Netherlands)

    Bystrova, S.; Holleman, J.; Wolters, R.A.M.; Aarnink, A.A.I.

    2003-01-01

    W and W1-xNx , where x= 15- 22 at%, thin films were grown using the ALD (Atomic Layer Deposition) principle. Growth rate of W films is about 4- 5 monolayers/ cycle at 300- 350 ºC. Growth rate of W1-xNx is 0.5 monolayer/cycle at 325- 350 ºC. Standard Deviation (STDV) of thickness is about 2%

  2. Characterization and modeling of atomic layer deposited high-density trench capacitors in silicon

    NARCIS (Netherlands)

    Matters-Kammerer, M.K.; Jinesh, K.B.; Rijks, T.G.S.M.; Roozeboom, F.; Klootwijk, J.H.

    2012-01-01

    A detailed electrical analysis of multiple layer trench capacitors fabricated in silicon with atomic-layer-deposited Al 2O 3 and TiN is presented. It is shown that in situ ozone annealing of the Al 2O 3 layers prior to the TiN electrode deposition significantly improves the electric properties of th

  3. Atomic layer deposition of copper and copper silver films using an electrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Liu, Y.S. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2015-04-01

    This paper describes the formation and properties of Cu and Cu(Ag) films on a Ru/Si substrate using electrochemical atomic layer deposition. The process was performed layer-by-layer using underpotential deposition (UPD) and surface-limited redox reactions. The first Cu atomic layer was deposited on the Ru/Si substrate via UPD. Using UPD, atomic layered of Pb, which acts as a sacrificial layer, was applied on the Cu layer. Then, a Cu{sup 2+} solution was flushed into the cell at an open-circuit potential, and the Pb layer was exchanged for Cu via redox replacements. The above sequences were repeated 500 times to form a Cu film. The Cu(Ag) alloy films were formed using Cu–UPD and Ag–UPD in predetermined sequences. The lowest electrical resistivity achieved was 3.6 and 2.2 μΩ cm for the Cu film and Cu(Ag) film, respectively, after annealing at 400 °C. Due to the self-limiting reactions, the process has the ability to deposit atomic layers to meet the requirement of Cu interconnects. - Highlights: • Layer-by-layer growth of Cu and Cu(Ag) films are prepared using electrochemical atomic layer deposition. • Cu coverage is from 0.33 to 0.51 ML for each deposition cycle in different NaCl concentrations. • The process can be applied in Cu interconnections.

  4. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G.

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnOx-CVD layers.

  5. Design and implementation of a novel portable atomic layer deposition/chemical vapor deposition hybrid reactor.

    Science.gov (United States)

    Selvaraj, Sathees Kannan; Jursich, Gregory; Takoudis, Christos G

    2013-09-01

    We report the development of a novel portable atomic layer deposition chemical vapor deposition (ALD/CVD) hybrid reactor setup. Unique feature of this reactor is the use of ALD/CVD mode in a single portable deposition system to fabricate multi-layer thin films over a broad range from "bulk-like" multi-micrometer to nanometer atomic dimensions. The precursor delivery system and control-architecture are designed so that continuous reactant flows for CVD and cyclic pulsating flows for ALD mode are facilitated. A custom-written LabVIEW program controls the valve sequencing to allow synthesis of different kinds of film structures under either ALD or CVD mode or both. The entire reactor setup weighs less than 40 lb and has a relatively small footprint of 8 × 9 in., making it compact and easy for transportation. The reactor is tested in the ALD mode with titanium oxide (TiO2) ALD using tetrakis(diethylamino)titanium and water vapor. The resulting growth rate of 0.04 nm/cycle and purity of the films are in good agreement with literature values. The ALD/CVD hybrid mode is demonstrated with ALD of TiO2 and CVD of tin oxide (SnOx). Transmission electron microscopy images of the resulting films confirm the formation of successive distinct TiO2-ALD and SnO(x)-CVD layers.

  6. Nanoporous SiO2 thin films made by atomic layer deposition and atomic etching

    Science.gov (United States)

    Ghazaryan, Lilit; Kley, E.-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2016-06-01

    A new route to prepare nanoporous SiO2 films by mixing atomic-layer-deposited alumina and silica in an Å-scale is presented. The selective removal of Al2O3 from the composites using wet chemical etching with phosphoric acid resulted in nanoporous thin SiO2 layers. A diffusion-controlled dissolution mechanism is identified whereby an interesting reorganization of the residual SiO2 is observed. The atomic scale oxide mixing is decisive in attaining and tailoring the film porosity. The porosity and the refractive index of nanoporous silica films were tailored from 9% to 69% and from 1.40 to 1.13, respectively. The nanoporous silica was successfully employed as antireflection coatings and as diffusion membranes to encapsulate nanostructures.

  7. Atomic Layer Deposition on Carbon Nanotubes and their Assemblies

    Science.gov (United States)

    Stano, Kelly Lynn

    Global issues related to energy and the environment have motivated development of advanced material solutions outside of traditional metals ceramics, and polymers. Taking inspiration from composites, where the combination of two or more materials often yields superior properties, the field of organic-inorganic hybrids has recently emerged. Carbon nanotube (CNT)-inorganic hybrids have drawn widespread and increasing interest in recent years due to their multifunctionality and potential impact across several technologically important application areas. Before the impacts of CNT-inorganic hybrids can be realized however, processing techniques must be developed for their scalable production. Optimization in chemical vapor deposition (CVD) methods for synthesis of CNTs and vertically aligned CNT arrays has created production routes both high throughput and economically feasible. Additionally, control of CVD parameters has allowed for growth of CNT arrays that are able to be drawn into aligned sheets and further processed to form a variety of aligned 1, 2, and 3-dimensional bulk assemblies including ribbons, yarns, and foams. To date, there have only been a few studies on utilizing these bulk assemblies for the production of CNT-inorganic hybrids. Wet chemical methods traditionally used for fabricating CNT-inorganic hybrids are largely incompatible with CNT assemblies, since wetting and drying the delicate structures with solvents can destroy their structure. It is therefore necessary to investigate alternative processing strategies in order to advance the field of CNT-inorganic hybrids. In this dissertation, atomic layer deposition (ALD) is evaluated as a synthetic route for the production of large-scale CNT-metal oxide hybrids as well as pure metal oxide architectures utilizing CNT arrays, ribbons, and ultralow density foams as deposition templates. Nucleation and growth behavior of alumina was evaluated as a function of CNT surface chemistry. While highly graphitic

  8. The kinetics of low-temperature spatial atomic layer deposition of aluminum oxide

    NARCIS (Netherlands)

    Poodt, P.W.G.; Illiberi, A.; Roozeboom, F.

    2013-01-01

    Spatial atomic layer deposition can be used as a high-throughput manufacturing technique in functional thin film deposition for applications such as flexible electronics. This, however, requires low-temperature deposition processes. We have investigated the kinetics of low-temperature (< 100 C) spat

  9. Zintl layer formation during perovskite atomic layer deposition on Ge (001)

    Science.gov (United States)

    Hu, Shen; Lin, Edward L.; Hamze, Ali K.; Posadas, Agham; Wu, HsinWei; Smith, David J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-02-01

    Using in situ X-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and density functional theory, we analyzed the surface core level shifts and surface structure during the initial growth of ABO3 perovskites on Ge (001) by atomic layer deposition, where A = Ba, Sr and B = Ti, Hf, Zr. We find that the initial dosing of the barium- or strontium-bis(triisopropylcyclopentadienyl) precursors on a clean Ge surface produces a surface phase that has the same chemical and structural properties as the 0.5-monolayer Ba Zintl layer formed when depositing Ba by molecular beam epitaxy. Similar binding energy shifts are found for Ba, Sr, and Ge when using either chemical or elemental metal sources. The observed germanium surface core level shifts are consistent with the flattening of the initially tilted Ge surface dimers using both molecular and atomic metal sources. Similar binding energy shifts and changes in dimer tilting with alkaline earth metal adsorption are found with density functional theory calculations. High angle angular dark field scanning transmission microscopy images of BaTiO3, SrZrO3, SrHfO3, and SrHf0.55Ti0.45O3 reveal the location of the Ba (or Sr) atomic columns between the Ge dimers. The results imply that the organic ligands dissociate from the precursor after precursor adsorption on the Ge surface, producing the same Zintl template critical for perovskite growth on Group IV semiconductors during molecular beam epitaxy.

  10. XRD and RBS studies of quasi-amorphous zinc oxide layers produced by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guziewicz, Elżbieta, E-mail: guzel@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Turos, Andrzej [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); National Centre for Nuclear Research, Soltana 7, 04-500 Otwock (Poland); Stonert, Anna [National Centre for Nuclear Research, Soltana 7, 04-500 Otwock (Poland); Snigurenko, Dmytro; Witkowski, Bartłomiej S. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw (Poland); Diduszko, Ryszard [Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw (Poland); Behar, Moni [Instituto de Fisica, Universidade do Rio Grande do Sul, 91501 Porto Alegre (Brazil)

    2016-08-01

    Although zinc oxide has been widely investigated for many important applications such as laser diodes, photovoltaics, and sensors, some basic properties of this material have not been established up to now. One of these are stopping power values which are crucial for the Rutherford Backscattering Spectrometry analysis. For this kind of measurements, amorphous materials should be used. In this paper we show the results of stopping power measurements for ZnO films grown by Atomic Layer Deposition. The films were grown on a silicon (100) substrate and parameters of the growth were chosen in a way that prevents crystallization of ZnO films. A series of ZnO films with thickness between 20 and 160 nm have been investigated. Extended film characterization has proven that the obtained nanopolycrystalline ZnO films can be considered as truly amorphous with respect to ion beam applications. ZnO films have been used for precise stopping power measurement of MeV He-ions in the energy range from 200 to 5000 keV. These results provide indispensable data for ion beam modification and analysis of ZnO. - Highlights: • Thin ZnO films of low crystallographic quality were obtained by Atomic Layer Deposition at 60 °C. • Nanopolycrystalline structure and atomically flat surface has been measured by X-ray diffraction. • Stopping power measurements show a very good agreement with the calculated values.

  11. Microwave annealing effects on ZnO films deposited by atomic layer deposition

    Institute of Scientific and Technical Information of China (English)

    Zhao Shirui; Dong Yabin; Yu Mingyan; Guo Xiaolong; Xu Xinwei; Jing Yupeng; Xia Yang

    2014-01-01

    Zinc oxide thin films deposited on glass substrate at 150 ℃ by atomic layer deposition were annealed by the microwave method at temperatures below 500 ℃.The microwave annealing effects on the structural and luminescent properties of ZnO films have been investigated by X-ray diffraction and photoluminescence.The results show that the MWA process can increase the crystal quality of ZnO thin films with a lower annealing temperature than RTA and relatively decrease the green luminescence of ZnO films.The observed changes have demonstrated that MWA is a viable technique for improving the crystalline quality of ZnO thin film on glass.

  12. Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers.

    Science.gov (United States)

    Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana

    2015-10-14

    Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred

  13. Phase change properties of Ti-Sb-Te thin films deposited by thermal atomic layer deposition

    Science.gov (United States)

    Song, Sannian; Shen, Lanlan; Song, Zhitang; Yao, Dongning; Guo, Tianqi; Li, Le; Liu, Bo; Wu, Liangcai; Cheng, Yan; Ding, Yuqiang; Feng, Songlin

    2016-10-01

    Phase change random access memory (PCM) appears to be the strongest candidate for next-generation high density nonvolatile memory. The fabrication of ultrahigh density PCM depends heavily on the thin film growth technique for the phase changing chalcogenide material. In this study, TiSb2Te4 (TST) thin films were deposited by thermal atomic layer deposition (ALD) method using TiCl4, SbCl3, (Et3Si)2Te as precursors. The threshold voltage for the cell based on thermal ALD-deposited TST is about 2.0 V, which is much lower than that (3.5 V) of the device based on PVD-deposited Ge2Sb2Te5 (GST) with the identical cell architecture. Tests of TST-based PCM cells have demonstrated a fast switching rate of 100 ns. Furthermore, because of the lower melting point and thermal conductivities of TST materials, TST-based PCM cells exhibit 19% reduction of pulse voltages for Reset operation compared with GST-based PCM cells. These results show that thermal ALD is an attractive method for the preparation of phase change materials.

  14. Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, John, E-mail: john.j.hennessy@jpl.nasa.gov; Jewell, April D.; Balasubramanian, Kunjithapatham; Nikzad, Shouleh [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-15

    Aluminum fluoride (AlF{sub 3}) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF{sub 3} at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates that the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.

  15. The mechanical robustness of atomic-layer- and molecular-layer-deposited coatings on polymer substrates

    Science.gov (United States)

    Miller, David C.; Foster, Ross R.; Zhang, Yadong; Jen, Shih-Hui; Bertrand, Jacob A.; Lu, Zhixing; Seghete, Dragos; O'Patchen, Jennifer L.; Yang, Ronggui; Lee, Yung-Cheng; George, Steven M.; Dunn, Martin L.

    2009-05-01

    The mechanical robustness of atomic layer deposited alumina and recently developed molecular layer deposited aluminum alkoxide ("alucone") films, as well as laminated composite films composed of both materials, was characterized using mechanical tensile tests along with a recently developed fluorescent tag to visualize channel cracks in the transparent films. All coatings were deposited on polyethylene naphthalate substrates and demonstrated a similar evolution of damage morphology according to applied strain, including channel crack initiation, crack propagation at the critical strain, crack densification up to saturation, and transverse crack formation associated with buckling and delamination. From measurements of crack density versus applied tensile strain coupled with a fracture mechanics model, the mode I fracture toughness of alumina and alucone films was determined to be KIC=1.89±0.10 and 0.17±0.02 MPa m0.5, respectively. From measurements of the saturated crack density, the critical interfacial shear stress was estimated to be τc=39.5±8.3 and 66.6±6.1 MPa, respectively. The toughness of nanometer-scale alumina was comparable to that of alumina thin films grown using other techniques, whereas alucone was quite brittle. The use of alucone as a spacer layer between alumina films was not found to increase the critical strain at fracture for the composite films. This performance is attributed to the low toughness of alucone. The experimental results were supported by companion simulations using fracture mechanics formalism for multilayer films. To aid future development, the modeling method was used to study the increase in the toughness and elastic modulus of the spacer layer required to render improved critical strain at fracture. These results may be applied to a broad variety of multilayer material systems composed of ceramic and spacer layers to yield robust coatings for use in chemical barrier and other applications.

  16. Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers

    Science.gov (United States)

    2016-01-01

    We present an optimized approach for the deposition of Al2O3 (as a model secondary material) coating into high aspect ratio (≈180) anodic TiO2 nanotube layers using the atomic layer deposition (ALD) process. In order to study the influence of the diffusion of the Al2O3 precursors on the resulting coating thickness, ALD processes with different exposure times (i.e., 0.5, 2, 5, and 10 s) of the trimethylaluminum (TMA) precursor were performed. Uniform coating of the nanotube interiors was achieved with longer exposure times (5 and 10 s), as verified by detailed scanning electron microscopy analysis. Quartz crystal microbalance measurements were used to monitor the deposition process and its particular features due to the tube diameter gradient. Finally, theoretical calculations were performed to calculate the minimum precursor exposure time to attain uniform coating. Theoretical values on the diffusion regime matched with the experimental results and helped to obtain valuable information for further optimization of ALD coating processes. The presented approach provides a straightforward solution toward the development of many novel devices, based on a high surface area interface between TiO2 nanotubes and a secondary material (such as Al2O3). PMID:27643411

  17. Atomic layer deposition of platinum clusters on titania nanoparticles at atmospheric pressure

    NARCIS (Netherlands)

    Goulas, A.; Van Ommen, J.R.

    2013-01-01

    We report the fabrication of platinum nanoclusters with a narrow size distribution on TiO2 nanoparticles using atomic layer deposition. With MeCpPtMe3 and ozone as reactants, the deposition can be carried out at a relatively low temperature of 250 degrees C. Our approach of working with suspended na

  18. On the environmental stability of ZnO thin films by spatial atomic layer deposition

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Theelen, M.; Poodt, P.; Roozeboom, F.

    2013-01-01

    Undoped and indium-doped ZnO films have been deposited by atmospheric spatial atomic-layer-deposition (spatial-ALD). The stability of their electrical, optical, and structural properties has been investigated by a damp-heat test in an environment with 85% relative humidity at 85 °C. The resistivity

  19. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates.

    Science.gov (United States)

    Yan, Baojun; Liu, Shulin; Heng, Yuekun

    2015-01-01

    Microchannel plate (MCP) as a key part is a kind of electron multiplied device applied in many scientific fields. Oxide thin films such as zinc oxide doped with aluminum oxide (ZnO:Al2O3) as conductive layer and pure aluminum oxide (Al2O3) as secondary electron emission (SEE) layer were prepared in the pores of MCP via atomic layer deposition (ALD) which is a method that can precisely control thin film thickness on a substrate with a high aspect ratio structure. In this paper, nano-oxide thin films ZnO:Al2O3 and Al2O3 were prepared onto varied kinds of substrates by ALD technique, and the morphology, element distribution, structure, and surface chemical states of samples were systematically investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and X-ray photoemission spectroscopy (XPS), respectively. Finally, electrical properties of an MCP device as a function of nano-oxide thin film thickness were firstly studied, and the electrical measurement results showed that the average gain of MCP was greater than 2,000 at DC 800 V with nano-oxide thin film thickness approximately 122 nm. During electrical measurement, current jitter was observed, and possible reasons were preliminarily proposed to explain the observed experimental phenomenon.

  20. Properties of HfAlO film deposited by plasma enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Duo [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); Cheng, Xinhong, E-mail: xh_cheng@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China); Jia, Tingting; Zheng, Li; Xu, Dawei; Wang, Zhongjian; Xia, Chao; Yu, Yuehui [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Changning Road 865, Shanghai 200050 (China)

    2013-07-15

    Plasma enhanced atomic layer deposition (PEALD) method can reduce film growing temperature, and allow in situ plasma treatment. In this work, HfAlO and HfO{sub 2} films were deposited with PEALD at 160 °C. Microstructure analysis showed that both films were amorphous after rapid thermal annealing (RTA) treatment, and HfAlO sample showed better interfacial structure than HfO{sub 2}. X-ray photoelectron spectroscopy (XPS) spectra indicated that main component of the interfacial layer of HfAlO sample was Hf–Si–O and Al–Si–O bonds, the valence band offset value between the HfAlO film and Si substrate was calculated to be 2.5 eV. The dominant leakage current mechanism of the samples was Schottky emission at a low electric field (<1.4 MV/cm), and Poole–Frenkel emission mechanism at a higher electric field (>1.4 MV/cm). The equivalent oxide thicknesses (EOT) of the HfAlO samples were 1.0 nm and 1.3 nm, respectively. The density of interface states between dielectric and substrate were calculated to be 1.2 × 10{sup 12} eV{sup −1}cm{sup −2} and 1.3 × 10{sup 12} eV{sup −1}cm{sup −2}, respectively. In comparison with HfO{sub 2} film, HfAlO film has good interfacial structure and electrical performance.

  1. Atomic Layer Deposition of High-k Dielectrics Using Supercritical CO2

    Science.gov (United States)

    Shende, Rajesh

    2005-03-01

    Atomic layer deposition (ALD) of high-κdielectric was performed in supercritical CO2 (SCCO2), using a two-step reaction sequence. In step one, tetraethoxy silane (TEOS) precursor was injected in SCCO2 at 80-100 C and 50 MPa pressure to obtain a chemisorbed surface monolayer, which was then oxidized into SiO2 using peroxide entrained in SCCO2. ALD process was controlled by estimating precursor solubility and its mass transport with respect to the density of SCCO2, and correlating these parameters with precursor injection volume. In the ALD process, 7 pulses of precursor were used anticipating deposition of one atomic layer in each of the pulses. The thickness of the SiO2 atomic layers deposited using SCCO2 was measured by variable angle spectroscopic ellipsometry (VASE), and the C-V measurements were also performed. The result obtained using VASE indicates that there were 7 monolayers of SiO2 with total thickness of 35 å, and the dielectric constant of the deposited layers was 4.0±0.1. Our initial findings clearly demonstrate that SCCO2 is capable of atomic layer deposition of high quality dielectric films at very low process temperatures preventing interface reaction. More research is in progress to achieve ALD of HfO2 and TiO2 in SCCO2.

  2. Atomic layer deposition of NiO hole-transporting layers for polymer solar cells.

    Science.gov (United States)

    Hsu, Che-Chen; Su, Heng-Wei; Hou, Cheng-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-09-25

    NiO is an attractive hole-transporting material for polymer solar cells (PSCs) owing to its excellent stability and electrical/optical properties. This study demonstrates, for the first time, fabrication of uniform, defect-free, and conformal NiO ultra-thin films for use as hole-transporting layers (HTLs) in PSCs by atomic layer deposition (ALD) through optimization of the ALD processing parameters. The morphological, optical, and electrical properties of ALD NiO films were determined to be favorable for their HTL application. As a result, PSCs containing an ALD NiO HTL with an optimized thickness of 4 nm achieved a power conversion efficiency (PCE) of 3.4%, which was comparable to that of a control device with a poly(3,4-ethylenedioxy-thiophene):poly(styrene-sulfonate) HTL. The high quality and manufacturing scalability of ALD NiO films demonstrated here will facilitate the adoption of NiO HTLs in PSCs.

  3. Atomic layer deposition of NiO hole-transporting layers for polymer solar cells

    Science.gov (United States)

    Hsu, Che-Chen; Su, Heng-Wei; Hou, Cheng-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-09-01

    NiO is an attractive hole-transporting material for polymer solar cells (PSCs) owing to its excellent stability and electrical/optical properties. This study demonstrates, for the first time, fabrication of uniform, defect-free, and conformal NiO ultra-thin films for use as hole-transporting layers (HTLs) in PSCs by atomic layer deposition (ALD) through optimization of the ALD processing parameters. The morphological, optical, and electrical properties of ALD NiO films were determined to be favorable for their HTL application. As a result, PSCs containing an ALD NiO HTL with an optimized thickness of 4 nm achieved a power conversion efficiency (PCE) of 3.4%, which was comparable to that of a control device with a poly(3,4-ethylenedioxy-thiophene):poly(styrene-sulfonate) HTL. The high quality and manufacturing scalability of ALD NiO films demonstrated here will facilitate the adoption of NiO HTLs in PSCs.

  4. Reducing interface recombination for Cu(In,Ga)Se{sub 2} by atomic layer deposited buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Hultqvist, Adam; Bent, Stacey F. [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States); Li, Jian V.; Kuciauskas, Darius; Dippo, Patricia; Contreras, Miguel A.; Levi, Dean H. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2015-07-20

    Partial CuInGaSe{sub 2} (CIGS) solar cell stacks with different atomic layer deposited buffer layers and pretreatments were analyzed by photoluminescence (PL) and capacitance voltage (CV) measurements to investigate the buffer layer/CIGS interface. Atomic layer deposited ZnS, ZnO, and SnO{sub x} buffer layers were compared with chemical bath deposited CdS buffer layers. Band bending, charge density, and interface state density were extracted from the CV measurement using an analysis technique new to CIGS. The surface recombination velocity calculated from the density of interface traps for a ZnS/CIGS stack shows a remarkably low value of 810 cm/s, approaching the range of single crystalline II–VI systems. Both the PL spectra and its lifetime depend on the buffer layer; thus, these measurements are not only sensitive to the absorber but also to the absorber/buffer layer system. Pretreatment of the CIGS prior to the buffer layer deposition plays a significant role on the electrical properties for the same buffer layer/CIGS stack, further illuminating the importance of good interface formation. Finally, ZnS is found to be the best performing buffer layer in this study, especially if the CIGS surface is pretreated with potassium cyanide.

  5. Conduction mechanisms in thin atomic layer deposited Al{sub 2}O{sub 3} layers

    Energy Technology Data Exchange (ETDEWEB)

    Spahr, Holger; Montzka, Sebastian; Reinker, Johannes; Hirschberg, Felix; Kowalsky, Wolfgang; Johannes, Hans-Hermann, E-mail: h2.johannes@ihf.tu-bs.de [Institut für Hochfrequenztechnik, Technische Universität Braunschweig, Schleinitzstraße 22, 38106 Braunschweig (Germany)

    2013-11-14

    Thin Al{sub 2}O{sub 3} layers of 2–135 nm thickness deposited by thermal atomic layer deposition at 80 °C were characterized regarding the current limiting mechanisms by increasing voltage ramp stress. By analyzing the j(U)-characteristics regarding ohmic injection, space charge limited current (SCLC), Schottky-emission, Fowler-Nordheim-tunneling, and Poole-Frenkel-emission, the limiting mechanisms were identified. This was performed by rearranging and plotting the data in a linear scale, such as Schottky-plot, Poole-Frenkel-plot, and Fowler-Nordheim-plot. Linear regression then was applied to the data to extract the values of relative permittivity from Schottky-plot slope and Poole-Frenkel-plot slope. From Fowler-Nordheim-plot slope, the Fowler-Nordheim-energy-barrier was extracted. Example measurements in addition to a statistical overview of the results of all investigated samples are provided. Linear regression was applied to the region of the data that matches the realistic values most. It is concluded that ohmic injection and therefore SCLC only occurs at thicknesses below 12 nm and that the Poole-Frenkel-effect is no significant current limiting process. The extracted Fowler-Nordheim-barriers vary in the range of up to approximately 4 eV but do not show a specific trend. It is discussed whether the negative slope in the Fowler-Nordheim-plot could in some cases be a misinterpreted trap filled limit in the case of space charge limited current.

  6. Silicon protected with atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Seger, Brian; Tilley, S. David; Pedersen, Thomas

    2013-01-01

    The present work demonstrates that tuning the donor density of protective TiO2 layers on a photocathode has dramatic consequences for electronic conduction through TiO2 with implications for the stabilization of oxidation-sensitive catalysts on the surface. Vacuum annealing at 400 °C for 1 hour o...

  7. Vacuum ultraviolet photochemical selective area atomic layer deposition of Al2O3 dielectrics

    Directory of Open Access Journals (Sweden)

    P. R. Chalker

    2015-01-01

    Full Text Available We report the photochemical atomic layer deposition of Al2O3 thin films and the use of this process to achieve area-selective film deposition. A shuttered vacuum ultraviolet (VUV light source is used to excite molecular oxygen and trimethyl aluminum to deposit films at 60°C. In-situ QCM and post-deposition ellipsometric measurements both show that the deposition rate is saturative as a function of irradiation time. Selective area deposition was achieved by projecting the VUV light through a metalized magnesium fluoride photolithographic mask and the selectivity of deposition on the illuminated and masked regions of the substrate is a logarithmic function of the UV exposure time. The Al2O3 films exhibit dielectric constants of 8 – 10 at 1 MHz after forming gas annealing, similar to films deposited by conventional thermal ALD.

  8. Fabrication of Nanolaminates with Ultrathin Nanolayers Using Atomic Layer Deposition: Nucleation & Growth Issues

    Science.gov (United States)

    2009-02-01

    microscopy ( FE -SEM). • Construction of new experimental apparatus based on ALD reactor, glovebox and physical vapor deposition (PVD) chamber all...left the research group, Shih-Hui continued the barrier research and also made the FE -SEM measurements of film cracking resulting from compressive...Colorado, September 21, 2007. 25. "Atomic Layer Deposition: Fundamentals and Applications" (Invited Short Course), Sociedad Mexicana de Ciencia y

  9. Dispersion engineered high-Q silicon Nitride Ring-Resonators via Atomic Layer Deposition

    CERN Document Server

    Riemensberger, Johann; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-01-01

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition (ALD). Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. All results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  10. In-situ RHEED analysis of atomic layer deposition and characterization of AL203 gate dielectrics

    NARCIS (Netherlands)

    Bankras, R.G.; Aarnink, A.A.I.; Holleman, J.; Schmitz, J.

    2003-01-01

    A new custom designed reactor was realized at the MESA+ cleanroom to fabricate high-k dielectrics using atomic layer deposition (ALD). Key features of the reactor are: a small reactor volume, in-situ RHEED analysis and low background pressure. The effect of precursor and purge pulse times is discuss

  11. History of atomic layer deposition and its relationship with the American Vacuum Society

    NARCIS (Netherlands)

    Parsons, G.N.; Elam, J.W.; George, S.M.; Haukka, S.; Jeon, H.; Kessels, W.M.M.; Leskelä, M.; Poodt, P.; Ritala, M.; Rossnagel, S.M.

    2013-01-01

    This article explores the history of atomic layer deposition (ALD) and its relationship with the American Vacuum Society (AVS). The authors describe the origin and history of ALD science in the 1960s and 1970s. They also report on how the science and technology of ALD progressed through the 1990s an

  12. Atmospheric spatial atomic layer deposition of in-doped ZnO

    NARCIS (Netherlands)

    Illiberi, A.; Scherpenborg, R.; Roozeboom, F.; Poodt, P.

    2014-01-01

    Indium-doped zinc oxide (ZnO:In) has been grown by spatial atomic layer deposition at atmospheric pressure (spatial-ALD). Trimethyl indium (TMIn), diethyl zinc (DEZ) and deionized water have been used as In, Zn and O precursor, respectively. The metal content of the films is controlled in the range

  13. Modeling Mechanism and Growth Reactions for New Nanofabrication Processes by Atomic Layer Deposition.

    Science.gov (United States)

    Elliott, Simon D; Dey, Gangotri; Maimaiti, Yasheng; Ablat, Hayrensa; Filatova, Ekaterina A; Fomengia, Glen N

    2016-07-01

    Recent progress in the simulation of the chemistry of atomic layer deposition (ALD) is presented for technologically important materials such as alumina, silica, and copper metal. Self-limiting chemisorption of precursors onto substrates is studied using density functional theory so as to determine reaction pathways and aid process development. The main challenges for the future of ALD modeling are outlined.

  14. Effect of substrate composition on atomic layer deposition using self-assembled monolayers as blocking layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyu; Engstrom, James R., E-mail: jre7@cornell.edu [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853 (United States)

    2016-01-15

    The authors have examined the effect of two molecules that form self-assembled monolayers (SAMs) on the subsequent growth of TaN{sub x} by atomic layer deposition (ALD) on two substrate surfaces, SiO{sub 2} and Cu. The SAMs that the authors have investigated include two vapor phase deposited, fluorinated alkyl silanes: Cl{sub 3}Si(CH{sub 2}){sub 2}(CF{sub 2}){sub 5}CF{sub 3} (FOTS) and (C{sub 2}H{sub 5}O){sub 3}Si(CH{sub 2}){sub 2}(CF{sub 2}){sub 7}CF{sub 3} (HDFTEOS). Both the SAMs themselves and the TaN{sub x} thin films, grown using Ta[N(CH{sub 3}){sub 2}]{sub 5} and NH{sub 3}, were analyzed ex situ using contact angle, spectroscopic ellipsometry, x-ray photoelectron spectroscopy (XPS), and low energy ion-scattering spectroscopy (LEISS). First, the authors find that both SAMs on SiO{sub 2} are nominally stable at T{sub s} ∼ 300 °C, the substrate temperature used for ALD, while on Cu, the authors find that HDFTEOS thermally desorbs, while FOTS is retained on the surface. The latter result reflects the difference in the head groups of these two molecules. The authors find that both SAMs strongly attenuate the ALD growth of TaN{sub x} on SiO{sub 2}, by about a factor of 10, while on Cu, the SAMs have no effect on ALD growth. Results from LEISS and XPS are decisive in determining the nature of the mechanism of growth of TaN{sub x} on all surfaces. Growth on SiO{sub 2} is 2D and approximately layer-by-layer, while on the surfaces terminated by the SAMs, it nucleates at defect sites, is islanded, and is 3D. In the latter case, our results support growth of the TaN{sub x} thin film over the SAM, with a considerable delay in formation of a continuous thin film. Growth on Cu, with or without the SAMs, is also 3D and islanded, and there is also a delay in the formation of a continuous thin film as compared to growth on SiO{sub 2}. These results highlight the power of coupling measurements from both LEISS and XPS in examinations of ultrathin films formed by ALD.

  15. Enhancing of catalytic properties of vanadia via surface doping with phosphorus using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Strempel, Verena E.; Naumann d' Alnoncourt, Raoul, E-mail: r.naumann@bascat.tu-berlin.de [BasCat - UniCat BASF JointLab, Technische Universität Berlin, Sekr. EW K 01, Hardenbergstraße 36, 10623 Berlin (Germany); Löffler, Daniel [Process Research and Chemical Engineering, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen (Germany); Kröhnert, Jutta; Skorupska, Katarzyna; Johnson, Benjamin [Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany); Driess, Matthias [BasCat - UniCat BASF JointLab, Technische Universität Berlin, Sekr. EW K 01, Hardenbergstraße 36, 10623 Berlin, Germany and Technische Universität Berlin, Institut für Chemie, Sekr. C2, Straße des 17. Juni 135, 10623 Berlin (Germany); Rosowski, Frank [BasCat - UniCat BASF JointLab, Technische Universität Berlin, Sekr. EW K 01, Hardenbergstraße 36, 10623 Berlin, Germany and Process Research and Chemical Engineering, BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen (Germany)

    2016-01-15

    Atomic layer deposition is mainly used to deposit thin films on flat substrates. Here, the authors deposit a submonolayer of phosphorus on V{sub 2}O{sub 5} in the form of catalyst powder. The goal is to prepare a model catalyst related to the vanadyl pyrophosphate catalyst (VO){sub 2}P{sub 2}O{sub 7} industrially used for the oxidation of n-butane to maleic anhydride. The oxidation state of vanadium in vanadyl pyrophosphate is 4+. In literature, it was shown that the surface of vanadyl pyrophosphate contains V{sup 5+} and is enriched in phosphorus under reaction conditions. On account of this, V{sub 2}O{sub 5} with the oxidation state of 5+ for vanadium partially covered with phosphorus can be regarded as a suitable model catalyst. The catalytic performance of the model catalyst prepared via atomic layer deposition was measured and compared to the performance of catalysts prepared via incipient wetness impregnation and the original V{sub 2}O{sub 5} substrate. It could be clearly shown that the dedicated deposition of phosphorus by atomic layer deposition enhances the catalytic performance of V{sub 2}O{sub 5} by suppression of total oxidation reactions, thereby increasing the selectivity to maleic anhydride.

  16. Tuning the mechanical properties of vertical graphene sheets through atomic layer deposition.

    Science.gov (United States)

    Davami, Keivan; Jiang, Yijie; Cortes, John; Lin, Chen; Shaygan, Mehrdad; Turner, Kevin T; Bargatin, Igor

    2016-04-15

    We report the fabrication and characterization of graphene nanostructures with mechanical properties that are tuned by conformal deposition of alumina. Vertical graphene (VG) sheets, also called carbon nanowalls (CNWs), were grown on copper foil substrates using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique and conformally coated with different thicknesses of alumina (Al2O3) using atomic layer deposition (ALD). Nanoindentation was used to characterize the mechanical properties of pristine and alumina-coated VG sheets. Results show a significant increase in the effective Young's modulus of the VG sheets with increasing thickness of deposited alumina. Deposition of only a 5 nm thick alumina layer on the VG sheets nearly triples the effective Young's modulus of the VG structures. Both energy absorption and strain recovery were lower in VG sheets coated with alumina than in pure VG sheets (for the same peak force). This may be attributed to the increase in bending stiffness of the VG sheets and the creation of connections between the sheets after ALD deposition. These results demonstrate that the mechanical properties of VG sheets can be tuned over a wide range through conformal atomic layer deposition, facilitating the use of VG sheets in applications where specific mechanical properties are needed.

  17. Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Adib Abou Chaaya

    2013-10-01

    Full Text Available A study of transmittance and photoluminescence spectra on the growth of oxygen-rich ultra-thin ZnO films prepared by atomic layer deposition is reported. The structural transition from an amorphous to a polycrystalline state is observed upon increasing the thickness. The unusual behavior of the energy gap with thickness reflected by optical properties is attributed to the improvement of the crystalline structure resulting from a decreasing concentration of point defects at the growth of grains. The spectra of UV and visible photoluminescence emissions correspond to transitions near the band-edge and defect-related transitions. Additional emissions were observed from band-tail states near the edge. A high oxygen ratio and variable optical properties could be attractive for an application of atomic layer deposition (ALD deposited ultrathin ZnO films in optical sensors and biosensors.

  18. Evolution of microstructure and related optical properties of ZnO grown by atomic layer deposition.

    Science.gov (United States)

    Abou Chaaya, Adib; Viter, Roman; Bechelany, Mikhael; Alute, Zanda; Erts, Donats; Zalesskaya, Anastasiya; Kovalevskis, Kristaps; Rouessac, Vincent; Smyntyna, Valentyn; Miele, Philippe

    2013-01-01

    A study of transmittance and photoluminescence spectra on the growth of oxygen-rich ultra-thin ZnO films prepared by atomic layer deposition is reported. The structural transition from an amorphous to a polycrystalline state is observed upon increasing the thickness. The unusual behavior of the energy gap with thickness reflected by optical properties is attributed to the improvement of the crystalline structure resulting from a decreasing concentration of point defects at the growth of grains. The spectra of UV and visible photoluminescence emissions correspond to transitions near the band-edge and defect-related transitions. Additional emissions were observed from band-tail states near the edge. A high oxygen ratio and variable optical properties could be attractive for an application of atomic layer deposition (ALD) deposited ultrathin ZnO films in optical sensors and biosensors.

  19. Formation of palladium nanofilms using electrochemical atomic layer deposition (E-ALD) with chloride complexation.

    Science.gov (United States)

    Sheridan, Leah B; Gebregziabiher, Daniel K; Stickney, John L; Robinson, David B

    2013-02-05

    Pd thin films were formed by electrochemical atomic layer deposition (E-ALD) using surface-limited redox replacement (SLRR) of Cu underpotential deposits (UPD) on polycrystalline Au substrates. An automated electrochemical flow deposition system was used to deposit Pd atomic layers using a sequence of steps referred to as a cycle. The initial step was Cu UPD, followed by its exchange for Pd ions at open circuit, and finishing with a blank rinse to complete the cycle. Deposits were formed with up to 75 cycles and displayed proportional deposit thicknesses. Previous reports by this group indicated excess Pd deposition at the flow cell ingress, from electron probe microanalysis (EPMA). Those results suggested that the SLRR mechanism did not involve direct transfer between a Cu(UPD) atom and a Pd(2+) ion that would take its position. Instead, it was proposed that electrons are transferred through the metallic surface to reduce Pd(2+) ions near the surface where their activity is highest. It was proposed that if the cell was filled completely before a significant fraction of the Cu(UPD) atoms had been oxidized then the deposit would be homogeneous. Previous work with EDTA indicated that the hypothesis had merit, but it proved to be very sensitive to the EDTA concentration. In the present study, chloride was used to complex Pd(2+) ions, forming PdCl(4)(2-), to slow the exchange rate. Both complexing agents led to a decrease in the rate of replacement, producing more homogeneous films. Although the use of EDTA improved the homogeneity, it also decreased the deposit thickness by a factor of 3 compared to the thickness obtained via the use of chloride.

  20. Atomic layer deposition of epitaxial layers of anatase on strontium titanate single crystals: Morphological and photoelectrochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Theodore J.; Nepomnyashchii, Alexander B.; Parkinson, B. A., E-mail: bparkin1@uwyo.edu [Department of Chemistry, School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2015-01-15

    Atomic layer deposition was used to grow epitaxial layers of anatase (001) TiO{sub 2} on the surface of SrTiO{sub 3} (100) crystals with a 3% lattice mismatch. The epilayers grow as anatase (001) as confirmed by x-ray diffraction. Atomic force microscope images of deposited films showed epitaxial layer-by-layer growth up to about 10 nm, whereas thicker films, of up to 32 nm, revealed the formation of 2–5 nm anatase nanocrystallites oriented in the (001) direction. The anatase epilayers were used as substrates for dye sensitization. The as received strontium titanate crystal was not sensitized with a ruthenium-based dye (N3) or a thiacyanine dye (G15); however, photocurrent from excited state electron injection from these dyes was observed when adsorbed on the anatase epilayers. These results show that highly ordered anatase surfaces can be grown on an easily obtained substrate crystal.

  1. Al2O3 on Black Phosphorus by Atomic Layer Deposition: An in Situ Interface Study.

    Science.gov (United States)

    Zhu, Hui; McDonnell, Stephen; Qin, Xiaoye; Azcatl, Angelica; Cheng, Lanxia; Addou, Rafik; Kim, Jiyoung; Ye, Peide D; Wallace, Robert M

    2015-06-17

    In situ "half cycle" atomic layer deposition (ALD) of Al2O3 was carried out on black phosphorus ("black-P") surfaces with modified phosphorus oxide concentrations. X-ray photoelectron spectroscopy is employed to investigate the interfacial chemistry and the nucleation of the Al2O3 on black-P surfaces. This work suggests that exposing a sample that is initially free of phosphorus oxide to the ALD precursors does not result in detectable oxidation. However, when the phosphorus oxide is formed on the surface prior to deposition, the black-P can react with both the surface adventitious oxygen contamination and the H2O precursor at a deposition temperature of 200 °C. As a result, the concentration of the phosphorus oxide increases after both annealing and the atomic layer deposition process. The nucleation rate of Al2O3 on black-P is correlated with the amount of oxygen on samples prior to the deposition. The growth of Al2O3 follows a "substrate inhibited growth" behavior where an incubation period is required. Ex situ atomic force microscopy is also used to investigate the deposited Al2O3 morphologies on black-P where the Al2O3 tends to form islands on the exfoliated black-P samples. Therefore, surface functionalization may be needed to get a conformal coverage of Al2O3 on the phosphorus oxide free samples.

  2. Mechanistic Details of Surface Reactions in Atomic Layer Deposition (ALD) Processes

    Institute of Scientific and Technical Information of China (English)

    Menno; Bouman; Christopher; Clark; Hugo; Tiznado; Francisco; Zaera

    2007-01-01

    1 Results The reaction mechanisms of the atomic layer deposition (ALD) processes used for thin-film growth have been characterized by a combination of surface sensitive techniques. Our early studies focused on the deposition of TiN films from TiCl4 and ammonia,starting with the independent characterization of each of the two half steps comprising the ALD process. It was found that exposure of the substrate to TiCl4 leads to the initial deposition of titanium in the +3 oxidation state; only at a later st...

  3. Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guangjie, E-mail: ygjhzh@dpe.mm.t.u-tokyo.ac.jp; Shimizu, Hideharu; Momose, Takeshi; Shimogaki, Yukihiro [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-01-15

    High-purity Ni films were deposited using hot-wire-assisted atomic layer deposition (HW-ALD) at deposition temperatures of 175, 250, and 350 °C. Negligible amount of nitrogen or carbon contamination was detected, even though the authors used NH{sub 2} radical as the reducing agent and nickelocene as the precursor. NH{sub 2} radicals were generated by the thermal decomposition of NH{sub 3} with the assist of HW and used to reduce the adsorbed metal growth precursors. To understand and improve the deposition process, the kinetics of HW-ALD were analyzed using a Langmuir-type model. Unlike remote-plasma-enhanced atomic layer deposition, HW-ALD does not lead to plasma-induced damage. This is a significant advantage, because the authors can supply sufficient NH{sub 2} radicals to deposit high-purity metallic films by adjusting the distance between the hot wire and the substrate. NH{sub 2} radicals have a short lifetime, and it was important to use a short distance between the radical generation site and substrate. Furthermore, the impurity content of the nickel films was independent of the deposition temperature, which is evidence of the temperature-independent nature of the NH{sub 2} radical flux and the reactivity of the NH{sub 2} radicals.

  4. Highly conformal atomic layer deposition of tantalum oxide using alkylamide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Hausmann, Dennis M.; Rouffignac, Philippe de; Smith, Amethyst; Gordon, Roy; Monsma, Douwe

    2003-10-22

    Atomic layer deposition of highly conformal films of tantalum oxide were studied using tantalum alkylamide precursors and water as the oxygen source. These films also exhibited a very high degree of conformality: 100% step coverage on vias with aspect ratios greater than 35. As deposited, the films were free of detectable impurities with the expected (2.5-1) oxygen to metal ratio and were smooth and amorphous. The films were completely uniform in thickness and composition over the length of the reactor used for depositions. Films were deposited at substrate temperatures from 50 to 350 deg. C from precursors that were vaporized at temperatures from 50 to 120 deg. C. As deposited, the films showed a dielectric constant of 28 and breakdown field consistently greater than 4.5 MV/cm.

  5. Low temperature temporal and spatial atomic layer deposition of TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Aghaee, Morteza, E-mail: m.aghaee@tue.nl; Maydannik, Philipp S. [ASTRaL Group, Laboratory of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli (Finland); Johansson, Petri; Kuusipalo, Jurkka [Paper Converting and Packaging Technology, Tampere University of Technology, P.O. Box 541, FI-33101 Tampere (Finland); Creatore, Mariadriana [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Homola, Tomáš; Cameron, David C. [R& D Center for Low-Cost Plasma and Nanotechnology Surface Modification, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic)

    2015-07-15

    Titanium dioxide films were grown by atomic layer deposition (ALD) using titanium tetraisopropoxide as a titanium precursor and water, ozone, or oxygen plasma as coreactants. Low temperatures (80–120 °C) were used to grow moisture barrier TiO{sub 2} films on polyethylene naphthalate. The maximum growth per cycle for water, ozone, and oxygen plasma processes were 0.33, 0.12, and 0.56 Å/cycle, respectively. X-ray photoelectron spectrometry was used to evaluate the chemical composition of the layers and the origin of the carbon contamination was studied by deconvoluting carbon C1s peaks. In plasma-assisted ALD, the film properties were dependent on the energy dose supplied by the plasma. TiO{sub 2} films were also successfully deposited by using a spatial ALD (SALD) system based on the results from the temporal ALD. Similar properties were measured compared to the temporal ALD deposited TiO{sub 2}, but the deposition time could be reduced using SALD. The TiO{sub 2} films deposited by plasma-assisted ALD showed better moisture barrier properties than the layers deposited by thermal processes. Water vapor transmission rate values lower than 5 × 10{sup −4} g day{sup −1} m{sup −2} (38 °C and 90% RH) was measured for 20 nm of TiO{sub 2} film deposited by plasma-assisted ALD.

  6. Deposition of O atomic layers on Si(100) substrates for epitaxial Si-O superlattices: investigation of the surface chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jayachandran, Suseendran, E-mail: suseendran.jayachandran@imec.be [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Delabie, Annelies; Billen, Arne [KU Leuven, Department of Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Dekkers, Harold; Douhard, Bastien; Conard, Thierry; Meersschaut, Johan; Caymax, Matty [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Vandervorst, Wilfried [KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Heyns, Marc [KU Leuven, Department of Metallurgy and Materials, Castle Arenberg 44, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, 3001 Leuven (Belgium)

    2015-01-01

    Highlights: • Atomic layer is deposited by O{sub 3} chemisorption reaction on H-terminated Si(100). • O-content has critical impact on the epitaxial thickness of the above-deposited Si. • Oxygen atoms at dimer/back bond configurations enable epitaxial Si on O atomic layer. • Oxygen atoms at hydroxyl and more back bonds, disable epitaxial Si on O atomic layer. - Abstract: Epitaxial Si-O superlattices consist of alternating periods of crystalline Si layers and atomic layers of oxygen (O) with interesting electronic and optical properties. To understand the fundamentals of Si epitaxy on O atomic layers, we investigate the O surface species that can allow epitaxial Si chemical vapor deposition using silane. The surface reaction of ozone on H-terminated Si(100) is used for the O deposition. The oxygen content is controlled precisely at and near the atomic layer level and has a critical impact on the subsequent Si deposition. There exists only a small window of O-contents, i.e. 0.7–0.9 atomic layers, for which the epitaxial deposition of Si can be realized. At these low O-contents, the O atoms are incorporated in the Si-Si dimers or back bonds (-OSiH), with the surface Si atoms mainly in the 1+ oxidation state, as indicated by infrared spectroscopy. This surface enables epitaxial seeding of Si. For O-contents higher than one atomic layer, the additional O atoms are incorporated in the Si-Si back bonds as well as in the Si-H bonds, where hydroxyl groups (-Si-OH) are created. In this case, the Si deposition thereon becomes completely amorphous.

  7. CoFe2/Al2O3/PMNPT multiferroic heterostructures by atomic layer deposition

    Science.gov (United States)

    Zhou, Ziyao; Grocke, Garrett; Yanguas-Gil, Angel; Wang, Xinjun; Gao, Yuan; Sun, Nianxiang; Howe, Brandon; Chen, Xing

    2016-05-01

    Multiferroic materials and applications allow electric bias control of magnetism or magnetic bias control of polarization, enabling fast, compact, energy-efficient devices in RF/microwave communication systems such as filters, shifters, and antennas; electronics devices such as inductors and capacitors; and other magnetic material related applications including sensors and memories. In this manuscript, we utilize atomic layer deposition technology to grow magnetic CoFe metallic thin films onto PMNPT, with a ˜110 Oe electric field induced ferromagnetic resonance field shift in the CoFe/Al2O3/PMNPT multiferroic heterostructure. Our work demonstrates an atomic layer deposition fabricated multiferroic heterostructure with significant tunability and shows that the unique thin film growth mechanism will benefit integrated multiferroic application in near future.

  8. Atomic layer deposition of ZnO:Al on PAA substrates

    Science.gov (United States)

    Blagoev, B. S.; Vlakhov, E.; Videkov, V.; Tzaneva, B.; Łuka, G.; Witkowski, B. S.; Terziyska, P.; Leclercq, J.; Krajewski, T. A.; Guziewicz, E.; Dimitrov, D. Z.; Mehandzhiev, V. B.; Sveshtarov, P.

    2016-10-01

    In this work the ZnO:Al films of different thickness are grown on the Porous Anodic Alumina (PAA) and p-Si (100) substrates by Atomic Layer Deposition. The ZnO:Al films thicknesses are chosen appropriately in order to obtain complete filled pores as well as pores with a thin covering on the surface. The obtained structures are investigated with spectroscopic ellipsometry and Scanning Electron Microscopy (SEM) techniques.

  9. On model materials designed by atomic layer deposition for catalysis purposes

    OpenAIRE

    Diskus, Madeleine

    2011-01-01

    The aim of this work was to investigate the potential of model materials designed by atomic layer deposition toward applications in catalysis research. Molybdenum based catalysts promoted with cobalt were selected as target materials, considering their important roles in various industrial processes. Particular attention was paid to understand the growth dynamics of the ALD processes involved and further to characterize the obtained materials carefully. It was of main concern to verify the fe...

  10. Atomic layer deposition of TiO{sub 2} photonic crystal waveguide biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Jardinier, E; French, P J [Electronic Instrumentation Laboratory, Delft University of Technology, 4 Mekelweg, 2628 CD Delft (Netherlands); Pandraud, G; Pham, M H; Sarro, P M [Electronic Components, Technology and Materials, Delft University of Technology, 17 Feldmannweg, 2628 CT Delft (Netherlands)], E-mail: g.pandraud@tudelft.nl

    2009-09-01

    A photonic crystal waveguide biosensor in the visible is presented for biosensing. The sensor is applied to Refractive Index (RI) measurements. The sensitivity at different wavelength is presented for both air holes and air core configurations of photonic crystal waveguide (PCW) made of TiO{sub 2}. It is shown that by using Atomic Layer Deposition (ALD) the expected sensitivity of the air core configuration outperforms the previously reported results.

  11. Protection of Polymers from the Space Environment by Atomic Layer Deposition

    Science.gov (United States)

    Lindholm, Ned F.; Zhang, Jianming; Minton, Timothy K.; O'Patchen, Jennifer; George, Steven M.; Groner, Markus D.

    2009-01-01

    Polymers in space may be subjected to a barrage of incident atoms, photons, and/or ions. For example, oxygen atoms can etch and oxidize these materials. Photons may act either alone or in combination with oxygen atoms to degrade polymers and paints and thus limit their usefulness. Colors fade under the intense vacuum ultraviolet (VUV) solar radiation. Ions can lead to the build-up of static charge on polymers. Atomic layer deposition (ALD) techniques can provide coatings that could mitigate many challenges for polymers in space. ALD is a gas-phase technique based on two sequential, self-limiting surface reactions, and it can deposit very uniform, conformal, and pinhole-free films with atomic layer control. We have studied the efficacy of various ALD coatings to protect Kapton® polyimide, FEP Teflon®, and poly(methyl methacrylate) films from atomic-oxygen and VUV attack. Atomic-oxygen and VUV studies were conducted with the use of a laser-breakdown source for hyperthermal O atoms and a D2 lamp as a source of VUV light. These studies used a quartz crystal microbalance (QCM) to monitor mass loss in situ, as well as surface profilometry and scanning electron microscopy to study the surface recession and morphology changes ex situ. Al2O3 ALD coatings applied to polyimide and FEP Teflon® films protected the underlying substrates from O-atom attack, and ZnO coatings protected the poly(methyl methacrylate) substrate from VUV-induced damage.

  12. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Science.gov (United States)

    Zhuiykov, Serge; Kawaguchi, Toshikazu; Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M.

    2017-01-01

    Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique's capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO3) over the large area of standard 4" Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  13. Atomic Layer Deposition Al2O3 Thin Films in Magnetized Radio Frequency Plasma Source

    Science.gov (United States)

    Li, Xingcun; Chen, Qiang; Sang, Lijun; Yang, Lizhen; Liu, Zhongwei; Wang, Zhenduo

    Self-limiting deposition of aluminum oxide (Al2O3) thin films were accomplished by the plasma-enhanced chemical vapor deposition using trimethyl aluminum (TMA) and O2 as precursor and oxidant, respectively, where argon was kept flowing in whole deposition process as discharge and purge gas. In here we present a novel plasma source for the atomic layer deposition technology, magnetized radio frequency (RF) plasma. Difference from the commercial RF source, magnetic coils were amounted above the RF electrode, and the influence of the magnetic field strength on the deposition rate and morphology are investigated in detail. It concludes that a more than 3 Å/ purging cycle deposition rate and the good quality of ALD Al2O3 were achieved in this plasma source even without extra heating. The ultra-thin films were characterized by including Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectric spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The high deposition rates obtained at ambient temperatures were analyzed after in-situ the diagnostic of plasmas by Langmuir probe.

  14. Silicon dioxide mask by plasma enhanced atomic layer deposition in focused ion beam lithography

    Science.gov (United States)

    Liu, Zhengjun; Shah, Ali; Alasaarela, Tapani; Chekurov, Nikolai; Savin, Hele; Tittonen, Ilkka

    2017-02-01

    In this work, focused ion beam (FIB) lithography was developed for plasma enhanced atomic layer deposited (PEALD) silicon dioxide SiO2 hard mask. The PEALD process greatly decreases the deposition temperature of the SiO2 hard mask. FIB Ga+ ion implantation on the deposited SiO2 layer increases the wet etch resistivity of the irradiated region. A programmed exposure in FIB followed by development in a wet etchant enables the precisely defined nanoscale patterning. The combination of FIB exposure parameters and the development time provides greater freedom for optimization. The developed process provides high pattern dimension accuracy over the tested range of 90–210 nm. Utilizing the SiO2 mask developed in this work, silicon nanopillars with 40 nm diameter were successfully fabricated with cryogenic deep reactive ion etching and the aspect ratio reached 16:1. The fabricated mask is suitable for sub-100 nm high aspect ratio silicon structure fabrication.

  15. Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition.

    Science.gov (United States)

    Zhao, Yang; Goncharova, Lyudmila V; Lushington, Andrew; Sun, Qian; Yadegari, Hossein; Wang, Biqiong; Xiao, Wei; Li, Ruying; Sun, Xueliang

    2017-03-03

    Na-metal batteries are considered as the promising alternative candidate for Li-ion battery beneficial from the wide availability and low cost of sodium, high theoretical specific capacity, and high energy density based on the plating/stripping processes and lowest electrochemical potential. For Na-metal batteries, the crucial problem on metallic Na is one of the biggest challenges. Mossy or dendritic growth of Na occurs in the repetitive Na stripping/plating process with an unstable solid electrolyte interphase layer of nonuniform ionic flux, which can not only lead to the low Coulombic efficiency, but also can create short circuit risks, resulting in possible burning or explosion. In this communication, the atomic layer deposition of Al2 O3 coating is first demonstrated for the protection of metallic Na anode for Na-metal batteries. By protecting Na foil with ultrathin Al2 O3 layer, the dendrites and mossy Na formation have been effectively suppressed and lifetime has been significantly improved. Furthermore, the thickness of protective layer has been further optimized with 25 cycles of Al2 O3 layer presenting the best performance over 500 cycles. The novel design of atomic layer deposition protected metal Na anode may bring in new opportunities to the realization of the next-generation high energy-density Na metal batteries.

  16. Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung; Hwang, Cheol Seong; Kim, Hyeong Joon, E-mail: thinfilm@snu.ac.kr [Department of Materials Science and Engineering with Inter-University Semiconductor Research Center (ISRC), Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Ryu, Seung Wook, E-mail: tazryu78@gmail.com [Department of Electrical Engineering, Stanford University, Stanford, California 94305-2311 (United States); Cho, Seongjae [Department of Electronic Engineering and New Technology Component & Material Research Center (NCMRC), Gachon University, Seongnam-si, Gyeonggi-do 13120 (Korea, Republic of)

    2016-01-15

    It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films prepared by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.

  17. Quantum confinement in amorphous TiO(2) films studied via atomic layer deposition.

    Science.gov (United States)

    King, David M; Du, Xiaohua; Cavanagh, Andrew S; Weimer, Alan W

    2008-11-05

    Despite the significant recent increase in quantum-based optoelectronics device research, few deposition techniques can reliably create the required functional nanoscale systems. Atomic layer deposition (ALD) was used here to study the quantum effects attainable through the use of this ångström-level controlled growth process. Size-dependent quantum confinement has been demonstrated using TiO(2) layers of nanoscale thickness applied to the surfaces of silicon wafers. TiO(2) films were deposited at 100 °C using TiCl(4) and H(2)O(2) in a viscous flow ALD reactor, at a rate of 0.61 Å/cycle. The low-temperature process was utilized to guarantee the amorphous deposition of TiO(2) layers and post-deposition thermal annealing was employed to promote crystallite-size modification. Hydrogen peroxide significantly reduced the residual chlorine that remained from a typical TiCl(4)-H(2)O ALD process at this temperature, down to 1.6%. Spectroscopic ellipsometry was used to quantify the optical properties both below and above the bandgap energy. A central composite design was employed to map the surface response of the film thickness-dependent bandgap shift for the as-deposited case and up to a thermal annealing temperature of 550 °C. The Brus model was used to develop a correlation between the amorphous TiO(2) film thickness and the quantum length to promote equivalent bandgap shifts.

  18. (Invited) Atomic Layer Deposition for Novel Dye-Sensitized Solar Cells

    KAUST Repository

    Tétreault, Nicolas

    2011-01-01

    Herein we present the latest fabrication and characterization techniques for atomic layer deposition of Al 2O 3, ZnO, SnO 2, Nb 2O 5, HfO 2, Ga 2O 3 and TiO 2 for research on dye-sensitized solar cell. In particular, we review the fabrication of state-of-the-art 3D host-passivation-guest photoanodes and ZnO nanowires as well as characterize the deposited thin films using spectroscopic ellipsometry, X-ray diffraction, Hall effect, J-V curves and electrochemical impedance spectroscopy. ©The Electrochemical Society.

  19. Atomic Layer Deposition of SnO2 on MXene for Li-Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2017-02-24

    In this report, we show that oxide battery anodes can be grown on two-dimensional titanium carbide sheets (MXenes) by atomic layer deposition. Using this approach, we have fabricated a composite SnO2/MXene anode for Li-ion battery applications. The SnO2/MXene anode exploits the high Li-ion capacity offered by SnO2, while maintaining the structural and mechanical integrity by the conductive MXene platform. The atomic layer deposition (ALD) conditions used to deposit SnO2 on MXene terminated with oxygen, fluorine, and hydroxyl-groups were found to be critical for preventing MXene degradation during ALD. We demonstrate that SnO2/MXene electrodes exhibit excellent electrochemical performance as Li-ion battery anodes, where conductive MXene sheets act to buffer the volume changes associated with lithiation and delithiation of SnO2. The cyclic performance of the anodes is further improved by depositing a very thin passivation layer of HfO2, in the same ALD reactor, on the SnO2/MXene anode. This is shown by high-resolution transmission electron microscopy to also improve the structural integrity of SnO2 anode during cycling. The HfO2 coated SnO2/MXene electrodes demonstrate a stable specific capacity of 843 mAh/g when used as Li-ion battery anodes.

  20. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  1. Enhanced Barrier Performance of Engineered Paper by Atomic Layer Deposited Al2O3 Thin Films.

    Science.gov (United States)

    Mirvakili, Mehr Negar; Van Bui, Hao; van Ommen, J Ruud; Hatzikiriakos, Savvas G; Englezos, Peter

    2016-06-01

    Surface modification of cellulosic paper is demonstrated by employing plasma assisted atomic layer deposition. Al2O3 thin films are deposited on paper substrates, prepared with different fiber sizes, to improve their barrier properties. Thus, a hydrophobic paper is created with low gas permeability by combining the control of fiber size (and structure) with atomic layer deposition of Al2O3 films. Papers are prepared using Kraft softwood pulp and thermomechanical pulp. The cellulosic wood fibers are refined to obtain fibers with smaller length and diameter. Films of Al2O3, 10, 25, and 45 nm in thickness, are deposited on the paper surface. The work demonstrates that coating of papers prepared with long fibers efficiently reduces wettability with slight enhancement in gas permeability, whereas on shorter fibers, it results in significantly lower gas permeability. Wettability studies on Al2O3 deposited paper substrates have shown water wicking and absorption over time only in papers prepared with highly refined fibers. It is also shown that there is a certain fiber size at which the gas permeability assumes its minimum value, and further decrease in fiber size will reverse the effect on gas permeability.

  2. Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers

    Energy Technology Data Exchange (ETDEWEB)

    Gajula, D. R., E-mail: dgajula01@qub.ac.uk; Baine, P.; Armstrong, B. M.; McNeill, D. W. [School of Electronics, Electrical Engineering and Computer Science, Queen' s University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH (United Kingdom); Modreanu, M.; Hurley, P. K. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)

    2014-01-06

    Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al{sub 2}O{sub 3} interfacial layer (∼2.8 nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

  3. Atomic layer deposition by reaction of molecular oxygen with tetrakisdimethylamido-metal precursors

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J, E-mail: jprovine@stanford.edu; Schindler, Peter; Torgersen, Jan; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Karnthaler, Hans-Peter [Physics of Nanostructured Materials, University of Vienna, 1090 Vienna (Austria); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 and Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-01-15

    Tetrakisdimethylamido (TDMA) based precursors are commonly used to deposit metal oxides such as TiO{sub 2}, ZrO{sub 2}, and HfO{sub 2} by means of chemical vapor deposition and atomic layer deposition (ALD). Both thermal and plasma enhanced ALD (PEALD) have been demonstrated with TDMA-metal precursors. While the reactions of TDMA-type precursors with water and oxygen plasma have been studied in the past, their reactivity with pure O{sub 2} has been overlooked. This paper reports on experimental evaluation of the reaction of molecular oxygen (O{sub 2}) and several metal organic precursors based on TDMA ligands. The effect of O{sub 2} exposure duration and substrate temperature on deposition and film morphology is evaluated and compared to thermal reactions with H{sub 2}O and PEALD with O{sub 2} plasma.

  4. Trends of structural and electrical properties in atomic layer deposited HfO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Scarel, G.; Spiga, S.; Wiemer, C.; Tallarida, G.; Ferrari, S.; Fanciulli, M

    2004-06-15

    Understanding and optimizing electrical and structural properties of high-{kappa} oxides are key steps in view of their application as SiO{sub 2} substitutes in CMOS devices. In this work, we address the effects of growth temperature (T{sub g},) post-deposition annealing and substrate preparation on the structural, compositional, and electrical properties of thin films ({approx}13 nm thick), deposited on p-type Si(1 0 0)/SiO{sub 2} (chemical oxide) by atomic layer deposition (ALD). In particular, we investigate the effects of: (1) different T{sub g} (150, 250 and 350 deg. C); (2) rapid thermal annealing at 950 deg. C in N{sub 2} for 60 s; and (3) substrate in situ heat treatment before growth and longer pulses at the beginning of the deposition.

  5. Atomic layer deposition of MnS: phase control and electrochemical applications.

    Energy Technology Data Exchange (ETDEWEB)

    Riha, Shannon C.; Koegel, Alexandria A.; Meng, Xiangbo; Kim, In Soo; Cao, Yanqiang; Pellin, Michael J.; Elam, Jeffrey W.; Martinson, Alex B. F.

    2016-02-03

    Manganese sulfide (MnS) thin films were synthesized via atomic layer deposition (ALD) using gaseous manganese bis(ethylcyclopentadienyl) and hydrogen sulfide as precursors. At deposition temperatures ≤150 °C phase-pure r-MnS thin films were deposited, while at temperatures >150 °C, a mixed phase, consisting of both r- and a-MnS resulted. In situ quartz crystal microbalance (QCM) studies validate the self-limiting behavior of both ALD half-reactions and, combined with quadrupole mass spectrometry (QMS) allow the derivation of a self-consistent reaction mechanism. Finally, MnS thin films were deposited on copper foil and tested as a Li-ion battery anode. The MnS coin cells showed exceptional cycle stability and near-theoretical capacity.

  6. Atomic Layer Deposition of MnS: Phase Control and Electrochemical Applications.

    Science.gov (United States)

    Riha, Shannon C; Koegel, Alexandra A; Meng, Xiangbo; Kim, In Soo; Cao, Yanqiang; Pellin, Michael J; Elam, Jeffrey W; Martinson, Alex B F

    2016-02-01

    Manganese sulfide (MnS) thin films were synthesized via atomic layer deposition (ALD) using gaseous manganese bis(ethylcyclopentadienyl) and hydrogen sulfide as precursors. At deposition temperatures ≤150 °C phase-pure γ-MnS thin films were deposited, while at temperatures >150 °C, a mixed phase consisting of both γ- and α-MnS resulted. In situ quartz crystal microbalance (QCM) studies validate the self-limiting behavior of both ALD half-reactions and, combined with quadrupole mass spectrometry (QMS), allow the derivation of a self-consistent reaction mechanism. Finally, MnS thin films were deposited on copper foil and tested as a Li-ion battery anode. The MnS coin cells showed exceptional cycle stability and near-theoretical capacity.

  7. Synthesis of magnetic tunnel junctions with full in situ atomic layer and chemical vapor deposition processes

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Vangelista, S.; Kutrzeba-Kotowska, B.; Cocco, S.; Lamperti, A.; Tallarida, G. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (MB) (Italy); Mameli, D. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienze Chimiche, Universita di Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli studi Milano-Bicocca, Via R Cozzi 53, 20125 Milano (Italy)

    2012-05-01

    Magnetic tunnel junctions, i.e. the combination of two ferromagnetic electrodes separated by an ultrathin tunnel oxide barrier, are core elements in a large variety of spin-based devices. We report on the use of combined chemical vapor and atomic layer deposition processes for the synthesis of magnetic tunnel junctions with no vacuum break. Structural, chemical and morphological characterizations of selected ferromagnetic and oxide layers are reported, together with the evidence of tunnel magnetoresistance effect in patterned Fe/MgO/Co junctions.

  8. Imaging of oxide charges and contact potential difference fluctuations in Atomic Layer Deposited AL203 on Si

    NARCIS (Netherlands)

    Sturm, J.M.; Zinine, A.; Wormeester, H.; Poelsema, B.; Bankras, R.G.; Holleman, J.; Schmitz, J.

    2005-01-01

    Ultrathin 2.5 nm high-k aluminum oxide (Al2O3) films on p-type silicon (001) deposited by atomic layer deposition (ALD) were investigated with noncontact atomic force microscopy (NC-AFM) in ultrahigh vacuum, using a conductive tip. Constant force gradient images revealed the presence of oxide charge

  9. Atomic layer deposited titanium dioxide coatings on KD-II silicon carbide fibers and their characterization

    Science.gov (United States)

    Cao, Shiyi; Wang, Jun; Wang, Hao

    2016-03-01

    To provide oxidation protection and/or to act as an interfacial coating, titanium oxide (TiO2) coatings were deposited on KD-II SiC fibers by employing atomic layer deposition (ALD) technique with tetrakis(dimethylamido)titanium (TDMAT) and water (H2O) as precursors. The average deposition rate was about 0.08 nm per cycle, and the prepared coatings were smooth, uniform and conformal, shielding the fibers entirely. The as-deposited coatings were amorphous regardless of the coating thickness, and changed to anatase and rutile crystal phase after annealing at 600 °C and 1000 °C, respectively. The oxidation measurement suggests that the TiO2 coating enhanced the oxidation resistance of SiC fibers obviously. SiC fibers coated with a 70-nm-thick TiO2 layer retained a relatively high tensile strength of 1.66 GPa even after exposition to air at 1400 °C for 1 h, and thick silica layer was not observed. In contrast, uncoated SiC fibers were oxidized dramatically through the same oxidation treatment, covered with a macro-cracked thick silica film, and the tensile strength was not measurable due to interfilament adhesion. The above results indicate that TiO2 films deposited by ALD are a promising oxidation resistance coating for SiC fibers.

  10. Low-temperature atomic layer deposition of MgO thin films on Si

    Science.gov (United States)

    Vangelista, S.; Mantovan, R.; Lamperti, A.; Tallarida, G.; Kutrzeba-Kotowska, B.; Spiga, S.; Fanciulli, M.

    2013-12-01

    Magnesium oxide (MgO) films have been grown by atomic layer deposition in the wide deposition temperature window of 80-350 °C by using bis(cyclopentadienyl)magnesium and H2O precursors. MgO thin films are deposited on both HF-last Si(1 0 0) and SiO2/Si substrates at a constant growth rate of ˜0.12 nm cycle-1. The structural, morphological and chemical properties of the synthesized MgO thin films are investigated by x-ray reflectivity, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectrometry and atomic force microscopy measurements. MgO layers are characterized by sharp interface with the substrate and limited surface roughness, besides good chemical uniformity and polycrystalline structure for thickness above 7 nm. C-V measurements performed on Al/MgO/Si MOS capacitors, with MgO in the 4.6-11 nm thickness range, allow determining a dielectric constant (κ) ˜ 11. Co layers are grown by chemical vapour deposition in direct contact with MgO without vacuum-break (base pressure 10-5-10-6 Pa). The as-grown Co/MgO stacks show sharp interfaces and no elements interdiffusion among layers. C-V and I-V measurements have been conducted on Co/MgO/Si MOS capacitors. The dielectric properties of MgO are not influenced by the further process of Co deposition.

  11. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    Science.gov (United States)

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Posadas, Agham; Demkov, Alexander A.; Ekerdt, John G.

    2015-12-01

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al2O3 and HfO2. However, there has been much effort to deposit ternary oxides, such as perovskites (ABO3), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.

  12. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G., E-mail: ekerdt@utexas.edu [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-12-15

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al{sub 2}O{sub 3} and HfO{sub 2}. However, there has been much effort to deposit ternary oxides, such as perovskites (ABO{sub 3}), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.

  13. Epitaxial Growth of Perovskite Strontium Titanate on Germanium via Atomic Layer Deposition.

    Science.gov (United States)

    Lin, Edward L; Edmondson, Bryce I; Hu, Shen; Ekerdt, John G

    2016-07-26

    Atomic layer deposition (ALD) is a commercially utilized deposition method for electronic materials. ALD growth of thin films offers thickness control and conformality by taking advantage of self-limiting reactions between vapor-phase precursors and the growing film. Perovskite oxides present potential for next-generation electronic materials, but to-date have mostly been deposited by physical methods. This work outlines a method for depositing SrTiO3 (STO) on germanium using ALD. Germanium has higher carrier mobilities than silicon and therefore offers an alternative semiconductor material with faster device operation. This method takes advantage of the instability of germanium's native oxide by using thermal deoxidation to clean and reconstruct the Ge (001) surface to the 2×1 structure. 2-nm thick, amorphous STO is then deposited by ALD. The STO film is annealed under ultra-high vacuum and crystallizes on the reconstructed Ge surface. Reflection high-energy electron diffraction (RHEED) is used during this annealing step to monitor the STO crystallization. The thin, crystalline layer of STO acts as a template for subsequent growth of STO that is crystalline as-grown, as confirmed by RHEED. In situ X-ray photoelectron spectroscopy is used to verify film stoichiometry before and after the annealing step, as well as after subsequent STO growth. This procedure provides framework for additional perovskite oxides to be deposited on semiconductors via chemical methods in addition to the integration of more sophisticated heterostructures already achievable by physical methods.

  14. Bi-layer Channel AZO/ZnO Thin Film Transistors Fabricated by Atomic Layer Deposition Technique.

    Science.gov (United States)

    Li, Huijin; Han, Dedong; Liu, Liqiao; Dong, Junchen; Cui, Guodong; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2017-12-01

    This letter demonstrates bi-layer channel Al-doped ZnO/ZnO thin film transistors (AZO/ZnO TFTs) via atomic layer deposition process at a relatively low temperature. The effects of annealing in oxygen atmosphere at different temperatures have also been investigated. The ALD bi-layer channel AZO/ZnO TFTs annealed in dry O2 at 300 °C exhibit a low leakage current of 2.5 × 10(-13)A, I on/I off ratio of 1.4 × 10(7), subthreshold swing (SS) of 0.23 V/decade, and high transmittance. The enhanced performance obtained from the bi-layer channel AZO/ZnO TFT devices is explained by the inserted AZO front channel layer playing the role of the mobility booster.

  15. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Kerr, A J; Chagarov, E; Gu, S; Kaufman-Osborn, T; Madisetti, S; Wu, J; Asbeck, P M; Oktyabrsky, S; Kummel, A C

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al2O3 gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge. These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001).

  16. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    Jiang Ran; Meng Lingguo; Zhang Xijian; Hyung-Suk Jung; Cheol Seong Hwang

    2012-01-01

    Atomic layer deposition ofan Al2O3 dielectric on ultrathin graphite is studied in order to investigate the integration of a high k dielectric with graphite-based substrates.Electron beam irradiation on the graphite surface is followed by a standard atomic layer deposition of Al2O3.Improvement of the Al2O3 layer deposition morphology was observed when using this radiation exposure on graphite.This result may be attributed to the amorphous change of the graphite layers during electron beam irradiation.

  17. Ag films grown by remote plasma enhanced atomic layer deposition on different substrates

    Energy Technology Data Exchange (ETDEWEB)

    Amusan, Akinwumi A., E-mail: akinwumi.amusan@ovgu.de; Kalkofen, Bodo; Burte, Edmund P. [Institute of Micro and Sensor Systems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Gargouri, Hassan; Wandel, Klaus; Pinnow, Cay [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany); Lisker, Marco [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

    2016-01-15

    Silver (Ag) layers were deposited by remote plasma enhanced atomic layer deposition (PALD) using Ag(fod)(PEt{sub 3}) (fod = 2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionato) as precursor and hydrogen plasma on silicon substrate covered with thin films of SiO{sub 2}, TiN, Ti/TiN, Co, Ni, and W at different deposition temperatures from 70  to 200 °C. The deposited silver films were analyzed by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) with energy dispersive x-ray spectroscopy, four point probe measurement, ellipsometric measurement, x-ray fluorescence (XRF), and x-ray diffraction (XRD). XPS revealed pure Ag with carbon and oxygen contamination close to the detection limit after 30 s argon sputtering for depositions made at 120 and 200 °C substrate temperatures. However, an oxygen contamination was detected in the Ag film deposited at 70 °C after 12 s argon sputtering. A resistivity of 5.7 × 10{sup −6} Ω cm was obtained for approximately 97 nm Ag film on SiO{sub 2}/Si substrate. The thickness was determined from the SEM cross section on the SiO{sub 2}/Si substrate and also compared with XRF measurements. Polycrystalline cubic Ag reflections were identified from XRD for PALD Ag films deposited at 120 and 200 °C. Compared to W surface, where poor adhesion of the films was found, Co, Ni, TiN, Ti/TiN and SiO{sub 2} surfaces had better adhesion for silver films as revealed by SEM, TEM, and AFM images.

  18. Flat metallic surface gratings with sub-10 nm gaps controlled by atomic-layer deposition

    Science.gov (United States)

    Chen, Borui; Ji, Dengxin; Cheney, Alec; Zhang, Nan; Song, Haomin; Zeng, Xie; Thomay, Tim; Gan, Qiaoqiang; Cartwright, Alexander

    2016-09-01

    Atomic layer lithography is a recently reported new technology to fabricate deep-subwavelength features down to 1-2 nm, based on combinations of electron beam lithography (EBL) and atomic layer deposition (ALD). However, the patterning area is relatively small as limited by EBL, and the fabrication yield is not very high due to technical challenges. Here we report an improved procedure to fabricate flat metallic surfaces with sub-10 nm features based on ALD processes. To demonstrate the scalability of the new manufacturing method, we combine the ALD process with large area optical interference patterning, which is particularly promising for the development of practical applications for nanoelectronics and nanophotonics with extremely strong confinement of electromagnetic fields.

  19. Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents.

    Science.gov (United States)

    Zhong, Qi; Yan, Jin; Qian, Xu; Zhang, Tao; Zhang, Zhuo; Li, Aidong

    2014-09-01

    In-stent restenosis (ISR) and re-endothelialization delay are two major issues of intravascular stent in terms of clinical safety and effects. Construction of mimetic cell membrane surface on stents using phosphorylcholine have been regarded as one of the most powerful strategies to resolve these two issues and improve the performance of stents. In this study, atomic layer deposition (ALD) technology, which is widely used in semiconductor industry, was utilized to fabricate ultra-thin layer (10nm) of alumina (Al2O3) on 316L stainless steel (SS), then the alumina covered surface was modified with 3-aminopropyltriethoxysilane (APS) and 2-methacryloyloxyethyl phosphorylcholine (MPC) sequentially in order to produce phosphorylcholine mimetic cell membrane surface. The pristine and modified surfaces were characterized using X-ray photoelectron spectroscopy, atomic force microscope and water contact angle measurement. Furthermore, the abilities of protein adsorption, platelet adhesion and cell proliferation on the surfaces were investigated. It was found that alumina layer can significantly enhance the surface grafting of APS and MPC on SS; and in turn efficiently inhibit protein adsorption and platelet adhesion, and promote the attachment and proliferation of human umbilical vein endothelial cells (HUVEC) on the surfaces. In association with the fact that the deposition of alumina layer is also beneficial to the improvement of adhesion and integrity of drug-carrying polymer coating on drug eluting stents, we expect that ALD technology can largely assist in the modifications on inert metallic surfaces and benefit implantable medical devices, especially intravascular stents.

  20. Atomic layer deposited borosilicate glass microchannel plates for large area event counting detectors

    Science.gov (United States)

    Siegmund, O. H. W.; McPhate, J. B.; Tremsin, A. S.; Jelinsky, S. R.; Hemphill, R.; Frisch, H. J.; Elam, J.; Mane, A.; Lappd Collaboration

    2012-12-01

    Borosilicate glass micro-capillary array substrates with 20 μm and 40 μm pores have been deposited with resistive, and secondary electron emissive, layers by atomic layer deposition to produce functional microchannel plates. Device formats of 32.7 mm and 20 cm square have been fabricated and tested in analog and photon counting modes. The tests show amplification, imaging, background rate, pulse shape and lifetime characteristics that are comparable to standard glass microchannel plates. Large area microchannel plates of this type facilitate the construction of 20 cm format sealed tube sensors with strip-line readouts that are being developed for Cherenkov light detection. Complementary work has resulted in Na2KSb bialkali photocathodes with peak quantum efficiency of 25% being made on borosilicate glass. Additionally GaN (Mg) opaque photocathodes have been successfully made on borosilicate microchannel plates.

  1. Atomic layer deposited TiO{sub 2} for implantable brain-chip interfacing devices

    Energy Technology Data Exchange (ETDEWEB)

    Cianci, E., E-mail: elena.cianci@mdm.imm.cnr.it [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (MB) (Italy); Lattanzio, S. [Istituto di Fisiologia, Dipartimento di Anatomia Umana e Fisiologia, Universita di Padova, 35131 Padova (Italy); Dipartimento di Ingegneria dell' Informazione, Universita di Padova, 35131 Padova (Italy); Seguini, G. [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (Italy); Vassanelli, S. [Istituto di Fisiologia, Dipartimento di Anatomia Umana e Fisiologia, Universita di Padova, 35131 Padova (Italy); Fanciulli, M. [Laboratorio MDM, IMM-CNR, 20864 Agrate Brianza (Italy); Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano-Bicocca, 20126 Milano (Italy)

    2012-05-01

    In this paper we investigated atomic layer deposition (ALD) TiO{sub 2} thin films deposited on implantable neuro-chips based on electrolyte-oxide-semiconductor (EOS) junctions, implementing both efficient capacitive neuron-silicon coupling and biocompatibility for long-term implantable functionality. The ALD process was performed at 295 Degree-Sign C using titanium tetraisopropoxide and ozone as precursors on needle-shaped silicon substrates. Engineering of the capacitance of the EOS junctions introducing a thin Al{sub 2}O{sub 3} buffer layer between TiO{sub 2} and silicon resulted in a further increase of the specific capacitance. Biocompatibility for long-term implantable neuroprosthetic systems was checked upon in-vitro treatment.

  2. Reactor concepts for atomic layer deposition on agitated particles: A review

    Energy Technology Data Exchange (ETDEWEB)

    Longrie, Delphine, E-mail: delphine.longrie@asm.com; Deduytsche, Davy; Detavernier, Christophe, E-mail: christophe.detavernier@ugent.be [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Gent (Belgium)

    2014-01-15

    The number of possible applications for nanoparticles has strongly increased in the last decade. For many applications, nanoparticles with different surface and bulk properties are necessary. A popular surface modification technique is coating the particle surface with a nanometer thick layer. Atomic layer deposition (ALD) is known as a reliable method for depositing ultrathin and conformal coatings. In this article, agitation or fluidization of the particles is necessary for performing ALD on (nano)particles. The principles of gas fluidization of particles will be outlined, and a classification of the gas fluidization behavior of particles based on their size and density will be given. Following different reactor concepts that have been designed to conformally coat (nano)particles with ALD will be described, and a concise overview will be presented of the work that has been performed with each of them ending with a concept reactor for performing spatial ALD on fluidized particles.

  3. Influence of surface preparation on atomic layer deposition of Pt films

    Institute of Scientific and Technical Information of China (English)

    Ge Liang; Hu Cheng; Zhu Zhiwei; Zhang Wei; Wu Dongping; Zhang Shili

    2012-01-01

    We report Pt deposition on a Si substrate by means of atomic layer deposition (ALD) using (methylcyclopentadienyl) trimethylplatinum (CH3CsH4Pt(CH3)3) and O2.Silicon substrates with both HF-last and oxidelast surface treatments are employed to investigate the influence of surface preparation on Pt-ALD.A significantlylonger incubation time and less homogeneity are observed for Pt growth on the HF-last substrate compared to the oxide-last substrate.An interfacial oxide layer at the Pt-Si interface is found inevitable even with HF treatment of the Si substrate immediately prior to ALD processing.A plausible explanation to the observed difference of Pt-ALD is discussed.

  4. Dielectric Properties of Thermal and Plasma-Assisted Atomic Layer Deposited Al2O3 Thin Films

    NARCIS (Netherlands)

    Jinesh, K. B.; van Hemmen, J. L.; M. C. M. van de Sanden,; Roozeboom, F.; Klootwijk, J. H.; Besling, W. F. A.; Kessels, W. M. M.

    2011-01-01

    A comparative electrical characterization study of aluminum oxide (Al2O3) deposited by thermal and plasma-assisted atomic layer depositions (ALDs) in a single reactor is presented. Capacitance and leakage current measurements show that the Al2O3 deposited by the plasma-assisted ALD shows excellent d

  5. Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology.

    Science.gov (United States)

    Im, Hyungsoon; Wittenberg, Nathan J; Lindquist, Nathan C; Oh, Sang-Hyun

    2012-02-28

    While atomic layer deposition (ALD) has been used for many years as an industrial manufacturing method for microprocessors and displays, this versatile technique is finding increased use in the emerging fields of plasmonics and nanobiotechnology. In particular, ALD coatings can modify metallic surfaces to tune their optical and plasmonic properties, to protect them against unwanted oxidation and contamination, or to create biocompatible surfaces. Furthermore, ALD is unique among thin-film deposition techniques in its ability to meet the processing demands for engineering nanoplasmonic devices, offering conformal deposition of dense and ultra-thin films on high-aspect-ratio nanostructures at temperatures below 100 °C. In this review, we present key features of ALD and describe how it could benefit future applications in plasmonics, nanosciences, and biotechnology.

  6. Single-walled carbon nanotubes coated with ZnO by atomic layer deposition

    Science.gov (United States)

    Pal, Partha P.; Gilshteyn, Evgenia; Jiang, Hua; Timmermans, Marina; Kaskela, Antti; Tolochko, Oleg V.; Kurochkin, Alexey V.; Karppinen, Maarit; Nisula, Mikko; Kauppinen, Esko I.; Nasibulin, Albert G.

    2016-12-01

    The possibility of ZnO deposition on the surface of single-walled carbon nanotubes (SWCNTs) with the help of an atomic layer deposition (ALD) technique was successfully demonstrated. The utilization of pristine SWCNTs as a support resulted in a non-uniform deposition of ZnO in the form of nanoparticles. To achieve uniform ZnO coating, the SWCNTs first needed to be functionalized by treating the samples in a controlled ozone atmosphere. The uniformly ZnO coated SWCNTs were used to fabricate UV sensing devices. An UV irradiation of the ZnO coated samples turned them from hydrophobic to hydrophilic behaviour. Furthermore, thin films of the ZnO coated SWCNTs allowed us switch p-type field effect transistors made of pristine SWCNTs to have ambipolar characteristics.

  7. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    Science.gov (United States)

    Tripathi, T. S.; Yadav, C. S.; Karppinen, M.

    2016-04-01

    We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD) from Cu(thd)2, Cr(acac)3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  8. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    Science.gov (United States)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K. K.; Srivastava, Ritu; Singh, P. K.

    2015-12-01

    Hafnium oxide (HfO2) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (Dit) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  9. Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    T. S. Tripathi

    2016-04-01

    Full Text Available We report the magnetic and optical properties of CuCr2O4 thin films fabricated by atomic layer deposition (ALD from Cu(thd2, Cr(acac3, and ozone; we deposit 200 nm thick films and anneal them at 700 °C in oxygen atmosphere to crystallize the spinel phase. A ferrimagnetic transition at 140 K and a direct bandgap of 1.36 eV are determined for the films from magnetic and UV-vis spectrophotometric measurements. Electrical transport measurements confirm the p-type semiconducting behavior of the films. As the ALD technique allows the deposition of conformal pin-hole-free coatings on complex 3D surfaces, our CuCr2O4 films are interesting material candidates for various frontier applications.

  10. Dynamic Modeling for the Design and Cyclic Operation of an Atomic Layer Deposition (ALD Reactor

    Directory of Open Access Journals (Sweden)

    Curtisha D. Travis

    2013-08-01

    Full Text Available A laboratory-scale atomic layer deposition (ALD reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous definition of film growth-per-cycle (gpc. A key finding of this study is that unintended chemical vapor deposition conditions can mask regions of operation that would otherwise correspond to ideal saturating ALD operation. The use of the simulator for assisting in process design decisions is presented.

  11. Si surface passivation by Al2O3 thin films deposited using a low thermal budget atomic layer deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Seguini, G.; Cianci, E.; Wiemer, C.; Perego, M. [Laboratorio MDM, IMM-CNR, Via C. Olivetti 2, 20864 Agrate Brianza MB (Italy); Saynova, D.; Van Roosmalen, J.A.M. [ECN Solar Energy, Westerduinweg 3, NL-1755 ZG Petten (Netherlands)

    2013-04-05

    High-quality surface passivation of crystalline Si is achieved using 10 nm thick Al2O3 films fabricated by thermal atomic layer deposition at 100C. After a 5 min post deposition annealing at 200C, the effective carrier lifetime is 1 ms, indicating a functional level of surface passivation. The interplay between the chemical and the field effect passivation is investigated monitoring the density of interface traps and the amount of fixed charges with conductance-voltage and capacitance-voltage techniques. The physical mechanisms underlying the surface passivation are described. The combination of low processing temperatures, thin layers, and good passivation properties facilitate a technology for low-temperature solar cells.

  12. Vapor-Phase Atomic Layer Deposition of Co9S8 and Its Application for Supercapacitors.

    Science.gov (United States)

    Li, Hao; Gao, Yuanhong; Shao, Youdong; Su, Yantao; Wang, Xinwei

    2015-10-14

    Atomic layer deposition (ALD) of cobalt sulfide (Co9S8) is reported. The deposition process uses bis(N,N'-diisopropylacetamidinato)cobalt(II) and H2S as the reactants and is able to produce high-quality Co9S8 films with an ideal layer-by-layer ALD growth behavior. The Co9S8 films can also be conformally deposited into deep narrow trenches with aspect ratio of 10:1, which demonstrates the high promise of this ALD process for conformally coating Co9S8 on high-aspect-ratio 3D nanostructures. As Co9S8 is a highly promising electrochemical active material for energy devices, we further explore its electrochemical performance by depositing Co9S8 on porous nickel foams for supercapacitor electrodes. Benefited from the merits of ALD for making high-quality uniform thin films, the ALD-prepared electrodes exhibit remarkable electrochemical performance, with high specific capacitance, great rate performance, and long-term cyclibility, which highlights the broad and promising applications of this ALD process for energy-related electrochemical devices, as well as for fabricating complex 3D nanodevices in general.

  13. Area-selective atomic layer deposition of platinum using photosensitive polyimide

    Science.gov (United States)

    Vervuurt, René H. J.; Sharma, Akhil; Jiao, Yuqing; Kessels, Wilhelmus (Erwin M. M.; Bol, Ageeth A.

    2016-10-01

    Area-selective atomic layer deposition (AS-ALD) of platinum (Pt) was studied using photosensitive polyimide as a masking layer. The polyimide films were prepared by spin-coating and patterned using photolithography. AS-ALD of Pt using poly(methyl-methacrylate) (PMMA) masking layers was used as a reference. The results show that polyimide has excellent selectivity towards the Pt deposition, after 1000 ALD cycles less than a monolayer of Pt is deposited on the polyimide surface. The polyimide film could easily be removed after ALD using a hydrogen plasma, due to a combination of weakening of the polyimide resist during Pt ALD and the catalytic activity of Pt traces on the polyimide surface. Compared to PMMA for AS-ALD of Pt, polyimide has better temperature stability. This resulted in an improved uniformity of the Pt deposits and superior definition of the Pt patterns. In addition, due to the absence of reflow contamination using polyimide the nucleation phase during Pt ALD is drastically shortened. Pt patterns down to 3.5 μm were created with polyimide, a factor of ten smaller than what is possible using PMMA, at the typical Pt ALD processing temperature of 300 °C. Initial experiments indicate that after further optimization of the polyimide process Pt features down to 100 nm should be possible, which makes AS-ALD of Pt using photosensitive polyimide a promising candidate for patterning at the nanoscale.

  14. Selective electrodesorption based atomic layer deposition (SEBALD): a novel electrochemical route to deposit metal clusters on Ag(111).

    Science.gov (United States)

    Innocenti, M; Bellandi, S; Lastraioli, E; Loglio, F; Foresti, M L

    2011-09-20

    The possibility of synergic effects of some metals on the catalytic activity of silver led us to study the way to perform controlled deposition on silver. In fact, many metals of technological interest such as Co, Ni, and Fe cannot be deposited at underpotential on silver, and any attempt to control the deposition at overpotential, even at potentials slightly negative of the Nernst value, did not allow an effective control. However, due to the favorable energy gain involved in the formation of the corresponding sulfides, these metals can be deposited at underpotential on sulfur covered silver. The deposition is surface limited and the successive electrodesorption of sulfur leaves confined clusters of metals. The method can also be used to obtain metal clusters of different size. In fact, the alternate underpotential deposition of elements that form a compound is the basis of the electrochemical atomic layer epitaxy (ECALE), and the reiteration of the basic cycle allows us to obtain sulfide deposits whose thickness increases with the number of cycles. Therefore, the successive selective desorption of sulfur leaves increasing amounts of metals.

  15. Atomic layer deposited tungsten nitride thin films as a new lithium-ion battery anode.

    Science.gov (United States)

    Nandi, Dip K; Sen, Uttam K; Sinha, Soumyadeep; Dhara, Arpan; Mitra, Sagar; Sarkar, Shaibal K

    2015-07-14

    This article demonstrates the atomic layer deposition (ALD) of tungsten nitride using tungsten hexacarbonyl [W(CO)6] and ammonia [NH3] and its use as a lithium-ion battery anode. In situ quartz crystal microbalance (QCM), ellipsometry and X-ray reflectivity (XRR) measurements are carried out to confirm the self-limiting behaviour of the deposition. A saturated growth rate of ca. 0.35 Å per ALD cycle is found within a narrow temperature window of 180-195 °C. In situ Fourier transform infrared (FTIR) vibrational spectroscopy is used to determine the reaction pathways of the surface bound species after each ALD half cycle. The elemental presence and chemical composition is determined by XPS. The as-deposited material is found to be amorphous and crystallized to h-W2N upon annealing at an elevated temperature under an ammonia atmosphere. The as-deposited materials are found to be n-type, conducting with an average carrier concentration of ca. 10(20) at room temperature. Electrochemical studies of the as-deposited films open up the possibility of this material to be used as an anode material in Li-ion batteries. The incorporation of MWCNTs as a scaffold layer further enhances the electrochemical storage capacity of the ALD grown tungsten nitride (WNx). Ex situ XRD analysis confirms the conversion based reaction mechanism of the as-grown material with Li under operation.

  16. Atomic layer deposition (ALD) as a coating tool for reinforcing fibers.

    Science.gov (United States)

    Roy, A K; Baumann, W; König, I; Baumann, G; Schulze, S; Hietschold, M; Mäder, T; Nestler, D J; Wielage, B; Goedel, W A

    2010-03-01

    Layers of alumina were deposited on to bundled carbon fibers in an atomic layer deposition (ALD) process via sequential exposure to vapors of aluminium chloride and water, respectively. Scanning electron microscopic (SEM) images of the coated fibers revealed that each individual fiber within a bundle was coated evenly and separately, fibers are not bridged by the coating. SEM and transmission electron microscopic (TEM) images indicate that the coating was uniform and conformal with good adhesion to the fiber surface. Average deposition rate, measured from SEM images, was 0.06 nm per cycle at 500 °C. SEM also revealed that at deposition temperatures of 500 °C few of the fibers were damaged. At temperatures of 300 °C, no damaged fibers were observed, the average deposition rate decreased down to 0.033 nm per cycle. Oxidation resistance of the alumina-coated fibers was characterized by thermogravimetric analysis (TGA). The alumina coating improved oxidation resistance of the carbon fiber significantly. Oxidation onset temperature was 600 °C for fibers coated with a 45 nm thick alumina. Uncoated fibers, on the other hand, started to oxidize at temperatures as low as 250 °C.

  17. Atomic layer deposited cobalt oxide: An efficient catalyst for NaBH{sub 4} hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Nandi, Dip K.; Manna, Joydev; Dhara, Arpan; Sharma, Pratibha; Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Thin films of cobalt oxide are deposited by atomic layer deposition using dicobalt octacarbonyl [Co{sub 2}(CO){sub 8}] and ozone (O{sub 3}) at 50 °C on microscope glass substrates and polished Si(111) wafers. Self-saturated growth mechanism is verified by x-ray reflectivity measurements. As-deposited films consist of both the crystalline phases; CoO and Co{sub 3}O{sub 4} that gets converted to pure cubic-Co{sub 3}O{sub 4} phase upon annealing at 500 °C under ambient condition. Elemental composition and uniformity of the films is examined by x-ray photoelectron spectroscopy and secondary ion-mass spectroscopy. Both as-deposited and the annealed films have been successfully tested as a catalyst for hydrogen evolution from sodium borohydride hydrolysis. The activation energy of the hydrolysis reaction in the presence of the as-grown catalyst is found to be ca. 38 kJ mol{sup −1}. Further implementation of multiwalled carbon nanotube, as a scaffold layer, improves the hydrogen generation rate by providing higher surface area of the deposited catalyst.

  18. Atomic layer deposition of dielectrics on graphene using reversibly physisorbed ozone.

    Science.gov (United States)

    Jandhyala, Srikar; Mordi, Greg; Lee, Bongki; Lee, Geunsik; Floresca, Carlo; Cha, Pil-Ryung; Ahn, Jinho; Wallace, Robert M; Chabal, Yves J; Kim, Moon J; Colombo, Luigi; Cho, Kyeongjae; Kim, Jiyoung

    2012-03-27

    Integration of graphene field-effect transistors (GFETs) requires the ability to grow or deposit high-quality, ultrathin dielectric insulators on graphene to modulate the channel potential. Here, we study a novel and facile approach based on atomic layer deposition through ozone functionalization to deposit high-κ dielectrics (such as Al(2)O(3)) without breaking vacuum. The underlying mechanisms of functionalization have been studied theoretically using ab initio calculations and experimentally using in situ monitoring of transport properties. It is found that ozone molecules are physisorbed on the surface of graphene, which act as nucleation sites for dielectric deposition. The physisorbed ozone molecules eventually react with the metal precursor, trimethylaluminum to form Al(2)O(3). Additionally, we successfully demonstrate the performance of dual-gated GFETs with Al(2)O(3) of sub-5 nm physical thickness as a gate dielectric. Back-gated GFETs with mobilities of ~19,000 cm(2)/(V·s) are also achieved after Al(2)O(3) deposition. These results indicate that ozone functionalization is a promising pathway to achieve scaled gate dielectrics on graphene without leaving a residual nucleation layer.

  19. Plasma-assisted atomic layer deposition of conformal Pt films in high aspect ratio trenches

    Science.gov (United States)

    Erkens, I. J. M.; Verheijen, M. A.; Knoops, H. C. M.; Keuning, W.; Roozeboom, F.; Kessels, W. M. M.

    2017-02-01

    To date, conventional thermal atomic layer deposition (ALD) has been the method of choice to deposit high-quality Pt thin films grown typically from (MeCp)PtMe3 vapor and O2 gas at 300 °C. Plasma-assisted ALD of Pt using O2 plasma can offer several advantages over thermal ALD, such as faster nucleation and deposition at lower temperatures. In this work, it is demonstrated that plasma-assisted ALD at 300 °C also allows for the deposition of highly conformal Pt films in trenches with high aspect ratio ranging from 3 to 34. Scanning electron microscopy inspection revealed that the conformality of the deposited Pt films was 100% in trenches with aspect ratio (AR) up to 34. These results were corroborated by high-precision layer thickness measurements by transmission electron microscopy for trenches with an aspect ratio of 22. The role of the surface recombination of O-radicals and the contribution of thermal ALD reactions is discussed.

  20. UV protective zinc oxide coating for biaxially oriented polypropylene packaging film by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lahtinen, Kimmo, E-mail: kimmo.lahtinen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kääriäinen, Tommi, E-mail: tommi.kaariainen@colorado.edu [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Johansson, Petri, E-mail: petri.johansson@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Kotkamo, Sami, E-mail: sami.kotkamo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Maydannik, Philipp, E-mail: philipp.maydannik@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Seppänen, Tarja, E-mail: tarja.seppanen@lut.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland); Kuusipalo, Jurkka, E-mail: jurkka.kuusipalo@tut.fi [Paper Converting and Packaging Technology, Tampere University of Technology, P.O.Box 589, FI-33101 Tampere (Finland); Cameron, David C., E-mail: david.cameron@miktech.fi [ASTRaL, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli (Finland)

    2014-11-03

    Biaxially oriented polypropylene (BOPP) packaging film was coated with zinc oxide (ZnO) coatings by atomic layer deposition (ALD) in order to protect the film from UV degradation. The coatings were made at a process temperature of 100 °C using diethylzinc and water as zinc and oxygen precursors, respectively. The UV protective properties of the coatings were tested by using UV–VIS and infrared spectrometry, differential scanning calorimetry (DSC) and a mechanical strength tester, which characterised the tensile and elastic properties of the film. The results obtained with 36 and 67 nm ZnO coatings showed that the ZnO UV protective layer is able to provide a significant decrease in photodegradation of the BOPP film under UV exposure. While the uncoated BOPP film suffered a complete degradation after a 4-week UV exposure, the 67 nm ZnO coated BOPP film was able to preserve half of its original tensile strength and 1/3 of its elongation at break after a 6-week exposure period. The infrared analysis and DSC measurements further proved the UV protection of the ZnO coatings. The results show that a nanometre scale ZnO coating deposited by ALD is a promising option when a transparent UV protection layer is sought for polymer substrates. - Highlights: • Atomic layer deposited zinc oxide coatings were used as UV protection layers. • Biaxially oriented polypropylene (BOPP) film was well protected against UV light. • Formation of UV degradation products in BOPP was significantly reduced. • Mechanical properties of the UV exposed BOPP film were significantly improved.

  1. Chemical resistance of thin film materials based on metal oxides grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sammelselg, Väino, E-mail: vaino.sammelselg@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu (Estonia); Netšipailo, Ivan; Aidla, Aleks; Tarre, Aivar; Aarik, Lauri; Asari, Jelena; Ritslaid, Peeter; Aarik, Jaan [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-09-02

    Etching rate of technologically important metal oxide thin films in hot sulphuric acid was investigated. The films of Al-, Ti-, Cr-, and Ta-oxides studied were grown by atomic layer deposition (ALD) method on silicon substrates from different precursors in large ranges of growth temperatures (80–900 °C) in order to reveal process parameters that allow deposition of coatings with higher chemical resistance. The results obtained demonstrate that application of processes that yield films with lower concentration of residual impurities as well as crystallization of films in thermal ALD processes leads to significant decrease of etching rate. Crystalline films of materials studied showed etching rates down to values of < 5 pm/s. - Highlights: • Etching of atomic layer deposited thin metal oxide films in hot H{sub 2}SO{sub 4} was studied. • Smallest etching rates of < 5 pm/s for TiO{sub 2}, Al{sub 2}O{sub 3}, and Cr{sub 2}O{sub 3} were reached. • Highest etching rate of 2.8 nm/s for Al{sub 2}O{sub 3} was occurred. • Remarkable differences in etching of non- and crystalline films were observed.

  2. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mantovan, R., E-mail: roberto.mantovan@mdm.imm.cnr.it; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Chikoidze, E.; Dumont, Y. [GEMaC, Université de Versailles St. Quentin en Yvelines-CNRS, Versailles (France); Fanciulli, M. [Laboratorio MDM IMM-CNR, I-20864 Agrate Brianza (MB) (Italy); Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Milano (Italy)

    2014-05-07

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er{sub 2}O{sub 3} and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO{sub 3} and ErFe{sub 2}O{sub 4} phases develop following subsequent thermal annealing processes at 850 °C in air and N{sub 2}. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  3. Synthesis of multiferroic Er-Fe-O thin films by atomic layer and chemical vapor deposition

    Science.gov (United States)

    Mantovan, R.; Vangelista, S.; Wiemer, C.; Lamperti, A.; Tallarida, G.; Chikoidze, E.; Dumont, Y.; Fanciulli, M.

    2014-05-01

    R-Fe-O (R = rare earth) compounds have recently attracted high interest as potential new multiferroic materials. Here, we report a method based on the solid-state reaction between Er2O3 and Fe layers, respectively grown by atomic layer deposition and chemical vapor deposition, to synthesize Er-Fe-O thin films. The reaction is induced by thermal annealing and evolution of the formed phases is followed by in situ grazing incidence X-ray diffraction. Dominant ErFeO3 and ErFe2O4 phases develop following subsequent thermal annealing processes at 850 °C in air and N2. Structural, chemical, and morphological characterization of the layers are conducted through X-ray diffraction and reflectivity, time-of-flight secondary ion-mass spectrometry, and atomic force microscopy. Magnetic properties are evaluated by magnetic force microscopy, conversion electron Mössbauer spectroscopy, and vibrating sample magnetometer, being consistent with the presence of the phases identified by X-ray diffraction. Our results constitute a first step toward the use of cost-effective chemical methods for the synthesis of this class of multiferroic thin films.

  4. Atomic-layer electroless deposition: a scalable approach to surface-modified metal powders.

    Science.gov (United States)

    Cappillino, Patrick J; Sugar, Joshua D; El Gabaly, Farid; Cai, Trevor Y; Liu, Zhi; Stickney, John L; Robinson, David B

    2014-04-29

    Palladium has a number of important applications in energy and catalysis in which there is evidence that surface modification leads to enhanced properties. A strategy for preparing such materials is needed that combines the properties of (i) scalability (especially on high-surface-area substrates, e.g. powders); (ii) uniform deposition, even on substrates with complex, three-dimensional features; and (iii) low-temperature processing conditions that preserve nanopores and other nanostructures. Presented herein is a method that exhibits these properties and makes use of benign reagents without the use of specialized equipment. By exposing Pd powder to dilute hydrogen in nitrogen gas, sacrificial surface PdH is formed along with a controlled amount of dilute interstitial hydride. The lattice expansion that occurs in Pd under higher H2 partial pressures is avoided. Once the flow of reagent gas is terminated, addition of metal salts facilitates controlled, electroless deposition of an overlayer of subnanometer thickness. This process can be cycled to create thicker layers. The approach is carried out under ambient processing conditions, which is an advantage over some forms of atomic layer deposition. The hydride-mediated reaction is electroless in that it has no need for connection to an external source of electrical current and is thus amenable to deposition on high-surface-area substrates having rich, nanoscale topography as well as on insulator-supported catalyst particles. STEM-EDS measurements show that conformal Rh and Pt surface layers can be formed on Pd powder with this method. A growth model based on energy-resolved XPS depth profiling of Rh-modified Pd powder is in general agreement. After two cycles, deposits are consistent with 70-80% coverage and a surface layer with a thickness from 4 to 8 Å.

  5. Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition.

    Science.gov (United States)

    Wang, Wei-Cheng; Lin, Che-Wei; Chen, Hsin-Jui; Chang, Che-Wei; Huang, Jhih-Jie; Yang, Ming-Jui; Tjahjono, Budi; Huang, Jian-Jia; Hsu, Wen-Ching; Chen, Miin-Jang

    2013-10-09

    Efficient nanotextured black silicon solar cells passivated by an Al2O3 layer are demonstrated. The broadband antireflection of the nanotextured black silicon solar cells was provided by fabricating vertically aligned silicon nanowire (SiNW) arrays on the n(+) emitter. A highly conformal Al2O3 layer was deposited upon the SiNW arrays by the thermal atomic layer deposition (ALD) based on the multiple pulses scheme. The nanotextured black silicon wafer covered with the Al2O3 layer exhibited a low total reflectance of ∼1.5% in a broad spectrum from 400 to 800 nm. The Al2O3 passivation layer also contributes to the suppressed surface recombination, which was explored in terms of the chemical and field-effect passivation effects. An 8% increment of short-circuit current density and 10.3% enhancement of efficiency were achieved due to the ALD Al2O3 surface passivation and forming gas annealing. A high efficiency up to 18.2% was realized in the ALD Al2O3-passivated nanotextured black silicon solar cells.

  6. Self-limiting atomic layer deposition of conformal nanostructured silver films

    Science.gov (United States)

    Golrokhi, Zahra; Chalker, Sophia; Sutcliffe, Christopher J.; Potter, Richard J.

    2016-02-01

    The controlled deposition of ultra-thin conformal silver nanoparticle films is of interest for applications including anti-microbial surfaces, plasmonics, catalysts and sensors. While numerous techniques can produce silver nanoparticles, few are able to produce highly conformal coatings on high aspect ratio surfaces, together with sub-nanometre control and scalability. Here we develop a self-limiting atomic layer deposition (ALD) process for the deposition of conformal metallic silver nanoparticle films. The films have been deposited using direct liquid injection ALD with ((hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene)) and propan-1-ol. An ALD temperature window between 123 and 128 °C is identified and within this range self-limiting growth is confirmed with a mass deposition rate of ∼17.5 ng/cm2/cycle. The effects of temperature, precursor dose, co-reactant dose and cycle number on the deposition rate and on the properties of the films have been systematically investigated. Under self-limiting conditions, films are metallic silver with a nano-textured surface topography and nanoparticle size is dependent on the number of ALD cycles. The ALD reaction mechanisms have been elucidated using in-situ quartz crystal microbalance (QCM) measurements, showing chemisorption of the silver precursor, followed by heterogeneous catalytic dehydrogenation of the alcohol to form metallic silver and an aldehyde.

  7. Growth and characterization of titanium oxide by plasma enhanced atomic layer deposition

    KAUST Repository

    Zhao, Chao

    2013-09-01

    The growth of TiO2 films by plasma enhanced atomic layer deposition using Star-Ti as a precursor has been systematically studied. The conversion from amorphous to crystalline TiO2 was observed either during high temperature growth or annealing process of the films. The refractive index and bandgap of TiO2 films changed with the growth and annealing temperatures. The optimization of the annealing conditions for TiO2 films was also done by morphology and density studies. © 2013 Elsevier B.V. All rights reserved.

  8. Quantum size effects in TiO2 thin films grown by atomic layer deposition.

    Science.gov (United States)

    Tallarida, Massimo; Das, Chittaranjan; Schmeisser, Dieter

    2014-01-01

    We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle) and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier transport and separation, and increase the efficiency of energy conversion systems.

  9. Quantum size effects in TiO2 thin films grown by atomic layer deposition

    OpenAIRE

    Tallarida, Massimo; Das, Chittaranjan; Schmeisser, Dieter

    2014-01-01

    We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle) and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier...

  10. Atomic Layer Deposition of Pt Nanoparticles for Microengine with Promoted Catalytic Motion.

    Science.gov (United States)

    Jiang, Chi; Huang, Gaoshan; Ding, Shi-Jin; Dong, Hongliang; Men, Chuanling; Mei, Yongfeng

    2016-12-01

    Nanoparticle-decorated tubular microengines were synthesized by a combination of rolled-up nanotechnology and atomic layer deposition. The presence of Pt nanoparticles with different sizes and distributions on the walls of microengines fabricated from bilayer nanomembranes with different materials results in promoted catalytic reaction efficiency, which leads to an ultrafast speed (the highest speed 3200 μm/s). The motion speed of the decorated microengines fits the theoretical model very well, suggesting that the larger surface area is mainly responsible for the acceleration of the motion speed. The high-speed nanoparticle-decorated microengines hold considerable promise for a variety of applications.

  11. Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

    Directory of Open Access Journals (Sweden)

    Sanghoon Ji

    2015-08-01

    Full Text Available Solid oxide fuel cells with atomic layer-deposited thin film electrolytes supported on anodic aluminum oxide (AAO are electrochemically characterized with varying thickness of bottom electrode catalyst (BEC; BECs which are 0.5 and 4 times thicker than the size of AAO pores are tested. The thicker BEC ensures far more active mass transport on the BEC side and resultantly the thicker BEC cell generates ≈11 times higher peak power density than the thinner BEC cell at 500 °C.

  12. Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage.

    Science.gov (United States)

    Guan, Cao; Wang, John

    2016-10-01

    Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

  13. Photoluminescence enhancement in porous SiC passivated by atomic layer deposited Al2O3 films

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu;

    2016-01-01

    Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved.......Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved....

  14. Area-Selective Atomic Layer Deposition: Conformal Coating, Subnanometer Thickness Control, and Smart Positioning.

    Science.gov (United States)

    Fang, Ming; Ho, Johnny C

    2015-09-22

    Transistors have already been made three-dimensional (3D), with device channels (i.e., fins in trigate field-effect transistor (FinFET) technology) that are taller, thinner, and closer together in order to enhance device performance and lower active power consumption. As device scaling continues, these transistors will require more advanced, fabrication-enabling technologies for the conformal deposition of high-κ dielectric layers on their 3D channels with accurate position alignment and thickness control down to the subnanometer scale. Among many competing techniques, area-selective atomic layer deposition (AS-ALD) is a promising method that is well suited to the requirements without the use of complicated, complementary metal-oxide semiconductor (CMOS)-incompatible processes. However, further progress is limited by poor area selectivity for thicker films formed via a higher number of ALD cycles as well as the prolonged processing time. In this issue of ACS Nano, Professor Stacy Bent and her research group demonstrate a straightforward self-correcting ALD approach, combining selective deposition with a postprocess mild chemical etching, which enables selective deposition of dielectric films with thicknesses and processing times at least 10 times larger and 48 times shorter, respectively, than those obtained by conventional AS-ALD processes. These advances present an important technological breakthrough that may drive the AS-ALD technique a step closer toward industrial applications in electronics, catalysis, and photonics, etc. where more efficient device fabrication processes are needed.

  15. Growth of Ge nanofilms using electrochemical atomic layer deposition, with a "bait and switch" surface-limited reaction.

    Science.gov (United States)

    Liang, Xuehai; Zhang, Qinghui; Lay, Marcus D; Stickney, John L

    2011-06-01

    Ge nanofilms were deposited from aqueous solutions using the electrochemical analog of atomic layer deposition (ALD). Direct electrodeposition of Ge from an aqueous solution is self-limited to a few monolayers, depending on the pH. This report describes an E-ALD process for the growth of Ge films from aqueous solutions. The E-ALD cycle involved inducing a Ge atomic layer to deposit on a Te atomic layer formed on Ge, via underpotential deposition (UPD). The Te atomic layer was then reductively stripped from the deposit, leaving the Ge and completing the cycle. The Te atomic layer was bait for Ge deposition, after which the Te was switched out, reduced to a soluble telluride, leaving the Ge (one "bait and switch" cycle). Deposit thickness was a linear function of the number of cycles. Raman spectra indicated formation of an amorphous Ge film, consistent with the absence of a XRD pattern. Films were more stable and homogeneous when formed on Cu substrates, than on Au, due to a larger hydrogen overpotential, and the corresponding lower tendency to form bubbles.

  16. Low-temperature atomic layer deposition of copper(II) oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Iivonen, Tomi, E-mail: tomi.iivonen@helsinki.fi; Hämäläinen, Jani; Mattinen, Miika; Popov, Georgi; Leskelä, Markku [Laboratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki (Finland); Marchand, Benoît; Mizohata, Kenichiro [Division of Materials Physics, Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Kim, Jiyeon; Fischer, Roland A. [Chair of Inorganic Chemistry II, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)

    2016-01-15

    Copper(II) oxide thin films were grown by atomic layer deposition (ALD) using bis-(dimethylamino-2-propoxide)copper [Cu(dmap){sub 2}] and ozone in a temperature window of 80–140 °C. A thorough characterization of the films was performed using x-ray diffraction, x-ray reflectivity, UV‐Vis spectrophotometry, atomic force microscopy, field emission scanning electron microscopy, x-ray photoelectron spectroscopy, and time-of-flight elastic recoil detection analysis techniques. The process was found to produce polycrystalline copper(II) oxide films with a growth rate of 0.2–0.3 Å per cycle. Impurity content in the films was relatively small for a low temperature ALD process.

  17. Controlled Synthesis of Atomically Layered Hexagonal Boron Nitride via Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Juanjuan Liu

    2016-11-01

    Full Text Available Hexagonal boron nitrite (h-BN is an attractive material for many applications including electronics as a complement to graphene, anti-oxidation coatings, light emitters, etc. However, the synthesis of high-quality h-BN is still a great challenge. In this work, via controlled chemical vapor deposition, we demonstrate the synthesis of h-BN films with a controlled thickness down to atomic layers. The quality of as-grown h-BN is confirmed by complementary characterizations including high-resolution transition electron microscopy, atomic force microscopy, Raman spectroscopy and X-ray photo-electron spectroscopy. This work will pave the way for production of large-scale and high-quality h-BN and its applications as well.

  18. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Kinge, Sachin [Advanced Technology, Materials and Research, Research and Development, Hoge Wei 33- Toyota Technical Centre, B-1930 Zaventem (Belgium)

    2015-10-12

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO{sub 2} layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10{sup −2} A W{sup −1} and a shot-derived specific detectivity of 3 × 10{sup 9} Jones at 1530 nm wavelength.

  19. Sealing of hard CrN and DLC coatings with atomic layer deposition.

    Science.gov (United States)

    Härkönen, Emma; Kolev, Ivan; Díaz, Belén; Swiatowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe; Fenker, Martin; Toth, Lajos; Radnoczi, György; Vehkamäki, Marko; Ritala, Mikko

    2014-02-12

    Atomic layer deposition (ALD) is a thin film deposition technique that is based on alternating and saturating surface reactions of two or more gaseous precursors. The excellent conformality of ALD thin films can be exploited for sealing defects in coatings made by other techniques. Here the corrosion protection properties of hard CrN and diamond-like carbon (DLC) coatings on low alloy steel were improved by ALD sealing with 50 nm thick layers consisting of Al2O3 and Ta2O5 nanolaminates or mixtures. In cross sectional images the ALD layers were found to follow the surface morphology of the CrN coatings uniformly. Furthermore, ALD growth into the pinholes of the CrN coating was verified. In electrochemical measurements the ALD sealing was found to decrease the current density of the CrN coated steel by over 2 orders of magnitude. The neutral salt spray (NSS) durability was also improved: on the best samples the appearance of corrosion spots was delayed from 2 to 168 h. On DLC coatings the adhesion of the ALD sealing layers was weaker, but still clear improvement in NSS durability was achieved indicating sealing of the pinholes.

  20. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition.

    Science.gov (United States)

    Kozen, Alexander C; Lin, Chuan-Fu; Pearse, Alexander J; Schroeder, Marshall A; Han, Xiaogang; Hu, Liangbing; Lee, Sang-Bok; Rubloff, Gary W; Noked, Malachi

    2015-06-23

    Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g(-1). However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles.

  1. Growth, intermixing, and surface phase formation for zinc tin oxide nanolaminates produced by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se [Department of Chemical Engineering, Stanford University, Stanford, California 94305 and Department of Engineering Sciences, Division of Solid State Electronics, Uppsala University, 75121 Uppsala (Sweden); Grehl, Thomas; Brongersma, Hidde H. [ION-TOF GmbH, Heisenbergstraße 15, 48149 Münster (Germany); Tanskanen, Jukka T.; Mullings, Marja N.; Mackus, Adriaan J. M.; MacIsaac, Callisto; Bent, Stacey Francine, E-mail: sbent@stanford.edu [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States); Yee, Ye Sheng [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Clemens, Bruce M. [Department of Material Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-03-15

    A broad and expanding range of materials can be produced by atomic layer deposition at relatively low temperatures, including both oxides and metals. For many applications of interest, however, it is desirable to grow more tailored and complex materials such as semiconductors with a certain doping, mixed oxides, and metallic alloys. How well such mixed materials can be accomplished with atomic layer deposition requires knowledge of the conditions under which the resulting films will be mixed, solid solutions, or laminated. The growth and lamination of zinc oxide and tin oxide is studied here by means of the extremely surface sensitive technique of low energy ion scattering, combined with bulk composition and thickness determination, and x-ray diffraction. At the low temperatures used for deposition (150 °C), there is little evidence for atomic scale mixing even with the smallest possible bilayer period, and instead a morphology with small ZnO inclusions in a SnO{sub x} matrix is deduced. Postannealing of such laminates above 400 °C however produces a stable surface phase with a 30% increased density. From the surface stoichiometry, this is likely the inverted spinel of zinc stannate, Zn{sub 2}SnO{sub 4}. Annealing to 800 °C results in films containing crystalline Zn{sub 2}SnO{sub 4}, or multilayered films of crystalline ZnO, Zn{sub 2}SnO{sub 4}, and SnO{sub 2} phases, depending on the bilayer period.

  2. Atomic layer chemical vapor deposition of ZrO2-based dielectric films: Nanostructure and nanochemistry

    Science.gov (United States)

    Dey, S. K.; Wang, C.-G.; Tang, D.; Kim, M. J.; Carpenter, R. W.; Werkhoven, C.; Shero, E.

    2003-04-01

    A 4 nm layer of ZrOx (targeted x˜2) was deposited on an interfacial layer (IL) of native oxide (SiO, t˜1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 300 °C. Some as-deposited layers were subjected to a postdeposition, rapid thermal annealing at 700 °C for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous ZrO2-rich Zr silicate containing about 15% by volume of embedded ZrO2 nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-ZrO2 (t-ZrO2) and monoclinic-ZrO2 (m-ZrO2) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper SiO2-rich Zr silicate and the lower SiOx. The latter was substoichiometric and the average oxidation state increased from Si0.86+ in SiO0.43 (as-deposited) to Si1.32+ in SiO0.66 (annealed). This high oxygen deficiency in SiOx was indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor (MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of ZrO2 and SiO2, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multilayer nanostructure and nanochemistry that

  3. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael; Majkrzak, Charles [National Institute of Standards and Technology (NIST) Center for Neutron Research, Gaithersburg, MD 20899-8313 (United States); Vanderah, David J. [Institute for Bioscience and Biotechnology Research, NIST, Rockville, Maryland 20850 (United States); Chen, Lei, E-mail: lei.chen@nist.gov [NIST Center for Nanoscale Science and Technology, Gaithersburg, Maryland 20899-8313 (United States); Gawrisch, Klaus [Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892 (United States)

    2015-01-15

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  4. Conformal nanocoating of zirconia nanoparticles by atomic layer deposition in a fluidized bed reactor.

    Science.gov (United States)

    Hakim, Luis F; George, Steven M; Weimer, Alan W

    2005-07-01

    Primary zirconia nanoparticles were conformally coated with alumina ultrathin films using atomic layer deposition (ALD) in a fluidized bed reactor. Alternating doses of trimethylaluminium and water vapour were performed to deposit Al(2)O(3) nanolayers on the surface of 26 nm zirconia nanoparticles. Transmission Fourier transform infrared spectroscopy was performed ex situ. Bulk Al(2)O(3) vibrational modes were observed for coated particles after 50 and 70 cycles. Coated nanoparticles were also examined with transmission electron microscopy, high-resolution field emission scanning electron microscopy and energy dispersive spectroscopy. Analysis revealed highly conformal and uniform alumina nanofilms throughout the surface of zirconia nanoparticles. The particle size distribution and surface area of the nanoparticles are not affected by the coating process. Primary nanoparticles are coated individually despite their high aggregation tendency during fluidization. The dynamic aggregation behaviour of zirconia nanoparticles in the fluidized bed plays a key role in the individual coating of nanoparticles.

  5. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Haichuan; Zhang, Zhiqiang; Wang, Keke; Xie, Haifen, E-mail: hfxie@ecust.edu.cn [Department of Physics, School of Science, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Zhao, Xiaojing; Liu, Feng [Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234 (China)

    2014-07-21

    Zinc oxide (ZnO) thin films with various thicknesses were fabricated by Atomic Layer Deposition on Chemical Vapor Deposition grown graphene films and their response to formaldehyde has been investigated. It was found that 0.5 nm ZnO films modified graphene sensors showed high response to formaldehyde with the resistance change up to 52% at the concentration of 9 parts-per-million (ppm) at room temperature. Meanwhile, the detection limit could reach 180 parts-per-billion (ppb) and fast response of 36 s was also obtained. The high sensitivity could be attributed to the combining effect from the highly reactive, top mounted ZnO thin films, and high conductive graphene base network. The dependence of ZnO films surface morphology and its sensitivity on the ZnO films thickness was also investigated.

  6. ZnO grown by atomic layer deposition: A material for transparent electronics and organic heterojunctions

    Science.gov (United States)

    Guziewicz, E.; Godlewski, M.; Krajewski, T.; Wachnicki, Ł.; Szczepanik, A.; Kopalko, K.; Wójcik-Głodowska, A.; Przeździecka, E.; Paszkowicz, W.; Łusakowska, E.; Kruszewski, P.; Huby, N.; Tallarida, G.; Ferrari, S.

    2009-06-01

    We report on zinc oxide thin films grown by atomic layer deposition at a low temperature, which is compatible with a low thermal budget required for some novel electronic devices. By selecting appropriate precursors and process parameters, we were able to obtain films with controllable electrical parameters, from heavily n-type to the resistive ones. Optimization of the growth process together with the low temperature deposition led to ZnO thin films, in which no defect-related photoluminescence bands are observed. Such films show anticorrelation between mobility and free-electron concentration, which indicates that low n electron concentration is a result of lower number of defects rather than the self-compensation effect.

  7. Coating and functionalization of high density ion track structures by atomic layer deposition

    Science.gov (United States)

    Mättö, Laura; Szilágyi, Imre M.; Laitinen, Mikko; Ritala, Mikko; Leskelä, Markku; Sajavaara, Timo

    2016-10-01

    In this study flexible TiO2 coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO2 films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti(iOPr)4 and water as precursors at 250 °C. The TiO2 films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils.

  8. Atomic layer deposition of MgO films on yttria-stabilized zirconia microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Part, Marko, E-mail: markopa@ut.ee [University of Tartu, Institute of Physics, Department of Materials Science, Riia 142, EE-51014 Tartu (Estonia); Tamm, Aile; Kozlova, Jekaterina; Mändar, Hugo; Tätte, Tanel [University of Tartu, Institute of Physics, Department of Materials Science, Riia 142, EE-51014 Tartu (Estonia); Kukli, Kaupo [University of Tartu, Institute of Physics, Department of Materials Science, Riia 142, EE-51014 Tartu (Estonia); University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014, Univ. Helsinki (Finland)

    2014-02-28

    Deposition of MgO thin film on nanocrystalline yttria-stabilized zirconia microtubes was investigated. The microtubes were prepared by self-formation from threads drawn directly from zirconium butoxide [Zr(OBu){sub 4}] precursor and heat treated at 800 °C. The tubes possessed 100% tetragonal phase, their typical outer diameter was 50 μm, inner diameter 30 μm and length 1 cm. MgO films were deposited from β-diketonate-type precursor 2,2,6,6-tetramethyl-heptanedionato-3,5-magnesium(II) at 220 °C by atomic layer deposition. Thickness of MgO film on microtubes was 15.8 nm and growth rate 0.105 Å/cycle. - Highlights: • MgO films were deposited on the surface of yttria-stabilized zirconia microtubes. • The studies are carried out on the basis of surface modification of microtubes. • Films were deposited from β-diketonate-type precursor Mg(thd){sub 2}. • The growth temperature of MgO film was 220 °C.

  9. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhang; He, Wenjie; Duan, Chenlong [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Chen, Rong, E-mail: rongchen@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Shan, Bin [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2016-01-15

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation between the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.

  10. ATOMIC LAYER DEPOSITION OF TITANIUM OXIDE THIN FILMS ONNANOPOROUS ALUMINA TEMPLATES FOR MEDICAL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.

    2009-05-05

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of the nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Both the 20 nm and 100 nm titanium oxide-coated nanoporous alumina membranes did not exhibit statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. In addition, 20 nm pore size titanium oxide-coated nanoporous alumina membranes exposed to ultraviolet light demonstrated activity against Escherichia coli and Staphylococcus aureus bacteria. Nanostructured materials prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.

  11. Chemical Stability of Titania and Alumina Thin Films Formed by Atomic Layer Deposition.

    Science.gov (United States)

    Correa, Gabriela C; Bao, Bo; Strandwitz, Nicholas C

    2015-07-15

    Thin films formed by atomic layer deposition (ALD) are being examined for a variety of chemical protection and diffusion barrier applications, yet their stability in various fluid environments is not well characterized. The chemical stability of titania and alumina thin films in air, 18 MΩ water, 1 M KCl, 1 M HNO3, 1 M H2SO4, 1 M HCl, 1 M KOH, and mercury was studied. Films were deposited at 150 °C using trimethylaluminum-H2O and tetrakis(dimethylamido)titanium-H2O chemistries for alumina and titania, respectively. A subset of samples were heated to 450 and 900 °C in inert atmosphere. Films were examined using spectroscopic ellipsometry, atomic force microscopy, optical microscopy, scanning electron microscopy, and X-ray diffraction. Notably, alumina samples were found to be unstable in pure water, acid, and basic environments in the as-synthesized state and after 450 °C thermal treatment. In pure water, a dissolution-precipitation mechanism is hypothesized to cause surface roughening. The stability of alumina films was greatly enhanced after annealing at 900 °C in acidic and basic solutions. Titania films were found to be stable in acid after annealing at or above 450 °C. All films showed a composition-independent increase in measured thickness when immersed in mercury. These results provide stability-processing relationships that are important for controlled etching and protective barrier layers.

  12. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition.

    Science.gov (United States)

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-12-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications.

  13. Effects of Al Doping on the Properties of ZnO Thin Films Deposited by Atomic Layer Deposition

    Science.gov (United States)

    Zhai, Chen-Hui; Zhang, Rong-Jun; Chen, Xin; Zheng, Yu-Xiang; Wang, Song-You; Liu, Juan; Dai, Ning; Chen, Liang-Yao

    2016-09-01

    The tuning of structural, optical, and electrical properties of Al-doped ZnO films deposited by atomic layer deposition technique is reported in this work. With the increasing Al doping level, the evolution from (002) to (100) diffraction peaks indicates the change in growth mode of ZnO films. Spectroscopic ellipsometry has been applied to study the thickness, optical constants, and band gap of AZO films. Due to the increasing carrier concentration after Al doping, a blue shift of band gap and absorption edge can be observed, which can be interpreted by Burstein-Moss effect. The carrier concentration and resistivity are found to vary significantly among different doping concentration, and the optimum value is also discussed. The modulations and improvements of properties are important for Al-doped ZnO films to apply as transparent conductor in various applications.

  14. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nuri Yazdani

    2014-03-01

    Full Text Available Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD. Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  15. Characterization of 1064nm laser-induced damage on antireflection coatings grown by atomic layer deposition

    Science.gov (United States)

    Liu, Zhichao; Wei, Yaowei; Chen, Songlin; Luo, Jin; Ma, Ping

    2011-12-01

    Damage tests were carried out to measure the laser resistance of Al2O3/TiO2 and Al2O3/HfO2 antireflection coatings at 1064nm grown by atomic layer deposition (ALD). The S-on-1 and R-on-1 damage results are given. It's interesting to find that ALD coatings damage performance seems closed to those grown by conventional e-beam evaporation process. For Al2O3/TiO2 coatings, the grown temperature will impact the damage resistance of thin films. Crystallization of TiO2 layer at higher temperature could play an importance role as absorption defects that reduced the LIDT of coatings. In addition, it is found that using inorganic compound instead of organic compound as precursors for ALD process can effective prevent residual carbon in films and will increase the LIDT of coatings.

  16. Modeling and optimization of atomic layer deposition processes on vertically aligned carbon nanotubes.

    Science.gov (United States)

    Yazdani, Nuri; Chawla, Vipin; Edwards, Eve; Wood, Vanessa; Park, Hyung Gyu; Utke, Ivo

    2014-01-01

    Many energy conversion and storage devices exploit structured ceramics with large interfacial surface areas. Vertically aligned carbon nanotube (VACNT) arrays have emerged as possible scaffolds to support large surface area ceramic layers. However, obtaining conformal and uniform coatings of ceramics on structures with high aspect ratio morphologies is non-trivial, even with atomic layer deposition (ALD). Here we implement a diffusion model to investigate the effect of the ALD parameters on coating kinetics and use it to develop a guideline for achieving conformal and uniform thickness coatings throughout the depth of ultra-high aspect ratio structures. We validate the model predictions with experimental data from ALD coatings of VACNT arrays. However, the approach can be applied to predict film conformality as a function of depth for any porous topology, including nanopores and nanowire arrays.

  17. Atmospheric spatial atomic layer deposition of Zn(O,S) buffer layer for Cu(In,Ga)Se2 solar cells

    NARCIS (Netherlands)

    Frijters, C.H.; Poodt, P.; Illeberi, A.

    2016-01-01

    Zinc oxysulfide has been grown by spatial atomic layer deposition (S-ALD) and successfully applied as buffer layer in Cu(In, Ga)Se2 (CIGS) solar cells. S-ALD combines high deposition rates (up to nm/s) with the advantages of conventional ALD, i.e. excellent control of film composition and superior u

  18. Atomic Layer Deposition of Titanium Oxide on Single-Layer Graphene: An Atomic-Scale Study toward Understanding Nucleation and Growth

    Science.gov (United States)

    2017-01-01

    Controlled synthesis of a hybrid nanomaterial based on titanium oxide and single-layer graphene (SLG) using atomic layer deposition (ALD) is reported here. The morphology and crystallinity of the oxide layer on SLG can be tuned mainly with the deposition temperature, achieving either a uniform amorphous layer at 60 °C or ∼2 nm individual nanocrystals on the SLG at 200 °C after only 20 ALD cycles. A continuous and uniform amorphous layer formed on the SLG after 180 cycles at 60 °C can be converted to a polycrystalline layer containing domains of anatase TiO2 after a postdeposition annealing at 400 °C under vacuum. Using aberration-corrected transmission electron microscopy (AC-TEM), characterization of the structure and chemistry was performed on an atomic scale and provided insight into understanding the nucleation and growth. AC-TEM imaging and electron energy loss spectroscopy revealed that rocksalt TiO nanocrystals were occasionally formed at the early stage of nucleation after only 20 ALD cycles. Understanding and controlling nucleation and growth of the hybrid nanomaterial are crucial to achieving novel properties and enhanced performance for a wide range of applications that exploit the synergetic functionalities of the ensemble.

  19. High aspect ratio iridescent three-dimensional metal–insulator–metal capacitors using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Micheal, E-mail: micheal.burke@tyndall.ie; Blake, Alan; Djara, Vladimir; O' Connell, Dan; Povey, Ian M.; Cherkaoui, Karim; Monaghan, Scott; Scully, Jim; Murphy, Richard; Hurley, Paul K.; Pemble, Martyn E.; Quinn, Aidan J., E-mail: aidan.quinn@tyndall.ie [Tyndall National Institute, University College Cork, Cork (Ireland)

    2015-01-01

    The authors report on the structural and electrical properties of TiN/Al{sub 2}O{sub 3}/TiN metal–insulator–metal (MIM) capacitor structures in submicron three-dimensional (3D) trench geometries with an aspect ratio of ∼30. A simplified process route was employed where the three layers for the MIM stack were deposited using atomic layer deposition (ALD) in a single run at a process temperature of 250 °C. The TiN top and bottom electrodes were deposited via plasma-enhanced ALD using a tetrakis(dimethylamino)titanium precursor. 3D trench devices yielded capacitance densities of 36 fF/μm{sup 2} and quality factors >65 at low frequency (200 Hz), with low leakage current densities (<3 nA/cm{sup 2} at 1 V). These devices also show strong optical iridescence which, when combined with the covert embedded capacitance, show potential for system in package (SiP) anticounterfeiting applications.

  20. Low temperature platinum atomic layer deposition on nylon-6 for highly conductive and catalytic fiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, J. Zachary; Shafiefarhood, Arya; Li, Fanxing; Khan, Saad A.; Parsons, Gregory N., E-mail: gnp@ncsu.edu [Department of Chemical and Biomolecular Engineering, North Carolina State University, Engineering Building I, 911 Partners Way, Raleigh, North Carolina 27695-7905 (United States)

    2016-01-15

    Low temperature platinum atomic layer deposition (Pt-ALD) via (methylcyclopentadienyl)trimethyl platinum and ozone (O{sub 3}) is used to produce highly conductive nonwoven nylon-6 (polyamide-6, PA-6) fiber mats, having effective conductivities as high as ∼5500–6000 S/cm with only a 6% fractional increase in mass. The authors show that an alumina ALD nucleation layer deposited at high temperature is required to promote Pt film nucleation and growth on the polymeric substrate. Fractional mass gain scales linearly with Pt-ALD cycle number while effective conductivity exhibits a nonlinear trend with cycle number, corresponding to film coalescence. Field-emission scanning electron microscopy reveals island growth mode of the Pt film at low cycle number with a coalesced film observed after 200 cycles. The metallic coating also exhibits exceptional resistance to mechanical flexing, maintaining up to 93% of unstressed conductivity after bending around cylinders with radii as small as 0.3 cm. Catalytic activity of the as-deposited Pt film is demonstrated via carbon monoxide oxidation to carbon dioxide. This novel low temperature processing allows for the inclusion of highly conductive catalytic material on a number of temperature-sensitive substrates with minimal mass gain for use in such areas as smart textiles and flexible electronics.

  1. Atomic Layer Deposition of Silicon Nitride from Bis(tert-butylamino)silane and N2 Plasma.

    Science.gov (United States)

    Knoops, Harm C M; Braeken, Eline M J; de Peuter, Koen; Potts, Stephen E; Haukka, Suvi; Pore, Viljami; Kessels, Wilhelmus M M

    2015-09-01

    Atomic layer deposition (ALD) of silicon nitride (SiNx) is deemed essential for a variety of applications in nanoelectronics, such as gate spacer layers in transistors. In this work an ALD process using bis(tert-butylamino)silane (BTBAS) and N2 plasma was developed and studied. The process exhibited a wide temperature window starting from room temperature up to 500 °C. The material properties and wet-etch rates were investigated as a function of plasma exposure time, plasma pressure, and substrate table temperature. Table temperatures of 300-500 °C yielded a high material quality and a composition close to Si3N4 was obtained at 500 °C (N/Si=1.4±0.1, mass density=2.9±0.1 g/cm3, refractive index=1.96±0.03). Low wet-etch rates of ∼1 nm/min were obtained for films deposited at table temperatures of 400 °C and higher, similar to that achieved in the literature using low-pressure chemical vapor deposition of SiNx at >700 °C. For novel applications requiring significantly lower temperatures, the temperature window from room temperature to 200 °C can be a solution, where relatively high material quality was obtained when operating at low plasma pressures or long plasma exposure times.

  2. Growth of crystalline Al2O3 via thermal atomic layer deposition: Nanomaterial phase stabilization

    Directory of Open Access Journals (Sweden)

    S. M. Prokes

    2014-03-01

    Full Text Available We report the growth of crystalline Al2O3 thin films deposited by thermal Atomic Layer Deposition (ALD at 200 °C, which up to now has always resulted in the amorphous phase. The 5 nm thick films were deposited on Ga2O3, ZnO, and Si nanowire substrates 100 nm or less in diameter. The crystalline nature of the Al2O3 thin film coating was confirmed using Transmission Electron Microscopy (TEM, including high-resolution TEM lattice imaging, selected area diffraction, and energy filtered TEM. Al2O3 coatings on nanowires with diameters of 10 nm or less formed a fully crystalline phase, while those with diameters in the 20–25 nm range resulted in a partially crystalline coating, and those with diameters in excess of 50 nm were fully amorphous. We suggest that the amorphous Al2O3 phase becomes metastable with respect to a crystalline alumina polymorph, due to the nanometer size scale of the film/substrate combination. Since ALD Al2O3 films are widely used as protective barriers, dielectric layers, as well as potential coatings in energy materials, these findings may have important implications.

  3. Growth of Few-Layer Graphene on Sapphire Substrates by Directly Depositing Carbon Atoms

    Institute of Scientific and Technical Information of China (English)

    KANG Chao-Yang; TANG Jun; LIU Zhong-Liang; LI Li-Min; YAN Wen-Sheng; WEI Shi-Qiang; XU Peng-Shou

    2011-01-01

    Few-layer graphene (FLG) is successfully grown on sapphire substrates by directly depositing carbon atoms at the substrate temperature of 1300℃ in a molecular beam epitaxy chamber.The reflection high energy diffraction,Raman spectroscopy and near-edge x-ray absorption fine structure are used to characterize the sample,which confirm the formation of graphene layers.The mean domain size of FLG is around 29.2 nm and the layer number is about 2-3.The results demonstrate that the grown FLG displays a turbostratic stacking structure similar to that of the FLG produced by annealing C-terminated a-SiC surface.Graphene,a monolayer of sp2-bonded carbon atoms,is a quasi two-dimensional (2D) material.It has attracted great interest because of its distinctive band structure and physical properties.[1] Graphene can now be obtained by several different approaches including micromechanical[1] and chemical[2] exfoliation of graphite,epitaxial growth on hexagonal SiC substrates by Si sublimation in vacuum,[3] and CVD growth on metal substrates.[4] However,these preparation methods need special substrates,otherwise,in order to design microelectronic devices,the prepared graphene should be transferred to other appropriate substrates.Thus the growth of graphene on the suitable substrates is motivated.%Few-layer graphene (FLG) is successfully grown on sapphire substrates by directly depositing carbon atoms at the substrate temperature of 1300℃ in a molecular beam epitaxy chamber. The reflection high energy diffraction, Raman spectroscopy and near-edge x-ray absorption fine structure are used to characterize the sample, which confirm the formation of graphene layers. The mean domain size of FLG is around 29.2nm and the layer number is about 2-3. The results demonstrate that the grown FLG displays a turbostratic stacking structure similar to that of the FLG produced by annealing C-terminated α-SiC surface.

  4. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends

    Science.gov (United States)

    Miikkulainen, Ville; Leskelä, Markku; Ritala, Mikko; Puurunen, Riikka L.

    2013-01-01

    Atomic layer deposition (ALD) is gaining attention as a thin film deposition method, uniquely suitable for depositing uniform and conformal films on complex three-dimensional topographies. The deposition of a film of a given material by ALD relies on the successive, separated, and self-terminating gas-solid reactions of typically two gaseous reactants. Hundreds of ALD chemistries have been found for depositing a variety of materials during the past decades, mostly for inorganic materials but lately also for organic and inorganic-organic hybrid compounds. One factor that often dictates the properties of ALD films in actual applications is the crystallinity of the grown film: Is the material amorphous or, if it is crystalline, which phase(s) is (are) present. In this thematic review, we first describe the basics of ALD, summarize the two-reactant ALD processes to grow inorganic materials developed to-date, updating the information of an earlier review on ALD [R. L. Puurunen, J. Appl. Phys. 97, 121301 (2005)], and give an overview of the status of processing ternary compounds by ALD. We then proceed to analyze the published experimental data for information on the crystallinity and phase of inorganic materials deposited by ALD from different reactants at different temperatures. The data are collected for films in their as-deposited state and tabulated for easy reference. Case studies are presented to illustrate the effect of different process parameters on crystallinity for representative materials: aluminium oxide, zirconium oxide, zinc oxide, titanium nitride, zinc zulfide, and ruthenium. Finally, we discuss the general trends in the development of film crystallinity as function of ALD process parameters. The authors hope that this review will help newcomers to ALD to familiarize themselves with the complex world of crystalline ALD films and, at the same time, serve for the expert as a handbook-type reference source on ALD processes and film crystallinity.

  5. Inhibition of Crystal Growth during Plasma Enhanced Atomic Layer Deposition by Applying BIAS

    Directory of Open Access Journals (Sweden)

    Stephan Ratzsch

    2015-11-01

    Full Text Available In this study, the influence of direct current (DC biasing on the growth of titanium dioxide (TiO2 layers and their nucleation behavior has been investigated. Titania films were prepared by plasma enhanced atomic layer deposition (PEALD using Ti(OiPr4 as metal organic precursor. Oxygen plasma, provided by remote inductively coupled plasma, was used as an oxygen source. The TiO2 films were deposited with and without DC biasing. A strong dependence of the applied voltage on the formation of crystallites in the TiO2 layer is shown. These crystallites form spherical hillocks on the surface which causes high surface roughness. By applying a higher voltage than the plasma potential no hillock appears on the surface. Based on these results, it seems likely, that ions are responsible for the nucleation and hillock growth. Hence, the hillock formation can be controlled by controlling the ion energy and ion flux. The growth per cycle remains unchanged, whereas the refractive index slightly decreases in the absence of energetic oxygen ions.

  6. Electrical transport and Al doping efficiency in nanoscale ZnO films prepared by atomic layer deposition

    NARCIS (Netherlands)

    Wu, Y.; Hermkens, P.M.; Loo, B.W.H. van de; Knoops, H.C.M.; Potts, S.E.; Verheijen, M.A.; Roozeboom, F.; Kessels, W.M.M.

    2013-01-01

    In this work, the structural, electrical, and optical properties as well as chemical bonding state of Al-doped ZnO films deposited by atomic layer deposition have been investigated to obtain insight into the doping and electrical transport mechanisms in the films. The range in doping levels from 0%

  7. Tribological Properties of Nanometric Atomic Layer Depositions Applied on AISI 420 Stainless Steel

    Directory of Open Access Journals (Sweden)

    E. Marin

    2013-09-01

    Full Text Available Atomic Layer Deposition ( ALD is a modern technique that Allows to deposit nanometric, conformal coatings on almost any kind of substrates, from plastics to ceramic, metals or even composites. ALD coatings are not dependent on the morphology of the substrate and are only regulated by the composition of the precursors, the chamber temperature and the number of cycles. In this work, mono- and bi -layer nanometric, protective low-temperature ALD Coatings, based on Al2O3 and TiO2 were applied on AISI 420 Stainless Steel in orderto enhance its relatively low corrosion resistance in chloride containing environments. Tribological testing were also performed on the ALD coated AISI 420 in order to evaluate the wear and scratch resistance of these nanometric layers and thus evaluate their durability. Scratch tests were performed using a standard Rockwell C indenter, under a variable load condition, in order to evaluate the critical loading condition for each coating. Wear testing were performed using a stainless steel counterpart, in ball-on-discconfiguration, in order to measure the friction coefficient and wear to confront the resistance. All scratch tests scars and wear tracks were then observed by means of Scanning Electron Microscopy (SEM in order to understand the wear mechanisms that occurred on the sample surfaces. Corrosion testing, performed under immersion in 0.2 M NaCl solutions, clearly showed that the ALD coatings have a strong effect in protecting the Stainless Steel Substrate against corrosion, reducing the corrosion current density by two orders of magnitude.Tribological The preliminary results showed that ALD depositions obtained at low Temperatures have a brittle behavior caused by the amorphous nature of their structure, and thus undergo delamination phenomena during Scratch Testing at relatively low applied loads. During ball-on-disc testing, the coatings were removed from the substrate, in particular for monolayer ALD configurations

  8. Atomic layer deposition of 1D and 2D nickel nanostructures on graphite

    Science.gov (United States)

    Ryu, Seung Wook; Yoon, Jaehong; Moon, Hyoung-Seok; Shong, Bonggeun; Kim, Hyungjun; Lee, Han-Bo-Ram

    2017-03-01

    One-dimensional (1D) nanowires (NWs) and two-dimensional (2D) thin films of Ni were deposited on highly ordered pyrolytic graphite (HOPG) by atomic layer deposition (ALD), using NH3 as a counter reactant. Thermal ALD using NH3 gas forms 1D NWs along step edges, while NH3 plasma enables the deposition of a continuous 2D film over the whole surface. The lateral and vertical growth rates of the Ni NWs are numerically modeled as a function of the number of ALD cycles. Pretreatment with NH3 gas promotes selectivity in deposition by the reduction of oxygenated functionalities on the HOPG surface. On the other hand, NH3 plasma pretreatment generates surface nitrogen species, and results in a morphological change in the basal plane of graphite, leading to active nucleation across the surface during ALD. The effects of surface nitrogen species on the nucleation of ALD Ni were theoretically studied by density functional theory calculations. Our results suggest that the properties of Ni NWs, such as their density and width, and the formation of Ni thin films on carbon surfaces can be controlled by appropriate use of NH3.

  9. atomic layer deposition of amorphous niobium carbide-based thin film superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Prolier, T.; Klug, J. A.; Elam, J. W.; Claus, H.; Becker, N. G.; Pellin, M. J. (Materials Science Division)

    2011-01-01

    Niobium carbide thin films were synthesized by atomic layer deposition (ALD) using trimethylaluminum (TMA), NbF{sub 5}, and NbCl{sub 5} precursors. In situ quartz crystal microbalance (QCM) measurements performed at 200 and 290 C revealed controlled, linear deposition with a high growth rate of 5.7 and 4.5 {angstrom}/cycle, respectively. The chemical composition, growth rate, structure, and electronic properties of the films were studied over the deposition temperature range 125-350 C. Varying amounts of impurities, including amorphous carbon (a-C), AlF{sub 3}, NbF{sub x}, and NbCl{sub x}, were found in all samples. A strong growth temperature dependence of film composition, growth rate, and room temperature DC resistivity was observed. Increasing film density, decreasing total impurity concentration, and decreasing resistivity were observed as a function of increasing deposition temperature for films grown with either NbF{sub 5} or NbCl{sub 5}. Superconducting quantum interference device (SQUID) magnetometry measurements down to 1.2 K revealed a superconducting transition at T{sub c} = 1.8 K in a 75 nm thick film grown at 350 C with TMA and NbF{sub 5}. The superconducting critical temperature could be increased up to 3.8 K with additional use of NH{sub 3} during ALD film growth.

  10. Atomic layer deposition of amorphous niobium carbide-based thin film superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Klug, J. A.; Prolier, T.; Elam, J. W.; Becker, N. G.; Pellin, M. J. (Energy Systems); ( HEP); ( MSD); (Illinois Inst. Tech.)

    2011-01-01

    Niobium carbide thin films were synthesized by atomic layer deposition (ALD) using trimethylaluminum (TMA), NbF{sub 5}, and NbCl{sub 5} precursors. In situ quartz crystal microbalance (QCM) measurements performed at 200 and 290 C revealed controlled, linear deposition with a high growth rate of 5.7 and 4.5 {angstrom}/cycle, respectively. The chemical composition, growth rate, structure, and electronic properties of the films were studied over the deposition temperature range 125-350 C. Varying amounts of impurities, including amorphous carbon (a-C), AlF{sub 3}, NbF{sub x}, and NbCl{sub x}, were found in all samples. A strong growth temperature dependence of film composition, growth rate, and room temperature DC resistivity was observed. Increasing film density, decreasing total impurity concentration, and decreasing resistivity were observed as a function of increasing deposition temperature for films grown with either NbF{sub 5} or NbCl{sub 5}. Superconducting quantum interference device (SQUID) magnetometry measurements down to 1.2 K revealed a superconducting transition at T{sub c} = 1.8 K in a 75 nm thick film grown at 350 C with TMA and NbF{sub 5}. The superconducting critical temperature could be increased up to 3.8 K with additional use of NH{sub 3} during ALD film growth.

  11. Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Zhou Kai

    2010-01-01

    Full Text Available Abstract The structure of vertically aligned carbon nanotubes (CNTs severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future.

  12. Surface chemistry of the atomic layer deposition of metals and group III oxides

    Science.gov (United States)

    Goldstein, David Nathan

    Atomic Layer Deposition (ALD) is a thin-film growth technique offering precise control of film thickness and the ability to coat high-aspect-ratio features such as trenches and nanopowders. Unlike other film growth techniques, ALD does not require harsh processing conditions and is not limited by line-of-sight deposition. Emerging applications for ALD materials include semiconductor devices, gas sensors, and water-diffusion barriers. The chemistry behind ALD involves understanding how the precursors interact with surfaces to deposit the desired material. All ALD precursors need to be stable on the substrate to ensure self-limiting behavior yet reactive enough to be easily removed with the second reagent. Recent precursor development has provided many volatile organometallic compounds for most of the periodic table. As the number of precursors increases, proper precursor choice becomes crucial. This is because the film properties, growth rates, and growth temperature vary widely between the precursors. Many of the above traits can be predicted with knowledge of the precursor reaction mechanisms. This thesis aims to link surface reaction mechanisms to observed growth and nucleation trends in metal and oxide ALD systems. The first portion of this thesis explores the mechanisms of two ALD oxide systems. First, I examine the mechanism of ALD alumina with ozone. Ozone is used as an oxidant in the semiconductor industry because the deposited Al 2O3 films possess better insulating properties and ozone is easier to purge from a vacuum system. FT-IR analysis reveals a complicated array of surface intermediates such as formate, carbonate, and methoxy groups that form during Al2O3 growth with ozone. Next, a new method to deposit thin films of Ga2O3 is introduced. Gallium oxide is a transparent conducting oxide that needs expensive solid precursors to be deposited by ALD. I show that trimethylgallium is a good high-temperature ALD precursor that deposits films of Ga2O 3 with

  13. Protective coatings of hafnium dioxide by atomic layer deposition for microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Berdova, Maria, E-mail: maria.berdova@aalto.fi [Aalto University, Department of Materials Science and Engineering, 02150, Espoo (Finland); Wiemer, Claudia; Lamperti, Alessio; Tallarida, Grazia; Cianci, Elena [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Lamagna, Luca; Losa, Stefano; Rossini, Silvia; Somaschini, Roberto; Gioveni, Salvatore [STMicroelectronics, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Fanciulli, Marco [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Università degli studi di Milano Bicocca, Dipartimento di Scienza dei Materiali, 20126, Milano (Italy); Franssila, Sami, E-mail: sami.franssila@aalto.fi [Aalto University, Department of Materials Science and Engineering, 02150, Espoo (Finland)

    2016-04-15

    Graphical abstract: - Highlights: • Atomic layer deposition of HfO{sub 2} from (CpMe){sub 2}Hf(OMe)Me or Hf(NMeEt){sub 4} and ozone for potential applications in microelectromechanical systems. • ALD HfO{sub 2} protects aluminum substrates from degradation in moist environment and at the same time retains good reflectance properties of the underlying material. • The resistance of hafnium dioxide to moist environment is independent of chosen precursors. - Abstract: This work presents the investigation of HfO{sub 2} deposited by atomic layer deposition (ALD) from either HfD-CO4 or TEMAHf and ozone for microelectromechanical systems (MEMS) applications, in particular, for environmental protection of aluminum micromirrors. This work shows that HfO{sub 2} films successfully protect aluminum in moist environment and at the same time retain good reflectance properties of underlying material. In our experimental work, the chemical composition, crystal structure, electronic density and roughness of HfO{sub 2} films remained the same after one week of humidity treatment (relative humidity of 85%, 85 °C). The reflectance properties underwent only minor changes. The observed shift in reflectance was only from 80–90% to 76–85% in 400–800 nm spectral range when coated with ALD HfO{sub 2} films grown with Hf(NMeEt){sub 4} and no shift (remained in the range of 68–83%) for films grown from (CpMe){sub 2}Hf(OMe)Me.

  14. Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition.

    Science.gov (United States)

    Zhang, Hao; Ding, He; Wei, Mengjie; Li, Chunya; Wei, Bin; Zhang, Jianhua

    2015-01-01

    A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs). The electrical Ca test in this study was designed to measure the water vapor transmission rate (WVTR) of nanolaminates. We found that moisture barrier performance was improved with the increasing of the number of dyads (Al2O3/ZrO2/alucone) and the WVTR reached 8.5 × 10(-5) g/m(2)/day at 25°C, relative humidity (RH) 85%. The half lifetime of a green OLED with the initial luminance of 1,500 cd/m(2) reached 350 h using three pairs of the Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encapsulation layers.

  15. Atomic layer deposition of zirconium dioxide from zirconium tetrachloride and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki (Finland); Kemell, Marianna; Köykkä, Joel [Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [Accelerator Laboratory, Department of Physics, University of Helsinki, P.O. Box 43, FI-00014 Helsinki (Finland); Vehkamäki, Marko; Ritala, Mikko; Leskelä, Markku [Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki (Finland)

    2015-08-31

    ZrO{sub 2} films were grown by atomic layer deposition using ZrCl{sub 4} and O{sub 3} as precursors. The films were grown on silicon substrates in the temperature range of 220–500 °C. The ALD rate was monotonously decreasing from 0.085 to 0.060 nm/cycle in this temperature range towards the highest temperatures studied. The content of chlorine in the films did not exceed 0.2 at.% as measured by elastic recoil detection analysis. The content of hydrogen was 0.30 and 0.14 at.% in the films grown at 300 and 400 °C, respectively. Structural studies revealed the films consisting of mixtures of stable monoclinic and metastable tetragonal/cubic polymorphs of ZrO{sub 2}, and dominantly metastable phases of ZrO{sub 2} below and above 300 °C, respectively. Permittivity of dielectric layers in Al/Ti/ZrO{sub 2}/(TiN/)Si capacitors with 15–40 nm thick ZrO{sub 2} ranged between 12 and 25 at 100 kHz and the dielectric breakdown fields were in the range of 1.5–3.0 MV/cm. - Highlights: • ZrO{sub 2} thin films were grown by atomic layer deposition from ZrCl{sub 4} and O{sub 3}. • Relatively high substrate temperatures promoted growth of metastable ZrO{sub 2} phases. • ZrO{sub 2} films exhibited electric properties characteristic of dielectric metal oxides. • ZrO{sub 2} grown in hydrogen- and carbon free process contained low amounts of impurities.

  16. Quantum cascade laser-based measurement of metal alkylamide density during atomic layer deposition.

    Science.gov (United States)

    Maslar, James E; Kimes, William A; Sperling, Brent A

    2012-03-01

    An in situ gas-phase diagnostic for the metal alkylamide compound tetrakis(ethylmethylamido) hafnium (TEMAH), Hf[N(C(2)H(5))(CH(3))](4), was demonstrated. This diagnostic is based on direct absorption measurement of TEMAH vapor using an external cavity quantum cascade laser emitting at 979 cm(-1), coinciding with the most intense TEMAH absorption in the mid-infrared spectral region, and employing 50 kHz amplitude modulation with synchronous detection. Measurements were performed in a single-pass configuration in a research-grade atomic layer deposition (ALD) chamber. To examine the detection limit of this technique for use as a TEMAH delivery monitor, this technique was demonstrated in the absence of any other deposition reactants or products, and to examine the selectivity of this technique in the presence of deposition products that potentially interfere with detection of TEMAH vapor, it was demonstrated during ALD of hafnium oxide using TEMAH and water. This technique successfully detected TEMAH at molecular densities present during simulated industrial ALD conditions. During hafnium oxide ALD using TEMAH and water, absorbance from gas-phase reaction products did not interfere with TEMAH measurements while absorption by reaction products deposited on the optical windows did interfere, although interfering absorption by deposited reaction products corresponded to only ≈4% of the total derived TEMAH density. With short measurement times and appropriate signal averaging, estimated TEMAH minimum detectable densities as low as ≈2 × 10(12) molecules/cm(3) could be obtained. While this technique was demonstrated specifically for TEMAH delivery and hafnium oxide ALD using TEMAH and water, it should be readily applicable to other metal alkylamide compounds and associated metal oxide and nitride deposition chemistries, assuming similar metal alkylamide molar absorptivity and molecular density in the measurement chamber.

  17. LDRD Project 52523 final report :Atomic layer deposition of highly conformal tribological coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Jungk, John Michael (University of Minnesota); Dugger, Michael Thomas; George, Steve M. (University of Colorado); Prasad, Somuri V.; Grubbs, Robert K.; Moody, Neville Reid; Mayer, Thomas Michael; Scharf, Thomas W.; Goeke, Ronald S.; Gerberich, William W. (University of Minnesota)

    2005-10-01

    Friction and wear are major concerns in the performance and reliability of micromechanical (MEMS) devices. While a variety of lubricant and wear resistant coatings are known which we might consider for application to MEMS devices, the severe geometric constraints of many micromechanical systems (high aspect ratios, shadowed surfaces) make most deposition methods for friction and wear-resistance coatings impossible. In this program we have produced and evaluate highly conformal, tribological coatings, deposited by atomic layer deposition (ALD), for use on surface micromachined (SMM) and LIGA structures. ALD is a chemical vapor deposition process using sequential exposure of reagents and self-limiting surface chemistry, saturating at a maximum of one monolayer per exposure cycle. The self-limiting chemistry results in conformal coating of high aspect ratio structures, with monolayer precision. ALD of a wide variety of materials is possible, but there have been no studies of structural, mechanical, and tribological properties of these films. We have developed processes for depositing thin (<100 nm) conformal coatings of selected hard and lubricious films (Al2O3, ZnO, WS2, W, and W/Al{sub 2}O{sub 3} nanolaminates), and measured their chemical, physical, mechanical and tribological properties. A significant challenge in this program was to develop instrumentation and quantitative test procedures, which did not exist, for friction, wear, film/substrate adhesion, elastic properties, stress, etc., of extremely thin films and nanolaminates. New scanning probe and nanoindentation techniques have been employed along with detailed mechanics-based models to evaluate these properties at small loads characteristic of microsystem operation. We emphasize deposition processes and fundamental properties of ALD materials, however we have also evaluated applications and film performance for model SMM and LIGA devices.

  18. Thermoelectric material including conformal oxide layers and method of making the same using atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.

    2016-06-07

    A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.

  19. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    Science.gov (United States)

    Xu, Runshen

    Atomic layer deposition (ALD) utilizes sequential precursor gas pulses to deposit one monolayer or sub-monolayer of material per cycle based on its self-limiting surface reaction, which offers advantages, such as precise thickness control, thickness uniformity, and conformality. ALD is a powerful means of fabricating nanoscale features in future nanoelectronics, such as contemporary sub-45 nm metal-oxide-semiconductor field effect transistors, photovoltaic cells, near- and far-infrared detectors, and intermediate temperature solid oxide fuel cells. High dielectric constant, kappa, materials have been recognized to be promising candidates to replace traditional SiO2 and SiON, because they enable good scalability of sub-45 nm MOSFET (metal-oxide-semiconductor field-effect transistor) without inducing additional power consumption and heat dissipation. In addition to high dielectric constant, high-kappa materials must meet a number of other requirements, such as low leakage current, high mobility, good thermal and structure stability with Si to withstand high-temperature source-drain activation annealing. In this thesis, atomic layer deposited Er2O3 doped TiO2 is studied and proposed as a thermally stable amorphous high-kappa dielectric on Si substrate. The stabilization of TiO2 in its amorphous state is found to achieve a high permittivity of 36, a hysteresis voltage of less than 10 mV, and a low leakage current density of 10-8 A/cm-2 at -1 MV/cm. In III-V semiconductors, issues including unsatisfied dangling bonds and native oxides often result in inferior surface quality that yields non-negligible leakage currents and degrades the long-term performance of devices. The traditional means for passivating the surface of III-V semiconductors are based on the use of sulfide solutions; however, that only offers good protection against oxidation for a short-term (i.e., one day). In this work, in order to improve the chemical passivation efficacy of III-V semiconductors

  20. Plasma-enhanced atomic-layer-deposited MoO{sub x} emitters for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ziegler, Johannes; Schneider, Thomas; Sprafke, Alexander N. [Martin-Luther-University Halle-Wittenberg, mu-MD Group, Institute of Physics, Halle (Germany); Mews, Mathias; Korte, Lars [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institute for Silicon-Photovoltaics, Berlin (Germany); Kaufmann, Kai [Fraunhofer Center for Silicon Photovoltaics CSP, Halle (Germany); University of Applied Sciences, Hochschule Anhalt Koethen, Koethen (Germany); Wehrspohn, Ralf B. [Martin-Luther-University Halle-Wittenberg, mu-MD Group, Institute of Physics, Halle (Germany); Fraunhofer Institute for Mechanics of Materials IWM Halle, Halle (Germany)

    2015-09-15

    A method for the deposition of molybdenum oxide (MoO{sub x}) with high growth rates at temperatures below 200 C based on plasma-enhanced atomic layer deposition is presented. The stoichiometry of the over-stoichiometric MoO{sub x} films can be adjusted by the plasma parameters. First results of these layers acting as hole-selective contacts in silicon heterojunction solar cells are presented and discussed. (orig.)

  1. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    Science.gov (United States)

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  2. Tuning Acid-Base Properties Using Mg-Al Oxide Atomic Layer Deposition.

    Science.gov (United States)

    Jackson, David H K; O'Neill, Brandon J; Lee, Jechan; Huber, George W; Dumesic, James A; Kuech, Thomas F

    2015-08-01

    Atomic layer deposition (ALD) was used to coat γ-Al2O3 particles with oxide films of varying Mg/Al atomic ratios, which resulted in systematic variation of the acid and base site areal densities. Variation of Mg/Al also affected morphological features such as crystalline phase, pore size distribution, and base site proximity. Areal base site density increased with increasing Mg content, while acid site density went through a maximum with a similar number of Mg and Al atoms in the coating. This behavior leads to nonlinearity in the relationship between Mg/Al and acid/base site ratio. The physical and chemical properties were elucidated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 physisorption, and CO2 and NH3 temperature-programmed desorption (TPD). Fluorescence emission spectroscopy of samples grafted with 1-pyrenebutyric acid (PBA) was used for analysis of base site proximity. The degree of base site clustering was correlated to acid site density. Catalytic activity in the self-condensation of acetone was dependent on sample base site density and independent of acid site density.

  3. Highly conductive and flexible nylon-6 nonwoven fiber mats formed using tungsten atomic layer deposition.

    Science.gov (United States)

    Kalanyan, Berç; Oldham, Christopher J; Sweet, William J; Parsons, Gregory N

    2013-06-12

    Low-temperature vapor-phase tungsten atomic layer deposition (ALD) using WF6 and dilute silane (SiH4, 2% in Ar) can yield highly conductive coatings on nylon-6 microfiber mats, producing flexible and supple nonwovens with conductivity of ∼1000 S/cm. We find that an alumina nucleation layer, reactant exposure, and deposition temperature all influence the rate of W mass uptake on 3D fibers, and film growth rate is calibrated using high surface area anodic aluminum oxide. Transmission electron microscopy (TEM) reveals highly conformal tungsten coatings on nylon fibers with complex "winged" cross-section. Using reactant gas "hold" sequences during the ALD process, we conclude that reactant species can transport readily to reactive sites throughout the fiber mat, consistent with conformal uniform coverage observed by TEM. The conductivity of 1000 S/cm for the W-coated nylon is much larger than found in other conductive nonwovens. We also find that the nylon mats maintain 90% of their conductivity after being flexed around cylinders with radii as small as 0.3 cm. Metal ALD coatings on nonwovens make possible the solvent-free functionalization of textiles for electronic applications.

  4. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition.

    Science.gov (United States)

    Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong

    2015-07-01

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  5. Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Chen-Long; Liu, Xiao; Chen, Rong, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China); Shan, Bin, E-mail: rongchen@mail.hust.edu.cn, E-mail: bshan@mail.hust.edu.cn [State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074 (China)

    2015-07-15

    A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas–solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al{sub 2}O{sub 3} films on spherical SiO{sub 2} NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.

  6. Fabrication of AlN/BN bishell hollow nanofibers by electrospinning and atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Ali Haider

    2014-09-01

    Full Text Available Aluminum nitride (AlN/boron nitride (BN bishell hollow nanofibers (HNFs have been fabricated by successive atomic layer deposition (ALD of AlN and sequential chemical vapor deposition (CVD of BN on electrospun polymeric nanofibrous template. A four-step fabrication process was utilized: (i fabrication of polymeric (nylon 6,6 nanofibers via electrospinning, (ii hollow cathode plasma-assisted ALD of AlN at 100 °C onto electrospun polymeric nanofibers, (iii calcination at 500 °C for 2 h in order to remove the polymeric template, and (iv sequential CVD growth of BN at 450 °C. AlN/BN HNFs have been characterized for their chemical composition, surface morphology, crystal structure, and internal nanostructure using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction. Measurements confirmed the presence of crystalline hexagonal BN and AlN within the three dimensional (3D network of bishell HNFs with relatively low impurity content. In contrast to the smooth surface of the inner AlN layer, outer BN coating showed a highly rough 3D morphology in the form of BN nano-needle crystallites. It is shown that the combination of electrospinning and plasma-assisted low-temperature ALD/CVD can produce highly controlled multi-layered bishell nitride ceramic hollow nanostructures. While electrospinning enables easy fabrication of nanofibrous template, self-limiting reactions of plasma-assisted ALD and sequential CVD provide control over the wall thicknesses of AlN and BN layers with sub-nanometer accuracy.

  7. Atomic layer deposition of Nb-doped ZnO for thin film transistors

    Science.gov (United States)

    Shaw, A.; Wrench, J. S.; Jin, J. D.; Whittles, T. J.; Mitrovic, I. Z.; Raja, M.; Dhanak, V. R.; Chalker, P. R.; Hall, S.

    2016-11-01

    We present physical and electrical characterization of niobium-doped zinc oxide (NbZnO) for thin film transistor (TFT) applications. The NbZnO films were deposited using atomic layer deposition. X-ray diffraction measurements indicate that the crystallinity of the NbZnO films reduces with an increase in the Nb content and lower deposition temperature. It was confirmed using X-ray photoelectron spectroscopy that Nb5+ is present within the NbZnO matrix. Furthermore, photoluminescence indicates that the band gap of the ZnO increases with a higher Nb content, which is explained by the Burstein-Moss effect. For TFT applications, a growth temperature of 175 °C for 3.8% NbZnO provided the best TFT characteristics with a saturation mobility of 7.9 cm2/Vs, the current On/Off ratio of 1 × 108, and the subthreshold swing of 0.34 V/decade. The transport is seen to follow a multiple-trap and release mechanism at lower gate voltages and percolation thereafter.

  8. Coating and functionalization of high density ion track structures by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mättö, Laura [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Szilágyi, Imre M., E-mail: imre.szilagyi@mail.bme.hu [Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szent Gellért tér 4, Budapest H-1111 (Hungary); MTA-BME Technical Analytical Research Group, Szent Gellért tér 4, Budapest H-1111 (Hungary); Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Laitinen, Mikko [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland); Ritala, Mikko; Leskelä, Markku [Department of Chemistry, University of Helsinki, P.O. Box 55, Helsinki FI-00014 (Finland); Sajavaara, Timo [Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 (Finland)

    2016-10-01

    In this study flexible TiO{sub 2} coated porous Kapton membranes are presented having electron multiplication properties. 800 nm crossing pores were fabricated into 50 μm thick Kapton membranes using ion track technology and chemical etching. Consecutively, 50 nm TiO{sub 2} films were deposited into the pores of the Kapton membranes by atomic layer deposition using Ti({sup i}OPr){sub 4} and water as precursors at 250 °C. The TiO{sub 2} films and coated membranes were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray reflectometry (XRR). Au metal electrode fabrication onto both sides of the coated foils was achieved by electron beam evaporation. The electron multipliers were obtained by joining two coated membranes separated by a conductive spacer. The results show that electron multiplication can be achieved using ALD-coated flexible ion track polymer foils. - Highlights: • Porous Kapton membranes were obtained by ion track technology and chemical etching. • TiO{sub 2} films were deposited by ALD into the pores of the Kapton membranes. • TiO{sub 2} nanotube array was prepared by removing the polymer core. • MCP structures were obtained from the coated membranes. • Electron multiplication was achieved using the ALD-coated Kapton foils.

  9. Atmospheric pressure atomic layer deposition of Al₂O₃ using trimethyl aluminum and ozone.

    Science.gov (United States)

    Mousa, Moataz Bellah M; Oldham, Christopher J; Parsons, Gregory N

    2014-04-08

    High throughput spatial atomic layer deposition (ALD) often uses higher reactor pressure than typical batch processes, but the specific effects of pressure on species transport and reaction rates are not fully understood. For aluminum oxide (Al2O3) ALD, water or ozone can be used as oxygen sources, but how reaction pressure influences deposition using ozone has not previously been reported. This work describes the effect of deposition pressure, between ∼2 and 760 Torr, on ALD Al2O3 using TMA and ozone. Similar to reports for pressure dependence during TMA/water ALD, surface reaction saturation studies show self-limiting growth at low and high pressure across a reasonable temperature range. Higher pressure tends to increase the growth per cycle, especially at lower gas velocities and temperatures. However, growth saturation at high pressure requires longer O3 dose times per cycle. Results are consistent with a model of ozone decomposition kinetics versus pressure and temperature. Quartz crystal microbalance (QCM) results confirm the trends in growth rate and indicate that the surface reaction mechanisms for Al2O3 growth using ozone are similar under low and high total pressure, including expected trends in the reaction mechanism at different temperatures.

  10. Atomic layer deposition of TiN for the fabrication of nanomechanical resonators

    Energy Technology Data Exchange (ETDEWEB)

    Nelson-Fitzpatrick, Nathan; Guthy, Csaba; Poshtiban, Somayyeh; Evoy, Stephane [Department of Electrical and Computer Engineering, University of Alberta, 2nd Floor ECERF (9107-116 Street), Edmonton, Alberta, T6G 2V4 (Canada); Finley, Eric; Harris, Kenneth D. [National Institute for Nanotechnology, 11421 Saskatchewan Drive, Edmonton, Alberta, T6G 2M9 (Canada); Worfolk, Brian J. [Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2 (Canada)

    2013-03-15

    Films of titanium nitride were grown by atomic layer deposition (ALD) over a range of temperatures from 120 Degree-Sign C to 300 Degree-Sign C, and their deposition rates were characterized by ellipsometry and reflectometry. The stress state of the films was evaluated by interferometry using a wafer bowing technique and varied from compressive (-18 MPa) to tensile (650 MPa). The crystal structure of the films was assessed by x-ray diffraction. The grain size varied with temperature in the range of 2-9 nm. The chemical composition of the films was ascertained by high-resolution x-ray photoelectron spectroscopy and showed the presence of O, Cl, and C contaminants. A mildly tensile (250 MPa) stressed film was employed for the fabrication (by electron beam lithography and reactive ion etching) of doubly clamped nanoresonator beams. The resonance frequency of resonators was assayed using an interferometric resonance testing apparatus. The devices exhibited sharp mechanical resonance peaks in the 17-25 MHz range. The uniformity and controllable deposition rate of ALD films make them ideal candidate materials for the fabrication of ultranarrow (<50 nm) nanobeam structures.

  11. Atomic layer deposition as pore diameter adjustment tool for nanoporous aluminum oxide injection molding masks.

    Science.gov (United States)

    Miikkulainen, Ville; Rasilainen, Tiina; Puukilainen, Esa; Suvanto, Mika; Pakkanen, Tapani A

    2008-05-06

    The wetting properties of polypropylene (PP) surfaces were modified by adjusting the dimensions of the surface nanostructure. The nanostructures were generated by injection molding with nanoporous anodized aluminum oxide (AAO) as the mold insert. Atomic layer deposition (ALD) of molybdenum nitride film was used to control the pore diameters of the AAO inserts. The original 50-nm pore diameter of AAO was adjusted by depositing films of thickness 5, 10, and 15 nm on AAO. Bis(tert-butylimido)-bis(dimethylamido)molybdenum and ammonia were used as precursors in deposition. The resulting pore diameters in the nitride-coated AAO inserts were 40, 30, and 20 nm, respectively. Injection molding of PP was conducted with the coated inserts, as well as with the non-coated insert. Besides the pore diameter, the injection mold temperature was varied with temperatures of 50, 70, and 90 degrees C tested. Water contact angles of PP casts were measured and compared with theoretical contact angles calculated from Wenzel and Cassie-Baxter theories. The highest contact angle, 140 degrees , was observed for PP molded with the AAO mold insert with 30-nm pore diameter. The Cassie-Baxter theory showed better fit than the Wenzel theory to the experimental values. With the optimal AAO mask, the nanofeatures in the molded PP pieces were 100 nm high. In explanation of this finding, it is suggested that some sticking and stretching of the nanofeatures occurs during the molding. Increase in the mold temperature increased the contact angle.

  12. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    Science.gov (United States)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-01-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic–inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios. PMID:27876797

  13. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    Science.gov (United States)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-11-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

  14. Use of Atomic Layer Deposition to create homogeneous SRXF/STXM standards

    Science.gov (United States)

    Becker, Nicholas; Klug, Jeffrey; Sutton, Steve; Butterworth, Anna; Westphal, Andrew; Zasadzinski, John; Proslier, Thomas

    2014-03-01

    The use of Standard Reference Materials (SRM) from the National Institute of Standards and Technology (NIST) for quantitative analysis of chemical composition when analyzing samples using Synchrotron based X-Ray Florescence (SR-XRF) and Scanning Transmission X-Ray Microscopy (STXM) is common. However, these standards can suffer from inhomogeneity in chemical composition and often require further corrections to obtain quantitative results. This inhomogeneity can negatively effect the reproducibility of measurements as well as the quantitative measure itself, and the introduction of assumptions for calculations can further limit reliability. Atomic Layer Deposition (ALD) is a deposition technique known for producing uniform, conformal films of a wide range of compounds on nearly any substrate material. These traits make it an ideal deposition method for producing thin films to replace the NIST standards and create SRM on a wide range of relevant substrates. Utilizing Rutherford Backscattering, STXM, and SR-XRF we will present data proving ALD is capable of producing films that are homogenous over scales ranging from 100 μm to 1nm on TEM windows. This work was supported by the U.S. Department of Energy, Office of Science under contract No. DE-AC02-06CH11357.

  15. Conformal atomic layer deposition of alumina on millimeter tall, vertically-aligned carbon nanotube arrays.

    Science.gov (United States)

    Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D

    2014-11-12

    Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.

  16. Building a Better Capacitor with Thin-Film Atomic Layer Deposition Processing

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Christopher [North Seattle College, WA (United States)

    2015-08-28

    The goal of this research is to determine procedures for creating ultra-high capacity supercapacitors by using nanofabrication techniques and high k-value dielectrics. One way to potentially solve the problem of climate change is to switch the source of energy to a source that doesn’t release many tons of greenhouse gases, gases which cause global warming, into the Earth’s atmosphere. These trap in more heat from the Sun’s solar energy and cause global temperatures to rise. Atomic layer deposition will be used to create a uniform thin-film of dielectric to greatly enhance the abilities of our capacitors and will build them on the nanoscale.

  17. A replacement of high-k process for CMOS transistor by atomic layer deposition

    Science.gov (United States)

    Han, Jin-Woo; Choi, Byung Joon; Yang, J. Joshua; Moon, Dong-Il; Choi, Yang-Kyu; Williams, R. Stanley; Meyyappan, M.

    2013-08-01

    A replacement of high-k process was implemented on an independent double gate FinFET, following the ordinary gate-first process with minor modifications. The present scheme involves neither exotic materials nor unprecedented processing. After the source/drain process, the sacrificial gate oxide was selectively substituted with amorphous Ta2O5 via conformal plasma enhanced atomic layer deposition. The present gate-first gate-dielectric-last scheme combines the advantages of the process and design simplicity of the gate-first approach and the control of the effective gate workfunction and the interfacial oxide of the gate-dielectric-last approach. Electrical characterization data and cross-sectional images are provided as evidence of the concept.

  18. Quantum size effects in TiO2 thin films grown by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Massimo Tallarida

    2014-01-01

    Full Text Available We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier transport and separation, and increase the efficiency of energy conversion systems.

  19. Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide

    Science.gov (United States)

    Alexander-Webber, Jack A.; Sagade, Abhay A.; Aria, Adrianus I.; Van Veldhoven, Zenas A.; Braeuninger-Weimer, Philipp; Wang, Ruizhi; Cabrero-Vilatela, Andrea; Martin, Marie-Blandine; Sui, Jinggao; Connolly, Malcolm R.; Hofmann, Stephan

    2017-03-01

    We demonstrate a simple, scalable approach to achieve encapsulated graphene transistors with negligible gate hysteresis, low doping levels and enhanced mobility compared to as-fabricated devices. We engineer the interface between graphene and atomic layer deposited (ALD) Al2O3 by tailoring the growth parameters to achieve effective device encapsulation whilst enabling the passivation of charge traps in the underlying gate dielectric. We relate the passivation of charge trap states in the vicinity of the graphene to conformal growth of ALD oxide governed by in situ gaseous H2O pretreatments. We demonstrate the long term stability of such encapsulation techniques and the resulting insensitivity towards additional lithography steps to enable vertical device integration of graphene for multi-stacked electronics fabrication.

  20. Tunable plasmonic response of metallic nanoantennna heterodimer arrays modified by atomic-layer deposition

    Science.gov (United States)

    Wambold, Raymond A.; Borst, Benjamin D.; Qi, Jie; Weisel, Gary J.; Willis, Brian G.; Zimmerman, Darin T.

    2016-04-01

    We present a systematic study of tunable, plasmon extinction characteristics of arrays of nanoscale antennas that have potential use as sensors, energy-harvesting devices, catalytic converters, in near-field optical microscopy, and in surface-enhanced spectroscopy. Each device is composed of a palladium triangular-prism antenna and a flat counter-electrode. Arrays of devices are fabricated on silica using electron-beam lithography, followed by atomic-layer deposition of copper. Optical extinction is measured by employing a broadband light source in a confocal, transmission arrangement. We characterize the plasmon resonance behavior by examining the dependence on device length, the gap spacing between the electrodes, material properties, and the device array density, all of which contribute in varying degrees to the measured response. We employ finite-difference time-domain simulations to demonstrate good qualitative agreement between experimental trends and theory and use scanning electron microscopy to correlate plasmonic extinction characteristics with changes in morphology.

  1. Wet Etching of Heat Treated Atomic Layer Chemical Vapor Deposited Zirconium Oxide in HF Based Solutions

    Science.gov (United States)

    Balasubramanian, Sriram; Raghavan, Srini

    2008-06-01

    Alternative materials are being considered to replace silicon dioxide as gate dielectric material. Of these, the oxides of hafnium and zirconium show the most promise. However, integrating these new high-k materials into the existing complementary metal-oxide-semiconductor (CMOS) process remains a challenge. One particular area of concern is the wet etching of heat treated high-k dielectrics. In this paper, work done on the wet etching of heat treated atomic layer chemical vapor deposited (ALCVD) zirconium oxide in HF based solutions is presented. It was found that heat treated material, while refractory to wet etching at room temperature, is more amenable to etching at higher temperatures when methane sulfonic acid is added to dilute HF solutions. Selectivity over SiO2 is still a concern.

  2. Large-area thermoelectric high-aspect-ratio nanostructures by atomic layer deposition

    Science.gov (United States)

    Ruoho, Mikko; Juntunen, Taneli; Tittonen, Ilkka

    2016-09-01

    We report on the thermoelectric properties of large-area high-aspect-ratio nanostructures. We fabricate the structures by atomic layer deposition of conformal ZnO thin films on track-etched polycarbonate substrate. The resulting structure consists of ZnO tubules which continue through the full thickness of the substrate. The electrical and thermal properties of the structures are studied both in-plane and out-of-plane. They exhibit very low out-of-plane thermal conductivity down to 0.15 W m-1 K-1 while the in-plane sheet resistance of the films was found to be half that of the same film on glass substrate, allowing material-independent doubling of output power of any planar thin-film thermoelectric generator. The wall thickness of the fabricated nanotubes was varied within a range of up to 100 nm. The samples show polycrystalline nature with (002) preferred crystal orientation.

  3. Atomic layer deposition of metastable β-Fe₂O₃ via isomorphic epitaxy for photoassisted water oxidation.

    Science.gov (United States)

    Emery, Jonathan D; Schlepütz, Christian M; Guo, Peijun; Riha, Shannon C; Chang, Robert P H; Martinson, Alex B F

    2014-12-24

    We report the growth and photoelectrochemical (PEC) characterization of the uncommon bibyite phase of iron(III) oxide (β-Fe2O3) epitaxially stabilized via atomic layer deposition on an conductive, transparent, and isomorphic template (Sn-doped In2O3). As a photoanode, unoptimized β-Fe2O3 ultrathin films perform similarly to their ubiquitous α-phase (hematite) counterpart, but reveal a more ideal bandgap (1.8 eV), a ∼0.1 V improved photocurrent onset potential, and longer wavelength (>600 nm) spectral response. Stable operation under basic water oxidation justifies further exploration of this atypical phase and motivates the investigation of other unexplored metastable phases as new PEC materials.

  4. Temperature-dependent magnetic properties of Ni nanotubes synthesized by atomic layer deposition

    Science.gov (United States)

    Pereira, Alejandro; Palma, Juan L.; Denardin, Juliano C.; Escrig, Juan

    2016-08-01

    Highly-ordered and conformal Ni nanotube arrays were prepared by combining atomic layer deposition (ALD) in a porous alumina matrix with a subsequent thermal reduction process. In order to obtain NiO tubes, one ALD NiCp2/O3 cycle was repeated 2000 times. After the ALD process, the sample is reduced from NiO to metallic Ni under hydrogen atmosphere. Their magnetic properties such as coercivity and squareness have been determined in a vibrating sample magnetometer in the temperature range from 5-300 K for applied magnetic fields parallel and perpendicular to the nanotube axis. Ni nanotubes synthesized by ALD provide a promising opportunity for potential applications in spintronics, data storage and bio-applications.

  5. Spatial atmospheric atomic layer deposition of InxGayZnzO for thin film transistors.

    Science.gov (United States)

    Illiberi, A; Cobb, B; Sharma, A; Grehl, T; Brongersma, H; Roozeboom, F; Gelinck, G; Poodt, P

    2015-02-18

    We have investigated the nucleation and growth of InGaZnO thin films by spatial atmospheric atomic layer deposition. Diethyl zinc (DEZ), trimethyl indium (TMIn), triethyl gallium (TEGa), and water were used as Zn, In, Ga and oxygen precursors, respectively. The vaporized metal precursors have been coinjected in the reactor. The metal composition of InGaZnO has been controlled by varying the TMIn or TEGa flow to the reactor, for a given DEZ flow and exposure time. The morphology of the films changes from polycrystalline, for ZnO and In-doped ZnO, to amorphous for In-rich IZO and InGaZnO. The use of these films as the active channel in TFTs has been demonstrated and the influence of In and Ga cations on the electrical characteristics of the TFTs has been studied.

  6. Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions.

    Science.gov (United States)

    Gao, Zhe; Dong, Mei; Wang, Guizhen; Sheng, Pei; Wu, Zhiwei; Yang, Huimin; Zhang, Bin; Wang, Guofu; Wang, Jianguo; Qin, Yong

    2015-07-27

    To design highly efficient catalysts, new concepts for optimizing the metal-support interactions are desirable. Here we introduce a facile and general template approach assisted by atomic layer deposition (ALD), to fabricate a multiply confined Ni-based nanocatalyst. The Ni nanoparticles are not only confined in Al2 O3 nanotubes, but also embedded in the cavities of Al2 O3 interior wall. The cavities create more Ni-Al2 O3 interfacial sites, which facilitate hydrogenation reactions. The nanotubes inhibit the leaching and detachment of Ni nanoparticles. Compared with the Ni-based catalyst supported on the outer surface of Al2 O3 nanotubes, the multiply confined catalyst shows a striking improvement of catalytic activity and stability in hydrogenation reactions. Our ALD-assisted template method is general and can be extended for other multiply confined nanoreactors, which may have potential applications in many heterogeneous reactions.

  7. In situ gas phase measurements during metal alkylamide atomic layer deposition.

    Science.gov (United States)

    Maslar, J E; Kimes, W A; Sperling, B A

    2011-09-01

    Metal alkylamide compounds, such as tetrakis(ethylmethylamido) hafnium (TEMAH), represent a technologically important class of metalorganic precursors for the deposition of metal oxides and metal nitrides via atomic layer deposition (ALD) or chemical vapor deposition. The development of in situ diagnostics for processes involving these compounds could be beneficial in, e.g., developing deposition recipes and validating equipment-scale simulations. This report describes the performance of the combination of two techniques for the simultaneous, rapid measurement of the three major gas phase species during hafnium oxide thermal ALD using TEMAH and water: TEMAH, water, and methylethyl amine (MEA), the only major reaction by-product. For measurement of TEMAH and MEA, direct absorption methods based on a broadband infrared source with different mid-IR bandpass filters and utilizing amplitude modulation and synchronous detection were developed. For the measurement of water, wavelength modulation spectroscopy utilizing a near-IR distributed feedback diode laser was used. Despite the relatively simple reactor geometry employed here (a flow tube), differences were easily observed in the time-dependent species distributions in 300 mL/min of a helium carrier gas and in 1000 mL/min of a nitrogen carrier gas. The degree of TEMAH entrainment was lower in 300 mL/min of helium compared to that in 1000 mL/min of nitrogen. The capability to obtain detailed time-dependent species concentrations during ALD could potentially allow for the selection of carrier gas composition and flow rates that would minimize parasitic wall reactions. However, when nitrogen was employed at the higher flow rates, various flow effects were observed that, if detrimental to a deposition process, would effectively limit the upper range of useful flow rates.

  8. Influence of different oxidants on the band alignment of HfO2 films deposited by atomic layer deposition

    Institute of Scientific and Technical Information of China (English)

    Fan Ji-Bin; Liu Hong-Xia; Gao Bo; Ma Fei; Zhuo Qing-Qing; Hao Yue

    2012-01-01

    Based on X-ray photoelectron spectroscopy (XPS),influences of different oxidants on band alignment of HfO2 films deposited by atomic layer deposition (ALD) are investigated in this paper.The measured valence band offset (VBO) value for H2O-based HfO2 increases from 3.17 eV to 3.32 eV after annealing,whereas the VBO value for O3-based HfO2 decreases from 3.57 eV to 3.46 eV.The research results indicate that the silicate layer changes in different ways for H2O-based and O3-based HfO2 films after the annealing process,which plays a key role in generating the internal electric field formed by the dipoles.The variations of the dipoles at the interface between the HfO2 and SiO2 after annealing may lead the VBO values of H2O-based and O3-based HfO2 to vary in different ways,which fits with the variation of fiat band (VFB) voltage.

  9. Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, Emma, E-mail: emma.harkonen@helsinki.fi [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland); Tervakangas, Sanna; Kolehmainen, Jukka [DIARC-Technology Inc., Espoo (Finland); Díaz, Belén; Światowska, Jolanta; Maurice, Vincent; Seyeux, Antoine; Marcus, Philippe [Laboratoire de Physico-Chimie des Surfaces, CNRS (UMR 7075) – Chimie ParisTech (ENSCP), F-75005 Paris (France); Fenker, Martin [FEM Research Institute, Precious Metals and Metals Chemistry, D-73525 Schwäbisch Gmünd (Germany); Tóth, Lajos; Radnóczi, György [Research Centre for Natural Sciences HAS, (MTA TKK), Budapest (Hungary); Ritala, Mikko [Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014 Helsinki (Finland)

    2014-10-15

    Sublayers grown with filtered cathodic arc deposition (FCAD) were added under atomic layer deposited (ALD) oxide coatings for interface control and improved corrosion protection of low alloy steel. The FCAD sublayer was either Ta:O or Cr:O–Ta:O nanolaminate, and the ALD layer was Al{sub 2}O{sub 3}–Ta{sub 2}O{sub 5} nanolaminate, Al{sub x}Ta{sub y}O{sub z} mixture or graded mixture. The total thicknesses of the FCAD/ALD duplex coatings were between 65 and 120 nm. Thorough analysis of the coatings was conducted to gain insight into the influence of the FCAD sublayer on the overall coating performance. Similar characteristics as with single FCAD and ALD coatings on steel were found in the morphology and composition of the duplex coatings. However, the FCAD process allowed better control of the interface with the steel by reducing the native oxide and preventing its regrowth during the initial stages of the ALD process. Residual hydrocarbon impurities were buried in the interface between the FCAD layer and steel. This enabled growth of ALD layers with improved electrochemical sealing properties, inhibiting the development of localized corrosion by pitting during immersion in acidic NaCl and enhancing durability in neutral salt spray testing. - Highlights: • Corrosion protection properties of ALD coatings were improved by FCAD sublayers. • The FCAD sublayer enabled control of the coating-substrate interface. • The duplex coatings offered improved sealing properties and durability in NSS. • The protective properties were maintained during immersion in a corrosive solution. • The improvements were due to a more ideal ALD growth on the homogeneous FCAD oxide.

  10. Thermal and plasma enhanced atomic layer deposition of SiO{sub 2} using commercial silicon precursors

    Energy Technology Data Exchange (ETDEWEB)

    Putkonen, Matti, E-mail: matti.putkonen@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, Espoo (Finland); Laboratory of Inorganic Chemistry, Aalto University School of Chemical Technology, P.O. Box 16100, FI-00076, Espoo (Finland); Bosund, Markus [Beneq Oy, Ensimmäinen savu, FI-01510, Vantaa (Finland); Ylivaara, Oili M.E.; Puurunen, Riikka L.; Kilpi, Lauri; Ronkainen, Helena [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, Espoo (Finland); Sintonen, Sakari; Ali, Saima; Lipsanen, Harri [Aalto University School of Electrical Engineering, Department of Micro- and Nanosciences, P.O. Box 13500, FI-00076 Espoo (Finland); Liu, Xuwen; Haimi, Eero; Hannula, Simo-Pekka [Aalto University School of Chemical Technology, Department of Materials Science and Engineering, P.O. Box 16200, FI-00076 Espoo (Finland); Sajavaara, Timo [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Buchanan, Iain; Karwacki, Eugene [Air Products and Chemicals Inc., 7201 Hamilton Blvd., Allentown, PA 18195 (United States); Vähä-Nissi, Mika [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, Espoo (Finland)

    2014-05-02

    In this paper, we report ALD deposition of silicon dioxide using either thermal or plasma enhanced atomic layer deposition (PEALD). Several aminosilanes with differing structures and reactivity were used as silicon precursors in R and D single wafer ALD tools. One of the precursors was also tested on pilot scale batch ALD using O{sub 3} as oxidant and with substrates measuring 150 × 400 mm. The SiO{sub 2} film deposition rate was greatly dependent on the precursors used, highest values being 1.5–2.0 Å/cycle at 30–200 °C for one precursor with an O{sub 2} plasma. According to time-of-flight-elastic recoil detection analysis measurements carbon and nitrogen impurities were relatively low, but hydrogen content increased at low deposition temperatures. - Highlights: • SiO{sub 2} thin film is deposited by thermal and plasma enhanced atomic layer deposition (PEALD). • We report low-temperature deposition of SiO{sub 2} even at 30 °C by PEALD. • Scaling up of the atomic layer deposition processes to industrial batch is reported. • Deposited films had low low compressive residual stress and good conformality.

  11. Photoluminescence of atomic layer deposited ZrO{sub 2}:Dy{sup 3+} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kiisk, Valter, E-mail: valter.kiisk@ut.ee; Tamm, Aile; Utt, Kathriin; Kozlova, Jekaterina; Mändar, Hugo; Puust, Laurits; Aarik, Jaan; Sildos, Ilmo

    2015-05-29

    Atomic layer deposition based on alternate cycling of ZrCl{sub 4}, Dy(thd){sub 3} and H{sub 2}O as precursors was applied for preparation of nanocrystalline ZrO{sub 2}:Dy thin films. Photoluminescence (PL) properties of Dy{sup 3+} in the ZrO{sub 2} films were studied at several laser excitations. Substantial activation of Dy{sup 3+} PL required thermal treatment at 900 °C. As a result of annealing, thinner (~ 80 nm) films with higher Dy content retained relatively high amount of tetragonal phase and remained crack-free. In thicker (~ 140 nm) films, considerable amount of monoclinic phase was formed and a peculiar microscale cracking pattern was developed along with phase segregation. It is demonstrated that the crystal structure of ZrO{sub 2} significantly influences the Dy{sup 3+} emission spectrum and, at least for ZrO{sub 2}-type matrices, Dy{sup 3+} is an excellent luminescent microprobe in comparison with micro-Raman scattering. A Förster-like PL decay profile allowed a conclusion that the self-quenching due to cross-relaxation between Dy{sup 3+} ions had a marked impact on emission intensity. - Highlights: • Atomic layer deposition of luminescent Dy-doped ZrO{sub 2} thin films was demonstrated. • Dy{sup 3+} luminescence was significantly activated only after high-temperature annealing. • Correlation between luminescent and structural properties was obtained. • Dy{sup 3+} luminescent probe showed superior performance compared to Raman-scattering. • Presence of several quenching processes was deduced from luminescence behavior.

  12. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M. E.; Puurunen, Riikka L.; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-01

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm-1, above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m2 K GW-1, and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  13. Thermal conductivity of amorphous Al2O3/TiO2 nanolaminates deposited by atomic layer deposition.

    Science.gov (United States)

    Ali, Saima; Juntunen, Taneli; Sintonen, Sakari; Ylivaara, Oili M E; Puurunen, Riikka L; Lipsanen, Harri; Tittonen, Ilkka; Hannula, Simo-Pekka

    2016-11-04

    The thermophysical properties of Al2O3/TiO2 nanolaminates deposited by atomic layer deposition (ALD) are studied as a function of bilayer thickness and relative TiO2 content (0%-100%) while the total nominal thickness of the nanolaminates was kept at 100 nm. Cross-plane thermal conductivity of the nanolaminates is measured at room temperature using the nanosecond transient thermoreflectance method. Based on the measurements, the nanolaminates have reduced thermal conductivity as compared to the pure amorphous thin films, suggesting that interfaces have a non-negligible effect on thermal transport in amorphous nanolaminates. For a fixed number of interfaces, we find that approximately equal material content of Al2O3 and TiO2 produces the lowest value of thermal conductivity. The thermal conductivity reduces with increasing interface density up to 0.4 nm(-1), above which the thermal conductivity is found to be constant. The value of thermal interface resistance approximated by the use of diffuse mismatch model was found to be 0.45 m(2) K GW(-1), and a comparative study employing this value supports the interpretation of non-negligible interface resistance affecting the overall thermal conductivity also in the amorphous limit. Finally, no clear trend in thermal conductivity values was found for nanolaminates grown at different deposition temperatures, suggesting that the temperature in the ALD process has a non-trivial while modest effect on the overall thermal conductivity in amorphous nanolaminates.

  14. Influences of different oxidants on the characteristics of HfAlOx films deposited by atomic layer deposition

    Institute of Scientific and Technical Information of China (English)

    Fan Ji-Bin; Liu Hong-Xia; Ma Fei; Zhuo Qing-Qing; Hao Yue

    2013-01-01

    A comparative study of two kinds of oxidants (H2O and O3) with the combinations of two metal precursors [trimethylaluminum (TMA) and tetrakis(ethylmethylamino) hafnium (TEMAH)] for atomic layer deposition (ALD) hafnium aluminum oxide (HfAlOx) films is carried out.The effects of different oxidants on the physical properties and electrical characteristics of HfAlOx films are studied.The preliminary testing results indicate that the impurity level of HfAlOx films grown with both H2O and O3 used as oxidants can be well controlled,which has significant effects on the dielectric constant,valence band,electrical properties,and stability of HfAlOx film.Additional thermal annealing effects on the properties of HfAlOx films grown with different oxidants are also investigated.

  15. High Throughput Atomic Layer Deposition Processes: High Pressure Operations, New Reactor Designs, and Novel Metal Processing

    Science.gov (United States)

    Mousa, MoatazBellah Mahmoud

    Atomic Layer Deposition (ALD) is a vapor phase nano-coating process that deposits very uniform and conformal thin film materials with sub-angstrom level thickness control on various substrates. These unique properties made ALD a platform technology for numerous products and applications. However, most of these applications are limited to the lab scale due to the low process throughput relative to the other deposition techniques, which hinders its industrial adoption. In addition to the low throughput, the process development for certain applications usually faces other obstacles, such as: a required new processing mode (e.g., batch vs continuous) or process conditions (e.g., low temperature), absence of an appropriate reactor design for a specific substrate and sometimes the lack of a suitable chemistry. This dissertation studies different aspects of ALD process development for prospect applications in the semiconductor, textiles, and battery industries, as well as novel organic-inorganic hybrid materials. The investigation of a high pressure, low temperature ALD process for metal oxides deposition using multiple process chemistry revealed the vital importance of the gas velocity over the substrate to achieve fast depositions at these challenging processing conditions. Also in this work, two unique high throughput ALD reactor designs are reported. The first is a continuous roll-to-roll ALD reactor for ultra-fast coatings on porous, flexible substrates with very high surface area. While the second reactor is an ALD delivery head that allows for in loco ALD coatings that can be executed under ambient conditions (even outdoors) on large surfaces while still maintaining very high deposition rates. As a proof of concept, part of a parked automobile window was coated using the ALD delivery head. Another process development shown herein is the improvement achieved in the selective synthesis of organic-inorganic materials using an ALD based process called sequential vapor

  16. In-situ atomic layer deposition growth of Hf-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Karavaev, Konstantin

    2010-06-17

    We have grown HfO{sub 2} on Si(001) by atomic layer deposition (ALD) using HfCl{sub 4}, TEMAHf, TDMAHf and H{sub 2}O as precursors. The early stages of the ALD were investigated with high-resolution photoelectron spectroscopy and X-ray absorption spectroscopy. We observed the changes occurring in the Si 2p, O 1s, Hf 4f, Hf 4d, and Cl 2p (for HfCl{sub 4} experiment) core level lines after each ALD cycle up to the complete formation of two layers of HfO{sub 2}. The investigation was carried out in situ giving the possibility to determine the properties of the grown film after every ALD cycle or even after a half cycle. This work focused on the advantages in-situ approach in comparison with ex-situ experiments. The study provides to follow the evolution of the important properties of HfO{sub 2}: contamination level, density and stoichiometry, and influence of the experimental parameters to the interface layer formation during ALD. Our investigation shows that in-situ XPS approach for ALD gives much more information than ex-situ experiments. (orig.)

  17. Morphology and crystallinity control of ultrathin TiO2 layers deposited on carbon nanotubes by temperature-step atomic layer deposition

    Science.gov (United States)

    Guerra-Nuñez, Carlos; Zhang, Yucheng; Li, Meng; Chawla, Vipin; Erni, Rolf; Michler, Johann; Park, Hyung Gyu; Utke, Ivo

    2015-06-01

    Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surface coverage of the chemically inert CNTs and appropriate control of the morphology of the TiO2 layer have not been achieved so far. Here, we report a new strategy to obtain ultrathin TiO2 coatings deposited by ``Temperature-step'' Atomic Layer Deposition (TS-ALD) with complete surface coverage of non-functionalized multiwall carbon nanotubes (MWCNTs) and controlled morphology and crystallinity of the TiO2 film. This strategy consists of adjusting the temperature during the ALD deposition to obtain the desired morphology. Complete coverage of long non-functionalized MWCNTs with conformal anatase layers was obtained by using a low temperature of 60 °C during the nucleation stage followed by an increase to 220 °C during the growth stage. This resulted in a continuous and amorphous TiO2 layer, covered with a conformal anatase coating. Starting with the deposition at 220 °C and reducing to 60 °C resulted in sporadic crystal grains at the CNT/TiO2 interface covered with an amorphous TiO2 layer. The results were accomplished through an extensive study of nucleation and growth of titanium oxide films on MWCNTs, of which a detailed characterization is presented in this work.Carbon nanotubes (CNTs) coated with titanium oxide (TiO2) have generated considerable interest over the last decade and become a promising nanomaterial for a wide range of energy applications. The efficient use of the outstanding electrical properties of this nanostructure relies heavily on the quality of the interface and the thickness and morphology of the TiO2 layer. However, complete surface coverage of the

  18. Electromagnetic interference shielding behaviors of Zn-based conducting oxide films prepared by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong-June; Kang, Kyung-Mun; Lee, Hong-Sub; Park, Hyung-Ho, E-mail: hhpark@yonsei.ac.kr

    2015-05-29

    The structural, electrical, and optical properties of undoped ZnO, F-doped ZnO (ZnO:F), and Al-doped ZnO (ZnO:Al) thin films with two different thicknesses deposited by atomic layer deposition (ALD) were investigated to evaluate the electromagnetic interference shielding effectiveness (EMI-SE). A diluted fluoride hydroxide was used as a single reactant source for F doping in a ZnO matrix, and the F doping concentration was about 1 at.% in the ZnO:F films. The fabrication of the ZnO:Al films was followed by the typical ALD method, and the Al doping concentration of about 2 at.% was adjusted by the dopant deposition intervals of the ZnO:Al{sub 2}O{sub 3} precursor pulse cycle ratios, which were fixed at 19:1. The film thickness variations were controlled with 600 and 1600 total ALD cycles of approximately 100 nm and 300 nm, respectively. The carrier concentration of the films is monotonically increased in order of the undoped ZnO, ZnO:F, and ZnO:Al films. The EMI-SE values of the undoped ZnO, ZnO:F, and ZnO:Al films at 1 GHz were 0.9 dB, 2.6 dB, and 6.0 dB for ~ 100 nm, and were 2.1 dB, 9.7 dB, and 13.1 dB for ~ 300 nm, respectively. In our work, the EMI-SE value was increased by the enhancement of both the carrier concentration and film thickness due to reflection via the free carrier scattering effect. - Highlights: • Fluorine or aluminum doped ZnO thin films prepared by atomic layer deposition • Electromagnetic interference shielding effectiveness (EMI-SE) of ZnO thin films • Carrier concentration and film thickness enhanced the EMI-SE. • The enhancement of EMI-SE was due to reflection via free carrier scattering effect.

  19. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Michael, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2015-08-14

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru{sup 0}) and its oxide (RuO{sub 2}) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru{sup 0} and RuO{sub 2} films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO{sub 2} and 0.04 Å/cycle for Ru.{sup 0} An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO{sub 2}/OH compound whose surface is saturated with hydroxyl groups.

  20. Effect of Al 2 O 3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in Solid-State CdS Quantum Dot-Sensitized Solar Cells

    KAUST Repository

    Roelofs, Katherine E.

    2013-03-21

    Despite the promise of quantum dots (QDs) as a light-absorbing material to replace the dye in dye-sensitized solar cells, quantum dot-sensitized solar cell (QDSSC) efficiencies remain low, due in part to high rates of recombination. In this article, we demonstrate that ultrathin recombination barrier layers of Al2O3 deposited by atomic layer deposition can improve the performance of cadmium sulfide (CdS) quantum dot-sensitized solar cells with spiro-OMeTAD as the solid-state hole transport material. We explored depositing the Al2O3 barrier layers either before or after the QDs, resulting in TiO2/Al2O3/QD and TiO 2/QD/Al2O3 configurations. The effects of barrier layer configuration and thickness were tracked through current-voltage measurements of device performance and transient photovoltage measurements of electron lifetimes. The Al2O3 layers were found to suppress dark current and increase electron lifetimes with increasing Al 2O3 thickness in both configurations. For thin barrier layers, gains in open-circuit voltage and concomitant increases in efficiency were observed, although at greater thicknesses, losses in photocurrent caused net decreases in efficiency. A close comparison of the electron lifetimes in TiO2 in the TiO2/Al2O3/QD and TiO2/QD/Al2O3 configurations suggests that electron transfer from TiO2 to spiro-OMeTAD is a major source of recombination in ss-QDSSCs, though recombination of TiO2 electrons with oxidized QDs can also limit electron lifetimes, particularly if the regeneration of oxidized QDs is hindered by a too-thick coating of the barrier layer. © 2013 American Chemical Society.

  1. Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition

    Science.gov (United States)

    Ahn, Cheol Hyoun; Hee Kim, So; Gu Yun, Myeong; Koun Cho, Hyung

    2014-12-01

    In this study, we proposed the artificially designed channel structure in oxide thin-film transistors (TFTs) called a "step-composition gradient channel." We demonstrated Al step-composition gradient Al-Zn-O (AZO) channel structures consisting of three AZO layers with different Al contents. The effects of stacking sequence in the step-composition gradient channel on performance and electrical stability of bottom-gate TFT devices were investigated with two channels of inverse stacking order (ascending/descending step-composition). The TFT with ascending step-composition channel structure (5 → 10 → 14 at. % Al composition) showed relatively negative threshold voltage (-3.7 V) and good instability characteristics with a reduced threshold voltage shift ( Δ 1.4 V), which was related to the alignment of the conduction band off-set within the channel layer depending on the Al contents. Finally, the reduced Al composition in the initial layer of ascending step-composition channel resulted in the best field effect mobility of 4.5 cm2/V s. We presented a unique active layer of the "step-composition gradient channel" in the oxide TFTs and explained the mechanism of adequate channel design.

  2. Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness

    Directory of Open Access Journals (Sweden)

    W. S. Lau

    2014-02-01

    Full Text Available Previously, Lau (one of the authors pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM and cross-sectional transmission electron microscopy (XTEM were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

  3. Density Functional Theory Study of Atomic Layer Deposition of Zinc Oxide on Graphene.

    Science.gov (United States)

    Ali, Amgad Ahmed; Hashim, Abdul Manaf

    2015-12-01

    The dissociation of zinc ions (Zn(2+)) from vapor-phase zinc acetylacetonate, Zn(C5H7O2)2, or Zn(acac)2 and its adsorption onto graphene oxide via atomic layer deposition (ALD) were studied using a quantum mechanics approach. Density functional theory (DFT) was used to obtain an approximate solution to the Schrödinger equation. The graphene oxide cluster model was used to represent the surface of the graphene film after pre-oxidation. In this study, the geometries of reactants, transition states, and products were optimized using the B3LYB/6-31G** level of theory or higher. Furthermore, the relative energies of the various intermediates and products in the gas-phase radical mechanism were calculated at the B3LYP/6-311++G** and MP2/6-311 + G(2df,2p) levels of theory. Additionally, a molecular orbital (MO) analysis was performed for the products of the decomposition of the Zn(acac)2 complex to investigate the dissociation of Zn(2+) and the subsequent adsorption of H atoms on the C5H7O2 cluster to form acetylacetonate enol. The reaction energies were calculated, and the reaction mechanism was accordingly proposed. A simulation of infrared (IR) properties was performed using the same approach to support the proposed mechanism via a complete explanation of bond forming and breaking during each reaction step.

  4. Growth process optimization of ZnO thin film using atomic layer deposition

    Science.gov (United States)

    Weng, Binbin; Wang, Jingyu; Larson, Preston; Liu, Yingtao

    2016-12-01

    The work reports experimental studies of ZnO thin films grown on Si(100) wafers using a customized thermal atomic layer deposition. The impact of growth parameters including H2O/DiethylZinc (DEZn) dose ratio, background pressure, and temperature are investigated. The imaging results of scanning electron microscopy and atomic force microscopy reveal that the dose ratio is critical to the surface morphology. To achieve high uniformity, the H2O dose amount needs to be at least twice that of DEZn per each cycle. If the background pressure drops below 400 mTorr, a large amount of nanoflower-like ZnO grains would emerge and increase surface roughness significantly. In addition, the growth temperature range between 200 °C and 250 °C is found to be the optimal growth window. And the crystal structures and orientations are also strongly correlated to the temperature as proved by electron back-scattering diffraction and x-ray diffraction results.

  5. A review of atomic layer deposition providing high performance lithium sulfur batteries

    Science.gov (United States)

    Yan, Bo; Li, Xifei; Bai, Zhimin; Song, Xiaosheng; Xiong, Dongbin; Zhao, Mengli; Li, Dejun; Lu, Shigang

    2017-01-01

    With the significant obstacles that have been conquered in lithium-sulfur (Li-S) batteries, it is urgent to impel accelerating development of room-temperature Li-S batteries with high energy density and long-term stability. In view of the unique solid-liquid-solid conversion processes of Li-S batteries, however, designing effective strategies to address the insulativity and volume effect of cathode, shuttle of soluble polysulfides, and/or safety hazard of Li metal anode has been challenging. An atomic layer deposition (ALD) is a representative thin film technology with exceptional capabilities in developing atomic-precisely conformal films. It has been demonstrated to be a promise strategy of solving emerging issues in advanced electrical energy storage (EES) devices via the surface modification and/or the fabrication of complex nanostructured materials. In this review, the recent developments and significances on how ALD improves the performance of Li-S batteries were discussed in detail. Significant attention mainly focused on the various strategies with the use of ALD to refine the electrochemical interfaces and cell configurations. Furthermore, the novel opportunities and perspective associated with ALD for future research directions were summarized. This review may boost the development and application of advanced Li-S batteries using ALD.

  6. Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition

    CERN Document Server

    Kim, H

    2002-01-01

    We have investigated the growth kinetics of plasma-enhanced Ti atomic layer deposition (ALD) using a quartz crystal microbalance. Ti ALD films were grown at temperatures from 20 to 200 deg. C using TiCl sub 4 as a source gas and rf plasma-produced atomic H as the reducing agent. Postdeposition ex situ chemical analyses of thin films showed that the main impurity is oxygen, mostly incorporated during the air exposure prior to analysis. The thickness per cycle, corresponding to the growth rate, was measured by quartz crystal microbalance as a function of various key growth parameters, including TiCl sub 4 and H exposure time, rf plasma power, and sample temperature. The growth rates were independent of TiCl sub 4 exposure above 1x10 sup 3 L, indicating typical ALD mode growth. The key kinetic parameters for Cl extraction reaction and TiCl sub 4 adsorption kinetics were obtained and the growth kinetics were modeled to predict the growth rates based upon these results. Also, the dependency of growth kinetics on d...

  7. Atomic Layer Deposition of Chemical Passivation Layers and High Performance Anti-Reflection Coatings on Back-Illuminated Detectors

    Science.gov (United States)

    Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Nikzad, Shouleh (Inventor)

    2014-01-01

    A back-illuminated silicon photodetector has a layer of Al2O3 deposited on a silicon oxide surface that receives electromagnetic radiation to be detected. The Al2O3 layer has an antireflection coating deposited thereon. The Al2O3 layer provides a chemically resistant separation layer between the silicon oxide surface and the antireflection coating. The Al2O3 layer is thin enough that it is optically innocuous. Under deep ultraviolet radiation, the silicon oxide layer and the antireflection coating do not interact chemically. In one embodiment, the silicon photodetector has a delta-doped layer near (within a few nanometers of) the silicon oxide surface. The Al2O3 layer is expected to provide similar protection for doped layers fabricated using other methods, such as MBE, ion implantation and CVD deposition.

  8. NiO/nanoporous graphene composites with excellent supercapacitive performance produced by atomic layer deposition.

    Science.gov (United States)

    Chen, Caiying; Chen, Chaoqiu; Huang, Peipei; Duan, Feifei; Zhao, Shichao; Li, Ping; Fan, Jinchuan; Song, Weiguo; Qin, Yong

    2014-12-19

    Nickel oxide (NiO) is a promising electrode material for supercapacitors because of its low cost and high theoretical specific capacitance of 2573 F g(-1). However, the low electronic conductivity and poor cycling stability of NiO limit its practical applications. To overcome these limitations, an efficient atomic layer deposition (ALD) method is demonstrated here for the fabrication of NiO/nanoporous graphene (NG) composites as electrode materials for supercapacitors. ALD allows uniform deposition of NiO nanoparticles with controlled sizes on the surface of NG, thus offering a novel route to design NiO/NG composites for supercapacitor applications with high surface areas and greatly improved electrical conductivity and cycle stability. Electrochemical measurements reveal that the NiO/NG composites obtained by ALD exhibited excellent specific capacitance of up to ∼ 1005.8 F g(-1) per mass of the composite electrode (the specific capacitance value is up to ∼ 1897.1 F g(-1) based on the active mass of NiO), and stable performance after 1500 cycles. Furthermore, electrochemical performance of the NiO/NG composites is found to strongly depend on the size of NiO nanoparticles.

  9. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    Science.gov (United States)

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Chi, Dongzhi; Bhatia, Charanjit S.

    2014-06-01

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiOx) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiOx films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiOx films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiOx films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiOx has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiOx in the field of high-efficiency silicon wafer solar cells.

  10. A brief review of atomic layer deposition: from fundamentals to applications

    Directory of Open Access Journals (Sweden)

    Richard W. Johnson

    2014-06-01

    Full Text Available Atomic layer deposition (ALD is a vapor phase technique capable of producing thin films of a variety of materials. Based on sequential, self-limiting reactions, ALD offers exceptional conformality on high-aspect ratio structures, thickness control at the Angstrom level, and tunable film composition. With these advantages, ALD has emerged as a powerful tool for many industrial and research applications. In this review, we provide a brief introduction to ALD and highlight select applications, including Cu(In,GaSe2 solar cell devices, high-k transistors, and solid oxide fuel cells. These examples are chosen to illustrate the variety of technologies that are impacted by ALD, the range of materials that ALD can deposit – from metal oxides such as Zn1−xSnxOy, ZrO2, Y2O3, to noble metals such as Pt – and the way in which the unique features of ALD can enable new levels of performance and deeper fundamental understanding to be achieved.

  11. Fundamental interface studies of GaSb and InAs substrates with atomic layer deposition

    Science.gov (United States)

    Greer, Frank; Baker, L.; Cook, S.; Fisher, A.; Keo, S.; Soibel, A.; Khoshakhlagh, Arezou; Nguyen, J.; Ting, D.; Gunapala, S.

    2012-10-01

    Long Wavelength infrared photodetectors based on Type-II superlattices from the 6.1Å system hold great promise for a wide variety of applications. However, as these materials are fabricated into focal plane arrays for real world applications, the small pixel sizes that are required can result in unacceptably high dark current due to a significant contribution of surface-induced leakage. These surface currents could be substantially reduced or even eliminated by the application of an appropriate passivation material. But, while a considerable amount of effort has gone into developing passivation processes and materials for these detectors (e.g. PECVD SiO2, polyimides, etc.), there is no one widely adopted standard technique in use today. Atomic layer deposition has the possibility of being an excellent method for depositing passivation because of the wide variety of materials that are readily available via ALD and the ability to conformally coat arbitrary topographies that may be found in the patterning of LWIR FPAs. In this work, fundamental materials characterization results and electrical test data will be presented for two wide band gap, high-K dielectrics (Titanium Oxide and Hafnium Oxide) looking at their nucleation and growth behavior on substrates of relevant III-V materials such as GaSb and InAs using ellispometry, XPS, and XRD. These results will be compared to more conventional passivation strategies to highlight the unique features of the ALD technique.

  12. Atomic layer deposition of TiO2-nanomembrane-based photocatalysts with enhanced performance

    Science.gov (United States)

    Edy, Riyanto; Huang, Gaoshan; Zhao, Yuting; Zhang, Jing; Mei, Yongfeng; Shi, Jianjun

    2016-11-01

    In this study, TiO2 and TiO2-ZnO nanomembranes were fabricated by atomic layer deposition using the three-dimensionally porous template and their photocatalytic properties were investigated. The nanomembranes were firstly deposited onto the surface of polyurethane porous sponge templates (sacrificial templates), followed by a calcination at 500 or 800 °C. Three-dimensionally porous structures as a replica of the porous sponge templates were thus achieved. By a pulverizing process, the porous structures were broken into small pieces, which were then employed as photocatalyst. Experimental results show that the degree of crystallinity is raised by increasing of the nanomembrane thickness due to the increase of the grain size with minimizing the number of grain boundaries in the thicker nanomembrane, which is beneficial to enhance the photocatalysis efficiency. On the other hand, the photocatalytic activity can also be improved by TiO2-ZnO composite, due to lower electron-hole recombination possibility and better carrier conductivity.

  13. Protective coatings of hafnium dioxide by atomic layer deposition for microelectromechanical systems applications

    Science.gov (United States)

    Berdova, Maria; Wiemer, Claudia; Lamperti, Alessio; Tallarida, Grazia; Cianci, Elena; Lamagna, Luca; Losa, Stefano; Rossini, Silvia; Somaschini, Roberto; Gioveni, Salvatore; Fanciulli, Marco; Franssila, Sami

    2016-04-01

    This work presents the investigation of HfO2 deposited by atomic layer deposition (ALD) from either HfD-CO4 or TEMAHf and ozone for microelectromechanical systems (MEMS) applications, in particular, for environmental protection of aluminum micromirrors. This work shows that HfO2 films successfully protect aluminum in moist environment and at the same time retain good reflectance properties of underlying material. In our experimental work, the chemical composition, crystal structure, electronic density and roughness of HfO2 films remained the same after one week of humidity treatment (relative humidity of 85%, 85 °C). The reflectance properties underwent only minor changes. The observed shift in reflectance was only from 80-90% to 76-85% in 400-800 nm spectral range when coated with ALD HfO2 films grown with Hf(NMeEt)4 and no shift (remained in the range of 68-83%) for films grown from (CpMe)2Hf(OMe)Me.

  14. Low-Temperature Crystalline Titanium Dioxide by Atomic Layer Deposition for Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2013-04-24

    Low-temperature processing of dye-sensitized solar cells (DSCs) is crucial to enable commercialization with low-cost, plastic substrates. Prior studies have focused on mechanical compression of premade particles on plastic or glass substrates; however, this did not yield sufficient interconnections for good carrier transport. Furthermore, such compression can lead to more heterogeneous porosity. To circumvent these problems, we have developed a low-temperature processing route for photoanodes where crystalline TiO2 is deposited onto well-defined, mesoporous templates. The TiO2 is grown by atomic layer deposition (ALD), and the crystalline films are achieved at a growth temperature of 200 C. The ALD TiO2 thickness was systematically studied in terms of charge transport and performance to lead to optimized photovoltaic performance. We found that a 15 nm TiO2 overlayer on an 8 μm thick SiO2 film leads to a high power conversion efficiency of 7.1% with the state-of-the-art zinc porphyrin sensitizer and cobalt bipyridine redox mediator. © 2013 American Chemical Society.

  15. Atomic layer deposition of TiO2-nanomembrane-based photocatalysts with enhanced performance

    Directory of Open Access Journals (Sweden)

    Riyanto Edy

    2016-11-01

    Full Text Available In this study, TiO2 and TiO2-ZnO nanomembranes were fabricated by atomic layer deposition using the three-dimensionally porous template and their photocatalytic properties were investigated. The nanomembranes were firstly deposited onto the surface of polyurethane porous sponge templates (sacrificial templates, followed by a calcination at 500 or 800 °C. Three-dimensionally porous structures as a replica of the porous sponge templates were thus achieved. By a pulverizing process, the porous structures were broken into small pieces, which were then employed as photocatalyst. Experimental results show that the degree of crystallinity is raised by increasing of the nanomembrane thickness due to the increase of the grain size with minimizing the number of grain boundaries in the thicker nanomembrane, which is beneficial to enhance the photocatalysis efficiency. On the other hand, the photocatalytic activity can also be improved by TiO2-ZnO composite, due to lower electron-hole recombination possibility and better carrier conductivity.

  16. Photoelectric and passivation properties of atomic layer deposited gradient AZO thin film

    Science.gov (United States)

    Zhao, Bin; Tang, Li-dan; Wang, Bing; Jia, Yi; Feng, Jia-heng

    2017-02-01

    Gradient Al-doped ZnO (AZO) thin films were deposited at 150 °C by atomic layer deposition (ALD) with different Al concentration gradient, and their photoelectric and passivation properties were investigated. With increasing Al concentration gradient from 0.09 to 1.21%/nm, Hall-effect showed that the resistivity of gradient AZO thin films deteriorates. The minimal resistivity (2.81 × 10-3 Ω cm), the maximum mobility (9.03 cm2/Vs) and the maximum carrier concentration (2.46 × 1020 cm-3) were obtained at 0.09%/nm Al concentration gradient. The average transmittance of all the gradient AZO films can be more than 85% in the visible region. In addition, gradient AZO thin films demonstrated excellent passivation properties. The maximum minority carrier lifetime (120.6 μs) and the minimal surface recombination velocity (≤208.3 cm/s) were obtained at 0.71%/nm Al concentration gradient.

  17. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics

    Science.gov (United States)

    Douglas, Anna; Muralidharan, Nitin; Carter, Rachel; Share, Keith; Pint, Cary L.

    2016-03-01

    Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics.Here we demonstrate the first on-chip silicon-integrated rechargeable transient power source based on atomic layer deposition (ALD) coating of vanadium oxide (VOx) into porous silicon. A stable specific capacitance above 20 F g-1 is achieved until the device is triggered with alkaline solutions. Due to the rational design of the active VOx coating enabled by ALD, transience occurs through a rapid disabling step that occurs within seconds, followed by full dissolution of all active materials within 30 minutes of the initial trigger. This work demonstrates how engineered materials for energy storage can provide a basis for next-generation transient systems and highlights porous silicon as a versatile scaffold to integrate transient energy storage into transient electronics. Electronic supplementary information (ESI) available: (i) Experimental details for ALD and material fabrication, ellipsometry film thickness, preparation of gel electrolyte and separator, details for electrochemical measurements, HRTEM image of VOx coated porous silicon, Raman spectroscopy for VOx as-deposited as well as annealed in air for 1 hour at 450 °C, SEM and transient behavior dissolution tests of uniformly coated VOx on

  18. Influence of titanium-substrate roughness on Ca–P–O thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ananda Sagari, A.R., E-mail: arsagari@gmail.com [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland); Malm, Jari [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Laitinen, Mikko [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland); Rahkila, Paavo [Department of Biology of Physical Activity, P.O. Box 35, FIN-40014 University of Jyväskylä (Finland); Hongqiang, Ma [Department of Health Sciences, P.O. Box 35 (L), FIN-40014 University of Jyväskylä (Finland); Putkonen, Matti [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Beneq Oy, P.O. Box 262, FI-01511 Vantaa (Finland); Karppinen, Maarit [Department of Chemistry, P.O. Box 16100, FI-00076 Aalto University, Espoo (Finland); Whitlow, Harry J.; Sajavaara, Timo [Department of Physics, P.O. Box 35 (YFL), FIN-40014 University of Jyväskylä (Finland)

    2013-03-01

    Amorphous Ca–P–O films were deposited on titanium substrates using atomic layer deposition, while maintaining a uniform Ca/P pulsing ratio of 6/1 with varying number of atomic layer deposition cycles starting from 10 up to 208. Prior to film deposition the titanium substrates were mechanically abraded using SiC abrasive paper of 600, 1200, 2000 grit size and polished with 3 μm diamond paste to obtain surface roughness R{sub rms} values of 0.31 μm, 0.26 μm, 0.16 μm, and 0.10 μm, respectively. The composition and film thickness of as-deposited amorphous films were studied using Time-Of-Flight Elastic Recoil Detection Analysis. The results showed that uniform films could be deposited on rough metal surfaces with a clear dependence of substrate roughness on the Ca/P atomic ratio of thin films. The in vitro cell-culture studies using MC3T3 mouse osteoblast showed a greater coverage of cells on the surface polished with diamond paste in comparison to rougher surfaces after 24 h culture. No statistically significant difference was observed between Ca–P–O coated and un-coated Ti surfaces for the measured roughness value. The deposited 50 nm thick films did not dissolve during the cell culture experiment. - Highlights: ► Atomic layer deposition of Ca–P–O films on abraded Ti substrate ► Surface analysis using Time-Of-Flight Elastic Recoil Detection Analysis ► Dependence of substrate roughness on the Ca/P atomic ratio of thin films ► An increase in Ca/P atomic ratio with decreasing roughness ► Mouse osteoblast showed greater coverage of cells in polished surface.

  19. Effect of GeO2 deposition temperature in atomic layer deposition on electrical properties of Ge gate stack

    Science.gov (United States)

    Kanematsu, Masayuki; Shibayama, Shigehisa; Sakashita, Mitsuo; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2016-08-01

    We investigated the effect of GeO2 deposition temperature (T depo) on electronic properties of Al/Al2O3/GeO2/Ge MOS capacitors. Capacitance-voltage characteristics show frequency dispersions under depletion and strong inversion conditions, which can be attributed from the interface states at the atomic layer deposition (ALD)-GeO2/Ge interface and from the defect states in the quasi-neutral region in the Ge substrate, respectively. We found that the interface state density (D it) shows similar values and energy distributions as T depo decreases to 200 from 300 °C, while a higher D it is observed at a T depo of 150 °C. Also, from the temperature dependence of conductance, the frequency dispersion under the strong inversion condition can be related to the minority carrier diffusion to the quasi-neutral region of the Ge substrate. The frequency dependence of conductance reveals that the undesirable increment of the bulk defect density can be suppressed by decreasing T depo. In this study, the bulk defect density in a MOS capacitor prepared at a T depo of 200 °C decreases one tenth compared with that at a T depo of 300 °C. The ALD of GeO2 at a low temperature of around 200 °C is effective for both obtaining a low D it and preventing the undesirable introduction of bulk defect density.

  20. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition.

    Science.gov (United States)

    Kim, Woo-Hee; Park, Sang-Joon; Son, Jong-Yeog; Kim, Hyungjun

    2008-01-30

    We fabricated metallic nanostructures directly on Si substrates through a hybrid nanoprocess combining atomic layer deposition (ALD) and a self-assembled anodic aluminum oxide (AAO) nanotemplate. ALD Ru films with Ru(DMPD)(EtCp) as a precursor and O(2) as a reactant exhibited high purity and low resistivity with negligible nucleation delay and low roughness. These good growth characteristics resulted in the excellent conformality for nanometer-scale vias and trenches. Additionally, AAO nanotemplates were fabricated directly on Si and Ti/Si substrates through a multiple anodization process. AAO nanotemplates with various hole sizes (30-100 nm) and aspect ratios (2:1-20:1) were fabricated by controlling the anodizing process parameters. The barrier layers between AAO nanotemplates and Si substrates were completely removed by reactive ion etching (RIE) using BCl(3) plasma. By combining the ALD Ru and the AAO nanotemplate, Ru nanostructures with controllable sizes and shapes were prepared on Si and Ti/Si substrates. The Ru nanowire array devices as a platform for sensor devices exhibited befitting properties of good ohmic contact and high surface/volume ratio.

  1. Uniform Atomic Layer Deposition of Al2O3 on Graphene by Reversible Hydrogen Plasma Functionalization

    Science.gov (United States)

    2017-01-01

    A novel method to form ultrathin, uniform Al2O3 layers on graphene using reversible hydrogen plasma functionalization followed by atomic layer deposition (ALD) is presented. ALD on pristine graphene is known to be a challenge due to the absence of dangling bonds, leading to nonuniform film coverage. We show that hydrogen plasma functionalization of graphene leads to uniform ALD of closed Al2O3 films down to 8 nm in thickness. Hall measurements and Raman spectroscopy reveal that the hydrogen plasma functionalization is reversible upon Al2O3 ALD and subsequent annealing at 400 °C and in this way does not deteriorate the graphene’s charge carrier mobility. This is in contrast with oxygen plasma functionalization, which can lead to a uniform 5 nm thick closed film, but which is not reversible and leads to a reduction of the charge carrier mobility. Density functional theory (DFT) calculations attribute the uniform growth on both H2 and O2 plasma functionalized graphene to the enhanced adsorption of trimethylaluminum (TMA) on these surfaces. A DFT analysis of the possible reaction pathways for TMA precursor adsorption on hydrogenated graphene predicts a binding mechanism that cleans off the hydrogen functionalities from the surface, which explains the observed reversibility of the hydrogen plasma functionalization upon Al2O3 ALD.

  2. Cu2O quantum dots emitting visible light grown by atomic layer deposition

    Science.gov (United States)

    Lee, Min Young; Kim, Soo-Hyun; Park, Il-Kyu

    2016-11-01

    This paper reports the fabrication of the Cu2O quantum dots (QDs) emitting a controlled wavelength in the visible spectral range prepared by atomic layer deposition (ALD). Cu2O thin film layers formed on the Al2O3 surface showed large density of islands via Volmer-Weber growth mode, which resulting in QD formation. As the number of ALD cycles was increased from 60 to 480, the spatial density and mean diameter of the Cu2O QDs increased systematically from 4.02 × 1011/cm2 to 2.56×1012/cm2 and from 2.1 to 3.2 nm, respectively. The absorption spectral results indicated that the electron energy transition in the Cu2O QDs was a direct process with the optical band gaps decreasing from 2.71 to 2.15 eV with increasing QD size from 2.1 to 3.2 nm because of the quantum confinement effect. The Cu2O QDs showed broad emission peaks composed of multiple elementary emission spectra corresponding to the Cu2O QD ensembles with a different size distribution. As the size of Cu2O QDs decreased, the shoulder peaks at the higher energy side developed due to the quantum confinement effect.

  3. Atomic layer deposition encapsulated activated carbon electrodes for high voltage stable supercapacitors.

    Science.gov (United States)

    Hong, Kijoo; Cho, Moonkyu; Kim, Sang Ouk

    2015-01-28

    Operating voltage enhancement is an effective route for high energy density supercapacitors. Unfortunately, widely used activated carbon electrode generally suffers from poor electrochemical stability over 2.5 V. Here we present atomic layer deposition (ALD) encapsulation of activated carbons for high voltage stable supercapacitors. Two-nanometer-thick Al2O3 dielectric layers are conformally coated at activated carbon surface by ALD, well-maintaining microporous morphology. Resultant electrodes exhibit excellent stability at 3 V operation with 39% energy density enhancement from 2.5 V operation. Because of the protection of surface functional groups and reduction of electrolyte degradation, 74% of initial voltage was maintained 50 h after full charge, and 88% of capacitance was retained after 5000 cycles at 70 °C accelerated test, which correspond to 31 and 17% improvements from bare activated carbon, respectively. This ALD-based surface modification offers a general method to enhance electrochemical stability of carbon materials for diverse energy and environmental applications.

  4. Low-temperature atomic layer deposition of TiO{sub 2} thin layers for the processing of memristive devices

    Energy Technology Data Exchange (ETDEWEB)

    Porro, Samuele, E-mail: samuele.porro@polito.it; Conti, Daniele; Guastella, Salvatore; Ricciardi, Carlo [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Jasmin, Alladin; Pirri, Candido F. [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy and Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Bejtka, Katarzyna; Perrone, Denis; Chiolerio, Alessandro [Center for Space Human Robotics@PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy)

    2016-01-15

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO{sub 2} thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such as self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO{sub 2} thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO{sub 2} thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications.

  5. Characterization and prevention of humidity related degradation of atomic layer deposited Al2O3

    Science.gov (United States)

    Rückerl, Andreas; Zeisel, Roland; Mandl, Martin; Costina, Ioan; Schroeder, Thomas; Zoellner, Marvin H.

    2017-01-01

    Atomic layer deposited aluminum oxide (ALD-Al2O3) is a dielectric material, which is widely used in organic light emitting diodes in order to prevent their organic layers from humidity related degradation. Unfortunately, there are strong hints that in some cases, ALD-Al2O3 itself is suffering from humidity related degradation. Especially, high temperature and high humidity seem to enhance ALD-Al2O3 degradation strongly. For this reason, the degradation behavior of ALD-Al2O3 films at high temperature and high humidity was investigated in detail and a way to prevent it from degradation was searched. The degradation behavior is analyzed in the first part of this paper. Using infrared absorbance measurements and X-ray diffraction, boehmite (γ-AlOOH) was identified as a degradation product. In the second part of the paper, it is shown that ALD-Al2O3 films can be effectively protected from degradation using a silicon oxide capping. The deposition of very small amounts of silicon in a molecular beam epitaxy system and an X-ray photoelectron spectroscopy investigation of the chemical bonding between the silicon and the ALD-Al2O3 surface led to the conclusion that a silicon termination of the ALD-Al2O3 surface (Al*-O-SiOx) is able to stop humidity related degradation of the underlying ALD-Al2O3 films. The third part of the paper shows that the protection mechanism of the silicon termination is probably due to the strong tendency of silicic acid to resilificate exposed ALD-Al2O3 surfaces. The protective effect of a simple silicon source on an ALD-Al2O3 surface is shown exemplary and the related chemical reactions are presented.

  6. Influence of Different Annealing Ambients on the Properties of Zinc Sulfide Prepared by Atomic Layer Deposition

    Science.gov (United States)

    Yoo, Dongjun; Heo, Seung Chan; Choi, Moon Suk; Kim, Dohyung; Chung, Chulwon; Choi, Hag Young; Jeon, Hyeongtag; Choi, Changhwan

    2013-10-01

    The effects of different post annealing ambients (vacuum, O2, and H2S gases) on the chemical, structural, and optical properties of zinc sulfide (ZnS) thin films prepared by atomic layer deposition (ALD) were investigated. Diethylzinc [DEZ, Zn(C2H5)2] and H2S gas were used as precursor and reactant gas, respectively. Compared to as-deposited 50-nm-thick ZnS film, the optical energy band gap (Eg) of ZnS annealed under vacuum and H2S conditions increased from 3.73 to 3.85 eV, while it decreased down to 3.23 eV for the O2 annealing case. The change in the Eg of the thicker ZnS is similar to that of the thinner ZnS case. This behavior is related to the change in the Zn to S ratio. The vacuum and H2S anneals increases the Zn/S ratio, leading to higher Zn interstitial defects or S vacancy sites in the films. X-ray diffraction analysis reveals that ZnS thin film has a preferred orientation of hexagonal wurtizte (002) and cubic zinc blend (111) at ˜28.2°, and its grain size changes in a range from 18.79 to 28.14 nm after annealing. However, for O2 annealing, the patterns of both the newly formed ZnO phase and the reduced ZnS phase appear at 34.04°. This result suggests that change in the composition and crystal structure during the process significantly affects the optical properties of ZnS thin film, which should be taken into consideration in searching for an alternative buffer layer for Cu2InGaSe(S)4 (CIGS) thin film solar cell systems.

  7. Effect of substrate pretreatments on the atomic layer deposited Al{sub 2}O{sub 3} passivation quality

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Yameng; Li, Shuo, E-mail: Shuo.li@beneq.com; Gastrow, Guillaume von; Repo, Päivikki; Savin, Hele [Department of Micro- and Nanosciences, Aalto University School of Electrical Engineering, Tietotie 3, 02150 Espoo (Finland); Putkonen, Matti [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo (Finland)

    2015-01-15

    The authors show here that the passivation quality of Al{sub 2}O{sub 3} is highly sensitive to the surface condition prior to the atomic layer deposition, affecting especially the thermal stability of the film. Pretreatments like diluted HCl bath or preheating at 200 °C both improved significantly the passivation quality and thermal stability of the films. In addition, the authors observed that a thin chemical SiO{sub 2} layer resulting from diluted HCl solves the blistering problem often encountered in H{sub 2}O based atomic layer deposited process. Finally, the authors show that the chemical oxide protects the surface from contaminants, enabling long storage times in a dirty ambient between the cleaning and the film deposition.

  8. Characterization of Al2O3 Thin Films on GaAs Substrate Grown by Atomic Layer Deposition

    Institute of Scientific and Technical Information of China (English)

    LU Hong-Liang; LI Yan-Bo; XU Min; DING Shi-Jin; SUN Liang; ZHANG Wei; WANG Li-Kang

    2006-01-01

    @@ Al2O3 thin films are grown by atomic layer deposition on GaAs substrates at 300℃. The structural properties of the Al2O3 thin film and the Al2O3/GaAs interface are characterized using x-ray diffraction (XRD), highresolution transmission electron microscopy (HRTEM), and x-ray photoelectron spectroscopy (XPS). The XRD results show that the as-deposited Al2O3 film is amorphous. For 30 atomic layer deposition growth cycles, the thicknesses of the Al2O3 thin film and the interface layer from the HRTEM are 3.3nm and 0.5nm, respectively.XPS analyses reveal that the Al2O3/GaAs interface is almost free from As2O3.

  9. Photoluminescence Enhancement in Nanotextured Fluorescent SiC Passivated by Atomic Layer Deposited Al2O3 Films

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    The influence of thickness of atomic layer deposited Al2O3 films on nano-textured fluorescent 6H-SiC passivation is investigated. The passivation effect on the light emission has been characterized by photoluminescence and time-resolved photoluminescence at room temperature. The results show that...

  10. Atomic layer deposition of Ru from CpRu(CO)(2)Et using O-2 gas and O-2 plasma

    NARCIS (Netherlands)

    Leick, N.; Verkuijlen, R. O. F.; Lamagna, L.; Langereis, E.; Rushworth, S.; Roozeboom, F.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2011-01-01

    The metalorganic precursor cyclopentadienylethyl(dicarbonyl)ruthenium (CpRu(CO)(2)Et) was used to develop an atomic layer deposition (ALD) process for ruthenium. O-2 gas and O-2 plasma were employed as reactants. For both processes, thermal and plasma-assisted ALD, a relatively high growth-per-cycle

  11. Surface passivation of nano-textured fluorescent SiC by atomic layer deposited TiO2

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas;

    2016-01-01

    Nano-textured surfaces have played a key role in optoelectronic materials to enhance the light extraction efficiency. In this work, morphology and optical properties of nano-textured SiC covered with atomic layer deposited (ALD) TiO2 were investigated. In order to obtain a high quality surface fo...

  12. Electrochemical Effects of Atomic Layer Deposition on Cathode Materials for Lithium Batteries

    Science.gov (United States)

    Scott, Isaac David

    One of the greatest challenges of modern society is to stabilize a consistent energy supply that will meet our growing energy demand while decreasing the use of fossil fuels and the harmful green house gases which they produce. Developing reliable and safe solutions has driven research into exploring alternative energy sources for transportation including fuel cells, hydrogen storage, and lithium-ion batteries (LIBs). For the foreseeable future, though, rechargeable batteries appear to be the most practically viable power source. To deploy LIBs in next-generation vehicles, it is essential to develop electrodes with durability, high energy density, and high power. Unfortunately, the power capability of LIBs is generally hindered by Li+-ion diffusion in micrometer-sized materials and the formation of an insulating solid electrolyte interface (SEI) layer on the surface of the active material. In addition, degradation of the battery material due to chemical and electrochemical reactions with the electrolyte lead to both capacity fade and safety concerns both at room and higher temperatures. The current study focuses on mitigating these issues for high voltage cathode materials by both using nanoscale particles to improve Li+-ion diffusion and using ultrathin nanoscale coatings to protect the battery materials from undesirable side reactions. The electrode material is coated with Al2O3 using atomic layer deposition (ALD), which is a method to grow conformal thin films with atomic thickness (angstrom level control) using sequential, self-limiting surface reactions. First, nano-LiCoO 2 is employed to demonstrate the effectiveness of ALD coatings and demonstrates a profound increase in rate performance (>250% improvement) over generally employed micrometer-sized particles. Second, the cathode materials LiNi 0.8Co0.15Al0.05O2, LiNi0.33Mn 0.33Co0.33O2, LiMn2O4, and LiNi0.5Mn1.5O4 were used to demonstrate the benefits ALD coatings have on thermal runaway. The results show a

  13. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Directory of Open Access Journals (Sweden)

    Veer Dhaka

    2016-01-01

    Full Text Available Low temperature (∼200 °C grown atomic layer deposition (ALD films of AlN, TiN, Al2O3, GaN, and TiO2 were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP nanowires (NWs, and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL at low temperatures (15K, and the best passivation was achieved with a few monolayer thick (2Å film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL was achieved with a capping of 2nm thick Al2O3. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al2O3 layer increased the carrier decay time from 251 ps (as-etched nanopillars to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al2O3 provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  14. Protective capping and surface passivation of III-V nanowires by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dhaka, Veer, E-mail: veer.dhaka@aalto.fi; Perros, Alexander; Kakko, Joona-Pekko; Haggren, Tuomas; Lipsanen, Harri [Department of Micro- and Nanosciences, Micronova, Aalto University, P.O. Box 13500, FI-00076 (Finland); Naureen, Shagufta; Shahid, Naeem [Research School of Physics & Engineering, Department of Electronic Materials Engineering, Australian National University, Canberra ACT 2601 (Australia); Jiang, Hua; Kauppinen, Esko [Department of Applied Physics and Nanomicroscopy Center, Aalto University, P.O. Box 15100, FI-00076 (Finland); Srinivasan, Anand [School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, S-164 40 Kista (Sweden)

    2016-01-15

    Low temperature (∼200 °C) grown atomic layer deposition (ALD) films of AlN, TiN, Al{sub 2}O{sub 3}, GaN, and TiO{sub 2} were tested for protective capping and surface passivation of bottom-up grown III-V (GaAs and InP) nanowires (NWs), and top-down fabricated InP nanopillars. For as-grown GaAs NWs, only the AlN material passivated the GaAs surface as measured by photoluminescence (PL) at low temperatures (15K), and the best passivation was achieved with a few monolayer thick (2Å) film. For InP NWs, the best passivation (∼2x enhancement in room-temperature PL) was achieved with a capping of 2nm thick Al{sub 2}O{sub 3}. All other ALD capping layers resulted in a de-passivation effect and possible damage to the InP surface. Top-down fabricated InP nanopillars show similar passivation effects as InP NWs. In particular, capping with a 2 nm thick Al{sub 2}O{sub 3} layer increased the carrier decay time from 251 ps (as-etched nanopillars) to about 525 ps. Tests after six months ageing reveal that the capped nanostructures retain their optical properties. Overall, capping of GaAs and InP NWs with high-k dielectrics AlN and Al{sub 2}O{sub 3} provides moderate surface passivation as well as long term protection from oxidation and environmental attack.

  15. In situ transmission infrared spectroscopy of high-kappa oxide atomic layer deposition onto silicon surfaces

    Science.gov (United States)

    Ho, Ming-Tsung

    Ultra-thin aluminum oxide (Al2O3) and hafnium oxide (HfO2) layers have been grown by atomic layer deposition (ALD) using tri-methyl-aluminum (TMA) and tetrakis-ethyl-methyl-amino-hafnium (TEMAH) respectively with heavy water (D2O) as the oxidizing agent. Several different silicon surfaces were used as substrates such as hydrogen terminated silicon (H/Si), SC2 (or RCA 2) cleaned native silicon oxide (SiO 2/Si), and silicon (oxy)nitride. In-situ transmission Fourier transform infrared spectroscopy (FTIR) has been adopted for the study of the growth mechanisms during ALD of these films. The vibrational spectra of gas phase TEMAH and its reaction byproducts with oxidants have also been investigated. Density functional theory (DFT) normal mode calculations show a good agreement with the experimental data when it is combined with linear wave-number scaling method and Fermi resonance mechanism. Ether (-C-O-C-) and tertiary alkylamine (N(R1R 2R3)) compounds are the two most dominant products of TEMAH reacting with oxygen gas and water. When ozone is used as the oxidant, gas phase CH2O, CH3NO2, CH3-N=C=O and other compounds containing -(C=O)- and --C-O-C- (or --O-C-) segments are observed. With substrate temperatures less than 400°C and 300°C for TMA and TEMAH respectively, Al oxide and Hf oxide ALD can be appropriately performed on silicon surfaces. Thin silicon (oxy)nitride thermally grown in ammonia on silicon substrate can significantly reduce silicon oxide interlayer formation during ALD and post-deposition annealing. The crystallization temperature of amorphous ALD grown HfO2 on nitridized silicon is 600°C, which is 100°C higher than on the other silicon surfaces. When HfO2 is grown on H/Si(111) at 100°C deposition temperature, minimum 5--10 ALD cycles are required for the full surface coverage. The steric effect can be seen by the evolution of the H-Si stretching mode at 2083 cm-1. The observed red shift of H-Si stretching to ˜ 2060 cm-1 can be caused by Si

  16. Real-time and in situ monitoring of sputter deposition with RHEED for atomic layer controlled growth

    Directory of Open Access Journals (Sweden)

    J. P. Podkaminer

    2016-08-01

    Full Text Available Sputter deposition is a widely used growth technique for a large range of important material systems. Epitaxial films of carbides, nitrides, metals, oxides and more can all be formed during the sputter process which offers the ability to deposit smooth and uniform films from the research level up to an industrial scale. This tunable kinematic deposition process excels in easily adapting for a large range of environments and growth procedures. Despite the vast advantages, there is a significant lack of in situ analysis options during sputtering. In particular, the area of real time atomic layer control is severely deficient. Atomic layer controlled growth of epitaxial thin films and artificially layered superlattices is critical for both understanding their emergent phenomena and engineering novel material systems and devices. Reflection high-energy electron diffraction (RHEED is one of the most common in situ analysis techniques during thin film deposition that is rarely used during sputtering due to the effect of the strong permanent magnets in magnetron sputter sources on the RHEED electron beam. In this work we have solved this problem and designed a novel way to deter the effect of the magnets for a wide range of growth geometries and demonstrate the ability for the first time to have layer-by-layer control during sputter deposition by in situ RHEED.

  17. Real-time and in situ monitoring of sputter deposition with RHEED for atomic layer controlled growth

    Science.gov (United States)

    Podkaminer, J. P.; Patzner, J. J.; Davidson, B. A.; Eom, C. B.

    2016-08-01

    Sputter deposition is a widely used growth technique for a large range of important material systems. Epitaxial films of carbides, nitrides, metals, oxides and more can all be formed during the sputter process which offers the ability to deposit smooth and uniform films from the research level up to an industrial scale. This tunable kinematic deposition process excels in easily adapting for a large range of environments and growth procedures. Despite the vast advantages, there is a significant lack of in situ analysis options during sputtering. In particular, the area of real time atomic layer control is severely deficient. Atomic layer controlled growth of epitaxial thin films and artificially layered superlattices is critical for both understanding their emergent phenomena and engineering novel material systems and devices. Reflection high-energy electron diffraction (RHEED) is one of the most common in situ analysis techniques during thin film deposition that is rarely used during sputtering due to the effect of the strong permanent magnets in magnetron sputter sources on the RHEED electron beam. In this work we have solved this problem and designed a novel way to deter the effect of the magnets for a wide range of growth geometries and demonstrate the ability for the first time to have layer-by-layer control during sputter deposition by in situ RHEED.

  18. Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage

    KAUST Repository

    Ahmed, Bilal

    2016-04-29

    Research on electrochemical energy storage devices including Li ion batteries (LIBs), Na ion batteries (NIBs) and supercapacitors (SCs) has accelerated in recent years, in part because developments in nanomaterials are making it possible to achieve high capacities and energy and power densities. These developments can extend battery life in portable devices, and open new markets such as electric vehicles and large-scale grid energy storage. It is well known that surface reactions largely determine the performance and stability of electrochemical energy storage devices. Despite showing impressive capacities and high energy and power densities, many of the new nanostructured electrode materials suffer from limited lifetime due to severe electrode interaction with electrolytes or due to large volume changes. Hence control of the surface of the electrode material is essential for both increasing capacity and improving cyclic stability of the energy storage devices.Atomic layer deposition (ALD) which has become a pervasive synthesis method in the microelectronics industry, has recently emerged as a promising process for electrochemical energy storage. ALD boasts excellent conformality, atomic scale thickness control, and uniformity over large areas. Since ALD is based on self-limiting surface reactions, complex shapes and nanostructures can be coated with excellent uniformity, and most processes can be done below 200. °C. In this article, we review recent studies on the use of ALD coatings to improve the performance of electrochemical energy storage devices, with particular emphasis on the studies that have provided mechanistic insight into the role of ALD in improving device performance. © 2016 Elsevier Ltd.

  19. Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yunxi; Zaera, Francisco, E-mail: zaera@ucr.edu [Department of Chemistry, University of California, Riverside, California 92521 (United States)

    2016-01-15

    The thermal surface chemistry of copper(I)-N,N′-di-sec-butylacetamidinate, [Cu({sup s}Bu-amd)]{sub 2}, a metalorganic complex recently proposed for the chemical-based deposition of copper films, has been characterized on SiO{sub 2} films under ultrahigh vacuum conditions by x-ray photoelectron spectroscopy (XPS). Initial adsorption at cryogenic temperatures results in the oxidation of the copper centers with Cu 2p{sub 3/2} XPS binding energies close to those seen for a +2 oxidation state, an observation that the authors interpret as the result of the additional coordination of oxygen atoms from the surface to the Cu atoms of the molecular acetamidinate dimer. Either heating to 300 K or dosing the precursor directly at that temperature leads to the loss of one of its two ligands, presumably via hydrogenation/protonation with a hydrogen/proton from a silanol group, or following a similar reaction on a defect site. By approximately 500 K the Cu 2p{sub 3/2}, C 1s, and N 1s XPS data suggest that the remaining acetamidinate ligand is displaced from the copper center and bonds to the silicon oxide directly, after which temperatures above 900 K need to be reached to promote further (and only partial) decomposition of those organic moieties. It was also shown that the uptake of the Cu precursor is self-limiting at either 300 or 500 K, although the initial chemistry is somewhat different at the two temperatures, and that the nature of the substrate also defines reactivity, with the thin native silicon oxide layer always present on Si(100) surfaces being less reactive than thicker films grown by evaporation, presumably because of the lower density of surface nucleation sites.

  20. Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition

    Science.gov (United States)

    Linzen, S.; Ziegler, M.; Astafiev, O. V.; Schmelz, M.; Hübner, U.; Diegel, M.; Il’ichev, E.; Meyer, H.-G.

    2017-03-01

    We studied and optimised the properties of ultrathin superconducting niobium nitride films fabricated with a plasma-enhanced atomic layer deposition (PEALD) process. By adjusting process parameters, the chemical embedding of undesired oxygen into the films was minimised and a film structure consisting of mainly polycrystalline niobium nitride with a small fraction of amorphous niobium oxide and niobium oxo-nitrides were formed. For this composition a critical temperature of 13.8 K and critical current densities of 7 × 106 A cm–2 at 4.2 K were measured on 40 nm thick films. A fundamental correlation between these superconducting properties and the crystal lattice size of the cubic δ-niobium-nitride grains were found. Moreover, the film thickness variation between 40 and 2 nm exhibits a pronounced change of the electrical conductivity at room temperature and reveals a superconductor–insulator-transition in the vicinity of 3 nm film thickness at low temperatures. The thicker films with resistances up to 5 kΩ per square in the normal state turn to the superconducting one at low temperatures. The perfect thickness control and film homogeneity of the PEALD growth make such films extremely promising candidates for developing novel devices on the coherent quantum phase slip effect.

  1. Density functional theory predictions of the composition of atomic layer deposition-grown ternary oxides.

    Science.gov (United States)

    Murray, Ciaran; Elliott, Simon D

    2013-05-01

    The surface reactivity of various metal precursors with different alkoxide, amide, and alkyl ligands during the atomic layer deposition (ALD) of ternary oxides was determined using simplified theoretical models. Quantum chemical estimations of the Brønsted reactivity of a metal complex precursor at a hydroxylated surface are made using a gas-phase hydrolysis model. The geometry optimized structures and energies for a large suite of 17 metal precursors (including cations of Mg, Ca, Sr, Sc, Y, La, Ti, Zr, Cr, Mn, Fe, Co, Ni, Cu, Zn, Al, and Ga) with five different anionic ligands (conjugate bases of tert-butanol, tetramethyl heptanedione, dimethyl amine, isopropyl amidine, and methane) and the corresponding hydrolyzed complexes are calculated using density functional theory (DFT) methods. The theoretically computed energies are used to determine the energetics of the model reactions. These DFT models of hydrolysis are used to successfully explain the reactivity and resulting stoichiometry in terms of metal cation ratios seen experimentally for a variety of ALD-grown ternary oxide systems.

  2. Rational Design of Hyperbranched Nanowire Systems for Tunable Superomniphobic Surfaces Enabled by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bielinski, Ashley R.; Boban, Mathew; He, Yang; Kazyak, Eric; Lee, Duck Hyun; Wang, Chongmin; Tuteja, Anish; Dasgupta, Neil P.

    2017-01-24

    A method for tunable control of geometry in hyperbranched ZnO nanowire (NW) systems is reported, which enables the rational design and fabrication of superomniphobic surfaces. Branched NWs with tunable density and orientation were grown via a sequential hydrothermal process, in which atomic layer deposition (ALD) was used for NW seeding, disruption of epitaxy, and selective blocking of NW nucleation. This approach allows for the rational design and optimization of three-level hierarchical structures, in which the geometric parameters of each level of hierarchy can be individually controlled. We demonstrate the coupled relationships between geometry and contact angle for a variety of liquids, which is supported by mathematical models of structural superomniphobicity. The highest performing superomniphobic surface was designed with three levels of hierarchy and achieved the following advancing/receding contact angles, water: 172°/170°, hexadecane: 166°/156°, octane: 162°/145°, and heptane: 160°/130°. Low surface tension liquids were shown to bounce off the surface from a height of 7 cm without breaking through and wetting. This approach demonstrates the power of ALD as an enabling technique for hierarchical materials by design, spanning the macro, micro, and nano length scales.

  3. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template

    Science.gov (United States)

    Woo, Ju Yeon; Han, Hyo; Kim, Ji Weon; Lee, Seung-Mo; Ha, Jeong Sook; Shim, Joon Hyung; Han, Chang-Soo

    2016-07-01

    The fabrication of nanostructures having diameters of sub-5 nm is very a important issue for bottom-up nanofabrication of nanoscale devices. In this work, we report a highly controllable method to create sub-5 nm nano-trenches and nanowires by combining area-selective atomic layer deposition (ALD) with single-walled carbon nanotubes (SWNTs) as templates. Alumina nano-trenches having a depth of 2.6 ∼ 3.0 nm and SiO2 nano-trenches having a depth of 1.9 ∼ 2.2 nm fully guided by the SWNTs have been formed on SiO2/Si substrate. Through infilling ZnO material by ALD in alumina nano-trenches, well-defined ZnO nanowires having a thickness of 3.1 ∼ 3.3 nm have been fabricated. In order to improve the electrical properties of ZnO nanowires, as-fabricated ZnO nanowires by ALD were annealed at 350 °C in air for 60 min. As a result, we successfully demonstrated that as-synthesized ZnO nanowire using a specific template can be made for various high-density resistive components in the nanoelectronics industry.

  4. Surface reaction mechanisms during ozone and oxygen plasma assisted atomic layer deposition of aluminum oxide.

    Science.gov (United States)

    Rai, Vikrant R; Vandalon, Vincent; Agarwal, Sumit

    2010-09-07

    We have elucidated the reaction mechanism and the role of the reactive intermediates in the atomic layer deposition (ALD) of aluminum oxide from trimethyl aluminum in conjunction with O(3) and an O(2) plasma. In situ attenuated total reflection Fourier transform infrared spectroscopy data show that both -OH groups and carbonates are formed on the surface during the oxidation cycle. These carbonates, once formed on the surface, are stable to prolonged O(3) exposure in the same cycle. However, in the case of plasma-assisted ALD, the carbonates decompose upon prolonged O(2) plasma exposure via a series reaction kinetics of the type, A (CH(3)) --> B (carbonates) --> C (Al(2)O(3)). The ratio of -OH groups to carbonates on the surface strongly depends on the oxidizing agent, and also the duration of the oxidation cycle in plasma-assisted ALD. However, in both O(3) and O(2) plasma cycles, carbonates are a small fraction of the total number of reactive sites compared to the hydroxyl groups.

  5. Atomic Layer Deposited Coatings on Nanowires for High Temperature Water Corrosion Protection.

    Science.gov (United States)

    Yersak, Alexander S; Lewis, Ryan J; Liew, Li-Anne; Wen, Rongfu; Yang, Ronggui; Lee, Yung-Cheng

    2016-11-30

    Two-phase liquid-cooling technologies incorporating micro/nanostructured copper or silicon surfaces have been established as a promising thermal management solution to keep up with the increasing power demands of high power electronics. However, the reliability of nanometer-scale features of copper and silicon in these devices has not been well investigated. In this work, accelerated corrosion testing reveals that copper nanowires are not immune to corrosion in deaerated pure hot water. To solve this problem, we investigate atomic layer deposition (ALD) TiO2 coatings grown at 150 and 175 °C. We measured no difference in coating thickness for a duration of 12 days. Using a core/shell approach, we grow ALD TiO2/Al2O3 protective coatings on copper nanowires and demonstrate a preservation of nanoengineered copper features. These studies have identified a critical reliability problem of nanoscale copper and silicon surfaces in deaerated, pure, hot water and have successfully demonstrated a reliable solution using ALD TiO2/Al2O3 protective coatings.

  6. Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Ott, J. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Laboratory of Radio Chemistry, University of Helsinki (Finland); Mäkelä, M. [Laboratory of Inorganic Chemistry, University of Helsinki (Finland); Arsenovich, T.; Gädda, A.; Peltola, T. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Tuovinen, E. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); VTT Technical Research Centre of Finland, Microsystem and Nanoelectronics (Finland); Luukka, P.; Tuominen, E. [Helsinki Institute of Physics, CMS Upgrade Project, Helsinki (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Niinistö, J.; Ritala, M. [Laboratory of Inorganic Chemistry, University of Helsinki (Finland)

    2016-09-21

    In this report we cover two special applications of Atomic Layer Deposition (ALD) thin films to solve these challenges of the very small size pixel detectors. First, we propose to passivate the p-type pixel detector with ALD grown Al{sub 2}O{sub 3} field insulator with a negative oxide charge instead of using the commonly adopted p-stop or p-spray technologies with SiO{sub 2}, and second, to use plasma-enhanced ALD grown titanium nitride (TiN) bias resistors instead of the punch through biasing structures. Surface passivation properties of Al{sub 2}O{sub 3} field insulator was studied by Photoconductive Decay (PCD) method and our results indicate that after appropriate annealing Al{sub 2}O{sub 3} provides equally low effective surface recombination velocity as thermally oxidized Si/SiO{sub 2} interface. Furthermore, with properly designed annealing steps, the TiN thin film resistors can be tuned to have up to several MΩ resistances with a few µm of physical size required in ultra-fine pitch pixel detectors.

  7. In situ spectroscopic ellipsometry during atomic layer deposition of Pt, Ru and Pd

    Science.gov (United States)

    Leick, N.; Weber, J. W.; Mackus, A. J. M.; Weber, M. J.; van de Sanden, M. C. M.; Kessels, W. M. M.

    2016-03-01

    The preparation of ultra-thin platinum-group metal films, such as Pt, Ru and Pd, by atomic layer deposition (ALD) was monitored in situ using spectroscopic ellipsometry in the photon energy range of 0.75-5 eV. The metals’ dielectric function was parametrized using a ‘flexible’ Kramers-Kronig consistent dielectric function because it was able to provide accurate curve shape control over the optical response of the metals. From this dielectric function, it was possible to extract the film thickness values during the ALD process. The important ALD process parameters, such as the nucleation period and growth per cycle of Pt, Ru and Pd could be determined from the thickness evolution. In addition to process parameters, the film resistivity in particular could be extracted from the modeled dielectric function. Spectroscopic ellipsometry thereby revealed itself as a feasible and valuable technique to be used in research and development applications, as well as for process monitoring during ALD.

  8. Plasma-enhanced atomic layer deposition of titanium oxynitrides films: A comparative spectroscopic and electrical study

    Energy Technology Data Exchange (ETDEWEB)

    Sowińska, Małgorzata, E-mail: malgorzata.sowinska@b-tu.de; Henkel, Karsten; Schmeißer, Dieter [Brandenburg University of Technology Cottbus-Senftenberg, Applied Physics and Sensors, K.-Wachsmann-Allee 17, 03046 Cottbus (Germany); Kärkkänen, Irina; Schneidewind, Jessica; Naumann, Franziska; Gruska, Bernd; Gargouri, Hassan [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2016-01-15

    The process parameters' impact of the plasma-enhanced atomic layer deposition (PE-ALD) method on the oxygen to nitrogen (O/N) ratio in titanium oxynitride (TiO{sub x}N{sub y}) films was studied. Titanium(IV)isopropoxide in combination with NH{sub 3} plasma and tetrakis(dimethylamino)titanium by applying N{sub 2} plasma processes were investigated. Samples were characterized by the in situ spectroscopic ellipsometry, x-ray photoelectron spectroscopy, and electrical characterization (current–voltage: I-V and capacitance–voltage: C-V) methods. The O/N ratio in the TiO{sub x}N{sub y} films is found to be very sensitive for their electric properties such as conductivity, dielectric breakdown, and permittivity. Our results indicate that these PE-ALD film properties can be tuned, via the O/N ratio, by the selection of the process parameters and precursor/coreactant combination.

  9. Catalyst synthesis and evaluation using an integrated atomic layer deposition synthesis–catalysis testing tool

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Bunquin, Jeffrey; Shou, Heng; Marshall, Christopher L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Aich, Payoli [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Beaulieu, David R.; Klotzsch, Helmut; Bachman, Stephen [Arradiance Inc., Sudbury, Massachusetts 01776 (United States); Hock, Adam [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Stair, Peter [Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States)

    2015-08-15

    An integrated atomic layer deposition synthesis-catalysis (I-ALD-CAT) tool was developed. It combines an ALD manifold in-line with a plug-flow reactor system for the synthesis of supported catalytic materials by ALD and immediate evaluation of catalyst reactivity using gas-phase probe reactions. The I-ALD-CAT delivery system consists of 12 different metal ALD precursor channels, 4 oxidizing or reducing agents, and 4 catalytic reaction feeds to either of the two plug-flow reactors. The system can employ reactor pressures and temperatures in the range of 10{sup −3} to 1 bar and 300–1000 K, respectively. The instrument is also equipped with a gas chromatograph and a mass spectrometer unit for the detection and quantification of volatile species from ALD and catalytic reactions. In this report, we demonstrate the use of the I-ALD-CAT tool for the synthesis of platinum active sites and Al{sub 2}O{sub 3} overcoats, and evaluation of catalyst propylene hydrogenation activity.

  10. Macroporous p-GaP Photocathodes Prepared by Anodic Etching and Atomic Layer Deposition Doping.

    Science.gov (United States)

    Lee, Sudarat; Bielinski, Ashley R; Fahrenkrug, Eli; Dasgupta, Neil P; Maldonado, Stephen

    2016-06-29

    P-type macroporous gallium phosphide (GaP) photoelectrodes have been prepared by anodic etching of an undoped, intrinsically n-type GaP(100) wafer and followed by drive-in doping with Zn from conformal ZnO films prepared by atomic layer deposition (ALD). Specifically, 30 nm ALD ZnO films were coated on GaP macroporous films and then annealed at T = 650 °C for various times to diffuse Zn in GaP. Under 100 mW cm(-2) white light illumination, the resulting Zn-doped macroporous GaP consistently exhibit strong cathodic photocurrent when measured in aqueous electrolyte containing methyl viologen. Wavelength-dependent photoresponse measurements of the Zn-doped macroporous GaP revealed enhanced collection efficiency at wavelengths longer than 460 nm, indicating that the ALD doping step rendered the entire material p-type and imparted the ability to sustain a strong internal electric field that preferentially drove photogenerated electrons to the GaP/electrolyte interface. Collectively, this work presents a doping strategy with a potentially high degree of controllability for high-aspect ratio III-V materials, where the ZnO ALD film is a practical dopant source for Zn.

  11. Periodic oxidation for fabricating titanium oxynitride thin films via atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Iwashita, Shinya, E-mail: shinya.iwashita@tel.com; Aoyama, Shintaro; Nasu, Masayuki; Shimomura, Kouji; Noro, Naotaka; Hasegawa, Toshio; Akasaka, Yasushi [SPE Core Technology Development Department, Tokyo Electron Yamanashi Ltd., 50 Mitsuzawa, Hosaka-cho, 407-0192 Nirasaki (Japan); Miyashita, Kohei [Leading Edge Process Development Center, Tokyo Electron Ltd., 650 Mitsuzawa, Hosaka-cho, 407-0192 Nirasaki (Japan)

    2016-01-15

    This paper demonstrates thermal atomic layer deposition (ALD) combined with periodic oxidation for synthesizing titanium oxynitride (TiON) thin films. The process used a typical ALD reactor for the synthesis of titanium nitride (TiN) films wherein oxygen was supplied periodically between the ALD-TiN cycles. The great advantage of the process proposed here was that it allowed the TiN films to be oxidized efficiently. Also, a uniform depth profile of the oxygen concentration in the films could be obtained by tuning the oxidation conditions, allowing the process to produce a wide variety of TiON films. The resistivity measurement is a convenient method to confirm the reproducibility of metal film fabrication but may not be applicable for TiON films depending upon the oxidation condition because the films can easily turn into insulators when subjected to periodic oxidation. Therefore, an alternative reproducibility confirmation method was required. In this study, spectroscopic ellipsometry was applied to monitor the variation of TiON films and was able to detect changes in film structures such as conductor–insulator transitions in the TiON films.

  12. Atomic layer deposition of undoped TiO2 exhibiting p-type conductivity.

    Science.gov (United States)

    Iancu, Andrei T; Logar, Manca; Park, Joonsuk; Prinz, Fritz B

    2015-03-11

    With prominent photocatalytic applications and widespread use in semiconductor devices, TiO2 is one of the most popular metal oxides. However, despite its popularity, it has yet to achieve its full potential due to a lack of effective methods for achieving p-type conductivity. Here, we show that undoped p-type TiO2 films can be fabricated by atomic layer deposition (ALD) and that their electrical properties can be controlled across a wide range using proper postprocessing anneals in various ambient environments. Hole mobilities larger than 400 cm(2)/(V·s) are accessible superseding the use of extrinsic doping, which generally produces orders of magnitude smaller values. Through a combination of analyses and experiments, we provide evidence that this behavior is primarily due to an excess of oxygen in the films. This discovery enables entirely new categories of TiO2 devices and applications, and unlocks the potential to improve existing ones. TiO2 homojunction diodes fabricated completely by ALD are developed as a demonstration of the utility of these techniques and shown to exhibit useful rectifying characteristics even with minimal processing refinement.

  13. Probabilistic distributions of pinhole defects in atomic layer deposited films on polymeric substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yersak, Alexander S., E-mail: alexander.yersak@colorado.edu; Lee, Yung-Cheng [Department of Mechanical Engineering, University of Colorado at Boulder, 1045 Regent Drive, 422 UCB, Boulder, Colorado 80309-0422 (United States)

    2016-01-15

    Pinhole defects in atomic layer deposition (ALD) coatings were measured in an area of 30 cm{sup 2} in an ALD reactor, and these defects were represented by a probabilistic cluster model instead of a single defect density value with number of defects over area. With the probabilistic cluster model, the pinhole defects were simulated over a manufacturing scale surface area of ∼1 m{sup 2}. Large-area pinhole defect simulations were used to develop an improved and enhanced design method for ALD-based devices. A flexible thermal ground plane (FTGP) device requiring ALD hermetic coatings was used as an example. Using a single defect density value, it was determined that for an application with operation temperatures higher than 60 °C, the FTGP device would not be possible. The new probabilistic cluster model shows that up to 40.3% of the FTGP would be acceptable. With this new approach the manufacturing yield of ALD-enabled or other thin film based devices with different design configurations can be determined. It is important to guide process optimization and control and design for manufacturability.

  14. Plasma-Enhanced Atomic Layer Deposition of Silicon Nitride Using a Novel Silylamine Precursor.

    Science.gov (United States)

    Park, Jae-Min; Jang, Se Jin; Yusup, Luchana L; Lee, Won-Jun; Lee, Sang-Ick

    2016-08-17

    We report the plasma-enhanced atomic layer deposition (PEALD) of silicon nitride thin film using a silylamine compound as the silicon precursor. A series of silylamine compounds were designed by replacing SiH3 groups in trisilylamine by dimethylaminomethylsilyl or trimethylsilyl groups to obtain sufficient thermal stability. The silylamine compounds were synthesized through redistribution, amino-substitution, lithiation, and silylation reactions. Among them, bis(dimethylaminomethylsilyl)trimethylsilyl amine (C9H29N3Si3, DTDN2-H2) was selected as the silicon precursor because of the lowest bond dissociation energy and sufficient vapor pressures. The energies for adsorption and reaction of DTDN2-H2 with the silicon nitride surface were also calculated by density functional theory. PEALD silicon nitride thin films were prepared using DTDN2-H2 and N2 plasma. The PEALD process window was between 250 and 400 °C with a growth rate of 0.36 Å/cycle. The best film quality was obtained at 400 °C with a RF power of 100 W. The PEALD film prepared showed good bottom and sidewall coverages of ∼80% and ∼73%, respectively, on a trench-patterned wafer with an aspect ratio of 5.5.

  15. Standing and sitting adlayers in atomic layer deposition of ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhengning; Banerjee, Parag, E-mail: parag.banerjee@wustl.edu [Department of Mechanical Engineering & Material Science, Washington University in St. Louis, Missouri 63130 and Institute of Materials Science & Engineering, Washington University in St. Louis, Missouri 63130 (United States); Wu, Fei; Myung, Yoon [Department of Mechanical Engineering & Material Science, Washington University in St. Louis, Missouri 63130 (United States); Fei, Ruixiang [Department of Physics, Washington University in St. Louis, Missouri 63130 (United States); Kanjolia, Ravindra [SAFC Hitech, 1429 Hilldale Ave., Haverhill, Massachusetts 01832 (United States); Yang, Li [Institute of Materials Science & Engineering, Washington University in St. Louis, Missouri 63130 and Department of Physics, Washington University in St. Louis, Missouri 63130 (United States)

    2016-01-15

    The extent of reactivity of diethyl zinc (DEZ) with a hydroxylated surface during atomic layer deposition (ALD) of ZnO using DEZ and water is measured. Two adlayer configurations of DEZ are possible. The “standing” adlayer releases one ethyl group from DEZ. The “sitting” adlayer releases both ethyl groups, thus forming a Zn bridge between two O anions. Density functional theory calculations suggest the sitting configuration is more stable than the standing configuration by 790 meV. In situ quadrupole mass spectroscopy of by-product ethane generated in ALD half cycles indicate that ∼1.56 OH sites react with a DEZ molecule resulting in 71.6% of sitting sites. A simple simulation of a “ball-and-stick” DEZ molecule randomly collapsing on a neighboring site remarkably captures this adlayer behavior. It is concluded that DEZ fraction sitting is a competitive process of a standing DEZ molecule collapsing onto an available neighboring hydroxyl site, as sites vie for occupancy via adsorption and surface diffusion.

  16. Atomic Layer Deposition (ALD) grown thin films for ultra-fine pitch pixel detectors

    Science.gov (United States)

    Härkönen, J.; Ott, J.; Mäkelä, M.; Arsenovich, T.; Gädda, A.; Peltola, T.; Tuovinen, E.; Luukka, P.; Tuominen, E.; Junkes, A.; Niinistö, J.; Ritala, M.

    2016-09-01

    In this report we cover two special applications of Atomic Layer Deposition (ALD) thin films to solve these challenges of the very small size pixel detectors. First, we propose to passivate the p-type pixel detector with ALD grown Al2O3 field insulator with a negative oxide charge instead of using the commonly adopted p-stop or p-spray technologies with SiO2, and second, to use plasma-enhanced ALD grown titanium nitride (TiN) bias resistors instead of the punch through biasing structures. Surface passivation properties of Al2O3 field insulator was studied by Photoconductive Decay (PCD) method and our results indicate that after appropriate annealing Al2O3 provides equally low effective surface recombination velocity as thermally oxidized Si/SiO2 interface. Furthermore, with properly designed annealing steps, the TiN thin film resistors can be tuned to have up to several MΩ resistances with a few μm of physical size required in ultra-fine pitch pixel detectors.

  17. Fabrication of metallic single electron transistors featuring plasma enhanced atomic layer deposition of tunnel barriers

    Science.gov (United States)

    Karbasian, Golnaz

    The continuing increase of the device density in integrated circuits (ICs) gives rise to the high level of power that is dissipated per unit area and consequently a high temperature in the circuits. Since temperature affects the performance and reliability of the circuits, minimization of the energy consumption in logic devices is now the center of attention. According to the International Technology Roadmaps for Semiconductors (ITRS), single electron transistors (SETs) hold the promise of achieving the lowest power of any known logic device, as low as 1x10-18 J per switching event. Moreover, SETs are the most sensitive electrometers to date, and are capable of detecting a fraction of an electron charge. Despite their low power consumption and high sensitivity for charge detection, room temperature operation of these devices is quite challenging mainly due to lithographical constraints in fabricating structures with the required dimensions of less than 10 nm. Silicon based SETs have been reported to operate at room temperature. However, they all suffer from significant variation in batch-to-batch performance, low fabrication yield, and temperature-dependent tunnel barrier height. In this project, we explored the fabrication of SETs featuring metal-insulator-metal (MIM) tunnel junctions. While Si-based SETs suffer from undesirable effect of dopants that result in irregularities in the device behavior, in metal-based SETs the device components (tunnel barrier, island, and the leads) are well-defined. Therefore, metal SETs are potentially more predictable in behavior, making them easier to incorporate into circuits, and easier to check against theoretical models. Here, the proposed fabrication method takes advantage of unique properties of chemical mechanical polishing (CMP) and plasma enhanced atomic layer deposition (PEALD). Chemical mechanical polishing provides a path for tuning the dimensions of the tunnel junctions, surpassing the limits imposed by electron beam

  18. Atomistic kinetic Monte Carlo study of atomic layer deposition derived from density functional theory.

    Science.gov (United States)

    Shirazi, Mahdi; Elliott, Simon D

    2014-01-30

    To describe the atomic layer deposition (ALD) reactions of HfO2 from Hf(N(CH3)2)4 and H2O, a three-dimensional on-lattice kinetic Monte-Carlo model is developed. In this model, all atomistic reaction pathways in density functional theory (DFT) are implemented as reaction events on the lattice. This contains all steps, from the early stage of adsorption of each ALD precursor, kinetics of the surface protons, interaction between the remaining precursors (steric effect), influence of remaining fragments on adsorption sites (blocking), densification of each ALD precursor, migration of each ALD precursors, and cooperation between the remaining precursors to adsorb H2O (cooperative effect). The essential chemistry of the ALD reactions depends on the local environment at the surface. The coordination number and a neighbor list are used to implement the dependencies. The validity and necessity of the proposed reaction pathways are statistically established at the mesoscale. The formation of one monolayer of precursor fragments is shown at the end of the metal pulse. Adsorption and dissociation of the H2O precursor onto that layer is described, leading to the delivery of oxygen and protons to the surface during the H2O pulse. Through these processes, the remaining precursor fragments desorb from the surface, leaving the surface with bulk-like and OH-terminated HfO2, ready for the next cycle. The migration of the low coordinated remaining precursor fragments is also proposed. This process introduces a slow reordering motion (crawling) at the mesoscale, leading to the smooth and conformal thin film that is characteristic of ALD.

  19. Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles

    Energy Technology Data Exchange (ETDEWEB)

    Brozena, Alexandra H.; Oldham, Christopher J.; Parsons, Gregory N., E-mail: gnp@ncsu.edu [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905 (United States)

    2016-01-15

    Textile materials, including woven cotton, polymer knit fabrics, and synthetic nonwoven fiber mats, are being explored as low-cost, flexible, and light-weight platforms for wearable electronic sensing, communication, energy generation, and storage. The natural porosity and high surface area in textiles is also useful for new applications in environmental protection, chemical decontamination, pharmaceutical and chemical manufacturing, catalytic support, tissue regeneration, and others. These applications raise opportunities for new chemistries, chemical processes, biological coupling, and nanodevice systems that can readily combine with textile manufacturing to create new “multifunctional” fabrics. Atomic layer deposition (ALD) has a unique ability to form highly uniform and conformal thin films at low processing temperature on nonuniform high aspect ratio surfaces. Recent research shows how ALD can coat, modify, and otherwise improve polymer fibers and textiles by incorporating new materials for viable electronic and other multifunctional capabilities. This article provides a current overview of the understanding of ALD coating and modification of textiles, including current capabilities and outstanding problems, with the goal of providing a starting point for further research and advances in this field. After a brief introduction to textile materials and current textile treatment methods, the authors discuss unique properties of ALD-coated textiles, followed by a review of recent electronic and multifunctional textiles that use ALD coatings either as direct functional components or as critical nucleation layers for active materials integration. The article concludes with possible future directions for ALD on textiles, including the challenges in materials, manufacturing, and manufacturing integration that must be overcome for ALD to reach its full potential in electronic and other emerging multifunctional textile systems.

  20. Effect of the nature of the substrate on the surface chemistry of atomic layer deposition precursors

    Science.gov (United States)

    Yao, Yunxi; Coyle, Jason P.; Barry, Seán T.; Zaera, Francisco

    2017-02-01

    The thermal chemistry of Cu(I)-sec-butyl-2-iminopyrrolidinate, a promising copper amidinate complex for atomic layer deposition (ALD) applications, was explored comparatively on several surfaces by using a combination of surface-sensitive techniques, specifically temperature-programmed desorption and x-ray photoelectron spectroscopy (XPS). The substrates explored include single crystals of transition metals (Ni(110) and Cu(110)), thin oxide films (NiO/Ni(110) and SiO2/Ta), and oxygen-treated metals (O/Cu(110)). Decomposition of the pyrrolidinate ligand leads to the desorption of several gas-phase products, including CH3CN, HCN and butene from the metals and CO and CO2 from the oxygen-containing surfaces. In all cases dehydrogenation of the organic moieties is accompanied by hydrogen removal from the surface, in the form of H2 on metals and mainly as water from the metal oxides, but the threshold for this chemistry varies wildly, from 270 K on Ni(110) to 430 K on O/Cu(110), 470 K on Cu(110), 500 K on NiO/Ni(110), and 570 K on SiO2/Ta. Copper reduction is also observed in both the Cu 2p3/2 XPS and the Cu L3 VV Auger (AES) spectra, reaching completion by 300 K on Ni(110) but occurring only between 500 and 600 K on Cu(110). On NiO/Ni(110), both Cu(I) and Cu(0) coexist between 200 and 500 K, and on SiO2/Ta a change happens between 500 and 600 K but the reduction is limited, with the copper atoms retaining a significant ionic character. Additional experiments to test adsorption at higher temperatures led to the identification of temperature windows for the self-limiting precursor uptake required for ALD between approximately 300 and 450 K on both Ni(110) and NiO/Ni(110); the range on SiO2 had been previously determined to be wider, reaching an upper limit at about 500 K. Finally, deposition of copper metal films via ALD cycles with O2 as the co-reactant was successfully accomplished on the Ni(110) substrate.

  1. Atomic layer deposition of a high-k dielectric on MoS2 using trimethylaluminum and ozone.

    Science.gov (United States)

    Cheng, Lanxia; Qin, Xiaoye; Lucero, Antonio T; Azcatl, Angelica; Huang, Jie; Wallace, Robert M; Cho, Kyeongjae; Kim, Jiyoung

    2014-08-13

    We present an Al2O3 dielectric layer on molybdenum disulfide (MoS2), deposited using atomic layer deposition (ALD) with ozone/trimethylaluminum (TMA) and water/TMA as precursors. The results of atomic force microscopy and low-energy ion scattering spectroscopy show that using TMA and ozone as precursors leads to the formation of uniform Al2O3 layers, in contrast to the incomplete coverage we observe when using TMA/H2O as precursors. Our Raman and X-ray photoelectron spectroscopy measurements indicate minimal variations in the MoS2 structure after ozone treatment at 200 °C, suggesting its excellent chemical resistance to ozone.

  2. Role of low-energy ion irradiation in the formation of an aluminum germanate layer on a germanium substrate by radical-enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Yukio, E-mail: y-fukuda@rs.suwa.tus.ac.jp; Yamada, Daichi; Yokohira, Tomoya; Yanachi, Kosei [Tokyo University of Science, Suwa, 5000-1 Toyohira, Chino, Nagano 391-0292 (Japan); Yamamoto, Chiaya; Yoo, Byeonghak; Sato, Tetsuya [University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Yamanaka, Junji [University of Yamanashi, 7-32 Miyamae, Kofu, Yamanashi 400-8511 (Japan); Takamatsu, Toshiyuki [SST Inc., 989-6 Shimadadai, Yachiyo, Chiba 276-0004 (Japan); Okamoto, Hiroshi [Hirosaki University, 3 Bunkyo, Hirosaki 036-8561 (Japan)

    2016-03-15

    Radical-enhanced atomic layer deposition uses oxygen radicals generated by a remote microwave-induced plasma as an oxidant to change the surface reactions of the alternately supplied trimethylaluminum precursor and oxygen radicals on a Ge substrate, which leads to the spontaneous formation of an aluminum germanate layer. In this paper, the effects that low-energy ions, supplied from a remote microwave plasma to the substrate along with the oxygen radicals, have on the surface reactions were studied. From a comparative study of aluminum oxide deposition under controlled ion flux irradiation on the deposition surface, it was found that the ions enhance the formation of the aluminum germanate layer. The plasma potential measured at the substrate position by the Langmuir probe method was 5.4 V. Assuming that the kinetic energy of ions arriving at the substrate surface is comparable to that gained by this plasma potential, such ions have sufficient energy to induce exchange reactions of surface-adsorbed Al atoms with the underlying Ge atoms without causing significant damage to the substrate. This ion-induced exchange reaction between Al and Ge atoms is inferred to be the background kinetics of the aluminum germanate formation by radical-enhanced atomic layer deposition.

  3. Suppressed grain-boundary scattering in atomic layer deposited Nb:TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Niemelä, Janne-Petteri; Karppinen, Maarit, E-mail: maarit.karppinen@aalto.fi [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland); Hirose, Yasushi; Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, Tokyo 113-0033 (Japan); Shigematsu, Kei [Kanagawa Academy of Science and Technology, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, Tokyo 113-0033 (Japan); Sano, Masahito [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan)

    2015-11-09

    We have fabricated high-quality thin films of the transparent conducting anatase Nb:TiO{sub 2} on glass substrates through atomic layer deposition, and a subsequent reductive heat treatment of the as-deposited amorphous films. Hall-effect measurements and Drude-fitting of the Vis-NIR spectra indicate that for lightly doped films deposited at temperatures around 170 °C, grain boundary scattering becomes negligible and the mobility is predominately limited by phonon-electron scattering inherent to the anatase lattice and by impurities. Simultaneously, such lighter doping leads to reduced plasma absorption, thereby improving material's performance as a transparent conductor.

  4. Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent

    Science.gov (United States)

    Sarr, Mouhamadou; Bahlawane, Naoufal; Arl, Didier; Dossot, Manuel; McRae, Edward; Lenoble, Damien

    2016-08-01

    The investigation of highly conformal thin films using Atomic Layer Deposition (ALD) is driven by a variety of applications in modern technologies. In particular, the emergence of 3D memory device architectures requires conformal materials with tuneable magnetic properties. Here, nanocomposites of carbon, cobalt and cobalt carbide are deposited by ALD using cobalt acetylacetonate with propanol as a reducing agent. Films were grown by varying the ALD deposition parameters including deposition temperature and propanol exposure time. The morphology, the chemical composition and the crystalline structure of the cobalt carbide film were investigated. Vibrating Sample Magnetometer (VSM) measurements revealed magnetic hysteresis loops with a coercivity reaching 500 Oe and a maximal saturation magnetization of 0.9 T with a grain size less than 15 nm. Magnetic properties are shown to be tuneable by adjusting the deposition parameters that significantly affect the microstructure and the composition of the deposited films.

  5. Photoinduced Charge Transfer at Metal Oxide/Oxide Interfaces Prepared with Plasma Enhanced Atomic Layer Deposition

    Science.gov (United States)

    Kaur, Manpuneet

    LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal oxide layers to passivate the surfaces and to enhance their photocatalytic efficiency. LiNbO 3 was coated with plasma enhanced atomic layer deposited (PEALD) ZnO and Al2O3, and molecular beam deposited TiO2 and VO2. On the other hand, PEALD ZnO and single crystal ZnO were passivated with PEALD SiO2 and Al2O3. Metal oxide/LiNbO3 heterostructures were immersed in aqueous AgNO3 solutions and illuminated with ultraviolet (UV) light to form Ag nanoparticle patterns. Alternatively, Al2O3 and SiO2/ZnO heterostructures were immersed in K3PO 4 buffer solutions and studied for photoelectrochemical reactions. A fundamental aspect of the heterostructures is the band alignment and band bending, which was deduced from in situ photoemission measurements. This research has provided insight to three aspects of the heterostructures. First, the band alignment at the interface of metal oxides/LiNbO 3, and Al2O3 or SiO2/ZnO were used to explain the possible charge transfer processes and the direction of carrier flow in the heterostructures. Second, the effect of metal oxide coatings on the LiNbO3 with different internal carrier concentrations was related to the surface photochemical reactions. Third is the surface passivation and degradation mechanism of Al2O 3 and SiO2 on ZnO was established. The heterostructures were characterized after stability tests using atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross-section transmission electron microscopy (TEM). The results indicate that limited thicknesses of ZnO or TiO2 on polarity patterned LiNbO3 (PPLN) enhances the Ag+ photoinduced reduction process. ZnO seems more efficient

  6. Atomic layer deposition of TiO2 on surface modified nanoporous low-k films.

    Science.gov (United States)

    Levrau, Elisabeth; Devloo-Casier, Kilian; Dendooven, Jolien; Ludwig, Karl F; Verdonck, Patrick; Meersschaut, Johan; Baklanov, Mikhail R; Detavernier, Christophe

    2013-10-01

    This paper explores the effects of different plasma treatments on low dielectric constant (low-k) materials and the consequences for the growth behavior of atomic layer deposition (ALD) on these modified substrates. An O2 and a He/H2 plasma treatment were performed on SiCOH low-k films to modify their chemical surface groups. Transmission FTIR and water contact angle (WCA) analysis showed that the O2 plasma changed the hydrophobic surface completely into a hydrophilic surface, while the He/H2 plasma changed it only partially. In a next step, in situ X-ray fluorescence (XRF), ellipsometric porosimetry (EP), and Rutherford backscattering spectroscopy (RBS) were used to characterize ALD growth of TiO2 on these substrates. The initial growth of TiO2 was found to be inhibited in the original low-k film containing only Si-CH3 surface groups, while immediate growth was observed in the hydrophilic O2 plasma treated film. The latter film was uniformly filled with TiO2 after 8 ALD cycles, while pore filling was delayed to 17 ALD cycles in the hydrophobic film. For the He/H2 plasma treated film, containing both Si-OH and Si-CH3 groups, the in situ XRF data showed that TiO2 could no longer be deposited in the He/H2 plasma treated film after 8 ALD cycles, while EP measurements revealed a remaining porosity. This can be explained by the faster deposition of TiO2 in the hydrophilic top part of the film than in the hydrophobic bulk which leaves the bulk porous, as confirmed by RBS depth profiling. The outcome of this research is not only of interest for the development of advanced interconnects in ULSI technology, but also demonstrates that ALD combined with RBS analysis is a handy approach to analyze the modifications induced by a plasma treatment on a nanoporous thin film.

  7. Strain and Structure Heterogeneity in MoS2 Atomic Layers Grown by Chemical Vapour Deposition

    Science.gov (United States)

    2014-11-18

    with second-layer MoS2 stripes grown along the GBs, indicated by the white arrows. Scale bar, 5 mm. (e) Annular dark-field scanning TEM image of defect...lattice of monolayer MoS2 (Fig. 1e) can be seen from the annular dark field scanning TEM imaging. The brighter atomic sites are Mo atoms, while the...strains in MoS2 layer as a function of the applied strain on PDMS are shown in Fig. 4i, where a linear relationship is predicted within the range of 5

  8. Nitrogen doping in atomic layer deposition grown titanium dioxide films by using ammonium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, M.-L., E-mail: marja-leena.kaariainen@lut.fi; Cameron, D.C.

    2012-12-30

    Titanium dioxide films have been created by atomic layer deposition using titanium chloride as the metal source and a solution of ammonium hydroxide in water as oxidant. Ammonium hydroxide has been used as a source of nitrogen for doping and three thickness series have been deposited at 350 Degree-Sign C. A 15 nm anatase dominated film was found to possess the highest photocatalytic activity in all film series. Furthermore almost three times better photocatalytic activity was discovered in the doped series compared to undoped films. The doped films also had lower resistivity. The results from X-ray photoemission spectroscopy showed evidence for interstitial nitrogen in the titanium dioxide structure. Besides, there was a minor red shift observable in the thickest samples. In addition the film conductivity was discovered to increase with the feeding pressure of ammonium hydroxide in the oxidant precursor. This may indicate that nitrogen doping has caused the decrease in the resistivity and therefore has an impact as an enhanced photocatalytic activity. The hot probe test showed that all the anatase or anatase dominant films were p-type and all the rutile dominant films were n-type. The best photocatalytic activity was shown by anatase-dominant films containing a small amount of rutile. It may be that p-n-junctions are formed between p-type anatase and n-type rutile which cause carrier separation and slow down the recombination rate. The combination of nitrogen doping and p-n junction formation results in superior photocatalytic performance. - Highlights: Black-Right-Pointing-Pointer We found all N-doped and undoped anatase dominating films p-type. Black-Right-Pointing-Pointer We found all N-doped and undoped rutile dominating films n-type. Black-Right-Pointing-Pointer We propose that p-n junctions are formed in anatase-rutile mixture films. Black-Right-Pointing-Pointer We found that low level N-doping has increased TiO{sub 2} conductivity. Black

  9. Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics

    Science.gov (United States)

    Bulusu, A.; Singh, A.; Wang, C. Y.; Dindar, A.; Fuentes-Hernandez, C.; Kim, H.; Cullen, D.; Kippelen, B.; Graham, S.

    2015-08-01

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion mismatch, elastic constant mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition. We present the impact of architecture on the performance of aluminum oxide (Al2O3)/hafnium oxide (HfO2) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50 °C/85% relative humidity. Inserting a SiNx layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.

  10. Engineering the mechanical properties of ultrabarrier films grown by atomic layer deposition for the encapsulation of printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Bulusu, A.; Singh, A.; Kim, H. [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Wang, C. Y.; Dindar, A.; Fuentes-Hernandez, C.; Kippelen, B. [School of Electrical and Computer Engineering, Georgia Institute of Technology, and Center for Organic Photonics and Electronics, Atlanta, Georgia 30332 (United States); Cullen, D. [Oak Ridge National Laboratory, P.O. Box 2008 MS-6064, Oak Ridge, Tennessee 37831 (United States); Graham, S., E-mail: sgraham@gatech.edu [Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Oak Ridge National Laboratory, P.O. Box 2008 MS-6064, Oak Ridge, Tennessee 37831 (United States)

    2015-08-28

    Direct deposition of barrier films by atomic layer deposition (ALD) onto printed electronics presents a promising method for packaging devices. Films made by ALD have been shown to possess desired ultrabarrier properties, but face challenges when directly grown onto surfaces with varying composition and topography. Challenges include differing nucleation and growth rates across the surface, stress concentrations from topography and coefficient of thermal expansion mismatch, elastic constant mismatch, and particle contamination that may impact the performance of the ALD barrier. In such cases, a polymer smoothing layer may be needed to coat the surface prior to ALD barrier film deposition. We present the impact of architecture on the performance of aluminum oxide (Al{sub 2}O{sub 3})/hafnium oxide (HfO{sub 2}) ALD nanolaminate barrier films deposited on fluorinated polymer layer using an optical calcium (Ca) test under damp heat. It is found that with increasing polymer thickness, the barrier films with residual tensile stress are prone to cracking resulting in rapid failure of the Ca sensor at 50 °C/85% relative humidity. Inserting a SiN{sub x} layer with residual compressive stress between the polymer and ALD layers is found to prevent cracking over a range of polymer thicknesses with more than 95% of the Ca sensor remaining after 500 h of testing. These results suggest that controlling mechanical properties and film architecture play an important role in the performance of direct deposited ALD barriers.

  11. Sensor-based atomic layer deposition for rapid process learning and enhanced manufacturability

    Science.gov (United States)

    Lei, Wei

    In the search for sensor based atomic layer deposition (ALD) process to accelerate process learning and enhance manufacturability, we have explored new reactor designs and applied in-situ process sensing to W and HfO 2 ALD processes. A novel wafer scale ALD reactor, which features fast gas switching, good process sensing compatibility and significant similarity to the real manufacturing environment, is constructed. The reactor has a unique movable reactor cap design that allows two possible operation modes: (1) steady-state flow with alternating gas species; or (2) fill-and-pump-out cycling of each gas, accelerating the pump-out by lifting the cap to employ the large chamber volume as ballast. Downstream quadrupole mass spectrometry (QMS) sampling is applied for in-situ process sensing of tungsten ALD process. The QMS reveals essential surface reaction dynamics through real-time signals associated with byproduct generation as well as precursor introduction and depletion for each ALD half cycle, which are then used for process learning and optimization. More subtle interactions such as imperfect surface saturation and reactant dose interaction are also directly observed by QMS, indicating that ALD process is more complicated than the suggested layer-by-layer growth. By integrating in real-time the byproduct QMS signals over each exposure and plotting it against process cycle number, the deposition kinetics on the wafer is directly measured. For continuous ALD runs, the total integrated byproduct QMS signal in each ALD run is also linear to ALD film thickness, and therefore can be used for ALD film thickness metrology. The in-situ process sensing is also applied to HfO2 ALD process that is carried out in a furnace type ALD reactor. Precursor dose end-point control is applied to precisely control the precursor dose in each half cycle. Multiple process sensors, including quartz crystal microbalance (QCM) and QMS are used to provide real time process information. The

  12. Enhancement of the electrical properties of silver nanowire transparent conductive electrodes by atomic layer deposition coating with zinc oxide

    Science.gov (United States)

    Pham, Anh-Tuan; Nguyen, Xuan-Quang; Tran, Duc-Huy; Phan, Vu Ngoc; Duong, Thanh-Tung; Nguyen, Duy-Cuong

    2016-08-01

    Transparent conductive electrodes for applications in optoelectronic devices such as solar cells and light-emitting diodes are important components and require low sheet resistance and high transmittance. Herein, we report an enhancement of the electrical properties of silver (Ag) nanowire networks by coating with zinc oxide using the atomic layer deposition technique. A strong decrease in the sheet resistance of Ag nanowires, namely from 20-40 Ω/□ to 7-15 Ω/□, was observed after coating with ZnO. Ag nanowire electrodes coated with 200-cycle ZnO by atomic layer deposition show the best quality, with a sheet resistance of 11 Ω/□ and transmittance of 75%.

  13. Effect of Pretreatment of TaN Substrates on Atomic Layer Deposition Growth of Ru Thin Films

    Institute of Scientific and Technical Information of China (English)

    ZHOU Mi; CHEN Tao; TAN Jing-Jing; RU Guo-Ping; JIANG Yu-Long; LIU Ran; QU Xin-Ping

    2007-01-01

    The polycrystalline ruthenium films are grown on TaN substrates by atomic layer deposition (ALD) using bis(cyclopentadienyl) ruthenium [RuCp2] and oxygen as ruthenium precursor and reactant respectively at a deposition temperature of 330℃. The low-energy Ar ion bombardment and Ru pre-deposition are performed to the underlying TaN substrates before ALD process in order to improve the Ru nucleation. X-ray diffraction,X-ray photoelectron spectroscopy, canning electron microscopy and atomic force microscopy are carried out to characterize the properties of ALD Ru films.The results show that the nucleation density of Ru films with Ar+ bombardment to the underlying TaN substrates is much higher than that of the ones without any pretreatment. The possible reasons are discussed.

  14. Preface: Special Topic on Atomic and Molecular Layer Processing: Deposition, Patterning, and Etching.

    Science.gov (United States)

    Engstrom, James R; Kummel, Andrew C

    2017-02-07

    Thin film processing technologies that promise atomic and molecular scale control have received increasing interest in the past several years, as traditional methods for fabrication begin to reach their fundamental limits. Many of these technologies involve at their heart phenomena occurring at or near surfaces, including adsorption, gas-surface reactions, diffusion, desorption, and re-organization of near-surface layers. Moreover many of these phenomena involve not just reactions occurring under conditions of local thermodynamic equilibrium but also the action of energetic species including electrons, ions, and hyperthermal neutrals. There is a rich landscape of atomic and molecular scale interactions occurring in these systems that is still not well understood. In this Special Topic Issue of The Journal of Chemical Physics, we have collected recent representative examples of work that is directed at unraveling the mechanistic details concerning atomic and molecular layer processing, which will provide an important framework from which these fields can continue to develop. These studies range from the application of theory and computation to these systems to the use of powerful experimental probes, such as X-ray synchrotron radiation, probe microscopies, and photoelectron and infrared spectroscopies. The work presented here helps in identifying some of the major challenges and direct future activities in this exciting area of research involving atomic and molecular layer manipulation and fabrication.

  15. Preface: Special Topic on Atomic and Molecular Layer Processing: Deposition, Patterning, and Etching

    Science.gov (United States)

    Engstrom, James R.; Kummel, Andrew C.

    2017-02-01

    Thin film processing technologies that promise atomic and molecular scale control have received increasing interest in the past several years, as traditional methods for fabrication begin to reach their fundamental limits. Many of these technologies involve at their heart phenomena occurring at or near surfaces, including adsorption, gas-surface reactions, diffusion, desorption, and re-organization of near-surface layers. Moreover many of these phenomena involve not just reactions occurring under conditions of local thermodynamic equilibrium but also the action of energetic species including electrons, ions, and hyperthermal neutrals. There is a rich landscape of atomic and molecular scale interactions occurring in these systems that is still not well understood. In this Special Topic Issue of The Journal of Chemical Physics, we have collected recent representative examples of work that is directed at unraveling the mechanistic details concerning atomic and molecular layer processing, which will provide an important framework from which these fields can continue to develop. These studies range from the application of theory and computation to these systems to the use of powerful experimental probes, such as X-ray synchrotron radiation, probe microscopies, and photoelectron and infrared spectroscopies. The work presented here helps in identifying some of the major challenges and direct future activities in this exciting area of research involving atomic and molecular layer manipulation and fabrication.

  16. Microscratch testing method for systematic evaluation of the adhesion of atomic layer deposited thin films on silicon

    OpenAIRE

    Kilpi, Lauri; Ylivaara, Oili M.E.; Vaajoki, Antti; Malm, Jari; Sintonen, Sakari; Tuominen, Marko; Puurunen, Riikka L.; Ronkainen, Helena

    2016-01-01

    The scratch test method is widely used for adhesion evaluation of thin films and coatings. Usual critical load criteria designed for scratch testing of coatings were not applicable to thin atomic layer deposition (ALD) films on silicon wafers. Thus, the bases for critical load evaluation were established and the critical loads suitable for ALD coating adhesion evaluation on silicon wafers were determined in this paper as LCSi1, LCSi2, LCALD1, and LCALD2, representing the failure p...

  17. Impacts of Thermal Atomic Layer-Deposited AlN Passivation Layer on GaN-on-Si High Electron Mobility Transistors.

    Science.gov (United States)

    Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei

    2016-12-01

    Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.

  18. Impacts of Thermal Atomic Layer-Deposited AlN Passivation Layer on GaN-on-Si High Electron Mobility Transistors

    Science.gov (United States)

    Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei

    2016-03-01

    Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.

  19. Luminescence properties of lanthanide and ytterbium lanthanide titanate thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Per-Anders, E-mail: p.a.hansen@kjemi.uio.no; Fjellvåg, Helmer; Nilsen, Ola [Department of Chemistry, Centre for Materials Science and Nanotechnology, University of Oslo, Sem Sælandsvei 26, 0371 Oslo (Norway); Finstad, Terje G. [Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, Sem Sælandsvei 24, 0371 Oslo (Norway)

    2016-01-15

    Lanthanide based luminescent materials are highly suitable as down conversion materials in combination with a UV-absorbing host material. The authors have used TiO{sub 2} as the UV-absorbing host material and investigated the energy transfer between TiO{sub 2} and 11 different lanthanide ions, Ln{sup 3+} (Ln = La, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb) in thin films grown by atomic layer deposition. They have also investigated the possibility to improve the overall energy transfer from TiO{sub 2} to Yb{sup 3+} with a second Ln{sup 3+}, in order to enhance down conversion. The films were grown at a substrate temperature of 300 °C, using the Ln(thd){sub 3}/O{sub 3} (thd = 2,2,6,6-tetramethyl-3,5-heptanedione) and TiCl{sub 4}/H{sub 2}O precursor pairs. The focus of the work is to explore the energy transfer from TiO{sub 2} to Ln{sup 3+} ions, and the energy transfer between Ln{sup 3+} and Yb{sup 3+} ions, which could lead to efficient down conversion. The samples have been characterized by x-ray diffraction, x-ray fluorescence, spectroscopic ellipsometry, and photoluminescence. All films were amorphous as deposited, and the samples have been annealed at 600, 800, and 1000 °C in order to investigate the correlation between the crystallinity and luminescence. The lanthanum titanium oxide samples showed a weak and broad emission centered at 540 nm, which was absent in all the other samples, indicating energy transfer from TiO{sub 2} to Ln{sup 3+} in all other lanthanide samples. In the amorphous phase, all samples, apart from La, Tb, and Tm, showed a typical f-f emission when excited by a 325 nm HeCd laser. None of the samples showed any luminescence after annealing at 1000 °C due to the formation of Ln{sub 2}Ti{sub 2}O{sub 7}. Samples containing Nd, Sm, and Eu show a change in emission spectrum when annealed at 800 °C compared to the as-deposited samples, indicating that the smaller lanthanides crystallize in a different manner than the larger

  20. New chemistry for the growth of first-row transition metal films by atomic layer deposition

    Science.gov (United States)

    Klesko, Joseph Peter

    Thin films containing first-row transition metals are widely used in microelectronic, photovoltaic, catalytic, and surface-coating applications. In particular, metallic films are essential for interconnects and seed, barrier, and capping layers in integrated circuitry. Traditional vapor deposition methods for film growth include PVD, CVD, or the use of plasma. However, these techniques lack the requisite precision for film growth at the nanoscale, and thus, are increasingly inadequate for many current and future applications. By contrast, ALD is the favored approach for depositing films with absolute surface conformality and thickness control on 3D architectures and in high aspect ratio features. However, the low-temperature chemical reduction of most first-row transition metal cations to their zero-valent state is very challenging due to their negative electrochemical potentials. A lack of strongly-reducing coreagents has rendered the thermal ALD of metallic films an intractable problem for many elements. Additionally, several established ALD processes for metal films are plagued by low growth rates, impurity incorporation, poor nucleation, high surface roughness, or the need for hazardous coreagents. Finally, stoichiometric control of ternary films grown by ALD is rare, but increasingly important, with emerging applications for metal borate films in catalysis and lithium ion batteries. The research herein is focused toward the development of new ALD processes for the broader application of metal, metal oxide, and metal borate thin films to future nanoscale technologies. These processes display self-limited growth and support the facile nucleation of smooth, continuous, high-purity films. Bis(trimethylsilyl) six-membered rings are employed as strongly-reducing organic coreagents for the ALD of titanium and antimony metal films. Additionally, new processes are developed for the growth of high-purity, low-resistivity cobalt and nickel metal films by exploiting the

  1. Infrared and thermoelectric power generation in thin atomic layer deposited Nb-doped TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Harkirat S.; Lang, Brian N.; Schwab, Yosyp; Scarel, Giovanna, E-mail: scarelgx@jmu.edu [Department of Physics and Astronomy, James Madison University, 901 Carrier Drive, Harrisonburg, Virginia 22807 (United States); Niemelä, Janne-Petteri; Karppinen, Maarit [Department of Chemistry, Aalto University, P.O. Box 16100, Aalto, 00076 Finland (Finland)

    2015-01-15

    Infrared radiation is used to radiatively transfer heat to a nanometric power generator (NPG) device with a thermoelectric Nb-doped TiO{sub 2} film deposited by atomic layer deposition (ALD) as the active element, onto a borosilicate glass substrate. The linear rise of the produced voltage with respect to the temperature difference between the “hot” and “cold” junctions, typical of the Seebeck effect, is missing. The discovery of the violation of the Seebeck effect in NPG devices combined with the ability of ALD to tune thermoelectric thin film properties could be exploited to increase the efficiency of these devices for energy harvesting purposes.

  2. Precise Nanoscale Surface Modification and Coating of Macroscale Objects: Open-Environment in Loco Atomic Layer Deposition on an Automobile.

    Science.gov (United States)

    Mousa, Moataz Bellah M; Oldham, Christopher J; Parsons, Gregory N

    2015-09-09

    The fundamental chemical reaction conditions that define atomic layer deposition (ALD) can be achieved in an open environment on a macroscale surface too large and complex for typical laboratory reactor-based ALD. We describe the concept of in loco ALD using conventional modulated reactant flow through a surface-mounted "ALD delivery head" to form a precise nanoscale Al2O3 film on the window of a parked automobile. Analysis confirms that the processes eliminated ambient water contamination and met other conditions that define ALD growth. Using this tool, we demonstrate open-ambient patterned deposition, metal corrosion protection, and polymer surface modification.

  3. Atomic layer deposited second order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry

    CERN Document Server

    Clemmen, StÉphane; Solano, Eduardo; Dendooven, Jolien; Koskinen, Kalle; Kauranen, Martti; Brainis, Edouard; Detavernier, Christophe; Baets, Roel

    2015-01-01

    We report the fabrication of artificial unidimensional crystals exhibiting an effective bulk second-order nonlinearity. The crystals are created by cycling atomic layer deposition of three dielectric materials such that the resulting metamaterial is non-centrosymmetric in the direction of the deposition. Characterization of the structures by second-harmonic generation Maker-fringe measurements shows that the main component of their nonlinear susceptibility tensor is about 5 pm/V which is comparable to well-established materials and more than an order of magnitude greater than reported for a similar crystal [1-Alloatti et al, arXiv:1504.00101[cond-mat.mtrl- sci

  4. Metal-Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation.

    Science.gov (United States)

    Kung, Chung-Wei; Mondloch, Joseph E; Wang, Timothy C; Bury, Wojciech; Hoffeditz, William; Klahr, Benjamin M; Klet, Rachel C; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2015-12-30

    Thin films of the metal-organic framework (MOF) NU-1000 were grown on conducting glass substrates. The films uniformly cover the conducting glass substrates and are composed of free-standing sub-micrometer rods. Subsequently, atomic layer deposition (ALD) was utilized to deposit Co(2+) ions throughout the entire MOF film via self-limiting surface-mediated reaction chemistry. The Co ions bind at aqua and hydroxo sites lining the channels of NU-1000, resulting in three-dimensional arrays of separated Co ions in the MOF thin film. The Co-modified MOF thin films demonstrate promising electrocatalytic activity for water oxidation.

  5. Electrical and mechanical stability of aluminum-doped ZnO films grown on flexible substrates by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luka, G., E-mail: gluka@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Witkowski, B.S.; Wachnicki, L.; Jakiela, R. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Virt, I.S. [University of Rzeszow, Rzeszow (Poland); Drohobych Ivan Franko State Pedagogical University, Drohobych (Ukraine); Andrzejczuk, M.; Lewandowska, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland)

    2014-08-01

    Highlights: • Transparent and conductive ZnO:Al films were grown by atomic layer deposition. • The films were grown on flexible substrates at low growth temperatures (110–140 °C). • So-obtained films have low resistivities, of the order of 10{sup −3} Ω cm. • Bending tests indicated a critical bending radius of ≈1.2 cm. • Possible sources of the film resistivity changes upon bending are proposed. - Abstract: Aluminum-doped zinc oxide (AZO) films were grown on polyethylene terephthalate (PET) substrates by atomic layer deposition (ALD) at low deposition temperatures (110–140 °C). The films have low resistivities, ∼10{sup −3} Ω cm, and high transparency (∼90%) in the visible range. Bending tests indicated a critical bending radius of ≈1.2 cm, below which the resistivity changes became irreversible. The films deposited on PET with additional buffer layer are more stable upon bending and temperature changes.

  6. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films.

    Science.gov (United States)

    Haeberle, Jörg; Henkel, Karsten; Gargouri, Hassan; Naumann, Franziska; Gruska, Bernd; Arens, Michael; Tallarida, Massimo; Schmeißer, Dieter

    2013-01-01

    We report on results on the preparation of thin (<100 nm) aluminum oxide (Al2O3) films on silicon substrates using thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt) and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate) over 4" wafers and correlate them to X-ray photoelectron spectroscopy (XPS) results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films.

  7. Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films

    Directory of Open Access Journals (Sweden)

    Jörg Haeberle

    2013-11-01

    Full Text Available We report on results on the preparation of thin (2O3 films on silicon substrates using thermal atomic layer deposition (T-ALD and plasma enhanced atomic layer deposition (PE-ALD in the SENTECH SI ALD LL system. The T-ALD Al2O3 layers were deposited at 200 °C, for the PE-ALD films we varied the substrate temperature range between room temperature (rt and 200 °C. We show data from spectroscopic ellipsometry (thickness, refractive index, growth rate over 4” wafers and correlate them to X-ray photoelectron spectroscopy (XPS results. The 200 °C T-ALD and PE-ALD processes yield films with similar refractive indices and with oxygen to aluminum elemental ratios very close to the stoichiometric value of 1.5. However, in both also fragments of the precursor are integrated into the film. The PE-ALD films show an increased growth rate and lower carbon contaminations. Reducing the deposition temperature down to rt leads to a higher content of carbon and CH-species. We also find a decrease of the refractive index and of the oxygen to aluminum elemental ratio as well as an increase of the growth rate whereas the homogeneity of the film growth is not influenced significantly. Initial state energy shifts in all PE-ALD samples are observed which we attribute to a net negative charge within the films.

  8. SERS Taper-Fiber Nanoprobe Modified by Gold Nanoparticles Wrapped with Ultrathin Alumina Film by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Wenjie Xu

    2017-02-01

    Full Text Available A taper-fiber SERS nanoprobe modified by gold nanoparticles (Au-NPs with ultrathin alumina layers was fabricated and its ability to perform remote Raman detection was demonstrated. The taper-fiber nanoprobe (TFNP with a nanoscale tip size under 80 nm was made by heated pulling combined with the chemical etching method. The Au-NPs were deposited on the TFNP surface with the electrostatic self-assembly technology, and then the TFNP was wrapped with ultrathin alumina layers by the atomic layer deposition (ALD technique. The results told us that with the increasing thickness of the alumina film, the Raman signals decreased. With approximately 1 nm alumina film, the remote detection limit for R6G aqueous solution reached 10−6 mol/L.

  9. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts.

  10. Trimethylaluminum and Oxygen Atomic Layer Deposition on Hydroxyl-Free Cu(111).

    Science.gov (United States)

    Gharachorlou, Amir; Detwiler, Michael D; Gu, Xiang-Kui; Mayr, Lukas; Klötzer, Bernhard; Greeley, Jeffrey; Reifenberger, Ronald G; Delgass, W Nicholas; Ribeiro, Fabio H; Zemlyanov, Dmitry Y

    2015-08-01

    Atomic layer deposition (ALD) of alumina using trimethylaluminum (TMA) has technological importance in microelectronics. This process has demonstrated a high potential in applications of protective coatings on Cu surfaces for control of diffusion of Cu in Cu2S films in photovoltaic devices and sintering of Cu-based nanoparticles in liquid phase hydrogenation reactions. With this motivation in mind, the reaction between TMA and oxygen was investigated on Cu(111) and Cu2O/Cu(111) surfaces. TMA did not adsorb on the Cu(111) surface, a result consistent with density functional theory (DFT) calculations predicting that TMA adsorption and decomposition are thermodynamically unfavorable on pure Cu(111). On the other hand, TMA readily adsorbed on the Cu2O/Cu(111) surface at 473 K resulting in the reduction of some surface Cu(1+) to metallic copper (Cu(0)) and the formation of a copper aluminate, most likely CuAlO2. The reaction is limited by the amount of surface oxygen. After the first TMA half-cycle on Cu2O/Cu(111), two-dimensional (2D) islands of the aluminate were observed on the surface by scanning tunneling microscopy (STM). According to DFT calculations, TMA decomposed completely on Cu2O/Cu(111). High-resolution electron energy loss spectroscopy (HREELS) was used to distinguish between tetrahedrally (Altet) and octahedrally (Aloct) coordinated Al(3+) in surface adlayers. TMA dosing produced an aluminum oxide film, which contained more octahedrally coordinated Al(3+) (Altet/Aloct HREELS peak area ratio ≈ 0.3) than did dosing O2 (Altet/Aloct HREELS peak area ratio ≈ 0.5). After the first ALD cycle, TMA reacted with both Cu2O and aluminum oxide surfaces in the absence of hydroxyl groups until film closure by the fourth ALD cycle. Then, TMA continued to react with surface Al-O, forming stoichiometric Al2O3. O2 half-cycles at 623 K were more effective for carbon removal than O2 half-cycles at 473 K or water half-cycles at 623 K. The growth rate was approximately 3

  11. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  12. Electroless copper on refractory and noble metal substrates with an ultra-thin plasma-assisted atomic layer deposited palladium layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Soon [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Kim, Hyung-Il [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Cho, Joong-Hee [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Seo, Hyung-Kee [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Dar, M.A. [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Shin, Hyung-Shik [Thin Film Technology Lab, School of Chemical Engineering, Chonbuk National University, Jeonju 561756 (Korea, Republic of); Ten Eyck, Gregory A. [Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lu, Toh-Ming [Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Senkevich, Jay J. [Brewer Science Inc., Rolla, MO 65401 (United States)]. E-mail: jsenkevich@brewerscience.com

    2006-02-25

    Electroless Cu was investigated on refractory metal, W and TaN {sub X}, and Ir noble metal substrates with a plasma-assisted atomic layer deposited palladium layer for the potential back-end-of-the-line (BEOL) metallization of advanced integrated devices. The sodium and potassium-free Cu electroless bath consisted of: ethylenediamine tetraacetic acid (EDTA) as a chelating agent, glyoxylic acid as a reducing agent, and additional chemicals such as polyethylene glycol, 2,2'-dipyridine and RE-610 as surfactant, stabilizer and wetting agent respectively. The growth and chemical characterization of the Cu films was carried out with a field emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), and Rutherford backscattering spectrometry (RBS). Group VIII metals such as Pt, Pd, etc., are stable in the electroless bath and catalytic towards the oxidation of glyoxylic acid and therefore work well for the electroless deposition of Cu. From RBS analysis, the amount of carbon and oxygen in Cu films were less than 1-3%. The Cu films were electroless deposited at 45-50 deg. C on patterned tantalum nitride with plasma-assisted atomic layer deposited (PA-ALD) Pd as a catalytic layer. Electroless Cu trench fill was successful with ultrasonic vibration, RE-610, and lowering the temperature to 45-50 deg. C on TaN {sub X} with the PA-ALD Pd catalytic layer.

  13. Characteristics of Al-doped ZnO films grown by atomic layer deposition for silicon nanowire photovoltaic device.

    Science.gov (United States)

    Oh, Byeong-Yun; Han, Jin-Woo; Seo, Dae-Shik; Kim, Kwang-Young; Baek, Seong-Ho; Jang, Hwan Soo; Kim, Jae Hyun

    2012-07-01

    We report the structural, electrical, and optical characteristics of Al-doped ZnO (ZnO:Al) films deposited on glass by atomic layer deposition (ALD) with various Al2O3 film contents for use as transparent electrodes. Unlike films fabricated by a sputtering method, the diffraction peak position of the films deposited by ALD progressively moved to a higher angle with increasing Al2O3 film content. This indicates that Zn sites were effectively replaced by Al, due to layer-by-layer growth mechanism of ALD process which is based on alternate self-limiting surface chemical reactions. By adjusting the Al2O3 film content, a ZnO:Al film with low electrical resistivity (9.84 x 10(-4) Omega cm) was obtained at an Al2O3 film content of 3.17%, where the Al concentration, carrier mobility, optical transmittance, and bandgap energy were 2.8 wt%, 11.20 cm2 V(-1) s(-1), 94.23%, and 3.6 eV, respectively. Moreover, the estimated figure of merit value of our best sample was 8.2 m7Omega(-1). These results suggest that ZnO:Al films deposited by ALD could be useful for electronic devices in which especially require 3-dimensional conformal deposition of the transparent electrode and surface passivation.

  14. Ionic properties of ultrathin yttria-stabilized zirconia thin films fabricated by atomic layer deposition with water, oxygen, and ozone

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Keun; Jang, Dong Young; Kim, Jun Woo [School of Mechanical Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of); Bae, Kiho [School of Mechanical Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of); High-Temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST), Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Shim, Joon Hyung, E-mail: shimm@korea.ac.kr [School of Mechanical Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713 (Korea, Republic of)

    2015-08-31

    We compared the ionic properties of yttria-stabilized zirconia (YSZ) thin films prepared by atomic layer deposition (ALD) using various oxidants including water, oxygen, and ozone. Cross-plane conductivity measurements were performed at low temperature (50 °C) and high temperature (450 °C) using AC impedance spectroscopy. As a result, we have confirmed that the conductivity of ALD YSZ films below 300 °C is greater by several orders of magnitude compared to the nano-scale YSZ thin films synthesized by other conventional techniques. Among the ALD YSZ samples, ALD YSZ fabricated using water showed the highest conductivity while ALD YSZ fabricated using ozone showed the lowest. We have analyzed this result in relation with grain morphology characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), and the chemical binding states measured by X-ray photoelectron spectroscopy (XPS). - Highlights: • YSZ is prepared by atomic layer deposition (ALD) with H{sub 2}O, O{sub 2}, and O{sub 3} as oxidants. • Grain size of ALD YSZ membranes deposited using H{sub 2}O is the smallest. • Conductivity of ALD YSZ made with H{sub 2}O shows the highest value below 300 °C. • Conductivity trends coincide with the hydroxyl group content measured by XPS.

  15. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  16. A study of GaN MOSFETs with atomic-layer-deposited Al2O3 as the gate dielectric

    Institute of Scientific and Technical Information of China (English)

    Feng Qian; Xing Tao; Wang Qiang; Feng Qing; Li Qian; Bi Zhi-Wei; Zhang Jin-Cheng; Hao Yue

    2012-01-01

    Accumulation-type GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) with atomic-layerdeposited Al2O3 gate dielectrics are fabricated.The device,with atomic-layer-deposited Al2O3 as the gate dielectric,presents a drain current of 260 mA/mm and a broad maximum transconductance of 34 mS/mm,which are better than those reported previously with Al2O3 as the gate dielectric.Furthermore,the device shows negligible current collapse in a wide range of bias voltages,owing to the effective passivation of the GaN surface by the Al2O3 film.The gate drain breakdown voltage is found to be about 59.5 V,and in addition the channel mobility of the n-GaN layer is about 380 cm2/Vs,which is consistent with the Hall result,and it is not degraded by atomic-layer-deposition Al2Oa growth and device fabrication.

  17. Formation of Micro- and Nanostructures on the Nanotitanium Surface by Chemical Etching and Deposition of Titania Films by Atomic Layer Deposition (ALD

    Directory of Open Access Journals (Sweden)

    Denis V. Nazarov

    2015-12-01

    Full Text Available In this study, an integrated approach was used for the preparation of a nanotitanium-based bioactive material. The integrated approach included three methods: severe plastic deformation (SPD, chemical etching and atomic layer deposition (ALD. For the first time, it was experimentally shown that the nature of the etching medium (acidic or basic Piranha solutions and the etching time have a significant qualitative impact on the nanotitanium surface structure both at the nano- and microscale. The etched samples were coated with crystalline biocompatible TiO2 films with a thickness of 20 nm by Atomic Layer Deposition (ALD. Comparative study of the adhesive and spreading properties of human osteoblasts MG-63 has demonstrated that presence of nano- and microscale structures and crystalline titanium oxide on the surface of nanotitanium improve bioactive properties of the material.

  18. Atomic layer deposition TiO{sub 2} coated porous silicon surface: Structural characterization and morphological features

    Energy Technology Data Exchange (ETDEWEB)

    Iatsunskyi, Igor, E-mail: igoyat@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Experimental Physics, Odessa National I.I. Mechnikov University, 42, Pastera str., 65023 Odessa (Ukraine); Jancelewicz, Mariusz; Nowaczyk, Grzegorz [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Kempiński, Mateusz [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poland (Poland); Peplińska, Barbara [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Jarek, Marcin; Załęski, Karol [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Jurga, Stefan [NanoBioMedical Centre, Adam Mickiewicz University, 85 Umultowska str., 61-614, Poznan (Poland); Department of Macromolecular Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Smyntyna, Valentyn [Department of Experimental Physics, Odessa National I.I. Mechnikov University, 42, Pastera str., 65023 Odessa (Ukraine)

    2015-08-31

    TiO{sub 2} thin films were grown on highly-doped p-Si (100) macro- and mesoporous structures by atomic layer deposition (ALD) using TiCl{sub 4} and deionized water as precursors at 300 °C. The crystalline structure, chemical composition, and morphology of the deposited films and initial silicon nanostructures were investigated by scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy and X-ray diffraction (XRD). The mean size of TiO{sub 2} crystallites was determined by TEM, XRD and Raman spectroscopy. It was shown that the mean crystallite size and the crystallinity of the TiO{sub 2} are influenced dramatically by the morphology of the porous silicon, with the mesoporous silicon resulting in a much finer grain size and amorphous structure than the macroporous silicon having a partially crystal anatase phase. A simple model of the ALD layer growth inside the pores was presented. - Highlights: • The morphology and chemical composition of TiO{sub 2} and porous Si were established. • The approximate size of TiO{sub 2} nanocrystals was estimated. • The model of the atomic layer deposition coating in the porous Si was presented.

  19. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  20. Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition

    Science.gov (United States)

    Dendooven, Jolien; Solano, Eduardo; Minjauw, Matthias M.; Van de Kerckhove, Kevin; Coati, Alessandro; Fonda, Emiliano; Portale, Giuseppe; Garreau, Yves; Detavernier, Christophe

    2016-11-01

    We report the design of a mobile setup for synchrotron based in situ studies during atomic layer processing. The system was designed to facilitate in situ grazing incidence small angle x-ray scattering (GISAXS), x-ray fluorescence (XRF), and x-ray absorption spectroscopy measurements at synchrotron facilities. The setup consists of a compact high vacuum pump-type reactor for atomic layer deposition (ALD). The presence of a remote radio frequency plasma source enables in situ experiments during both thermal as well as plasma-enhanced ALD. The system has been successfully installed at different beam line end stations at the European Synchrotron Radiation Facility and SOLEIL synchrotrons. Examples are discussed of in situ GISAXS and XRF measurements during thermal and plasma-enhanced ALD growth of ruthenium from RuO4 (ToRuS™, Air Liquide) and H2 or H2 plasma, providing insights in the nucleation behavior of these processes.

  1. Epitaxial growth of zinc oxide by the method of atomic layer deposition on SiC/Si substrates

    Science.gov (United States)

    Kukushkin, S. A.; Osipov, A. V.; Romanychev, A. I.

    2016-07-01

    For the first time, zinc oxide epitaxial films on silicon were grown by the method of atomic layer deposition at a temperature T = 250°C. In order to avoid a chemical reaction between silicon and zinc oxide (at the growth temperature, the rate constant of the reaction is of the order of 1022), a high-quality silicon carbide buffer layer with a thickness of ~50 nm was preliminarily synthesized by the chemical substitution of atoms on the silicon surface. The zinc oxide films were grown on n- and p-type Si(100) wafers. The ellipsometric, Raman, electron diffraction, and trace element analyses showed that the ZnO films are epitaxial.

  2. Atomic layer deposition grown MO{sub x} thin films for solar water splitting: Prospects and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Trilok; Lehnen, Thomas; Leuning, Tessa; Mathur, Sanjay, E-mail: sanjay.mathur@uni-koeln.de [Institute of Inorganic Chemistry, University of Cologne, Greinstrasse 6, D-50939 Cologne (Germany)

    2015-01-15

    The magnitude of energy challenge not only calls for efficient devices but also for abundant, inexpensive, and stable photoactive materials that can enable efficient light harvesting, charge separation and collection, as well as chemical transformations. Photoelectrochemical systems based on semiconductor materials have the possibility to transform solar energy directly into chemical energy the so-called “solar hydrogen.” The current challenge lies in the harvesting of a larger fraction of electromagnetic spectrum by enhancing the absorbance of electrode materials. In this context, atomically precise thin films of metal oxide semiconductors and their multilayered junctions are promising candidates to integrate high surface areas with well-defined electrode–substrate interface. Given its self-limited growth mechanism, the atomic layer deposition (ALD) technique offers a wide range of capabilities to deposit and modify materials at the nanoscale. In addition, it opens new frontiers for developing precursor chemistry that is inevitable to design new processes. Herein, the authors review the properties and potential of metal oxide thin films deposited by ALD for their application in photoelectrochemical water splitting application. The first part of the review covers the basics of ALD processes followed by a brief discussion on the electrochemistry of water splitting reaction. The second part focuses on different MO{sub x} films deposited by atomic layer deposition for water splitting applications; in this section, The authors discuss the most explored MO{sub x} semiconductors, namely, Fe{sub 2}O{sub 3}, TiO{sub 2}, WO{sub 3}, and ZnO, as active materials and refer to their application as protective coatings, conductive scaffolds, or in heterojunctions. The third part deals with the current challenges and future prospects of ALD processed MO{sub x} thin films for water splitting reactions.

  3. Electrowetting properties of atomic layer deposited Al{sub 2}O{sub 3} decorated silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, K.; Rajavel, K. [Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu (India); Cameron, D. C. [ASTRaL, Lappeenranta University of Technology, Mikkeli (Finland); current address Miktech Oy, Mikkeli (Finland); Mangalaraj, D. [Department of NanoScience and Technology, Bharathiar University, Coimbatore, Tamil Nadu (India); Rajendrakumar, R. T., E-mail: buc@edu.in [Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu (India); Department of NanoScience and Technology, Bharathiar University, Coimbatore, Tamil Nadu (India)

    2015-06-24

    This paper reports the electrowetting properties of liquid droplet on superhydrophobic silicon nanowires with Atomic layer deposited (ALD) Al{sub 2}O{sub 3} as dielectric layer. Silicon wafer were etched by metal assisted wet chemical etching with silver as catalyst. ALD Al{sub 2}O{sub 3} films of 10nm thickness were conformally deposited over silicon nanowires. Al{sub 2}O{sub 3} dielectric film coated silicon nanowires was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane to make it superhydrophobic(SHP). The contact angle was measured and all the samples exhibited superhydrophobic nature with maximum contact angles of 163° and a minimum contact angle hysteresis of 6°. Electrowetting induced a maximum reversible decrease of the contact angle of 20°at 150V in air.

  4. Atomic Layer Deposition Al2O3 Coatings Significantly Improve Thermal, Chemical, and Mechanical Stability of Anodic TiO2 Nanotube Layers

    Science.gov (United States)

    2017-01-01

    We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions. PMID:28291942

  5. Cathode encapsulation of OLEDs by atomic layer deposited Al2O3 films and Al2O3/a-SiNx:H stacks

    NARCIS (Netherlands)

    Keuning, W.; Van de Weijer, P.; Lifka, H.; Kessels, W.M.M.; Creatore, M.

    2011-01-01

    Al2O3 thin films synthesized by plasma-enhanced atomic layer deposition(ALD) at room temperature (25 ºC) have been tested as water vapor per-meation barriers for OLED devices. Silicon nitride films (a-SiNx:H)deposited by plasma-enhanced chemical vapor deposition (PE-CVD) servedas reference and were

  6. Nanoscale semiconductor Pb1-xSnxSe (x = 0.2) thin films synthesized by electrochemical atomic layer deposition

    Science.gov (United States)

    Lin, Shaoxiong; Zhang, Xin; Shi, Xuezhao; Wei, Jinping; Lu, Daban; Zhang, Yuzhen; Kou, Huanhuan; Wang, Chunming

    2011-04-01

    In this paper the fabrication and characterization of IV-VI semiconductor Pb1-xSnxSe (x = 0.2) thin films on gold substrate by electrochemical atomic layer deposition (EC-ALD) method at room temperature are reported. Cyclic voltammetry (CV) is used to determine approximate deposition potentials for each element. The amperometric I-t technique is used to fabricate the semiconductor alloy. The elements are deposited in the following sequence: (Se/Pb/Se/Pb/Se/Pb/Se/Pb/Se/Sn …), each period is formed using four ALD cycles of PbSe followed by one cycle of SnSe. Then the deposition manner above is cyclic repeated till a satisfactory film with expected thickness of Pb1-xSnxSe is obtained. The morphology of the deposit is observed by field emission scanning electron microscopy (FE-SEM). X-ray diffraction (XRD) pattern is used to study its crystalline structure; X-ray photoelectron spectroscopy (XPS) of the deposit indicates an approximate ratio 1.0:0.8:0.2 of Se, Pb and Sn, as the expected stoichiometry for the deposit. Open-circuit potential (OCP) studies indicate a good p-type property, and the good optical activity makes it suitable for fabricating a photoelectric switch.

  7. Barrier properties of plastic films coated with an Al{sub 2}O{sub 3} layer by roll-to-toll atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: Terhi.Hirvikorpi@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Laine, Risto, E-mail: Risto.Laine@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Vähä-Nissi, Mika, E-mail: Mika.Vaha-Nissi@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kilpi, Väinö, E-mail: Vaino.Kilpi@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Salo, Erkki, E-mail: Erkki.Salo@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Li, Wei-Min, E-mail: Wei-Min.Li@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Lindfors, Sven, E-mail: Sven.Lindfors@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Vartiainen, Jari, E-mail: Jari.Vartiainen@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kenttä, Eija, E-mail: Eija.Kentta@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Nikkola, Juha, E-mail: Juha.Nikkola@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Harlin, Ali, E-mail: Ali.Harlin@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kostamo, Juhana, E-mail: Juhana.Kostamo@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland)

    2014-01-01

    Thin (30–40 nm) and highly uniform Al{sub 2}O{sub 3} coatings have been deposited at relatively low temperature of 100 °C onto various polymeric materials employing the atomic layer deposition (ALD) technique, both batch and roll-to-roll (R2R) mode. The applications for ALD have long been limited those feasible for batch processing. The work demonstrates that R2R ALD can deposit thin films with properties that are comparable to the film properties fabricated by in batch. This accelerates considerably the commercialization of many products, such as flexible, printed electronics, organic light-emitting diode lighting, third generation thin film photovoltaic devices, high energy density thin film batteries, smart textiles, organic sensors, organic/recyclable packaging materials, and flexible displays, to name a few. - Highlights: • Thin and uniform Al{sub 2}O{sub 3} coatings have been deposited onto polymers materials. • Batch and roll-to-roll (R2R) atomic layer deposition (ALD) have been employed. • Deposition with either process improved the barrier properties. • Sensitivity of coated films to defects affects barrier obtained with R2R ALD.

  8. Correction: Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films

    Science.gov (United States)

    Cordova, Isvar A.; Peng, Qing; Ferrall, Isa L.; Rieth, Adam J.; Hoertz, Paul G.; Glass, Jeffrey T.

    2015-07-01

    Correction for `Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films' by Isvar A. Cordova, et al., Nanoscale, 2015, 7, 8584-8592.

  9. Characteristics and properties of metal aluminum thin films prepared by electron cyclotron resonance plasma-assisted atomic layer deposition technology

    Institute of Scientific and Technical Information of China (English)

    Xiong Yu-Qing; Li Xing-Cun; Chen Qiang; Lei Wen-Wen; Zhao Qiao; Sang Li-Jun; Liu Zhong-Wei; Wang Zheng-Duo; Yang Li-Zhen

    2012-01-01

    Metal aluminum (Al) thin films are prepared by 2450 MHz electron cyclotron resonance plasma-assisted atomic layer deposition on glass and p-Si substrates using trimethylaluminum as the precursor and hydrogen as the reductive gas.We focus our attention on the plasma source for the thin-film preparation and annealing of the as-deposited films relative to the surface square resistivity.The square resistivity of as-deposited Al films is greatly reduced after annealing and almost reaches the value of bulk metal.Through chemical and structural analysis,we conclude that the square resistivity is determined by neither the contaminant concentration nor the surface morphology,but by both the crystallinity and crystal size in this process.

  10. Atomic Layer Deposition of Pd Nanoparticles on TiO₂ Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties.

    Science.gov (United States)

    Assaud, Loïc; Brazeau, Nicolas; Barr, Maïssa K S; Hanbücken, Margrit; Ntais, Spyridon; Baranova, Elena A; Santinacci, Lionel

    2015-11-11

    Palladium nanoparticles are grown on TiO2 nanotubes by atomic layer deposition (ALD), and the resulting three-dimensional nanostructured catalysts are studied for ethanol electrooxidation in alkaline media. The morphology, the crystal structure, and the chemical composition of the Pd particles are fully characterized using scanning and transmission electron microscopies, X-ray diffraction, and X-ray photoelectron spectroscopy. The characterization revealed that the deposition proceeds onto the entire surface of the TiO2 nanotubes leading to the formation of well-defined and highly dispersed Pd nanoparticles. The electrooxidation of ethanol on Pd clusters deposited on TiO2 nanotubes shows not only a direct correlation between the catalytic activity and the particle size but also a steep increase of the response due to the enhancement of the metal-support interaction when the crystal structure of the TiO2 nanotubes is modified by annealing at 450 °C in air.

  11. Plasma-Enhanced Atomic Layer Deposition (PEALD of TiN using the Organic Precursor Tetrakis(ethylmethylamidoTitanium (TEMAT

    Directory of Open Access Journals (Sweden)

    Chen Z.X.

    2016-01-01

    Full Text Available This paper presents the plasma-enhanced atomic layer deposition (PEALD of titanium nitride (TiN using the organic precursor tetrakis(ethylmethylamidotitanium (TEMAT, with remote ammonia (NH3 plasma as reactant gas. This work investigates the impact of substrate temperature, from 150-350°C, and plasma times, from 5-30s, on deposition rate, resistivity, carbon content, N/Ti ratio and film density. The lowest resistivity of ~ 250 μΩ.cm was achieved at substrate temperatures 300-350°C and plasma time of 20s. At low substrate temperatures, although deposition was possible, carbon concentration was found to be higher, which thus affects film resistivity and density.

  12. Atomic layer deposition precursor step repetition and surface plasma pretreatment influence on semiconductor–insulator–semiconductor heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Talkenberg, Florian, E-mail: florian.talkenberg@ipht-jena.de; Illhardt, Stefan; Schmidl, Gabriele; Schleusener, Alexander; Sivakov, Vladimir [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, D-07745 Jena (Germany); Radnóczi, György Zoltán; Pécz, Béla [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege Miklós u. 29-33, H-1121 Budapest (Hungary); Dikhanbayev, Kadyrjan; Mussabek, Gauhar [Department of Physics and Engineering, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040 Almaty (Kazakhstan); Gudovskikh, Alexander [Nanotechnology Research and Education Centre, St. Petersburg Academic University, Russian Academy of Sciences, Hlopina Str. 8/3, 194021 St. Petersburg (Russian Federation)

    2015-07-15

    Semiconductor–insulator–semiconductor heterojunction solar cells were prepared using atomic layer deposition (ALD) technique. The silicon surface was treated with oxygen and hydrogen plasma in different orders before dielectric layer deposition. A plasma-enhanced ALD process was applied to deposit dielectric Al{sub 2}O{sub 3} on the plasma pretreated n-type Si(100) substrate. Aluminum doped zinc oxide (Al:ZnO or AZO) was deposited by thermal ALD and serves as transparent conductive oxide. Based on transmission electron microscopy studies the presence of thin silicon oxide (SiO{sub x}) layer was detected at the Si/Al{sub 2}O{sub 3} interface. The SiO{sub x} formation depends on the initial growth behavior of Al{sub 2}O{sub 3} and has significant influence on solar cell parameters. The authors demonstrate that a hydrogen plasma pretreatment and a precursor dose step repetition of a single precursor improve the initial growth behavior of Al{sub 2}O{sub 3} and avoid the SiO{sub x} generation. Furthermore, it improves the solar cell performance, which indicates a change of the Si/Al{sub 2}O{sub 3} interface states.

  13. On adsorption of aluminium and methyl groups on silica for TMA/H2O process in atomic layer deposition of aluminium oxide nano layers

    Indian Academy of Sciences (India)

    Anu Philip; K Rajeev Kumar

    2010-04-01

    A detailed chemisorption mechanism is proposed for the atomic layer deposition (ALD) of aluminium oxide nano layers using trimethyl aluminum (TMA) and water as precursors. Six possible chemisorption mechanisms, complete ligand exchange, partial ligand exchange, simple dissociation, complete dissociation via ligand exchange, complete dissociation and association, are proposed and related parameters like ligand to metal ratio (L/M), concentrations of metal atoms and methyl groups adsorbed are calculated and compared against reported values. The maximum number of methyl groups that can get attached on the surface is calculated in a different way which yields a more realistic value of 6.25 per nm2 substrate area. The dependence of the number of metal atoms adsorbed on OH concentration is explained clearly. It is proposed that a combination of complete ligand exchange and complete dissociation is the most probable chemisorption mechanism taking place at various OH concentrations.

  14. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Science.gov (United States)

    Provine, J.; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin; Kim, Ki-Hyun; Prinz, Fritz B.

    2016-06-01

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiNx), particularly for use a low k dielectric spacer. One of the key material properties needed for SiNx films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiNx and evaluate the film's WER in 100:1 dilutions of HF in H2O. The remote plasma capability available in PEALD, enabled controlling the density of the SiNx film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiNx of 6.1 Å/min, which is similar to WER of SiNx from LPCVD reactions at 850 °C.

  15. Atomic layer deposition of environmentally benign SnTiO{sub x} as a potential ferroelectric material

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Siliang; Selvaraj, Sathees Kannan [Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States); Choi, Yoon-Young; Hong, Seungbum [Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Nakhmanson, Serge M. [Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269 (United States); Takoudis, Christos G., E-mail: takoudis@uic.edu [Department of Bioengineering and Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 (United States)

    2016-01-15

    Inspired by the need to discover environmentally friendly, lead-free ferroelectric materials, here the authors report the atomic layer deposition of tin titanate (SnTiO{sub x}) aiming to obtain the theoretically predicted perovskite structure that possesses ferroelectricity. In order to establish the growth conditions and probe the film structure and ferroelectric behavior, the authors grew SnTiO{sub x} films on the commonly used Si(100) substrate. Thin films of SnTiO{sub x} have been successfully grown at a deposition temperature of 200 °C, with a Sn/Ti atomic layer deposition (ALD) cycle ratio of 2:3 and postdeposition heat treatments under different conditions. X-ray photoelectron spectroscopy revealed excellent composition tunability of ALD. X-ray diffraction spectra suggested anatase phase for all films annealed at 650 and 350 °C, with peak positions shifted toward lower 2-theta angles indicating enlarged unit cell volume. The film annealed in O{sub 2} at 350 °C exhibited piezoresponse amplitude and phase hysteresis loops, indicative of the existence of switchable polarization.

  16. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Directory of Open Access Journals (Sweden)

    J. Provine

    2016-06-01

    Full Text Available The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD of silicon nitride (SiNx, particularly for use a low k dielectric spacer. One of the key material properties needed for SiNx films is a low wet etch rate (WER in hydrofluoric (HF acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD of SiNx and evaluate the film’s WER in 100:1 dilutions of HF in H2O. The remote plasma capability available in PEALD, enabled controlling the density of the SiNx film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiNx of 6.1 Å/min, which is similar to WER of SiNx from LPCVD reactions at 850 °C.

  17. Near-interface Si substrate 3d metal contamination during atomic layer deposition processing detected by electron spin resonance

    Science.gov (United States)

    Nguyen, A. P. D.; Stesmans, A.; Hiller, D.; Zacharias, M.

    2012-06-01

    A K- and Q-band electron spin resonance (ESR) study has been carried out on (100)Si/SiO2 entities manufactured by low temperature (150 °C) atomic layer deposition (ALD) of a high-quality SiO2 layer on Si using 3-aminopropyltriethoxysilane, H2O, and ozone in a three-step process. Whereas previous work has demonstrated the high quality of the deposited SiO2 layer, the current ESR analysis reports on the tracing of growth-related contamination of near interface Si substrate layers by two transition metals. This includes, first, detection of the signal of interstitial Cr+ (S = 5/2) impurities in c-Si, characterized by an isotropic central g value of 1.9980 ± 0.0002, an isotropic 53Cr (I = 3/2) hyperfine interaction of splitting Aiso = 11.8 G, and cubic crystal field splitting parameter a = +32.2 G, well in agreement with the known bulk c-Si case; A small anisotropic contribution to the hyperfine interaction has additionally been revealed. The total Cr+ defect density is inferred as ˜5 × 1011 cm-2. Second, a single signal is observed at isotropic g = 2.070 ± 0.001, corresponding to interstitial Fe impurities (Fei)0 (S = 1) positioned in a c-Si matrix. Defect density depth profiling reveals the impurities to be confined to a few μm thick Si substrate top layer, the density decaying exponential-like from the Si/SiO2 interface inward the Si substrate. The total of the results points to a contamination of reactor-environment origin, connected with the layer deposition process. It concerns a weak contamination, in which detection the ESR technique emerges as a powerful technique able to unveil very low levels of contamination of near-surface Si substrate layers.

  18. Passivation of type II InAs/GaSb superlattice photodetectors with atomic layer deposited Al2O3

    Science.gov (United States)

    Salihoglu, Omer; Muti, Abdullah; Kutluer, Kutlu; Tansel, Tunay; Turan, Rasit; Kocabas, Coskun; Aydinli, Atilla

    2012-06-01

    We have achieved significant improvement in the electrical performance of the InAs/GaSb midwave infrared photodetector (MWIR) by using atomic layer deposited (ALD) aluminium oxide (Al2O3) as a passivation layer. Plasma free and low operation temperature with uniform coating of ALD technique leads to a conformal and defect free coverage on the side walls. This conformal coverage of rough surfaces also satisfies dangling bonds more efficiently while eliminating metal oxides in a self cleaning process of the Al2O3 layer. Al2O3 passivated and unpassivated diodes were compared for their electrical and optical performances. For passivated diodes the dark current density was improved by an order of magnitude at 77 K. The zero bias responsivity and detectivity was 1.33 A/W and 1.9 x 1013 Jones, respectively at 4 μm and 77 K. Quantum efficiency (QE) was determined as %41 for these detectors.

  19. Theoretical modeling and experimental observations of the atomic layer deposition of SrO using a cyclopentadienyl Sr precursor

    Science.gov (United States)

    Fredrickson, Kurt D.; McDaniel, Martin D.; Slepko, Alex; Ekerdt, John G.; Demkov, Alexander A.

    2016-08-01

    First-principle calculations are used to model the adsorption and hydration of strontium bis(cyclopentadienyl) [Sr(Cp)2] on TiO2-terminated strontium titanate, SrTiO3 (STO), for the deposition of strontium oxide, SrO, by atomic layer deposition (ALD). The Sr(Cp)2 precursor is shown to adsorb on the TiO2-terminated surface, with the Sr atom assuming essentially the bulk position in STO. The C-Sr bonds are weaker than in the free molecule, with a Ti atom at the surface bonding to one of the C atoms in the cyclopentadienyl rings. The surface does not need to be hydrogenated for precursor adsorption. The calculations are compared with experimental observations for a related Sr cyclopentadienyl precursor, strontium bis(triisopropylcyclopentadienyl) [Sr(iPr3Cp)2], adsorbed on TiO2-terminated STO. High-resolution x-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy show adsorption of the Sr precursor on the TiO2-terminated STO after a single precursor dose. This study suggests that ALD growth from the strontium precursors featuring cyclopentadienyl ligands, such as Sr(Cp)2, may initiate film growth on non-hydroxylated surfaces.

  20. Atomic layer deposition of cobalt carbide films and their magnetic properties using propanol as a reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Sarr, Mouhamadou, E-mail: sarrtapha44@yahoo.fr [Luxembourg Instituteof Science and Technology, 41, rue du Brill, L-4422 Belvaux (Luxembourg); Bahlawane, Naoufal; Arl, Didier [Luxembourg Instituteof Science and Technology, 41, rue du Brill, L-4422 Belvaux (Luxembourg); Dossot, Manuel [Laboratory of Physical Chemistry and Microbiology for the Environment, UMR 7564 CNRS-Université de Lorraine, 405 rue de Vandoeuvre, 54601 Villers-lès-Nancy (France); McRae, Edward [Institut Jean Lamour, UMR 7198CNRS-Université de Lorraine, FST, BP 70239, 54506 Vandoeuvre-lès-Nancy (France); Lenoble, Damien, E-mail: damien.lenoble@list.lu [Luxembourg Instituteof Science and Technology, 41, rue du Brill, L-4422 Belvaux (Luxembourg)

    2016-08-30

    Highlights: • Conformal carbon-Co-carbide thin films. • Chemically growth carbone-Co-carbide composite. • Tuneable magnetic properties. - Abstract: The investigation of highly conformal thin films using Atomic Layer Deposition (ALD) is driven by a variety of applications in modern technologies. In particular, the emergence of 3D memory device architectures requires conformal materials with tuneable magnetic properties. Here, nanocomposites of carbon, cobalt and cobalt carbide are deposited by ALD using cobalt acetylacetonate with propanol as a reducing agent. Films were grown by varying the ALD deposition parameters including deposition temperature and propanol exposure time. The morphology, the chemical composition and the crystalline structure of the cobalt carbide film were investigated. Vibrating Sample Magnetometer (VSM) measurements revealed magnetic hysteresis loops with a coercivity reaching 500 Oe and a maximal saturation magnetization of 0.9 T with a grain size less than 15 nm. Magnetic properties are shown to be tuneable by adjusting the deposition parameters that significantly affect the microstructure and the composition of the deposited films.

  1. Indium oxide thin film prepared by low temperature atomic layer deposition using liquid precursors and ozone oxidant

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W.J. [Department of Materials Science and Engineering, University of Wisconsin Madison, Madison, WI 53706 (United States); Choi, Dong-Won [Division of Materials Science and Engineering, 222 Wangsimni-ro, Seongdong-gu, Hanyang University, Seoul, 133-719 (Korea, Republic of); Park, Jozeph, E-mail: jozeph.park@gmail.com [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Park, Jin-Seong, E-mail: jsparklime@hanyang.ac.kr [Division of Materials Science and Engineering, 222 Wangsimni-ro, Seongdong-gu, Hanyang University, Seoul, 133-719 (Korea, Republic of)

    2015-11-15

    Transparent conducting Indium oxide (InO{sub x}) thin films were deposited by atomic layer deposition at low deposition temperatures below 100 °C. For the comparative study with liquid precursors in low temperature thermal ALD, diethyl[1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]-Indium, [3-(dimethylamino-kN)propyl-kC]dimethyl-Indium, and triethyl indium (TEIn) were used as the In precursors. Ozone was used as the oxidant for all precursors. InO{sub x} films grown using the three precursors all exhibit relatively low electrical resistivity below 10{sup −3} Ω cm at temperatures above 150 °C. Below 100 °C, the lowest resistivity (2 × 10{sup −3} Ω cm) was observed in the films grown with TEIn. The electrical, structural and optical properties were systematically investigated as functions of the deposition temperature and precursors. - Highlights: • InO{sub x} thin films were deposited by ALD at extremely low deposition temperatures below 100 °C. • InO{sub x} films exhibit relatively low electrical resistivity below 10{sup −3} Ω cm at temperatures above 150 °C. • Ozone stimulate the chemical reactions to yield dense indium oxide films at low temperatures.

  2. Atomic-layer chemical-vapor-deposition of TiN thin films on Si(100) and Si(111)

    CERN Document Server

    Kim, Y S; Kim, Y D; Kim, W M

    2000-01-01

    An atomic-layer chemical vapor deposition (AL-CVD) system was used to deposit TiN thin films on Si(100) and Si(111) substrates by cyclic exposures of TiCl sub 4 and NH sub 3. The growth rate was measured by using the number of deposition cycles, and the physical properties were compared with those of TiN films grown by using conventional deposition methods. To investigate the growth mechanism, we suggest a growth model for TiN n order to calculate the growth rate per cycle with a Cerius program. The results of the calculation with the model were compared with the experimental values for the TiN film deposited using the AL-CVD method. The stoichiometry of the TiN film was examined by using Auger electron spectroscopy, and the chlorine and the oxygen impurities were examined. The x-ray diffraction and the transmission electron microscopy results for the TiN film exhibited a strong (200) peak and a randomly oriented columnar microstructure. The electrical resistivity was found to decrease with increasing deposit...

  3. Atomic Layer Deposition of Ruthenium with TiN Interface for Sub-10 nm Advanced Interconnects beyond Copper

    DEFF Research Database (Denmark)

    Wen, Liang Gong; Roussel, Philippe; Pedreira, Olalla Varela

    2016-01-01

    Atomic layer deposition of ruthenium is studied as a barrierless metallization solution for future sub-10 nm interconnect technology nodes. We demonstrate the void-free filling in sub-10 nm wide single damascene lines using an ALD process in combination with 2.5 angstrom of ALD TiN interface and po......'stdeposition annealing. At such small dimensions, the ruthenium effective resistance depends less on the scaling than that of Cu/barrier systems. Ruthenium effective resistance potentially crosses the Cu curve at 14 and 10 nm according to the semiempirical interconnect resitance model for advanced technology nodes...

  4. Quantum size effects in TiO2 thin films grown by atomic layer deposition

    OpenAIRE

    Massimo Tallarida; Chittaranjan Das; Dieter Schmeisser

    2014-01-01

    We study the atomic layer deposition of TiO2 by means of X-ray absorption spectroscopy. The Ti precursor, titanium isopropoxide, was used in combination with H2O on Si/SiO2 substrates that were heated at 200 °C. The low growth rate (0.15 Å/cycle) and the in situ characterization permitted to follow changes in the electronic structure of TiO2 in the sub-nanometer range, which are influenced by quantum size effects. The modified electronic properties may play an important role in charge carrier...

  5. Integration of atomic layer deposited high-k dielectrics on GaSb via hydrogen plasma exposure

    Directory of Open Access Journals (Sweden)

    Laura B. Ruppalt

    2014-12-01

    Full Text Available In this letter we report the efficacy of a hydrogen plasma pretreatment for integrating atomic layer deposited (ALD high-k dielectric stacks with device-quality p-type GaSb(001 epitaxial layers. Molecular beam eptiaxy-grown GaSb surfaces were subjected to a 30 minute H2/Ar plasma treatment and subsequently removed to air. High-k HfO2 and Al2O3/HfO2 bilayer insulating films were then deposited via ALD and samples were processed into standard metal-oxide-semiconductor (MOS capacitors. The quality of the semiconductor/dielectric interface was probed by current-voltage and variable-frequency admittance measurements. Measurement results indicate that the H2-plamsa pretreatment leads to a low density of interface states nearly independent of the deposited dielectric material, suggesting that pre-deposition H2-plasma exposure, coupled with ALD of high-k dielectrics, may provide an effective means for achieving high-quality GaSb MOS structures for advanced Sb-based digital and analog electronics.

  6. Thermal and plasma enhanced atomic layer deposition of TiO{sub 2}: Comparison of spectroscopic and electric properties

    Energy Technology Data Exchange (ETDEWEB)

    Das, Chittaranjan, E-mail: chittaiit@yahoo.com; Henkel, Karsten; Tallarida, Massimo; Schmeißer, Dieter [Brandenburg University of Technology Cottbus-Senftenberg, Applied Physics and Sensors, K.-Wachsmann-Allee 17, D-03046 Cottbus (Germany); Gargouri, Hassan; Kärkkänen, Irina; Schneidewind, Jessica; Gruska, Bernd; Arens, Michael [SENTECH Instruments GmbH, Schwarzschildstraße 2, 12489 Berlin (Germany)

    2015-01-15

    Titanium oxide (TiO{sub 2}) deposited by atomic layer deposition (ALD) is used as a protective layer in photocatalytic water splitting system as well as a dielectric in resistive memory switching. The way ALD is performed (thermally or plasma-assisted) may change the growth rate as well as the electronic properties of the deposited films. In the present work, the authors verify the influence of the ALD mode on functional parameters, by comparing the growth rate and electronic properties of TiO{sub 2} films deposited by thermal (T-) and plasma-enhanced (PE-) ALD. The authors complete the study with the electrical characterization of selected samples by means of capacitance–voltage and current–voltage measurements. In all samples, the authors found a significant presence of Ti{sup 3+} states, with the lowest content in the PE-ALD grown TiO{sub 2} films. The observation of Ti{sup 3+} states was accompanied by the presence of in-gap states above the valence band maximum. For films thinner than 10 nm, the authors found also a strong leakage current. Also in this case, the PE-ALD films showed the weakest leakage currents, showing a correlation between the presence of Ti{sup 3+} states and leakage current density.

  7. Structure and morphology of Ru films grown by atomic layer deposition from 1-ethyl-1’-methyl-ruthenocene

    Science.gov (United States)

    Kukli, Kaupo; Aarik, Jaan; Aidla, Aleks; Uustare, Teet; Jõgi, Indrek; Lu, Jun; Tallarida, Massimo; Kemell, Marianna; Kiisler, Alma-Asta; Ritala, Mikko; Leskelä, Markku

    2010-06-01

    Ru thin films were grown on TiO 2, Al 2O 3, HfO 2, and ZrO 2 films as well as on HF-etched silicon and SiO 2-covered silicon by atomic layer deposition from 1-ethyl-1'-methyl-ruthenocene, (CH 3C 5H 4)(C 2H 5C 5H 4)Ru, and oxygen. The growth of Ru was obtained and characterized at temperatures ranging from 250 to 325 °C. On epitaxial rutile, highly oriented growth of Ru with hexagonal structure was achieved, while on other substrates the films possessed nonoriented hexagonal structure. Ruthenium oxide was not detected in the films. The lowest resistivity value obtained for 5.0-6.6 nm thick films was 26 μΩ cm. The conductivity of the films depended somewhat on the deposition cycle time parameters and, expectedly, more strongly on the amount of deposition cycles. Increase in the deposition temperature of underlying metal oxide films increased the conductivity of Ru layers.

  8. Atomic layer deposition-Sequential self-limiting surface reactions for advanced catalyst "bottom-up" synthesis

    Science.gov (United States)

    Lu, Junling; Elam, Jeffrey W.; Stair, Peter C.

    2016-06-01

    Catalyst synthesis with precise control over the structure of catalytic active sites at the atomic level is of essential importance for the scientific understanding of reaction mechanisms and for rational design of advanced catalysts with high performance. Such precise control is achievable using atomic layer deposition (ALD). ALD is similar to chemical vapor deposition (CVD), except that the deposition is split into a sequence of two self-limiting surface reactions between gaseous precursor molecules and a substrate. The unique self-limiting feature of ALD allows conformal deposition of catalytic materials on a high surface area catalyst support at the atomic level. The deposited catalytic materials can be precisely constructed on the support by varying the number and type of ALD cycles. As an alternative to the wet-chemistry based conventional methods, ALD provides a cycle-by-cycle "bottom-up" approach for nanostructuring supported catalysts with near atomic precision. In this review, we summarize recent attempts to synthesize supported catalysts with ALD. Nucleation and growth of metals by ALD on oxides and carbon materials for precise synthesis of supported monometallic catalyst are reviewed. The capability of achieving precise control over the particle size of monometallic nanoparticles by ALD is emphasized. The resulting metal catalysts with high dispersions and uniformity often show comparable or remarkably higher activity than those prepared by conventional methods. For supported bimetallic catalyst synthesis, we summarize the strategies for controlling the deposition of the secondary metal selectively on the primary metal nanoparticle but not on the support to exclude monometallic formation. As a review of the surface chemistry and growth behavior of metal ALD on metal surfaces, we demonstrate the ways to precisely tune size, composition and structure of bimetallic metal nanoparticles. The cycle-by-cycle "bottom up" construction of bimetallic (or multiple

  9. In situ studies of the atomic layer deposition of thin HfO{sub 2} dielectrics by ultra high vacuum atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kolanek, Krzysztof, E-mail: kolanek@tu-cottbus.d [Brandenburg University of Technology, Department of Applied Physics and Sensors, Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany); Tallarida, Massimo; Karavaev, Konstantin; Schmeisser, Dieter [Brandenburg University of Technology, Department of Applied Physics and Sensors, Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany)

    2010-06-01

    We studied in situ the initial stages of atomic layer deposition (ALD) of HfO{sub 2} by an ultra high vacuum atomic force microscope working in frequency-modulation mode. The ALD cycles, made by using tetrakis-di-methyl-amido-Hf and water as precursors, were performed on the Si(001)/SiO{sub 2} substrate maintained at 230 {sup o}C. After each ALD cycle we studied the influence of the HfO{sub 2} growth on the surface height histogram, the root mean square roughness, the surface fractal dimension and the autocorrelation function. This detailed analysis of the surface topography allowed us to confirm the completion of the first HfO{sub 2} layer after four ALD cycles.

  10. Development of electrostatic supercapacitors by atomic layer deposition on nanoporous anodic aluminium oxides for energy harvesting applications

    Directory of Open Access Journals (Sweden)

    Lucia eIglesias

    2015-03-01

    Full Text Available Nanomaterials can provide innovative solutions for solving the usual energy harvesting and storage drawbacks that take place in conventional energy storage devices based on batteries or electrolytic capacitors, because they are not fully capable for attending the fast energy demands and high power densities required in many of present applications. Here, we report on the development and characterization of novel electrostatic supercapacitors made by conformal Atomic Layer Deposition on the high open surface of nanoporous anodic alumina membranes employed as templates. The structure of the designed electrostatic supercapacitor prototype consists of successive layers of Aluminium doped Zinc Oxide, as the bottom and top electrodes, together Al2O3 as the intermediate dielectric layer. The conformality of the deposited conductive and dielectric layers, together with their composition and crystalline structure have been checked by XRD and electron microscopy techniques. Impedance measurements performed for the optimized electrostatic supercapacitor device give a high capacitance value of 200 µF/cm2 at the frequency of 40 Hz, which confirms the theoretical estimations for such kind of prototypes, and the leakage current reaches values around of 1.8 mA/cm2 at 1 V. The high capacitance value achieved by the supercapacitor prototype together its small size turns these devices in outstanding candidates for using in energy harvesting and storage applications.

  11. Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin films for the degradation of methylene blue.

    Science.gov (United States)

    Cao, Yan-Qiang; Chen, Jun; Zhou, Hang; Zhu, Lin; Li, Xin; Cao, Zheng-Yi; Wu, Di; Li, Ai-Dong

    2015-01-16

    ZnO ultrathin films with varied thicknesses of 7-70 nm were prepared at 200 °C on Si and fused quartz substrates by atomic layer deposition (ALD). The impact of film thickness and annealing temperature on the crystallinity, morphology, optical bandgap, and photocatalytic properties of ZnO in the degradation of methylene blue (MB) dye under UV light irradiation (λ = 365 nm) has been investigated deeply. The as-deposited 28 nm thick ZnO ultrathin film exhibits highest photocatalytic activity, ascribed to the smallest band gap of 3.21 eV and proper thickness. The photocorrosion effect of ALD ZnO ultrathin films during photocatalytic process is observed. The presence of MB significantly accelerates the dissolution of ZnO ultrathin films. The possible photoetching mechanism of ZnO in MB solution is proposed.

  12. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Muñoz-Rojas, David [LMGP, University Grenoble-Alpes, CNRS, F-3800 Grenoble (France); Nelson, Shelby F. [Kodak Research Laboratories, Eastman Kodak Company, Rochester, New York 14650 (United States); Illiberi, Andrea; Poodt, Paul [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Roozeboom, Fred [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB (Netherlands)

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  13. Low-temperature atomic layer deposition of MoO{sub x} for silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Macco, B.; Vos, M.F.J.; Thissen, N.F.W.; Bol, A.A. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Kessels, W.M.M. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands); Solliance Solar Research, Eindhoven (Netherlands)

    2015-07-15

    The preparation of high-quality molybdenum oxide (MoO{sub x}) is demonstrated by plasma-enhanced atomic layer deposition (ALD) at substrate temperatures down to 50 C. The films are amorphous, slightly substoichiometric with respect to MoO{sub 3}, and free of other elements apart from hydrogen (<11 at%). The films have a high transparency in the visible region and their compatibility with a-Si:H passivation schemes is demonstrated. It is discussed that these aspects, in conjunction with the low processing temperature and the ability to deposit very thin conformal films, make this ALD process promising for the future application of MoO{sub x} in hole-selective contacts for silicon heterojunction solar cells. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Room temperature plasma enhanced atomic layer deposition for TiO{sub 2} and WO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, Alexander; Schnabel, Hans-Dieter, E-mail: Hans.Dieter.Schnabel@fh-zwickau.de; Reinhold, Ullrich; Rauer, Sebastian; Neidhardt, Andreas [Department of Physical Engineering and Informatics, University of Applied Science, Westsächsische Hochschule Zwickau, Dr.-Friedrichs-Ring 2a, 08056 Zwíckau (Germany)

    2016-01-15

    This paper presents a study on plasma enhanced atomic layer deposition (ALD) of TiO{sub 2} and WO{sub 3} films on silicon substrates. At low temperatures, ALD processes, which are not feasible at high temperatures, could be possible. For example, temperatures at 180 °C and above allow no WO{sub 3} ALD process with WF{sub 6} as a precursor because etching processes hinder film growth. Further low temperature deposition techniques are needed to coat temperature sensitive materials. For the deposition, WF{sub 6} and TiCl{sub 4} are used as metal precursors and O{sub 2} and H{sub 2}O as oxygen sources. The depositions were accomplished in the temperature range of 30 °C up to 180 °C for both metal oxides. Spectroscopic ellipsometry, x-ray reflection, and grazing incidence diffraction were used to investigate the deposited ALD thin films. Film growth, density, crystallinity, and roughness are discussed as functions of temperature after ensuring the ALD requirement of self-saturating adsorption. Growth rates and measured material properties are in good agreement with literature data.

  15. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition

    Science.gov (United States)

    Sampath, Sridhar; Maydannik, Philipp; Ivanova, Tatiana; Shestakova, Marina; Homola, Tomáš; Bryukvin, Anton; Sillanpää, Mika; Nagumothu, Rameshbabu; Alagan, Viswanathan

    2016-09-01

    In the present study, TiO2 coated nano-porous silicon (TiO2/PS) was prepared by atomic layer deposition (ALD) whereas porous silicon was prepared by stain etching method for efficient solar photocatalytic activity. TiO2/PS was characterized by FESEM, AFM, XRD, XPS and DRS UV-vis spectrophotometer. Absorbance spectrum revealed that TiO2/PS absorbs complete solar light with wave length range of 300 nm-800 nm and most importantly, it absorbs stronger visible light than UV light. The reason for efficient solar light absorption of TiO2/PS is that nanostructured TiO2 layer absorbs UV light and nano-porous silicon layer absorbs visible light which is transparent to TiO2 layer. The amount of visible light absorption of TiO2/PS directly increases with increase of silicon etching time. The effect of silicon etching time of TiO2/PS on solar photocatalytic activity was investigated towards methylene blue dye degradation. Layer by layer solar absorption mechanism was used to explain the enhanced photocatalytic activity of TiO2/PS solar absorber. According to this, the photo-generated electrons of porous silicon will be effectively injected into TiO2 via hetero junction interface which leads to efficient charge separation even though porous silicon is not participating in any redox reactions in direct.

  16. On the feasibility of silicene encapsulation by AlN deposited using an atomic layer deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Van Bui, H., E-mail: H.VanBui@utwente.nl, E-mail: M.P.deJong@utwente.nl; Wiggers, F. B.; Kovalgin, A. Y.; Jong, M. P. de, E-mail: H.VanBui@utwente.nl, E-mail: M.P.deJong@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Friedlein, R.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292 (Japan)

    2015-02-14

    Since epitaxial silicene is not chemically inert under ambient conditions, its application in devices and the ex-situ characterization outside of ultrahigh vacuum environments require the use of an insulating capping layer. Here, we report on a study of the feasibility of encapsulating epitaxial silicene on ZrB{sub 2}(0001) thin films grown on Si(111) substrates by aluminum nitride (AlN) deposited using trimethylaluminum (TMA) and ammonia (NH{sub 3}) precursors. By in-situ high-resolution core-level photoelectron spectroscopy, the chemical modifications of the surface due to subsequent exposure to TMA and NH{sub 3} molecules, at temperatures of 300 °C and 400 °C, respectively, have been investigated. While an AlN-related layer can indeed be grown, silicene reacts strongly with both precursor molecules resulting in the formation of Si–C and Si–N bonds such that the use of these precursors does not allow for the protective AlN encapsulation that leaves the electronic properties of silicene intact.

  17. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.

    Science.gov (United States)

    Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang

    2015-05-20

    In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.

  18. Simulation of nucleation and growth of atomic layer deposition phosphorus for doping of advanced FinFETs

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Thomas E., E-mail: zoomtotom@gmail.com [Seitek50, Palm Coast, Florida 32135 (United States); Goldberg, Alexander; Halls, Mat D. [Schrödinger, Inc., San Diego, California 92122 (United States); Current, Michael I. [Current Scientific, San Jose, California 95124 (United States)

    2016-01-15

    Simulations for the nucleation and growth of phosphorus films were carried out using density functional theory. The surface was represented by a Si{sub 9}H{sub 12} truncated cluster surface model with 2 × 1-reconstructured (100) Si-OH terminations for the initial reaction sites. Chemistries included phosphorous halides (PF{sub 3}, PCl{sub 3}, and PBr{sub 3}) and disilane (Si{sub 2}H{sub 6}). Atomic layer deposition (ALD) reaction sequences were illustrated with three-dimensional molecular models using sequential PF{sub 3} and Si{sub 2}H{sub 6} reactions and featuring SiFH{sub 3} as a byproduct. Exothermic reaction pathways were developed for both nucleation and growth for a Si-OH surface. Energetically favorable reactions for the deposition of four phosphorus atoms including lateral P–P bonding were simulated. This paper suggests energetically favorable thermodynamic reactions for the growth of elemental phosphorus on (100) silicon. Phosphorus layers made by ALD are an option for doping advanced fin field-effect transistors (FinFETs). Phosphorus may be thermally diffused into the silicon or recoil knocked in; simulations of the recoil profile of phosphorus into a FinFET surface are illustrated.

  19. Synthesis of indium oxi-sulfide films by atomic layer deposition: The essential role of plasma enhancement

    Directory of Open Access Journals (Sweden)

    Cathy Bugot

    2013-11-01

    Full Text Available This paper describes the atomic layer deposition of In2(S,O3 films by using In(acac3 (acac = acetylacetonate, H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned.

  20. Synthesis of indium oxi-sulfide films by atomic layer deposition: The essential role of plasma enhancement.

    Science.gov (United States)

    Bugot, Cathy; Schneider, Nathanaëlle; Lincot, Daniel; Donsanti, Frédérique

    2013-01-01

    This paper describes the atomic layer deposition of In2(S,O)3 films by using In(acac)3 (acac = acetylacetonate), H2S and either H2O or O2 plasma as oxygen sources. First, the growth of pure In2S3 films was studied in order to better understand the influence of the oxygen pulses. X-Ray diffraction measurements, optical analysis and energy dispersive X-ray spectroscopy were performed to characterize the samples. When H2O was used as the oxygen source, the films have structural and optical properties, and the atomic composition of pure In2S3. No pure In2O3 films could be grown by using H2O or O2 plasma. However, In2(S,O)3 films could be successfully grown by using O2 plasma as oxygen source at a deposition temperature of T = 160 °C, because of an exchange reaction between S and O atoms. By adjusting the number of In2O3 growth cycles in relation to the number of In2S3 growth cycles, the optical band gap of the resulting thin films could be tuned.

  1. Poly(cyclohexylethylene)-block-Poly(lactide) Oligomers for Ultrasmall Nanopatterning Using Atomic Layer Deposition.

    Science.gov (United States)

    Yao, Li; Oquendo, Luis E; Schulze, Morgan W; Lewis, Ronald M; Gladfelter, Wayne L; Hillmyer, Marc A

    2016-03-23

    Poly(cyclohexylethylene)-block-poly(lactide) (PCHE-PLA) block polymers were synthesized through a combination of anionic polymerization, heterogeneous catalytic hydrogenation and controlled ring-opening polymerization. Ordered thin films of PCHE-PLA with ultrasmall hexagonally packed cylinders oriented perpendicularly to the substrate surface were prepared by spin-coating and subsequent solvent vapor annealing for use in two distinct templating strategies. In one approach, selective hydrolytic degradation of the PLA domains generated nanoporous PCHE templates with an average pore diameter of 5 ± 1 nm corroborated by atomic force microscopy and grazing incidence small-angle X-ray scattering. Alternatively, sequential infiltration synthesis (SIS) was employed to deposit Al2O3 selectively into the PLA domains of PCHE-PLA thin films. A combination of argon ion milling and O2 reactive ion etching (RIE) enabled the replication of the Al2O3 nanoarray from the PCHE-PLA template on diverse substrates including silicon and gold with feature diameters less than 10 nm.

  2. NiO/SiC nanocomposite prepared by atomic layer deposition used as a novel electrocatalyst for nonenzymatic glucose sensing.

    Science.gov (United States)

    Yang, Peng; Tong, Xili; Wang, Guizhen; Gao, Zhe; Guo, Xiangyun; Qin, Yong

    2015-03-04

    NiO nanoparticles are deposited onto SiC particles by atomic layer deposition (ALD). The structure of the NiO/SiC hybrid material is investigated by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The size of the NiO nanoparticles is flexible and can be adjusted by altering the cycle number of the NiO ALD. Electrochemical measurements illustrate that NiO/SiC prepared with 600 cycles for NiO ALD exhibits the highest glucose sensing ability in alkaline electrolytes with a low detection limit of 0.32 μM (S/N = 3), high sensitivity of 2.037 mA mM(-1) cm(-2), a linear detection range from approximately 4 μM to 7.5 mM, and good stability. Its sensitivity is about 6 times of that for commercial NiO nanoparticles and NiO/SiC nanocomposites prepared by a traditional incipient wetness impregnation method. It is revealed that the superior electrochemical ability of ALD NiO/SiC is ascribed to the strong interaction between NiO and the SiC substrate and the high dispersity of NiO nanoparticles on the SiC surface. These results suggest that ALD is an effective way to deposit NiO on SiC for nonenzymatic glucose sensing.

  3. Investigation of thermal atomic layer deposited TiAlX (X = N or C) film as metal gate

    Science.gov (United States)

    Xiang, Jinjuan; Zhang, Yanbo; Li, Tingting; Wang, Xiaolei; Gao, Jianfeng; Yin, Huaxiang; Li, Junfeng; Wang, Wenwu; Ding, Yuqiang; Xu, Chongying; Zhao, Chao

    2016-08-01

    TiAlX (X = N or C) films are developed by thermal atomic layer deposition (ALD) technique as metal gate. The TiAlX films are deposited by using four different combinations of precursors: A: TiCl4-NH3-TMA-NH3, B: TiCl4-TMA-NH3, C: TiCl4-NH3-TMA and D: TiCl4-TMA. The physical characteristics of the TiAlX films such as chemical composition, growth rate, resistivity and surface roughness are estimated by X-ray photoemission spectroscopy, scanning electron microscope, four point probe method and atomic force microscopy respectively. Additionally, the electrical characteristics of the TiAlX films are investigated by using metal-oxide-semiconductor (MOS) capacitor structure. It is shown that NH3 presence in the reaction makes the film more like TiAlN(C) while NH3 absence makes the film more like TiAlC. The TiAlC film deposited by TiCl4-TMA has effective work function close to mid-gap of Si, which is rather potential for low power FinFET device application.

  4. Characteristics of atomic layer deposition grown HfO{sub 2} films after exposure to plasma treatments

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.W. [Kookje Electric Korea Co. LTD, 4-2 Chaam-Dong, Chonan-Si, Chungcheongnam-Do (Korea, Republic of)]. E-mail: ywkim@kekorea.co.kr; Roh, Y. [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Yoo, Ji-Beom [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)]. E-mail: jibyoo@skku.ac.kr; Kim, Hyoungsub [School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2007-01-22

    Ultra thin HfO{sub 2} films were grown by the atomic layer deposition (ALD) technique using tetrakismethylethylaminohafnium (Hf[N(CH){sub 3}(C{sub 2}H{sub 5})]{sub 4}) and ozone (O{sub 3}) as the precursors and subsequently exposed to various plasma conditions, i.e., CCP (capacitively coupled plasma) and MMT (modified magnetron typed plasma) in N{sub 2} or N{sub 2}/O{sub 2} ambient. The conventional CCP treatment was not effective in removing the carbon impurities, which were incorporated during the ALD process, from the HfO{sub 2} films. However, according to the X-ray photoelectron spectroscopy measurements, the MMT treated films exhibited a significant reduction in their carbon contents and the efficient incorporation of nitrogen atoms. Although the incorporated nitrogen was easily released during the post-thermal annealing of the MMT treated samples, it was more effective than the CCP treatment in removing the film impurities. Consequently, the MMT treated samples exhibited excellent electrical properties as compared to the as-deposited HfO{sub 2} films, including negligible hysteresis (flatband voltage shift), a low leakage current, and the reduced equivalent oxide thickness of the gate stack. In conclusion, MMT post treatment is more effective than conventional CCP treatment in improving the electrical properties of high-k films by reducing the carbon contamination and densifying the as-deposited defective films.

  5. Effect of hydrogen peroxide pretreatment on ZnO-based metal–semiconductor–metal ultraviolet photodetectors deposited using plasma-enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yu-Chang; Lee, Hsin-Ying, E-mail: hylee@ee.ncku.edu.tw [Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Lee, Tsung-Hsin [Metal Industries Research and Development Centre, Kaohsiung 82151, Taiwan (China)

    2016-01-15

    In this study, zinc oxide (ZnO) films were deposited on sapphire substrates using a plasma-enhanced atomic layer deposition system. Prior to deposition, the substrates were treated with hydrogen peroxide (H{sub 2}O{sub 2}) in order to increase nucleation on the initial sapphire surface and, thus, enhance the quality of deposited ZnO films. Furthermore, x-ray diffraction spectroscopy measurements indicated that the crystallinity of ZnO films was considerably enhanced by H{sub 2}O{sub 2} pretreatment, with the strongest (002) diffraction peak occurring for the film pretreated with H{sub 2}O{sub 2} for 60 min. X-ray photoelectron spectroscopy also was used, and the results indicated that a high number of Zn–O bonds was generated in ZnO films pretreated appropriately with H{sub 2}O{sub 2}. The ZnO film deposited on a sapphire substrate with H{sub 2}O{sub 2} pretreatment for 60 min was applied to metal–semiconductor–metal ultraviolet photodetectors (MSM-UPDs) as an active layer. The fabricated ZnO MSM-UPDs showed improvements in dark current and ultraviolet–visible rejection ratios (0.27 μA and 1.06 × 10{sup 3}, respectively) compared to traditional devices.

  6. Relating Electronic and Geometric Structure of Atomic Layer Deposited BaTiO3 to its Electrical Properties.

    Science.gov (United States)

    Torgersen, Jan; Acharya, Shinjita; Dadlani, Anup Lal; Petousis, Ioannis; Kim, Yongmin; Trejo, Orlando; Nordlund, Dennis; Prinz, Fritz B

    2016-04-21

    Atomic layer deposition allows the fabrication of BaTiO3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO2 and SiO2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO's bonding environment captured by the XANES spectra. The spectral weight shifts to lower energy with increasing Ti content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate-film interfaces reveal BTO's homogeneous growth on RuO2 and its distorted growth on SiO2. This work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.

  7. A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition

    Science.gov (United States)

    Altuntas, Halit; Bayrak, Turkan

    2016-12-01

    In this work, we aimed to investigate the effects of two different plasma sources on the electrical properties of low-temperature plasma-assisted atomic layer deposited (PA-ALD) AlN thin films. To compare the electrical properties, 50 nm thick AlN films were grown on p-type Si substrates at 200 °C by using an inductively coupled RF-plasma (ICP) and a stainless steel hollow cathode plasma-assisted (HCPA) ALD systems. Al/AlN/p-Si metal-insulator-semiconductor (MIS) capacitor devices were fabricated and capacitance versus voltage (C-V) and current-voltage (I-V) measurements performed to assess the basic important electrical parameters such as dielectric constant, effective charge density, flat-band voltage, breakdown field, and threshold voltage. In addition, structural properties of the films were presented and compared. The results show that although HCPA-ALD deposited AlN thin films has structurally better and has a lower effective charge density (N eff ) value than ICP-ALD deposited AlN films, those films have large leakage current, low dielectric constant, and low breakdown field. This situation was attributed to the involvement of Si atoms into the AlN layers during the HCPA-ALD processing leads to additional current path at AlN/Si interface and might impair the electrical properties.

  8. A comparative study on electrical characteristics of crystalline AlN thin films deposited by ICP and HCPA-sourced atomic layer deposition

    Science.gov (United States)

    Altuntas, Halit; Bayrak, Turkan

    2017-03-01

    In this work, we aimed to investigate the effects of two different plasma sources on the electrical properties of low-temperature plasma-assisted atomic layer deposited (PA-ALD) AlN thin films. To compare the electrical properties, 50 nm thick AlN films were grown on p-type Si substrates at 200 °C by using an inductively coupled RF-plasma (ICP) and a stainless steel hollow cathode plasma-assisted (HCPA) ALD systems. Al/AlN/ p-Si metal-insulator-semiconductor (MIS) capacitor devices were fabricated and capacitance versus voltage ( C- V) and current-voltage ( I- V) measurements performed to assess the basic important electrical parameters such as dielectric constant, effective charge density, flat-band voltage, breakdown field, and threshold voltage. In addition, structural properties of the films were presented and compared. The results show that although HCPA-ALD deposited AlN thin films has structurally better and has a lower effective charge density ( N eff ) value than ICP-ALD deposited AlN films, those films have large leakage current, low dielectric constant, and low breakdown field. This situation was attributed to the involvement of Si atoms into the AlN layers during the HCPA-ALD processing leads to additional current path at AlN/Si interface and might impair the electrical properties.

  9. Vanadium dioxide film protected with an atomic-layer-deposited Al{sub 2}O{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao; Cao, Yunzhen, E-mail: yzhcao@mail.sic.ac.cn; Yang, Chao; Yan, Lu; Li, Ying [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 588 Heshuo Road, Shanghai 201800 (China)

    2016-01-15

    A VO{sub 2} film exposed to ambient air is prone to oxidation, which will degrade its thermochromic properties. In this work, the authors deposited an ultrathin Al{sub 2}O{sub 3} film with atomic layer deposition (ALD) to protect the underlying VO{sub 2} film from degradation, and then studied the morphology and crystalline structure of the films. To assess the protectiveness of the Al{sub 2}O{sub 3} capping layer, the authors performed a heating test and a damp heating test. An ultrathin 5-nm-thick ALD Al{sub 2}O{sub 3} film was sufficient to protect the underlying VO{sub 2} film heated at 350 °C. However, in a humid environment at prolonged durations, a thicker ALD Al{sub 2}O{sub 3} film (15 nm) was required to protect the VO{sub 2}. The authors also deposited and studied a TiO{sub 2}/Al{sub 2}O{sub 3} bilayer, which significantly improved the protectiveness of the Al{sub 2}O{sub 3} film in a humid environment.

  10. Super color purity green organic light-emitting diodes with ZrO2/zircone nanolaminates as a distributed Bragg reflector deposited by atomic layer deposition

    Science.gov (United States)

    Zhang, Jianhua; Zhang, Hao; Zheng, Yanqiong; Wei, Mengjie; Ding, He; Wei, Bin; Zhang, Zhilin

    2017-01-01

    ZrO2/zircone nanolaminate thin films fabricated by atomic layer deposition were used for a distributed Bragg reflector (DBR) in green organic light-emitting diodes (OLEDs). It is found that the novel ZrO2/zircone DBR structure significantly improves the light purity of green OLEDs without interfering with intrinsic electroluminescence properties. The full width at half maximum (FWHM) of the EL spectral band for the green OLEDs decreases with respect to increasing the ZrO2/zircone pairs. The FWHMs of OLEDs with 0, 2, 4, and 6 pairs of ZrO2/zircone layers are 72 nm, 48 nm, 24 nm, and 12 nm, respectively. A super-narrow FWHM of 12 nm is achieved by using six pairs of the DBR structure. The EQE is increased from 10.7% to 16.1% with four pairs of ZrO2/zircone layers.

  11. Enhanced Doping Efficiency of Al-Doped ZnO by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide as an Alternative Aluminum Precursor

    NARCIS (Netherlands)

    Wu, Y.; Potts, S.E.; Hermkens, P.M.; Knoops, H.C.M.; Roozeboom, F.; Kessels, W.M.M.

    2013-01-01

    Atomic layer deposition offers the unique opportunity to control, at the atomic level, the 3D distribution of dopants in highly uniform and conformal thin films. Here, it is demonstrated that the maximum doping efficiency of Al in ZnO can be improved from ∼10% to almost 60% using dimethylaluminum is

  12. Atomic layer deposition of two dimensional MoS{sub 2} on 150 mm substrates

    Energy Technology Data Exchange (ETDEWEB)

    Valdivia, Arturo; Conley, John F., E-mail: jconley@eecs.oregonstate.edu [School of EECS, Oregon State University, Corvallis, Oregon 97331 (United States); Tweet, Douglas J. [Sharp Labs of America, Camas, Washington 98607 (United States)

    2016-03-15

    Low temperature atomic layer deposition (ALD) of monolayer to few layer MoS{sub 2} uniformly across 150 mm diameter SiO{sub 2}/Si and quartz substrates is demonstrated. Purge separated cycles of MoCl{sub 5} and H{sub 2}S precursors are used at reactor temperatures of up to 475 °C. Raman scattering studies show clearly the in-plane (E{sup 1}{sub 2g}) and out-of-plane (A{sub 1g}) modes of MoS{sub 2}. The separation of the E{sup 1}{sub 2g} and A{sub 1g} peaks is a function of the number of ALD cycles, shifting closer together with fewer layers. X-ray photoelectron spectroscopy indicates that stoichiometry is improved by postdeposition annealing in a sulfur ambient. High resolution transmission electron microscopy confirms the atomic spacing of monolayer MoS{sub 2} thin films.

  13. Ultra-thin atomic-layer deposited alumina incorporating silica sol makes ultra-durable antireflection coatings

    Science.gov (United States)

    Li, Jia; Lan, Pinjun; Xu, Hua; Zhang, Xianpeng; Yang, Ye; Tan, Ruiqin; Jylhä, Olli; Lu, Yuehui

    2012-11-01

    We propose a strategy to make soda-lime glass maintain both high transparency and long-term durability in stringent high temperature and humid environments. Experiments reveal that the double-layered coatings with 110-nm-thick SiO2 and ultra-thin 25-nm- or 50-nm-thick Al2O3 layers, prepared by sol-gel dip coating and atomic layer deposition (ALD), respectively, exhibit the improvement of 5.88-6.32% in Tave (the average transmittance from the wavelength of 400-700 nm), as compared with that of the bare glass. On the other hand, the highly accelerated temperature and humidity stress test (HAST) confirms that both samples can sustain the 180 h test without any proven transmittance degradation, while the normalized Tave of the bare glass drastically drops to 43.1% of the initial value after the 108 h HAST. It implies that the ultra-thin Al2O3 films prepared by ALD, followed by dip-coated low-index layers such as SiO2 or nanostructured layer, can achieve both higher average transmittance and better durability, which would be of significance for the applications of ALD and dip coating techniques in the fields of consumer electronics, architecture with glass facades, and photovoltaics.

  14. Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes.

    Science.gov (United States)

    Martin, Marie-Blandine; Dlubak, Bruno; Weatherup, Robert S; Yang, Heejun; Deranlot, Cyrile; Bouzehouane, Karim; Petroff, Frédéric; Anane, Abdelmadjid; Hofmann, Stephan; Robertson, John; Fert, Albert; Seneor, Pierre

    2014-08-26

    We report on the successful integration of low-cost, conformal, and versatile atomic layer deposited (ALD) dielectric in Ni–Al2O3–Co magnetic tunnel junctions (MTJs) where the Ni is coated with a spin-filtering graphene membrane. The ALD tunnel barriers, as thin as 0.6 nm, are grown layer-by-layer in a simple, low-vacuum, ozone-based process, which yields high-quality electron-transport barriers as revealed by tunneling characterization. Even under these relaxed conditions, including air exposure of the interfaces, a significant tunnel magnetoresistance is measured highlighting the robustness of the process. The spin-filtering effect of graphene is enhanced, leading to an almost fully inversed spin polarization for the Ni electrode of −42%. This unlocks the potential of ALD for spintronics with conformal, layer-by-layer control of tunnel barriers in magnetic tunnel junctions toward low-cost fabrication and down-scaling of tunnel resistances.

  15. In-Situ Cleaning, Passivation, Functionalization, and Atomic Layer Deposition on Germanium and Silicon-Germanium

    Science.gov (United States)

    Kaufman-Osborn, Tobin Adar

    In recent years, germanium (Ge) and silicon-germanium (SiGe) have drawn significant interest as replacements of conventional silicon in the search for alternative materials for use in complementary metal-oxide-semiconductor (CMOS) devices due to their high electron and hole mobilities. In order to effectively implement Ge or SiGe as a replacement for silicon, two major challenges must be overcome: non-disruptive cleaning and surface passivation/functionalization. As electrical devices are increasingly scaled, it becomes especially crucial to effectively clean each unit cell on the Ge/SiGe surface without causing major disruption or damage to the surface. If air-induced defects or contaminants persist on the surface after cleaning, these defect sites may be un-reactive for functionalization and thereby will hinder device performance and/or the ability to aggressively scale device size. If a cleaning method is too aggressive leaving a rough or disordered surface, this can lower the mobility at the interface which will worsen device performance. For these reasons, it is necessary to develop a non-disruptive cleaning process that cleans each unit cell leaving a flat, ordered, and reactive surface. Once the Ge or SiGe surface is cleaned, in order to achieve a good electrical quality interface and a high nucleation density on the surface, all surface atoms must be passivated and functionalized allowing for aggressive device scaling. The interface must remain electrically passive in order to not inhibit electrical performance of the device. This study uses scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy (XPS) to develop and analyze a completely in-situ non-disruptive cleaning method of the Ge surface using H2O2(g) and atomic hydrogen. After cleaning, the Ge or SiGe surface is passivated and functionalized using H2O2(g) as a method to improve upon the conventional H2O(g) passivation method by more than

  16. Modification of SnO2 Anodes by Atomic Layer Deposition for High Performance Lithium Ion Batteries

    KAUST Repository

    Yesibolati, Nulati

    2013-05-01

    Tin dioxide (SnO2) is considered one of the most promising anode materials for Lithium ion batteries (LIBs), due to its large theoretical capacity and natural abundance. However, its low electronic/ionic conductivities, large volume change during lithiation/delithiation and agglomeration prevent it from further commercial applications. In this thesis, we investigate modified SnO2 as a high energy density anode material for LIBs. Specifically two approaches are presented to improve battery performances. Firstly, SnO2 electrochemical performances were improved by surface modification using Atomic Layer Deposition (ALD). Ultrathin Al2O3 or HfO2 were coated on SnO2 electrodes. It was found that electrochemical performances had been enhanced after ALD deposition. In a second approach, we implemented a layer-by-layer (LBL) assembled graphene/carbon-coated hollow SnO2 spheres as anode material for LIBs. Our results indicated that the LBL assembled electrodes had high reversible lithium storage capacities even at high current densities. These superior electrochemical performances are attributed to the enhanced electronic conductivity and effective lithium diffusion, because of the interconnected graphene/carbon networks among nanoparticles of the hollow SnO2 spheres.

  17. An iron(II) diketonate–diamine complex as precursor for thin film fabrication by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bratvold, Jon E., E-mail: j.e.bratvold@kjemi.uio.no [Centre for Materials Science and Nanotechnology (SMN)/Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo (Norway); Carraro, Giorgio [Department of Chemistry, University of Padova and INSTM, via F. Marzolo 1, I-35131 Padova (Italy); Barreca, Davide [CNR-IENI and INSTM, Department of Chemistry, University of Padova, via F. Marzolo 1, I-35131 Padova (Italy); Nilsen, Ola [Centre for Materials Science and Nanotechnology (SMN)/Department of Chemistry, University of Oslo, PO Box 1033, Blindern, N-0315 Oslo (Norway)

    2015-08-30

    Highlights: • First report of Fe(hfa){sub 2}TMEDA as precursor in ALD and MLD. • Hybrid organic–inorganic films with oxalic acid as co-reactant between 125 and 350 °C. • Surface saturation evidenced by quartz crystal microbalance (QCM) analysis. • XPS confirms complete preservation of Fe(II) from precursor to film. • Deposition of α-Fe{sub 2}O{sub 3} when using ozone as co-reactant. - Abstract: A new divalent Fe precursor has been explored for deposition of iron-containing thin films by atomic layer deposition and molecular layer deposition (ALD/MLD). The Fe(II) β-diketonate-diamine complex, Fe(hfa){sub 2}TMEDA, (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate, TMEDA = N,N,N′,N′-tetramethylethylenediamine) can be handled in air, and sublimation at 60 °C ensures a satisfactory vaporization rate. The reactivity of the precursor does not allow for direct reaction with water as co-reactant. Nevertheless, it reacts with carboxylic acids, resulting in organic–inorganic hybrid materials, and with ozone, yielding α-Fe{sub 2}O{sub 3}. The divalent oxidation state of iron was maintained during deposition when oxalic acid was used as co-reactant, demonstrating the first preservation of Fe(II) from precursor to film during an MLD process. A self-saturating growth mode was proven by in situ quartz crystal microbalance (QCM) measurements, and the films were further characterized by grazing incidence X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS)

  18. Very low surface recombination velocities on p- and n-type c-Si by ultrafast spatial atomic layer deposition of aluminum oxide

    NARCIS (Netherlands)

    Werner, F.; Veith, B.; Tiba, V.; Poodt, P.W.G.; Roozeboom, F.; Brendel, R.; Schmidt, J.

    2010-01-01

    Using aluminum oxide (Al2 O3) films deposited by high-rate spatial atomic layer deposition (ALD), we achieve very low surface recombination velocities of 6.5 cm/s on p -type and 8.1 cm/s on n -type crystalline silicon wafers. Using spatially separated reaction zones instead of

  19. Atomic layer-by-layer deposition of h-BN(0001) on cobalt: a building block for spintronics and graphene electronics

    Science.gov (United States)

    Beatty, John; Cao, Yuan; Tanabe, Iori; Sky Driver, M.; Dowben, Peter A.; Kelber, Jeffry A.

    2014-12-01

    X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and Raman measurements demonstrate that macroscopically continuous hexagonal BN(0001) (h-BN) multilayer layer films can be grown by atomic layer deposition on Co(0001) substrates. The growth procedure involves alternating exposures of BCl3 and NH3 at 550 K, followed by annealing in ultrahigh vacuum above 700 K to induce long-range order. XPS data demonstrate that the films have a consistent B:N atomic ratio of 1:1. LEED data show that the BN layers are azimuthally in registry, with an estimated domain size of ˜170 Å. The films are continuous over a macroscopic (1 cm × 1 cm) area as demonstrated by the fact that exposure of a h-BN(0001) bi-layer film to ambient at room temperature yields no observable Co oxidation, although some N oxidation is observed, and long range order is lost. The ability to grow large area, continuous multilayer BN films on Co, with atomic level control of film thickness, makes possible an array of magnetic tunnel junction and spin filter applications.

  20. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid

    Directory of Open Access Journals (Sweden)

    Loïc Assaud

    2014-02-01

    Full Text Available Three-dimensionally (3D nanoarchitectured palladium/nickel (Pd/Ni catalysts, which were prepared by atomic layer deposition (ALD on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4. Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects.

  1. Morphology, composition and electrical properties of SnO{sub 2}:Cl thin films grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hsyi-En, E-mail: sean@mail.stust.edu.tw; Wen, Chia-Hui; Hsu, Ching-Ming [Department of Electro-Optical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan (China)

    2016-01-15

    Chlorine doped SnO{sub 2} thin films were prepared using atomic layer deposition at temperatures between 300 and 450 °C using SnCl{sub 4} and H{sub 2}O as the reactants. Composition, structure, surface morphology, and electrical properties of the as-deposited films were examined. Results showed that the as-deposited SnO{sub 2} films all exhibited rutile structure with [O]/[Sn] ratios between 1.35 and 1.40. The electrical conductivity was found independent on [O]/[Sn] ratio but dependent on chlorine doping concentration, grain size, and surface morphology. The 300 °C-deposited film performed a higher electrical conductivity of 315 S/cm due to its higher chlorine doping level, larger grain size, and smoother film surface. The existence of Sn{sup 2+} oxidation state was demonstrated to minimize the effects of chlorine on raising the electrical conductivity of films.

  2. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    Science.gov (United States)

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

  3. 3D-nanoarchitectured Pd/Ni catalysts prepared by atomic layer deposition for the electrooxidation of formic acid.

    Science.gov (United States)

    Assaud, Loïc; Monyoncho, Evans; Pitzschel, Kristina; Allagui, Anis; Petit, Matthieu; Hanbücken, Margrit; Baranova, Elena A; Santinacci, Lionel

    2014-01-01

    Three-dimensionally (3D) nanoarchitectured palladium/nickel (Pd/Ni) catalysts, which were prepared by atomic layer deposition (ALD) on high-aspect-ratio nanoporous alumina templates are investigated with regard to the electrooxidation of formic acid in an acidic medium (0.5 M H2SO4). Both deposition processes, Ni and Pd, with various mass content ratios have been continuously monitored by using a quartz crystal microbalance. The morphology of the Pd/Ni systems has been studied by electron microscopy and shows a homogeneous deposition of granularly structured Pd onto the Ni substrate. X-ray diffraction analysis performed on Ni and NiO substrates revealed an amorphous structure, while the Pd coating crystallized into a fcc lattice with a preferential orientation along the [220]-direction. Surface chemistry analysis by X-ray photoelectron spectroscopy showed both metallic and oxide contributions for the Ni and Pd deposits. Cyclic voltammetry of the Pd/Ni nanocatalysts revealed that the electrooxidation of HCOOH proceeds through the direct dehydrogenation mechanism with the formation of active intermediates. High catalytic activities are measured for low masses of Pd coatings that were generated by a low number of ALD cycles, probably because of the cluster size effect, electronic interactions between Pd and Ni, or diffusion effects.

  4. Effects of growth temperature on the properties of atomic layer deposition grown ZrO2 films

    Science.gov (United States)

    Scarel, G.; Ferrari, S.; Spiga, S.; Wiemer, C.; Tallarida, G.; Fanciulli, M.

    2003-07-01

    Zirconium dioxide films are grown in 200 atomic layer deposition cycles. Zirconium tetrachloride (ZrCl4) and water (H2O) are used as precursors. A relatively high dielectric constant (κ=22), wide band gap, and conduction band offset (5.8 and 1.4 eV, respectively) indicate that zirconium dioxide is a most promising substitute for silicon dioxide as a dielectric gate in complementary metal-oxide-semiconductor devices. However, crystallization and chlorine ions in the films might affect their electrical properties. These ions are produced during atomic layer deposition in which the ZrCl4 precursor reacts with the growth surface. It is desirable to tune the composition, morphology, and structural properties in order to improve their benefit on the electrical ones. To address this issue it is necessary to properly choose the growth parameters. This work focuses on the effects of the growth temperature Tg. ZrO2 films are grown at different substrate temperatures: 160, 200, 250, and 350 °C. Relevant modification of the film structure with a change in substrate temperature during growth is expected because the density of reactive sites [mainly Si+1-(OH)-1 bonds] decreases with an increase in temperature [Y. B. Kim et al., Electrochem. Solid-State Lett. 3, 346 (2000)]. The amorphous film component, for example, that develops at Si+1-(OH)-1 sites on the starting growth surface, is expected to decrease with an increase in growth temperature. The size and consequences of film property modifications with the growth temperature are investigated in this work using x-ray diffraction and reflectivity, and atomic force microscopy. Time of flight-secondary ion mass spectrometry is used to study contaminant species in the films. From capacitance-voltage (CV) and current-voltage (IV) measurements, respectively, the dielectric constant κZrO2 and the leakage current are studied as a function of the film growth temperature.

  5. Influence of annealing in H atmosphere on the electrical properties of Al2O3 layers grown on p-type Si by the atomic layer deposition technique

    Science.gov (United States)

    Kolkovsky, Vl.; Stübner, R.; Langa, S.; Wende, U.; Kaiser, B.; Conrad, H.; Schenk, H.

    2016-09-01

    In the present study the electrical properties of 100 nm and 400 nm alumina films grown by the atomic layer deposition technique on p-type Si before and after a post-deposition annealing at 440 °C and after a dc H plasma treatment at different temperatures are investigated. We show that the density of interface states is below 2 × 1010 cm-2 in these samples and this value is significantly lower compared to that reported previously in thinner alumina layers (below 50 nm). The effective minority carrier lifetime τg,eff and the effective surface recombination velocity seff in untreated p-type Si samples with 100 nm and 400 nm aluminum oxide is comparable with those obtained after thermal oxidation of 90 nm SiO2. Both, a post-deposition annealing in forming gas (nitrogen/hydrogen) at elevated temperatures and a dc H-plasma treatment at temperatures close to room temperature lead to the introduction of negatively charged defects in alumina films. The results obtained in samples annealed in different atmospheres at different temperatures or subjected to a dc H plasma treatment allow us to correlate these centers with H-related defects. By comparing with theory we tentatively assign them to negatively charged interstitial H atoms.

  6. Eliminated Phototoxicity of TiO2 Particles by an Atomic-Layer-Deposited Al2 O3 Coating Layer for UV-Protection Applications.

    Science.gov (United States)

    Jang, Eunyong; Sridharan, Kishore; Park, Young Min; Park, Tae Joo

    2016-08-16

    We demonstrate the conformal coating of an ultrathin Al2 O3 layer on TiO2 nanoparticles through atomic layer deposition by using a specifically designed rotary reactor to eliminate the phototoxicity of the particles for cosmetic use. The ALD reactor is modified to improve the coating efficiency as well as the agitation of the particles for conformal coating. Elemental and microstructural analyses show that ultrathin Al2 O3 layers are conformally deposited on the TiO2 nanoparticles with a controlled thickness. Rhodamine B dye molecules on Al2 O3 -coated TiO2 exhibited a long life time under UV irradiation, that is, more than 2 h, compared to that on bare TiO2 , that is, 8 min, indicating mitigation of photocatalytic activity by the coated layer. The effect of carbon impurities in the film resulting from various deposition temperatures and thicknesses of the Al2 O3 layer on the photocatalytic activity are also thoroughly investigated with controlled experimental condition by using dye molecules on the surface. Our results reveal that an increased carbon impurity resulting from a low processing temperature provides a charge conduction path and generates reactive oxygen species causing the degradation of dye molecule. A thin coated layer, that is, less than 3 nm, also induced the tunneling of electrons and holes to the surface, hence oxidizing dye molecules. Furthermore, the introduction of an Al2 O3 layer on TiO2 improves the light trapping thus, enhances the UV absorption.

  7. Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor

    Science.gov (United States)

    Lv, Xinrui; Cao, Yunzhen; Yan, Lu; Li, Ying; Song, Lixin

    2017-02-01

    VO2 thin films have been grown on Si(100) (VO2/Si) and fused silica substrates (VO2/SiO2) by atomic layer deposition (ALD) using tetrakis-dimethyl-amino vanadium (IV) (TDMAV) as a novel vanadium precursor and water as reactant gas. The quartz crystal microbalance (QCM) measurement was performed to study the ALD process of VO2 thin film deposition, and a constant growth rate of about 0.95 Å/cycle was obtained at the temperature range of 150-200 °C. XRD measurement was performed to study the influence of deposition temperature and post-annealing condition on the crystallization of VO2 films, which indicated that the films deposited between 150 and 200 °C showed well crystallinity after annealing at 475 °C for 100 min in Ar atmosphere. XPS measurement verified that the vanadium oxidation state was 4+ for both as-deposited film and post-annealed VO2/Si film. AFM was applied to study the surface morphology of VO2/Si films, which showed a dense polycrystalline film with roughness of about 1 nm. The resistance of VO2/Si films deposited between 150 °C and 200 °C as a function of temperature showed similar semiconductor-to-metal transition (SMT) characters with the transition temperature for heating branch (Tc,h) of about 72 °C, a hysteresis width of about 10 °C and the resistance change of two orders of magnitude. The increase of Tc,h compared with the bulk VO2 (68 °C) may be attributed to the tensile stress along the c-axis in the film. Transmittance measurement of VO2/SiO2 films showed typical thermochromic property with a NIR switching efficiency of above 50% at 2 μm across the transition.

  8. Controlling the fixed charge and passivation properties of Si(100)/Al(2)O(3) interfaces using ultrathin SiO(2) interlayers synthesized by atomic layer deposition

    NARCIS (Netherlands)

    Dingemans, G.; Terlinden, N. M.; Verheijen, M. A.; M. C. M. van de Sanden,; Kessels, W. M. M.

    2011-01-01

    Al(2)O(3) synthesized by atomic layer deposition (ALD) on H-terminated Si(100) exhibits a very thin (similar to 1 nm) interfacial SiO(x) layer. At this interface, a high fixed negative charge density, Q(f), is present after annealing which contributes to ultralow surface recombination velocities sim

  9. Thermal stability of atomic layer deposited Ru layer on Si and TaN/Si for barrier application of Cu interconnection.

    Science.gov (United States)

    Shin, Dong Chan; Kim, Moo Ryul; Lee, Jong Ho; Choi, Bum Ho; Lee, Hong Kee

    2012-07-01

    The thermal stability of thin Ru single layer and Ru/TaN bilayers grown on bare Si by plasma enhanced atomic layer deposition (PEALD) have been studied with Cu/Ru, Cu/Ru/TaN structures as a function of annealing temperature. To investigate the characteristics as a copper diffusion barrier, a 50 nm thick Cu film was sputtered on Ru and Ru/TaN layers and each samples subjected to thermal annealing under N2 ambient with varied temperature 300, 400, and 500 degrees C, respectively. It was found that the single 5 nm thick ALD Ru layer acted as an effective Cu diffusion barrier up to 400 degrees C. On the other hand ALD Ru (5 nm)/TaN (3.2 nm) showed the improved diffusion barrier characteristics even though the annealing temperature increased up to 500 degrees C. Based on the experimental results, the failure mechanism of diffusion barrier would be related to the crystallization of amorphous Ru thin film as temperature raised which implies the crystallized Ru grain boundary served as the diffusion path of Cu atoms. The combination of ALD Ru incorporated with TaN layer would be a promising barrier structure in Cu metallization.

  10. Effect of Trimethyl Aluminium Surface Pretreatment on Atomic Layer Deposition Al2O3 Ultra-Thin Film on Si Substrate

    Institute of Scientific and Technical Information of China (English)

    XU Min; LU Hong-Liang; DING Shi-Jin; SUN Liang; ZHANG Wei; WANG Li-Kang

    2005-01-01

    @@ Ultra-thin Al2O3 dielectric films have been deposited on Si substrates by using trimethyl aluminium (TMA)and water as precursors in an atomic layer deposition (ALD) system. Growth of the interfacial layer between ultra-thin Al2O3 and the Si substrate is effectively suppressed by a long-time TMA surface pretreatment of the Si substrate prior to Al2O3 atomic layer deposition. High resolution transmission electron microscopy (TEM) images show that the thickness of the interfacial layer is reduced to be 0.5nm for the sample with TMA pretreatment lasting 3600s. The x-ray photoelectron spectroscopy results indicate that the Al2O3 film deposited on the TMApretreated Si surface exhibits very good thermal stability. However, a hysteresis of about 50mV is observed in the C-V curve of the samples with the TMA pretreatment.

  11. Electrical and physicochemical properties of atomic-layer-deposited HfO{sub 2} film on Si substrate with interfacial layer grown by nitric acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyun [Department of Advanced Materials Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Seok, Tae Jun; Jin, Hyun Soo [Department of Materials Science & Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Kim, Woo-Byoung, E-mail: woo7838@dankook.ac.kr [Department of Energy Engineering, Dankook University, Cheonan 330-714 (Korea, Republic of); Park, Tae Joo, E-mail: tjp@hanyang.ac.kr [Department of Advanced Materials Engineering, Hanyang University, Ansan 15588 (Korea, Republic of); Department of Materials Science & Chemical Engineering, Hanyang University, Ansan 15588 (Korea, Republic of)

    2016-03-01

    Graphical abstract: - Highlights: • Ultrathin SiO{sub 2} interfacial layers grown using nitric acid oxidation and O{sub 3} oxidation were adopted at the interface of HfO{sub 2}/Si. • Higher physical density of interfacial layer grown using nitric acid oxidation resulted in the suppressed Si diffusion from substrate into the film. • The interface properties as well as permittivity of the film were improved by adoption of interfacial layer grown using nitric acid oxidation. - Abstract: The ultrathin SiO{sub 2} interfacial layer (IL) was adopted at the interface between atomic-layer-deposited HfO{sub 2} gate dielectric film and a Si substrate, which was grown using nitric acid oxidation (NAO) and O{sub 3} oxidation (OZO) prior to HfO{sub 2} film deposition. X-ray photoelectron spectroscopy result revealed that Si diffusion from the substrate into the film was suppressed for the film with NAO compared to that with OZO, which was attributed to the higher physical density of IL. The electrical measurement using metal–insulator–semiconductor devices showed that the film with NAO exhibited higher effective permittivity and lower densities of fixed charge and slow state at the interface. Furthermore, the leakage current density at an equivalent electrical thickness was lower for the film with NAO than OZO.

  12. Large-scale synthesis of uniform hexagonal boron nitride films by plasma-enhanced atomic layer deposition

    Science.gov (United States)

    Park, Hamin; Kim, Tae Keun; Cho, Sung Woo; Jang, Hong Seok; Lee, Sang Ick; Choi, Sung-Yool

    2017-01-01

    Hexagonal boron nitride (h-BN) has been previously manufactured using mechanical exfoliation and chemical vapor deposition methods, which make the large-scale synthesis of uniform h-BN very challenging. In this study, we produced highly uniform and scalable h-BN films by plasma-enhanced atomic layer deposition, which were characterized by various techniques including atomic force microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. The film composition studied by X-ray photoelectron spectroscopy and Auger electron spectroscopy corresponded to a B:N stoichiometric ratio close to 1:1, and the band-gap value (5.65 eV) obtained by electron energy loss spectroscopy was consistent with the dielectric properties. The h-BN-containing capacitors were characterized by highly uniform properties, a reasonable dielectric constant (3), and low leakage current density, while graphene on h-BN substrates exhibited enhanced electrical performance such as the high carrier mobility and neutral Dirac voltage, which resulted from the low density of charged impurities on the h-BN surface.

  13. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.

    Science.gov (United States)

    Steier, Ludmilla; Luo, Jingshan; Schreier, Marcel; Mayer, Matthew T; Sajavaara, Timo; Grätzel, Michael

    2015-12-22

    We developed a low-temperature atomic layer deposition route to deposit phase pure and crystalline hematite (α-Fe2O3) films at 230 °C without the need for postannealing. Homogenous and conformal deposition with good aspect ratio coverage was demonstrated on a nanostructured substrate and analyzed by transmission electron microscopy. These as-deposited α-Fe2O3 films were investigated as photoanodes for photoelectrochemical water oxidation and found to be highly photoactive. Combined with a TiO2 underlayer and a low-cost Ni(OH)2 catalyst, hematite films of less than 10 nm in thickness reached photocurrent densities of 0.3 mA cm(-2) at 1.23 V vs RHE and a photocurrent onset potential of less than 0.9 V vs RHE, previously unseen for films this thin and without high temperature annealing. In a thickness-dependent photoelectrochemical analysis, we identified a hematite thickness of only 10 nm to yield the highest internal quantum efficiency when using a suitable underlayer such as TiO2 that induces doping of the hematite film and reduces electron/hole recombination at the back contact. We find that, at high bias potentials, photocurrent density and quantum efficiency proportionally increase with light absorption in films thinner than 10 nm and are limited by the space charge layer width in thicker films. Thus, we propose to apply hematite films of 10 nm in thickness for future developments on suitable nanostructured conductive scaffolds that can now be extended to organic scaffolds due to our low-temperature process.

  14. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  15. Atomic layer deposition of diisopropylaminosilane on WO3(001) and W(110): a density functional theory study.

    Science.gov (United States)

    Lee, Kyungtae; Lee, Woojin; Lee, Hyo Sug; Shin, Jaikwang; Park, Jieun; Lee, Seongsuk; Choi, Samjong; Kim, Sueryeon; Kim, Jinseong; Shim, Youngseon

    2016-10-26

    The decomposition reactions of the Si precursor, diisopropylaminosilane (DIPAS), on W(110) and hydroxylated WO3(001) surfaces are investigated to elucidate the initial reaction mechanism of the atomic layer deposition (ALD) process using density functional theory (DFT) calculations combined with ab initio molecular dynamics (AIMD) simulations. The decomposition reaction of DIPAS on WO3(001) consists of two steps: Si-N dissociative chemisorption and decomposition of SiH3*. It is found that the Si-N bond cleavage of DIPAS is facile on WO3(001) due to hydrogen bonding between the surface OH group and the N atom of DIPAS. The rate-determining step of DIPAS decomposition on WO3(001) is found to be the Si-H dissociation reaction of the SiH3* reaction intermediate which has an activation barrier of 1.19 eV. On the contrary, sequential Si-H dissociation reactions first occur on W(110) and then the Si-N dissociation reaction of the C5H7NSi* reaction intermediate is found to be the rate-determining step, which has an activation barrier of 1.06 eV. As a result, the final products in the DIPAS decomposition reaction on WO3(001) are Si* and SiH*, whereas Si* atoms remain with carbon impurities on W(110), which imply that the hydroxylated WO3 surface is more efficient for the ALD process.

  16. Reduced defect density at the CZTSSe/CdS interface by atomic layer deposition of Al2O3

    Science.gov (United States)

    Erkan, Mehmet Eray; Chawla, Vardaan; Scarpulla, Michael A.

    2016-05-01

    The greatest challenge for improving the power conversion efficiency of Cu2ZnSn(S,Se)4 (CZTSSe)/CdS/ZnO thin film solar cells is increasing the open circuit voltage (VOC). Probable leading causes of the VOC deficit in state-of-the-art CZTSSe devices have been identified as bulk recombination, band tails, and the intertwined effects of CZTSSe/CdS band offset, interface defects, and interface recombination. In this work, we demonstrate the modification of the CZTSSe absorber/CdS buffer interface following the deposition of 1 nm-thick Al2O3 layers by atomic layer deposition (ALD) near room temperature. Capacitance-voltage profiling and quantum efficiency measurements reveal that ALD-Al2O3 interface modification reduces the density of acceptor-like states at the heterojunction resulting in reduced interface recombination and wider depletion width. Indications of increased VOC resulting from the modification of the heterojunction interface as a result of ALD-Al2O3 treatment are presented. These results, while not conclusive for application to state-of-the-art high efficiency CZTSSe devices, suggest the need for further studies as it is probable that interface recombination contributes to reduced VOC even in such devices.

  17. Stable and High-Performance Flexible ZnO Thin-Film Transistors by Atomic Layer Deposition.

    Science.gov (United States)

    Lin, Yuan-Yu; Hsu, Che-Chen; Tseng, Ming-Hung; Shyue, Jing-Jong; Tsai, Feng-Yu

    2015-10-14

    Passivation is a challenging issue for the oxide thin-film transistor (TFT) technologies because it requires prolonged high-temperature annealing treatments to remedy defects produced in the process, which greatly limits its manufacturability as well as its compatibility with temperature-sensitive materials such as flexible plastic substrates. This study investigates the defect-formation mechanisms incurred by atomic layer deposition (ALD) passivation processes on ZnO TFTs, based on which we demonstrate for the first time degradation-free passivation of ZnO TFTs by a TiO2/Al2O3 nanolaminated (TAO) film deposited by a low-temperature (110 °C) ALD process. By combining the TAO passivation film with ALD dielectric and channel layers into an integrated low-temperature ALD process, we successfully fabricate flexible ZnO TFTs on plastics. Thanks to the exceptional gas-barrier property of the TAO film (water vapor transmission rate (WVTR)20 cm2 V(-1) s(-1), subthreshold swing10,000 s), air-storage (>1200 h), and bending (1.3 cm radius for 1000 times).

  18. High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition.

    Science.gov (United States)

    Masango, Sicelo S; Hackler, Ryan A; Large, Nicolas; Henry, Anne-Isabelle; McAnally, Michael O; Schatz, George C; Stair, Peter C; Van Duyne, Richard P

    2016-07-13

    We present a high-resolution distance dependence study of surface-enhanced Raman scattering (SERS) enabled by atomic layer deposition (ALD) at 55 and 100 °C. ALD is used to deposit monolayers of Al2O3 on bare silver film over nanospheres (AgFONs) and AgFONs functionalized with self-assembled monolayers. Operando SERS is used to measure the intensities of the Al-CH3 and C-H stretches from trimethylaluminum (TMA) as a function of distance from the AgFON surface. This study clearly demonstrates that SERS on AgFON substrates displays both a short- and long-range nanometer scale distance dependence. Excellent agreement is obtained between these experiments and theory that incorporates both short-range and long-range terms. This is a high-resolution operando SERS distance dependence study performed in one integrated experiment using ALD Al2O3 as the spacer layer and Raman label simultaneously. The long-range SERS distance dependence should make it possible to detect chemisorbed surface species located as far as ∼3 nm from the AgFON substrate and will provide new insight into the surface chemistry of ALD and catalytic reactions.

  19. Impact of post-deposition annealing on interfacial chemical bonding states between AlGaN and ZrO{sub 2} grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Gang; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong [Novitas, Nanoelectronics Center of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, Hong, E-mail: ewanghong@ntu.edu.sg [Novitas, Nanoelectronics Center of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); CINTRA CNRS/NTU/Thales, UMI 3288, 50 Nanyang Drive (Singapore); Ng, Serene Lay Geok; Ji, Rong [Data Storage Institute, Agency for Science Technology and Research (A-STAR), 5 Engineering Drive 1, 117608 (Singapore); Liu, Zhi Hong [Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 (Singapore)

    2015-03-02

    The effect of post-deposition annealing on chemical bonding states at interface between Al{sub 0.5}Ga{sub 0.5}N and ZrO{sub 2} grown by atomic layer deposition (ALD) is studied by angle-resolved x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that both of Al-O/Al 2p and Ga-O/Ga 3d area ratio decrease at annealing temperatures lower than 500 °C, which could be attributed to “clean up” effect of ALD-ZrO{sub 2} on AlGaN. Compared to Ga spectra, a much larger decrease in Al-O/Al 2p ratio at a smaller take-off angle θ is observed, which indicates higher effectiveness of the passivation of Al-O bond than Ga-O bond through “clean up” effect near the interface. However, degradation of ZrO{sub 2}/AlGaN interface quality due to re-oxidation at higher annealing temperature (>500 °C) is also found. The XPS spectra clearly reveal that Al atoms at ZrO{sub 2}/AlGaN interface are easier to get oxidized as compared with Ga atoms.

  20. Atomic Layer Deposition of CdS Quantum Dots for Solid-State Quantum Dot Sensitized Solar Cells

    KAUST Repository

    Brennan, Thomas P.

    2011-10-04

    Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO 2, we are able to grow QDs of adjustable size which act as sensitizers for solid-state QDsensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1-10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2\\',7,7\\'-tetrakis-(N,N-di-p methoxyphenylamine) 9,9\\'-spirobifluorene (spiro-OMeTAD) as the solid-state hole conductor. The ALD approach described here can be applied to fabrication of quantum-confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Atomic layer deposition of NiS and its application as cathode material in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mahuli, Neha [Center for Research in Nanotechnology and Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Sarkar, Shaibal K., E-mail: shaibal.sarkar@iitb.ac.in [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-01-15

    Nickel sulfide (NiS) is grown by atomic layer deposition (ALD) using sequential exposures of bis(2,2,6,6-tetramethylheptane-3,5-dionate)nickel(II) [Ni(thd){sub 2}] and hydrogen sulfide (H{sub 2}S) at 175 °C. Complementary combinations of in situ and ex situ characterization techniques are used to understand the deposition chemistry and the nature of film growth. The saturated growth rate of ca. 0.21 Å per ALD cycle is obtained, which is constant within the ALD temperature window (175–250 °C). As deposited films on glass substrates are found polycrystalline without any preferred orientation. Electrical transport measurement reveals degenerative/semimetallic characteristics with a carrier concentration of ca. 9 × 10{sup 22} cm{sup −3} at room temperature. The ALD grown NiS thin film demonstrates high catalytic activity for the reduction of I{sup −}/I{sub 3}{sup −} electrolyte that opens its usage as cost-effective counter electrode in dye sensitized solar cells, replacing Pt.

  2. Atomic Layer Deposition of Pt Nanoparticles within the Cages of MIL-101: A Mild and Recyclable Hydrogenation Catalyst

    Directory of Open Access Journals (Sweden)

    Karen Leus

    2016-03-01

    Full Text Available We present the in situ synthesis of Pt nanoparticles within MIL-101-Cr (MIL = Materials Institute Lavoisier by means of atomic layer deposition (ALD. The obtained Pt@MIL-101 materials were characterized by means of N2 adsorption and X-ray powder diffraction (XRPD measurements, showing that the structure of the metal organic framework was well preserved during the ALD deposition. X-ray fluorescence (XRF and transmission electron microscopy (TEM analysis confirmed the deposition of highly dispersed Pt nanoparticles with sizes determined by the MIL-101-Cr pore sizes and with an increased Pt loading for an increasing number of ALD cycles. The Pt@MIL-101 material was examined as catalyst in the hydrogenation of different linear and cyclic olefins at room temperature, showing full conversion for each substrate. Moreover, even under solvent free conditions, full conversion of the substrate was observed. A high concentration test has been performed showing that the Pt@MIL-101 is stable for a long reaction time without loss of activity, crystallinity and with very low Pt leaching.

  3. Active MnO{sub x} electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions

    Energy Technology Data Exchange (ETDEWEB)

    Pickrahn, Katie L.; Park, Sang Wook; Gorlin, Yelena; Lee, Han-Bo-Ram; Jaramillo, Thomas F.; Bent, Stacey F. [Department of Chemical Engineering, Stanford University, Stanford, CA 94305-5025 (United States)

    2012-10-15

    The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD-MnO{sub x} on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as-deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn{sub 2}O{sub 3} catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn{sub 2}O{sub 3} catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnO{sub x} catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth-abundant materials for the ORR and the OER. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Atomic layer deposition of AlN for thin membranes using trimethylaluminum and H2/N2 plasma

    Science.gov (United States)

    Goerke, Sebastian; Ziegler, Mario; Ihring, Andreas; Dellith, Jan; Undisz, Andreas; Diegel, Marco; Anders, Solveig; Huebner, Uwe; Rettenmayr, Markus; Meyer, Hans-Georg

    2015-05-01

    Aluminum nitride (AlN) thin films with thicknesses from 20 to 100 nm were deposited on silicon, amorphous silica, silicon nitride, and vitreous carbon by plasma enhanced atomic layer deposition (PE-ALD). Trimethylaluminum (TMA) and a H2/N2 plasma mixture were used as precursors. We investigated the influence of deposition temperature and plasma parameters on the growth characteristics and the film properties of AlN. Stable PE-ALD growth conditions were obtained from 150 °C to the highest tested temperature of 300 °C. The growth rate, refractive index, and thickness homogeneity on 4″ wafers were determined by spectroscopic ellipsometry. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Rutherford backscattering spectrometry (RBS) were carried out to analyze crystallinity and composition of the films. Furthermore, the thermal conductivity and the film stress were determined. The stress was sufficiently low to fabricate mechanically stable free-standing AlN membranes with lateral dimensions of up to 2.2 × 2.2 mm2. The membranes were patterned with focused ion beam etching. Thus, these AlN membranes qualify as dielectric support material for a variety of potential applications.

  5. The influence of tertiary butyl hydrazine as a co-reactant on the atomic layer deposition of silver

    Science.gov (United States)

    Golrokhi, Zahra; Marshall, Paul A.; Romani, Simon; Rushworth, Simon; Chalker, Paul R.; Potter, Richard J.

    2017-03-01

    Ultra-thin conformal silver films are the focus of development for applications such as anti-microbial surfaces, optical components and electronic devices. In this study, metallic silver films have been deposited using direct liquid injection thermal atomic layer deposition (ALD) using (hfac)Ag(1,5-COD) ((hexafluoroacetylacetonato)silver(I)(1,5-cyclooctadiene)) as the metal source and tertiary butyl hydrazine (TBH) as a co-reactant. The process provides a 23 °C wide 'self-limiting' ALD temperature window between 105 and 128 °C, which is significantly wider than is achievable using alcohol as a co-reactant. A mass deposition rate of ∼20 ng/cm2/cycle (∼0.18 Å/cycle) is observed under self-limiting growth conditions. The resulting films are crystalline metallic silver with a near planar film-like morphology which are electrically conductive. By extending the temperature range of the ALD window by the use of TBH as a co-reactant, it is envisaged that the process will be exploitable in a range of new low temperature applications.

  6. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing.

    Science.gov (United States)

    Choi, Taejin; Kim, Soo Hyeon; Lee, Chang Wan; Kim, Hangil; Choi, Sang-Kyung; Kim, Soo-Hyun; Kim, Eunkyoung; Park, Jusang; Kim, Hyungjun

    2015-01-15

    A useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface. Electrochemical studies indicate that the CNT-Ni nanocomposites exhibit high electrocatalytic activity for glucose oxidation in alkaline solutions, which enables the products to be used in enzyme-free electrochemical sensors for glucose determination. It was demonstrated that the CNT-Ni nanocomposite-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 5 μM-2 mM, short response time (3 s), a low detection limit (2 μM), high sensitivity (1384.1 μA mM(-1) cm(-2)), and good selectivity and repeatability.

  7. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors.

    Science.gov (United States)

    Sultan, Suhana M; Ditshego, Nonofo J; Gunn, Robert; Ashburn, Peter; Chong, Harold Mh

    2014-01-01

    This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm(2)/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm(2)/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing.

  8. Effect of concurrent joule heat and charge trapping on RESET for NbAlO fabricated by atomic layer deposition.

    Science.gov (United States)

    Zhou, Peng; Ye, Li; Sun, Qing Qing; Wang, Peng Fei; Jiang, An Quan; Ding, Shi Jin; Zhang, David Wei

    2013-02-19

    The RESET process of NbAlO-based resistive switching memory devices fabricated by atomic layer deposition is investigated at low temperatures from 80 to 200 K. We observed that the conduction mechanism of high resistance state changed from hopping conduction to Frenkel-Poole conduction with elevated temperature. It is found that the conductive filament rupture in RRAM RESET process can be attributed not only to the Joule heat generated by internal current flow through a filament but also to the charge trap/detrapping effect. The RESET current decreases upon heating. Meanwhile, the energy consumption also decreases exponentially. This phenomenon indicates the temperature-related charge trap/detrapping process which contributes to the RESET besides direct Joule heat.

  9. Photoluminescence associated with basal stacking faults in c-plane ZnO epitaxial film grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.; Kuo, C. C.; Hsieh, W. F. [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Liu, W.-R. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Lin, B. H. [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Hsu, H.-C. [Institute of Electro-Optical Science and Engineering and Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Hsu, C.-H. [Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2012-03-05

    Basal plane stacking faults (BSFs) with density of {approx}1 x 10{sup 6} cm{sup -1} are identified as the dominant defect in the annealed ZnO thin films grown on c-plane sapphire by atomic layer deposition. The dominant peak centered at 3.321 eV in low-temperature photoluminescence measurements is attributed to the emission from the BSFs. The emission mechanism is considered to be the confined indirect excitons in the region of quantum-well-like structure formed by the BSFs. The observed energy shift of 19 meV with respect to the BSF-bounded exciton at low temperature may be caused by the localization effect associated with the coupling between BSF quantum wells.

  10. Optically sensitive devices based on Pt nano particles fabricated by atomic layer deposition and embedded in a dielectric stack

    Science.gov (United States)

    Mikhelashvili, V.; Padmanabhan, R.; Meyler, B.; Yofis, S.; Atiya, G.; Cohen-Hyams, Z.; Weindling, S.; Ankonina, G.; Salzman, J.; Kaplan, W. D.; Eisenstein, G.

    2015-10-01

    We report a series of metal insulator semiconductor devices with embedded Pt nano particles (NPs) fabricated using a low temperature atomic layer deposition process. Optically sensitive nonvolatile memory cells as well as optical sensors: (i) varactors, whose capacitance-voltage characteristics, nonlinearity, and peak capacitance are strongly dependent on illumination intensity; (ii) highly linear photo detectors whose responsivity is enhanced due to the Pt NPs. Both single devices and back to back pairs of diodes were used. The different configurations enable a variety of functionalities with many potential applications in biomedical sensing, environmental surveying, simple imagers for consumer electronics and military uses. The simplicity and planar configuration of the proposed devices makes them suitable for standard CMOS fabrication technology.

  11. Highly photocatalytic TiO2 interconnected porous powder fabricated by sponge-templated atomic layer deposition

    Science.gov (United States)

    Pan, Shengqiang; Zhao, Yuting; Huang, Gaoshan; Wang, Jiao; Baunack, Stefan; Gemming, Thomas; Li, Menglin; Zheng, Lirong; Schmidt, Oliver G.; Mei, Yongfeng

    2015-09-01

    A titanium dioxide (TiO2) interconnected porous structure has been fabricated by means of atomic layer deposition of TiO2 onto a reticular sponge template. The obtained freestanding TiO2 with large surface area can be easily taken out of the water to solve a complex separation procedure. A compact and conformal nanocoating was evidenced by morphologic characterization. A phase transition, as well as production of oxygen vacancies with increasing annealing temperature, was detected by x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The photocatalytic experimental results demonstrated that the powder with appropriate annealing treatment possessed excellent photocatalytic ability due to the co-action of high surface area, oxygen vacancies and the optimal crystal structure.

  12. Study of GaN MOS-HEMT using ultrathin Al2O3 dielectric grown by atomic layer deposition

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We report on a GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) using atomic-layer deposited (ALD) Al2O3 as the gate dielectric. Through further decreasing the thickness of the gate oxide to 3.5 nm and optimizing the device fabrication process,a device with maximum transconductance of 150 mS/mm was produced. The drain current of this 0.8 μm gate-length MOS-HEMT could reach 800 mA/mm at +3.0 V gate bias. Compared to a conventional AlGaN/GaN HEMT of similar design,better interface property,lower leakage current,and smaller capacitance-voltage (C-V) hysteresis were obtained,and the superiority of this MOS-HEMT device structure with ALD Al2O3 gate dielectric was exhibited.

  13. Atomic layer deposited Al2O3 passivation of type II InAs/GaSb superlattice photodetectors

    Science.gov (United States)

    Salihoglu, Omer; Muti, Abdullah; Kutluer, Kutlu; Tansel, Tunay; Turan, Rasit; Kocabas, Coskun; Aydinli, Atilla

    2012-04-01

    Taking advantage of the favorable Gibbs free energies, atomic layer deposited (ALD) aluminum oxide (Al2O3) was used as a novel approach for passivation of type II InAs/GaSb superlattice (SL) midwave infrared (MWIR) single pixel photodetectors in a self cleaning process (λcut-off ˜ 5.1 μm). Al2O3 passivated and unpassivated diodes were compared for their electrical and optical performances. For passivated diodes, the dark current density was improved by an order of magnitude at 77 K. The zero bias responsivity and detectivity was 1.33 A/W and 1.9 × 1013 Jones, respectively at 4 μm and 77 K. Quantum efficiency (QE) was determined as %41 for these detectors. This conformal passivation technique is promising for focal plane array (FPA) applications.

  14. Spectroscopic investigation of the electronic structure of thin atomic layer deposition HfO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Corrêa, Silma Alberton, E-mail: silma.alberton@ufrgs.br; Brizzi, Simone; Schmeisser, Dieter [Applied Physics and Sensors, Brandenburg University of Technology Cottbus-Senftenberg, Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany)

    2016-01-15

    The electronic structure of HfO{sub 2} thin films is investigated employing resonant photoelectron spectroscopy (resPES). The detailed analysis of the O1s resonance profile enables the determination of the partial density of states for the valence and the conduction bands as well as the electronic band gap to be 6.2 eV. The position of the charge neutrality level is evaluated. Thereby, it is demonstrated that the resPES data are able to combine information both for the valence as well as for the conduction band states. In addition, evidences for intrinsic in-gap states attributed to polaronic and charge transfer states are given. Electronic charges within the atomic layer deposition-HfO{sub 2} films are identified, pointing out that the amount of charges is essential to determine the accurate position of the surface potentials.

  15. Optically sensitive devices based on Pt nano particles fabricated by atomic layer deposition and embedded in a dielectric stack

    Energy Technology Data Exchange (ETDEWEB)

    Mikhelashvili, V.; Padmanabhan, R.; Eisenstein, G. [Electrical Engineering Department, Technion, Haifa 3200 (Israel); Russell Berrie Nanotechnology Institute, Technion, Haifa 3200 (Israel); Meyler, B.; Yofis, S.; Weindling, S.; Salzman, J. [Electrical Engineering Department, Technion, Haifa 3200 (Israel); Atiya, G.; Cohen-Hyams, Z.; Kaplan, W. D. [Department of Material Science and Engineering, Technion, Haifa 3200 (Israel); Russell Berrie Nanotechnology Institute, Technion, Haifa 3200 (Israel); Ankonina, G. [Russell Berrie Nanotechnology Institute, Technion, Haifa 3200 (Israel); Photovoltaic Laboratory, Technion, Haifa 3200 (Israel)

    2015-10-07

    We report a series of metal insulator semiconductor devices with embedded Pt nano particles (NPs) fabricated using a low temperature atomic layer deposition process. Optically sensitive nonvolatile memory cells as well as optical sensors: (i) varactors, whose capacitance-voltage characteristics, nonlinearity, and peak capacitance are strongly dependent on illumination intensity; (ii) highly linear photo detectors whose responsivity is enhanced due to the Pt NPs. Both single devices and back to back pairs of diodes were used. The different configurations enable a variety of functionalities with many potential applications in biomedical sensing, environmental surveying, simple imagers for consumer electronics and military uses. The simplicity and planar configuration of the proposed devices makes them suitable for standard CMOS fabrication technology.

  16. Study of GaN MOS-HEMT using ultrathin Al2O3 dielectric grown by atomic layer deposition

    Institute of Scientific and Technical Information of China (English)

    YUE YuanZheng; HAO Yue; FENG Qian; ZHANG JinCheng; MA XiaoHua; NI JinYu

    2009-01-01

    We report on a GaN metal-oxide-semiconductor high electron mobility transistor (MOS-HEMT) using atomic-layer deposited (ALD) Al2O3 as the gate dielectric. Through further decreasing the thickness of the gate oxide to 3.5 nm and optimizing the device fabrication process, a device with maximum transconductance of 150 mS/mm was produced. The drain current of this 0.8 μm gate-length MOS-HEMT could reach 800 mA/mm at +3.0 V gate bias. Compared to a conventional AIGaN/GaN HEMT of similar design, better interface property, lower leakage current, and smaller capacitance-voltage (C-V) hysteresis were obtained, and the superiority of this MOS-HEMT device structure with ALD Al2O3 gate dielectric was exhibited.

  17. Microscratch testing method for systematic evaluation of the adhesion of atomic layer deposited thin films on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kilpi, Lauri, E-mail: Lauri.Kilpi@vtt.fi; Ylivaara, Oili M. E.; Vaajoki, Antti; Puurunen, Riikka L.; Ronkainen, Helena [VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT (Finland); Malm, Jari [Department of Physics, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014 (Finland); Sintonen, Sakari [Department of Micro- and Nanosciences, Aalto University School of Electrical Engineering, P.O. Box 13500, FI-00076 AALTO (Finland); Tuominen, Marko [ASM Microchemistry Oy, Pietari Kalmin katu 1 F 2, FIN-00560 Helsinki (Finland)

    2016-01-15

    The scratch test method is widely used for adhesion evaluation of thin films and coatings. Usual critical load criteria designed for scratch testing of coatings were not applicable to thin atomic layer deposition (ALD) films on silicon wafers. Thus, the bases for critical load evaluation were established and the critical loads suitable for ALD coating adhesion evaluation on silicon wafers were determined in this paper as L{sub CSi1}, L{sub CSi2}, L{sub CALD1}, and L{sub CALD2}, representing the failure points of the silicon substrate and the coating delamination points of the ALD coating. The adhesion performance of the ALD Al{sub 2}O{sub 3}, TiO{sub 2}, TiN, and TaCN+Ru coatings with a thickness range between 20 and 600 nm and deposition temperature between 30 and 410 °C on silicon wafers was investigated. In addition, the impact of the annealing process after deposition on adhesion was evaluated for selected cases. The tests carried out using scratch and Scotch tape test showed that the coating deposition and annealing temperature, thickness of the coating, and surface pretreatments of the Si wafer had an impact on the adhesion performance of the ALD coatings on the silicon wafer. There was also an improved load carrying capacity due to Al{sub 2}O{sub 3}, the magnitude of which depended on the coating thickness and the deposition temperature. The tape tests were carried out for selected coatings as a comparison. The results show that the scratch test is a useful and applicable tool for adhesion evaluation of ALD coatings, even when carried out for thin (20 nm thick) coatings.

  18. Surface chemistry of group 11 atomic layer deposition precursors on silica using solid-state nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Pallister, Peter J.; Barry, Seán T.

    2017-02-01

    The use of chemical vapour deposition (CVD) and atomic layer deposition (ALD) as thin film deposition techniques has had a major impact on a number of fields. The deposition of pure, uniform, conformal thin films requires very specific vapour-solid reactivity that is largely unknown for the majority of ALD and CVD precursors. This work examines the initial chemisorption of several thin film vapour deposition precursors on high surface area silica (HSAS) using 13C, 31P, and quantitative 29Si nuclear magnetic resonance spectroscopy (NMR). Two copper metal precursors, 1,3-diisopropyl-imidazolin-2-ylidene copper (I) hexamethyldisilazide (1) and 1,3-diethyl-imidazolin-2-ylidene copper(I) hexamethyldisilazide (2), and one gold metal precursor, trimethylphosphine gold(III) trimethyl (3), are examined. Compounds 1 and 2 were found to chemisorb at the hydroxyl surface-reactive sites to form a ||-O-Cu-NHC surface species and fully methylated silicon (||-SiMe3, due to reactivity of the hexamethyldisilazane (HMDS) ligand on the precursor) at 150 °C and 250 °C. From quantitative 29Si solid-state NMR (SS-NMR) spectroscopy measurements, it was found that HMDS preferentially reacts at geminal disilanol surface sites while the copper surface species preferentially chemisorbed to lone silanol surface species. Additionally, the overall coverage was strongly dependent on temperature, with higher overall coverage of 1 at higher temperature but lower overall coverage of 2 at higher temperature. The chemisorption of 3 was found to produce a number of interesting surface species on HSAS. Gold(III) trimethylphosphine, reduced gold phosphine, methylated phosphoxides, and graphitic carbon were all observed as surface species. The overall coverage of 3 on HSAS was only about 10% at 100 °C and, like the copper compounds, had a preference for lone silanol surface reactive sites. The overall coverage and chemisorbed surface species have implications to the overall growth rate and purity of

  19. Low-temperature roll-to-roll atmospheric atomic layer deposition of Al₂O₃ thin films.

    Science.gov (United States)

    Ali, Kamran; Choi, Kyung-Hyun

    2014-12-02

    The Al2O3 thin films deposition through conventional ALD systems is a well-established process. The process under low temperatures has been studied by few research groups. In this paper, we report on the detailed study of low-temperature Al2O3 thin films deposited via a unique in-house built system of roll-to-roll atmospheric atomic layer deposition (R2R-AALD) using a multiple-slit gas source head. Al2O3 thin films have been grown on polyethylene terephthalate substrates under a very low-temperature zone of room temperature to 50 °C and working pressure of 750 Torr, which is very near to atmospheric pressure (760 Torr). Al2O3 thin films with superior properties were achieved in the temperature range of the ALD window. An appreciable growth rate of 0.97 Å/cycle was observed for the films deposited at 40 °C. The films have good morphological features with a very low average arithmetic roughness (Ra) of 0.90 nm. The films also showed good chemical, electrical, and optical characteristics. It was observed that the film characteristics improve with the increase in deposition temperature to the range of the ALD window. The fabrication of Al2O3 films was confirmed by X-ray photoelectron spectroscopy (XPS) analysis with the appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74, 119, and 531 eV, respectively. The chemical composition was also supported by the Fourier transform infrared spectroscopy (FTIR). The fabricated Al2O3 films demonstrate good insulating properties and optical transmittance of more than 85% in the visible region. The results state that Al2O3 thin films can be effectively fabricated through the R2R-AALD system at temperatures as low as 40 °C.

  20. Comparison of B{sub 2}O{sub 3} and BN deposited by atomic layer deposition for forming ultrashallow dopant regions by solid state diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Consiglio, Steven, E-mail: steve.consiglio@us.tel.com; Clark, Robert D.; O' Meara, David; Wajda, Cory S.; Tapily, Kandabara; Leusink, Gert J. [TEL Technology Center, America, LLC, 255 Fuller Rd., Albany, New York 12203 (United States)

    2016-01-15

    In this study, the authors investigated atomic layer deposition (ALD) of B{sub 2}O{sub 3} and BN for conformal, ultrashallow B doping applications and compared the effect of dopant-containing overlayers on sheet resistance (R{sub s}) and B profiles for both types of films subjected to a drive-in thermal anneal. For the deposition of B{sub 2}O{sub 3}, tris(dimethylamido)borane and O{sub 3} were used as coreactants and for the deposition of BN, BCl{sub 3} and NH{sub 3} were used as coreactants. Due to the extreme air instability of B{sub 2}O{sub 3} films, physical analysis was performed on B{sub 2}O{sub 3} films, which were capped in-situ with ∼30 Å ALD grown Al{sub 2}O{sub 3} layers. For the BN films, in-situ ALD grown Si{sub 3}N{sub 4} capping layers (∼30 Å) were used for comparison. From spectroscopic ellipsometry, a thickness decrease was observed after 1000 °C, 30 s anneal for the B{sub 2}O{sub 3} containing stack with 60 ALD cycles of B{sub 2}O{sub 3}, whereas the BN containing stacks showed negligible thickness decrease after the annealing step, regardless of the number of BN cycles tested. The postanneal reduction in film thickness as well as decrease in R{sub s} for the B{sub 2}O{sub 3} containing stack suggests that the solid state diffusion dopant mechanism is effective, whereas for the BN containing stacks this phenomenon seems to be suppressed. Further clarification of the effectiveness of the B{sub 2}O{sub 3} containing layer compared to the film stacks with BN was evidenced in backside secondary ion mass spectrometry profiling of B atoms. Thus, B{sub 2}O{sub 3} formed by an ALD process and subsequently capped in-situ followed by a drive-in anneal offers promise as a dopant source for ultrashallow doping, whereas the same method using BN seems ineffective. An integrated approach for B{sub 2}O{sub 3} deposition and annealing on a clustered tool also demonstrated controllable R{sub s} reduction without the use of a capping layer.

  1. Non-destructive functionalisation for atomic layer deposition of metal oxides on carbon nanotubes: effect of linking agents and defects

    Science.gov (United States)

    Kemnade, N.; Shearer, C. J.; Dieterle, D. J.; Cherevan, A. S.; Gebhardt, P.; Wilde, G.; Eder, D.

    2015-02-01

    The hybridisation of metal oxides and nanocarbons has created a promising new class of functional materials for environmental and sustainable energy applications. The performance of such hybrids can be further improved by rationally designing interfaces and morphologies. Atomic layer deposition (ALD) is among the most powerful techniques for the controlled deposition of inorganic compounds, due to its ability to form conformal coatings on porous substrates at low temperatures with high surface sensitivity and atomic control of film thickness. The hydrophobic nature of the nanocarbon surface has so far limited the applicability of ALD on CNTs. Herein we investigate the role of structural defects in CNTs, both intrinsic and induced by acid treatment, on coverage, uniformity and crystallinity of ZnO coatings. Furthermore, we demonstrate the potential of small aromatic molecules, including benzyl alcohol (BA), naphthalene carboxylic acid (NA) and pyrene carboxylic acid (PCA), as active nucleation sites and linking agents. Importantly, only PCA exhibits sufficiently strong interactions with the pristine CNT surface to withstand desorption under reaction conditions. Thus, PCA enables a versatile and non-destructive alternative route for the deposition of highly uniform metal oxide coatings onto pristine CNTs via ALD over a wide temperature range and without the typical surface corrosion induced by covalent functionalisation. Importantly, preliminary tests demonstrated that the improved morphology obtained with PCA has indeed considerably increased the hybrid's photocatalytic activity towards hydrogen evolution via sacrificial water splitting. The concept demonstrated in this work is transferable to a wide range of other inorganic compounds including metal oxides, metal (oxy)nitrides and metal chalcogenides on a variety of nanocarbons.The hybridisation of metal oxides and nanocarbons has created a promising new class of functional materials for environmental and

  2. Influence of PEDOT:PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Wegler, Barbara, E-mail: barbara.wegler@siemens.com [Siemens AG, Corporate Technology, Guenther-Scharowsky-Strasse 1, 91058 Erlangen, Germany and Center for Medical Physics and Engineering, University of Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen (Germany); Schmidt, Oliver [Siemens AG, Corporate Technology, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Hensel, Bernhard [Center for Medical Physics and Engineering, University of Erlangen-Nuremberg, Henkestrasse 91, 91052 Erlangen (Germany)

    2015-01-15

    Organic light emitting diodes (OLEDs) are well suited for energy saving lighting applications, especially when thinking about highly flexible and large area devices. In order to avoid the degradation of the organic components by water and oxygen, OLEDs need to be encapsulated, e.g., by a thin sheet of glass. As the device is then no longer flexible, alternative coatings are required. Atomic layer deposition (ALD) is a very promising approach in this respect. The authors studied OLEDs that were encapsulated by 100 nm Al{sub 2}O{sub 3} deposited by ALD. The authors show that this coating effectively protects the active surface area of the OLEDs from humidity. However, secondary degradation processes still occur at sharp edges of the OLED stack where the extremely thin encapsulation layer does not provide perfect coverage. Particularly, the swelling of poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate), which is a popular choice for the planarization of the bottom electrode and at the same time acts as a hole injection layer, affects the effectiveness of the encapsulation layer.

  3. Atomic and Molecular Layer Deposition for Enhanced Lithium Ion Battery Electrodes and Development of Conductive Metal Oxide/Carbon Composites

    Science.gov (United States)

    Travis, Jonathan

    The performance and safety of lithium-ion batteries (LIBs) are dependent on interfacial processes at the positive and negative electrodes. For example, the surface layers that form on cathodes and anodes are known to affect the kinetics and capacity of LIBs. Interfacial reactions between the electrolyte and the electrodes are also known to initiate electrolyte combustion during thermal runaway events that compromise battery safety. Atomic layer deposition (ALD) and molecular layer deposition (MLD) are thin film deposition techniques based on sequential, self-limiting surface reactions. ALD and MLD can deposit ultrathin and conformal films on high aspect ratio and porous substrates such as composite particulate electrodes in lithium-ion batteries. The effects of electrode surface modification via ALD and MLD are studied using a variety of techniques. It was found that sub-nm thick coatings of Al2O 3 deposited via ALD have beneficial effects on the stability of LIB anodes and cathodes. These same Al2O3 ALD films were found to improve the safety of graphite based anodes through prevention of exothermic solid electrolyte interface (SEI) degradation at elevated temperatures. Ultrathin and conformal metal alkoxide polymer films known as "metalcones" were grown utilizing MLD techniques with trimethylaluminum (TMA) or titanium tetrachloride (TiCl4) and organic diols or triols, such as ethylene glycol (EG), glycerol (GL) or hydroquinone (HQ), as the reactants. Pyrolysis of these metalcone films under inert gas conditions led to the development of conductive metal oxide/carbon composites. The composites were found to contain sp2 carbon using micro-Raman spectroscopy in the pyrolyzed films with pyrolysis temperatures ≥ 600°C. Four point probe measurements demonstrated that the graphitic sp2 carbon domains in the metalcone films grown using GL and HQ led to significant conductivity. The pyrolysis of conformal MLD films to obtain conductive metal oxide/carbon composite films

  4. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    Science.gov (United States)

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  5. Subnanometer Ga 2 O 3 Tunnelling Layer by Atomic Layer Deposition to Achieve 1.1 V Open-Circuit Potential in Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2012-08-08

    Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga 2O 3, the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO 2 conduction band and the hole injection into the electrolyte are characterized in detail. © 2012 American Chemical Society.

  6. Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition Towards High Rate Durable Li Ion Battery Anodes

    KAUST Repository

    Ahmed, Bilal

    2015-06-03

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in Lithium (Li) ion batteries at high rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2 coated MoO3 electrodes is 68% higher than bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2 coated MoO3 electrodes exhibited specific capacity of 657 mAh/g, on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2 coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li–ions through the passivation layer to the active material. Furthermore, ex–situ HRTEM, X–ray photoelectron spectroscopy (XPS), Raman spectroscopy and X–ray diffraction was carried out to explain the capacity retention mechanism after HfO2 coating.

  7. Surface Passivation of MoO₃ Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes.

    Science.gov (United States)

    Ahmed, B; Shahid, Muhammad; Nagaraju, D H; Anjum, D H; Hedhili, Mohamed N; Alshareef, H N

    2015-06-24

    We demonstrate an effective strategy to overcome the degradation of MoO3 nanorod anodes in lithium (Li) ion batteries at high-rate cycling. This is achieved by conformal nanoscale surface passivation of the MoO3 nanorods by HfO2 using atomic layer deposition (ALD). At high current density such as 1500 mA/g, the specific capacity of HfO2-coated MoO3 electrodes is 68% higher than that of bare MoO3 electrodes after 50 charge/discharge cycles. After 50 charge/discharge cycles, HfO2-coated MoO3 electrodes exhibited specific capacity of 657 mAh/g; on the other hand, bare MoO3 showed only 460 mAh/g. Furthermore, we observed that HfO2-coated MoO3 electrodes tend to stabilize faster than bare MoO3 electrodes because nanoscale HfO2 layer prevents structural degradation of MoO3 nanorods. Additionally, the growth temperature of MoO3 nanorods and the effect of HfO2 layer thickness was studied and found to be important parameters for optimum battery performance. The growth temperature defines the microstructural features and HfO2 layer thickness defines the diffusion coefficient of Li-ions through the passivation layer to the active material. Furthermore, ex situ high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction were carried out to explain the capacity retention mechanism after HfO2 coating.

  8. Growth characteristics and properties of indium oxide and indium-doped zinc oxide by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun; Nam, Taewook; Park, Jusang [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of); Gatineau, Julien [Air Liquide Laboratories, 28 Wadai, Tsukuba 300-4247 (Japan); Kim, Hyungjun, E-mail: hyungjun@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul 120-749 (Korea, Republic of)

    2015-07-31

    We investigated the growth of indium oxide (In{sub 2}O{sub 3}) and indium-doped zinc oxide (In-doped ZnO, IZO) thin films synthesized using thermal atomic layer deposition with dimethylamino-dimethylindium as the precursor, while varying the In{sub 2}O{sub 3}/ZnO ratio. The IZO films were deposited using the supercycle method, and the doping concentration of these films was controlled by changing the In{sub 2}O{sub 3}/ZnO cycle ratio. The microstructural properties and chemical compositions of the films were analyzed using X-ray diffraction analysis and X-ray photoelectron spectroscopy. Further, the electrical properties of the IZO films, including their carrier concentration, mobility, and resistivity, were investigated through Hall measurements. The lowest resistivity (6.15 × 10{sup −2} Ω·cm) was exhibited by the IZO film. The highest carrier concentration and mobility exhibited by the IZO films grown at 300 °C were 4.4 × 10{sup 18} cm{sup −3} and 28.7 cm{sup 2}/V·s, respectively. - Highlights: • Indium oxide and In-doped ZnO (IZO) were deposited using thermal ALD with DMLDMIn. • In doped ZnO (IZO) was deposited using thermal ALD using supercycle method. • Properties of IZO were investigated as a function of doping concentration. • The lowest resistivity can be obtained at the maximum In solubility of ZnO.

  9. Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time

    Energy Technology Data Exchange (ETDEWEB)

    Knoops, Harm C. M., E-mail: h.c.m.knoops@tue.nl, E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Oxford Instruments Plasma Technology, North End, Bristol BS49 4AP (United Kingdom); Peuter, K. de; Kessels, W. M. M., E-mail: h.c.m.knoops@tue.nl, E-mail: w.m.m.kessels@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2015-07-06

    The requirements on the material properties and growth control of silicon nitride (SiN{sub x}) spacer films in transistors are becoming ever more stringent as scaling of transistor structures continues. One method to deposit high-quality films with excellent control is atomic layer deposition (ALD). However, depositing SiN{sub x} by ALD has turned out to be very challenging. In this work, it is shown that the plasma gas residence time τ is a key parameter for the deposition of SiN{sub x} by plasma-assisted ALD and that this parameter can be linked to a so-called “redeposition effect”. This previously ignored effect, which takes place during the plasma step, is the dissociation of reaction products in the plasma and the subsequent redeposition of reaction-product fragments on the surface. For SiN{sub x} ALD using SiH{sub 2}(NH{sup t}Bu){sub 2} as precursor and N{sub 2} plasma as reactant, the gas residence time τ was found to determine both SiN{sub x} film quality and the resulting growth per cycle. It is shown that redeposition can be minimized by using a short residence time resulting in high-quality films with a high wet-etch resistance (i.e., a wet-etch rate of 0.5 nm/min in buffered HF solution). Due to the fundamental nature of the redeposition effect, it is expected to play a role in many more plasma-assisted ALD processes.

  10. Apparatus and process for atomic or molecular layer deposition onto particles during pneumatic transport

    NARCIS (Netherlands)

    Van Ommen, J.R.

    2010-01-01

    The invention provides a process for depositing a coating onto particles being pneumatically transported in a tube. The process comprising the steps of providing a tube having an inlet opening and an outlet opening; feeding a carrier gas entraining particles into the tube at or near the inlet openin

  11. Thermo-Mechanical Properties of Alumina Films Created Using the Atomic Layer Deposition Technique

    Science.gov (United States)

    2010-01-01

    23 (9) (2008) 2443–2457. [32] G.G. Stoney, The tension ofmetallic films deposited by electrolysis , Proc. R. Soc. A82 (553) (1909) 172–175. [33] M...Springer-Verlag, New York, 2006. [37] R.M. Keller, S.P. Baker, E. Arzt, Stress–temperature behavior of unpassivated thin copper films, Acta Mater. 47 (2

  12. Dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saha, D., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Misra, P., E-mail: sahaphys@gmail.com, E-mail: pmisra@rrcat.gov.in; Joshi, M. P.; Kukreja, L. M. [Laser Materials Processing Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Bhartiya, S. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Gupta, M. [UGC-DAE Consortium for Scientific Research, Indore 452 017 (India)

    2016-01-25

    We report on the dimensional crossover of electron weak localization in ZnO/TiO{sub x} stacked layers having well-defined and spatially-localized Ti dopant profiles along film thickness. These films were grown by in situ incorporation of sub-monolayer TiO{sub x} on the growing ZnO film surface and subsequent overgrowth of thin conducting ZnO spacer layer using atomic layer deposition. Film thickness was varied in the range of ∼6–65 nm by verticall