Sample records for atomic helium beam

  1. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd


    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated......(1 × 1) commensurate monolayer solid of H2/KCl(001). For the latter, there are cases where part of the incident beam is trapped in the interlayer region for times exceeding 50 ps, depending on the spacing between the monolayer and the substrate and on the angle of incidence. The feedback effect...

  2. Depolarization of the 4{sup 1}D{sub 2} state of a helium atom by charged particles in beam plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kazantsev, S.A.; Luchinkina, V.V.; Mezentsev, A.P.; Mustafaev, A.S.; Rebane, V.N.; Rys, A.G.; Stepanov, Yu.L. [St. Petersburg (Russian Federation)


    Depolarization of the 4{sup 1}D{sub 2}-2{sup 1}P{sub 1} spectra line of He atoms caused by collisions with charged particles in beam plasma discharge is investigated both experimentally and theoretically. A comparison is made between the values of the rate constant for the collisional breakdown of alignment of helium atoms in the 4{sup 1}D{sub 2} state calculated from the theory of collisional relaxation of atomic polarization moments and determined from the experimentally observed broadening of the Hanle signal contour with the increase of the beam discharge current. 23 refs., 6 figs.

  3. Trapping fermionic and bosonic helium atoms

    NARCIS (Netherlands)

    Stas, R.J.W.


    This thesis presents experimental and theoretical work performed at the Laser Centre of the Vrije Universiteit in Amsterdam to study laser-cooled metastable triplet helium atoms. Samples containing about 3x10^8 helium atoms-either fermionic helium-3 atoms, bosonic helium-4 atoms or mixtures

  4. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia


    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  5. Helium atom scattering from surfaces

    CERN Document Server


    High resolution helium atom scattering can be applied to study a number of interesting properties of solid surfaces with great sensitivity and accuracy. This book treats in detail experimental and theoretical aspects ofthis method as well as all current applications in surface science. The individual chapters - all written by experts in the field - are devoted to the investigation of surface structure, defect shapes and concentrations, the interaction potential, collective and localized surface vibrations at low energies, phase transitions and surface diffusion. Over the past decade helium atom scattering has gained widespread recognitionwithin the surface science community. Points in its favour are comprehensiveunderstanding of the scattering theory and the availability of well-tested approximation to the rigorous theory. This book will be invaluable to surface scientists wishing to make an informed judgement on the actual and potential capabilities of this technique and its results.

  6. Coherent Atom Optics With Fast Metastable Beams: Metastable Helium Diffraction By 1D and 2D Magnetized Reflection Gratings (United States)

    Grucker, J.; Baudon, J.; Karam, J.-C.; Perales, F.; Bocvarski, V.; Ducloy, M.


    1D and 2D reflection gratings (Permalloy stripes or dots deposited on silicon), immersed in an external homogeneous static magnetic field, are used to study 1D and 2D diffraction of fast metastable helium atoms He* (23S1). Both the grazing incidence used here and the repulsive potential (for sub-level m = -1) generated by the magnetisation reduce the quenching effect. This periodically structured potential is responsible for the diffraction in the incidence plane as well as for the diffraction in the perpendicular plane.

  7. Field ionization of helium in a supersonic beam: Kinetic energy of neutral atoms and probability of their field ionization

    Energy Technology Data Exchange (ETDEWEB)

    Holst, B.; Piskur, J. [Department of Physics and Technology, University of Bergen, Allegaten 55, 5007 Bergen (Norway); Kostrobiy, P.P.; Markovych, B.M. [Department of Applied Mathematics, Lviv National University of Technology, Stefan Bandera Str. 12, UA-79013 Lviv (Ukraine); Suchorski, Y., E-mail: [Vienna University of Technology, Veterinaerplatz 1, A-1210 Vienna (Austria)


    High detection efficiency combined with spatial resolution on a nm-scale makes the field ionization process a promising candidate for spatially resolved neutral particles detection. The effective cross-sectional area {sigma}{sub eff} can serve as a measure for the effectiveness of such a field ion detector. In the present contribution, we combine quantum-mechanical calculations of the field-modified electron density distribution near the tungsten tip surface and of the resulting local field distributions, performed using the functional integration method, with a classical treatment of the atom trajectories approaching the tip in order to calculate the {sigma}{sub eff} values for ionization of free He atoms over an apex of a tungsten field emitter tip. The calculated values are compared with experimental data for supersonic He atomic beams at two different temperatures 95 and 298 K.

  8. Radioactive ions and atoms in superfluid helium

    NARCIS (Netherlands)

    Dendooven, P.G.; Purushothaman, S.; Gloos, K.; Aysto, J.; Takahashi, N.; Huang, W.; Harissopulos, S; Demetriou, P; Julin, R


    We are investigating the use of superfluid helium as a medium to handle and manipulate radioactive ions and atoms. Preliminary results on the extraction of positive ions from superfluid helium at temperatures close to 1 K are described. Increasing the electric field up to 1.2 kV/cm did not improve

  9. General mechanism for helium blistering involving displaced atom transport

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.


    A mechanism developed to account for formation of vertically elongated blisters in high displacement environments produced by /sup 252/Cf alpha particles and fission fragments has been extended to formation of done-shaped blisters in the low displacement environments produced by simple helium ion beams. In this mechanism, transport of displaced atoms to relieve compressive stresses in the helium-implanted layer allows interconnections of small, subsurface bubbles to form the blister cavity. The same transport may cause thickening of the blister caps at low implantation energies. The transition from dome-shaped to vertically elongated blistering occurs between the 300 and 3000 displacements per helium atom produced by simple helium ions and /sup 252/Cf radiations respectively.

  10. Photoassociation of cold metastable helium atoms

    NARCIS (Netherlands)

    Woestenenk, G.R.


    During the last decades the study of cold atoms has grown in a great measure. Research in this field has been made possible due to the development of laser cooling and trapping techniques. We use laser cooling to cool helium atoms down to a temperature of 1 mK and we are able to

  11. Nanolithography with metastable helium atoms in a high-power standing-wave light field

    NARCIS (Netherlands)

    Petra, S.J.H.; Feenstra, L.; Hogervorst, W.; Vassen, W.


    We have created periodic nanoscale structures in a gold substrate with a lithography process using metastable triplet helium atoms that damage a hydrophobic resist layer on top of the substrate. A beam of metastable helium atoms is transversely collimated and guided through an intense standing-wave

  12. Electron correlation for helium-like atoms

    Energy Technology Data Exchange (ETDEWEB)

    Roy, U. [Visvabharati Univ., Santiniketan (India). Dept. of Comput. Sci.; Talukdar, B. [Visvabharati Univ., Santiniketan (India). Dept. of Physics


    A recently proposed analytical approach to the ground-state energy of helium atom is generalised to study the effect of electron-electron correlation on the properties of helium isoelectronic sequence. The expectation values of the Hamiltonian and some important functions of radial distances are expressed in terms of derivatives of Lewis integrals which not only permit the straightforward variational calculation to get numerical results but also help one derive interesting recurrence relations for radial expectation values. The results presented for atoms from H{sup -} to Si{sup 12+} indicate that the present analytical model will have quantitative applicability for the study of electronic correlation in high-Z helium-like atoms within the framework of non-relativistic quantum mechanics. (orig.) 22 refs.

  13. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device; Caracterizacion del Borde del Plasma del Dispositivo de Fusion TJ-II del CIEMAT mediante el Diagnostico del Haz Supersonico de Helio

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, A.


    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author ) 36 refs.

  14. In Beam Tests of Implanted Helium Targets

    CERN Document Server

    McDonald, J E; Ahmed, M W; Blackston, M A; Delbar, T; Gai, M; Kading, T J; Parpottas, Y; Perdue, B A; Prior, R M; Rubin, D A; Spraker, M C; Yeomans, J D; Weissman, L; Weller, H R; Delbar, Th.; Conn, LNS/U; Duke, TUNL/


    Targets consisting of 3,4He implanted into thin aluminum foils (approximately 100, 200 or 600 ug/cm^2) were prepared using intense (a few uA) helium beams at low energy (approximately 20, 40 or 100 keV). Uniformity of the implantation was achieved by a beam raster across a 12 mm diameter tantalum collimator at the rates of 0.1 Hz in the vertical direction and 1 Hz in the horizontal direction. Helium implantation into the very thin (approximately 80-100 ug/cm^2) aluminum foils failed to produce useful targets (with only approximately 10% of the helium retained) due to an under estimation of the range by the code SRIM. The range of low energy helium in aluminum predicted by Northcliffe and Shilling and the NIST online tabulation are observed on the other hand to over estimate the range of low energy helium ions in aluminum. An attempt to increase the amount of helium by implanting a second deeper layer was also carried out, but it did not significantly increase the helium content beyond the blistering limit (ap...

  15. Optical traps for ultracold metastable helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, Juliette [LKB ENS, Paris (France)


    One of the main characteristics of metastable helium atoms is their high internal energy (20 eV). This energy can be released when a metastable atom hits a surface, ejecting one electron. Therefore, using a Channeltron Electron Multiplier (CEM), one can detect atoms with a time resolution of up to 5 ns. However, this high internal energy raises the problem of inelastic Penning ionizations, following: He{sup *}+He{sup *}{yields}He+He{sup +}+e{sup *}. This process has a rate of the order of 10 x 10 cm{sup 3} cot s{sup -}1 but is reduced by four orders of magnitude if the atoms are spin polarized due to total spin conservation. We report on the progress of the set up of a dipole trap for ultracold metastable helium using a red detuned fiber laser at 1560 nm. One of the aims of this optical trap is to release the constraint on the magnetic field value. We plan to measure the magnetic field dependance of inelastic collision rates for temperatures smaller than 10 {mu}K. In a spin polarized gas of helium, the spin-spin interaction produces spin relaxation and relaxation induced Penning ionization if the polarization condition is no longer maintained. We also present the development of a optical lattices in 1D and later in 3D. We intend to monitor the Penning ionization rate in order to follow the real-time dynamics of the superfluid-Mott insulator quantum phase transition.

  16. White light transverse cooling of a helium beam

    Energy Technology Data Exchange (ETDEWEB)

    Rasel, E.; Pereira Dos Santos, F.; Saverio Pavone, F.; Perales, F.; Unnikrishnan, C.S.; Leduc, M. [Ecole Normale Superieure, Paris (France). Dept. de Phys.


    We report a study of transverse laser cooling on a metastable helium beam using spectrally broadened diode lasers (''white light'') to increase its flux. For this purpose, beam profile and atomic flux versus laser power and other parameters have been characterized. We have performed experiments to compare this technique with other transverse cooling methods using monochromatic light. Best results are obtained with a ''ziz-zag'' configuration using ''white light''. (orig.)

  17. Field ionization of free helium atoms: Correlation between the kinetic energy of ionized atoms and probability of their field ionization

    Energy Technology Data Exchange (ETDEWEB)

    Piskur, J.; Borg, L. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Stupnik, A.; Leisch, M. [Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Ernst, W.E. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria); Holst, B. [Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz (Austria)], E-mail:


    In this paper the correlation between the kinetic energy of helium atoms and the probability of field ionization is investigated by exploiting the narrow velocity distribution of supersonic molecular beams. Field ionization measurements were carried out on supersonic helium beams at 298 K and 95 K corresponding to energies of about 65 meV and 20 meV, respectively, for the individual atoms. The field ionization was performed with a tungsten tip, radius of curvature 12 nm, kept at room temperature. The ionization probability was found to increase by about a factor 10 when the beam was cooled from 298 K to 95 K. The results presented in this paper are of importance for improving the understanding of field ionization and for the development of a new detector for helium and other molecular beams.

  18. Nuclear polarizability of helium isotopes in atomic transitions


    Pachucki, K.; Moro, A. M.


    We estimate the nuclear polarizability correction to atomic transition frequencies in various helium isotopes. This effect is non-negligible for high precision tests of quantum electrodynamics or accurate determination of the nuclear charge radius from spectroscopic measurements in helium atoms and ions. In particular, it amounts to $28(3)$ kHz for 1S-2S transition in 4He+.

  19. Atomically resolved phase transition of fullerene cations solvated in helium droplets (United States)

    Kuhn, M.; Renzler, M.; Postler, J.; Ralser, S.; Spieler, S.; Simpson, M.; Linnartz, H.; Tielens, A. G. G. M.; Cami, J.; Mauracher, A.; Wang, Y.; Alcamí, M.; Martín, F.; Beyer, M. K.; Wester, R.; Lindinger, A.; Scheier, P.


    Helium has a unique phase diagram and below 25 bar it does not form a solid even at the lowest temperatures. Electrostriction leads to the formation of a solid layer of helium around charged impurities at much lower pressures in liquid and superfluid helium. These so-called `Atkins snowballs' have been investigated for several simple ions. Here we form HenC60+ complexes with n exceeding 100 via electron ionization of helium nanodroplets doped with C60. Photofragmentation of these complexes is measured by merging a tunable narrow-bandwidth laser beam with the ions. A switch from red- to blueshift of the absorption frequency of HenC60+ on addition of He atoms at n=32 is associated with a phase transition in the attached helium layer from solid to partly liquid (melting of the Atkins snowball). Elaborate molecular dynamics simulations using a realistic force field and including quantum effects support this interpretation.


    NARCIS (Netherlands)



    A mica sheet has been cleaved in situ in a UHV beam scattering apparatus. The diffraction of the helium atoms shows sharp Bragg peaks. In the [110] and [110] directions of the hexagonal surface the intensities of the Bragg peaks are analysed in terms of a sinusoidal corrugation. With hard wall

  1. Nano-engineering with a focused helium ion beam

    NARCIS (Netherlands)

    Maas, D.J.; Drift, E.W. van der; Veldhoven, E. van; Meessen, J.; Rudneva, M.; Alkemade, P.F.A.


    Although Helium Ion Microscopy (HIM) was introduced only a few years ago, many new application fields are budding. The connecting factor between these novel applications is the unique interaction of the primary helium ion beam with the sample material at and just below its surface. In particular,

  2. Laser-excitation atomic fluorescence spectroscopy in a helium microwave-induced plasma (United States)

    Schroeder, Timothy S.

    of all excitation and fluorescence lines investigated for chlorine and iodine in the helium MIP. Also discussed is the modification of the microwave resonator cavity used in these experiments in an effort to achieve atomic fluorescence signal from nonmetals. Holes were drilled in the sides of the resonator cavity to align with holes placed in the sides of the plasma torch to allow the laser beam to interact with the plasma while inside the microwave cavity.

  3. The ASACUSA experiment at CERN's AD antiproton decelerator catches antiprotons in helium, where the antiprotons replace electrons, giving exotics atoms.

    CERN Multimedia

    Loïez, P


    Photo 03: Laser beams are prepared for shooting at antiprotonic helium atoms. Left to right: Masaki Hori (Tokyo University) and John Eades (CERN). Photo 01: Dye laser triggered by "YAG" laser. Photo 02: Masaki Hori adjusting optical system of laser beams.

  4. Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams. (United States)

    He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M; Kong, Wei


    We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He2(+) and He4(+), which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl4 doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He)(n)C(+), (He)(n)Cl(+), and (He)(n)CCl(+). Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.

  5. Laser spectroscopy of the antiprotonic helium atom – its energy levels and state lifetimes

    CERN Document Server

    Hidetoshi, Yamaguchi


    The antiprotonic atom is a three-body exotic system consisting of an antiproton, an electron and a helium nucleus. Its surprising longevity was found and has been studied for more than 10 years. In this work, transition energies and lifetimes of this exotic atom were systematically studied by using the antiproton beam of AD(Antiproton Decelerator) facility at CERN, with an RFQ antiproton decelerator, a narrow-bandwidth laser, Cerenkov counters with fast-response photomultiplier tubes, and cryogenic helium target systems. Thirteen transition energies were determined with precisions of better than 200 ppb by a laser spectroscopy method, together with the elimination of the shift effect caused by collisions with surrounding atoms. Fifteen lifetimes (decay rates) of short-lived states were determined from the time distributions of the antiproton-annihilation signals and the resonance widths of the atomic spectral lines. The relation between the magnitude of the decay rates and the transition multipolarity was inv...

  6. Using Uncertainty Principle to Find the Ground-State Energy of the Helium and a Helium-like Hookean Atom (United States)

    Harbola, Varun


    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron…

  7. Supercritical Helium Cooling of the LHC Beam Screens

    CERN Document Server

    Hatchadourian, E; Tavian, L


    The cold mass of the LHC superconducting magnets, operating in pressurised superfluid helium at 1.9 K, must be shielded from the dynamic heat loads induced by the circulating particle beams, by means of beam screens maintained at higher temperature. The beam screens are cooled between 5 and 20 K by forced flow of weakly supercritical helium, a solution which avoids two-phase flow in the long, narr ow cooling channels, but still presents a potential risk of thermohydraulic instabilities. This problem has been studied by theoretical modelling and experiments performed on a full-scale dedicated te st loop.

  8. Characterization of a cryogenic beam source for atoms and molecules

    CERN Document Server

    Bulleid, N E; Hendricks, R J; Sauer, B E; Hinds, E A; Tarbutt, M R


    We present a combined experimental and theoretical study of beam formation from a cryogenic buffer gas cell. Atoms and molecules are loaded into the cell by laser ablation of a target, and are cooled and swept out of the cell by a flow of cold helium. We study the thermalization and flow dynamics inside the cell and measure how the speed, temperature, divergence and extraction efficiency of the beam are influenced by the helium flow. We use a finite element model to simulate the flow dynamics and use the predictions of this model to interpret our experimental results.

  9. Resonances of the helium atom in a strong magnetic field

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Al-Hujaj, Omar-Alexander; Schmelcher, Peter


    We present an investigation of the resonances of a doubly excited helium atom in a strong magnetic field covering the regime B=0–100  a.u. A full-interaction approach which is based on an anisotropic Gaussian basis set of one-particle functions being nonlinearly optimized for each field strength...


    NARCIS (Netherlands)

    Vanderveldt, T.; Vassen, W.; Hogervorst, W.


    Diamagnetism in helium Rydberg atoms is studied near the ionisation threshold using constant scaled-energy laser spectroscopy. Quasi-Landau resonances in the Fouriertransform of the energy spectrum are explained using the classical periodic-orbit theory. Longlaser scans combined with a

  11. The Helium Atom and Isoelectronic Ions in Two Dimensions (United States)

    Patil, S. H.


    The energy levels of the helium atom and isoelectronic ions in two dimensions are considered. The difficulties encountered in the analytical evaluation of the perturbative and variational expressions for the ground state, promote an interesting factorization of the inter-electronic interaction, leading to simple expressions for the energy. This…

  12. Excitation of the shear horizontal mode in a monolayer by inelastic helium atom scattering

    DEFF Research Database (Denmark)

    Bruch, L. W.; Hansen, Flemming Yssing


    Inelastic scattering of a low-energy atomic helium beam (HAS) by a physisorbed monolayer is treated in the one-phonon approximation using a time-dependent wave,packet formulation. The calculations show that modes with shear horizontal polarization can be excited near high symmetry azimuths...... experimental trends for relative excitation probability of the shear horizontal and longitudinal acoustic phonon branches. The inelastic scattering at beam energies near 8 meV is exceedingly sensitive to small misalignment between the scattering plane and the high symmetry directions of the monolayer solid...

  13. Manipulation and analysis of atomic and molecular beams using transmission gratings and Fresnel zone plates

    Energy Technology Data Exchange (ETDEWEB)

    Grisenti, R.E.


    In this thesis experimental results on the diffraction of rare gas atoms (He, Ne, Ar, Kr) and molecular (D{sub 2}) beams by a 100 nm period transmission grating and on the focusing of a helium atom beam through a Fresnel zone plate have been reported. (orig.)

  14. Electron impact excitation of helium atom (United States)

    Han, Xiao-Ying; Zeng, De-Ling; Gao, Xiang; Li, Jia-Ming


    A method to deal with the electron impact excitation cross sections of an atom from low to high incident energies are presented. This method combines the partial wave method and the first Born approximation (FBA), i.e., replacing the several lowest partial wave cross sections of the total cross sections within FBA by the corresponding exact partial wave cross sections. A new set of codes are developed to calculate the FBA partial wave cross sections. Using this method, the convergent e-He collision cross sections of optical-forbidden and optical-allowed transitions at low to high incident energies are obtained. The calculation results demonstrate the validity and efficiency of the method. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921501 and 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11274035, 11275029, 11328401, 11371218, 11474031, 11474032, and 11474034), and the Foundation of Development of Science and Technology of Chinese Academy of Engineering Physics (Grant Nos. 2013A0102005 and 2014A0102005).

  15. Graphene on Ni(111): Electronic Corrugation and Dynamics from Helium Atom Scattering. (United States)

    Tamtögl, Anton; Bahn, Emanuel; Zhu, Jianding; Fouquet, Peter; Ellis, John; Allison, William


    Using helium atom scattering, we have studied the structure and dynamics of a graphene layer prepared in situ on a Ni(111) surface. Graphene/Ni(111) exhibits a helium reflectivity of ∼20% for a thermal helium atom beam and a particularly small surface electron density corrugation ((0.06 ± 0.02) Å peak to peak height). The Debye-Waller attenuation of the elastic diffraction peaks of graphene/Ni(111) and Ni(111) was measured at surface temperatures between 150 and 740 K. A surface Debye temperature of θD = (784 ± 14) K is determined for the graphene/Ni(111) system and θD = (388 ± 7) K for Ni(111), suggesting that the interlayer interaction between graphene and the Ni substrate is intermediary between those for strongly interacting systems like graphene/Ru(0001) and weakly interacting systems like graphene/Pt(111). In addition we present measurements of low frequency surface phonon modes on graphene/Ni(111) where the phonon modes of the Ni(111) substrate can be clearly observed. The similarity of these findings with the graphene/Ru(0001) system indicates that the bonding of graphene to a metal substrate alters the dynamic properties of the graphene surface strongly and is responsible for the high helium reflectivity of these systems.

  16. Imprints from the solar cycle on the helium atom and helium pickup ion distributions

    Directory of Open Access Journals (Sweden)

    D. Rucinski


    Full Text Available Neutral interstellar helium atoms penetrate into the solar system almost unaffected by gas–plasma interactions in the heliospheric interface region, and thus can be considered as carriers of original information on the basic parameters (like density, temperature, bulk velocity of the Very Local Interstellar Medium (VLISM. Such information can nowadays be derived from analysis of data obtained from different experimental methods: in situ measurements of He atoms (Ulysses, observations of the solar backscattered He 584 A radiation (EUVE, in situ measurements of He + pickup ions (AMPTE, Ulysses, Wind, SOHO, ACE. In view of the current coordinated international ISSI campaign devoted to the study of the helium focusing cone structure and its evolution, we analyze expected variations of neutral He density, of He + pickup fluxes and of their phase space distributions at various phases of the solar activity cycle based on a realistic time-dependent modelling of the neutral helium and He + pickup ion distributions, which reflect solar cycle-induced variations of the photoionization rate. We show that the neutral helium density values are generally anticorrelated with the solar activity phase and in extreme cases (near the downwind axis the maximum-to-minimum density ratio may even exceed factors of ~ 3 at 1 AU. We also demonstrate that in the upwind hemisphere (at 1 AU and beyond the He + fluxes are correlated with the solar cycle activity, whereas on the downwind side the maximum of the expected flux up to distances of ~ 3 AU occurs around solar minimum epoch, and only further away does the correlation with solar activity become positive. Finally, we present the response of the phase space distribution spectra of He + pickup ions (in the solar wind frame for different epochs of the solar cycle and heliocentric distances from 1 to 5 AU covering the range of Ulysses, Wind and ACE observations.Key words. Solar physics, astrophysics and astronomy

  17. Two photon laser spectroscopy of antiprotonic helium atoms at CERN’s AD

    CERN Document Server

    Hori, M


    The ASACUSA collaboration of CERN has carried out two-photon laser spectroscopy of antiprotonic helium atoms using counter-propagating ultraviolet laser beams. This excited some non-linear transitions of the antiproton at the wavelengths λ = 139.8–197.0 nm, in a way that reduced the thermal Doppler broadening of the observed resonances. The resulting narrow spectral lines allowed the measurement of three transition frequencies with fractional precisions of 2.3–5 parts in 109. By comparing these values with three-body QED calculations, the antiproton-to-electron mass ratio was derived as 1836.1526736(23). We briefly review these results.

  18. Spectroscopy of lithium atoms and molecules on helium nanodroplets. (United States)

    Lackner, Florian; Poms, Johannes; Krois, Günter; Pototschnig, Johann V; Ernst, Wolfgang E


    We report on the spectroscopic investigation of lithium atoms and lithium dimers in their triplet manifold on the surface of helium nanodroplets (He(N)). We present the excitation spectrum of the 3p ← 2s and 3d ← 2s two-photon transitions for single Li atoms on He(N). The atoms are excited from the 2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic molecular substates. Excitation spectra are recorded by resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy, which allows an investigation of the exciplex (Li*–He(m), m = 1–3) formation process in the Li–He(N) system. Electronic states are shifted and broadened with respect to free atom states, which is explained within the pseudodiatomic model. The assignment is assisted by theoretical calculations, which are based on the Orsay–Trento density functional where the interaction between the helium droplet and the lithium atom is introduced by a pairwise additive approach. When a droplet is doped with more than one alkali atom, the fragility of the alkali–He(N) systems leads preferably to the formation of high-spin molecules on the droplets. We use this property of helium nanodroplets for the preparation of Li dimers in their triplet ground state (13Σu(+)). The excitation spectrum of the 23Πg(ν′ = 0–11) ← 13Σu(+)(ν″ = 0) transition is presented. The interaction between the molecule and the droplet manifests in a broadening of the transitions with a characteristic asymmetric form. The broadening extends to the blue side of each vibronic level, which is caused by the simultaneous excitation of the molecule and vibrations of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope mixed 6Li7Li molecules on the droplet surface. By using REMPI-TOF mass spectroscopy, isotope-dependent effects could be studied.

  19. Development of a Supersonic Atomic Oxygen Nozzle Beam Source for Crossed Beam Scattering Experiments (United States)

    Sibener, S. J.; Buss, R. J.; Lee, Y. T.


    A high pressure, supersonic, radio frequency discharge nozzle beam source was developed for the production of intense beams of ground state oxygen atoms. An efficient impedance matching scheme was devised for coupling the radio frequency power to the plasma as a function of both gas pressure and composition. Techniques for localizing the discharge directly behind the orifice of a water-cooled quartz nozzle were also developed. The above combine to yield an atomic oxygen beam source which produces high molecular dissociation in oxygen seeded rare gas mixtures at total pressures up to 200 torr: 80 to 90% dissociation for oxygen/argon mixtures and 60 to 70% for oxygen/helium mixtures. Atomic oxygen intensities are found to be greater than 10{sup 17} atom sr{sup -1} sec{sup -1}. A brief discussion of the reaction dynamics of 0 + IC1 ..-->.. I0 + C1 is also presented.

  20. Formation of interstitial atoms in surface layers of helium-implanted tungsten (United States)

    Dudka, O. V.; Ksenofontov, V. A.; Masilov, A. A.; Sadanov, E. V.


    Using a method of field ion microscopy, the atomic structure of surface and near-surface layers of a perfect dislocation-free tungsten irradiated by helium ions with energies below the threshold of displacement was studied. We have found the output of tungsten atoms from the bulk as a result of their displacement from regular lattice positions occupied by implanted helium atoms and the formation of interstitial tungsten atoms. It is shown that high concentrations of helium and the presence of image forces have a considerable effect on the development of these processes. Depleted zones consisting of helium-vacancy complexes are revealed within the irradiated near-surface layer.

  1. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Van Veldhoven, E.; Maas, D.; Sadeghian, H.; Alkemade, P.F.A.


    The authors report the direct-write growth of hammerhead atomic force microscope(AFM) probes by He+beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+beam during exposure to a PtC precursor gas. In the

  2. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.


    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the

  3. Atomic and molecular beams production and collimation

    CERN Document Server

    Lucas, Cyril Bernard


    Atomic and molecular beams are employed in physics and chemistry experiments and, to a lesser extent, in the biological sciences. These beams enable atoms to be studied under collision-free conditions and allow the study of their interaction with other atoms, charged particles, radiation, and surfaces. Atomic and Molecular Beams: Production and Collimation explores the latest techniques for producing a beam from any substance as well as from the dissociation of hydrogen, oxygen, nitrogen, and the halogens.The book not only provides the basic expressions essential to beam design but also offers

  4. submitter Data-driven RBE parameterization for helium ion beams

    CERN Document Server

    Mairani, A; Dokic, I; Valle, S M; Tessonnier, T; Galm, R; Ciocca, M; Parodi, K; Ferrari, A; Jäkel, O; Haberer, T; Pedroni, P; Böhlen, T T


    Helium ion beams are expected to be available again in the near future for clinical use. A suitable formalism to obtain relative biological effectiveness (RBE) values for treatment planning (TP) studies is needed. In this work we developed a data-driven RBE parameterization based on published in vitro experimental values. The RBE parameterization has been developed within the framework of the linear-quadratic (LQ) model as a function of the helium linear energy transfer (LET), dose and the tissue specific parameter ${{(\\alpha /\\beta )}_{\\text{ph}}}$ of the LQ model for the reference radiation. Analytic expressions are provided, derived from the collected database, describing the $\\text{RB}{{\\text{E}}_{\\alpha}}={{\\alpha}_{\\text{He}}}/{{\\alpha}_{\\text{ph}}}$ and ${{\\text{R}}_{\\beta}}={{\\beta}_{\\text{He}}}/{{\\beta}_{\\text{ph}}}$ ratios as a function of LET. Calculated RBE values at 2 Gy photon dose and at 10% survival ($\\text{RB}{{\\text{E}}_{10}}$ ) are compared with the experimental ones. Pearson's correlati...

  5. Penning collisions of laser-cooled metastable helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Dos Santos, F.; Leonard, J.; Sinatra, A.; Wang, Junmin; Leduc, M. [Dept. de Physique, Ecole Normale Superieure, Paris (France); Perales, F. [Lab. de Physique des Lasers, Univ. Paris-Nord, Villetaneuse (France); Saverio Pavone, F. [Dept. of Physics, Univ. of Perugia, Via Pascoli, Perugia (Italy); Lens and INFM, Firenze (Italy); Rasel, E. [Univ. Hannover (Germany); Unnikrishnan, C.S. [TIFR, Mumbai (India)


    We present experimental results on the two-body loss rates in a magneto-optical trap of metastable helium atoms. Absolute rates are measured in a systematic way for several laser detunings ranging from -5 to -30 MHz and at different intensities, by monitoring the decay of the trap fluorescence. The dependence of the two-body loss rate coefficient {beta} on the excited state (2{sup 3}P{sub 2}) and metastable state (2{sup 3}S{sub 1}) populations is also investigated. From these results we infer a rather uniform rate constant K{sub sp} = (1{+-}0.4) x 10{sup -7} cm{sup 3}/s. (orig.)

  6. Using uncertainty principle to find the ground-state energy of the helium and a helium-like Hookean atom

    Energy Technology Data Exchange (ETDEWEB)

    Harbola, Varun, E-mail: [Kendriya Vidyalaya (Central School) Indian Institute of Technology, Kanpur-208 016 (India)


    In this paper, we accurately estimate the ground-state energy and the atomic radius of the helium atom and a helium-like Hookean atom by employing the uncertainty principle in conjunction with the variational approach. We show that with the use of the uncertainty principle, electrons are found to be spread over a radial region, giving an electron cloud. Our calculation also shows how the Coulomb interaction between electrons affects their distribution. This leads to a physical picture of how electrons are located with respect to each other in these atoms. Finally, we also obtain through our calculations a general formula for the estimate of ground-state energy and radius of two electron atoms and ions with atomic number Z.

  7. Study of some interelectronic properties in helium-like atoms

    Energy Technology Data Exchange (ETDEWEB)

    Dehesa, J.S.; Angulo, J.C. (Granada Univ. (Spain). Dept. de Fisica Moderna); Koga, Toshikatsu; Matsui, Kazunori (Muroran Inst. of Tech., Hokkaido (Japan). Dept. of Applied Chemistry)


    By means of the optimum m-term Hylleraas-type wavefunctions with 1{<=}M{<=}6 we study various interelectronic properties of the Helium-like atoms with nuclear charge Z=1, 2, 3, 5 and 10. Let h(u) denote the spherically averaged electron-pair density of a finite many-electron system. Firstly we found that the intracule function h(u)/u{sup {alpha}} of the above-mentioned atoms is (i) monotonically decreasing from the origin for {alpha}>{alpha}{sub 1} and (ii) convex for {alpha}>{alpha}{sub 2}, where {alpha}{sub 1} and {alpha}{sub 2} are positive constants which depend on Z and M. Then we show that the electron-electron cusp condition, i.e. that h'(0)=h(0), may be extended in the sense that the inequality h(u)-h'(u) {>=} 0 is valid for any u<0. Thirdly, it is shown that the inequalities involving three interelectronic moments recently found by the authors are, at times, of great quality. Finally the goodness of some bounds to the characteristics of the maximum of h(u) and to the total interelectronic repulsion energy is discussed in detail. (orig.).

  8. Robust valley polarization of helium ion modified atomically thin MoS2 (United States)

    Klein, J.; Kuc, A.; Nolinder, A.; Altzschner, M.; Wierzbowski, J.; Sigger, F.; Kreupl, F.; Finley, J. J.; Wurstbauer, U.; Holleitner, A. W.; Kaniber, M.


    Atomically thin semiconductors have dimensions that are commensurate with critical feature sizes of future optoelectronic devices defined using electron/ion beam lithography. Robustness of their emergent optical and valleytronic properties is essential for typical exposure doses used during fabrication. Here, we explore how focused helium ion bombardement affects the intrinsic vibrational, luminescence and valleytronic properties of atomically thin MoS2 . By probing the disorder dependent vibrational response we deduce the interdefect distance by applying a phonon confinement model. We show that the increasing interdefect distance correlates with disorder-related luminscence arising 180 meV below the neutral exciton emission. We perform ab initio density functional theory of a variety of defect related morphologies, which yield first indications on the origin of the observed additional luminescence. Remarkably, no significant reduction of free exciton valley polarization is observed until the interdefect distance approaches a few nanometers, namely the size of the free exciton Bohr radius. Our findings pave the way for direct writing of sub-10 nm nanoscale valleytronic devices and circuits using focused helium ions.

  9. An effective method for trapping ion beams in superfluid helium for laser spectroscopy experiments

    Directory of Open Access Journals (Sweden)

    Yang X.F


    Full Text Available A novel laser spectroscopy technique -“OROCHI” (Optical Radioisotopes Observation in Condensed Helium as Ion-catcher has been proposed. This method aimed to investigate the structure of exotic nuclei systematically by measuring nuclear spins and moments. For in-situ laser spectroscopy of atoms in He II, a method to trap atoms precisely at the observation region of laser is highly needed. In this work, a setup composed of a degrader, two plastic scintillators and a photon detection system is further tested and verified for adjusting and checking the stopping position of 84–87Rb beam. Details of the current setup, experimental results using this method are presented.

  10. Visualization of steps and surface reconstructions in Helium Ion Microscopy with atomic precision

    NARCIS (Netherlands)

    Hlawacek, G.; Jankowski, Maciej; Wormeester, Herbert; van Gastel, Raoul; Zandvliet, Henricus J.W.; Poelsema, Bene


    Helium Ion Microscopy is known for its surface sensitivity and high lateral resolution. Here, we present results of a Helium Ion Microscopy based investigation of a surface confined alloy of Ag on Pt(111). Based on a change of the work function of 25 meV across the atomically flat terraces we can

  11. Novel magnetic trap design for ultra-cold metastable helium atoms with large optical access

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, Franz; Simonet, Juliette; Roy, Sanjukta; Beugnon, Jerome; Leduc, Michele; Cohen-Tannoudji, Claude [Laboratoire Kastler Brossel, Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris (France)


    We present the design of a modified Cloverleaf-type Ioffe-Pritchard trap for Bose-Einstein condensation of ultra-cold atoms, compatible with in situ loading of the condensed gas into a three-dimensional optical lattice. The coil geometry offers optical access for three independent triplets of orthogonal laser beams that cross in the centre of the trap. Two are used for the magneto-optical trap and the projected three-dimensional optical lattice, respectively. Technical considerations of the trap design, as well as the electric circuitry for fast switching are reviewed. This set-up is intended to operate for metastable helium, but is also of practical interest for experiments with other species.

  12. A continuous cold atomic beam interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Hongbo [State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084 (China); Joint Institute for Measurement Science, Tsinghua University, Beijing 100084 (China); Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Feng, Yanying, E-mail:; Yan, Xueshu; Jiang, Zhikun [State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084 (China); Joint Institute for Measurement Science, Tsinghua University, Beijing 100084 (China); Chen, Shu [Joint Institute for Measurement Science, Tsinghua University, Beijing 100084 (China); Key Laboratory of Instrumentation Science, North University of China, Taiyuan 030051 (China); Wang, Xiaojia [College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhou, Zhaoying [State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing 100084 (China)


    We demonstrate an atom interferometer that uses a laser-cooled continuous beam of {sup 87}Rb atoms having velocities of 10–20 m/s. With spatially separated Raman beams to coherently manipulate the atomic wave packets, Mach–Zehnder interference fringes are observed at an interference distance of 2L = 19 mm. The apparatus operates within a small enclosed area of 0.07 mm{sup 2} at a bandwidth of 190 Hz with a deduced sensitivity of 7.8×10{sup −5} rad/s/√(Hz) for rotations. Using a low-velocity continuous atomic source in an atom interferometer enables high sampling rates and bandwidths without sacrificing sensitivity and compactness, which are important for applications in real dynamic environments.

  13. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)



    The negative ion of H is one of the simplest 3-body atomic systems. The techniques we have developed for experimental study of atoms moving near speed of light have been productive. This proposal request continuing support for experimental studies of the H{sup -} system, principally at the 800 MeV linear accelerator (LAMPF) at Los Alamos. Four experiments are currently planned: photodetachment of H{sup -} near threshold in electric field, interaction of relativistic H{sup -} ions with matter, high excitations and double charge escape in H{sup -}, and multiphoton detachment of electrons from H{sup -}.

  14. Relativistic atomic beam spectroscopy II

    Energy Technology Data Exchange (ETDEWEB)



    We are requesting support for a postdoctoral person to participate in H{sup -} studies at Los Alamos. In addition, we are requesting funding for a state-of-the-art YAG laser system that would allow us to obtain data at three times our present rate with improved beam quality.

  15. Introduction to Density Functional Theory: Calculations by Hand on the Helium Atom (United States)

    Baseden, Kyle A.; Tye, Jesse W.


    Density functional theory (DFT) is a type of electronic structure calculation that has rapidly gained popularity. In this article, we provide a step-by-step demonstration of a DFT calculation by hand on the helium atom using Slater's X-Alpha exchange functional on a single Gaussian-type orbital to represent the atomic wave function. This DFT…

  16. Deposition, milling, and etching with a focused helium ion beam

    NARCIS (Netherlands)

    Alkemade, P.F.A.; Veldhoven, E. van


    The recent successful development of the helium ion microscope has produced both a new type of microscopy and a new tool for nanoscale manufacturing. This chapter reviews the first explorations in this new field in nanofabrication. The studies that utilize the Orion helium ion microscope to grow or

  17. A comparison of neon versus helium ion beam induced deposition via Monte Carlo simulations. (United States)

    Timilsina, Rajendra; Smith, Daryl A; Rack, Philip D


    The ion beam induced nanoscale synthesis of PtCx (where x ∼ 5) using the trimethyl (methylcyclopentadienyl)platinum(IV) (MeCpPt(IV)Me3) precursor is investigated by performing Monte Carlo simulations of helium and neon ions. The helium beam leads to more lateral growth relative to the neon beam because of its larger interaction volume. The lateral growth of the nanopillars is dominated by molecules deposited via secondary electrons in both the simulations. Notably, the helium pillars are dominated by SE-I electrons whereas the neon pillars are dominated by SE-II electrons. Using a low precursor residence time of 70 μs, resulting in an equilibrium coverage of ∼4%, the neon simulation has a lower deposition efficiency (3.5%) compared to that of the helium simulation (6.5%). At larger residence time (10 ms) and consequently larger equilibrium coverage (85%) the deposition efficiencies of helium and neon increased to 49% and 21%, respectively; which is dominated by increased lateral growth rates leading to broader pillars. The nanoscale growth is further studied by varying the ion beam diameter at 10 ms precursor residence time. The study shows that total SE yield decreases with increasing beam diameters for both the ion types. However, helium has the larger SE yield as compared to that of neon in both the low and high precursor residence time, and thus pillars are wider in all the simulations studied.

  18. The Effects of the Pauli Exclusion Principle in Determining the Ionization Energies of the Helium Atom and Helium-Like Ions (United States)

    Deeney, F. A.; O'Leary, J. P.


    For helium and helium-like ions, we have examined the differences between the values of the ionization energies as calculated from the Bohr theory and those measured in experiments. We find that these differences vary linearly with the atomic number of the system. Using this result, we show how the Bohr model for single-electron systems may be…

  19. Rydberg States of Alkali Metal Atoms on Superfluid Helium Droplets - Theoretical Considerations (United States)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.


    The bound states of electrons on the surface of superfluid helium have been a research topic for several decades. One of the first systems treated was an electron bound to an ionized helium cluster. Here, a similar system is considered, which consists of a helium droplet with an ionized dopant inside and an orbiting electron on the outside. In our theoretical investigation we select alkali metal atoms (AK) as central ions, stimulated by recent experimental studies of Rydberg states for Na, Rb, and Cs attached to superfluid helium nanodroplets. Experimental spectra , obtained by electronic excitation and subsequent ionization, showed blueshifts for low lying electronic states and redshifts for Rydberg states. In our theoretical treatment the diatomic AK^+-He potential energy curves are first computed with ab initio methods. These potentials are then used to calculate the solvation energy of the ion in a helium droplet as a function of the number of atoms. Additional potential terms, derived from the obtained helium density distribution, are added to the undisturbed atomic pseudopotential in order to simulate a 'modified' potential felt by the outermost electron. This allows us to compute a new set of eigenstates and eigenenergies, which we compare to the experimentally observed energy shifts for highly excited alkali metal atoms on helium nanodroplets. A. Golov and S. Sekatskii, Physica B, 1994, 194, 555-556 E. Loginov, C. Callegari, F. Ancilotto, and M. Drabbels, J. Phys. Chem. A, 2011, 115, 6779-6788 F. Lackner, G. Krois, M. Koch, and W. E. Ernst, J. Phys. Chem. Lett., 2012, 3, 1404-1408 F. Lackner, G. Krois, M. Theisen, M. Koch, and W. E. Ernst, Phys. Chem. Chem. Phys., 2011, 13, 18781-18788

  20. The growth of sodium rough films on mica (0001) as determined by Helium Atom Scattering

    DEFF Research Database (Denmark)

    Gerlach, Rolf; Balzer, Frank; Rubahn, Horst-Günter


    Elastic helium atom scattering (HAS) and linear optical extinction measurements are used to investigate the growth of sodium (Na) films on mica substrates in the surface temperature range between 90 and 300 K. At half a monolayer (ML) surface coverage we observe a maximum of scattered He intensity......, which is addressed to Na atoms that fill cleavage-induced holes in the mica surface. It provides a convenient means of calibrating the coverage of the surface. With increasing surface coverage Na clusters are formed on the mica surface. A broad angular distribution of the scattered Helium intensity...

  1. Absolute number densities of helium metastable atoms determined by atomic absorption spectroscopy in helium plasma-based discharges used as ambient desorption/ionization sources for mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reininger, Charlotte; Woodfield, Kellie [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States); Keelor, Joel D.; Kaylor, Adam; Fernández, Facundo M. [Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332 (United States); Farnsworth, Paul B., E-mail: [Brigham Young University, Department of Chemistry and Biochemistry, Provo, UT 84602 (United States)


    The absolute number densities of helium atoms in the 2s {sup 3}S{sub 1} metastable state were determined in four plasma-based ambient desorption/ionization sources by atomic absorption spectroscopy. The plasmas included a high-frequency dielectric barrier discharge (HF-DBD), a low temperature plasma (LTP), and two atmospheric-pressure glow discharges, one with AC excitation and the other with DC excitation. Peak densities in the luminous plumes downstream from the discharge capillaries of the HF-DBD and the LTP were 1.39 × 10{sup 12} cm{sup −3} and 0.011 × 10{sup 12} cm{sup −3}, respectively. Neither glow discharge produced a visible afterglow, and no metastable atoms were detected downstream from the capillary exits. However, densities of 0.58 × 10{sup 12} cm{sup −3} and 0.97 × 10{sup 12} cm{sup −3} were measured in the interelectrode regions of the AC and DC glow discharges, respectively. Time-resolved measurements of metastable atom densities revealed significant random variations in the timing of pulsed absorption signals with respect to the voltage waveforms applied to the discharges. - Highlights: • We determine He metastable number densities for four plasma types • The highest number densities were observed in a dielectric barrier discharge • No helium metastable atoms were observed downstream from the exits of glow discharges.

  2. Conductivity change of defective graphene by helium ion beams

    Directory of Open Access Journals (Sweden)

    Yuichi Naitou


    Full Text Available Applying a recently developed helium ion microscope, we demonstrated direct nano-patterning and Anderson localization of single-layer graphene (SLG on SiO2/Si substrates. In this study, we clarified the spatial-resolution-limitation factor of direct nano-patterning of SLG. Analysis of scanning capacitance microscopy measurements reveals that the conductivity of helium ion (H+-irradiated SLG nanostructures depends on their geometrical size, i.e., the smaller the H+-irradiated SLG region, the higher its conductivity becomes. This finding can be explained by the hopping carrier transport across strongly localized states of defective SLG.

  3. A Hartree–Fock study of the confined helium atom: Local and global basis set approaches

    Energy Technology Data Exchange (ETDEWEB)

    Young, Toby D., E-mail: [Zakład Metod Komputerowych, Instytut Podstawowych Prolemów Techniki Polskiej Akademia Nauk, ul. Pawińskiego 5b, 02-106 Warszawa (Poland); Vargas, Rubicelia [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico); Garza, Jorge, E-mail: [Universidad Autónoma Metropolitana Iztapalapa, División de Ciencias Básicas e Ingenierías, Departamento de Química, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, D.F. C.P. 09340, México (Mexico)


    Two different basis set methods are used to calculate atomic energy within Hartree–Fock theory. The first is a local basis set approach using high-order real-space finite elements and the second is a global basis set approach using modified Slater-type orbitals. These two approaches are applied to the confined helium atom and are compared by calculating one- and two-electron contributions to the total energy. As a measure of the quality of the electron density, the cusp condition is analyzed. - Highlights: • Two different basis set methods for atomic Hartree–Fock theory. • Galerkin finite element method and modified Slater-type orbitals. • Confined atom model (helium) under small-to-extreme confinement radii. • Detailed analysis of the electron wave-function and the cusp condition.

  4. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants (United States)

    Hayano, Ryugo S.


    Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended values of the fundamental physical constants. PMID:20075605

  5. Ion temperature anisotropy in high power helium neutral beam fuelling experiments in JET

    Energy Technology Data Exchange (ETDEWEB)

    Maas, A.C.; Core, W.G.F.; Gerstel, U.C.; Von Hellermann, M.G.; Koenig, R.W.T.; Marcus, F.B. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking


    During helium beam fuelling experiments in JET, distinctive anisotropic features have been observed in the velocity distribution function describing both fast and thermal alpha particle populations. During the initial fuelling phase the central helium ion temperature observed perpendicular to the magnetic field is higher than the central electron temperature, while the central helium ion temperature observed parallel to the magnetic field is lower than or equal to the central electron temperature. In order to verify temperature measurements of both perpendicular and parallel lines of sight, other independent methods of deducing the ion temperature are investigated: deuterium ion temperature, deuterium density, comparison with neutron rates and profiles (influence of a possible metastable population of helium). 6 refs., 7 figs.

  6. Transient Development of Excited State Densities in Atomic Helium Plasmas (United States)


    n s t i t u e n t s caus ing a t . ransfer to bound e l e c t r o n s b e t w e e n the l o w - l y i n g s t a t e s and u p p e r s t a t...r y and t h e s e a r e d i s c u s s e d in de ta i l . 4.1 ENERGY LEVELS The h e l i u m e n e r g y l e v e l s u s e d in th i s s...e t h e n d e t e r m i n e d f r o m t h e s e v a l u e s . 4] AEDC-TR-76-5 Table 1. Helium Energy Lwel$ State g E (i/cm) State g E (i

  7. Optimization of a constrained linear monochromator design for neutral atom beams. (United States)

    Kaltenbacher, Thomas


    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D


    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient’s body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. Inmost cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  9. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions. (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D


    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  10. Calculation of inelastic helium atom scattering from H2/ NaCl(001)

    DEFF Research Database (Denmark)

    Bruch, L.W.; Hansen, Flemming Yssing; Traeger, F.


    The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determi......The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H2/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 me...

  11. Analytical approach to the helium-atom ground state using correlated wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Bhattacharyya, A.; Talukdar, B. [Visvabharati Univ., Santiniketan (India). Dept. of Physics; Deb, N.C. [Indian Association for the Cultivation of Science, Calcutta (India). Dept. of Theoretical Physics


    A realistic three-parameter correlated wavefunction is used to construct an exact analytical expression for the expectation value of the helium-atom Hamiltonian expressed in the interparticle coordinates. The parameters determined variationally are found to satisfy the orbital and correlation cusp conditions to a fair degree of accuracy and yield a value for the ground-state energy which is in good agreement with the exact result. (author).

  12. Study of helium and beryllium atoms with strong and short laser field; Etude des atomes d'helium et de beryllium en champ laser intense et bref

    Energy Technology Data Exchange (ETDEWEB)

    Laulan, St


    We present a theoretical study of the interaction between a two-active electron atom and an intense (10{sup 14} to 10{sup 15} W/cm{sup 2}) and ultrashort (from a few 10{sup -15} to a few 10{sup -18} s) laser field. In the first part, we describe the current experimental techniques able to produce a coherent radiation of high power in the UV-XUV regime and with femtosecond time duration. A theoretical model of a laser pulse is defined with such characteristics. Then, we develop a numerical approach based on B-spline functions to describe the atomic structure of the two-active electron system. A spectral non perturbative method is proposed to solve the time dependent Schroedinger equation. We focalize our attention on the description of the atomic double continuum states. Finally, we expose results on the double ionization of helium and beryllium atoms with intense and short laser field. In particular, we present total cross section calculations and ejected electron energy distributions in the double continuum after one- and two-photon absorption. (author)

  13. Cold atomic beam ion source for focused ion beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Knuffman, B.; Steele, A. V. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States); zeroK NanoTech, Montgomery Village, Maryland 20886 (United States); McClelland, J. J. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)


    We report measurements and modeling of an ion source that is based on ionization of a laser-cooled atomic beam. We show a high brightness and a low energy spread, suitable for use in next-generation, high-resolution focused ion beam systems. Our measurements of total ion current as a function of ionization conditions support an analytical model that also predicts the cross-sectional current density and spatial distribution of ions created in the source. The model predicts a peak brightness of 2 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1} and an energy spread less than 0.34 eV. The model is also combined with Monte-Carlo simulations of the inter-ion Coulomb forces to show that the source can be operated at several picoamperes with a brightness above 1 × 10{sup 7} A m{sup −2} sr{sup −1} eV{sup −1}. We estimate that when combined with a conventional ion focusing column, an ion source with these properties could focus a 1 pA beam into a spot smaller than 1 nm. A total current greater than 5 nA was measured in a lower-brightness configuration of the ion source, demonstrating the possibility of a high current mode of operation.

  14. Probing double Rydberg wave packets in a helium atom with fast single-cycle pulses (United States)

    Wang, Xiao; Robicheaux, F.


    Fully quantum and classical calculations on a helium atom with two excited, radially localized Rydberg wave packets are performed. The differences between classical and quantum methods are compared for a wide range of principal quantum numbers to study the validity of the classical method for low-lying states. The effects of fast terahertz single-cycle pulses on an atomic system with one or two Rydberg wave packets are also studied using classical equations of motion. These results suggest that single-cycle pulses can be used as time-resolved probes to detect motion of the wave packets and to investigate autoionization properties.

  15. Entrainment of lithium atoms into a supersonic beam and magnetic deceleration (United States)

    Lu, Yu; Gradl, Lukas; Ha, Lichung; Hillberry, Logan; Melin, Kevin; Nagornykh, Pavel; Zesch, Jordan; Raizen, Mark


    We report our progress on the development of an alternative to laser cooling of neutral atoms, using alkali atoms as the benchmark for a direct comparison. The first step is optimization of entrainment of lithium into a supersonic beam followed by magnetic deceleration. We create a supersonic beam of cold helium gas by pulsing on an Even-Lavie valve, which then crosses lithium vapor generated by a directional oven. The resulting entrainment number and temperature of the lithium atoms are measured downstream with a hot-wire detector. In order to further optimize entrainment, we developed a pulsed atomic source that is synchronized with the supersonic valve with an appropriate delay time. Lithium atoms from the directional oven accumulate on a thin metallic ribbon and are quickly evaporated as a short current pulse is applied, creating a dense plume of lithium vapor. The entrained lithium beam will be slowed by a magnetic decelerator as demonstrated in earlier work, combining all the components to deliver lithium atoms near rest in the laboratory frame. Atomic phase space density will be further increased by a new method that we recently proposed, which utilizes optical pumping and magnetic kicks, and does not rely on the momentum of the photon. W.M. Keck Foundation.

  16. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.


    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  17. An alpha particle measurement system using an energetic neutral helium beam in ITER (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Sasao, M.; Tanaka, N.; Terai, K.; Kaneko, O. [Graduate school of Engineering, Tohoku University, Sendai 980-8579 (Japan); Kisaki, M.; Kobuchi, T.; Tsumori, K.; Okamoto, A.; Kitajima, S. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Shinto, K. [IFMIF R and D Center, Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan); Wada, M. [Graduate School of Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)


    An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He{sup +} ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He{sup +} ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.

  18. Comparison of basic features of proton and helium ion pencil beams in water using GATE. (United States)

    Ströbele, Julia; Schreiner, Thomas; Fuchs, Hermann; Georg, Dietmar


    The aim of this study was to investigate the basic features of helium ions for their possible application in advanced radiotherapy and to benchmark them against protons, the current particle of choice in the low linear energy transfer (LET) range. Geant4 Application for Emission Tomography (GATE) simulations were performed with beams of 1x10(7) monodirectional particles traversing a water phantom. Initial energies ranged from 50 to 250 MeV per nucleon (MeV/A). The following parameters were evaluated: particle range at the distal 80% of maximum energy deposition (E(max)), width of the Bragg peak (BP) at 60% of E(max), and dose fall-off width between 80% and 20% of E(max) for longitudinal spectra. In addition the fragmentation tail was quantified in terms of length, percental energy deposition, and contributing particles. For each energy lateral profiles were registered along the beam axis and the FWHM at four different depths was extracted. Besides the comparison of parameters between the two particle types, results were also compared to data in the literature. As expected, the position of the BP as a function of initial kinetic energy showed similar values for protons and helium ions, with deviations smaller than 1.3%. The quantitative results of the Monte Carlo (MC) study showed less range straggling effects and smaller lateral deflections for helium ions compared to protons for the investigated energy range. On average, an about 56% reduction of the width of the BP and a 48% reduction of the dose fall-off was observed for helium ions compared to protons. Both the width of the BP and the dose fall-off width as a function of particle range or energy showed an almost linear increase with increasing energy. The tail length increased from 55.9 mm to 592.7 mm and the deposited energy increased from 0.5% to 7.3% for energies between 90 and 250 MeV/A. Lateral profiles of helium ions were about 52% narrower than those of protons. Due to their mass and charge helium

  19. Atomic fluorescence emitted from a corona discharge in helium above and below saturated vapour pressure (United States)

    Shiltagh, Nagham M.; Mendoza Luna, Luis G.; Watkins, Mark J.; Thornton, Stuart C.; von Haeften, Klaus


    A new apparatus was constructed to investigate the visible and near infrared fluorescence spectroscopy of electronically excited helium over a wide range of pressures and temperatures, covering both the gaseous and liquid phases. To achieve sufficient throughput, increased sensitivity was established by employing a micro-discharge cell and a high performance lens system that allows for a large collection solid angle. With this set-up, several thousand spectra were recorded. The atomic 3 s 1 S → 2 p 1 P and 3 s 3 S → 2 p 3 P atomic transitions showed line shifts, spectral broadening and intensity changes that were dependent in magnitude on pressure, temperature and thermodynamic phase. While in the gas phase the lines showed little dependency on the discharge cell temperature, the opposite was observed for the liquid phase, suggesting that a significant number of atoms were solvated. Triplet lines were up to a factor of 50 times stronger in intensity than the singlet lines, depending on pressure. When taking the particle density into account, this effect was stronger in the gas phase than in the liquid phase of helium. This was attributed to the recombination of He2 +, He3 + and He4 + with electrons, which is facilitated in the gas phase because of the significantly higher mobility.

  20. Observation of dynamic atom-atom correlation in liquid helium in real space


    Dmowski, W.; Diallo, S. O.; Lokshin, K.; Ehlers, G.; Ferr?, G.; Boronat, J.; Egami, T.


    Liquid He-4 becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that He-4 atoms in the Bose-Einstein condens...

  1. The 2003 update of antiproton mass by precision three-body calculation of antiprotonic helium atom

    CERN Document Server

    Kino, Y; Kudo, H


    The Particle Listings 2000 edition gave the recommended value of antiproton mass, for the first time, to be within 5 * 10/sup -7/ in the relative deviation from the proton mass; this can be a test of the CPT invariance. The value was derived by our precision 3-body calculation, using the Gaussian expansion method, to analyze the laser spectroscopy data of metastable states in antiprotonic helium atoms taken at CERN. The 2002 edition and the 2003 updated version reported an one-order smaller value, 6 * 10/sup -8/, based on further development of both the experiment and our calculation.

  2. Spatially resolved modeling and measurements of metastable argon atoms in argon-helium microplasmas (United States)

    Hoskinson, Alan R.; Gregório, José; Hopwood, Jeffrey; Galbally-Kinney, Kristin L.; Davis, Steven J.; Rawlins, Wilson T.


    Microwave-driven plasmas operating near atmospheric pressure have been shown to be a promising technique for producing the high density of argon metastable atoms required for optically pumped rare gas laser systems. Stable microwave-driven plasmas can be generated at high pressures using microstrip-based resonator circuits. We present results from computational modeling and laser absorption measurements of argon metastable densities in such plasmas operating in argon-helium gas mixtures at pressures up to 300 Torr. The model and measurements resolve the plasma characteristics both perpendicular to the substrate surface and along the resonator length. The measurements qualitatively and in many aspects quantitatively confirm the accuracy of the model. The plasmas exhibit distinct behaviors depending on whether the operating gas is mostly argon or mostly helium. In high-argon plasmas, the metastable density has a large peak value but is confined very closely to the electrode surfaces as well as being reduced near the discharge gap itself. In contrast, metastable densities in high helium-fraction mixtures extend through most of the plasma. In all systems, increasing the power extends the region of metastable along the resonator length, while the extent away from the substrate surface remains approximately constant.

  3. Observation of dynamic atom-atom correlation in liquid helium in real space. (United States)

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T


    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  4. Observation of dynamic atom-atom correlation in liquid helium in real space (United States)

    Dmowski, W.; Diallo, S. O.; Lokshin, K.; Ehlers, G.; Ferré, G.; Boronat, J.; Egami, T.


    Liquid 4He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  5. Effects of impurity atoms and molecules on the lifetime of antiprotonic helium atoms

    CERN Document Server

    Widmann, E; Yamazaki, T; Hayano, R S; Iwasaki, M; Nakamura, S N; Tamura, H; Ito, T M; Kawachi, A; Nishida, N; Higemoto, M; Ito, Y; Morita, N; Hartmann, F J; Daniel, H; Von Egidy, T; Schmid, W; Hoffmann, J; Eades, John


    Delayed annihilation time spectra of antiprotons (DATS) in room temperature helium gas have been studied as a function of the concentration of admixed noble gases (Ne, Ar, Kr, Xe) as well as molecular gases (N_2,O_2,H_2) at the low energy antiproton ring (LEAR) at CERN. The DATS were a superposition of two exponential components, one with lifetime of several 100 ns and the other with lifetime 1 to 3 \\mus. They showed a shorter average lifetime (T_{av}) than DATS of pure helium. Ne, Ar, and Kr were found to affect T_{av} only slightly even in concentrations up to 20\\%, while Xe showed a much stronger influence. In the case of molecular gases the presence of N_2 influenced the DATS much less than O_2 and H_2 which destroyed the metastability almost completely in concentrations of 100 ppm and less. The decay rate of the slow component of DATS was found to exhibit a linear relation to the number density of the admixture. From this a collisional destruction (``quenching'') cross section \\sigma_q was extracted. No ...

  6. Relative-velocity distributions for two effusive atomic beams in counterpropagating and crossed-beam geometries

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke


    Formulas are presented for calculating the relative velocity distributions in effusive, orthogonal crossed beams and in effusive, counterpropagating beams experiments, which are two important geometries for the study of collision processes between atoms. In addition formulas for the distributions...

  7. Polarisation response of delay dependent absorption modulation in strong field dressed helium atoms probed near threshold (United States)

    Simpson, E. R.; Sanchez-Gonzalez, A.; Austin, D. R.; Diveki, Z.; Hutchinson, S. E. E.; Siegel, T.; Ruberti, M.; Averbukh, V.; Miseikis, L.; Strüber, C. S.; Chipperfield, L.; Marangos, J. P.


    We present the first measurement of the vectorial response of strongly dressed helium atoms probed by an attosecond pulse train (APT) polarised either parallel or perpendicular to the dressing field polarisation. The transient absorption is probed as a function of delay between the APT and the linearly polarised 800 nm field of peak intensity 1.3× {10}14 {{W}} {{cm}}-2. The APT spans the photon energy range 16-42 eV, covering the first ionisation energy of helium (24.59 eV). With parallel polarised dressing and probing fields, we observe modulations with periods of one half and one quarter of the dressing field period. When the polarisation of the dressing field is altered from parallel to perpendicular with respect to the APT polarisation we observe a large suppression in the modulation depth of the above ionisation threshold absorption. In addition to this we present the intensity dependence of the harmonic modulation depth as a function of delay between the dressing and probe fields, with dressing field peak intensities ranging from 2 × 1012 to 2 × 1014 {{W}} {{cm}}-2. We compare our experimental results with a full-dimensional solution of the single-atom time-dependent (TD) Schrödinger equation obtained using the recently developed abinitio TD B-spline ADC method and find good qualitative agreement for the above threshold harmonics.

  8. Cross section database for collision processes of helium atom with charged particles. 1. Electron impact processes

    Energy Technology Data Exchange (ETDEWEB)

    Ralchenko, Yu.V.; Janev, R.K.; Kato, T. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fursa, D.V.; Bray, I. [Flinder Univ., Adelaide (Australia); Heer, F.J. de [FOM Institute for Atomic and Molecular Physics, Amsterdam (Netherlands)


    A comprehensive and critically assessed cross section database for the inelastic collision processes of ground state and excited helium atoms colliding with electrons, protons and multiply-charged ions has been prepared at the Data and Planning Center at NIFS. The present report describes the first part of the database containing the recommended data for electron impact excitation and ionization of neutral helium. An states (atomic terms) with n {<=} 4 are treated individually while the states with n > 4 are considered degenerate. For the processes involving transitions to and from n > 4 levels, suitable cross section scaling relations are presented. For a large number of electron impact transitions, both from the ground and excited states, new convergent close coupling (CCC) calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in a graphical form. (author)

  9. A Compact, High-Flux Cold Atom Beam Source (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis


    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  10. Temperature and Atomic Oxygen Effects on Helium Leak Rates of a Candidate Main Interface Seal (United States)

    Penney, Nicholas; Wasowski, Janice L.; Daniels, Christopher C.


    Helium leak tests were completed to characterize the leak rate of a 54 in. diameter composite space docking seal design in support of the National Aeronautics and Space Administration s (NASA's) Low Impact Docking System (LIDS). The evaluated seal design was a candidate for the main interface seal on the LIDS, which would be compressed between two vehicles, while docked, to prevent the escape of breathable air from the vehicles and into the vacuum of space. Leak tests completed at nominal temperatures of -30, 20, and 50 C on untreated and atomic oxygen (AO) exposed test samples were examined to determine the influence of both test temperature and AO exposure on the performance of the composite seal assembly. Results obtained for untreated seal samples showed leak rates which increased with increased test temperature. This general trend was not observed in tests of the AO exposed specimens. Initial examination of collected test data suggested that AO exposure resulted in higher helium leak rates, however, further analysis showed that the differences observed in the 20 and 50 C tests between the untreated and AO exposed samples were within the experimental error of the test method. Lack of discernable trends in the test data prevented concrete conclusions about the effects of test temperature and AO exposure on helium leak rates of the candidate seal design from being drawn. To facilitate a comparison of the current test data with results from previous leak tests using air as the test fluid, helium leak rates were converted to air leak rates using standard conversion factors for viscous and molecular flow. Flow rates calculated using the viscous flow conversion factor were significantly higher than the experimental air leakage values, whereas values calculated using the molecular flow conversion factor were significantly lower than the experimentally obtained air leak rates. The difference in these sets of converted flow rates and their deviation from the

  11. Diffraction of an atomic beam by standing-wave radiation (United States)

    Moskowitz, P. E.; Gould, P. L.; Atlas, S. R.; Pritchard, D. E.


    Preliminary experimental results are reported for the deflection of Na atoms in an atomic beam by a transverse standing-wave laser field whose frequency is tuned between the two ground-state hyperfine components of the D2 line. In contrast to the two experiments done previously, a splitting of the beam into two symmetric peaks whose separation increases with the electric-field is seen here. In addition, the data show evidence for atomic diffraction: a tendency for scattered atoms to acquire momentum in multiples of 2h(bar)k.

  12. Precision atomic beam density characterization by diode laser absorption spectroscopy. (United States)

    Oxley, Paul; Wihbey, Joseph


    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  13. Fine-structure transitions of interstellar atomic sulfur and silicon induced by collisions with helium. (United States)

    Lique, F; Kłos, J; Le Picard, S D


    Atomic sulfur and silicon are important constituents of the interstellar matter and are both used as tracers of the physical conditions in interstellar shocks and outflows. We present an investigation of the spin-orbit (de-)excitation of S((3)P) and Si((3)P) atoms induced by collisions with helium with the aim to improve the determination of atomic sulfur and silicon abundances in the interstellar medium from S and Si emission spectra. Quantum-mechanical calculations have been performed in order to determine rate coefficients for the fine-structure transitions in the 5-1000 K temperature range. The scattering calculations are based on new highly correlated ab initio potentials. The theoretical results show that the (de-)excitation of Si is much faster than that of S. The rate coefficients deduced from this study are in good agreement with previous experimental and theoretical findings despite some deviations at low temperatures. From the computation of critical densities defined as the ratios between Einstein coefficients and the sum of the relevant collisional de-excitation rate coefficients, we show that local thermodynamic equilibrium conditions are not fulfilled for analyzing S and Si emission spectra observed in the interstellar medium. Hence, the present rate coefficients will be extremely useful for the accurate determination of interstellar atomic sulfur and silicon abundances.

  14. Radioprotection by DMSO in nitrogen-saturated mammalian cells exposed to helium ion beams (United States)

    Hirayama, Ryoichi; Matsumoto, Yoshitaka; Kase, Yuki; Noguchi, Miho; Ando, Koichi; Ito, Atsushi; Okayasu, Ryuichi; Furusawa, Yoshiya


    The contribution of OH radical-mediated indirect action by particle beams under hypoxic irradiation condition was investigated by using a radical scavenger. V79 cells were irradiated with 150 MeV/nucleon helium ions at an LET of 2.2 keV/μm in the presence or absence of DMSO, and their colony survivals were determined. The contribution of indirect action to cell killing under hypoxic condition was estimated to be 52±9%. We conclude that OH radical-mediated indirect action still has a half in total contribution on cell killing under hypoxic condition.

  15. Probing resonant energy transfer in collisions of ammonia with Rydberg helium atoms by microwave spectroscopy (United States)

    Zhelyazkova, V.; Hogan, S. D.


    We present the results of experiments demonstrating the spectroscopic detection of Förster resonance energy transfer from NH3 in the X1A1 ground electronic state to helium atoms in 1sns 3S1 Rydberg levels, where n = 37 and n = 40. For these values of n, the 1sns 3S1 → 1snp 3PJ transitions in helium lie close to resonance with the ground-state inversion transitions in NH3 and can be tuned through resonance using electric fields of less than 10 V/cm. In the experiments, energy transfer was detected by direct state-selective electric field ionization of the 3S1 and 3PJ Rydberg levels and by monitoring the population of the 3DJ levels following pulsed microwave transfer from the 3PJ levels. Detection by microwave spectroscopic methods represents a highly state selective, low-background approach to probing the collisional energy transfer process and the environment in which the atom-molecule interactions occur. The experimentally observed electric-field dependence of the resonant energy transfer process, probed both by direct electric field ionization and by microwave transfer, agrees well with the results of calculations performed using a simple theoretical model of the energy transfer process. For measurements performed in zero electric field with atoms prepared in the 1s40s 3S1 level, the transition from a regime in which a single energy transfer channel can be isolated for detection to one in which multiple collision channels begin to play a role has been identified as the NH3 density was increased.

  16. Dense Plasma Focus With High Energy Helium Beams for Radiological Source Replacement (United States)

    Schmidt, Andrea; Ellsworth, Jennifer; Falabella, Steve; Link, Anthony; Rusnak, Brian; Sears, Jason; Tang, Vincent


    A dense plasma focus (DPF) is a compact accelerator that can produce intense high energy ion beams (multiple MeV). It could be used in place of americium-beryllium (AmBe) neutron sources in applications such as oil well logging if optimized to produce high energy helium beams. AmBe sources produce neutrons when 5.5 MeV alphas emitted from the Am interact with the Be. However, due to the very small alpha-Be cross section for alphas AmBe source replacement would have to accelerate ~0.15 μC of He to 2 + MeV in order to produce 107 neutrons per pulse. We are using our particle in cell (PIC) model in LSP of a 4 kJ dense plasma focus discharge to guide the optimization of a compact DPF for the production of high-energy helium beam. This model is fluid for the run-down phase, and then transitions to fully kinetic prior to the pinch in order to include kinetic effects such as ion beam formation and anomalous resistivity. An external pulsed-power driver circuit is used at the anode-cathode boundary. Simulations will be benchmarked to He beam measurements using filtered and time-of-flight Faraday cup diagnostics. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work supported by US DOE/NA-22 Office of Non-proliferation Research and Development. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  17. On the size and structure of helium snowballs formed around charged atoms and clusters of noble gases. (United States)

    Bartl, Peter; Leidlmair, Christian; Denifl, Stephan; Scheier, Paul; Echt, Olof


    Helium nanodroplets doped with argon, krypton, or xenon are ionized by electrons and analyzed in a mass spectrometer. HenNgx(+) ions containing up to seven noble gas (Ng) atoms and dozens of helium atoms are identified; the high resolution of the mass spectrometer combined with advanced data analysis make it possible to unscramble contributions from isotopologues that have the same nominal mass but different numbers of helium or Ng atoms, such as the magic He20(84)Kr2(+) and the isobaric, nonmagic He41(84)Kr(+). Anomalies in these ion abundances reveal particularly stable ions; several intriguing patterns emerge. Perhaps most astounding are the results for HenAr(+), which show evidence for three distinct, solid-like solvation shells containing 12, 20, and 12 helium atoms. This observation runs counter to the common notion that only the first solvation shell is solid-like but agrees with calculations by Galli et al. for HenNa(+) [J. Phys. Chem. A 2011, 115, 7300] that reveal three shells of icosahedral symmetry. HenArx(+) (2 ≤ x ≤ 7) ions appear to be especially stable if they contain a total of n + x = 19 atoms. A sequence of anomalies in the abundance distribution of HenKrx(+) suggests that rings of six helium atoms are inserted into the solvation shell each time a krypton atom is added to the ionic core, from Kr(+) to Kr3(+). Previously reported strong anomalies at He12Kr2(+) and He12Kr3(+) [Kim , J. H.; et al. J. Chem. Phys. 2006, 124, 214301] are attributed to a contamination. Only minor local anomalies appear in the distributions of HenXex(+) (x ≤ 3). The distributions of HenKr(+) and HenXe(+) show strikingly similar, broad features that are absent from the distribution of HenAr(+); differences are tentatively ascribed to the very different fragmentation dynamics of these ions.

  18. Observation of dynamic atom-atom correlation in liquid helium in real space


    Dmowski, Wojtek; Diallo, Souleymane Omar; Lokshin, Konstantin A.; Ehlers, Georg; Ferré Porta, Guillem; Boronat Medico, Jordi; Egami, Takeshi


    © The Author(s) 2017. Liquid 4He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atomatom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4He atoms in the Bo...

  19. NOx reduction by electron beam-produced nitrogen atom injection (United States)

    Penetrante, Bernardino M.


    Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

  20. Ultra-precise single-ion atomic mass measurements on deuterium and helium-3 (United States)

    Zafonte, S. L.; Van Dyck, R. S., Jr.


    The former University of Washington Penning Trap Mass Spectrometer (UW-PTMS), now located at the Max Planck Institute for Nuclear Physics in Heidelberg, Germany, was used in the decade before the move to determine new values for the deuteron atomic mass, M (2H+) = 2.013 553 212 745(40) u, and the deuterium atomic mass, M (2H) = 2.014 101 778 052(40) u, both of which are now more than an order-of-magnitude more accurate than the previous best 1994-MIT measurements of these quantities. The new value for the deuteron’s mass can then be used with the accepted 2010-CODATA proton mass and the most recent 1999-measurement of the 2.2 MeV gamma-ray binding energy of the deuteron to refine the neutron’s mass to mn = 1.008 664 916 018(435) u which has about half the uncertainty relative to the value computed using that previous 1994-MIT deuterium measurement. As a result, further improvements of mn must now come from a more accurate determination of the wavelength of this gamma ray. In this same period of time, this spectrometer has also been used to determine new values for the helion atomic mass, M (3He2+) = 3.014 932 246 668(43) u, and the neutral helium-3 atomic mass, M (3He) = 3.016 029 321 675(43) u, which are both about 60 times more accurate than the 2006-SMILETRAP measurements, but disagree with the 4.4-times less-accurate 2015-Florida-State measurements by 0.76 nu. It is expected that these helium-3 results will be used in the future 3H/3He mass ratio (to be determined by the Heidelberg, Germany version of the old UW-PTMS) in order to generate a more accurate value for the tritium atomic mass.

  1. Relative and absolute level populations in beam-foil-excited neutral helium (United States)

    Davidson, J.


    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  2. Antiproton–to–electron mass ratio determined by two-photon laser spectroscopy of antiprotonic helium atoms

    Directory of Open Access Journals (Sweden)

    Sótér A.


    Full Text Available The ASACUSA collaboration of CERN has recently carried out two-photon laser spectroscopy of antiprotonic helium atoms. Three transition frequencies were determined with fractional precisions of 2.3–5 parts in 109. By comparing the results with three-body QED calculations, the antiproton-to-electron mass ratio was determined as 1836.1526736(23.

  3. Coherent and non coherent atom optics experiment with an ultra-narrow beam of metastable rare gas atoms; Experiences d'optique atomique coherente ou non avec un jet superfin d'atomes metastables de gaz rares

    Energy Technology Data Exchange (ETDEWEB)

    Grucker, J


    In this thesis, we present a new type of atomic source: an ultra-narrow beam of metastable atoms produced by resonant metastability exchange inside a supersonic beam of rare gas atoms. We used the coherence properties of this beam to observe the diffraction of metastable helium, argon and neon atoms by a nano-transmission grating and by micro-reflection-gratings. Then, we evidenced transitions between Zeeman sublevels of neon metastable {sup 3}P{sub 2} state due to the quadrupolar part of Van der Waals potential. After we showed experimental proofs of the observation of this phenomenon, we calculated the transition probabilities in the Landau - Zener model. We discussed the interest of Van der Waals - Zeeman transitions for atom interferometry. Last, we described the Zeeman cooling of the supersonic metastable argon beam ({sup 3}P{sub 2}). We have succeeded in slowing down atoms to speeds below 100 m/s. We gave experimental details and showed the first time-of-flight measurements of slowed atoms.

  4. Supersonic helium beam diagnostic for fluctuation measurements of electron temperature and density at the Tokamak TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Kruezi, U.; Stoschus, H.; Schweer, B.; Sergienko, G.; Samm, U. [Institute of Energy and Climate Research, Plasma Physics, Forschungszentrum Juelich GmbH, Association EURATOM-FZJ, Partner in the Trilateral Euregio Cluster, Juelich (Germany)


    A supersonic helium beam diagnostic, based on the line-ratio technique for high resolution electron density and temperature measurements in the plasma edge (r/a > 0.9) was designed, built, and optimised at TEXTOR (Torus Experiment for Technology Oriented Research). The supersonic injection system, based on the Campargue skimmer-nozzle concept, was developed and optimised in order to provide both a high neutral helium beam density of n{sub 0}= 1.5 Multiplication-Sign 10{sup 18} m{sup -3} and a low beam divergence of {+-}1 Degree-Sign simultaneously, achieving a poloidal resolution of {Delta}{sub poloidal}= 9 mm. The setup utilises a newly developed dead volume free piezo valve for operation in a high magnetic field environment of up to 2 T with a maximum repetition rate of 80 Hz. Gas injections are realised for a duration of 120 ms at a repetition rate of 2 Hz (duty cycle 1/3). In combination with a high sensitivity detection system, consisting of three 32 multi-channel photomultipliers (PMTs), measurements of edge electron temperature and density with a radial resolution of {Delta}{sub radial}= 2 mm and a maximum temporal resolution of {Delta}t Asymptotically-Equal-To 2 {mu}s (470 kHz) are possible for the first time. The diagnostic setup at TEXTOR is presented. The newly developed injection system and its theoretical bases are discussed. The applicability of the stationary collisional-radiative model as basis of the line-ratio technique is shown. Finally, an example of a fluctuation analysis demonstrating the unique high temporal and spatial resolution capabilities of this new diagnostic is presented.

  5. Isotope Effects on Delayed Annihilation Time Spectra of Antiprotonic Helium Atoms in Low-Temperature Gas

    CERN Document Server

    Ketzer, B; Daniel, H; Von Egidy, T; Niestroj, A; Schmid, S; Schmid, W; Yamazaki, T; Sugai, I; Nakayoshi, K; Hayano, R S; Maas, F E; Torii, H A; Ishikawa, T; Tamura, H; Morita, N; Horváth, D; Eades, John; Widmann, E


    The delayed annihilation time spectra (DATS) of antiprotonic helium atoms have been studied in isotopically pure low temperature ^3He and ^4He gas at various densities. The DATS taken at 5.8~K and 400~mbar are very similar in shape except for i) a small difference in the time scale and ii) the presence of a distinct fast decay component in the case of ^3He. The ratio of overall trapping times (mean lifetimes against annihilation), R = T_{\\mathrm{trap}}(\\mbox{^{4}He})/T_{\\mathrm{trap}}(\\mbox{^{3}He}), has been determined to be 1.144 \\pm 0.009, which is in good agreement with a theoretical estimate yielding R = [(M^*(\\mbox{\\overline{\\mathrm{p}}}\\mbox{^{4}He})/ M^*(\\mbox{\\overline{ \\mathrm{p}}}\\mbox{^{3}He})]^2=1.14, where M^* denotes the reduced mass of the \\mbox{\\overline{\\mathrm{p}}}\\mbox{He^{++}}\\ system. The presence of a short-lived component with a lifetime of (0.154\\pm 0.007)\\ \\mbox{\\mus} in the case of \\mbox{^{3}He}\\ suggests that the \\mbox{\\overline{\\mathrm{p}}}\\mbox{^{3}He^{+}}\\ atom has a state of in...

  6. Two-Photon Coherent Atomic Absorption of Multiple Laser Beams (United States)

    Li, Ming-Chiang


    Physical processes on two-photon coherent atomic absorption of multiple laser beams were discussed about thirty years ago [M. C. Li, Bull. Am. Phys. Soc. 20, 654 (1975)]. These processes can be divided into two distinct groups. In the first group, laser beams are from a single source, and in the second group laser beams are from two different sources [M. C. Li, Phys. Rev. A 22 (1980) 1323]. Several experiments in the first group were carried out and have led to the 2005 Nobel Prize in physics. The second group is more interesting. Beside atoms are in random motion, two photons are from different sources. Classically, it is impossible for atoms to transit coherently in the absorption process, but quantum mechanically, such a transition is possible and that is one of the spooky phenomena in quantum mechanic. To assure the coherent transition, each photon as absorbed by the atom must have two possible paths of choices. If one photon has the choice and other one is not, then the atomic transitions cannot be coherent. Around1990, there were very active experimental pursuits on such a spooky phenomenon of two photons emitted from crystal parametric down conversion. The present talk will review various spooky phenomena associated with two-photon coherent atomic absorption. Hope that the talk will stimulate the interest on the long neglected experimental front on two-photon coherent atomic absorption from two different laser sources.

  7. Internal polarized deuterium target with cryogenic atomic beam source

    CERN Document Server

    Dyug, M V; Lazarenko, B A; Mishnev, S I; Nikolenko, D M; Rachek, Igor A; Shestakov, Yu V; Sadykov, R S; Toporkov, D K; Zevakov, S A; Osipov, A V; Stibunov, V N


    Description of the polarized deuterium gas target used at the VEPP-3 electron storage ring for experiments on elastic and inelastic ed scattering is given. Superconducting sextupole magnets with the pole tip magnetic field up to 4.8 T are used in atomic beam source (ABS) to focus atoms. The flux of polarized atoms injected into the storage cell was measured to be 8.2x10 sup 1 sup 6 at/s for deuterium and 7.9x10 sup 1 sup 6 at/s for hydrogen. The measured target thickness 8x10 sup 1 sup 3 at/cm sup 2 is consistent with the thickness calculated from the measured beam intensity. The effective tensor polarization of the deuterium target during the experiment was found to be P sub z sub z =0.397. Further improvements of the target and possible limitation of the beam intensity from ABS are discussed.

  8. Atomic-Beam Magnetic Resonance Experiments at ISOLDE

    CERN Multimedia


    The aim of the atomic-beam magnetic resonance (ABMR) experiments at ISOLDE is to map the nuclear behaviour in wide regions of the nuclear chart by measuring nuclear spins and moments of ground and isomeric states. This is made through an investigation of the atomic hyperfine structure of free, neutral atoms in a thermal atomic-beam using radio-frequency techniques. On-line operation allows the study of short-lived nuclei far from the region of beta-stability.\\\\ \\\\ The ABMR experiments on the |2S^1 ^2 elements Rb, Cs, Au and Fr have been completed, and present efforts are directed towards the elements with an open p-shell and on the rare-earth elements.\\\\ \\\\ The experimental data obtained are compared with results from model calculations, giving information on the single-particle structure and on the nuclear shape parameters.

  9. Ultra thin coherent atom beam by Stern-Gerlach interferometry (United States)

    Perales, F.; Robert, J.; Baudon, J.; Ducloy, M.


    It is demonstrated that a Stern-Gerlach interferometer including a special transverse phase shifter can generate an atomic beam of a small diameter (few tens of nm). Calculations carried out in a coherent regime confirm this point. They also show that the device is almost insensitive to velocity dispersion and that the required mechanical accuracy is quite accessible. Due to the peculiar transverse amplitude distribution (of the Lorentz type), the spreading of the generated beam profile is very small compared to that given by a circular diaphragm or a Gaussian profile of comparable initial diameter. This is a key property as regards applications, e.g. in atom lithography and surface probing.

  10. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms (United States)

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.


    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  11. Molecular beam studies of hot atom chemical reactions: Reactive scattering of energetic deuterium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Continetti, R.E.; Balko, B.A.; Lee, Y.T.


    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H/sub 2/ /minus/> DH + H and the substitution reaction D + C/sub 2/H/sub 2/ /minus/> C/sub 2/HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible. 18 refs., 9 figs.

  12. FINAL TECHNICAL REPORT FOR DE-FG02-05ER64097 Systems and Methods for Injecting Helium Beams into a Synchrotron Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bush, David A


    A research grant was approved to fund development of requirements and concepts for extracting a helium-ion beam at the LLUMC proton accelerator facility, thus enabling the facility to better simulate the deep space environment via beams sufficient to study biological effects of accelerated helium ions in living tissues. A biologically meaningful helium-ion beam will be accomplished by implementing enhancements to increase the accelerator's maximum proton beam energy output from 250MeV to 300MeV. Additional benefits anticipated from the increased energy include the capability to compare possible benefits from helium-beam radiation treatment with proton-beam treatment, and to provide a platform for developing a future proton computed tomography imaging system.

  13. Antiprotonic helium

    CERN Multimedia

    Eades, John


    An exotic atom in w hich an electron and an antiproton orbit a helium nucleus could reveal if there are any differences between matter and antimatter. The author describes this unusual mirror on the antiworld (5 pages)

  14. Direct detection of momentum flux in atomic and molecular beams (United States)

    Choi, J. G.; Hayden, J. S.; O'Connor, M. T.; Diebold, G. J.


    We describe the use of a microphone for detection of atomic and molecular beams in a high-vacuum environment. Two experiments were carried out to demonstrate this detection method. Pulsed beams of argon were detected using a conventional electret microphone where the output of the microphone was displayed directly on an oscilloscope or processed with a boxcar averager to remove the transient oscillations of the microphone diaphragm. Amplitude modulated, continuous beams of atomic argon were also detected using a lock-in amplifier. The microphone possesses a response to the pressure or momentum flux in the beam that appears to be unique among beam detectors. We use the classical equipartition theorem to calculate the magnitude of the random fluctuations in the output voltage of the microphone that is used to give an expression for the minimum detectable momentum flux in the beam. For a typical microphone we find this to be 3×10-8 Pa, (in a 1-Hz bandwidth), which corresponds to a minimum number density of 1×106 cm-3 for an effusive argon beam at 300 K.

  15. Sensitivity of MSE measurements on the beam atomic level population. (United States)

    Ruiz, C; Kumar, S T A; Anderson, F S B; Anderson, D T


    The effect of variation in atomic level population of a neutral beam on the Motional Stark Effect (MSE) measurements is investigated in the low density plasmas of HSX stellarator. A 30 KeV, 4 A, 3 ms hydrogen diagnostic neutral beam is injected into HSX plasmas of line averaged electron density ranging from 2 to 4 ⋅ 1018 m-3 at a magnetic field of 1 T. For this density range, the excited level population of the hydrogen neutral beam is expected to undergo variations. Doppler shifted and Stark split Hα and Hβ emissions from the beam are simultaneously measured using two cross-calibrated spectrometers. The emission spectrum is simulated and fit to the experimental measurements and the deviation from a statistically populated beam is investigated.

  16. Sensitivity of MSE measurements on the beam atomic level population

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C., E-mail:; Kumar, S. T. A.; Anderson, F. S. B.; Anderson, D. T. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States)


    The effect of variation in atomic level population of a neutral beam on the Motional Stark Effect (MSE) measurements is investigated in the low density plasmas of HSX stellarator. A 30 KeV, 4 A, 3 ms hydrogen diagnostic neutral beam is injected into HSX plasmas of line averaged electron density ranging from 2 to 4 ⋅ 10{sup 18} m{sup −3} at a magnetic field of 1 T. For this density range, the excited level population of the hydrogen neutral beam is expected to undergo variations. Doppler shifted and Stark split H{sub α} and H{sub β} emissions from the beam are simultaneously measured using two cross-calibrated spectrometers. The emission spectrum is simulated and fit to the experimental measurements and the deviation from a statistically populated beam is investigated.

  17. Time-resolved mapping of correlated electron emission from helium atom in an intense laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Becker, A [Max-Planck-Institut fuer Physik of Komplexer Systeme, Noethnitzer Str. 38, D-01187 Dresden (Germany)], E-mail:


    We apply and analyze the concept of mapping ionization time on to the final momentum distribution to the correlated electron dynamics in the nonsequential double ionization of helium in a strong laser pulse ({lambda}=800 nm) and show how the mapping provides insight into the double ionization dynamics. To this end, we study, by means of numerical integration of the time-dependent Schroedinger equation of a fully correlated model atom, the temporal evolution of the center-of-mass momentum in a short laser pulse. Our results show that in the high intensity regime (I{sub 0}=1.15x10{sup 15} W cm{sup -2}), the mapping is in good agreement with a classical model including binary and recoil rescattering mechanisms. In the medium intensity regime (I{sub 0}=5x10{sup 14} W cm{sup -2}), we identify additional contributions from the recollision-induced excitation of the ion followed by subsequent field ionization (RESI)

  18. Time-resolved mapping of correlated electron emission from helium atom in an intense laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz Mendez, Camilo [Max-Planck-Institut fuer Physik Komplexer Systeme, Dresden (Germany)


    We apply and analyze the concept of mapping ionization time onto the final momentum distribution to the correlated electron dynamics in the non-sequential double ionization of Helium in a strong laser pulse ({lambda}=800 nm) and show how the mapping provides insight into the double ionization dynamics. To this end, we study by means of numerical integration of the time dependent Schroedinger equation of a fully correlated model atom the temporal evolution of the center-of-mass momentum in a short laser pulse. Our results show that in the high intensity regime (I{sub 0}=1.15 x 10{sup 15} W/cm{sup 2}) the mapping is in good agreement with a classical model including binary and recoil rescattering mechanisms. In the medium intensity regime (I{sub 0}=5 x 10{sup 14} W/cm{sup 2}) we identify additional contributions from the recollision-induced excitation of the ion followed by subsequent field ionization (RESI).

  19. Atomic Beam Laser Spectrometer for In-field Isotopic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Alonso [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Actinide Analytical Chemistry Group


    This is a powerpoint presentation for the DTRA quarterly program review that goes into detail about the atomic beam laser spectrometer for in-field isotopic analysis. The project goals are the following: analysis of post-detonation debris, determination of U and Pu isotopic composition, and fieldable prototype: < 2ft3, < 1000W.

  20. Helium beam shadowing for high spatial resolution patterning of antibodies on microstructured diagnostic surfaces (United States)

    Cacao, Eliedonna; Sherlock, Tim; Nasrullah, Azeem; Kemper, Steven; Knoop, Jennifer; Kourentzi, Katerina; Ruchhoeft, Paul; Stein, Gila E; Atmar, Robert L; Willson, Richard C


    Abstract We have developed a technique for the high-resolution, self-aligning, and high-throughput patterning of antibody binding functionality on surfaces by selectively changing the reactivity of protein-coated surfaces in specific regions of a workpiece with a beam of energetic helium particles. The exposed areas are passivated with bovine serum albumin (BSA) and no longer bind the antigen. We demonstrate that patterns can be formed (1) by using a stencil mask with etched openings that forms a patterned exposure, or (2) by using angled exposure to cast shadows of existing raised microstructures on the surface to form self-aligned patterns. We demonstrate the efficacy of this process through the patterning of anti-lysozyme, anti-Norwalk virus, and anti-Escherichia coli antibodies and the subsequent detection of each of their targets by the enzyme-mediated formation of colored or silver deposits, and also by binding of gold nanoparticles. The process allows for the patterning of three-dimensional structures by inclining the sample relative to the beam so that the shadowed regions remain unaltered. We demonstrate that the resolution of the patterning process is of the order of hundreds of nanometers, and that the approach is well-suited for high throughput patterning. PMID:24706125

  1. Quenching of the resonance 5s(3P1) state of krypton atoms in collisions with krypton and helium atoms (United States)

    Zayarnyi, D. A.; L'dov, A. Yu; Kholin, I. V.


    The processes of collision quenching of the resonance 5s[3/2]1o(3P1) state of the krypton atom are studied by the absorption probe method in electron-beam-excited high-pressure He - Kr mixtures with a low content of krypton. The rate constants of plasmochemical reactions Kr* + Kr + He → Kr*2 + He [(4.21 ± 0.42) × 10-33 cm6 s-1], Kr* + 2He → HeKr* + He [(4.5 ± 1.2) × 10-36 cm6 s-1] and Kr* + He → products + He [(2.21 ± 0.22) × 10-15 cm3 s-1] are measured for the first time. The rate constants of similar reactions are refined for krypton in the metastable 5s[3/2]2o (3P2) state.

  2. Quenching of krypton atoms in the metastable 5s (3P2) state in collisions with krypton and helium atoms (United States)

    Zayarnyi, D. A.; L'dov, A. Yu; Kholin, I. V.


    We have used the absorption probe method to study the processes of collisional quenching of the metastable 5s [3/2]o2(3P2) state of the krypton atom in electron-beam-excited high-pressure He - Kr mixtures with a low content of krypton. The rate constants of plasma-chemical reactions Kr* + Kr + He → Kr*2+He [(2.88 +/- 0.29) × 10-33 cm6 s-1], Kr* + 2He → HeKr* + He [(4.6 +/- 1.3) × 10-36 cm6 s-1] and Kr* + He → products + He [(1.51 +/- 0.15) × 10-15 cm3 s-1] are measured for the first time. The rate constants of similar reactions in the Ar - Kr mixture are refined.

  3. Development of atomic beam probe for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Berta, M., E-mail: [Széchenyi István University, EURATOM Association, Győr (Hungary); Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Anda, G.; Aradi, M.; Bencze, A.; Buday, Cs.; Kiss, I.G.; Tulipán, Sz.; Veres, G.; Zoletnik, S. [Wigner – RCP, HAS, EURATOM Association, Budapest (Hungary); Havlícek, J.; Háček, P. [Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic)


    Highlights: • ABP is newly developed diagnostic. • Unique measurement method for the determination of plasma edge current variations caused by different transient events such as ELMs. • The design process has been fruitfully supported by the physically motivated computer simulations. • Li-BES system has been modified accordingly to the needs of the ABP. -- Abstract: The concept and development of a new detection method for light alkali ions stemming from diagnostic beams installed on medium size tokamak is described. The method allows us the simultaneous measurement of plasma density fluctuations and fast variations in poloidal magnetic field, therefore one can infer the fast changes in edge plasma current. The concept has been worked out and the whole design process has been done at Wigner RCP. The test detector with appropriate mechanics and electronics is already installed on COMPASS tokamak. General ion trajectory calculation code (ABPIons) has also been developed. Detailed calculations show the possibility of reconstruction of edge plasma current density profile changes with high temporal resolution, and the possibility of density profile reconstruction with better spatial resolution compared to standard Li-BES measurement, this is important for pedestal studies.

  4. Precision Spectroscopy of Kaonic Helium-3 Atoms X-rays at J-PARC

    Directory of Open Access Journals (Sweden)

    Tanida K.


    Full Text Available We will measure the Balmer-series x-rays of kaonic-3He atoms using large-area high-resolution silicon drift x-rays detectors in order to provide the crucial information of K−-nucleus strong interaction at the low energy limit. The strong interaction 2p level shift will be determined with a precision of a few eV. At the present status, the construction of all detectors is in progress. In February, 2009, the first tuning of K1.8BR beamline was performed by the secondary beam generated in J-PARC hadron facility. The data taking will be started soon.

  5. Two dimensional imaging of the virtual source of a supersonic beam: helium at 125 K. (United States)

    Eder, S D; Bracco, G; Kaltenbacher, T; Holst, B


    Here we present the first two-dimensional images of the virtual source of a supersonic helium expansion. The images were obtained using a free-standing Fresnel zone plate with an outermost zone width of 50 nm as imaging lens and a beam cooled to around 125 K. The nozzle diameter was 10 μm. The virtual source diameter was found to increase with stagnation pressure from 140 ± 30 μm at po = 21 bar up to 270 ± 25 μm at po = 101 bar. The experimental results are compared to a theoretical model based on the solution of the Boltzmann equation by the method of moments. The quantum mechanical cross sections used in the model have been calculated for the Lennard-Jones (LJ) and the Hurly-Moldover (HM) potentials. By using a scaling of the perpendicular temperature that parametrizes the perpendicular velocity distribution based on a continuum expansion approach, the LJ potential shows a good overall agreement with the experiment. However, at higher pressures the data points lie in between the two theoretical curves and the slope of the trend is more similar to the HM curve. Real gas corrections to enthalpy are considered but they affect the results less than the experimental errors.

  6. Injection of atoms and molecules in a superfluid helium fountain: Cu and Cu2He(n) (n = 1, ..., ∞). (United States)

    Vehmanen, Esa; Ghazarian, Vahan; Sams, Courtney; Khachatryan, Isahak; Eloranta, Jussi; Apkarian, V A


    We introduce an experimental platform designed around a thermomechanical helium fountain, which is aimed at investigating spectroscopy and dynamics of atoms and molecules in the superfluid and at its vapor interface. Laser ablation of copper, efficient cooling and transport of Cu and Cu(2) through helium vapor (1.5 K fountain interface. Cu(2) dimers mainly travel through the fountain unimpeded. However, the conditions of fountain flow and transport of molecules can be controlled to demonstrate injection and, in particular, injection into a nondivergent columnar fountain with a plug velocity of about 1 m/s. The experimental observables are interpreted with the aid of bosonic density functional theory calculations and ab initio interaction potentials.

  7. Toward single mode, atomic size electron vortex beams. (United States)

    Krivanek, Ondrej L; Rusz, Jan; Idrobo, Juan-Carlos; Lovejoy, Tracy J; Dellby, Niklas


    We propose a practical method of producing a single mode electron vortex beam suitable for use in a scanning transmission electron microscope (STEM). The method involves using a holographic "fork" aperture to produce a row of beams of different orbital angular momenta, as is now well established, magnifying the row so that neighboring beams are separated by about 1 µm, selecting the desired beam with a narrow slit, and demagnifying the selected beam down to 1-2 Å in size. We show that the method can be implemented by adding two condenser lenses plus a selection slit to a straight-column cold-field emission STEM. It can also be carried out in an existing instrument, the monochromated Nion high-energy-resolution monochromated electron energy-loss spectroscopy-STEM, by using its monochromator in a novel way. We estimate that atom-sized vortex beams with ≥ 20 pA of current should be attainable at 100-200 keV in either instrument.

  8. On-line laser spectroscopy with thermal atomic beams

    CERN Document Server

    Thibault, C; De Saint-Simon, M; Duong, H T; Guimbal, P; Huber, G; Jacquinot, P; Juncar, P; Klapisch, Robert; Liberman, S; Pesnelle, A; Pillet, P; Pinard, J; Serre, J M; Touchard, F; Vialle, J L


    On-line high resolution laser spectroscopy experiments have been performed in which the light from a CW tunable dye laser interacts at right angles with a thermal atomic beam. /sup 76-98/Rb, /sup 118-145 /Cs and /sup 208-213/Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while /sup 30-31/Na and /sup 38-47/K have been studied by setting the apparatus directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. The hyperfine structure, spins and isotope shifts of the alkali isotopes and isomers are measured. (8 refs).

  9. Magnetic resonance studies of atomic hydrogen at zero field and low temperature. Recombination and binding on liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Jochemsen, R.; Morrow, M.; Berlinsky, A.J.; Hardy, W.N. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)


    Magnetic resonance studies at zero field are reported for atomic hydrogen gas confined in a closed glass bulb with helium-coated walls for T<1 K in a dilution refrigerator. Low-energy r.f. discharge pulses have been used to produce H atoms at temperatures as low as T=0.06 K. The atom density nsub(H) (10/sup 9/..H/sub 2/+wall. From the temperature dependence of the rate constant K we have determined the binding energy of H on liquid /sup 4/He and /sup 3/He, and also the cross section for recombination on the surface.

  10. Development of a compact thermal lithium atom beam source for measurements of electron velocity distribution function anisotropy in electron cyclotron resonance plasmas. (United States)

    Nishioka, T; Shikama, T; Nagamizo, S; Fujii, K; Zushi, H; Uchida, M; Iwamae, A; Tanaka, H; Maekawa, T; Hasuo, M


    The anisotropy of the electron velocity distribution function (EVDF) in plasmas can be deduced from the polarization of emissions induced by anisotropic electron-impact excitation. In this paper, we develop a compact thermal lithium atom beam source for spatially resolved measurements of the EVDF anisotropy in electron cyclotron resonance (ECR) plasmas. The beam system is designed such that the ejected beam has a slab shape, and the beam direction is variable. The divergence and flux of the beam are evaluated by experiments and calculations. The developed beam system is installed in an ECR plasma device with a cusp magnetic field, and the LiI 2s-2p emission (670.8 nm) is observed in low-pressure helium plasma. The two-dimensional distributions of the degree and direction of the polarization in the LiI emission are measured by a polarization imaging system. The evaluated polarization distribution suggests the spatial variation of the EVDF anisotropy.

  11. Electronic Transport in Helium Beam Modified Graphene and Ballistic Josephson Junctions

    NARCIS (Netherlands)

    Nanda, G.


    This thesis describes the capabilities of the helium ion microscope (HIM) and that of graphene to explore fundamental physics and novel applications. While graphene offers superior electronic properties, the helium ion microscope allows us to combine imaging and modification of materials at the

  12. Diffusion cross section for atomic hydrogen in helium gas at low temperature and the H-He potential

    Energy Technology Data Exchange (ETDEWEB)

    Jochemsen, R.; Berlinsky, A.J.; Hardy, W.N. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)


    A calculation of the diffusion cross section Q sub(D) of hydrogen atoms in helium gas at low temperature is performed and compared with recent experimental results. The comparison allows an improved determination of the H-He potential. Calculations were done for three different potentials: our own empirical potential based on experimental high-energy scattering results and calculated long-range dispersion terms, which gives good results for Q sub(D) and total collision cross sections; a recently determined semi-empirical potential, and an ab initio calculated potential. All three potentials imply a strong temperature dependence of Q sub(D) for T < 1.5 K.


    NARCIS (Netherlands)

    Vanderveldt, T.; Vassen, W.; Hogervorst, W.


    In a CW laser-atomic beam experiment metastable helium atoms are excited to Rydberg states (n = 58) in a magnetic field (= 0.1 T) The observed l-mixing spectra are reproduced using the method of diagonalization of the energy matrix as well as semiclassical theories. Also the first anticrossing

  14. Structural changes in helium implanted Zr{sub 0.8}Y{sub 0.2}O{sub 1.9} single crystals characterized by atomic force microscopy and EXAFS spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuri, G. [LWV, NES, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)], E-mail:; Gavillet, D. [LWV, NES, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Doebeli, M. [Ion Beam Physics, Paul Scherrer Institute and ETH Zurich, CH-8093 Zurich (Switzerland); Novikov, D. [HASYLAB at Deutsches Elektronen-Synchrotron DESY, D-22603 Hamburg (Germany)


    The present work is devoted to investigate the local atomic environment (of Zr, Y and O) as well as surface modifications associated with excess helium in the cubic phase of (1 0 0)-oriented Zr{sub 0.8}Y{sub 0.2}O{sub 1.9} single crystal substrates. Commercially available oxide crystals have been implanted at various fluences in the range 0.15-2.0 x 10{sup 16} He-atoms/cm{sup 2} using a 2.74 MeV He{sup +} ion beam passing through a 8.0 {mu}m Al foil. The microstructure and surface morphology of the irradiated surface are examined using atomic force microscopy (AFM). The local atomic environments of Zr, Y and O in the implanted layer are studied using synchrotron radiation and by extended X-ray absorption fine structure (EXAFS) measured at glancing angles to probe the implanted layer. From AFM studies it was observed that the surface roughness increases as fluence increases and above a critical fluence stage, small blister-like structures originating from helium bubbles are scattered on the irradiated surface. The radial distribution functions (RDFs), derived from EXAFS data at the Zr K-edge, have been found to evolve continuously as a function of ion fluence describing the atomic scale structural modifications in YSZ by helium implantation. From the pristine data, long range order (beyond the first- and second-shell) is apparent in the RDF spectrum. It shows several nearest neighbour peaks at about 2.1, 3.6, 4.3 and 5.4 A. In the implanted specimens, all these peaks are greatly reduced in magnitude and their average positions are changed, typical of damaged material. A simple model taking into account only the existence of lattice vacancies has been used for the interpretation of measured EXAFS spectra.

  15. The quantum measurement effect of interaction without interaction for an atomic beam (United States)

    Huang, Yong-Yi

    When an atomic beam collectively and harmonically vibrates perpendicular to the wave vector of the beam, the number of atoms reaching the atomic detector will have a vibrant factor Δt / T if the measurement time interval Δt is shorter than the period T. This new quantum mechanical measurement effect for an atomic beam is called interaction without interaction: though the translational motion of the atomic beam does not interact with its collective and transverse harmonic vibration, the latter will have an effect on the measured number of atoms associated with the former. From the new measurement effect the classical harmonic vibration's period is evaluated. We give a clear physical picture and a satisfactory physical interpretation for the measurement effect based on the Copenhagen interpretation of quantum mechanics. We present an experimental proposal to verify this measurement effect for an ion beam instead of an atomic beam.

  16. Dosimetric verification in water of a Monte Carlo treatment planning tool for proton, helium, carbon and oxygen ion beams at the Heidelberg Ion Beam Therapy Center (United States)

    Tessonnier, T.; Böhlen, T. T.; Ceruti, F.; Ferrari, A.; Sala, P.; Brons, S.; Haberer, T.; Debus, J.; Parodi, K.; Mairani, A.


    The introduction of ‘new’ ion species in particle therapy needs to be supported by a thorough assessment of their dosimetric properties and by treatment planning comparisons with clinically used proton and carbon ion beams. In addition to the latter two ions, helium and oxygen ion beams are foreseen at the Heidelberg Ion Beam Therapy Center (HIT) as potential assets for improving clinical outcomes in the near future. We present in this study a dosimetric validation of a FLUKA-based Monte Carlo treatment planning tool (MCTP) for protons, helium, carbon and oxygen ions for spread-out Bragg peaks in water. The comparisons between the ions show the dosimetric advantages of helium and heavier ion beams in terms of their distal and lateral fall-offs with respect to protons, reducing the lateral size of the region receiving 50% of the planned dose up to 12 mm. However, carbon and oxygen ions showed significant doses beyond the target due to the higher fragmentation tail compared to lighter ions (p and He), up to 25%. The Monte Carlo predictions were found to be in excellent geometrical agreement with the measurements, with deviations below 1 mm for all parameters investigated such as target and lateral size as well as distal fall-offs. Measured and simulated absolute dose values agreed within about 2.5% on the overall dose distributions. The MCTP tool, which supports the usage of multiple state-of-the-art relative biological effectiveness models, will provide a solid engine for treatment planning comparisons at HIT.

  17. Cold beam of isotopically pure Yb atoms by deflection using 1D ...

    Indian Academy of Sciences (India)

    Both clock and EDM measurements gain from having a cold continuous beam of atoms that is separated from the cooling laser beams. For atomic clocks, a continuous beam avoids intermodulation or the Dick effect [10], seen in pulsed fountain clocks. For. EDM experiments, the electric-field plates can be brought very close ...

  18. Geometric optics with atomic beams scattered by a detuned standing laser wave

    CERN Document Server

    Prants, S V; Konkov, L E


    We report on theoretical and numerical study of propagation of atomic beams crossing a detuned standing-wave laser beam in the geometric oprics limit. The interplay between external and internal atomic degrees of freedom is used to manipulate the atomic motion along the optical axis by light. By adjusting the atom-laser detuning, we demonstrate how to focus, split and scatter atomic beams in a real experiment. The novel effect of chaotic scattering of atoms at a regular near-resonant standing wave is found numerically and explained qualitatively. Some applications of the effects found are discussed.

  19. Thermal beam of metastable krypton atoms produced by optical excitation. (United States)

    Ding, Y; Hu, S M; Bailey, K; Davis, A M; Dunford, R W; Lu, Z T; O'Connor, T P; Young, L


    A room-temperature beam of krypton atoms in the metastable 5s[3/2]2 level is demonstrated via an optical excitation method. A Kr-discharge lamp is used to produce vacuum ultraviolet photons at 124 nm for the first-step excitation from the ground level 4p6 1S0 to the 5s[3/2]1 level. An 819 nm Ti:sapphire laser is used for the second-step excitation from 5s[3/2]1 to 5s[3/2]2 followed by a spontaneous decay to the 5s[3/2]2 metastable level. A metastable atomic beam with an angular flux density of 3 x 10(14) s(-1) sr(-1) is achieved at the total gas flow rate of 0.01 cm3/s at STP (or 3 x 10(17) at./s). The dependences of the flux on the gas flow rate, laser power, and lamp parameters are investigated.

  20. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid. (United States)

    Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T


    Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.

  1. Application of the in-beam PET therapy monitoring on precision irradiations with helium ions; Anwendung des in-beam PET Therapiemonitorings auf Praezisionsbestrahlungen mit Helium-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, F.


    The main goal of the present dissertation was to extend the in-beam PET method to new ion types. It was shown that the in-beam PET method can also be applied for {sup 3}He irradiations. For this experiments on a {sup 3}He beam were performed. The activity yield is at equal applied dose about three times larger than at {sup 12}C irradiations. The reachable range resolution is smaller than 1 mm. At the irradiation of an inhomogeneous phantom it was shown that a contrast between different materials is resolvable. From the experimentally determined reaction rates cross sections for the reactions leading to positron emitters were performed. The data taken in the {sup 3}He experiments were compared those obtained in carbon-ion experiments as well as literature data for proton irradiations. A comparison with the calculations of the simulation program SHIELD-HIT was performed. A collection of cross-section models and the established requirements for a simulation program applicable for in-beam PET are preparing for further work.

  2. Retention of hydrogen isotopes and helium in nickel

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Mitsumasa; Sato, Rikiya; Yamaguchi, Kenji; Yamawaki, Michio [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.


    In the present study, a thin foil of nickel was irradiated by H{sub 2}{sup +}, D{sub 2}{sup +} and He{sup +} to a fluence of 1.2-6.0x10{sup 20}/m{sup 2} using the TBTS (Tritium Beam Test System) apparatus. The thermal desorption spectroscopy (TDS) technique was employed to evaluate the total amount of retained hydrogen isotope and helium atoms in nickel. In the spectra, two peaks appeared at 440-585K and 720-735K for helium. Hydrogen isotopes irradiation after helium preirradiation were found to enhance the helium release and to decrease the peak temperatures. Helium irradiation after hydrogen isotopes preirradiation were found to enhance the helium release, but the peak temperature showed little difference from that without preirradiation. (author)

  3. Towards Demonstration of a MOT-Based Continuous Cold CS-Beam Atomic Clock

    National Research Council Canada - National Science Library

    Wang, H; Camparo, J. C; Iyanu, G


    ... (MOT). This technique has the unique advantage of generating a useful cold atomic beam just outside the volume of a MOT and, hence, can greatly reduce the size of the atomic clock physics package...

  4. Formation of Exotic Networks of Water Clusters in Helium Droplets Facilitated by the Presence of Neon Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Douberly, Gary E.; Miller, Roger E.; Xantheas, Sotiris S.


    Water clusters are formed in helium droplets via the sequential capture of monomers. One or two neon atoms are added to each droplet prior to the addition of water. The infrared spectrum of the droplet ensemble reveals several signatures of polar, water tetramer clusters having dipole moments between 2D and 3D. Comparison with ab initio computations supports the assignment of the cluster networks to noncyclic “3+1” clusters, which are ~5.3 kcal/mol less stable than the global minimum nonpolar cyclic tetramer. The (H2O)3Ne + H2O ring insertion barrier is sufficiently large, such that evaporative helium cooling is capable of kinetically quenching the nonequilibrium tetramer system prior to its rearrangement to the lower energy cyclic species. To this end, the reported process results in the formation of exotic water cluster networks that are either higher in energy than the most stable gas-phase analogs or not even stable in the gas phase.

  5. Formation of Exotic Networks of Water Clusters in Helium Droplets Facilitated by the Presence of Neon Atoms. (United States)

    Douberly, Gary E; Miller, Roger E; Xantheas, Sotiris S


    Water clusters are formed in helium droplets via the sequential capture of monomers. One or two neon atoms are added to each droplet prior to the addition of water. The infrared spectrum of the droplet ensemble reveals several signatures of polar, water tetramer clusters having dipole moments between 2D and 3D. Comparison with ab initio computations supports the assignment of the cluster networks to noncyclic "3 + 1" clusters, which are ∼5.3 kcal/mol less stable than the global minimum nonpolar cyclic tetramer. The (H2O)3Ne + H2O ring insertion barrier is sufficiently large, such that evaporative helium cooling is capable of kinetically quenching the nonequilibrium tetramer system prior to its rearrangement to the lower energy cyclic species. To this end, the reported process results in the formation of exotic water cluster networks that are either higher in energy than the most stable gas-phase analogs or not even stable in the gas phase.

  6. Development of francium atomic beam for the search of the electron electric dipole moment (United States)

    Sato, Tomoya; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kato, T.; Kawamura, H.; Nataraj, H. S.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.


    For the measurement of the electron electric dipole moment using Fr atoms, a Fr ion-atom conversion is one of the most critical process. An ion-atom converter based on the "orthotropic" type of Fr source has been developed. This converter is able to convert a few keV Fr ion beam to a thermal atomic beam using a cycle of the surface ionization and neutralization. In this article, the development of the converter is reported.

  7. Fast-ion-beam laser probing of ion-source energy distributions and atomic structure

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Richard A., E-mail:; Rosner, S. David [University of Western Ontario, Physics and Astronomy Department (Canada)


    Collinear fast-ion-beam laser spectroscopy is a very high resolution probe for measuring ion-beam energy distributions and atomic structure parameters of interest in nuclear physics, atomic physics, and astrophysics. We have used offline 10-keV beams of atomic ions and a CW laser system to study the behavior of a Penning ion source and to measure hyperfine structure, isotope shifts, atomic lifetimes, spontaneous-emission branching fractions, oscillator strengths, and absolute wavelengths of a variety of atomic species from the lanthanide and transition-metal groups.

  8. Design, Fabrication, Installation and Commissioning of the Helium Refrigeration system Supporting Superconducting Radio Frequency Testing at Facility for Rare Isotope Beams at Michigan State University (United States)

    Casagrande, F.; Fila, A.; Nguyen, C.; Tatsumoto, H.


    The Facility for Rare Isotope Beams (FRIB) will be a scientific user facility for the Office of Nuclear Physics in the U.S. Department of Energy Office of Science (DOE-SC). The FRIB linear accelerator (LINAC) will be comprised of cryomodules each with multiple Superconducting Radio Frequency (SRF) cavities operating at 2 K. A helium refrigeration system was designed, fabricated, installed and commissioned in the SRF high bay building to test and certify these cavities and cryomodules before installation in the FRIB LINAC tunnel. The helium refrigeration system includes a helium refrigerator which has nominal capacity of 900 W at 4 K, 5000 L liquid helium storage Dewar, helium gas storage, two room temperature vacuum pumps capable of 2.5 g/s each for 2 K testing, purifier, purifier recovery compressor, and the distribution system for liquid nitrogen and helium. The helium refrigeration system is now operational supporting three below grade cavity testing Dewars and one cryomodule testing bunker meeting the required throughput of 1 cavity per day.

  9. An atomic beam source for fast loading of a magneto-optical trap under high vacuum

    DEFF Research Database (Denmark)

    McDowall, P.D.; Hilliard, Andrew; Grünzweig, T.


    We report on a directional atomic beam created using an alkali metal dispenser and a nozzle. By applying a high current (15 A) pulse to the dispenser at room temperature we can rapidly heat it to a temperature at which it starts dispensing, avoiding the need for preheating. The atomic beam produced...

  10. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.


    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  11. The effect of atoms excited by electron beam on metal evaporation

    CERN Document Server

    Xie Guo Feng; Ying Chun Tong


    In atomic vapor laser isotope separation (AVLIS), the metal is heated to melt by electron beams. The vapor atoms may be excited by electrons when flying through the electron beam. The excited atoms may be deexcited by inelastic collision during expansion. The electronic energy transfers translational energy. In order to analyse the effect of reaction between atoms and electron beams on vapor physical parameters, such as density, velocity and temperature, direct-simulation Monte Carlo method (DSMC) is used to simulate the 2-D gadolinium evaporation from long and narrow crucible. The simulation results show that the velocity and temperature of vapor increase, and the density decreases

  12. Reaction microscopes applied to study atomic and molecular fragmentation in intense laser fields: non-sequential double ionization of helium

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, V.L.B. de [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Rudenko, A. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Feuerstein, B. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Zrost, K. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Schroeter, C.D. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Moshammer, R. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Ullrich, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)]. E-mail:


    'Reaction Microscopes' enable to detect the momentum vectors of several electrons and ions after the fragmentation of atoms or molecules. Thus, the investigation of pathways to single and multiple electron ejection in femtosecond PW/cm{sup 2} laser fields has become experimentally accessible in unprecedented detail. In this paper, a newly designed machine is described, resolutions achieved for electrons and ions are discussed and examples are given for many-particle fragmentation of atoms and molecules. Moreover, for helium, new results on single as well as first multiple differential data on double ionization are presented. Covering a wide intensity range within the 'non-sequential' (NS) double ionization regime, the importance of different NS double ionization mechanisms is explored as a function of the laser intensity. Contributions due to recollision-excitation plus subsequent field ionization (RESI) are identified and correlated electron emission spectra are discussed in the longitudinal as well as transverse directions. Whereas only weak indications of Coulomb-repulsion between the electrons in the final state are observed the emitted electrons are found to be strongly correlated with the ions.

  13. Helium ions at the heidelberg ion beam therapy center: comparisons between FLUKA Monte Carlo code predictions and dosimetric measurements (United States)

    Tessonnier, T.; Mairani, A.; Brons, S.; Sala, P.; Cerutti, F.; Ferrari, A.; Haberer, T.; Debus, J.; Parodi, K.


    In the field of particle therapy helium ion beams could offer an alternative for radiotherapy treatments, owing to their interesting physical and biological properties intermediate between protons and carbon ions. We present in this work the comparisons and validations of the Monte Carlo FLUKA code against in-depth dosimetric measurements acquired at the Heidelberg Ion Beam Therapy Center (HIT). Depth dose distributions in water with and without ripple filter, lateral profiles at different depths in water and a spread-out Bragg peak were investigated. After experimentally-driven tuning of the less known initial beam characteristics in vacuum (beam lateral size and momentum spread) and simulation parameters (water ionization potential), comparisons of depth dose distributions were performed between simulations and measurements, which showed overall good agreement with range differences below 0.1 mm and dose-weighted average dose-differences below 2.3% throughout the entire energy range. Comparisons of lateral dose profiles showed differences in full-width-half-maximum lower than 0.7 mm. Measurements of the spread-out Bragg peak indicated differences with simulations below 1% in the high dose regions and 3% in all other regions, with a range difference less than 0.5 mm. Despite the promising results, some discrepancies between simulations and measurements were observed, particularly at high energies. These differences were attributed to an underestimation of dose contributions from secondary particles at large angles, as seen in a triple Gaussian parametrization of the lateral profiles along the depth. However, the results allowed us to validate FLUKA simulations against measurements, confirming its suitability for 4He ion beam modeling in preparation of clinical establishment at HIT. Future activities building on this work will include treatment plan comparisons using validated biological models between proton and helium ions, either within a Monte Carlo

  14. Adiabatic Variational Theory for Cold Atom-Molecule Collisions: Application to a Metastable Helium Atom Colliding with ortho- and para-Hydrogen Molecules. (United States)

    Pawlak, Mariusz; Shagam, Yuval; Klein, Ayelet; Narevicius, Edvardas; Moiseyev, Nimrod


    We recently developed an adiabatic theory for cold molecular collision experiments. In our previous application of this theory ( Pawlak, M.; et al. J. Chem. Phys. 2015 , 143 , 074114 ), we assumed that during the experiment the collision of an atom with a diatom takes place when the diatom is in the ground rotational state and is located in a plane. In this paper, we present how the variational approach of the adiabatic theory for low-temperature collision experiments can be used for the study a 5D collision between the atom and the diatomic molecule with no limitations on its rotational quantum states and no plane restrictions. Moreover, we show here the dramatic differences in the measured reaction rates of He(23S1) + ortho/para-H2 → He(1s2) + ortho/para-H2+ + e- resulting from the anisotropic long-range interactions in the reaction. In collisions of metastable helium with molecular hydrogen in the ground rotational state, the isotropic potential term dominates the dynamics. When the collision is with molecular hydrogen in the first excited rotational state, the nonisotropic interactions play an important role in the dynamics. The agreement of our results with the latest experimental findings ( Klein , A. ; et al. Nat. Phys. 2017 , 13 , 35 - 38 ) is very good.

  15. Emission of muonic tritium into vacuum: An atomic beam for muon experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.C. [University of British Columbia (Canada); Bailey, J.M. [Chester Technology (United Kingdom); Beer, G.A. [University of Victoria (Canada); Beveridge, J.L. [TRIUMF (Canada); Douglas, J.L. [University of Victoria (Canada); Huber, T.M. [Gustavus Adolphus College (United States); Jacot-Guillarmod, R. [Universite de Fribourg, CH-1700 (Switzerland); Kammel, P. [University of California (United States); Kim, S.K. [Jeonbuk National University (Korea, Republic of); Knowles, P.E. [University of Victoria (Canada); Kunselman, A.R. [University of Wyoming (United States); Maier, M. [University of Victoria (Canada); Markushin, V.E. [Paul Scherrer Institute (Switzerland); Marshall, G.M. [TRIUMF (Canada); Martoff, C.J. [Temple University (United States); Mason, G.R. [University of Victoria (Canada); Mulhauser, F. [Universite de Fribourg, CH-1700 (Switzerland); Olin, A. [University of Victoria (Canada); Petitjean, C. [Paul Scherrer Institute (Switzerland); Porcelli, T.A. [University of Victoria (Canada)] (and others)


    The emission of muonic tritium atoms from a thin film of hydrogen isotopes into vacuum was observed. The time and position of the muon decays were measured by tracking the decay electron trajectory. The observations are useful both for testing the theoretical cross sections for muonic atomic interactions, and producing an atomic beam of slow {mu}{sup -}t with a controllable energy.

  16. Investigations of the dynamics and growth of insulator films by high resolution helium atom scattering. Final report, May 1, 1985--April 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Safron, S.A.; Skofronick, J.G.


    Over the twelve years of this grant from the U.S. Department of Energy, DE-FG05-85ER45208, the over-reaching aims of this work have been to explore and to attempt to understand the fundamental physics and chemistry of surfaces and interfaces. The instrument we have employed m in this work is high-resolution helium atom scattering (HAS) which we have become even more convinced is an exceptionally powerful and useful tool for surface science. One can follow the evolution of the development and progress of the experiments that we have carried out by the evolution of the proposal titles for each of the four three-year periods. At first, m in 1985-1988, the main objective of this grant was to construct the HAS instrument so that we could begin work on the surface vibrational dynamics of crystalline materials; the title was {open_quotes}Helium Atom-Surface Scattering Apparatus for Studies of Crystalline Surface Dynamics{close_quotes}. Then, as we became more interested m in the growth of films and interfaces the title m in 1988-1991 became {open_quotes}Helium Atom Surface Spectroscopy: Surface Lattice Dynamics of Insulators, Metal and Metal Overlayers{close_quotes}. In 1991-1994, we headed even more m in this direction, and also recognized that we should focus more on insulator materials as very few techniques other than helium atom scattering could be applied to insulators without causing surface damage. Thus, the proposal title became {open_quotes}Helium Atom-Surface Scattering: Surface Dynamics of Insulators, Overlayers and Crystal Growth{close_quotes}. M in the final period of this grant the title ended up {open_quotes}Investigations of the Dynamics and Growth of Insulator Films by High Resolution Helium Atom Scattering{close_quotes} m in 1994-1997. The list of accomplishments briefly discussed in this report are: tests of the shell model; multiphoton scattering; physisorbed monolayer films; other surface phase transitions; and surface magnetic effects.

  17. In situ radiation test of silicon and diamond detectors operating in superfluid helium and developed for beam loss monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kurfürst, C.; Dehning, B.; Sapinski, M.; Bartosik, M.R.; Eisel, T.; Fabjan, C.; Rementeria, C.A. [CERN, Geneva (Switzerland); Griesmayer, E. [CIVIDEC Instrumentation, GmbH, Vienna (Austria); Eremin, V. [Ioffe Institute, St. Petersburg (Russian Federation); Verbitskaya, E., E-mail: [Ioffe Institute, St. Petersburg (Russian Federation); Zabrodskii, A.; Fadeeva, N.; Tuboltsev, Y.; Eremin, I. [Ioffe Institute, St. Petersburg (Russian Federation); Egorov, N. [Research Institute of Material Science and Technology, Zelenograd, Moscow (Russian Federation); Härkönen, J.; Luukka, P.; Tuominen, E. [Helsinki Institute of Physics, Helsinki (Finland)


    As a result of the foreseen increase in the luminosity of the Large Hadron Collider, the discrimination between the collision products and possible magnet quench-provoking beam losses of the primary proton beams is becoming more critical for safe accelerator operation. We report the results of ongoing research efforts targeting the upgrading of the monitoring system by exploiting Beam Loss Monitor detectors based on semiconductors located as close as possible to the superconducting coils of the triplet magnets. In practice, this means that the detectors will have to be immersed in superfluid helium inside the cold mass and operate at 1.9 K. Additionally, the monitoring system is expected to survive 20 years of LHC operation, resulting in an estimated radiation fluence of 1×10{sup 16} proton/cm{sup 2}, which corresponds to a dose of about 2 MGy. In this study, we monitored the signal degradation during the in situ irradiation when silicon and single-crystal diamond detectors were situated in the liquid/superfluid helium and the dependences of the collected charge on fluence and bias voltage were obtained. It is shown that diamond and silicon detectors can operate at 1.9 K after 1×10{sup 16} p/cm{sup 2} irradiation required for application as BLMs, while the rate of the signal degradation was larger in silicon detectors than in the diamond ones. For Si detectors this rate was controlled mainly by the operational mode, being larger at forward bias voltage. - Highlights: • Silicon and diamond detectors are proposed for beam loss monitoring at LHC. • The first in situ radiation test of Si and diamond detectors at 1.9 K is described. • Both diamond and silicon detectors survived after 1×10{sup 16} p/cm{sup 2} irradiation at 1.9 K. • The rate of Si detectors degradation depends on bias polarity and is larger at V{sub forw}. • Sensitivity of Si detectors irradiated to 1×10{sup 16} p/cm{sup 2} is independent on resistivity.

  18. Investigation of mixed ion fields in the forward direction for 220.5 MeV/u helium ion beams: comparison between water and PMMA targets (United States)

    Aricò, G.; Gehrke, T.; Jakubek, J.; Gallas, R.; Berke, S.; Jäkel, O.; Mairani, A.; Ferrari, A.; Martišíková, M.


    Currently there is a rising interest in helium ion beams for radiotherapy. For benchmarking of the physical beam models used in treatment planning, there is a need for experimental data on the composition and spatial distribution of mixed ion fields. Of particular interest are the attenuation of the primary helium ion fluence and the build-up of secondary hydrogen ions due to nuclear interactions. The aim of this work was to provide such data with an enhanced precision. Moreover, the validity and limits of the mixed ion field equivalence between water and PMMA targets were investigated. Experiments with a 220.5 MeV/u helium ion pencil beam were performed at the Heidelberg Ion-Beam Therapy Center in Germany. The compact detection system used for ion tracking and identification was solely based on Timepix position-sensitive semiconductor detectors. In comparison to standard techniques, this system is two orders of magnitude smaller, and provides higher precision and flexibility. The numbers of outgoing helium and hydrogen ions per primary helium ion as well as the lateral particle distributions were quantitatively investigated in the forward direction behind water and PMMA targets with 5.2-18 cm water equivalent thickness (WET). Comparing water and PMMA targets with the same WET, we found that significant differences in the amount of outgoing helium and hydrogen ions and in the lateral particle distributions arise for target thicknesses above 10 cm WET. The experimental results concerning hydrogen ions emerging from the targets were reproduced reasonably well by Monte Carlo simulations using the FLUKA code. Concerning the amount of outgoing helium ions, significant differences of 3-15% were found between experiments and simulations. We conclude that if PMMA is used in place of water in dosimetry, differences in the dose distributions could arise close to the edges of the field, in particular for deep seated targets. The results presented in this publication are

  19. A polarized beams project at ISAC

    CERN Document Server

    Levy, C D P; Jayamanna, K; Kiefl, R; Kuo, T; Olivo, M; Wight, G W; Yuan, D; Zelenski, A N


    A polarizer beam line at the radioactive beams facility ISAC at TRIUMF is nearly complete. Initially for sup 8 Li sup + ions for beta-NMR studies in condensed matter, it can in principle supply three or more experiments simultaneously, and the technique used is practicable with all alkali-metal ion beams. An atomic beam, created with over 90% efficiency by passing the initial unpolarized 30 keV beam through a sodium vapor jet target, will be polarized by colinear optical pumping. A novel feature is that the atomic beam is reionized with demonstrated high efficiency in a helium gas target. The emittance growth through the helium cell has been measured for stable sup 7 Li sup + beam on a test stand and found to be small. We report these measurements as a function of helium flow rates. A preliminary polarized sup 8 Li sup + run is planned for May, 2000.

  20. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide (United States)

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle


    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  1. Hyperfine frequency shift of atomic hydrogen in the presence of helium buffer gas

    Energy Technology Data Exchange (ETDEWEB)

    Jochemsen, R.; Berlinsky, A.J. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)


    A quantum mechanical thermal average is performed to obtain the temperature dependence of the hyperfine frequency shift (HFS) of hydrogen atoms in the presence of He buffer gas. The calculations are based on existing ab initio calculations of the hyperfine frequency shift as a function of internuclear separation and of the interatomic potential. We find that the HFS changes sign at fairly low temperature and has a small negative value at T = 1 K in agreement with recent measurements. The overall temperature dependence is shown to be quite sensitive to the interatomic potential.

  2. Charge stripping of ^{238}U ion beam by helium gas stripper

    National Research Council Canada - National Science Library

    Imao, H; Okuno, H; Kuboki, H; Yokouchi, S; Fukunishi, N; Kamigaito, O; Hasebe, H; Watanabe, T; Watanabe, Y; Kase, M; Yano, Y


    Development of a nondestructive, efficient electric-charge-stripping method is a key requirement for next-generation high-intensity heavy-ion accelerators such as the RIKEN Radioactive-Isotope Beam Factory...

  3. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A.


    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min/sup -1/ can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected.

  4. Monitoring nano-flow rate of water by atomic emission detection using helium radio-frequency plasma. (United States)

    Nakagama, Tatsuro; Maeda, Tsuneaki; Uchiyama, Katsumi; Hobo, Toshiyuki


    Recently, high-performance nano-scale flow pumping systems have been developed for micro and miniaturized analysis systems. A novel device capable of measuring and monitoring nanoliter scale flow rates has been required for the further development of the pumping system. In this study, an atomic emission detector using helium radio-frequency plasma (RFP-AED) was used for the measurement of the nanoliter scale flow rate of water by quantitatively detecting the emission from hydrogen in the water molecules. Monitoring nano-flow rates of water in the range up to 1.0 microl min(-1), and the change in the flow rate by the indication of the ratio of the emissions of H (656.3 nm) and He (667.8 nm) were successful. At present, the lowest flow rate that could be determined reproducibly was 4 nl min(-1) calculated as five times the standard deviation of the background noise. Additionally, similar evaluations for the deviation of each flow rate by using the RFP-AED and a flow-injection system were produced.

  5. Development of francium atomic beam for the search of the electron electric dipole moment

    Directory of Open Access Journals (Sweden)

    Sato Tomoya


    Full Text Available For the measurement of the electron electric dipole moment using Fr atoms, a Fr ion-atom conversion is one of the most critical process. An ion-atom converter based on the “orthotropic” type of Fr source has been developed. This converter is able to convert a few keV Fr ion beam to a thermal atomic beam using a cycle of the surface ionization and neutralization. In this article, the development of the converter is reported.

  6. In situ controlled modification of the helium density in single helium-filled nanobubbles

    Energy Technology Data Exchange (ETDEWEB)

    David, M.-L., E-mail:; Pailloux, F. [Institut Pprime, UPR 3346 CNRS-Université de Poitiers, SP2MI, 86962 Futuroscope-Chasseneuil cedex (France); Canadian Centre for Electron Microscopy, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Alix, K.; Mauchamp, V.; Pizzagalli, L. [Institut Pprime, UPR 3346 CNRS-Université de Poitiers, SP2MI, 86962 Futuroscope-Chasseneuil cedex (France); Couillard, M.; Botton, G. A. [Canadian Centre for Electron Microscopy, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada); Department of Materials Science and Engineering, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)


    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballistic collisions, leading to the ejection of the helium atoms from the bubble.

  7. The quantum measurement effect of interaction without interaction for an atomic beam

    Directory of Open Access Journals (Sweden)

    Yong-Yi Huang

    Full Text Available When an atomic beam collectively and harmonically vibrates perpendicular to the wave vector of the beam, the number of atoms reaching the atomic detector will have a vibrant factor Δt/T if the measurement time interval Δt is shorter than the period T. This new quantum mechanical measurement effect for an atomic beam is called interaction without interaction: though the translational motion of the atomic beam does not interact with its collective and transverse harmonic vibration, the latter will have an effect on the measured number of atoms associated with the former. From the new measurement effect the classical harmonic vibration’s period is evaluated. We give a clear physical picture and a satisfactory physical interpretation for the measurement effect based on the Copenhagen interpretation of quantum mechanics. We present an experimental proposal to verify this measurement effect for an ion beam instead of an atomic beam. Keywords: The quantum measurement effect of interaction without interaction, The Copenhagen interpretation of quantum mechanics

  8. Summary of informal workshop on state of ion beam facilities for atomic physics research

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.W.; Cocke, C.L.; Datz, S.; Kostroun, V.


    The present state of ion beam facilities for atomic physics research in the United States is assessed by means of a questionnaire and informal workshop. Recommendations for future facilities are given. 3 refs.

  9. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering


    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  10. Coherent and dynamic beam splitting based on light storage in cold atoms


    Kwang-Kyoon Park; Tian-Ming Zhao; Jong-Chan Lee; Young-Tak Chough; Yoon-Ho Kim


    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the...

  11. Magnetic resonance lineshape of atomic hydrogen on liquid helium surfaces. The sticking probability of H on /sup 4/He and /sup 3/He

    Energy Technology Data Exchange (ETDEWEB)

    Berlinsky, A.J.; Morrow, M.; Jochemsen, R.; Hardy, W.N. (British Columbia Univ., Vancouver (Canada). Dept. of Physics)


    High resolution magnetic resonance studies of the 1420 MHz transition in atomic hydrogen confined in a liquid helium coated container have been performed at temperatures 0.06atoms on the liquid helium surface, by the exchange rate between atoms in the gas and atoms on the surface, and by the hyperfine frequency shift of an H atom in the bound surface state. Using a model with a Poisson distribution for the residency times, it is possible to interpret both the hyperfine frequency shift and the width of the resonance line as a function of temperature for H on /sup 4/He. The analysis gives the binding energy, the frequency in the surface state, and the sticking probability ..cap alpha.. for H on /sup 4/He. We obtain ..cap alpha..=0.035+-0.004. The results for H on /sup 3/He are more complicated, and possible explanations are discussed.

  12. Ultrafast third-harmonic spectroscopy of single nanoantennas fabricated using helium-ion beam lithography (United States)

    Kollmann, H.; Esmann, M.; Becker, S. F.; Piao, X.; Huynh, C.; Kautschor, L.-O.; Bösker, G.; Vieker, H.; Beyer, A.; Gölzhäuser, A.; Park, N.; Silies, M.; Lienau, C.


    Metallic nanoantennas are able to spatially localize far-field electromagnetic waves on a few nanometer length scale in the form of surface plasmon excitations 1-3. Standard tools for fabricating bowtie and rod antennas with sub-20 nm feature sizes are Electron Beam Lithography or Ga-based Focused Ion Beam (FIB) Milling. These structures, however, often suffer from surface roughness and hence show only a limited optical polarization contrast and therefore a limited electric field localization. Here, we combine Ga- and He-ion based milling (HIM) for the fabrication of gold bowtie and rod antennas with gap sizes of less than 6 nm combined with a high aspect ratio. Using polarization-sensitive Third-Harmonic (TH) spectroscopy, we compare the nonlinear optical properties of single HIM-antennas with sub-6-nm gaps with those produced by standard Ga-based FIB. We find a pronounced enhancement of the total TH intensity of more than three in comparison to Ga-FIB antennas and a highly improved polarization contrast of the TH intensity of 250:1 for Heion produced antennas 4. These findings combined with Finite-Element Method calculations demonstrate a field enhancement of up to one hundred in the few-nanometer gap of the antenna. This makes He-ion beam milling a highly attractive and promising new tool for the fabrication of plasmonic nanoantennas with few-nanometer feature sizes.

  13. Development Of Beam Position And Profile Monitor Based On Light Radiation Of Atoms Excited By The Beam Particles

    CERN Document Server

    Balalykin, N I; Brovko, O I; Bykovsky, V F; Dietrich, J; Kamerdzhiev, V; Meshkov, I N; Mohos, I; Parfenov, A N


    Particle beam position and profile monitor based on registration of the light radiated by residual gas atoms is being developed by collaboration JINR-Forschungszentrum Jülich. Proposed device and first experiments have been performed at Nuclotron (JINR) and COSY (FZJ) accelerators are presented in this report.

  14. Radiation chemical behavior of aqueous butanal oxime solutions irradiated with helium ion beams (United States)

    Costagliola, A.; Venault, L.; Deroche, A.; Garaix, G.; Vermeulen, J.; Omnee, R.; Duval, F.; Blain, G.; Vandenborre, J.; Fattahi-Vanani, M.; Vigier, N.


    Samples of butanal oxime in aqueous solution have been irradiated with the helion (4He2+) beam of the ARRONAX (Nantes) and the CEMHTI (Orléans) cyclotrons. The consumption yield of butanal oxime has been measured by gas-chromatography coupled with mass spectrometry. Yields of gaseous products (mainly H2) have also been measured by micro-gas-chromatography. Butanal oxime can react with H• radicals by abstraction mechanism to enhance H2 production. Yields of liquid phase products (hydrogen peroxide and nitrite ion) have been measured by colorimetric methods. Butanal oxime acts as a scavenger of OH• radical to inhibit the production of H2O2. The observation of the radiolytic products allows then to discuss a degradation mechanism of butanal oxime in aqueous solutions.

  15. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)


    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  16. Intermolecular dispersion interactions of normal alkanes with rare gas atoms: van der Waals complexes of n-pentane with helium, neon, and argon

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M. [Gubkin Russian State University of Oil and Gas, 199991 Moscow (Russian Federation)], E-mail:


    Interaction energies of normal pentane with three rare gas atoms (helium, neon, and argon) were calculated using ab initio methods: the second-order Moller-Plesset (MP2), the fourth-order Moller-Plesset (MP4), and coupled cluster with single and double substitutions with noniterative triple excitation (CCSD(T)) levels of theory. Dunning's correlation consistent basis sets up to aug-cc-pVQZ were applied. Eight profiles (246 points for each rare gas atom) of potential energy surface (PES) of all-trans (anti-anti) conformation of n-pentane were scanned. Optimal distances for complex formation were found. MP2 interaction energies at the basis set limit were evaluated by three different methods (Feller's, Helgaker's, and Martin's). The MP2 interaction energy at the basis set limit for a global minimum of n-pentane complex with argon was more than 400 cm{sup -1}, so formation of a stable complex (at least at low temperature) can be expected. A comparison with previously published data on propane complexes with rare gas atoms (both computational and experimental) was done. The MP4 level of theory was found to be sufficient for a description of C{sub 5}H{sub 12} complexes with helium, neon, and argon.

  17. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn


    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  18. ATOMIC AND MOLECULAR PHYSICS: Radiation forces on a three-level atom in the high-order Bessel beams (United States)

    Wang, Zheng-Ling; Yin, Jian-Ping


    The general expressions of the average dissipative and dipole forces acting on a Λ-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic density matrix elements, and the general properties of the average dissipative and dipole forces on a three-level atom in the linearly-polarized high-order Bessel beams (HBBs) are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Meanwhile we find a saturation effect of the average dissipative force in the HBB, which comes from the saturation of the upper-level population. Our study shows that the general expressions of the average dissipative and dipole forces on the three-level atom will be simplified to those of the two-level atom under the approximation of large detuning. Finally, we study the axial and azimuthal Doppler cooling of atoms in 1D optical molasses composed of two counter-propagating HBBs and discuss the azimuthal influence of the HBB on the Doppler cooling limit. We also find that the Doppler limit of atoms in the molasses HBB is slightly below the conventional Doppler limit of ħΓ(2κB) due to the orbital angular momentum lħ of the HBB.

  19. Radioactive ion beam transportation for the fundamental symmetry study with laser-trapped atoms (United States)

    Arikawa, Hiroshi; Ando, S.; Aoki, T.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kawamura, H.; Kato, K.; Kato, T.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.


    The search for the violation of the fundamental symmetry in a radioactive atom is the promising candidate for precision tests of the standard model and its possible extensions. The subtle signal arising from the symmetry violation is enhanced in heavy atoms, such as a francium (Fr). To realize high precision measurements, a large amount of radioactive isotopes is required. The Fr is produced via a nuclear fusion reaction using a melted gold target with a 18O primary beam at Cyclotron and Radioisotope Center, Tohoku University. The maximum extraction efficiency of the Fr ion was achieved at approximately 35%. The beam line consists of an electrostatic deflector, three electrostatic quadrupole triplets to the measurement area at 10 m away from the reaction point, and several beam diagnosis systems. We optimized parameters of the beam line.

  20. Radioactive ion beam transportation for the fundamental symmetry study with laser-trapped atoms

    Energy Technology Data Exchange (ETDEWEB)

    Arikawa, Hiroshi, E-mail:; Ando, S.; Aoki, T.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kawamura, H.; Kato, K.; Kato, T.; Uchiyama, A.; Sakemi, Y. [Cyclotron and Radioisotope Center, Tohoku University, Miyagi 980-8578 (Japan); Aoki, T. [Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902 (Japan); Furukawa, T. [Department of Physics, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Hatakeyama, A. [Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo 184-8588 (Japan); Hatanaka, K.; Yoshida, H. P. [Research Center for Nuclear Physics, Osaka University, Osaka 606-8502 (Japan); Imai, K. [Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1184 (Japan); and others


    The search for the violation of the fundamental symmetry in a radioactive atom is the promising candidate for precision tests of the standard model and its possible extensions. The subtle signal arising from the symmetry violation is enhanced in heavy atoms, such as a francium (Fr). To realize high precision measurements, a large amount of radioactive isotopes is required. The Fr is produced via a nuclear fusion reaction using a melted gold target with a {sup 18}O primary beam at Cyclotron and Radioisotope Center, Tohoku University. The maximum extraction efficiency of the Fr ion was achieved at approximately 35%. The beam line consists of an electrostatic deflector, three electrostatic quadrupole triplets to the measurement area at 10 m away from the reaction point, and several beam diagnosis systems. We optimized parameters of the beam line.

  1. Velocity selective optical pumping effects on 85 Rb atoms from various coupling beam polarization configurations (United States)

    Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae


    We have investigated velocity selective spectral profile variations of probe beam transmittance at Fg = 3 →Fe = 2 , 3, and 4 hyperfine manifolds of 85 Rb atoms along with coherence effects at the Fg = 3 →Fe = 4 transition with various coupling laser polarization configurations and a fixed probe polarization (σ+). Laser linewidth, atomic velocity distributions, frequency mixing of the coupling and probe laser beams between degenerate magnetic sublevels, and polarization variations of the coupling beam with the probe beam fixed at the Fg = 3 →Fe = 4 transition were used to simulate the line profiles. The calculated transmittance signals are in good agreement with observed signals for each coupling laser polarization configuration.

  2. Propagating of partially coherent laser beam in the near-resonant atomic gas (United States)

    Kong, Delong; Wang, Zhaoying; Fang, Feiyun; Shi, Congquan; Lin, Qiang


    The characteristics of the light with various degrees of spatial coherence traveling in near-resonant atomic gas are investigated both experimentally and theoretically. The experimental results show that the coherence of partially coherent beams can get better after interaction with atoms under some certain conditions compared with that before interaction. The experimental results are explained theoretically by the method of spectroscopy absorption. Furthermore, partially coherent light has a better environmental adaptability than fully coherent light.

  3. Crossed Molecular Beam Study of the Reactions of Oxygen and Fluorine Atoms. (United States)


    products (i.e., benzaldehyde , cresol, anisole, and benzyl alcohol). Supersonic beams of O(3 P) atoms produced in a radiofrequency dis- charge I0 and toluene ...used to clarify the reaction mechanism. The reaction of O(3p) with another aromatic hydrocarbon toluene , results in competition between two...substitution channels, loss of H atom and loss of CH5. In contrast to the 0 + C6H6 reaction, no stabilized oxygen- toluene adduct was observed., The development

  4. Atomic Beam Correlations and the Quantum State of the Micromaser

    CERN Document Server

    Elmfors, P; Skagerstam, B S; Elmfors, Per; Lautrup, Benny; Skagerstam, Bo Sture


    Correlation measurements on atoms having passed through a micromaser can be used to infer properties of the quantum state of the radiation field in the cavity. Long- (or short)-range correlations in time are associated with super- (or sub)-Poissonian photon statistics. In some realistic experimental situations the long-range correlations may reach a magnitude of many times the decay time of the cavity. Our assertions are verified by comparing theoretical calculations with a high-precision Monte Carlo simulation of the micromaser system.

  5. Theoretical model of the helium zone plate microscope (United States)

    Salvador Palau, Adrià; Bracco, Gianangelo; Holst, Bodil


    Neutral helium microscopy is a new technique currently under development. Its advantages are the low energy, charge neutrality, and inertness of the helium atoms, a potential large depth of field, and the fact that at thermal energies the helium atoms do not penetrate into any solid material. This opens the possibility, among others, for the creation of an instrument that can measure surface topology on the nanoscale, even on surfaces with high aspect ratios. One of the most promising designs for helium microscopy is the zone plate microscope. It consists of a supersonic expansion helium beam collimated by an aperture (skimmer) focused by a Fresnel zone plate onto a sample. The resolution is determined by the focal spot size, which depends on the size of the skimmer, the optics of the system, and the velocity spread of the beam through the chromatic aberrations of the zone plate. An important factor for the optics of the zone plate is the width of the outermost zone, corresponding to the smallest opening in the zone plate. The width of the outermost zone is fabrication limited to around 10 nm with present-day state-of-the-art technology. Due to the high ionization potential of neutral helium atoms, it is difficult to build efficient helium detectors. Therefore, it is crucial to optimize the microscope design to maximize the intensity for a given resolution and width of the outermost zone. Here we present an optimization model for the helium zone plate microscope. Assuming constant resolution and width of the outermost zone, we are able to reduce the problem to a two-variable problem (zone plate radius and object distance) and we show that for a given beam temperature and pressure, there is always a single intensity maximum. We compare our model with the highest-resolution zone plate focusing images published and show that the intensity can be increased seven times. Reducing the width of the outermost zone to 10 nm leads to an increase in intensity of more than 8000

  6. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.


    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  7. REVIEWS OF TOPICAL PROBLEMS: Optical polarization of helium-3 nuclei (United States)

    Laloë, F.; Leduc, M.; Nacher, P.-J.; Novikov, L. N.; Tastevin, G.


    The present state of the problem of producing highly polarized systems of helium-3 by laser optical pumping over a broad temperature range is reviewed. The physical principles underlying the polarization of 3He nuclei during optical pumping and the exchange of metastability are described. Particular features of laser pumping at low temperatures are discussed. The possible use of polarized helium atoms in research on exchange and relaxation processes, in quantum magnetometry, and in nuclear physics to produce polarized targets and particle beams is discussed. The results of theoretical and experimental research on the quantum properties of highly polarized systems at low temperatures, near the temperature of quantum degeneracy, are reviewed.

  8. Rubidium atomic beam clock based on lamp-pumping and fluorescence-detection scheme (United States)

    Wang, Y. H.; Huang, J. Q.; Gu, Y.; Liu, S. Q.; Dong, T. Q.; Lu, Z. H.


    A compact, portable rubidium atomic beam clock based on lamp-pumping and fluorescence-detection scheme is proposed. The expected short-term frequency stability can be at least two orders of magnitude better than previous experimental results. The usages of lamp pumping, fluorescence detection and microwave slow-wave resonance structures make this design robust and compact.

  9. Coherent and dynamic beam splitting based on light storage in cold atoms. (United States)

    Park, Kwang-Kyoon; Zhao, Tian-Ming; Lee, Jong-Chan; Chough, Young-Tak; Kim, Yoon-Ho


    We demonstrate a coherent and dynamic beam splitter based on light storage in cold atoms. An input weak laser pulse is first stored in a cold atom ensemble via electromagnetically-induced transparency (EIT). A set of counter-propagating control fields, applied at a later time, retrieves the stored pulse into two output spatial modes. The high visibility interference between the two output pulses clearly demonstrates that the beam splitting process is coherent. Furthermore, by manipulating the control lasers, it is possible to dynamically control the storage time, the power splitting ratio, the relative phase, and the optical frequencies of the output pulses. With further improvements, the active beam splitter demonstrated in this work might have applications in photonic photonic quantum information and in all-optical information processing.

  10. Nonlinear effects in optical pumping of a cold and slow atomic beam

    KAUST Repository

    Porfido, N.


    By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.

  11. Spectroscopic observation of the plasma produced by a CO2 laser beam interacting with titanium target under helium and/or argon atmosphere (United States)

    Boulmer-Leborgne, C.; Hermann, J.; Dubreuil, B.


    In many laser applications such as drilling, welding and cutting, the role of the plasma in the transfer of energy between the laser beam and the metal surface appears to be rather important. It depends on several parameters such as laser wavelength, irradiation time and deposited energy but especially on the buffer gas nature. In this work the plasma is initiated by a TEA-CO2 laser beam perpendicularly focussed onto a Ti target (100 MW/cm2), in a cell containing He, Ar or a He-Ar mixture as buffer gas. The plasma is studied by time and space resolved spectroscopic diagnostics. The results show that helium allows target erosion whereas a highly absorbing breakdown plasma develops in argon shielding the target from the subsequent laser heating. With only 20% Ar in He, a strong quenching of the He plasma by Ar occurs, and the Ar plasma effect is dominant.

  12. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams. (United States)

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A; Groen, Wilhelm A; Janssen, Maurice H M


    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 micros have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 microm nozzle releases about 10(16) particles/pulse and the beam brightness was estimated to be 4x10(22) particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5x10(-6) Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Delta v/v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the

  13. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams (United States)

    Irimia, Daniel; Dobrikov, Dimitar; Kortekaas, Rob; Voet, Han; van den Ende, Daan A.; Groen, Wilhelm A.; Janssen, Maurice H. M.


    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms the vacuum seal. The valve can operate continuous (dc) and in pulsed mode with the same drive electronics. Pulsed operation has been tested at repetition frequencies up to 5 kHz. The static deflection of the cantilever, as mounted in the valve body, was measured as a function of driving field strength with a confocal microscope. The deflection and high speed dynamical response of the cantilever can be easily changed and optimized for a particular nozzle diameter or repetition rate by a simple adjustment of the free cantilever length. Pulsed molecular beams with a full width at half maximum pulse width as low as 7 μs have been measured at a position 10 cm downstream of the nozzle exit. This represents a gas pulse with a length of only 10 mm making it well matched to for instance experiments using laser beams. Such a short pulse with 6 bar backing pressure behind a 150 μm nozzle releases about 1016 particles/pulse and the beam brightness was estimated to be 4×1022 particles/(s str). The short pulses of the cantilever piezovalve result in a much reduced gas load in the vacuum system. We demonstrate operation of the pulsed valve with skimmer in a single vacuum chamber pumped by a 520 l/s turbomolecular pump maintaining a pressure of 5×10-6 Torr, which is an excellent vacuum to have the strong and cold skimmed molecular beam interact with laser beams only 10 cm downstream of the nozzle to do velocity map slice imaging with a microchannel-plate imaging detector in a single chamber. The piezovalve produces cold and narrow (Δv /v=2%-3%) velocity distributions of molecules seeded in helium or neon at modest backing pressures of only 6 bar. The low gas load of the cantilever

  14. Guiding ultraslow weak-light bullets with Airy beams in a coherent atomic system (United States)

    Hang, Chao; Huang, Guoxiang


    We investigate the possibility of guiding stable ultraslow weak-light bullets by using Airy beams in a cold, lifetime-broadened four-level atomic system via electromagnetically induced transparency (EIT). We show that under EIT condition the light bullet with ultraslow propagating velocity and extremely low generation power formed by the balance between diffraction and nonlinearity in the probe field can be not only stabilized but also steered by the assisted field. In particular, when the assisted field is taken to be an Airy beam, the light bullet can be trapped into the main lobe of the Airy beam, propagate ultraslowly in longitudinal direction, accelerate in transverse directions, and move along a parabolic trajectory. We further show that the light bullet can bypass an obstacle when guided by two sequential Airy beams. A technique for generating ultraslow helical weak-light bullets is also proposed.

  15. Charging dynamics of dopants in helium nanoplasmas

    DEFF Research Database (Denmark)

    Heidenreich, Andreas; Grüner, Barbara; Schomas, Dominik


    We present a combined experimental and theoretical study of the charging dynamics of helium nanodroplets doped with atoms of different species and irradiated by intense near-infrared laser pulses (≤1015 W cm−2). In particular, we elucidate the interplay of dopant ionization inducing the ignition...... of a helium nanoplasma, and the charging of the dopant atoms driven by the ionized helium host. Most efficient nanoplasma ignition and charging is found when doping helium droplets with xenon atoms, in which case high charge states of both helium (He2+) and of xenon (Xe21+) are detected. In contrast, only low...

  16. High-flux cold rubidium atomic beam for strongly-coupled cavity QED

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Basudev [Indian Institute of Science Education and Research, Kolkata (India); University of Maryland, MD (United States); Scholten, Michael [University of Maryland, MD (United States)


    This paper presents a setup capable of producing a high-flux continuous beam of cold rubidium atoms for cavity quantum electrodynamics experiments in the region of strong coupling. A 2D{sup +} magneto-optical trap (MOT), loaded with rubidium getters in a dry-film-coated vapor cell, fed a secondary moving-molasses MOT (MM-MOT) at a rate greater than 2 x 10{sup 10} atoms/s. The MM-MOT provided a continuous beam with a tunable velocity. This beam was then directed through the waist of a cavity with a length of 280 μm, resulting in a vacuum Rabi splitting of more than ±10 MHz. The presence of a sufficient number of atoms in the cavity mode also enabled splitting in the polarization perpendicular to the input. The cavity was in the strong coupling region, with an atom-photon dipole coupling coefficient g of 7 MHz, a cavity mode decay rate κ of 3 MHz, and a spontaneous emission decay rate γ of 6 MHz.

  17. Application of an atomic oxygen beam facility to the investigation of shuttle glow chemistry (United States)

    Arnold, G. S.; Peplinski, D. R.


    A facility for the investigation of the interactions of energetic atomic oxygen with solids is described. The facility is comprised of a four chambered, differentially pumped molecular beam apparatus which can be equipped with one of a variety of sources of atomic oxygen. The primary source is a dc arc heated supersonic nozzle source which produces a flux of atomic oxygen in excess of 10 to the 15th power sq cm/sec at the target, at a velocity of 3.5 km/sec. Results of applications of this facility to the study of the reactions of atomic oxygen with carbon and polyimide films are briefly reviewed and compared to data obtained on various flights of the space shuttle. A brief discussion of possible application of this facility to investigation of chemical reactions which might contribute to atmosphere induced vehicle glow is presented.

  18. Extraction of radioactive positive ions across the surface of superfluid helium : A new method to produce cold radioactive nuclear beams

    NARCIS (Netherlands)

    Huang, WX; Dendooven, P; Gloos, K; Takahashi, N; Pekola, JP; Aysto, J

    Alpha-decay recoils Rn-219 were stopped in superfluid helium and positive ions were extracted by electric field into the vapour phase. This first quantitative observation of extraction was successfully conducted using highly sensitive radioactivity detection. The efficiency for extraction across the

  19. Backscattered Helium Spectroscopy in the Helium Ion Microscope: Principles, Resolution and Applications

    NARCIS (Netherlands)

    van Gastel, Raoul; Hlawacek, G.; Dutta, S.; Poelsema, Bene


    We demonstrate the possibilities and limitations for microstructure characterization using backscattered particles from a sharply focused helium ion beam. The interaction of helium ions with matter enables the imaging, spectroscopic characterization, as well as the nanometer scale modification of

  20. Discrete Energies of a Weakly Outcoupled Atom Laser Beam Outside the Bose–Einstein Condensate Region

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno


    Full Text Available We consider the possibility of a discrete set of energies of a weakly outcoupled atom laser beam to the homogeneous Schrödinger equation with anisotropic harmonic trap in Cartesian coordinates outside the Bose–Einstein condensate region. This treatment is used because working in the cylindrical coordinates is not really possible, even though we implement the cigar-shaped trap case. The Schrödinger equation appears to replace a set of two-coupled Gross– Pitaevskii equations by enabling the weak-coupling assumption. This atom laser can be produced in a simple way that only involves extracting the atoms in a condensate from by using the radio frequency field. We initially present the relation between condensates as sources and atom laser as an output by exploring the previous work of Riou et al. in the case of theoretical work for the propagation of atom laser beams. We also show that even though the discrete energies are obtained by means of an approaching harmonic oscillator, degeneracy is only available in two states because of the anisotropic external potential

  1. Pancakes, Waterbags, and Cold Atoms New Recipes for High-Brightness Electron Beams

    CERN Document Server

    Luiten, O J


    Ideal "waterbag" electron bunches - uniformly filled, hard-edged ellipsoids of charge - can be realized in practice by photoemission with properly shaped fs laser pulses [1]. The linear self-fields of such objects enable thermal-emittance-limited beams and bunch compression to the kA level. The thermal emittance may be lowered to below 0.1 micron by extracting the electrons from an ultra-cold plasma, created by photo-ionization of a cloud of laser-cooled atoms. We will present GPT simulations of the application of waterbags and cold atoms in realistic settings, based on established technology. The status of experiments will be reported.

  2. High-resolution, high-throughput, positive-tone patterning of poly(ethylene glycol by helium beam exposure through stencil masks.

    Directory of Open Access Journals (Sweden)

    Eliedonna E Cacao

    Full Text Available In this work, a collimated helium beam was used to activate a thiol-poly(ethylene glycol (SH-PEG monolayer on gold to selectively capture proteins in the exposed regions. Protein patterns were formed at high throughput by exposing a stencil mask placed in proximity to the PEG-coated surface to a broad beam of helium particles, followed by incubation in a protein solution. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR spectra showed that SH-PEG molecules remain attached to gold after exposure to beam doses of 1.5-60 µC/cm(2 and incubation in PBS buffer for one hour, as evidenced by the presence of characteristic ether and methoxy peaks at 1120 cm(-1 and 2870 cm(-1, respectively. X-ray Photoelectron Spectroscopy (XPS spectra showed that increasing beam doses destroy ether (C-O bonds in PEG molecules as evidenced by the decrease in carbon C1s peak at 286.6 eV and increased alkyl (C-C signal at 284.6 eV. XPS spectra also demonstrated protein capture on beam-exposed PEG regions through the appearance of a nitrogen N1s peak at 400 eV and carbon C1s peak at 288 eV binding energies, while the unexposed PEG areas remained protein-free. The characteristic activities of avidin and horseradish peroxidase were preserved after attachment on beam-exposed regions. Protein patterns created using a 35 µm mesh mask were visualized by localized formation of insoluble diformazan precipitates by alkaline phosphatase conversion of its substrate bromochloroindoyl phosphate-nitroblue tetrazolium (BCIP-NBT and by avidin binding of biotinylated antibodies conjugated on 100 nm gold nanoparticles (AuNP. Patterns created using a mask with smaller 300 nm openings were detected by specific binding of 40 nm AuNP probes and by localized HRP-mediated deposition of silver nanoparticles. Corresponding BSA-passivated negative controls showed very few bound AuNP probes and little to no enzymatic formation of diformazan precipitates or silver

  3. Enhanced creation of dispersive monolayer phonons in Xe/Pt(111) by inelastic helium atom scattering at low energies

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter


    Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 me...... an absorbing potential at large distance. The times now extend to beyond 100 ps and enable a clarification of processes involving transient trapping of the He atoms. The wave packet is made more monochromatic by significantly increasing the spatial width of the initial Gaussian shape. The narrower energy...

  4. Applications of beam-foil spectroscopy to atomic collisions in solids (United States)

    Sellin, I. A.


    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.


    Directory of Open Access Journals (Sweden)

    - Sutikno


    Full Text Available Resis negatif ma-N 2403 dan 495 K PMMA memiliki resolusi yang baik untuk aplikasi litografi berkas elektron (EBL. Ketebalanresist optimal memainkan peran penting dalam paparan berkas elektron. Oleh karena itu, dalam penelitian ini, ketebalan darikedua resist yang dioptimalkan menggunakan spincoater dalam jangkauan laju spin 1000-6000 rpm. Semakin laju spin meningkat,ketebalan resist menurun juga. Morfologi permukaan resist dikarakterisasi dengan mikroskop gaya atom. Butir butir resist nampakpanjang. Dalam analisis AFM, permukaan profil resist negatif ma-N 2403 dan 495 K PMMA nampak seperti kerucut. Negative resist ma-N 2403 and 495 K PMMA have good resolution for electron beam lithography (EBL application. The optimumresist thickness plays significant role in e-beam exposure. Therefore, in this research, thicknesses of both resists were optimizedusing spincoater within spin speeds of 1000-6000 rpm. As spin speed increased, resist thickness decreased as well. Morphology ofresist surfaces were characterized using atomic force microscopy (AFM. Grains of resist show long grains. In AFM analyses,surface profiles of negative resist ma-N 2403 and 495 K PMMA show cone peaks.Keywords: e-beam resist; spincoater; e-beam lithography

  6. Atom trap for 221Fr from 225Ac ion beam implantation (United States)

    Tandecki, M.; Behr, J. A.; Pearson, M. R.; Zhang, J.; Orozco, L.; Collister, R.; Gwinner, G.; Gomez, E.; Aubin, S.


    A neutral atom trap for francium parity violation experiments is being set up at TRIUMF. The half-lives of the longest isotopes are minutes, which mostly will be produced by the online mass separator of the ISAC facility. For systematic error studies for precision measurements, it can help to have a longer-lived source. ^221Fr is produced by t1/2=10 day ^225Ac α decay, and has been trapped at JILA [Z.-T. Lu PRL 79 994 (1997)]. Our approach would implant the mass-separated ^225Ac beam produced by ISAC at 1x10^7/s for a day after the production proton beam is turned off. The scheme to be tested: 30 keV ^225Ac beam is implanted in tantalum for a day; the sample is held in front of an yttrium foil (normally used to stop a mass-separated Fr beam) for 1 minute; 100 keV ^221Fr recoils escape and implant in the yttrium; tantalum is withdrawn, yttrium is moved to trap and heated; cycle repeats. First tests are planned for September, and one goal is precise measurements of atomic hyperfine splittings sensitive to the spatial distribution of nuclear magnetism.

  7. Intense electron beams from GaAs photocathodes as a tool for molecular and atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Krantz, Claude


    We present cesium-coated GaAs photocathodes as reliable sources of intense, quasi-monoenergetic electron beams in atomic and molecular physics experiments. In long-time operation of the Electron Target of the ion storage ring TSR in Heidelberg, cold electron beams could be realised at steadily improving intensity and reliability. Minimisation of processes degrading the quantum efficiency allowed to increase the extractable current to more than 1mA at usable cathode lifetimes of 24 h or more. The benefits of the cold electron beam with respect to its application to electron cooling and electron-ion recombination experiments are discussed. Benchmark experiments demonstrate the superior cooling force and energy resolution of the photoelectron beam compared to its thermionic counterparts. The long period of operation allowed to study the long-time behaviour of the GaAs samples during multiple usage cycles at the Electron Target and repeated in-vacuum surface cleaning by atomic hydrogen exposure. An electron emission spectroscopy setup has been implemented at the photocathode preparation chamber of the Electron Target. Among others, this new facility opened the way to a novel application of GaAs (Cs) photocathodes as robust, ultraviolet-driven electron emitters. Based on this principle, a prototype of an electron gun, designed for implementation at the HITRAP setup at GSI, has been built and taken into operation successfully. (orig.)

  8. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography. (United States)

    Prosa, Ty J; Larson, David J


    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  9. Substrate Dependent Ad-Atom Migration on Graphene and the Impact on Electron-Beam Sculpting Functional Nanopores. (United States)

    Freedman, Kevin J; Goyal, Gaurav; Ahn, Chi Won; Kim, Min Jun


    The use of atomically thin graphene for molecular sensing has attracted tremendous attention over the years and, in some instances, could displace the use of classical thin films. For nanopore sensing, graphene must be suspended over an aperture so that a single pore can be formed in the free-standing region. Nanopores are typically drilled using an electron beam (e-beam) which is tightly focused until a desired pore size is obtained. E-beam sculpting of graphene however is not just dependent on the ability to displace atoms but also the ability to hinder the migration of ad-atoms on the surface of graphene. Using relatively lower e-beam fluxes from a thermionic electron source, the C-atom knockout rate seems to be comparable to the rate of carbon ad-atom attraction and accumulation at the e-beam/graphene interface (i.e., R knockout ≈ R accumulation ). Working at this unique regime has allowed the study of carbon ad-atom migration as well as the influence of various substrate materials on e-beam sculpting of graphene. We also show that this information was pivotal to fabricating functional graphene nanopores for studying DNA with increased spatial resolution which is attributed to atomically thin membranes.

  10. Superconducting quantum interference devices made with normal metal and insulator barrier Josephson junctions in Y-Ba-Cu-O directly written with a focused helium beam (United States)

    Cho, Ethan; Ma, Meng; Huynh, Chuong; Pratt, Kevin; Paulson, Doug; Glyantsev, Victor; Dynes, Robert; Cybart, Shane

    We will present electrical transport data for Y-Ba-Cu-O superconducting quantum interference devices (SQUIDs) with focused helium ion damage Josephson junctions. The junctions were directly written with a 30 keV focused helium ion beam, which locally creates disorder in Y-Ba-Cu-O that induces a superconducting-insulator transition. SQUIDs with Josephson junctions written with a dose of 4 ×1016 He+/cm2 have metallic barriers and show a current-voltage characteristic (I-V) well-described by the resistively shunted junction model. The spectral density of the flux noise is 10 μΦ0 / √ Hz at 10 Hz and the white noise at higher frequencies is 2 μΦ0 / √ Hz. SQUIDs with junctions written with higher ion doses (~ 9 ×1016 He+/cm2) have insulating Josephson barriers with a critical current of 22 μA and a resistance of 12 Ω at 4 K. The I-V for all of these devices is not hysteretic due to the small capacitance and the resistance. At higher voltage the junction I-V curve shows tunnel-junction behavior and a superconducting energy gap edge at 20 mV. We will discuss how these results are a promising step forward for sensitive magnetic sensors made from high temperature superconductors at various temperatures.

  11. Selective area growth of InAs nanowires from SiO2/Si(1 1 1) templates direct-written by focused helium ion beam technology (United States)

    Yang, Che-Wei; Chen, Wei-Chieh; Chou, Chieh; Lin, Hao-Hsiung


    We report on the selective area growth of InAs nanowires on patterned SiO2/Si (1 1 1) nano-holes, prepared by focused helium ion beam technology. We used a single spot mode, in which the focused helium ion beam was fixed on a single point with a He+-ion dosage, ranging from 1.5 pC to 8 pC, to drill the nano-holes. The smallest hole diameter achieved is ∼8 nm. We found that low He+-ion dosage is able to facilitate the nucleation of (1 1 1)B InAs on the highly mismatched Si, leading to the vertical growth of InAs nanowires (NWs). High He-ion dosage, on the contrary, severely damaged Si surface, resulting in tilted and stripe-like NWs. In addition to titled NW grown from (1 1 1)A InAs domain, a new titled growth direction due to defect induced twinning was observed. Cross-sectional TEM images of vertical NWs show mixed wurtizite (WZ) and zincblende (ZB) phases, while WZ phase dominants. The stacking faults resulting from the phase change is proportional to NW diameter, suggesting that the critical diameter of phase turning is larger than 110 nm, the maximum diameter of our NWs. Period of misfit dislocation at the InAs/Si interface of vertical NW is also found larger than the theoretical value when the diameter of heterointerface is smaller than 50 nm, indicating that the small contact area is able to accommodate the large lattice and thermal mismatch between InAs and Si.

  12. Theory of longitudinal atomic beam spin echo and parity violating Berry-phases in atoms; Theorie des longitudinalen Atomstrahl-Spinechos und paritaetsverletzende Berry-Phasen in Atomen

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, T.F.


    We present a nonrelativistic theory for the quantum mechanical description of longitudinal atomic beam spin echo experiments, where a beam of neutral atoms is subjected to static electric and magnetic fields. The atomic wave function is the solution of a matrix-valued Schroedinger equation and can be written as superposition of local (atomic) eigenstates of the potential matrix. The position- and time-dependent amplitude function of each eigenstate represents an atomic wave packet and can be calculated in a series expansion with a master formula that we derive. The zeroth order of this series expansion describes the adiabatic limit, whereas the higher order contributions contain the mixing of the eigenstates and the corresponding amplitude functions. We give a tutorial for the theoretical description of longitudinal atomic beam spin echo experiments and for the so-called Fahrplan model, which is a visualisation tool for the propagation of wave packets of different atomic eigenstates. As an example for the application of our theory, we study parity violating geometric (Berry-)phases. In this context, we define geometric flux densities, which for certain field configurations can be used to illustrate geometric phases in a vector diagram. Considering an example with a specific field configuration, we prove the existence of a parity violating geometric phase. (orig.)

  13. Liquid helium

    CERN Document Server

    Atkins, K R


    Originally published in 1959 as part of the Cambridge Monographs on Physics series, this book addresses liquid helium from the dual perspectives of statistical mechanics and hydrodynamics. Atkins looks at both Helium Three and Helium Four, as well as the properties of a combination of the two isotopes. This book will be of value to anyone with an interest in the history of science and the study of one of the universe's most fundamental elements.

  14. Thermodynamic properties of hydrogen-helium plasmas. (United States)

    Nelson, H. F.


    Calculation of the thermodynamic properties of an atomic hydrogen-helium plasma for postulated conditions present in a stagnation shock layer of a spacecraft entering the atmosphere of Jupiter. These properties can be used to evaluate transport properties, to calculate convective heating, and to investigate nonequilibrium behavior. The calculations have been made for temperatures from 10,000 to 100,000 K, densities of 10 to the minus 7th and .00001 g cu cm, and three plasma compositions: pure hydrogen, 50% hydrogen/50% helium, and pure helium. The shock layer plasma consists of electrons, protons, atomic hydrogen, atomic helium, singly ionized helium, and doubly atomized helium. The thermodynamic properties which have been investigated are: pressure, average molecular weight, internal energy, enthalpy, entropy, specific heat, and isentropic speed of sound. A consistent model was used for the reduction of the ionization potential in the calculation of the partition functions.

  15. Spatial profiles of electron and metastable atom densities in positive polarity fast ionization waves sustained in helium

    Energy Technology Data Exchange (ETDEWEB)

    Weatherford, Brandon R., E-mail:, E-mail:, E-mail:, E-mail:; Barnat, E. V., E-mail:, E-mail:, E-mail:, E-mail: [Sandia National Laboratories, Albuquerque, New Mexico 87185-1423 (United States); Xiong, Zhongmin, E-mail:, E-mail:, E-mail:, E-mail:; Kushner, Mark J., E-mail:, E-mail:, E-mail:, E-mail: [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122, USA. (United States)


    Fast ionization waves (FIWs), often generated with high voltage pulses over nanosecond timescales, are able to produce large volumes of ions and excited states at moderate pressures. The mechanisms of FIW propagation were experimentally and computationally investigated to provide insights into the manner in which these large volumes are excited. The two-dimensional structure of electron and metastable densities produced by short-pulse FIWs sustained in helium were measured using laser-induced fluorescence and laser collision-induced fluorescence diagnostics for times of 100–120 ns after the pulse, as the pressure was varied from 1 to 20 Torr. A trend of center-peaked to volume-filling to wall-peaked electron density profiles was observed as the pressure was increased. Instantaneous FIW velocities, obtained from plasma-induced emission, ranged from 0.1 to 3×10⁹cm s⁻¹, depending on distance from the high voltage electrode and pressure. Predictions from two-dimensional modeling of the propagation of a single FIW correlated well with the experimental trends in electron density profiles and wave velocity. Results from the model show that the maximum ionization rate occurs in the wavefront, and the discharge continues to propagate forward after the removal of high voltage from the powered electrode due to the potential energy stored in the space charge. As the pressure is varied, the radial distribution of the ionization rate is shaped by changes in the electron mean free path, and subsequent localized electric field enhancement at the walls or on the centerline of the discharge.

  16. Measurement of OH, NO, O and N atoms in helium plasma jet for ROS/RNS controlled biomedical processes (United States)

    Yonemori, Seiya; Kamakura, Taku; Ono, Ryo


    Atmospheric-pressure plasmas are of emerging interest for new plasma applications such as cancer treatment, cell activation and sterilization. In those biomedical processes, reactive oxygen/nitrogen species (ROS/RNS) are said that they play significant role. It is though that active species give oxidative stress and induce biomedical reactions. In this study, we measured OH, NO, O and N atoms using laser induced fluorescence (LIF) measurement and found that voltage polarity affect particular ROS. When negative high voltage was applied to the plasma jet, O atom density was tripled compared to the case of positive applied voltage. In that case, O atom density was around 3 × 1015 [cm-3] at maximum. In contrast, OH and NO density did not change their density depending on the polarity of applied voltage, measured as in order of 1013 and 1014 [cm-3] at maximum, respectively. From ICCD imaging measurement, it could be seen that negative high voltage enhanced secondary emission in plasma bullet propagation and it can affect the effective production of particular ROS. Since ROS/RNS dose can be a quantitative criterion to control plasma biomedical application, those measurement results is able to be applied for in vivo and in vitro plasma biomedical experiments. This study is supported by the Grant-in-Aid for Science Research by the Ministry of Education, Culture, Sport, Science and Technology.

  17. Helium implanted AlHf as studied by Ta TDPAC

    Indian Academy of Sciences (India)


    TDPAC; electric field gradient; Hf solute clusters; helium-vacancy complex; defect recovery. 1. Introduction. In recent years a considerable effort has been directed to the behaviour of helium in metals as helium is produced by (n, α) reaction in nuclear materials. Helium atoms are insoluble in metals and are strongly attracted ...

  18. Control of RILIS lasers at IGISOL facilities using a compact atomic beam reference cell

    Energy Technology Data Exchange (ETDEWEB)

    Kron, T., E-mail: [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany); Ferrer-Garcia, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica (Belgium); Lecesne, N. [GANIL, CEA/DSM-CNRS/IN2P3 (France); Sonnenschein, V. [University of Jyvaeskylae, Department of Physics (Finland); Raeder, S. [TRIUMF - Canada' s National Laboratory for Nuclear and Particle Physics (Canada); Rossnagel, J.; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Institut fuer Physik (Germany)


    The choice and proper operation of the laser systems for laser ion sources at on-line facilities using multi-step resonance ionization processes is the basis for production of intense and pure radioactive ion beams. These pave the way for numerous fundamental studies in nuclear and astrophysics. A comparison between systems of medium or high repetition rate pulsed tunable lasers based on dyes or crystals as active medium has been carried out at the IGISOL facility at Louvain-la-Neuve. The importance of properly controlling the operation conditions of the individual lasers via a reference atomic beam chamber is highlighted and design and implementation of such a compact device for permanent monitoring as well as possible regulation of the various laser parameters of relevance is discussed.

  19. ARTICLE Crossed Beams Study on the Dynamics of F Atom Reaction with 1,2-Butadiene (United States)

    Xiao, Chong-fa; Shen, Guan-lin; Wang, Xiu-yan; Yang, Xue-ming


    We have investigated the dynamics of the F+C4H6 reaction using the universal crossed molecular beam method. The C4H5F+H reaction channel was observed in this experiment. Angular resolved time-of-flight spectra have been measured for the C4H5F product. Product angular distributions as well as kinetic energy distributions were determined for this product channel. Experimental results show that the C4H5F product is largely backward scattered with considerable forward scattering signal, relative to the F atom beam direction. This suggests that the reaction channel mainly proceeds via a long-lived complex formation mechanism, with possible contribution from a direct SN2 type mechanism.

  20. Surface Impact Simulations of Helium Nanodroplets (United States)


    AFRL-RW-EG-TP-2015-001 Surface Impact Simulations of Helium Nanodroplets Robert J. Hinde Department of Chemistry University of...TITLE AND SUBTITLE Surface Impact Simulations of Helium Nanodroplets 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8651-11-1-0005 5c. PROGRAM ELEMENT...captures atomic delocalization of the helium atoms characteristic of the quantum solvent, but allow the single-particle wavefunctions to vary throughout

  1. Bright focused ion beam sources based on laser-cooled atoms (United States)

    McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.


    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245

  2. Bright focused ion beam sources based on laser-cooled atoms

    Energy Technology Data Exchange (ETDEWEB)

    McClelland, J. J.; Wilson, T. M. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Steele, A. V.; Knuffman, B.; Schwarzkopf, A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); zeroK NanoTech, Gaithersburg, Maryland 20878 (United States); Twedt, K. A. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States)


    Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.

  3. High quality atomically thin PtSe2 films grown by molecular beam epitaxy (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun


    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  4. Use of an Atmospheric Atomic Oxygen Beam for Restoration of Defaced Paintings (United States)

    Banks, Bruce A.; Rutledge, Sharon K.; Karla, Margaret; Norris, Mary Jo; Real, William A.; Haytas, Christy A.


    An atmospheric atomic oxygen beam has been found to be effective in removing organic materials through oxidation that are typical of graffiti or other contaminant defacements which may occur to the surfaces of paintings. The technique, developed by the National Aeronautics and Space Administration, is portable and was successfully used at the Carnegie Museum of Art to remove a lipstick smudge from the surface of porous paint on the Andy Warhol painting "Bathtub." This process was also evaluated for suitability to remove felt tip and ball point ink graffiti from paper, gesso on canvas and cotton canvas.

  5. Electron transfer processes of atomic and molecular doubly charged ions: information from beam experiments (United States)

    Herman, Zdenek


    Single-electron transfer reactions in collisions of atomic and molecular doubly charged ions, with atoms and molecules, were investigated in a series of crossed-beam scattering, translational spectroscopy and product luminescence experiments. Investigation of a series of atomic dication-atom electron transfer at collision energies of 0.1-10 eV provided data on differential and relative total cross sections of state-to-state processes. Populations of electronic and vibrational states and rotational temperatures of molecular product ions were obtained from studies of non-dissociative electron transfer in systems containing simple molecular dications and/or molecular targets. The product electronic states populated with highest probability were those for which the translational energy release was 3-5 eV, indicating that the 'reaction window' concept, based on the Landau-Zener formalism, is applicable also to molecular systems. Population of the vibrational states of the molecular products could be described by Franck-Condon factors of the vertical transitions between the reactant and product states, especially at higher (keV) collision energies. Rotational temperature of the product molecular cations was found to be surprisingly low, mostly 400-500 K, practically the temperature of the ion source.

  6. Helium cryogenics

    CERN Document Server

    Van Sciver, Steven W


    Twenty five years have elapsed since the original publication of Helium Cryogenics. During this time, a considerable amount of research and development involving helium fluids has been carried out culminating in several large-scale projects. Furthermore, the field has matured through these efforts so that there is now a broad engineering base to assist the development of future projects. Helium Cryogenics, 2nd edition brings these advances in helium cryogenics together in an updated form. As in the original edition, the author's approach is to survey the field of cryogenics with emphasis on helium fluids. This approach is more specialized and fundamental than that contained in other cryogenics books, which treat the associated range of cryogenic fluids. As a result, the level of treatment is more advanced and assumes a certain knowledge of fundamental engineering and physics principles, including some quantum mechanics. The goal throughout the work is to bridge the gap between the physics and engineering aspe...

  7. Characterization of aerosol in the atmosphere at Syowa Station by Helium Microwave Induced Plasma Atomic Emission Spectrometry (He-MIP-AES

    Directory of Open Access Journals (Sweden)

    Hitoshi Asano


    Full Text Available Atmospheric aerosols at Syowa Station, Antarctica were characterized by helium microwave induced plasma atomic emission spectrometry (He-MIP-AES. The He-MIP-AES can be considered as a suitable method for the characterization of the atmospheric particulate matter since measurements of grain size distribution, elemental analysis for each particle, and chemical state analysis can be available simultaneously. Previous characterization methods such as XRF, PIXE and ICP-MS cannot provide in situ analysis and they need a long time to measure of the distribution of the particle diameter and elemental analysis of each particle. The particle samples in the atmosphere were collected on the membrane lter at Syowa Station in Antarctica. The obtained particles were analyzed by the He-MIP-AES (HORIBA, particle analyzer DP-1000. Elemental analysis, chemical state analysis, and grain diameter distribution analysis were performed. The collected particles mainly contain sea salt (Na, Mg and Ca and soil origin constituents (Si and Fe. The counts of each element increase under blizzard and strong wind condition.

  8. Experimental confirmation of photon-induced spin-flip transitions in helium via triplet metastable yield spectra (United States)

    Rubensson, Jan-Erik; Moise, Angelica; Mihelič, Andrej; Bučar, Klemen; Žitnik, Matjaž; Richter, Robert


    Doubly excited states below the N=2 ionization threshold are populated by exciting helium atoms in a supersonic beam with monochromatized synchrotron radiation. The fluorescence decay of these states triggers a radiative cascade back to the ground state with large probability to populate long lived singlet and triplet helium metastable states. The yield of metastables is measured using a multichannel plate detector after the beam has passed a singlet-quenching discharge lamp. The variation of the yield observed with the lamp switched on or off is related to the triplet-singlet mixing of the doubly excited states.

  9. Local enhancement of radiation dose by using high atomic number materials with high energy photon beam (United States)

    Alkhatib, Ahmad Khaled

    The goal of treatment planning in radiation therapy is to maximize the absorbed dose in abnormal cells and minimize the dose in normal cells. It is long established that the probability of pair production interactions (converting photon to electron and positron see chapter II) increases with the increase of the photon energy above a 1.02 MV threshold and with the square of the atomic number of the medium. In this work I tried to locally enhance the absorbed dose by using both a high energy photon beam and high Z material (Gold foils), to observe the effect of the secondary electrons that are produced in the high z material (gold) with high energy photons (end point energy 25MV). To observe the range of these secondary electrons, I changed the gap between two gold foils. I studied also the effect of varying the thickness of both gold foils. To verify the dependence of the atomic number (Z) I repeated the measurements with two Aluminum foils, and to observe the effect of The Higher photon energy I used a range of photon beams with end point energies 6, 10, 15, 18 and 25 MV. I used Monte Carlo code to confirm the result. The calculated dose enhancements from the simulation were in general 5% higher the measured values.

  10. On the combination of a low energy hydrogen atom beam with a cold multipole ion trap

    Energy Technology Data Exchange (ETDEWEB)

    Borodi, Gheorghe


    The first part of the activities of this thesis was to develop a sophisticated ion storage apparatus dedicated to study chemical processes with atomic hydrogen. The integration of a differentially pumped radical beam source into an existing temperature variable 22- pole trapping machine has required major modifications. Since astrophysical questions have been in the center of our interest, the introduction first gives a short overview of astrophysics and -chemistry. The basics of ion trapping in temperature variable rf traps is well-documented in the literature; therefore, the description of the basic instrument (Chapter 2) is kept rather short. Much effort has been put into the development of an intense and stable source for hydrogen atoms the kinetic energy of which can be changed. Chapter 3 describes this module in detail with emphasis on the integration of magnetic hexapoles for guiding the atoms and special treatments of the surfaces for reducing H-H recombination. Due to the unique sensitivity of the rf ion trapping technique, this instrument allows one to study a variety of reactions of astrochemical and fundamental interest. The results of this work are summarized in Chapter 4. Reactions of CO{sub 2}{sup +} with hydrogen atoms and molecules have been established as calibration standard for in situ determination of H and H{sub 2} densities over the full temperature range of the apparatus (10 K-300 K). For the first time, reactions of H- and D-atoms with the ionic hydrocarbons CH{sup +}, CH{sub 2}{sup +}, and CH{sub 4}{sup +} have been studied at temperatures of interstellar space. A very interesting, not yet fully understood collision system is the interaction of protonated methane with H. The outlook presents some ideas, how to improve the new instrument and a few reaction systems are mentioned which may be studied next. (orig.)

  11. Critical Landau velocity in helium nanodroplets. (United States)

    Brauer, Nils B; Smolarek, Szymon; Loginov, Evgeniy; Mateo, David; Hernando, Alberto; Pi, Marti; Barranco, Manuel; Buma, Wybren J; Drabbels, Marcel


    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective excitations of the helium atoms in the liquid. In the present work we determine to what extent this concept can still be applied to nanometer-scale, finite size helium systems. To this end, atoms and molecules embedded in helium nanodroplets of various sizes are accelerated out of the droplets by means of optical excitation, and the speed distributions of the ejected particles are determined. The measurements reveal the existence of a critical velocity in these systems, even for nanodroplets consisting of only a thousand helium atoms. Accompanying theoretical simulations based on a time-dependent density functional description of the helium confirm and further elucidate this experimental finding.

  12. Electron-beam-induced carbon contamination on silicon: characterization using Raman spectroscopy and atomic force microscopy. (United States)

    Lau, Deborah; Hughes, Anthony E; Muster, Tim H; Davis, Timothy J; Glenn, A Matthew


    Electron-beam-induced carbon film deposition has long been recognized as a side effect of scanning electron microscopy. To characterize the nature of this type of contamination, silicon wafers were subjected to prolonged exposure to 15 kV electron beam energy with a probe current of 300 pA. Using Raman spectroscopy, the deposited coating was identified as an amorphous carbon film with an estimated crystallite size of 125 A. Using atomic force microscopy, the cross-sectional profile of the coating was found to be raised and textured, indicative of the beam raster pattern. A map of the Raman intensity across the coating showed increased intensity along the edges and at the corner of the film. The intensity profile was in excess of that which could be explained by thickness alone. The enhancement was found to correspond with a modeled local field enhancement induced by the coating boundary and showed that the deposited carbon coating generated a localized disturbance in the opto-electrical properties of the substrate, which is compared and contrasted with Raman edge enhancement that is produced by surface structure in silicon.

  13. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition (United States)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime


    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  14. Development of a helium-beam diagnostic for the measurement of the electron density and temperature with high space and time resolution; Entwicklung einer Heliumstrahldiagnostik zur Messung der Elektronendichte und -temperatur mit hoher raeumlicher und zeitlicher Aufloesung

    Energy Technology Data Exchange (ETDEWEB)

    Kruezi, U.


    A cvoncept for the control of teh particle and energy removal is available with the Dynamic Ergodic Divertor (DED) at the TEXTOR tokamak and is studied there. In the framework of this thesis a new diagnostic fot the study of short-time events in the plasma boundary layer was developed and constructed. It allows spatially (2 mm) and timely (10 {mu}s) highly resolved measurements of the electron density n{sub e} and electron temperaturew T{sub e}. This occurs by spectroscopy on helium atoms injected into the plasma, for whose measured line intensities respectively intensity ratios by means of a collision-radiation model n{sub e} and T{sub e} can be determined. In order to fulfil the requirements for the measurement of the plasma fluctuations up to 100 kHz, an injection system was developed, which can produce a supersonic helium beam of high particle density (1.5.10{sup 18} m{sup -3}) and simulataneously low deivergence {+-}1 . Parallely for this an observation system consisting of many-channel photomultipliers (PMT) with high and a CCD camera with lower time resolution. The signals of the different MT channels are calibrated on the intensities of the comparable spatial channels of the CCD camera. The first spectroscopic measurement of T{sub e} fluctuations resulted for the characterizing parameters: velocity v{sub r}=(380{+-}60) m/s, correlation length L{sub r}{approx}(5{+-}1) mm, and lifetime {tau}{sub L}{approx}(10{+-}1.25) {mu}s. Under the influence of resonant disturbing magnetic fields by the DED because of the not negligible photon noise no quantitative fluctuation characteristics could be determined. Furthermore during the dynamic AC operation of the DED with rotating disturbing field (974 Hz) n{sub e} and T{sub e} could be spatially and timely resolved and showed because of dynamically co-moved plasma structures a strong modulation by a factor 3 respectively 2. Beside an expected pressure decreasement in the laminar flux tube a hitherto unknown increasement

  15. Observation of spontaneously generated coherence on absorption in rubidium atomic beam (United States)

    Tian, Si-Cong; Kang, Zhi-Hui; Wang, Chun-Liang; Wan, Ren-Gang; Kou, Jun; Zhang, Hang; Jiang, Yun; Cui, Hai-Ning; Gao, Jin-Yue


    We report the experimental observation of the effect of spontaneously generated coherence on absorption without the rigorous requirement of close-lying levels. The experiments are studied in both a four-level N-type and a four-level inverted-Y-type atomic system in a rubidium atomic beam. With the coupling and controlling field, the N-type system is equivalent to a system with three closely upper levels coupled to one lower level by the same vacuum modes. The quantum interference can induce two prominent and nearly transparent holes where the slope of the refractive index is very steep. This special situation could allow the simultaneous propagation of two weak pulses with different frequencies. When we tune the wavelength of the controlling field, the N-type system turns to be the inverted-Y atomic system. Under the two-photon resonance condition, the system is equivalent to a V-type system with two closely upper levels, and the interference can reduce one broad transparency window in the middle of the absorption spectrum. Besides we can control the number of the spontaneously decay channels by the detuning of the controlling field, thus the effect of spontaneously generated coherence can exist in three or two closely space levels.

  16. Analog Cherenkov detectors used in laser spectroscopy experiments on antiprotonic helium

    CERN Document Server

    Hori, Masaki; Hayano, R S; Yamazaki, T


    We describe some acrylic Cherenkov detectors read out by gateable fine-mesh photomultipliers, used in laser spectroscopy experiments of metastable antiprotonic helium (pbarHe+) atoms carried out at the LEAR and AD facilities at CERN. The atoms were produced by stopping pulsed antiproton beams in a helium target. Charged particles emerging from the antiproton annihilations produced Cherenkov light in the detector, the time envelope of which consisted of a strong flash from the promptly-annihilating antiprotons, followed by a much longer but less intense tail from the delayed annihilations of the metastable atoms. The photomultiplier was turned off during the initial light flash by reversing the electric potential on its dynodes, thus allowing only the delayed annihilations to be recorded as an analog pulse. The atoms were irradiated with a laser pulse tuned to the characteristic wavelength whic simulated antiproton transitions from a metastable state to a state with a short lifetime against annihilation. The r...

  17. Assessment of General Atomics accelerator transmutation of waste concept based on gas-turbine-modular helium cooled reactor technology.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Taiwo, T. A.; Cahalan, J. E.; Finck, P. J.


    An assessment has been performed for an Accelerator Transmutation of Waste (ATW) concept based on the use of the high temperature gas reactor technology. The concept has been proposed by General Atomics for the ATW system. The assessment was jointly conducted at Argonne National Laboratory (ANL) and Los Alamos national laboratory to assess and to define the potential candidates for the ATW system. This report represents the assessment work performed at ANL. The concept uses recycled light water reactor (LWR)-discharge-transuranic extracted from irradiated oxide fuel in a critical and sub-critical accelerator driven gas-cooled transmuter. In this concept, the transmuter operates at 600 MWt first in the critical mode for three cycles and then operates in a subcritical accelerator-driven mode for a single cycle. The transmuter contains both thermal and fast spectrum transmutation zones. The thermal zone is fueled with the TRU oxide material in the form of coated particles, which are mixed with graphite powder, packed into cylindrical compacts, and loaded in hexagonal graphite blocks with cylindrical channels; the fast zone is fueled with TRU-oxide material in the form of coated particles without the graphite powder and the graphite blocks that has been burned in the thermal region for three critical cycles and one additional accelerator-driven cycle. The fuel loaded into the fast zone is irradiated for four additional cycles. This fuel management scheme is intended to achieve a high Pu isotopes consumption in the thermal spectrum zone, and to consume the minor actinides in the fast-spectrum zone. Monte Carlo and deterministic codes have been used to assess the system performance and to determine the feasibility of achieving high TRU consumption levels. The studies revealed the potential for high consumption of Pu-239 (97%), total Pu (71%) and total TRU (64%) in the system. The analyses confirmed the need for burnable absorber for both suppressing the initial excess

  18. Production of a 'natural' metastable nozzle beam: Van der Waals-Zeeman atomic levels near a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Karam, J-C [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Grucker, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Boustimi, M [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Bocvarski, V [Institute of Physics, Pregrevica, Zemun, Belgrade (Serbia and Montenegro); Vassilev, G [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Reinhardt, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Mainos, C [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Perales, F [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Baudon, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Robert, J [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France); Ducloy, Martial [Laboratoire de Physique des Lasers (UMR-CNRS 7538), Universite Paris 13 99, Av. J.B. Clement, 93430-Villetaneuse (France)


    A method for obtaining a metastable atom beam with properties near to those of a ground state supersonic beam is demonstrated. Calculations on m sublevels of metastable argon near a metal surface are then presented.

  19. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure (United States)

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.


    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  20. The modification of the structure of multilayer Co/Pt films by the irradiation with a focused helium ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gusev, S. A., E-mail:; Drozdov, M. N.; Ermolaeva, O. L.; Fraerman, A. A.; Gusev, N. S.; Sapozhnikov, M. V., E-mail:; Vdovichev, S. N. [Institute for Physics of Microstructures RAS, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Mikhailovskii, V. Yu.; Petrov, Yu. V., E-mail: [Saint Petersburg state University, St.Petersburg, Universitetskaya nab. 7/9, 199034 (Russian Federation)


    We report here on the possibility of a local modification of Co/Pt multilayered magnetic films by focused ion beam irradiation. The changes of structural and magnetic properties are experimentally investigated as a function of irradiation fluence. The method is used to form lateral structures with the periods up to 100 nm. The magnetic force microscopy accompanied by Hall effect measurements of the structure indicate the formation of magnetic skyrmion lattices in the absence of Dzyaloshinskii-Moriya interaction.

  1. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)


    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  2. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope (United States)

    Labuda, Aleksander; Proksch, Roger


    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  3. Tunable atomic force microscopy bias lithography on electron beam induced carbonaceous platforms

    Directory of Open Access Journals (Sweden)

    Narendra Kurra


    Full Text Available Tunable local electrochemical and physical modifications on the carbonaceous platforms are achieved using Atomic force microscope (AFM bias lithography. These carbonaceous platforms are produced on Si substrate by the technique called electron beam induced carbonaceous deposition (EBICD. EBICD is composed of functionalized carbon species, confirmed through X-ray photoelectron spectroscopy (XPS analysis. AFM bias lithography in tapping mode with a positive tip bias resulted in the nucleation of attoliter water on the EBICD surface under moderate humidity conditions (45%. While the lithography in the contact mode with a negative tip bias caused the electrochemical modifications such as anodic oxidation and etching of the EBICD under moderate (45% and higher (60% humidity conditions respectively. Finally, reversible charge patterns are created on these EBICD surfaces under low (30% humidity conditions and investigated by means of electrostatic force microscopy (EFM.

  4. Atom beam sputtered Ag-TiO{sub 2} plasmonic nanocomposite thin films for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jaspal; Sahu, Kavita [School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, NewDelhi 110078 (India); Pandey, A. [Solid State Physics Laboratory, Defence Research and Development Organization, Timarpur, Delhi 110054 (India); Kumar, Mohit [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha 751005 (India); Ghosh, Tapas; Satpati, B. [Saha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata 700064 (India); Som, T.; Varma, S. [Institute of Physics, Sachivalaya Marg, Bhubaneswar, Odisha 751005 (India); Avasthi, D.K. [Amity Institute of Nanotechnology, Noida 201313, Uttar Pradesh (India); Mohapatra, Satyabrata, E-mail: [School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, NewDelhi 110078 (India)


    The development of nanocomposite coatings with highly enhanced photocatalytic activity is important for photocatalytic purification of water and air. We report on the synthesis of Ag-TiO{sub 2} nanocomposite thin films with highly enhanced photocatalytic activity by atom beam co-sputtering technique. The effects of Ag concentration on the structural, morphological, optical, plasmonic and photocatalytic properties of the nanocomposite thin films were investigated. UV–visible DRS studies revealed the presence of surface plasmon resonance (SPR) peak characteristic of Ag nanoparticles together with the excitonic absorption peak originating from TiO{sub 2} nanoparticles in the nanocomposites. XRD studies showed that the nanocomposite thin films consist of Ag nanoparticles and rutile TiO{sub 2} nanoparticles. The synthesized Ag-TiO{sub 2} nanocomposite thin films with 5 at% Ag were found to exhibit highly enhanced photocatalytic activity for sun light driven photocatalytic degradation of methylene blue in water, indicating their potential application in water purification.

  5. Chemical states of localized Fe atoms in ethylene matrices using in-beam Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y., E-mail: [University of Electro-Communications, Graduate School of Engineering Science (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Tanigawa, S. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Mihara, M. [Osaka University, Graduate School of Science (Japan); Kubo, M. K. [International Christian University, Division of Arts and Sciences (Japan); Sato, W. [Kanazawa University, Institute of Science and Engineering (Japan); Miyazaki, J. [Tokyo University of Agriculture and Technology, Department of Chemical Engineering (Japan); Nagatomo, T. [RIKEN, Nishina Center for Accelerator-Based Science (Japan); Sato, Y.; Natori, D.; Suzuki, M. [University of Electro-Communications, Graduate School of Engineering Science (Japan); Kobayashi, J. [International Christian University, Division of Arts and Sciences (Japan); Sato, S.; Kitagawa, A. [National Institute of Radiological Science (Japan)


    The reaction products of isolated single iron atoms in a low concentration matrix of ethylene were studied using in-beam Mössbauer spectroscopy with a short-lived {sup 57}Mn (T{sub 1/2}=1.45 m) beam. The in-beam Mössbauer spectrum of {sup 57}Fe arising from {sup 57}Mn in a matrix of ethylene and argon measured at 16 K was analyzed with four components. Density functional theory calculations were carried out to confirm the assignments. It was suggested that the reaction produced monoiron species of Fe(C {sub 2}H{sub 4}) with a spin state of S = 2.

  6. Light and/or atomic beams to detect ultraweak gravitational effects

    Directory of Open Access Journals (Sweden)

    Tartaglia Angelo


    Full Text Available We shall review the opportunities lent by ring lasers and atomic beams interferometry in order to reveal gravitomagnetic effects on Earth. Both techniques are based on the asymmetric propagation of waves in the gravitational field of a rotating mass; actually the times of flight for co- or counter-rotating closed paths turn out to be different. After discussing properties and limitations of the two approaches we shall describe the proposed GINGER experiment which is being developed for the Gran Sasso National Laboratories in Italy. The experimental apparatus will consist of a three-dimensional array of square rings, 6m × 6m, that is planned to reach a sensitivity in the order of 1prad/√Hertz or better. This sensitivity would be one order of magnitude better than the best existing ring, which is the G-ring in Wettzell, Bavaria, and would allow for the terrestrial detection of the Lense-Thirring effect and possibly of deviations from General Relativity. The possibility of using either the ring laser approach or atomic interferometry in a space mission will also be considered. The technology problems are under experimental study using both the German G-ring and the smaller G-Pisa ring, located at the Gran Sasso.

  7. Two-stage crossed beam cooling with ⁶Li and ¹³³Cs atoms in microgravity. (United States)

    Luan, Tian; Yao, Hepeng; Wang, Lu; Li, Chen; Yang, Shifeng; Chen, Xuzong; Ma, Zhaoyuan


    Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment. According to our simulations, the temperature of 6Li atoms can be cooled to T = 29.5 pK and T/TF = 0.59 with several thousand atoms, which propose a novel way to get ultracold fermion atoms with quantum degeneracy near pico-Kelvin.

  8. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species (United States)

    Cross, Jon B.; Cremers, David A.


    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  9. l- and n-changing collisions during interaction of a pulsed beam of Li Rydberg atoms with CO2 (United States)

    Dubreuil, B.; Harnafi, M.


    The pulsed Li atomic beam produced in our experiment is based on controlled transversely-excited-atmospheric CO2 laser-induced ablation of a Li metal target. The atomic beam is propagated in vacuum or in CO2 gas at low pressure. Atoms in the beam are probed by laser-induced fluorescence spectroscopy. This allows the determination of time-of-flight and velocity distributions. Li Rydberg states (n=5-13) are populated in the beam by two-step pulsed-laser excitation. The excited atoms interact with CO2 molecules. l- and n-changing cross sections are deduced from the time evolution of the resonant or collision-induced fluorescence following this selective excitation. l-changing cross sections of the order of 104 AṦ are measured; they increase with n as opposed to the plateau observed for Li* colliding with a diatomic molecule. This behavior is qualitatively well explained in the framework of the free-electron model. n-->n' changing processes with large cross sections (10-100 AṦ) are also observed even in the case of large electronic energy change (ΔEnn'>103 cm-1). These results can be interpreted in terms of resonant-electronic to vibrational energy transfers between Li Rydberg states and CO2 vibrational modes.

  10. Excitation and ionization of hydrogen and helium atoms by femtosecond laser pulses: theoretical approach by Coulomb-Volkov states; Excitation et ionisation des atomes d'hydrogene et d'helium par des impulsions laser femtosecondes: approche theorique par des etats de Coulomb-Volkov

    Energy Technology Data Exchange (ETDEWEB)

    Guichard, R


    We present a theoretical approach using Coulomb-Volkov states that appears useful for the study of atomic multi-photonic processes induced by intense XUV femtosecond laser pulses. It predicts hydrogen ionization spectra when it is irradiated by laser pulses in perturbations conditions. Three ways have been investigated. Extension to strong fields when {Dirac_h}{omega} > I{sub p}: it requires to include the hydrogen ground state population, introducing it in standard Coulomb-Volkov amplitude leads to saturated multi-photonic ionization. Extension to multi-photonic transitions with {Dirac_h}{omega} < I{sub p}: new quantum paths are open by the possibility to excite the lower hydrogen bound states. Multiphoton excitation of these states is investigated using a Coulomb-Volkov approach. Extension to helium: two-photon double ionization study shows the influence of electronic correlations in both ground and final state. Huge quantity of information such as angular and energetic distributions as well as total cross sections is available. (author)

  11. ASACUSA Anti-protonic Helium_Final

    CERN Multimedia

    CERN Audiovisual Production Service; CERN AD; Paola Catapano; Julien Ordan, Arzur Catel; Paola Catapano; ASACUSA COLLABORATION


    Latest precision measurement of the mass of the proton and the anti proton though the production of antiprotonic helium by the ASACUSA experiment at CERN's antimatter factory, with a beam from the Antiproton Decelerator

  12. Augmenting the bioactivity of polyetheretherketone using a novel accelerated neutral atom beam technique. (United States)

    Ajami, S; Coathup, M J; Khoury, J; Blunn, G W


    Polyetheretherketone (PEEK) is an alternative to metallic implants in orthopedic applications; however, PEEK is bioinert and does not osteointegrate. In this study, an accelerated neutral atom beam technique (ANAB) was employed to improve the bioactivity of PEEK. The aim was to investigate the growth of human mesenchymal stem cells (hMSCs), human osteoblasts (hOB), and skin fibroblasts (BR3G) on PEEK and ANAB PEEK. The surface roughness and contact angle of PEEK and ANAB PEEK was measured. Cell metabolic activity, proliferation and alkaline phosphatase (ALP) was measured and cell attachment was determined by quantifying adhesion plaques with cells. ANAB treatment increased the surface hydrophilicity [91.74 ± 4.80° (PEEK) vs. 74.82 ± 2.70° (ANAB PEEK), p PEEK compared to PEEK (p PEEK surfaces. MSCs seeded on ANAB PEEK in the presence of osteogenic media, expressed increased levels of ALP compared to untreated PEEK (p PEEK. ANAB treatment may improve the osteointegration of PEEK implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1438-1446, 2017. © 2016 Wiley Periodicals, Inc.

  13. Enhanced bioactivity and osseointegration of PEEK with accelerated neutral atom beam technology. (United States)

    Khoury, Joseph; Maxwell, Melissa; Cherian, Raymond E; Bachand, James; Kurz, Arthur C; Walsh, Michael; Assad, Michel; Svrluga, Richard C


    Polyetheretherketone (PEEK) is growing in popularity for orthopedic, spinal, and trauma applications but has potential significant limitations in use. PEEK is biocompatible, similar in elasticity to bone, and radiolucent, but is inert and therefore does not integrate well with bone. Current efforts are focusing on increasing the bioactivity of PEEK with surface modifications to improve the bone-implant interface. We used a novel Accelerated Neutral Atom Beam (ANAB) technology to enhance the bioactivity of PEEK. Human osteoblast-like cells seeded on ANAB-treated PEEK result in significantly enhanced proliferation compared with control PEEK. Cells grown on ANAB-treated PEEK increase osteogenic expression of ALPL (1.98-fold, p PEEK implants resulted in enhanced bone-in-contact by 3.09-fold (p PEEK has the potential to enhance its bioactivity, leading to bone formation and significantly decreasing osseointegration time of orthopedic and spinal implants. ANAB treatment, therefore, may significantly enhance the performance of PEEK medical implants and lead to improved clinical outcomes. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 531-543, 2017. © 2015 Wiley Periodicals, Inc.

  14. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)


    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  15. Characteristics of The Narrow Spectrum Beams Used in the Secondary Standard Dosimetry Laboratory at the Lebanese Atomic Energy Commission. (United States)

    Melhem, N; El Balaa, H; Younes, G; Al Kattar, Z


    The Secondary Standard Dosimetry Laboratory at the Lebanese Atomic Energy Commission has different calibration methods for various types of dosimeters used in industrial, military and medical fields. The calibration is performed using different beams of X-rays (low and medium energy) and Gamma radiation delivered by a Cesium 137 source. The Secondary Standard Dosimetry laboratory in charge of calibration services uses different protocols for the determination of high and low air kerma rate and for narrow and wide series. In order to perform this calibration work, it is very important to identify all the beam characteristics for the different types of sources and qualities of radiation. The following work describes the methods used for the determination of different beam characteristics and calibration coefficients with their uncertainties in order to enhance the radiation protection of workers and patient applications in the fields of medical diagnosis and industrial X-ray. All the characteristics of the X-ray beams are determined for the narrow spectrum series in the 40 and 200 keV range where the inherent filtration, the current intensity, the high voltage, the beam profile and the total uncertainty are the specific characteristics of these X-ray beams. An X-ray software was developed in order to visualize the reference values according to the characteristics of each beam. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  16. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets. (United States)

    Chen, Lei; Zhang, Jie; Freund, William M; Kong, Wei


    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs(+) is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs(+)-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10(6) helium atoms when the source temperature is between 14 K and 17 K.

  17. Standard Guide for Simulation of Helium Effects in Irradiated Metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This guide provides advice for conducting experiments to investigate the effects of helium on the properties of metals where the technique for introducing the helium differs in some way from the actual mechanism of introduction of helium in service. Simulation techniques considered for introducing helium shall include charged particle implantation, exposure to α-emitting radioisotopes, and tritium decay techniques. Procedures for the analysis of helium content and helium distribution within the specimen are also recommended. 1.2 Two other methods for introducing helium into irradiated materials are not covered in this guide. They are the enhancement of helium production in nickel-bearing alloys by spectral tailoring in mixed-spectrum fission reactors, and isotopic tailoring in both fast and mixed-spectrum fission reactors. These techniques are described in Refs (1-5). Dual ion beam techniques (6) for simultaneously implanting helium and generating displacement damage are also not included here. This lat...

  18. Preparation of circular Rydberg states in helium using the crossed fields method


    Zhelyazkova, V.; Hogan, S D


    Helium atoms have been prepared in the circular $|n=55,\\ell=54,m_{\\ell}=+54\\rangle$ Rydberg state using the crossed electric and magnetic fields method. The atoms, initially travelling in pulsed supersonic beams, were photoexcited from the metastable $1s2s\\,^3S_1$ level to the outermost, $m_{\\ell}=0$ Rydberg-Stark state with $n=55$ in the presence of a strong electric field and weak perpendicular magnetic field. Following excitation, the electric field was adiabatically switched off causing t...

  19. Two-color above threshold ionization of atoms and ions in XUV Bessel beams and combined with intense laser light

    CERN Document Server

    Seipt, D; Surzhykov, A; Fritzsche, S


    The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultra-violet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target (atoms) with regard to the beam axis. In addition, analogue to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of t...

  20. The influence of (n-n{sup '})-mixing processes in He*(n)+He(1s{sup 2}) collisions on He*(n) atoms' populations in weakly ionized helium plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mihajlov, A.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia and Montenegro); Ignjatovic, Lj.M. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia)], E-mail:; Sreckovic, V.A. [Institute of Physics, P.O. Box 57, 11001 Belgrade (Serbia); Djuric, Z. [Silvaco Data Systems, Compass Point, St Ives PE27 5JL (United Kingdom)


    The results of semi-classical calculations of rate coefficients of (n-n{sup '})-mixing processes due to collisions of Rydberg atoms He*(n) with He(1s{sup 2}) atoms are presented. It is assumed that these processes are caused by the resonant energy exchange within the electron component of He*(n)+He collision system. The method is realized through the numerical simulation of the (n-n{sup '})-mixing processes, and is applied for calculations of the corresponding rate coefficients. The calculations are performed for the principal quantum numbers n,n{sup '} in ranges 4{<=}natom and electron temperatures, T{sub a},T{sub e}, in domains 5000K{<=}T{sub a}{<=}T{sub e}{<=}20000K. It is shown that the (n-n{sup '})-mixing processes can significantly influence the populations of Rydberg atoms in non-equilibrium weakly ionized helium plasmas with ionization degree {approx}10{sup -4}. Therefore, these processes have to be included in the appropriate models of such plasmas.

  1. Effect of gold ion irradiation on helium migration in fluoroapatites investigated with nuclear reaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miro, S. [CRISMAT, ENSICAEN, 6 Bd du Marechal Juin, F-14050 Caen cedex (France); Studer, F. [CRISMAT, ENSICAEN, 6 Bd du Marechal Juin, F-14050 Caen cedex (France)]. E-mail:; Costantini, J.-M. [CEA Saclay, DMN/SRMA, F-91191 Gif-sur-Yvette cedex (France); Berger, P. [CEA Saclay, Laboratoire Pierre-Suee (CEA/CNRS), F-91191 Gif-sur-Yvette cedex (France); Haussy, J. [CEA DIF, DCRE/SEIM, BP 12, F-91680 Bruyeres-le-Chatel cedex (France); Trouslard, P. [CEA Saclay, LEMFI/INSTN/DRECAM, F-91191 Gif-sur-Yvette cedex (France); Grob, J.-J. [CNRS-InESS, 23, rue du Loess, B.P. 20, F-67037 Strasbourg cedex (France)


    In the context of nuclear waste storage, the knowledge of the effect of irradiation on the diffusion of helium produced by {alpha}-decays in apatites is an important issue. The analysis of implanted {sup 3}He diffusion for two compositions was carried out with the {sup 3}He(d,p){sup 4}He nuclear reaction by using a deuteron milli- or micro-beam. Upon 163-MeV Au-ion irradiation, a significant fraction of {sup 3}He atoms migrated towards the surface below which they were trapped, whereas a proportion of {sup 3}He atoms remained trapped in the end-of-range region. Moreover, a clear helium loss was determined. These radiation-induced migration effects are enhanced in Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2} compared with the Ca{sub 4}Nd{sub 6}(SiO{sub 4}){sub 6}F{sub 2}.

  2. High-speed, two-dimensional synchrotron white-beam x-ray radiography of spray breakup and atomization

    Energy Technology Data Exchange (ETDEWEB)

    Halls, Benjamin R.; Radke, Christopher D.; Reuter, Benjamin J.; Kastengren, Alan L.; Gord, James R.; Meyer, Terrence R.


    High-speed, two-dimensional synchrotron x-ray radiography and phase-contrast imaging are demonstrated in propulsion sprays. Measurements are performed at the 7-BM beamline at the Advanced Photon Source user facility at Argonne National Laboratory using a recently developed broadband x-ray white beam. This novel enhancement allows for high speed, high fidelity x-ray imaging for the community at large. Quantitative path-integrated liquid distributions and spatio-temporal dynamics of the sprays were imaged with a LuAG:Ce scintillator optically coupled to a high-speed CMOS camera. Images are collected with a microscope objective at frame rates of 20 kHz and with a macro lens at 120 kHz, achieving spatial resolutions of 12 μm and 65 μm, respectively. Imaging with and without potassium iodide (KI) as a contrast-enhancing agent is compared, and the effects of broadband attenuation and spatial beam characteristics are determined through modeling and experimental calibration. In addition, phase contrast is used to differentiate liquid streams with varying concentrations of KI. The experimental approach is applied to different spray conditions, including quantitative measurements of mass distribution during primary atomization and qualitative visualization of turbulent binary fluid mixing. High-speed, two-dimensional synchrotron white-beam x-ray radiography of spray breakup and atomization. Available from: [accessed Aug 31, 2017].

  3. Precision spectroscopy of the 2S-4P{sub 1/2} transition in atomic hydrogen on a cold thermal beam of optically excited 2S atoms

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Axel; Kolachevsky, Nikolai; Alnis, Janis; Yost, Dylan C.; Matveev, Arthur; Parthey, Christian G.; Pohl, Randolf; Udem, Thomas [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Khabarova, Ksenia [FSUE ' VNIIFTRI' , 141570 Moscow (Russian Federation); Haensch, Theodor W. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany); Ludwig-Maximilians-Universitaet, 80799 Muenchen (Germany)


    The 'proton size puzzle', i.e. the discrepancy between the values for the proton r.m.s. charge radius deduced from precision spectroscopy of atomic hydrogen and electron-proton-scattering on one side and the value deduced from muonic hydrogen spectroscopy on the other side, has been persisting for more than two years now. Although huge efforts have been put into trying to resolve this discrepancy from experimental and theoretical side, no convincing argument could be found so far. In this talk, we report on a unique precision spectroscopy experiment on atomic hydrogen, which is aiming to bring some light to the hydrogen part of the puzzle: In contrast to any previous high resolution experiment probing a transition frequency between the meta-stable 2S state and a higher lying nL state (n=3,4,6,8,12, L=S,P,D), our measurement of the 2S-4P{sub 1/2} transition frequency is the first experiment being performed on a cold thermal beam of hydrogen atoms optically excited to the 2S state. We will discuss how this helps to efficiently suppresses leading systematic effects of previous measurements and present the preliminary results we obtained so far.

  4. Characterization of polarized electrons coming from helium post-discharge source; Caracterisation du faisceau d`electrons polarises issus d`une source a post-decharge d`helium

    Energy Technology Data Exchange (ETDEWEB)

    Zerhouni, R.O.


    The objective of this thesis is the characterization of the polarized electron source developed at Orsay and foreseen to be coupled to a cw accelerator for nuclear physics experiments. The principle of operation of this source relies on the chemo-ionization reaction between optically aligned helium triplet metastable atoms and CO{sub 2} molecules. The helium metastable atoms are generated by injection of purified helium into a 2,45 GHz micro-wave discharge. They are optically pumped using two beams of 1,083 micro-meter resonant radiation, one circularly and the other linearly polarized. Both beams are delivered by a high power LNA laser. The metastable atomic beam interacts with a dense (10{sup 13} cm {sup -3}) spin singlet CO{sub 2} target. A fraction of the produced polarized electrons is extracted and collimated by electrostatic optics. Either to the Mott polarimeter or to the Faraday cup in order to measure the electron polarization and extracted current. For current intensities of 100 micro-Amperes, the electronic polarization reaches 62 % and shows that this type of source has reached the same high competitive level as the most performing GaAs ones. Additionally, the optical properties of the extracted beam are found to be excellent. These properties (energy spread and emittance) reflect the electron energy distribution at the chemo-ionization region. The upper limit of the beam`s energy spread is 0.24 eV since this value characterizes our instrumental resolution. The average normalized emittance is found to be 0.6 pi mm-mrad. These values satisfy the requirements of most cw accelerators. All the measurements were performed at low electron beam transport energies (1 to 2 KeV). (author). 105 refs., 54 figs., 4 tabs.

  5. Atomic Spectroscopy and Collisions Using Slow Antiprotons \\\\ ASACUSA Collaboration

    CERN Multimedia

    Matsuda, Y; Lodi-rizzini, E; Kuroda, N; Schettino, G; Hori, M; Pirkl, W; Mascagna, V; Malbrunot, C L S; Yamazaki, Y; Eades, J; Simon, M; Massiczek, O; Sauerzopf, C; Nagata, Y; Knudsen, H; Uggerhoj, U I; Mc cullough, R W; Toekesi, K M; Venturelli, L; Widmann, E; Zmeskal, J; Kanai, Y; Hayano, R; Kristiansen, H; Todoroki, K; Bartel, M A; Moller, S P; Charlton, M; Leali, M; Diermaier, M; Kolbinger, B


    ASACUSA (\\underline{A}tomic \\underline{S}pectroscopy \\underline{A}nd \\underline{C}ollisions \\underline{U}sing \\underline{S}low \\underline{A}ntiprotons) is a collaboration between a number of Japanese and European research institutions, with the goal of studying bound and continuum states of antiprotons with simple atoms.\\\\ Three phases of experimentation are planned for ASACUSA. In the first phase, we use the direct $\\overline{p}$ beam from AD at 5.3 MeV and concentrate on the laser and microwave spectroscopy of the metastable antiprotonic helium atom, $\\overline{p}$He$^+$, consisting of an electron and antiproton bound by the Coulomb force to the helium nucleus. Samples of these are readily created by bringing AD antiproton beam bunches to rest in helium gas. With the help of techniques developed at LEAR for resonating high precision laser beams with antiproton transitions in these atoms, ASACUSA achieved several of these first-phase objectives during a few short months of AD operation in 2000. Six atomic tr...

  6. Serial single molecule electron diffraction imaging: diffraction background of superfluid helium droplets (United States)

    Zhang, Jie; He, Yunteng; Lei, Lei; Alghamdi, Maha; Oswalt, Andrew; Kong, Wei


    In an effort to solve the crystallization problem in crystallography, we have been engaged in developing a method termed "serial single molecule electron diffraction imaging" (SS-EDI). The unique features of SS-EDI are superfluid helium droplet cooling and field-induced orientation: together the two features constitute a molecular goniometer. Unfortunately, the helium atoms surrounding the sample molecule also contribute to a diffraction background. In this report, we analyze the properties of a superfluid helium droplet beam and its doping statistics, and demonstrate the feasibility of overcoming the background issue by using the velocity slip phenomenon of a pulsed droplet beam. Electron diffraction profiles and pair correlation functions of ferrocene-monomer-doped droplets and iodine-nanocluster-doped droplets are presented. The timing of the pulsed electron gun and the effective doping efficiency under different dopant pressures can both be controlled for size selection. This work clears any doubt of the effectiveness of superfluid helium droplets in SS-EDI, thereby advancing the effort in demonstrating the "proof-of-concept" one step further.

  7. An atomic oxygen facility for studying polymer materials for spacecraft applications (United States)

    Tennyson, R. C.; French, J. B.; Kok, L. J.; Kleiman, J.; Zimcik, D. G.


    A nozzle beam facility utilizing microwave discharge on a helium carrier gas seeded with oxygen to produce atomic oxygen fluxes of the order of 10 to the 15th power atoms/cu cm/sec is described. In addition, limited test results obtained from exposing a graphite/epoxy composite and Kapton (H) film are presented in terms of mass loss measurements and changes in surface morphology.

  8. Spectroscopic determination of electron energies in a discharge of atomic H produced by a monoenergetic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, J; Fitzgerald, M; Khachan, J [Applied and Plasma Physics Group, School of Physics A28, University of Sydney, NSW 2006 (Australia)


    We construct a collisional-radiative model for atomic H produced in H{sub 2} gas at units and tens of mTorr pressures by a monoenergetic electron beam at units of keV energies. Unlike similar work in regimes of higher pressure and lower electron energies, we calculate the electron energy dependence of the two strongest Balmer lines (H{sub {alpha}} and H{sub {beta}}). A key result is that the intensity ratios do not uniquely specify the electron energy, and so we propose a new method for measurement of the spatial energy profile using the absolute and relative intensities in tandem. The model shows qualitative agreement with semi-empirical distributions of absolute and relative intensities versus electron energy for beams emerging from a biconical hollow cathode.

  9. A new method to induce transitions in muonic atoms using a high-power tunable dye laser coupled to a stopping muon beam

    CERN Document Server

    Bertin, A; Duclos, J; Gastaldi, Ugo; Gorini, G; Neri, G; Picard, J; Pitzurra, O; Placci, A; Polacco, E; Stefanini, G; Torelli, G; Vitale, A; Zavattini, E


    An apparatus is described in which a ruby-pumped dye laser is used to induce transitions from the 2S to the 2P levels of the muonic ion ( mu He)/sup +/. The dye laser supplies infra-red radiation pulses in the wavelengths (8040-8180) AA, at typical repetition rates of 1 pulse every 4 s, with an energy release per pulse of 300 mJ for 1.2 J pumping energy. A special synchronization procedure is followed to trigger the laser in close coupling with the incoming muon beam which is stopped in a helium target at pressures between 40 and 50 atm. The other performances of the device are fully discussed with reference both to the laser facility and to the special high-pressure helium target. (23 refs).

  10. Atomic radical abatement of organic impurities from electron beam deposited metallic structures

    NARCIS (Netherlands)

    Wnuk, J.D.; Gorham, J.M.; Rosenberg, S.G.; Madey, T.E.; Hagen, C.W.; Fairbrother, D.H.


    Focused electron beam induced processing (FEBIP) of volatile organometallic precursors has become an effective and versatile method of fabricating metal-containing nanostructures. However, the electron stimulated decomposition process responsible for the growth of these nanostructures traps much of

  11. An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    CERN Document Server

    Diermaier, Martin; Kolbinger, Bernadette; Malbrunot, Chloé; Massiczek, Oswald; Sauerzopf, Clemens; Simon, Martin C.; Wolf, Michael; Zmeskal, Johann; Widmann, Eberhard


    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.

  12. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    Energy Technology Data Exchange (ETDEWEB)

    Viaris de Lesegno, B. [Toulouse-3 Univ., LCAR-IRSAMC, 31 (France); Karam, J.C.; Perales, F.; Mainos, C.; Reinhardt, J.; Baudon, J.; Grancharova, D.; Durt, T.; Robert, J. [Paris-13 Univ., Lab. de Physique des Lasers, 93 - Villetaneuse (France); Boustimi, M. [ENSSAT, Lab. d' Optronique, 22 - Lannion (France); Bocvarski, V. [Institute of Physics, Zumun (Yugoslavia); Dos Santos, F.P. [Laboratoire Kastler-Brossel, 75 - Paris (France); Durt, T. [Brussel Vrije Universiteit, Tena-Tona, Brussel (Belgium); Haberland, H. [Freiburg Univ. (Germany)


    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p{sup 5} 4s, {sup 3}P{sub 2}) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 {yields} J = 3 transition) and 801.5 nm (open J = 2 {yields} J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple {mu}-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time using a multi-channel electron multiplier followed by a phosphor screen and a CCD camera. The results satisfactorily agree with all theoretical predictions. (authors)

  13. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    CERN Document Server

    Viaris De Lesegno, B; Perales, F; Mainos, C; Reinhardt, J; Baudon, J; Grancharova, D; Durt, T; Robert, J; Boustimi, M; Bocvarski, V; Dos Santos, F P; Durt, T; Haberland, H


    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p sup 5 4s, sup 3 P sub 2) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 -> J = 3 transition) and 801.5 nm (open J = 2 -> J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple mu-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time ...

  14. The helium-graphite interaction

    Energy Technology Data Exchange (ETDEWEB)

    Joly, F.; Lhuillier, C.; Brami, B. (Lab. de Physique Theorique des Liquides, Univ. Pierre et Marie Curie, 75 - Paris (France))


    We propose a very simple empirical form of the helium-on-graphite potential, which reproduces the energy of the six known bound states, the experimental average distance of the {sup 4}He atom from the surface in the ground state and the correct asymptotic behaviour of the interaction. This optimized potential is used to compute the binding energy of a {sup 3}He atom on the same substrate. The agreement between the theoretical predictions and the experimental results is a check of the set of variational parameters. (orig.).

  15. Effects of co-implanted oxygen or aluminum atoms on hydrogen migration and damage structure in multiple-beam irradiated Al sub 2 O sub 3

    CERN Document Server

    Katano, Y; Yamamoto, S; Nakazawa, T; Yamaki, D; Noda, K


    Depth profiles of implanted H atoms were measured for single crystalline Al sub 2 O sub 3 samples irradiated at 923 K with dual or triple beams of 0.25 MeV H-, 0.6 MeV He-, 2.4 MeV O-ions or 2.6 MeV Al-ions. The peaks occur at 1.55 and 1.45 mu m in the depth profiles measured for the H + Al dual beam irradiation and H + O dual beam case, respectively. The ratio of the peak areas is over 4, which is much larger than the implanted H atom ratio of 1.1, indicating that implanted Al atoms suppress the mobility of H atoms. However, the ratio becomes almost 1 between the triple beam samples with H + He + O-ions and with H + He + Al-ions at comparable doses. The fact demonstrates that implanted He atoms overwhelm the effects of the implanted self-cation/anion excess atoms on the migration behaviors of implanted hydrogen and radiation produced point defects, with the resulting sluggish cavity growth observed.

  16. Atomistic simulation of helium bubble nucleation in palladium

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liang [Department of Applied Physics, Hunan University, Changsha 410082 (China); Hu, Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail:; Xiao Shifang [Department of Applied Physics, Hunan University, Changsha 410082 (China)], E-mail:; Yang Jianyu [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Deng Huiqiu [Department of Applied Physics, Hunan University, Changsha 410082 (China)


    A palladium crystal has been constructed with 11808 atoms. 55 helium atoms occupied the octahedral position of palladium crystal are introduced and retained in a spherical region. Molecular dynamic simulations are performed in a constant temperature and constant volume ensemble (NVT) with temperature controlled by Nose-Hoover thermostat. The interactions between palladium atoms are described with modified analytic embedded atom method (MAEAM), the interactions between palladium atom and helium atom are in the form of Morse potential, and the interactions between helium atoms are in the form of L-J potential function. With the analysis of the radial distribution function (RDF) and microstructure, it reveals that some of helium atoms form a series of clusters with different size, and the nucleation core is random at low temperature, and which is the embryo of helium bubble. Increasing temperature can accelerate the process of bubble nucleation, and the clusters will aggregate and coalesce into a bigger one in which there are no palladium atoms, and it is considered as a helium bubble.

  17. Measurement of ion beam angular distribution at different helium gas pressures in a plasma focus device by large-area polycarbonate detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sohrabi, M.; Habibi, M., E-mail:; Ramezani, V. [Amirkabir University of Technology, Energy Engineering and Physics Department (Iran, Islamic Republic of)


    The paper presents an experimental study and analysis of full helium ion density angular distributions in a 4-kJ plasma focus device (PFD) at pressures of 10, 15, 25, and 30 mbar using large-area polycarbonate track detectors (PCTDs) (15-cm etchable diameter) processed by 50-Hz-HV electrochemical etching (ECE). Helium ion track distributions at different pressures, in particular, at the main axis of the PFD are presented. Maximum ion track density of ~4.4 × 10{sup 4} tracks/cm{sup 2} was obtained in the PCTD placed 6 cm from the anode. The ion distributions for all pressures applied are ring-shaped, which is possibly due to the hollow cylindrical copper anode used. The large-area PCTD processed by ECE proves, at the present state-of-theart, a superior method for direct observation and analysis of ion distributions at a glance with minimum efforts and time. Some observations of the ion density distributions at different pressures are reported and discussed.

  18. Proton-Helium Elastic Electromagnetic Cross-Section

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Burn [Chinese Academy of Sciences (CAS), Lanzhou (China); Ng, Kingyuen B. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)


    In the test facility of the C-ADS project, A 25-MeV proton beam is directed to hit a target consisting of 1-mm tungsten balls lubricated by 100-Pa helium gas. To estimate the power loss to the helium gas, an accurate collision cross section is computed.

  19. Interfacial characteristics of Y2O3/GaSb(001) grown by molecular beam epitaxy and atomic layer deposition (United States)

    Lin, Y. H.; Lin, K. Y.; Hsueh, W. J.; Young, L. B.; Chang, T. W.; Chyi, J. I.; Pi, T. W.; Kwo, J.; Hong, M.


    High quality Y2O3 on GaSb was achieved using both molecular beam epitaxy (MBE) and atomic layer deposition (ALD) with interfacial characteristics studied by in-situ X-ray photoelectron spectroscopy (XPS) and metal-oxide-semiconductor (MOS) electrical measurements. Ga-oxide and stoichiometric Sb-oxides were obtained in the MBE-Y2O3/GaSb and non-stoichiometric Sb2Ox (x<4) was found in the ALD-Y2O3/GaSb according to the XPS spectra. From the capacitance-voltage (CV) measurements, MBE-Y2O3 provides lower interfacial trap density (Dit) grown at elevated temperature of 200°C, while ALD-grown Y2O3 shows smaller hysteresis and higher dielectric constant.

  20. Resonant Formation of d{mu}t Molecules in Deuterium: An Atomic Beam Measurement of Muon Catalyzed dt Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M. C. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 2A6 (Canada); TRIUMF, Vancouver, Canada V6T 2A3 (Canada); Adamczak, A. [Institute of Nuclear Physics, 31-342 Krakow, (Poland); Bailey, J. M. [Chester Technology, Chester CH4 7QH (United Kingdom); Beer, G. A. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2 (Canada); Beveridge, J. L. [TRIUMF, Vancouver, Canada V6T 2A3 (Canada); Faifman, M. P. [Russian Research Center, Kurchatov Institute, Moscow 123182, Russia (Russian Federation); Huber, T. M. [Department of Physics, Gustavus Adolphus College, St. Peter, Minnesota 56082 (United States); Kammel, P. [Department of Physics and Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States); Kim, S. K. [Department of Physics, Jeonbuk National University, Jeonju City 560-756, Korea (Korea, Republic of); Knowles, P. E. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2 (Canada)] (and others)


    Resonant formation of d{mu}t molecules in collisions of muonic tritium ({mu}t ) on D{sub 2} was investigated using a beam of {mu}t atoms, demonstrating a new direct approach in muon catalyzed fusion studies. Strong epithermal resonances in d{mu}t formation were directly revealed for the first time. >From the time-of-flight analysis of 2036{+-}116 dt fusion events, a formation rate consistent with 0.73{+-}(0.16){sub meas}{+-} (0.09){sub model} times the theoretical prediction was obtained. For the largest peak at a resonance energy of 0.423{+-}0.037 eV , this corresponds to a rate of (7.1{+-}1.8)x10{sup 9} s{sup -1} , more than an order of magnitude larger than those at low energies. (c) 2000 The American Physical Society.

  1. submitter Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    CERN Document Server

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir


    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break ...

  2. Thermal stability of helium-vacancy clusters in iron

    CERN Document Server

    Morishita, K; Wirth, B D; Díaz de la Rubia, T


    Molecular dynamics calculations were performed to evaluate the thermal stability of helium-vacancy clusters (He sub n V sub m) in Fe using the Ackland Finnis-Sinclair potential, the Wilson-Johnson potential and the Ziegler-Biersack-Littmark-Beck potential for describing the interactions of Fe-Fe, Fe-He and He-He, respectively. Both the calculated numbers of helium atoms, n, and vacancies, m, in clusters ranged from 0 to 20. The binding energies of an interstitial helium atom, an isolated vacancy and a self-interstitial iron atom to a helium-vacancy cluster were obtained from the calculated formation energies of clusters. All the binding energies do not depend much on cluster size, but they primarily depend on the helium-to-vacancy ratio (n/m) of clusters. The binding energy of a vacancy to a helium-vacancy cluster increases with the ratio, showing that helium increases cluster lifetime by dramatically reducing thermal vacancy emission. On the other hand, both the binding energies of a helium atom and an iron ...

  3. A Quantum Gas Jet for Non-Invasive Beam Profile Measurement

    CERN Document Server

    Holzer, EB; Lefevre, T; Tzoganis, V; Welsch, C; Zhang, H


    A novel instrument for accelerator beam diagnostics is being developed by using De Broglie-wave focusing to create an ultra-thin neutral gas jet. Scanning the gas jet across a particle beam while measuring the interaction products, the beam profile can be measured. Such a jet scanner will provide an invaluable diagnostic tool in beams which are too intense for the use of wire scanners, such as the proposed CLIC Drive Beam. In order to create a sufficiently thin jet, a focusing element working on the de Broglie wavelength of the Helium atom has been designed. Following the principles of the Photon Sieve, we have constructed an Atomic Sieve consisting of 5230 nano-holes etched into a thin film of silicon nitride. When a quasi-monochromatic Helium jet is incident on the sieve, an interference pattern with a single central maximum is created. The stream of Helium atoms passing through this central maximum is much narrower than a conventional gas jet. The first experiences with this device are presented here, alon...

  4. Observation of double resonant laser induced transitions in the $v = n - l - 1 = 2$ metastable cascade of antiprotonic helium-4 atoms

    CERN Document Server

    Hayano, R S; Tamura, H; Torii, H A; Hori, Masaki; Maas, F E; Morita, N; Kumakura, M; Sugai, I; Hartmann, F J; Daniel, H; Von Egidy, T; Ketzer, B; Pohl, R; Horváth, D; Eades, John; Widmann, E; Yamazaki, T


    A new laser-induced resonant transition in the $v=n-l-1=2$ metastable cascade of antiprotonic $^4$He atoms has been found by using a double resonance technique. This was done by setting the first laser to the already known 470.724 nm resonance ($(n,l)=(37,34)\\rightarrow (36,33)$), while the $(38,35)\\rightarrow (37,34)$ transition was searched for with the second laser. The resonant transition was found at wavelength of 529.622$\\pm$0.003 nm, showing excellent agreement with a recent prediction of Korobov.

  5. Cross section measurements of the processes occurring in the fragmentation of H{sub n}{sup +} (3 {<=} n {<=} 35) hydrogen clusters induced by high speed (60 keV/u) collisions on helium atoms; Mesure des sections efficaces des differents processus intervenant dans la fragmentation d`agregats d`hydrogene H{sub n}{sup +} (3 {<=} n {<=} 35) induite par collision a haute vitesse (60 keV/u) sur un atome d`helium

    Energy Technology Data Exchange (ETDEWEB)

    Louc, Sandrine [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)


    Different processes involved in the fragmentation of ionised hydrogen clusters H{sub 3} + (H{sub 2}){sub (n-3)/2} (n = 5-35) have been studied in the same experiment: the fragmentation of the cluster is induced by the collision with an helium atom at high velocity ({approx_equal} c/100). The collision is realised in reversed kinematic - clusters are accelerated - which allows the detection of neutral and charged fragments. The different channels of fragmentation are identified by using coincidence techniques. For all the cluster sizes studied the capture cross sections of one electron of the target by the cluster is equal to the capture cross section of the H{sub 3}{sup +} ion. In the same way, the dissociation cross section of the H{sub 3}{sup +} core of the cluster does not depend on cluster size. These fragmentation processes are due to the interaction of H{sub 3}{sup +} core of the cluster and the helium atom without ionization of another component of the cluster. On the contrary, the cross sections of loss of one, two and three molecules by the cluster and the dissociation cross section of the cluster in all its molecular components depends strongly on the cluster size. This dependence is different from the one measured for the metastable decay of the cluster. Thus, the process of loss of molecules induced by a collision should correspond to a different dissociation mechanism. In regard of the singularities observed for the size dependence, the H{sub 9}{sup +}, H{sub 15}{sup +}, H{sub 19}{sup +} and H{sub 29}{sup +} clusters could be the `core` of the biggest clusters. These observation are in agreement with the size effects of smaller magnitude observed for the dissociation cross section (all the processes). The values of the cross section for the process of at least one ionization of the cluster indicate that about 80% of the fragmentation events result from this process. (author) 114 refs., 74 figs., 9 tabs.

  6. Exotic helium molecules; Molecules exotiques d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Portier, M


    We study the photo-association of an ultracold cloud of magnetically trapped helium atoms: pairs of colliding atoms interact with one or two laser fields to produce a purely long range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}P{sub 0}) molecule, or a {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) long range molecule. Light shifts in one photon photo-association spectra are measured and studied as a function of the laser polarization and intensity, and the vibrational state of the excited molecule. They result from the light-induced coupling between the excited molecule, and bound and scattering states of the interaction between two metastable atoms. Their analysis leads to the determination of the scattering length a = (7.2 {+-} 0.6) ruling collisions between spin polarized atoms. The two photon photo-association spectra show evidence of the production of polarized, long-range {sup 4}He{sub 2}(2{sup 3}S{sub 1}-2{sup 3}S{sub 1}) molecules. They are said to be exotic as they are made of two metastable atoms, each one carrying a enough energy to ionize the other. The corresponding lineshapes are calculated and decomposed in sums and products of Breit-Wigner and Fano profiles associated to one and two photon processes. The experimental spectra are fit, and an intrinsic lifetime {tau} = (1.4 {+-} 0.3) {mu}s is deduced. It is checked whether this lifetime could be limited by spin-dipole induced Penning autoionization. This interpretation requires that there is a quasi-bound state close to the dissociation threshold in the singlet interaction potential between metastable helium atoms for the theory to match the experiment. (author)

  7. An ultracold, optically trapped mixture of {87}Rb and metastable {4}He atoms

    CERN Document Server

    Flores, Adonis Silva; Vassen, Wim; Knoop, Steven


    We report on the realization of an ultracold (<25~muK) mixture of rubidium ({87}Rb) and metastable triplet helium ({4}He) in an optical dipole trap. Our scheme involves laser cooling in a dual-species magneto-optical trap, simultaneous MW- and RF-induced forced evaporative cooling in a quadrupole magnetic trap, and transfer to a single-beam optical dipole trap. We observe long trapping lifetimes for the doubly spin-stretched spin-state mixture and measure much shorter lifetimes for other spin-state combinations. We discuss prospects for realizing quantum degenerate mixtures of alkali-metal and metastable helium atoms.

  8. Helium vs. Proton Induced Displacement Damage in Electronic Materials (United States)

    Ringo, Sawnese; Barghouty, A. F.


    In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.

  9. Two-photon laser spectroscopy of antiprotonic helium and the antiproton-to-electron mass ratio

    CERN Document Server

    Hori, Masaki; Barna, Daniel; Andreas Dax,; Hayano, Ryugo; Friedreich, Susanne; Juhász, Bertalan; Pask, Thomas; Widmann, Eberhard; Horváth, Dezső; Venturelli, Luca; Zurlo, Nicola; 10.1038/nature10260


    Physical laws are believed to be invariant under the combined transformations of charge, parity and time reversal (CPT symmetry). This implies that an antimatter particle has exactly the same mass and absolute value of charge as its particle counterpart. Metastable antiprotonic helium ($\\bar{p}He^+$) is a three-body atom2 consisting of a normal helium nucleus, an electron in its ground state and an antiproton ($\\bar{p}$) occupying a Rydberg state with high principal and angular momentum quantum numbers, respectively n and l, such that n ≈ l + 1 ≈ 38. These atoms are amenable to precision laser spectroscopy, the results of which can in principle be used to determine the antiproton-to-electron mass ratio and to constrain the equality between the antiproton and proton charges and masses. Here we report two-photon spectroscopy of antiprotonic helium, in which $\\bar{p}^{3}He^{+}$ and $\\bar{p}^{4}He^{+}$ isotopes are irradiated by two counter-propagating laser beams. This excites nonlinear, two-phot...

  10. A short pulse (7 μs FWHM) and high repetition rate (dc-5kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NARCIS (Netherlands)

    Irimia, D.; Dobrikov, D.; Kortekaas, R.; Voet, H.; Ende, D.A. van den; Groen, W.A.; Janssen, M.H.M.


    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms

  11. A short pulse (7 micros FWHM) and high repetition rate (dc-5 kHz) cantilever piezovalve for pulsed atomic and molecular beams

    NARCIS (Netherlands)

    Irimia, D.; Dobrikov, D.H.; Kortekaas, R.; van der Voet, H.; van den Ende, D.A.; Groen, W.E.; Janssen, M.H.M.


    In this paper we report on the design and operation of a novel piezovalve for the production of short pulsed atomic or molecular beams. The high speed valve operates on the principle of a cantilever piezo. The only moving part, besides the cantilever piezo itself, is a very small O-ring that forms

  12. Dispersion in a four level N-scheme atomic system with co- and counter- propagating beams (United States)

    Davis, J. P.; Narducci, F. A.


    We motivate the study of an 'N-scheme' atomic system for the case of a bi-directional probe field. We derive the equations of motion. The equations were expanded in order of the counter-propagating field strength over the co-propagating field strength. We solve the equations numerically in steady state in a perturbative manner. The zeroth order solutions describe the dispersion and absorption of the co-propagating field, while the first order solutions describe the dispersion and absorption of the counter-propagating field. We investigate the solutions in two temperature regimes for a variety of field strengths. Regimes of similar dispersion for the co- and counter-propagating fields were found, as well as regimes of opposite behavior. In most cases, absorption of the fields is still a problem.

  13. Helium transfer line installation details.

    CERN Multimedia

    G. Perinic


    A particularity of the 32 m long four in one helium transfer line in between the cold box in USC55 and the cavern UX5 is the fact that the transfer line passes through a hole in the crane rail support beam. In order to ensure the alignment of the suspension rail in the interconnecting tunnel with the hole in the rail support as well as the connection points at both ends required precise measurements of the given geometries as well as the installation of a temporary target for the verification of the theoretical predictions.

  14. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney


    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  15. The helium question. (United States)

    Cook, E


    Helium appears indispensable for certain energy-related uses that may be important 50 years from now, when helium-bearing natural gas, a much cheaper source than air, may be exhausted. Present demand, however, is lower than productive capacity, and much helium is being dissipated into the atmosphere as natural gas is burned for fuel. Controversy over the need for a government-directed helium-conservation program reflects fundamental differences in viewpoints on the economic future of industrial society, on the limits of substitution of labor and capital for a depleting resource, and on intergenerational equity and risk-bearing.

  16. Dark Matter Detection Using Helium Evaporation and Field Ionization (United States)

    Maris, Humphrey J.; Seidel, George M.; Stein, Derek


    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1 MeV /c2 .

  17. Dark Matter Detection Using Helium Evaporation and Field Ionization. (United States)

    Maris, Humphrey J; Seidel, George M; Stein, Derek


    We describe a method for dark matter detection based on the evaporation of helium atoms from a cold surface and their subsequent detection using field ionization. When a dark matter particle scatters off a nucleus of the target material, elementary excitations (phonons or rotons) are produced. Excitations which have an energy greater than the binding energy of helium to the surface can result in the evaporation of helium atoms. We propose to detect these atoms by ionizing them in a strong electric field. Because the binding energy of helium to surfaces can be below 1 meV, this detection scheme opens up new possibilities for the detection of dark matter particles in a mass range down to 1  MeV/c^{2}.

  18. Fragmentation and plasmid strand breaks in pure and gold-doped DNA irradiated by beams of fast hydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wyer, J A; Latimer, C J; Shah, M B; Currell, F J [Centre for Plasma Physics, IRCEP, Queen' s University Belfast, BT7 1NN (United Kingdom); Butterworth, K T; Hirst, D G [Experimental Therapeutics Research Group, School of Pharmacy, Queen' s University Belfast, BT9 7BL (United Kingdom); Montenegro, E C [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cx. Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)], E-mail:


    The results of an investigation into the damage caused to dry plasmid DNA after irradiation by fast (keV) hydrogen atoms are presented. Agarose gel electrophoresis was used to assess single and double strand break yields as a function of dose in dry DNA samples deposited on a mica substrate. Damage levels were observed to increase with beam energy. Strand break yields demonstrated a considerable dependence on sample structure and the method of sample preparation. Additionally, the effect of high-Z nanoparticles on damage levels was investigated by irradiating DNA samples containing controlled amounts of gold nanoparticles. In contrast to previous (photonic) studies, no enhancement of strand break yields was observed with the particles showing a slight radioprotective effect. A model of DNA damage as a function of dose has been constructed in terms of the probability for the creation of single and double strand breaks, per unit ion flux. This model provides quantitative conclusions about the effects of both gold nanoparticles and the different buffers used in performing the assays and, in addition, infers the proportion of multiply damaged fragments.

  19. Nuclear astrophysics and the Daresbury Recoil Separator at the Holifield Radioactive Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.S.


    The Daresbury Recoil Separator (DRS) has been installed for nuclear astrophysics research at Oak Ridge National Laboratory`s Holifield Radioactive Ion Beam Facility. It will be used for direct measurements of capture reactions on radioactive ions which occur in stellar explosions such as novae, supernovae and X-ray bursts. These measurements will be made in inverse kinematics with radioactive heavy ion beams incident on hydrogen and helium targets, and the DRS will separate the capture reaction recoils from the intense flux of beam particles. Details of the new DRS experimental equipment and preliminary results from the first commissioning experiments with stable beams are described, along with the plans for the first measurements with radioactive beams. Other astrophysics research efforts at ORNL--in theoretical astrophysics, nuclear astrophysics data evaluation, heavy element nucleosynthesis, theoretical atomic astrophysics, and atomic astrophysics data--are also briefly described.

  20. Helium the disappearing element

    CERN Document Server

    Sears, Wheeler M


    The subject of the book is helium, the element, and its use in myriad applications including MRI machines, particle accelerators, space telescopes, and of course balloons and blimps. It was at the birth of our Universe, or the Big Bang, where the majority of cosmic helium was created; and stellar helium production continues. Although helium is the second most abundant element in the Universe, it is actually quite rare here on Earth and only exists because of radioactive elements deep within the Earth. This book includes a detailed history of the discovery of helium, of the commercial industry built around it, how the helium we actually encounter is produced within the Earth, and the state of the helium industry today. The gas that most people associate with birthday party balloons is running out. “Who cares?” you might ask. Well, without helium, MRI machines could not function, rockets could not go into space, particle accelerators such as those used by CERN could not operate, fiber optic cables would not...

  1. Feasibility of line-ratio spectroscopy on helium and neon as edge diagnostic tool for Wendelstein 7-X. (United States)

    Barbui, T; Krychowiak, M; König, R; Schmitz, O; Muñoz Burgos, J M; Schweer, B; Terra, A


    A beam emission spectroscopy system on thermal helium (He) and neon (Ne) has been set up at Wendelstein 7-X to measure edge electron temperature and density profiles utilizing the line-ratio technique or its extension by the analysis of absolutely calibrated line emissions. The setup for a first systematic test of these techniques of quantitative atomic spectroscopy in the limiter startup phase (OP1.1) is reported together with first measured profiles. This setup and the first results are an important test for developing the technique for the upcoming high density, low temperature island divertor regime.

  2. Investigations of levitated helium drops (United States)

    Whitaker, Dwight Lawrence


    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  3. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.


    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  4. Measurement of the scalar polarizability of the indium $6p_{1/2}$ state using two-step atomic-beam spectroscopy

    CERN Document Server

    Augenbraun, Benjamin L; Rupasinghe, P M; Majumder, P K


    We have completed a measurement of the Stark shift within the $^{115}$In $6s_{1/2} \\rightarrow 6p_{1/2}$ excited-state transition using two-step laser spectroscopy in an indium atomic beam. Combining this measurement with recent experimental results we determine the scalar polarizability, $\\alpha_{0}$, of the $6p_{1/2}$ state to be $7683 \\pm43 \\,a_{0}^{3}$ in atomic units, a result which agrees very well with recent theoretical calculations. In this experiment, one laser, stabilized to the $5p_{1/2} \\rightarrow 6s_{1/2}$ 410~nm transition, was directed transversely to the atomic beam, while a second, overlapping laser was scanned across the 1343~nm $6s_{1/2} \\rightarrow 6p_{1/2}$ transition. We utilized two-tone frequency-modulation spectroscopy of the infrared laser beam to measure the second-step absorption in the interaction region, where the optical depth is less than 10$^{-3}$. In the course of our experimental work we also determined the hyperfine splitting within the $6p_{1/2}$ state, improving upon th...

  5. Multidimensional characterisation of biomechanical structures by combining Atomic Force Microscopy and Focused Ion Beam: A study of the rat whisker. (United States)

    Adineh, Vahid Reza; Liu, Boyin; Rajan, Ramesh; Yan, Wenyi; Fu, Jing


    Understanding the heterogeneity of biological structures, particularly at the micro/nano scale can offer insights valuable for multidisciplinary research in tissue engineering and biomimicry designs. Here we propose to combine nanocharacterisation tools, particularly Focused Ion Beam (FIB) and Atomic Force Microscopy (AFM) for three dimensional mapping of mechanical modulus and chemical signatures. The prototype platform is applied to image and investigate the fundamental mechanics of the rat face whiskers, a high-acuity sensor used to gain detailed information about the world. Grazing angle FIB milling was first applied to expose the interior cross section of the rat whisker sample, followed by a "lift-out" method to retrieve and position the target sample for further analyses. AFM force spectroscopy measurements revealed a non-uniform pattern of elastic modulus across the cross section, with a range from 0.8GPa to 13.5GPa. The highest elastic modulus was found at the outer cuticle region of the whisker, and values gradually decreased towards the interior cortex and medulla regions. Elemental mapping with EDS confirmed that the interior of the rat whisker is dominated by C, O, N, S, Cl and K, with a significant change of elemental distribution close to the exterior cuticle region. Based on these data, a novel comprehensive three dimensional (3D) elastic modulus model was constructed, and stress distributions under realistic conditions were investigated with Finite Element Analysis (FEA). The simulations could well account for the passive whisker deflections, with calculated resonant frequency as well as force-deflection for the whiskers being in good agreement with reported experimental data. Limitations and further applications are discussed for the proposed FIB/AFM approach, which holds good promise as a unique platform to gain insights on various heterogeneous biomaterials and biomechanical systems. Copyright © 2015 Acta Materialia Inc. Published by Elsevier

  6. Laser Cooling, Trapping, and Bose-Einstein Condensation of Atoms and Molecules (United States)

    Leduc, Michèle; Dugué, Julien; Simonet, Juliette


    In this paper we first focus on the methods developed to control the position and the velocity of atoms, taking advantage of the radiative forces exerted on atoms placed in a laser beam. Temperatures in the range of μK can be reached for dilute atomic clouds trapped under vacuum in a very small region of space. The application to fountain clocks based on cold cesium atoms is presented. We then describe the characterization and the main features of Bose-Einstein condensates, a new state of matter of purely quantum origin, which can be obtained by subsequent evaporative cooling. The methods in use for cooling molecules are considered, in particular the collision processes or the photoassociation of cold atoms. The possibility of changing interactions between ultracold particles is also explained and photoassociation is illustrated by the recent experiments of our group dealing with metastable helium atoms.

  7. Effect of weld thermal cycle on helium bubble formation in stainless steel (United States)

    Kano, F.; Nakahigashi, S.; Nakamura, H.; Uesugi, N.; Mitamura, T.; Terasawa, M.; Irie, H.; Fukuya, K.


    Helium bubble structure was examined on a helium-implanted stainless steel after applying two kinds of heat input. Helium ions were implanted on Type 304 stainless steel at 573 K from 2 to 200 appm to a peak depth of 0.5 μm from the surface. After that, weld thermal history was applied by an electron beam. The cooling rates were selected to be 370 and 680 K/s from 1023 to 773 K. TEM observation revealed that nucleation and growth of helium bubbles were strongly dependent on the cooling rate after welding and the helium concentration.

  8. Atom Skimmers and Atom Lasers Utilizing Them (United States)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.


    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  9. Transport and extraction of radioactive ions stopped in superfluid helium

    CERN Document Server

    Huang Wan Xia; Gloos, K; Takahashi, N; Arutyunov, K; Pekola, J P; Äystö, J


    A new approach to convert a high energy beam to a low energy one, which is essential for the next generation radioactive ion beam facilities, has been proposed and tested at Jyvaeskylae, Finland. An open sup 2 sup 2 sup 3 Ra alpha-decay-recoil source has been used to produce radioactive ions in superfluid helium. The alpha spectra demonstrate that the recoiling sup 2 sup 1 sup 9 Rn ions have been extracted out of liquid helium. This first observation of the extraction of heavy positive ions across the superfluid helium surface was possible thanks to the high sensitivity of radioactivity detection. An efficiency of 36% was obtained for the ion extraction out of liquid helium.

  10. Lattice location of helium in uranium dioxide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garrido, F.; Nowicki, L. E-mail:; Sattonnay, G.; Sauvage, T.; Thome, L


    Lattice location of {sup 3}He atoms implanted into UO{sub 2} single crystals was performed by means of the channeling technique combined with nuclear reaction analysis (NRA) and Rutherford backscattering spectrometry (RBS). The {sup 3}He(d,p){sup 4}He reaction was used. The experimental angular scans show that helium atoms occupy octahedral interstitial positions.

  11. A precise few-nucleon size difference by isotope shift measurements of helium (United States)

    Rezaeian, Nima Hassan

    We perform high precision measurements of an isotope shift between the two stable isotopes of helium. We use laser excitation of the 23 S1 -- 23P0 transition at 1083 .... in a metastable beam of 3He and 4He atoms. A newly developed tunable laser frequency selector along with our previous electro-optic frequency modulation technique provides extremely reliable, adaptable, and precise frequency and intensity control. The intensity control contributes negligibly to overall experimental uncertainty by selecting (t selection internal and external consistency checks, we are able to obtain results consistent with the best previous measurements, but with substantially improved precision. Our measurement of the 23S 1 -- 23P0 isotope shift between 3He and 4He is 31 097 535.2 (5)kHz. The most recent theoretic calculation combined with this measuremen. yields a new determination for nuclear size differences between 3He and 4He: Deltarc = 0.292 6 (1)exp (8)th(52)expfm, with a precision of less than a part in 104 coming from the experimental uncertainty (first parenthesis), and a part in 10 3 coming from theory. This value is consistent with electron scattering measurement, but a factor of 10 more precise. It is inconsistent (4 sigma) with a recent isotope shift measurement on another helium transition (2 1S0 -- 23 S1). Comparisons with ongoing muonic helium measurements may provide clues to the origin of what is currently called the proton puzzle: electronic and muonic measurements of the proton size do not agree. In the future, the experimental improvements described here can be used for higher precision tests of atomic theory and quantum electrodynamics, as well as an important atomic physics source of the fine structure constant.

  12. Pulsed extraction of ionization from helium buffer gas


    Morrissey, D. J.; Bollen, G.; Facina, M.; Schwarz, S.


    The migration of intense ionization created in helium buffer gas under the influence of applied electric fields is considered. First the chemical evolution of the ionization created by fast heavy-ion beams is described. Straight forward estimates of the lifetimes for charge exchange indicate a clear suppression of charge exchange during ion migration in low pressure helium. Then self-consistent calculations of the migration of the ions in the electric field of a gas-filled cell at the Nationa...

  13. The core helium flash (United States)

    Cole, P. W.; Deupree, R. G.


    The role of convection in the core helium flash is simulated by two-dimensional eddies interacting with the thermonuclear runaway. These eddies are followed by the explicit solution of the two-dimensional conservation laws with a two-dimensional finite difference hydrodynamics code. Thus, no phenomenological theory of convection such as the local mixing length theory is required. The core helium flash is violent, producing a deflagration wave. This differs from the detonation wave (and subsequent disruption of the entire star) produced in previous spherically symmetric violent core helium flashes as the second dimension provides a degree of relief which allows the expansion wave to decouple itself from the burning front. The results predict that a considerable amount of helium in the core will be burned before the horizontal branch is reached and that some envelope mass loss is likely.

  14. The Descending Helium Balloon (United States)

    Helseth, Lars Egil


    I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.

  15. On the mechanism of the picosecond switching phenomenon in devices based on the open discharge with counter-propagating electron beams (United States)

    Bokhan, P. A.; Gugin, P. P.; Lavrukhin, M. A.; Zakrevsky, Dm E.


    The subnanosecond breakdown stage in the kivotron, a switching device with counter-propagating electron beams based on the open discharge in helium, was experimentally studied. It was shown that the fast discharge stage arises when the discharge self-sustaining regime is ensured by the photoelectron emission from of the cathodes due to the resonant radiation, emitted by fast helium atoms that have large Doppler shifts with respect to the line center; as a result, the emitted radiation reaches the cathodes without imprisonment by the helium gas. Since the cross-section for the excitation of a helium atom with another (fast) helium atom increases rapidly with the energy of the fast atom, the duration of the breakdown stage strongly depends on the working voltage. The transient characteristic is modulated by microwave oscillations of ~4.4 GHz frequency generated during the discharge of kivotron self-capacitance through its self-induction. An increase in working pressure leads to suppression of oscillations. A switching time of 80 ps was achieved in a discharge circuit loaded to a resistance R L  ⩾  50 Ω. On decreasing the value of R L down to 10 Ω, the switching time increases to about 100 ps at 1.5 kA current. A minimum switching time that can be achieved via kivotron design optimization is estimated to be about 35 ps.

  16. Robust Ferromagnetism of Chromium Nanoparticles Formed in Superfluid Helium. (United States)

    Yang, Shengfu; Feng, Cheng; Spence, Daniel; Al Hindawi, Aula M A A; Latimer, Elspeth; Ellis, Andrew M; Binns, Chris; Peddis, Davide; Dhesi, Sarnjeet S; Zhang, Liying; Zhang, Yafei; Trohidou, Kalliopi N; Vasilakaki, Marianna; Ntallis, Nikolaos; MacLaren, Ian; de Groot, Frank M F


    Chromium nanoparticles are formed using superfluid helium droplets as the nanoreactors, which are strongly ferromagnetic. The transition from antiferromagentism to ferromagnetism is attributed to atomic-scale disorder in chromium nanoparticles, leading to abundant unbalanced surface spins. Theoretical modeling confirms a frustrated aggregation process in superfluid helium due to the antiferromagnetic nature of chromium. © 2016 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. How to make Raman-inactive helium visible in Raman spectra of tritium-helium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Schloesser, M.; Pakari, O.; Rupp, S.; Mirz, S.; Fischer, S. [Institute of Technical Physics, Tritium Laboratory Karlsruhe - TLK, Karlsruhe Institute of Technology - KIT, Karlsruhe (Germany)


    Raman spectroscopy, a powerful method for the quantitative compositional analysis of molecular gases, e.g. mixtures of hydrogen isotopologues, is not able to detect monoatomic species like helium. This deficit can be overcome by using radioluminescence emission from helium atoms induced by β-electrons from tritium decay. We present theoretical considerations and combined Raman/radioluminescence spectra. Furthermore, we discuss the linearity of the method together with validation measurements for determining the pressure dependence. Finally, we conclude how this technique can be used for samples of helium with traces of tritium, and vice versa. (authors)

  18. Improving surface smoothness and photoluminescence of CdTe(1 1 1)A on Si(1 1 1) substrates grown by molecular beam epitaxy using Mn atoms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jyh-Shyang, E-mail: [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Tsai, Yu-Hsuan; Chen, Chang-Wei; Dai, Zi-Yuan; Tong, Shih-Chang [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Chu-Shou [Graduate Institute of Electro-Optical Engineering, Tatung University, Taipei 10452, Taiwan (China); Wu, Chih-Hung [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Yuan, Chi-Tsu; Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China)


    Highlights: • CdTe(1 1 1)A epilayers were grown on Si(1 1 1) substrates by molecular beam epitaxy. • We report an enhanced growth using Mn atoms. • The significant improvements in surface quality and optical properties were found. - Abstract: This work demonstrates an improvement of the molecular beam epitaxial growth of CdTe(1 1 1)A epilayer on Si(1 1 1) substrates using Mn atoms. The reflection high-energy electron diffraction patterns show that the involvement of some Mn atoms in the growth of CdTe(1 1 1)A is even more effective than the use of a buffer layer with a smooth surface for forming good CdTe(1 1 1)A epilayers. 10 K Photoluminescence spectra show that the incorporation of only 2% Mn significantly reduced the intensity of defect-related emissions and considerably increased the integral intensity of exciton-related emissions by a large factor of about 400.

  19. Atomic collision and spectroscopy experiments with ultra-low-energy antiprotons

    CERN Document Server

    Torii, Hiroyuki A; Toyoda, Hiroshi; Imao, Hiroshi; Kuroda, Naofumi; Varentsov, Victor L; Yamazaki, Yasunori


    Antiproton, the antiparticle of proton, is a unique projectile in the study of atomic collision physics, which can be treated theoretically either as a 'negative proton' or a 'heavy electron'. Atomic capture of an antiproton will result in formation of a highly excited exotic atom. Antiprotonic helium atom has been studied intensively by means of precision laser spectroscopy, which has led to a stringent determination of antiproton mass and charge to a level of ppb. Comparison of these values with those of proton gives one of the best tests of CPT invariance, the most fundamental symmetry in physics. However, the dynamic processes of antiproton capture remain unclarified. With an aim to produce an antiproton beam at atomic-physics energies for 'pure' collision experiments, we have so far developed techniques to decelerate, cool and confine antiprotons in vacuo, using a sequential combination of the Antiproton Decelerator (AD) at CERN, a Radio-Frequency Quadrupole Decelerator (RFQD), and an electromagnetic tra...

  20. APPLICATIONS OF LASERS AND OTHER TOPICS IN LASER PHYSICS AND TECHNOLOGY: Investigation of the properties of resonance holograms in a beam of sodium atoms (United States)

    Grigoriev, Igor'S.; Likhanskiĭ, V. V.; Semerok, A. F.; Firsov, Valerii A.; Chankin, A. V.


    Experimental and theoretical (using a two-level approximation) investigations were made of the properties of resonance holograms (excited-state gratings) created by monochromatic linearly polarized radiation from a cw dye laser in a beam of sodium atoms as a result of the 32P3/2- 32S1/2(F=2) transition. A good qualitative agreement was observed between the theory and experimental results. It was established that the maximum diffraction efficiency was attained when the intensity of the radiation used to form the hologram was of the order of the intensity needed to saturate the transition and the optical thickness of the beam was ~1.1. The sensitivity of the medium was ~1 nJ/cm2 for 1% diffraction efficiency.

  1. Study of X-Ray and $\\gamma$-Ray Spectra from Antiprotonic Atoms at the Slowly Extracted Antiproton Beam of LEAR

    CERN Multimedia


    This experiment will study the X-ray spectra of antiprotonic atoms and the $\\gamma$ spectra of residual nuclei after the antiproton absorption. We intend to begin with measurements on selected isotopically pure targets. Strong interaction effects, the antiproton absorption and the atomic cascade are analysed through the measurement of energies, lineshapes, relative and absolute intensities of all observable lines. The experiments are continued to determine st in resolved fine structure levels and in different isotopes of the same element. Coincidence techniques may be applied. All components of the experimental set-up are already existing from previous experiments and we could begin the measurements with any slowly extracted beam of low energy at LEAR.

  2. Precision Survey of X-Rays from $\\overline{p}p (\\overline{p}d)$ Atoms Using the Initial LEAR Beam

    CERN Multimedia


    The experiment searches for the K and L X-ray series from @*p~(@*d) atoms, then measures their shift and width relative to QED predictions, and investigates their yields as a function of gas density. \\\\ \\\\ The @* are stopped in 1 atmosphere of H2 (D2) gas in a large aluminium flask whose 1 mm wall thickness eliminates externally produced low energy X-rays. The gas is cooled from a remote helium refrigerator and its temperature varied between 30|0K and 300|0K, giving a density range of 10 and large changes in relative line intensities. With 300~mm|2 area and 250~eV resolution FWHM at 5.9~keV, the Si(Li) X-ray detector penetrates the vacuum to come very close to a large beryllium window. Withstanding the large, charged particle flux from @*p annihilations has required special development of the Si(Li) detector. High purity metals are used for flask, window and detector end-housing to reduce background X-ray lines. A NaI ring suppresses the continuum background that comes principally from Compton scattering in t...

  3. A threshold-based approach to calorimetry in helium droplets: measurement of binding energies of water clusters. (United States)

    Lewis, William K; Harruff-Miller, Barbara A; Gord, Michael A; Gord, Joseph R; Guliants, Elena A; Bunker, Christopher E


    Helium droplet beam methods have emerged as a versatile technique that can be used to assemble a wide variety of atomic and molecular clusters. We have developed a method to measure the binding energies of clusters assembled in helium droplets by determining the minimum droplet sizes required to assemble and detect selected clusters in the spectrum of the doped droplet beam. The differences in the droplet sizes required between the various multimers are then used to estimate the incremental binding energies. We have applied this method to measure the binding energies of cyclic water clusters from the dimer to the tetramer. We obtain measured values of D(0) that are in agreement with theoretical estimates to within ∼20%. Our results suggest that this threshold-based approach should be generally applicable using either mass spectrometry or optical spectroscopy techniques for detection, provided that the clusters selected for study are at least as strongly bound as those of water, and that a peak in the overall spectrum of the beam corresponding only to the cluster chosen (at least in the vicinity of the threshold) can be located.

  4. The antimicrobial effects of helium and helium-air plasma on Staphylococcus aureus and Clostridium difficile. (United States)

    Galvin, S; Cahill, O; O'Connor, N; Cafolla, A A; Daniels, S; Humphreys, H


    Healthcare-associated infections (HCAI) affect 5-10% of acute hospital admissions. Environmental decontamination is an important component of all strategies to prevent HCAI as many bacterial causes survive and persist in the environment, which serve as ongoing reservoirs of infection. Current approaches such as cleaning with detergents and the use of chemical disinfectant are suboptimal. We assessed the efficacy of helium and helium-air plasma in killing Staphylococcus aureus and Clostridium difficile on a glass surface and studied the impact on bacterial cells using atomic force microscopy (AFM). Both plasma types exhibited bactericidal effects on Staph. aureus (log3·6 - >log7), with increased activity against methicillin-resistant strains, but had a negligible effect on Cl. difficile spores (helium and helium-air plasma as a decontaminant and demonstrated a significant reduction in bacterial counts of Staphylococcus aureus on a glass surface. Atomic force microscopy morphologically confirmed the impact on bacterial cells. This approach warrants further study as an alternative to current options for hospital hygiene. © 2013 The Society for Applied Microbiology.

  5. Growth of Atomic Hexagonal Boron Nitride Layers and Graphene/Hexagonal Boron Nitride Heterostructures by Molecular Beam Epitaxy (United States)

    Xu, Zhongguang

    Graphene, as a famous Van der Waals material, has attracted intensive attention from research group and industry all over the world after 2004, while hexagonal boron nitride (h-BN), as an excellent two-dimensional (2D) dielectric layer, has been studied intensively mainly for its compatibility with graphene and other 2D materials. To realize the technological potential of 2D system, it is essential to synthesize large-area, high-quality 2D thin films through a scalable and controllable method in order to investigate novel phenomenon in fundamental physics and promising device applications. In this thesis, the growth of graphene, h-BN and their vertical and lateral heterostructures by molecular beam epitaxy (MBE) is mainly discussed. In addition, the growth mechanism, fundamental physics and possible applications are also studied. In-situ epitaxial growth of graphene/h-BN heterostructures on cobalt (Co) film substrate was achieved by using plasma-assisted MBE in Chapter 2. We demonstrated a solution for direct fabricating graphene/h-BN vertical stacking structures. Various characterizations, such as Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM), were carried out to confirm and evaluate the heterostructures. Wafer-scale heterostructures consisting of single-layer/bilayer graphene and multilayer h-BN were achieved. The mismatch angle between graphene and h-BN is below 1°. Chapter 3 studied the growth of graphene/h-BN heterostructures on Co foil substrate by plasma-assisted MBE. It is found that the coverage of h-BN layers on the epitaxial thin graphite layer is growth-time dependent. Large-area, uniform-quality h-BN film was successfully deposited on thin graphite layer. Based on the as-grown h-BN (5-6 nm)/G (26-27 nm) heterostructure, without using any transferring process, we fabricated capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration to evaluate the

  6. Imaging and nanofabrication with the helium ion microscope of the Van Leeuwenhoek Laboratory in Delft

    NARCIS (Netherlands)

    Alkemade, P.F.A.; Koster, E.M.; Veldhoven, E. van; Maas, D.J.


    Although helium ion microscopy (HIM) was introduced only a few years ago, many new application fields are emerging. The connecting factor between these novel applications is the unique interaction of the primary helium ion beam with the sample material at and just below its surface. In particular,

  7. Cavitation in flowing superfluid helium (United States)

    Daney, D. E.


    Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .


    Energy Technology Data Exchange (ETDEWEB)

    WANG,L.; JIA,L.X.


    A liquid helium target for the high-energy physics was built and installed in the proton beam line at the Alternate Gradient Synchrotron of Brookhaven National Laboratory in 2001. The target flask has a liquid volume of 8.25 liters and is made of thin Mylar film. A G-M/J-T cryocooler of five-watts at 4.2K was used to produce liquid helium and refrigerate the target. A thermosyphon circuit for the target was connected to the J-T circuit by a liquid/gas separator. Because of the large heat load to the target and its long transfer lines, thermal oscillations were observed during the system tests. To eliminate the oscillation, a series of tests and analyses were carried out. This paper describes the phenomena and provides the understanding of the thermal oscillations in the target system.

  9. Helium, hydrogen, and fuzz in plasma-facing materials (United States)

    Hammond, Karl D.


    Tungsten, the primary material under consideration as the divertor material in magnetic-confinement nuclear fusion reactors, has been known for the last decade to form ‘fuzz’—a layer of microscopic, high-void-fraction features on the surface—after only a few hours of exposure to helium plasma. Fuzz has also been observed in molybdenum, tantalum, and several other metals. Helium bubbles in tungsten and other metals are also known to change the hardness of the surface, accumulate at grain boundaries and dislocations, and increase hydrogen isotope retention. This article reviews helium- and hydrogen-induced surface evolution, including fuzz formation, in tungsten and other plasma-facing materials, as well as modeling and experimental efforts that have been undertaken to understand the mechanisms of fuzz formation, helium and hydrogen transport in plasma-facing materials, and relevant atomic-scale and electronic effects relevant to plasma-facing materials.

  10. Broken symmetry makes helium

    CERN Multimedia

    Gray, P L


    "The subatomic pion particle breaks the charge symmetry rule that governs both fusion and decay. In experiments performed at the Indiana University Cyclotron Laboratory, physicists forced heavy hydrogen (1 proton + 1 neutron) to fuse into helium in a controlled, measurable environment" (1 paragraph).

  11. Beam Dynamics

    CERN Document Server

    Wilson, E


    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '2 Beam Dynamics' with the content: 2 Beam Dynamics 2.1 Linear Transverse Beam Dynamics 2.2 Coupling 2.3 Liouville's Theorem 2.4 Momentum Dependent Transverse Motion 2.5 Longitudinal Motion

  12. Observation of correlated atom pairs in spontaneous four wave mixing of two colliding Bose-Einstein condensates; Observation de paires d'atomes correles au travers de la collision de deux condensats de Bose-Einstein

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, A


    In this thesis, we report on the observation of pairs of correlated atoms produced in the collision of two Bose-Einstein condensates of metastable helium. Three laser beams perform a Raman transfer which extracts the condensate from the magnetic trap and separates it into two parts with opposite mean momenta. While the condensates propagate, elastic scattering of pairs of atoms occurs, whose momenta satisfy energy and momentum conservation laws. Metastable helium atoms large internal energy allows the use of a position-sensitive, single-atom detector which permits a three-dimensional reconstruction of the scattered atoms'momenta. The statistics of these momenta show correlations for atoms with opposite momenta. The measured correlation volume can be understood from the uncertainty-limited momentum spread of the colliding condensates. This interpretation is confirmed by the observation of the momentum correlation function for two atoms scattered in the same direction. This latter effect is a manifestation of the Hanbury Brown-Twiss effect for indistinguishable bosons. Such a correlated-atom-pair source is a first step towards experiments in which one would like to confirm the pairs'entanglement. (author)

  13. Nitrogen versus helium: effects of the choice of the atomizing gas on the structures of Fe{sub 50}Ni{sub 30}Si{sub 10}B{sub 10} and Fe{sub 32}Ni{sub 36}Ta{sub 7}Si{sub 8}B{sub 17} powders

    Energy Technology Data Exchange (ETDEWEB)

    Zambon, A


    Gas atomization can produce, besides a possible significant degree of undercooling, high cooling rates, whose extent depends on the size of the droplets, on their velocity with respect to the surrounding medium, on the thermo-physical properties of both the alloy and the gas, and of course on the operating conditions such as melt overheating and gas-to-metal flow ratio. In this respect it is well-known that the atomizing gas can play a significant role in determining both the powder size distribution and the kind and mix of phases which result from the solidification and cooling processes. The microstructures and solidification morphologies of powders obtained from nitrogen and helium sonic gas atomization of two iron-nickel base glass forming alloys, Fe{sub 50}Ni{sub 30}Si{sub 10}B{sub 10} and Fe{sub 32}Ni{sub 36}Ta{sub 7}Si{sub 8}B{sub 17}, were investigated by means of light microscopy, X-ray diffraction (XRD) and differential thermal analysis (DTA). The Fe{sub 32}Ni{sub 36}Ta{sub 7}Si{sub 8}B{sub 17} alloy exhibits a higher proneness to the development of amorphous phase than the Fe{sub 50}Ni{sub 30}Si{sub 10}B{sub 10} alloy, while the effect of the higher speed attainable by the stream of helium with respect to that of nitrogen, affords not only to obtain a larger amount of particles in the finer size ranges, but also to affect the relative amounts of phases within the different size fractions.

  14. Detection of charged particles in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, Simon R. [Brown Univ., Providence, RI (United States)


    This thesis is concerned with the use of a large superfluid helium detector for the detection of solar neutrinos. A small-scale prototype of this type of detector has been constructed and tested. In this thesis the author discussed in detail the design of the apparatus, the experiments which have been carried out, and what has been learned about the important physical processes involved in this type of detector. These processes include the anisotropic generation of phonons and rotons by the recoiling particle, the propagation of the phonons and rotons in the liquid, the evaporation process at the liquid surface, and the adsorption of the helium atoms onto the wafers. In addition he discusses the generation and detection of fluorescent photons from recoiling particles. The implications of these results to the design of a full-scale detector of neutrinos are discussed.

  15. Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta2O5) (United States)

    Bassiri, Riccardo; Liou, Franklin; Abernathy, Matthew R.; Lin, Angie C.; Kim, Namjun; Mehta, Apurva; Shyam, Badri; Byer, Robert L.; Gustafson, Eric K.; Hart, Martin; MacLaren, Ian; Martin, Iain W.; Route, Roger K.; Rowan, Sheila; Stebbins, Jonathan F.; Fejer, Martin M.


    Amorphous tantala (a-Ta2O5) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta2O5 coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta2O5 and other a-T2O5 studies.

  16. Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta2O5

    Directory of Open Access Journals (Sweden)

    Riccardo Bassiri


    Full Text Available Amorphous tantala (a-Ta2O5 is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta2O5 coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells of atoms in sequence; oxygen, tantalum, oxygen, and tantalum. A discussion is also included on how these models can be interpreted within the context of published crystalline Ta2O5 and other a-T2O5 studies.

  17. Electron-atom collision studies using optically state selected beams. Progress report, May 15, 1987--May 14, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Celotta, R.J.; Kelley, M.H.


    This report discusses progress made during the current contract period on the authors research program to study collisions between spin-polarized electrons and optically prepared atoms. The objective of this work is to stimulate a deeper theoretical understanding of the electron-atom interaction by providing more complete experimental measurements on colliding systems. By preparing the internal states of the collision partners before scattering, they are able to extract substantially more information about the scattering process than is available from more conventional measurements of differential cross sections. The authors are principally interested in observing the role played by spin in low energy electron-atom collisions. The additional information provided by these spin-dependent measurements can greatly enhance understanding of both exchange and the spin-orbit interaction in the scattering process. They have made substantial progress in the past three years in their measurements both of elastic and superelastic scattering of spin-polarized electrons from optically pumped sodium.

  18. Measurement of helium production cross sections of iron for d-T neutrons by helium accumulation method

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Yoshiyuki; Kanda, Yukinori; Nagae, Koji; Fujimoto, Toshihiro [Kyushu Univ., Fukuoka (Japan); Ikeda, Yujiro


    Helium production cross sections of Iron were measured by helium accumulation method for neutron energies from 13.5 to 14.9 MeV. Iron samples were irradiated with FNS, an intense d-T neutron source of JAERI. As the neutron energy varies according to the emission angle at the neutron source, the samples were set around the neutron source and were irradiated by neutrons of different energy depending on each sample position. The amount of helium produced in a sample was measured by Helium Atoms Measurement System at Kyushu University. The results of this work are in good agreement with other experimental data in the literature and also compared with the evaluated values in JENDL-3. (author)

  19. Order within disorder: The atomic structure of ion-beam sputtered amorphous tantala (a-Ta_2O_5)


    Bassiri, Riccardo; Liou, Franklin; Abernathy, Matthew R.; Lin, Angie C.; Kim, Namjun; Mehta, Apurva; Shyam, Badri; Byer, Robert L.; Gustafson, Eric K.; Hart, Martin; MacLaren, Ian; Martin, Iain W.; Roger K. Route; Rowan, Sheila; Stebbins, Jonathan F.


    Amorphous tantala (a-Ta2O5) is a technologically important material often used in high-performance coatings. Understanding this material at the atomic level provides a way to further improve performance. This work details extended X-ray absorption fine structure measurements of a-Ta2O5 coatings, where high-quality experimental data and theoretical fits have allowed a detailed interpretation of the nearest-neighbor distributions. It was found that the tantalum atom is surrounded by four shells...

  20. Note: Determination of torsional spring constant of atomic force microscopy cantilevers: Combining normal spring constant and classical beam theory

    DEFF Research Database (Denmark)

    Álvarez-Asencio, R.; Thormann, Esben; Rutland, M.W.


    A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power...

  1. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute. (United States)

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan


    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C(4+) beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C(4+) was almost 14 μA at 15 kV extraction voltage. To get higher current of the C(4+) beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10(-7) mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C(4+) beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed.

  2. Atoms, molecules & elements

    CERN Document Server

    Graybill, George


    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  3. Atom beam triangulation of organic layers at 100 meV normal energy: self-assembled perylene on Ag(1 1 0) at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kalashnyk, Nataliya; Khemliche, Hocine; Roncin, Philippe, E-mail:


    Highlights: • A new technique to monitor on-line, the growth and organization of organic molecules. • Atom beam triangulation points directions where the molecules align to each other. • The contrast is given by the variation of the width of the scattering pattern. • It is non-destructive and detects early stages of the organization. • The system investigated is self-assembly of perylene on Ag(1 1 0) at room temperature. - Abstract: The controlled growth of organic layers on surfaces is still waiting for an in-situ reliable technique that would allow their quality to be monitored and improved. Here we show that the growth of a perylene monolayer deposited on Ag(1 1 0) at room temperature can be tracked with low energy atoms in a regime where the energy perpendicular to the layer is less than 0.1 eV and below the organic film damage threshold. The image processing required for this atom triangulation technique is described in detail.

  4. Tritium decay helium-3 effects in tungsten

    Directory of Open Access Journals (Sweden)

    M. Shimada


    Full Text Available Tritium (T implanted by plasmas diffuses into bulk material, especially rapidly at elevated temperatures, and becomes trapped in neutron radiation-induced defects in materials that act as trapping sites for the tritium. The trapped tritium atoms will decay to produce helium-3 (3He atoms at a half-life of 12.3 years. 3He has a large cross section for absorbing thermal neutrons, which after absorbing a neutron produces hydrogen (H and tritium ions with a combined kinetic energy of 0.76 MeV through the 3He(n,HT nuclear reaction. The purpose of this paper is to quantify the 3He produced in tungsten by tritium decay compared to the neutron-induced helium-4 (4He produced in tungsten. This is important given the fact that helium in materials not only creates microstructural damage in the bulk of the material but alters surface morphology of the material effecting plasma-surface interaction process (e.g. material evolution, erosion and tritium behavior of plasma-facing component materials. Effects of tritium decay 3He in tungsten are investigated here with a simple model that predicts quantity of 3He produced in a fusion DEMO FW based on a neutron energy spectrum found in literature. This study reveals that: (1 helium-3 concentration was equilibrated to ∼6% of initial/trapped tritium concentration, (2 tritium concentration remained approximately constant (94% of initial tritium concentration, and (3 displacement damage from 3He(n,HT nuclear reaction became >1 dpa/year in DEMO FW.

  5. Structure formation in atom lithography using geometric collimation

    NARCIS (Netherlands)

    Meijer, T.; Beardmore, J.P.; Fabrie, C.G.C.H.M.; van Lieshout, J.P.; Notermans, R.P.M.J.W.; Sang, R.T.; Vredenbregt, E.J.D.; Van Leeuwen, K.A.H.


    Atom lithography uses standing wave light fields as arrays of lenses to focus neutral atom beams into line patterns on a substrate. Laser cooled atom beams are commonly used, but an atom beam source with a small opening placed at a large distance from a substrate creates atom beams which are locally

  6. Atom optics with Rydberg states in inhomogeneous electric fields (United States)

    Kritsun, Oleg Anton

    Atom optics has become subject of intense investigation in recent years. Control of atomic motion is of great importance in atomic physics and applications like lithography or nanofabrication. Neutral atoms are not affected greatly by magnetic or electric field as they don't have a charge or large magnetic and electric moments. But by exciting a neutral atom to a high Rydberg state it is possible to increase its electric moment considerably. The purpose of this thesis is to demonstrate experimentally and theoretically the possibility of creating atom optical elements for the beam of neutral atoms based on the polarizability of highly excited states in an electric field. First this work will present a review of the basic concepts that are used for atom optics and also a discussion of the progress to date in realizations of the neutral atom manipulation techniques. In our earlier experiments deflection and beam-splitting was demonstrated for a beam of neutral Lithium atoms excited in a three-step scheme [3.5, 3.6]. In later experiments, metastable Helium was excited from 23S state to the 33P state using lambda = 389 nm light, and then to the 25--30 S or D states using lambda = 785--815 nm light. Because this was a two-step excitation and it had the higher laser power in the last step, this method increased the percentage of excited atoms by a factor close to 103 compared to the Lithium experiment. Furthermore coherent excitation technique, Stimulated Raman Adiabatic Population Transfer (STIRAP), is investigated in this system, which allows a complete transfer of the atoms from 23S to the Rydberg states. STIRAP is also very tolerant of experimental imperfections such as intensity and frequency fluctuations, Doppler shifts, etc. and can be done with modest laser power. Efficient excitation enables us to do the following atom manipulations in inhomogeneous electric field [3.6, 4.42]. (1) Deflection and reflection; (2) Beam-splitting; (3) Collimation and focusing. Since

  7. Ion beam generated plasmas described from the view of atomic physics. Atomphysikalische Beschreibung ionenstrahl-erzeugter Plasmen

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B.


    The aim of this thesis is the description of ion-beam-driven plasmas by means of rate equations. Emphasis is put on the numerical and analytical study of the state and radiation emission of these non-equilibrium systems and on their stopping power for swift projectile ions. Important features of the quasi-stationary non-equilibrium states of ion-beam-generated plasmas are discussed by describing the degree of ionization as well as the distribution of ionization stages and the excited level populations of the plasma ions. The investigation of the energy balance of ion-beam-driven plasmas illustrates that the specific deposition power is only a weak function of the plasma temperature and density. On the contrary, the radiation emission shows significant structure, leading to the possibility of several equilibrium points which may be reached by the beam-plasma-system depending on its initial state. The time needed to build up an equilibrium temperature is long compared to both the time after which a temperature for the free electrons can be defined and the typical time scale of relaxation of the level populations. Furthermore this work presents an analytical discussion of the conversion of ion beam energy into radiation emission from the K-band of the plasma target for all elements. Finally, the energy loss of fast projectile ions in partially ionized, dense plasmas is investigated with emphasis on the changes of the average ionization potentials compared to cold matter. It is shown that the influence of excited state populations in the plasma ions may enhance the energy loss up to 13% in the case of a hydrogen plasma. As far as weakly ionized high-Z matter is concerned, a known reduction of the energy loss of about 10% is confirmed and systematically studied for the elements of the periodic table. (orig./AH).

  8. Scattering of thermal He beams by crossed atomic and molecular beams. III. Anisotropic intermolecular potentials for He + N/sub 2/, O/sub 2/, CO, and NO

    Energy Technology Data Exchange (ETDEWEB)

    Keil, M.; Slankas, J.T.; Kuppermann, A.


    Differential scattering cross sections are measured for He + N/sub 2/, O/sub 2/, CO, and NO, using the crossed molecular beams technique. These data, which are sensitive to the van der Waals attractive minima and adjacent regions of the intermolecular potentials, are analyzed in terms of both central-field and anisotropic models. Little evidence is found for quenching of the observed diffraction oscillations, and anisotropic contributions are determined to be small:The spherical averages of these anisotropic potentials are indistinguishable, within experimental error, from the potentials obtained by a central-field analysis. This study thus provides a quantitative, empirical validation of the central-field assumption for molecular scattering in weakly anisotropic systems.

  9. Dynamics of two-electron excitations in helium

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, C.D.; Menzel, A.; Frigo, S.P. [Univ. of Central Florida, Orlando, FL (United States)] [and others


    Excitation of both electrons in helium offers a unique window for studying electron correlation at the most basic level in an atom in which these two electrons and the nucleus form a three-body system. The authors utilized the first light available at the U-8 undulator-SGM monochromator beamline to investigate the dynamic parameters, partial cross sections, differential cross sections, and photoelectron angular distribution parameters ({beta}), with a high resolving power for the photon beam and at the highly differential level afforded by the use of their electron spectrometer. In parallel, they carried out detailed calculations of the relevant properties by a theoretical approach that is based on the hyperspherical close-coupling method. Partial photoionization cross sections {sigma}{sub n}, and photoelectron angular distributions {beta}{sub n} were measured for all possible final ionic states He{sup +}(n) in the region of the double excitations N(K,T){sup A} up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3, 4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data were seen to be very well described by the most advanced theoretical calculations.

  10. Non-integrability proof of the frozen planetary atom configuration

    CERN Document Server

    Almeida, M A; Stuchi, T J


    We give a computer-aided proof of the non-integrability of an important collinear configuration of the three-body problem in atomic physics. We consider the configuration of helium-like atoms where two electrons are on the same side of the atom. Numerical evidence shows that this configuration for helium atom has a Poincare section that is hardly distinguishable from an integrable system. We extend the model for several helium-like atoms with different values of Z and also consider the case where a heavier particle takes the place of an electron, such as the muon.

  11. Spatial dynamics of laser-induced fluorescence in an intense laser beam: experiment and theory in alkali metal atoms

    CERN Document Server

    Auzinsh, Marcis; Ferber, Ruvin; Gahbauer, Florian; Kalnins, Uldis


    We have shown that it is possible to model accurately optical phenomena in intense laser fields by taking into account the intensity distribution over the laser beam. We developed a theoretical model that divided an intense laser beam into concentric regions, each with a Rabi frequency that corresponds to the intensity in that region, and solved a set of coupled optical Bloch equations for the density matrix in each region. Experimentally obtained magneto-optical resonance curves for the $F_g=2\\longrightarrow F_e=1$ transition of the $D_1$ line of $^{87}$Rb agreed very well with the theoretical model up to a laser intensity of around 200 mW/cm$^2$ for a transition whose saturation intensity is around 4.5 mW/cm$^2$. We have studied the spatial dependence of the fluorescence intensity in an intense laser beam experimentally and theoretically. An experiment was conducted whereby a broad, intense pump laser excited the $F_g=4\\longrightarrow F_e=3$ transition of the $D_2$ line of cesium while a weak, narrow probe ...

  12. Helium mobility in SON68 borosilicate nuclear glass: A nuclear reaction analysis approach

    Energy Technology Data Exchange (ETDEWEB)

    Bès, R., E-mail: [CNRS, UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orléans cedex 2 (France); Sauvage, T. [CNRS, UPR3079 CEMHTI, 1D Avenue de la Recherche Scientifique, 45071 Orléans cedex 2 (France); Université d’Orléans, Faculté des Sciences, Avenue du Parc Floral, BP 6749, 45067 Orléans cedex 2 (France); Peuget, S. [CEA/DEN/VRH/DTCD/SECM/LMPA Marcoule (France); Haussy, J. [CEA, DAM, DIF, F-91297 Arpajon (France); Chamssedine, F. [Université Libanaise, Faculté des Sciences V, Nabatiyeh (Lebanon); Oliviero, E. [CSNSM, CNRS/IN2P3 and Université Paris-Sud, Bât. 104-108, F-91405 Orsay (France); Fares, T. [CEA/DEN/VRH/DTCD/SECM/LMPA Marcoule (France); Vincent, L. [Institut d’Electronique Fondamentale, CNRS and Université Paris-Sud, UMR 8622, F-91405 Orsay (France)


    The {sup 3}He behavior in the non active R7T7 type borosilicate glass called SON68 has been investigated using the implantation method to introduce helium in the material. Nuclear Reaction Analysis (NRA) was performed to follow the helium concentration depth profile evolution as a function of annealing time and temperature. In addition, in situ Transmission Electron Microscopy (TEM) has been implemented to study the formation of helium bubbles during both implantation and annealing processes. Numerical modeling with two different approaches is proposed and discussed to investigate the helium mobility mechanisms. Our study reveals for helium incorporation by implantation at low temperature the presence of several helium populations with disparate diffusivities. The most mobile helium fraction would be attributed to atomic diffusion. The corresponding activation energy value (0.61 eV) extracted from Arrhenius graphs is in good agreement with literature data. The results also highlight that the damages associated to helium sursaturation are the source of small helium clusters formation, with a reduced mobility instead of the atomic mobility measured by the infusion technique. Small cavities that support this assumption have been observed by TEM at low temperature.

  13. Orientation dependence in the four-atom reaction of OH + HBr using the single-state oriented OH radical beam. (United States)

    Tsai, Po-Yu; Che, Dock-Chil; Nakamura, Masaaki; Lin, King-Chuen; Kasai, Toshio


    The orientation dependence for the Br atom formation in the reaction of the oriented OH radicals with HBr molecules at 0.26 eV collision energy has been observed for the first time using the hexapole electric field, and we found that the reaction cross-section for O-end attack is more favorable than that for H-end attack by a factor of 3.4 +/- 2.3.

  14. Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Leemans, W P; Bulanov, S V; Margarone, D; Korn, G; Haberer, T


    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the ...

  15. Helium-3 and helium-4 acceleration by high power laser pulses for hadron therapy

    Directory of Open Access Journals (Sweden)

    S. S. Bulanov


    Full Text Available The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions (heavier than protons. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (magnetic vortex acceleration and hole-boring radiation pressure acceleration of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He^{3} ions, having almost the same penetration depth as He^{4} with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  16. Applications of Groundwater Helium (United States)

    Kulongoski, Justin T.; Hilton, David R.


    Helium abundance and isotope variations have widespread application in groundwater-related studies. This stems from the inert nature of this noble gas and the fact that its two isotopes ? helium-3 and helium-4 ? have distinct origins and vary widely in different terrestrial reservoirs. These attributes allow He concentrations and 3He/4He isotope ratios to be used to recognize and quantify the influence of a number of potential contributors to the total He budget of a groundwater sample. These are atmospheric components, such as air-equilibrated and air-entrained He, as well as terrigenic components, including in situ (aquifer) He, deep crustal and/or mantle He and tritiogenic 3He. Each of these components can be exploited to reveal information on a number of topics, from groundwater chronology, through degassing of the Earth?s crust to the role of faults in the transfer of mantle-derived volatiles to the surface. In this review, we present a guide to how groundwater He is collected from aquifer systems and quantitatively measured in the laboratory. We then illustrate the approach of resolving the measured He characteristics into its component structures using assumptions of endmember compositions. This is followed by a discussion of the application of groundwater He to the types of topics mentioned above using case studies from aquifers in California and Australia. Finally, we present possible future research directions involving dissolved He in groundwater.

  17. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang


    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  18. Helium passage through homogeneous ultrafine hydrocarbon layers

    Directory of Open Access Journals (Sweden)

    Bubenchikov Michael A.


    Full Text Available The present paper deals with the problem of helium atoms and methane molecules moving through a hydrocarbon layer of evenly distributed energy sources. A computational technique for integrating the Schrödinger equation based on formulation of two fundamental numerical solutions to the problem of waves passing through a barrier is suggested. A linear combination of these solutions defines the required wave function, while cross-linking with asymptotic boundary conditions allows determining the coefficients of transmission and particle reflection from the potential layer barrier.

  19. Quantum entanglement in helium-like ions (United States)

    Lin, Y.-C.; Ho, Y. K.


    Recently, there have been considerable interests to investigate quantum entanglement in two-electron atoms [1-3]. Here we investigate quantum entanglement for the ground and excited states of helium-like ions using correlated wave functions, concentrating on the particle-particle entanglement coming from the continuous spatial degrees of freedom. We use the two-electron wave functions constructed by employing B-spline basis to calculate the linear entropy of the reduced density matrix L=1-TrA(ρA^2 ) as a measure of the spatial entanglement. HereρA=TrB(| >AB ABDehesa et. al., J. Phys. B 45, 015504 (2012)

  20. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility (United States)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.


    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  1. Energetics of pure and doped helium droplets - application to interpreting pick-up experiments (United States)

    Dutra, Matthew; Hinde, Robert


    We use helium density functional theory to calculate the energies of spherically symmetric 4He helium droplets both with and without heteroatom dopants. Self-consistent calculations using an imaginary time propagation method are used to compute structural and energetic properties of these droplets ranging in size from 50 to 9500 atoms. Particular attention is given to the solvation energies of the resident dopant atoms, as these values play an important role in experimental superfluid helium calorimetry techniques. We also suggest a method of predicting new droplet size distributions following dopant pickup using the chemical potential values obtained from our calculations.

  2. Low-energy collisions of helium clusters with size-selected cobalt cluster ions (United States)

    Odaka, Hideho; Ichihashi, Masahiko


    Collisions of helium clusters with size-selected cobalt cluster ions, Com+ (m ≤ 5), were studied experimentally by using a merging beam technique. The product ions, Com+Hen (cluster complexes), were mass-analyzed, and this result indicates that more than 20 helium atoms can be attached onto Com+ at the relative velocities of 103 m/s. The measured size distributions of the cluster complexes indicate that there are relatively stable complexes: Co2+Hen (n = 2, 4, 6, and 12), Co3+Hen (n = 3, 6), Co4+He4, and Co5+Hen (n = 3, 6, 8, and 10). These stabilities are explained in terms of their geometric structures. The yields of the cluster complexes were also measured as a function of the relative velocity (1 × 102-4 × 103 m/s), and this result demonstrates that the main interaction in the collision process changes with the increase of the collision energy from the electrostatic interaction, which includes the induced deformation of HeN, to the hard-sphere interaction. Supplementary material in the form of one pdf file available from the Journal web page at http://

  3. Ion-beam modification of 2-D materials - single implant atom analysis via annular dark-field electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bangert, U., E-mail: [Department of Physics, School of Sciences & Bernal Institute, University of Limerick, Limerick (Ireland); Stewart, A.; O’Connell, E.; Courtney, E. [Department of Physics, School of Sciences & Bernal Institute, University of Limerick, Limerick (Ireland); Ramasse, Q.; Kepaptsoglou, D. [SuperSTEM Laboratory, STFC Daresbury Campus, Daresbury WA4 4AD (United Kingdom); Hofsäss, H.; Amani, J. [II. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-PLatz 1, 37077 Göttingen (Germany); Tu, J.-S.; Kardynal, B. [Peter Grünberg Institut 9, Forschungszentrum Jülich, 52425 Jülich (Germany)


    Functionalisation of two-dimensional (2-D) materials via low energy ion implantation could open possibilities for fabrication of devices based on such materials. Nanoscale patterning and/or electronically doping can thus be achieved, compatible with large scale integrated semiconductor technologies. Using atomic resolution High Angle Annular Dark Field (HAADF) scanning transmission electron microscopy supported by image simulation, we show that sites and chemical nature of individual implants/ dopants in graphene, as well as impurities in hBN, can uniquely and directly be identified on grounds of their position and their image intensity in accordance with predictions from Z-contrast theories. Dopants in graphene (e.g., N) are predominantly substitutional. In other 2-Ds, e.g. dichalcogenides, the situation is more complicated since implants can be embedded in different layers and substitute for different elements. Possible configurations of Se-implants in MoS{sub 2} are discussed and image contrast calculations performed. Implants substituting for S in the top or bottom layer can undoubtedly be identified. We show, for the first time, using HAADF contrast measurement that successful Se-integration into MoS{sub 2} can be achieved via ion implantation, and we demonstrate the possibility of HAADF image contrast measurements for identifying impurities and dopants introduced into in 2-Ds. - Highlights: • Ion implantation of 2-dimensional materials. • Targeted and controlled functionalisation of graphene and 2-D dichalcocenides. • Atomic resolution High Angle Dark Field scanning transmission electron microscopy. • Determination of atomic site and elemental nature of dopants in 2-D materials. • Quantitative information from Z-contrast images.

  4. Atomic and Nuclear Analytical Methods XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques

    CERN Document Server

    Verma, H R


    This book is a blend of analytical methods based on the phenomenon of atomic and nuclear physics. It comprises comprehensive presentations about X-ray Fluorescence (XRF), Mössbauer Spectroscopy (MS), X-ray Photoelectron Spectroscopy (XPS), Neutron- Activation Analysis (NAA), Particle Induced X-ray Emission Analysis (PIXE), Rutherford Backscattering Analysis (RBS), Elastic Recoil Detection (ERD), Nuclear Reaction Analysis (NRA), Particle Induced Gamma-ray Emission Analysis (PIGE), and Accelerator Mass Spectrometry (AMS). These techniques are commonly applied in the fields of medicine, biology, environmental studies, archaeology or geology et al. and pursued in major international research laboratories.

  5. Helium and Neon in Comets (United States)

    Jewitt, David


    Two comets were observed with EUVE in late 1994. Both comet Mueller and comet Borrelly are short-period comets having well established orbital elements and accurate ephemerides. Spectra of 40 ksec were taken of each. No evidence for emission lines from either Helium or Neon was detected. We calculated limits on the production rates of these atoms (relative to solar) assuming a standard isotropic outflow model, with a gas streaming speed of 1 km/s. The 3-sigma (99.7% confidence) limits (1/100,000 for He, 0.8 for Ne) are based on a conservative estimate of the noise in the EUVE spectra. They are also weakly dependent on the precise pointing and tracking of the EUVE field of view relative to the comet during the integrations. These limits are consistent with ice formation temperatures T greater than or equal to 30 K, as judged from the gas trapping experiments of Bar-Nun. For comparison, the solar abundances of these elements are He/O = 110, Ne/O = 1/16. Neither limit was as constraining as we had initially hoped, mainly because comets Mueller and Borrelly were intrinsically less active than anticipated.

  6. 48 CFR 52.208-8 - Required Sources for Helium and Helium Usage Data. (United States)


    ... Helium and Helium Usage Data. 52.208-8 Section 52.208-8 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.208-8 Required Sources for Helium and Helium Usage Data. As prescribed in 8.505, insert the following clause: Required Sources for Helium and Helium Usage Data (APR 2002) (a) Definitions...

  7. Fabrication of sharp tungsten-coated tip for atomic force microscopy by ion-beam sputter deposition. (United States)

    Kinoshita, Yukinori; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro


    Tungsten (W) is significantly suitable as a tip material for atomic force microscopy (AFM) because its high mechanical stiffness enables the stable detection of tip-sample interaction forces. We have developed W sputter-coating equipment to compensate the drawbacks of conventional Si cantilever tips used in AFM measurements. By employing an ion gun commonly used for sputter cleaning of a cantilever tip, the equipment is capable of depositing conductive W films in the preparation chamber of a general ultrahigh vacuum (UHV)-AFM system without the need for an additional chamber or transfer system. This enables W coating of a cantilever tip immediately after sputter cleaning of the tip apex and just before the use in AFM observations. The W film consists of grain structures, which prevent tip dulling and provide sharpness (coated Si tip can clearly resolve the atomic structures of a Ge(001) surface without any artifacts, indicating that, as a force sensor, the fabricated W-coated Si tip is superior to a bare Si tip. © 2011 American Institute of Physics

  8. Interpreting the data on helium-ion scattering in metallic films (United States)

    Bednyakov, A. A.


    Earlier measurements of angular distributions in the multiple scattering of a helium-ion beam with energy below 300 keV on Al yielded rather unexpected results: the ratio between the half-width of the measured angular distribution, (θ1/2)e, and that predicted with the Moliere-Bethe theory, (θ1/2)MB, proved to stay almost constant throughout the investigated energy range. At the same time, one could expect the (θ1/2)e/(θ1/2)MB value to be affected by the beam-content variation due to the charge-exchange scattering. Towards resolving this problem, we compute the interaction potentials between the He++, He+, and He0 ions and the scattering atoms and reveal the electron-screening effects on the scattering process. Thereby, we explain the energy dependence of (θ1/2)e/(θ1/2)MB observed in the old and new measurements carried out at higher beam energies.

  9. LRO-LAMP Observations of Lunar Exospheric Helium (United States)

    Grava, Cesare; Retherford, Kurt D.; Hurley, Dana M.; Feldman, Paul D.; Gladstone, Randy; Greathouse, Thomas K.; Cook, Jason C.; Stern, Alan; Pryor, Wayne R.; Halekas, Jasper S.; Kaufmann, David E.


    We present results from Lunar Reconnaissance Orbiter’s (LRO) UV spectrograph LAMP (Lyman-Alpha Mapping Project) campaign to study the lunar atmosphere. Two kinds of off-nadir maneuvers (lateral rolls and pitches towards and opposite the direction of motion of LRO) were performed to search for resonantly scattering species, increasing the illuminated line-of-sight (and hence the signal from atoms resonantly scattering the solar photons) compared to previously reported LAMP “twilight observations” [Cook & Stern, 2014]. Helium was the only element distinguishable on a daily basis, and we present latitudinal profiles of its line-of-sight column density in December 2013. We compared the helium line-of-sight column densities with solar wind alpha particle fluxes measured from the ARTEMIS (Acceleration, Reconnection, Turbulence, & Electrodynamics of Moon’s Interaction with the Sun) twin spacecraft. Our data show a correlation with the solar wind alpha particle flux, confirming that the solar wind is the main source of the lunar helium, but not with a 1:1 relationship. Assuming that the lunar soil is saturated with helium atoms, our results suggest that not all of the incident alpha particles are converted to thermalized helium, allowing for a non-negligible fraction (~50 %) to escape as suprathermal helium or simply backscattered from the lunar surface. We also support the finding by Benna et al. [2015] and Hurley et al. [2015], that a non-zero contribution from endogenic helium, coming from radioactive decay of 232Th and 238U within the mantle, is present, and is estimated to be (4.5±1.2) x 106 He atoms cm-2 s-1. Finally, we compare LAMP-derived helium surface density with the one recorded by the mass spectrometer LACE (Lunar Atmospheric Composition Experiment) deployed on the lunar surface during the Apollo 17 mission, finding good agreement between the two measurements. These LRO off-nadir maneuvers allow LAMP to provide unique coverage of local solar time and

  10. Preparation of circular Rydberg states in helium using the crossed fields method

    CERN Document Server

    Zhelyazkova, V


    Helium atoms have been prepared in the circular $|n=55,\\ell=54,m_{\\ell}=+54\\rangle$ Rydberg state using the crossed electric and magnetic fields method. The atoms, initially travelling in pulsed supersonic beams, were photoexcited from the metastable $1s2s\\,^3S_1$ level to the outermost, $m_{\\ell}=0$ Rydberg-Stark state with $n=55$ in the presence of a strong electric field and weak perpendicular magnetic field. Following excitation, the electric field was adiabatically switched off causing the atoms to evolve into the circular state with $m_{\\ell}=+54$ defined with respect to the magnetic field quantization axis. The circular states were detected by ramped electric field ionization along the magnetic field axis. The dependence of the circular state production efficiency on the strength of the excitation electric field, and the electric-field switch-off time was studied, and microwave spectroscopy of the circular-to-circular $|55,54,+54\\rangle\\rightarrow|56,55,+55\\rangle$ transition at $\\sim38.5$~GHz was perf...

  11. Atom scattering off superfluid sub 4 He clusters and films

    CERN Document Server

    Zillich, R E


    statistics on identical particle scattering is studied by comparing helium-4 scattering to impurity (helium-3) scattering off helium-4 clusters; e.g. we show how the elastic conversion process from helium-4 atom to roton and back can be understood as a resonance phenomenon at the excitation energy of the roton in helium clusters. The connection between resonances in the elastic scattering channel to their counterpart in inelastic channels is highlighted in the example of our results for quantum reflection off films. Furthermore, our theory predicts a long range of interaction between slow atoms and low energy surface waves, which increases the low energy inelastic scattering probability. In this work, the HNC-Euler-Lagrange theory is applied to the many-body scattering problem. We use time-dependent variational correlated wave functions in excitation calculations in order to describe atom scattering off nanoclusters and microscopically thin films of superfluid helium-4. Apart from elastic processes, the level...

  12. Helium production cross section Measurement of Pb and Sn for 14.9 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Takao, Yoshiyuki; Fujimoto, Toshihiro; Ozaki, Shuji; Muramasu, Masatomo; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Kanda, Yukinori; Ikeda, Yujiro


    Helium production cross sections of lead and tin for 14.9 MeV neutrons were measured by helium accumulation method. Lead and tin samples were irradiated with FNS, an intense d-T neutron source of JAERI. The amount of helium produced in the samples by the neutron irradiation was measured with the Helium Atoms Measurement System (HAMS) at Kyushu University. As the samples contained a small amount of helium because of their small helium production cross sections at 14.9 MeV, the samples were evaporated by radiation from a tungsten filament to decrease background gases at helium measurement. Uncertainties of the present results were less than {+-}4.4%. The results were compared with other experimental data in the literature and also compared with the evaluated values in JENDL-3.2. (author)

  13. Radioactive core ions of microclusters, ``snowballs`` in superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shimoda, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Fujita, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Miyatake, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Mizoi, Y. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Kobayashi, H. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Sasaki, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Shirakura, T. [Osaka Univ., Toyonaka (Japan). Dept. of Physics; Itahashi, T. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Mitsuoka, S. [Research Center for Nuclear Physics, Osaka Univ., Ibaraki (Japan); Matsukawa, T. [Naruto Univ. of Education, Tokushima (Japan); Ikeda, N. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Morinobu, S. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Hinde, D.J. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Asahi, K. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Ueno, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics; Izumi, H. [Tokyo Inst. of Tech. (Japan). Dept. of Physics


    Short-lived beta-ray emitters, {sup 12}B, sustaining nuclear spin polarization were introduced into superfluid helium. The nuclear polarization of {sup 12}B was observed via measurement of beta-ray asymmetry. It was found that the nuclear polarization was preserved throughout the lifetime of {sup 12}B (20.3 ms). This suggests that the ``snowball``, an aggregation of helium atoms produced around an alien ion, constitutes a suitable milieu for freezing-out the nuclear spin of the core ion and that most likely the solidification takes place at the interior of the aggregation. (orig.).

  14. High Efficiency Regenerative Helium Compressor Project (United States)

    National Aeronautics and Space Administration — Helium plays several critical rolls in spacecraft propulsion. High pressure helium is commonly used to pressurize propellant fuel tanks. Helium cryocoolers can be...

  15. Contactless friction and the {sup 3}He-{sup 4}He dimer. Studies with the atomic-beam spin-echo spectrometer; Kontaktlose Reibung und das {sup 3}He-{sup 4}He-Dimer. Untersuchungen mit dem Atomstrahlspinechospektrometer

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Matthias


    In this thesis the time of flight resolved atomic beam spin echo method (SEToF) is applied to a {sup 3}He-beam for the first time and studied systematically. This method is shown to be superior to the usual atomic beam spin echo technique. With SEToF it is possible to almost completely remove unpolarized background and to reach a beam polarisation close to 100%. The SEToF technique is shown to be crucial for the first experimental proof of the existence of the {sup 3}He-{sup 4}He dimer. This dimer is the weakest bound van-der-Waals-molecule known to date. Furthermore, a drag force between an atom and a dielectric surface is detected originating from the fluctuating dipole moment of the atom. Not only the measured friction coefficients match their theoretical predictions perfectly, but our data also shows the correct temperature dependence. A great many technological renewals and improvements were installed in the apparatus during this thesis work. They have become necessary or sensible due to the relocation of the physics institute. A few of them are documented and motivated in this thesis.

  16. Imaging with neutral atoms: a new matter-wave microscope. (United States)

    Koch, M; Rehbein, S; Schmahl, G; Reisinger, T; Bracco, G; Ernst, W E; Holst, B


    Matter-wave microscopy can be dated back to 1932 when Max Knoll and Ernst Ruska published the first image obtained with a beam of focussed electrons. In this paper a new step in the development of matter-wave microscopy is presented. We have created an instrument where a focussed beam of neutral, ground-state atoms (helium) is used to image a sample. We present the first 2D images obtained using this new technique. The imaged sample is a free-standing hexagonal copper grating (with a period of about 36 microm and rod thickness of about 8 microm). The images were obtained in transmission mode by scanning the focussed beam, which had a minimum spot size of about 2.0 microm in diameter (full width at half maximum) across the sample. The smallest focus achieved was 1.9 +/- 0.1 microm. The resolution for this experiment was limited by the speed ratio of the atomic beam through the chromatic aberrations of the zone plate that was used to focus. Ultimately the theoretical resolution limit is set by the wavelength of the probing particle. In praxis, the resolution is limited by the source and the focussing optics.

  17. Cavitation in liquid helium

    Energy Technology Data Exchange (ETDEWEB)

    Finch, R. D.; Kagiwada, R.; Barmatz, M.; Rudnick, I.


    Ultrasonic cavitation was induced in liquid helium over the temperature range 1.2 to 2.3 deg K, using a pair of identical transducers. The transducers were calibrated using a reciprocity technique and the cavitation threshold was determined at 90 kc/s. It was found that this threshold has a sharp peak at the lambda point, but is, at all temperatures quite low, with an approximate range of 0.001 to 0.01 atm. The significance of the results is discussed. (auth)

  18. Free radical hydrogen atom abstraction from saturated hydrocarbons: A crossed-molecular-beams study of the reaction Cl + C{sub 3}H{sub 8} {yields} HCl + C{sub 3}H{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; Hemmi, N.; Suits, A.G.; Lee, Y.T. [Lawrence Berkeley National Lab., CA (United States)


    The abstraction of hydrogen atoms from saturated hydrocarbons are reactions of fundamental importance in combustion as well as often being the rate limiting step in free radical substitution reactions. The authors have begun studying these reactions under single collision conditions using the crossed molecular beam technique on beamline, utilizing VUV undulator radiation to selectively ionize the scattered hydrocarbon free radical products (C{sub x}H{sub 2x+1}). The crossed molecular beam technique involves two reactant molecular beams fixed at 90{degrees}. The molecular beam sources are rotatable in the plane defined by the two beams. The scattered neutral products travel 12.0 cm where they are photoionized using the VUV undulator radiation, mass selected, and counted as a function of time. In the authors initial investigations they are using halogen atoms as protypical free radicals to abstract hydrogen atoms from small alkanes. Their first study has been looking at the reaction of Cl + propane {r_arrow} HCl + propyl radical. In their preliminary efforts the authors have measured the laboratory scattering angular distribution and time of flight spectra for the propyl radical products at collision energies of 9.6 kcal/mol and 14.9 kcal/mol.

  19. Obtention of thermoluminescent efficiencies by means of irradiation of TLD-100 dosemeters with proton beams helium and carbon; Obtencion de eficiencias termoluminiscentes mediante irradiacion de dosimetros TLD-100 con haces de protones, helios y carbon

    Energy Technology Data Exchange (ETDEWEB)

    Avila, O.; Rodriguez V, M.; Aviles, P.; Gamboa de Buen, I.; Buenfil, A.E.; Ruiz T, C.; Brandan, M.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)


    In this work, the advances of a serial of measurements of relative efficiency thermoluminescent of heavy charged particles (PCP) with respect to gamma radiation for TLD-100, dosemeters of LiF: Mg,Ti manufactured by the Harshaw-Bicron company are reported. The PCP are essentials in the implementation of dosimetry associated with medical applications. The measurements before gamma radiation were carrying out using the Vickrad irradiator of the National Institute of Nuclear Research at dose of 1.663 Gy. The measures which are reported about protons, helium and carbon were realized using the Pelletron accelerator of the Physics Institute of the UNAM. (Author)

  20. Gravitational and radiative effects on the escape of helium from the moon (United States)

    Hodges, R. R., Jr.


    On the moon, and probably on Mercury and other similar regolith-covered bodies with tenuous atmosphere, the dominant gas is He-4. It arises as the radiogenic product of the decay of uranium and thorium within any planet, but its major source appears to be the alpha particle flux of the solar wind. The moon intercepts solar wind helium at an average rate of 1.1 times 10 to the 24th atom/sec, and loses it at the same rate. Some helium may escape directly as the result of the process of solar wind soil bombardment which may release previously trapped helium at superthermal speeds. Atmospheric models have been calculated with the total helium influx as source. Subsequent comparison of model and measured helium concentrations indicates that the fraction of helium escaping via the atmosphere may range from 20% to 100% of the solar wind influx. Of the escaping atmosphere, most of the helium (about 93%) becomes trapped in earth orbit, while about 5% gets trapped in satellite orbits about the moon. Owing to a 6 month lifetime for helium in solar radiation, the satellite atoms form a lunar corona that exceeds the lunar atmosphere in total abundance by a factor of 4 to 5.

  1. HEATHER - HElium Ion Accelerator for RadioTHERapy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Jordan [Huddersfield U.; Edgecock, Thomas [Huddersfield U.; Green, Stuart [Birmingham U.; Johnstone, Carol [Fermilab


    A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He²⁺ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.

  2. First-principles study of migration and diffusion mechanisms of helium in α-Be (United States)

    Yang, Xiao-Yong; Lu, Yong; Li, Meng-Lei; Zhang, Ping


    The behavior of interstitial helium in α-Be has been studied with first-principles method. It is found that the most favored position for helium is the basal octahedral (BO) site, closely followed by the basal tetrahedral (BT) site, in agreement with previous predictions. The interaction energy between the helium and the neighborhood Be atoms and the deformation energy of α-Be matrix are calculated. The feasible minimum-energy pathways (MEP) of interstitial helium atoms in α-Be matrix and the corresponding atomic structures of the saddle points associated with the each MEP are investigated. The temperature-dependent diffusion coefficients have also been predicted. It is confirmed that the interstitial helium diffuses two-dimensionally at low temperatures; however, it can diffuse three-dimensionally at higher temperatures. Besides, the microscopic parameters in the pre-factor and activation energy of the diffusion coefficients are obtained. Both diffusion coefficients are higher than the available experiment data, which may attribute to the fact that under real condition the diffusion is not free, i.e. the actual α-Be matric has various defects and impurities which heavily affect the diffusion of helium. Therefore, our theoretical prediction is the upper bound for helium diffusion in α-Be matrix.

  3. Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications (United States)

    Petringa, G.; Cirrone, G. A. P.; Caliri, C.; Cuttone, G.; Giuffrida, L.; Larosa, G.; Manna, R.; Manti, L.; Marchese, V.; Marchetta, C.; Margarone, D.; Milluzzo, G.; Picciotto, A.; Romano, F.; Romano, F. P.; Russo, A. D.; Russo, G.; Santonocito, D.; Scuderi, V.


    In this work an experimental and theoretical study of gamma-prompt emission has been carried out with the main aim being to understand to what extent this approach can be used during a treatment based on proton-boron fusion therapy. An experimental campaign, carried out with a high purity Germanium detector, has been performed to evaluate the gamma emission from two pure 11B and 10B targets. Furthermore, a set of analytical simulations, using the Talys nuclear reaction code has been performed and the calculated spectra compared with the experimental results. These comparisons allowed us to successfully validate Talys which was then used to estimate the gamma emission when a realistic Boron concentration was considered. Both simulations and experimental results suggest that the gamma emission is low at certain proton energies, thus in order to improve the imaging capabilities, while still maintaining the Boron therapeutic role, we propose the addition of natural Copper bound by a dipyrromethene, BodiPy, to boron atoms. Analytical simulations with Talys suggest that the characteristic spectrum of the copper prompt gamma-rays has several peaks in the energetic regions where the background is negligible.

  4. Area-selective atomic layer deposition of Ru on electron-beam-written Pt(C) patterns versus SiO2 substratum (United States)

    Junige, Marcel; Löffler, Markus; Geidel, Marion; Albert, Matthias; Bartha, Johann W.; Zschech, Ehrenfried; Rellinghaus, Bernd; van Dorp, Willem F.


    Area selectivity is an emerging sub-topic in the field of atomic layer deposition (ALD), which employs opposite nucleation phenomena to distinct heterogeneous starting materials on a surface. In this paper, we intend to grow Ru exclusively on locally pre-defined Pt patterns, while keeping a SiO2 substratum free from any deposition. In a first step, we study in detail the Ru ALD nucleation on SiO2 and clarify the impact of the set-point temperature. An initial incubation period with actually no growth was revealed before a formation of minor, isolated RuO x islands; clearly no continuous Ru layer formed on SiO2. A lower temperature was beneficial in facilitating a longer incubation and consequently a wider window for (inherent) selectivity. In a second step, we write C-rich Pt micro-patterns on SiO2 by focused electron-beam-induced deposition (FEBID), varying the number of FEBID scans at two electron beam acceleration voltages. Subsequently, the localized Pt(C) deposits are pre-cleaned in O2 and overgrown by Ru ALD. Already sub-nanometer-thin Pt(C) patterns, which were supposedly purified into some form of Pt(O x ), acted as very effective activation for the locally restricted, thus area-selective ALD growth of a pure, continuous Ru covering, whereas the SiO2 substratum sufficiently inhibited towards no growth. FEBID at lower electron energy reduced unwanted stray deposition and achieved well-resolved pattern features. We access the nucleation phenomena by utilizing a hybrid metrology approach, which uniquely combines in-situ real-time spectroscopic ellipsometry, in-vacuo x-ray photoelectron spectroscopy, ex-situ high-resolution scanning electron microscopy, and mapping energy-dispersive x-ray spectroscopy.

  5. Electrostatic trapping and in situ detection of Rydberg atoms above chip-based transmission lines

    CERN Document Server

    Lancuba, P


    Beams of helium atoms in Rydberg-Stark states with principal quantum number $n=48$ and electric dipole moments of 4600~D have been decelerated from a mean initial longitudinal speed of 2000~m/s to zero velocity in the laboratory-fixed frame-of-reference in the continuously moving electric traps of a transmission-line decelerator. In this process accelerations up to $-1.3\\times10^{7}$~m/s$^2$ were applied, and changes in kinetic energy of $\\Delta E_{\\mathrm{kin}}=1.3\\times10^{-20}$~J ($\\Delta E_{\\mathrm{kin}}/e = 83$~meV) per atom were achieved. Guided and decelerated atoms, and those confined in stationary electrostatic traps, were detected in situ by pulsed electric field ionisation. The results of numerical calculations of particle trajectories within the decelerator have been used to characterise the observed deceleration efficiencies, and aid in the interpretation of the experimental data.

  6. X-ray photoelectron spectroscopy and conducting atomic force microscopy investigations on dual ion beam sputtered MgO ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Braj Bhusan [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016 (India); Agrawal, Vikash; Joshi, Amish G. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110 012 (India); Chaudhary, Sujeet, E-mail: [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016 (India)


    Ultrathin films of MgO ({approx} 6 nm) were deposited on Si(100) using dual ion beam sputtering in different partial pressures of oxygen. These thin films were characterized by X-ray photoelectron spectroscopy (XPS) for chemical state analysis and conducting atomic force microscopy for topography and local conductivity map. No trace of metal Mg was evidenced in these MgO films. The XPS analysis clearly brought out the formation of oxygen interstitials and Mg(OH){sub 2} primarily due to the presence of residual water vapors in the chamber. An optimum value of oxygen partial pressure of {approx} 4.4 Multiplication-Sign 10{sup -2} Pa is identified with regard to homogeneity of film and stoichiometry across the film thickness (O:Mg::0.93-0.97). The local conductivity mapping investigations also established the film homogeneity in respect of electrical resistivity. Non-linear local current-voltage curves revealed typical tunneling characteristics with barrier width of {approx} 5.6 nm and barrier height of {approx} 0.92 eV. - Highlights: Black-Right-Pointing-Pointer Ultra-thin films ({approx} 6 nm) of MgO were deposited at different oxygen partial pressures. Black-Right-Pointing-Pointer Chemical state of MgO thin films is investigated by X-ray photoelectron spectroscopy. Black-Right-Pointing-Pointer Local conductivity map was investigated using conducting atomic force microscopy. Black-Right-Pointing-Pointer Current-voltage characteristics at local points showed tunneling like behavior.

  7. Operating characteristics of a new ion source for KSTAR neutral beam injection system. (United States)

    Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul


    A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.

  8. Thermohydraulics of a horizontal diphasic flow of superfluid helium; Thermo-hydraulique d'un ecoulement horizontal d'helium superfluide diphasique

    Energy Technology Data Exchange (ETDEWEB)

    Perraud, S


    This study aims at characterizing helium two phase flows, and to identify the dependence of their characteristics on various thermo-hydraulic parameters: vapour velocity, liquid height, vapour density, specificities of superfluidity. Both the engineer and the physicist's points of view are taken into consideration: the first one in terms of optimization of a particular cooling scheme based on a two-phase flow, and these second one in terms of more fundamental atomization-related questions. It has been shown that for velocities around 3 to 4 m/s, the liquid phase that was initially stratified undergoes an atomization through the presence of a drop haze carried by the vapor phase.This happens for superfluid helium as well as for normal helium without main differences on atomization.

  9. Electronic properties of physisorbed helium

    Energy Technology Data Exchange (ETDEWEB)

    Kossler, Sarah


    This thesis deals with electronic excitations of helium physisorbed on metal substrates. It is studied to what extent the electronic properties change compared to the gas phase due to the increased helium density and the proximity of the metal. Furthermore, the influence of different substrate materials is investigated systematically. To this end, up to two helium layers were adsorbed onto Ru (001), Pt (111), Cu (111), and Ag (111) surfaces in a custom-made cryostat. These samples were studied spectroscopically using synchrotron radiation and a time-of-flight detector. The experimental results were then analyzed in comparison with extensive theoretical model calculations.

  10. Scattering of thermal He beams by crossed atomic and molecular beams. IV. Spherically symmetric intermolecular potentials for He+CH/sub 4/, NH/sub 3/, H/sub 2/O, SF/sub 6/

    Energy Technology Data Exchange (ETDEWEB)

    Slankas, J.T.; Keil, M.; Kuppermann, A.


    Differential scattering cross sections are measured for He+CH/sub 4/, NH/sub 3/, H/sub 2/O, and SF/sub 6/, using the crossed molecular beams technique. These data, which are sensitive to the van der Waals attractive minima and adjacent regions of the intermolecular potential, are interpreted in terms of central-field models. No evidence is found for quenching of the observed diffraction oscillations. The interactions of the isoelectronic hydrides CH/sub 4/, NH/sub 3/, H/sub 2/O with He are found to have decreasing van der Waals radii in this sequence, and their attractive wells all have similar depths. However, the He+SF/sub 6/ attractive well is found to be anomalously deep, and provides a counter example to the supposition that only the polarizability of the least polarizable of the interacting partners (atoms or molecules) correlates with the van der Waals well depth. Simple combination rules for predicting unlike-pair potential parameters from the corresponding like-pair ones are tested and found inadequate.

  11. Atomic Clocks Research - An Overview. (United States)


    magnet. Since atomic deflection in an inhomogeneous magnetic field is inversely proportional to the square of the atomic speed, the atomic velocity...purifier and controlled leak; an atomic source (i.e., the dissociator under 39 study); a dipole electromagnetic with pole pieces shaped to produce an...34Relaxation Magnetique d’Atomes de Rubidium sur des Parois Paraffines," J. Phys. (Paris) 24, 379 (1963). 21. S. Wexler, "Deposition of Atomic Beams

  12. Communication: Electron diffraction of ferrocene in superfluid helium droplets (United States)

    Zhang, Jie; He, Yunteng; Kong, Wei


    We report electron diffraction of ferrocene doped in superfluid helium droplets. By taking advantage of the velocity slip in our pulsed droplet beam using a pulsed electron gun, and by doping with a high concentration of ferrocene delivered via a pulsed valve, we can obtain high quality diffraction images from singly doped droplets. Under the optimal doping conditions, 80% of the droplets sampled in the electron beam are doped with just one ferrocene molecule. Extension of this size selection method to dopant clusters has also been demonstrated. However, incomplete separation of dopant clusters might require deconvolution and modeling of the doping process. This method can be used for studies of nucleation processes in superfluid helium droplets.

  13. Cryogenic tunable microwave cavity at 13 GHz for hyperfine spectroscopy of antiprotonic helium

    CERN Document Server

    Sakaguchi, J; Hayano, R S; Ishikawa, T; Suzukia, K; Widmann, E; Yamaguchi, H; Caspers, Friedhelm; Eades, John; Horib, M; Barna, D; Horváth, D; Juhász, B; Torie, H A; Yamazakif, T


    For the precise measurement of the hyperfine structure of antiprotonic helium, microwave radiation of 12.9 GHz frequency is needed, tunable over . A cylindrical microwave cavity is used whose front and rear faces are meshed to allow the antiprotons and laser beams to enter. The cavity is embedded in a cryogenic helium gas target. Frequency tuning of with Q values of 2700?3000 was achieved using over-coupling and an external triple stub tuner. We also present Monte-Carlo simulations of the stopping distribution of antiprotons in the low-density helium gas using the GEANT4 package with modified energy loss routines.

  14. Cryogenic Tunable Microwave Cavity at 13 GHz for Hyperfine Spectroscopy of Antiprotonic Helium

    CERN Document Server

    Barna, D; Eades, John; Gilg, H; Hayano, R S; Hori, Masaki; Horváth, M; Hayano, R S; Ishikawa, T; Juhász, B; Sakaguchi, J; Suzuki, K; Torii, H A; Widmann, E; Yamaguchi, H; Yamazaki, T


    For the precise measurement of the hyperfine structure of antiprotonic helium microwave radiation of 12.9 GHz frequency is needed, tunable over ±100 MHz. A cylindrical microwave cavity is used whose front and rear faces are meshed to allow the antiprotons and laser beams to enter. The cavity is embedded in a cryogenic helium gas target. Frequency tuning of 300 MHz with Q values of 2700-3000 was achieved using over-coupling and an external triple stub tuner. We also present Monte-Carlo simulations of the stopping distribution of antiprotons in the low-density helium gas using the GEANT4 package with modified energy loss routines.

  15. Limitations of superfluid helium droplets as host system revealed by electronic spectroscopy of embedded molecules

    Energy Technology Data Exchange (ETDEWEB)

    Premke, Tobias


    Superfluid helium nanodroplets serve a unique cryogenic host system ideal to prepare cold molecules and clusters. Structures as well as dynamic processes can be examined by means of high resolution spectroscopy. Dopant spectra are accompanied by helium-induced spectroscopic features which reveal information on the dopant to helium interaction. For this reason the experimental research focuses on the investigation of such helium-induced effects in order to provide new information on the microsolvation inside the droplets. Since the quantitative understanding of helium-induced spectral features is essential to interpret molecular spectra recorded in helium droplets, this study contributes further experimental details on microsolvation in superfluid helium droplets. For this purpose two contrary systems were examined by means of high resolution electronic spectroscopy. The first one, phthalocyanine (Pc), is a planar organic molecule offering a huge and planar surface to the helium atoms and thus, the non-superfluid helium solvation layer can form different structures. The second system is iodine and in contrast to Pc it is of simple molecular shape. That means that in this case different complex structures of the non-superfluid helium solvation layer and the dopant can be expected to be avoided. Thus, both molecules should show clear differences in their microsolvation behavior. In this work a detailed examination of different spectroscopic properties of phthalocyanine is given by means of fluorescence excitation and dispersed emission spectroscopy. It raises legitimate doubts about the assignment of experimentally observed signals to features predicted by the model of the microsolvation. Even though there are no experimental observations which disprove the empirical model for the solvation in helium droplets, an unambiguous assignment of the helium-induced spectroscopic structures is often not possible. In the second part of this work, the investigation of the

  16. Submicro and Nano Structured Porous Materials for the Production of High-Intensity Exotic Radioactive Ion Beams

    CERN Document Server

    Fernandes, Sandrina; Stora, Thierry


    ISOLDE, the CERN Isotope Separator On-line DEvice is a unique source of low energy beams of radioactive isotopes - atomic nuclei that have too many or too few neutrons to be stable. The facility is like a small ‘chemical factory’, giving the possibility of changing one element to another, by selecting the atomic mass of the required isotope beam in the mass separator, rather as the ‘alchemists’ once imagined. It produces a total of more than 1000 different isotopes from helium to radium, with half-lives down to milliseconds, by impinging a 1.4 GeV proton beam from the Proton Synchrotron Booster (PSB) onto special targets, yielding a wide variety of atomic fragments. Different components then extract the nuclei and separate them according to mass. The post-accelerator REX (Radioactive beam EXperiment) at ISOLDE accelerates the radioactive beams up to 3 MeV/u for many experiments. A wide international user radioactive ion beam (RIB) community investigates fundamental aspects of nuclear physics, particle...

  17. Behavior of the 398.4nm Hg II Spectral Line in the Helium and Argon Plasmas (United States)

    Skocic, M.; Burger, M.; Gavrilov, M.; Bukvic, S.; Djenize, S.


    The astrophysically important 398.4 nm Hg II spectral line was investigated in the laboratory helium and argon plasmas. The mercury atoms were sputtered from the amalgamated gold cylindrical plates located in the homogenous part of the pulsed discharge. We have found that strong intensity of the 398.4 nm Hg II line is due to excessively high density of the helium metastable atoms.

  18. Effective potentials for charge-helium and charge-singly-ionized helium interactions in a dense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T.S.; Amirov, S.M.; Moldabekov, Zh.A. [Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan)


    The effective electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials arising as a result of partial screening of the helium nucleus field by bound electrons, taking into account both screening by free charged particles and quantum diffraction effect in dense plasmas were derived. The impact of quantum effects on screening was analyzed. It was shown that plasma polarization around the atom leads to the additional repulsion (attraction) between the electron (proton) and the helium atom. The method of constructing the full electron (proton)-He and electron (proton)-He{sup +} screened pair interaction potentials as the sum of the derived potentials with the polarization potential and exchange potential is discussed. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Cluster counting in helium based gas mixtures (United States)

    Cataldi, G.; Grancagnolo, F.; Spagnolo, S.


    The statistical advantages deriving from counting primary ionization, as opposed to the conventional energy loss measurement, are extensively discussed. A primary ionization counting method is proposed for a "traditional", cylindrical, single sense wire cell drift chamber, which makes use of a helium based gas mixture. Its conceptual feasibility is proven by means of a simple Monte Carlo simulation. A counting algorithm is developed and tested on the simulation output. A definition of the parameters of the read-out and of the digitizing electronics is given, assuming the described counting algorithm applied to a general detector design, in order to have a complete and realistic planning of a cluster counting measurement. Finally, some interesting results from a beam test, performed according to the described parameters, on primary ionization measurements and on {π}/{μ} separation are shown.

  20. Helium Inventory Management For LHC Cryogenics

    CERN Document Server

    Pyarali, Maisam


    The LHC is a 26.7 km circumference ring lined with superconducting magnets that operate at 1.9 K. These magnets are used to control the trajectory of beams of protons traveling in opposite directions and collide them at various experimental sites across the LHC where their debris is analyzed. The focus of this paper is the cryogenic system that allows the magnets to operate in their superconducting states. It aims to highlight the operating principles of helium refrigeration and liquefaction, with and without nitrogen pre-cooling; discuss the various refrigerators and liquefiers used at CERN for both LHC and Non-LHC applications, with their liquefaction capacities and purposes; and finally to deliberate the management of the LHC inventory and how it contributes to the strategic decision CERN makes regarding the inventory management during the Year-End Technical Stop (YETS), Extended Year-End Technical Stop (EYETS) and long shutdowns.

  1. Formation of Au and tetrapyridyl porphyrin complexes in superfluid helium. (United States)

    Feng, Cheng; Latimer, Elspeth; Spence, Daniel; Al Hindawi, Aula M A A; Bullen, Shem; Boatwright, Adrian; Ellis, Andrew M; Yang, Shengfu


    Binary clusters containing a large organic molecule and metal atoms have been formed by the co-addition of 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) molecules and gold atoms to superfluid helium nanodroplets, and the resulting complexes were then investigated by electron impact mass spectrometry. In addition to the parent ion H2TPyP yields fragments mainly from pyrrole, pyridine and methylpyridine ions because of the stability of their ring structures. When Au is co-added to the droplets the mass spectra are dominated by H2TPyP fragment ions with one or more Au atoms attached. We also show that by switching the order in which Au and H2TPyP are added to the helium droplets, different types of H2TPyP-Au complexes are clearly evident from the mass spectra. This study suggests a new route for the control over the growth of metal-organic compounds inside superfluid helium nanodroplets.

  2. An Update of the Primordial Helium Abundance (United States)

    Peimbert, Antonio; Peimbert, Manuel; Luridiana, Valentina


    Three of the best determinations of the primordial helium abundance (Yp) are those obtained from low metallicity HII regions by Aver, Olive, Porter, & Skillman (2013); Izotov, Thuan, & Guseva (2014); and Peimbert, Peimbert, & Luridiana (2007). In this poster we update the Yp determination by Peimbert et al. taking into account, among other aspects, recent advances in the determination of the He atomic physical parameters, the temperature structure, the collisional effects of high temperatures on the Balmer lines, as well as the effect of H and He bound-bound absorption.We compare our results with those of Aver et al. and Izotov et al. and point out possible explanations for the differences among the three determinations. We also compare our results with those obtained with the Plank satellite considering recent measurements of the neutron mean life; this comparison has implications on the determination of the number of light neutrino families.

  3. Photoionization of helium dimers; Photoionisation von Heliumdimeren

    Energy Technology Data Exchange (ETDEWEB)

    Havermeier, Tilo


    The helium dimer is one of the most weakly bound systems in the universe. This makes it an interesting quantum mechanical object for investigation. These Van der Waals Clusters can be produced in an expansion of a cryogenic gas jet through a small nozzle into vacuum. In the present experiment we examine the interaction of He dimers with synchrotron radiation at an energy range from 64 to 78 eV. We observed different pathways leading to single ionization of both He atoms of the dimer compound. This two close standing ions begin now to dissociate in cause of their coulomb potential. All charged fragments were detected in coincidence with a COLTRIMS system. Especially Interatomic Coulombic Decay (ICD) and the two step process (TS1) were clearly identified. Furthermore a distribution of the internuclear distance was obtained from the measured Kinetic Energy Release (KER). (orig.)

  4. Positronium and Electron Scattering on Helium (United States)

    DiRienzi, Joseph


    A recent work [1] establishes experimentally that Positronium scattering by atoms of various elements is surprisingly close in total cross-section to that of an isolated electron of the same velocity. In this work we will look at the scattering of Ps on Helium and compare it to a determination of the scattering of an e- with the same element. For both the Ps scattering and the e- scattering on He, we assume the symmetrization of the e- with the closed shell He electrons is the dominant interaction. A local effective potential employed in [2] and [3] is used to model the electron exchange and cross- sections are determined for a set of partial waves. For the Ps scattering we include as a secondary effect the Van der Waals interaction. For single e- scattering of He, we also employ a short range Coulomb potential and dispersion as contributing effects. Results of the cross-sections determined in each case are then compared

  5. Super-Maxwellian helium evaporation from pure and salty water

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.; Skinner, J. L., E-mail:, E-mail:; Nathanson, Gilbert M., E-mail:, E-mail: [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)


    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the density profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.

  6. Prize for Industrial Applications of Physics Talk: Low energy spread Ion source for focused ion beam systems-Search for the holy grail (United States)

    Ward, Bill


    In this talk I will cover my personal experiences as a serial entrepreneur and founder of a succession of focused ion beam companies (1). Ion Beam Technology, which developed a 200kv (FIB) direct ion implanter (2). Micrion, where the FIB found a market in circuit edit and mask repair, which eventually merged with FEI corporation. and (3). ALIS Corporation which develop the Orion system, the first commercially successful sub-nanometer helium ion microscope, that was ultimately acquired by Carl Zeiss corporation. I will share this adventure beginning with my experiences in the early days of ion beam implantation and e-beam lithography which lead up to the final breakthrough understanding of the mechanisms that govern the successful creation and operation of a single atom ion source.

  7. Apparatus to measure low level helium for neutron dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, Shuji; Takao, Yoshiyuki; Muramasu, Masatomo; Hida, Tomoya; Sou, Hirofumi; Nakashima, Hideki [Kyushu Univ., Fukuoka (Japan); Kanda, Yukinori


    An apparatus to measure low level helium in a solid sample for neutron dosimetry in the practical use such as area monitoring in the long-term and reactor surveillance was reported. In our previous work, the helium atoms measurement system (HAMS) was developed. A sample was evaporated in the furnace and the released gas from the sample was analyzed with the mass spectrometer of the system to determine the amount of helium contained in it. The system has been improved to advance the lower helium measurement limit in a solid sample for its application to an area monitoring system. The mass of a solid is up to 100mg. Two important points should be considered to advance the lower limit. One was to produce a high quality vacuum in the system chamber for suppressing background gases during the sample measurement. The other important point was to detect very small output from the mass spectrometer. A pulse counting system was used to get high sensitivity in the mass 4 analyzing. (author)

  8. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

    Directory of Open Access Journals (Sweden)

    Patrick Philipp


    Full Text Available The analysis of polymers by secondary ion mass spectrometry (SIMS has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM, which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

  9. Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy. (United States)

    Philipp, Patrick; Rzeznik, Lukasz; Wirtz, Tom


    The analysis of polymers by secondary ion mass spectrometry (SIMS) has been a topic of interest for many years. In recent years, the primary ion species evolved from heavy monatomic ions to cluster and massive cluster primary ions in order to preserve a maximum of organic information. The progress in less-damaging sputtering goes along with a loss in lateral resolution for 2D and 3D imaging. By contrast the development of a mass spectrometer as an add-on tool for the helium ion microscope (HIM), which uses finely focussed He+ or Ne+ beams, allows for the analysis of secondary ions and small secondary cluster ions with unprecedented lateral resolution. Irradiation induced damage and depth profiling capabilities obtained with these light rare gas species have been far less investigated than ion species used classically in SIMS. In this paper we simulated the sputtering of multi-layered polymer samples using the BCA (binary collision approximation) code SD_TRIM_SP to study preferential sputtering and atomic mixing in such samples up to a fluence of 1018 ions/cm2. Results show that helium primary ions are completely inappropriate for depth profiling applications with this kind of sample materials while results for neon are similar to argon. The latter is commonly used as primary ion species in SIMS. For the two heavier species, layers separated by 10 nm can be distinguished for impact energies of a few keV. These results are encouraging for 3D imaging applications where lateral and depth information are of importance.

  10. Trajectory-dependent energy loss for swift He atoms axially scattered off a silver surface

    Energy Technology Data Exchange (ETDEWEB)

    Ríos Rubiano, C.A. [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina); Bocan, G.A. [Centro Atómico Bariloche, Comisión Nacional de Energía Ató mica, and Consejo Nacional de Investigaciones Científicas y Técnicas, S.C. de Bariloche, Río Negro (Argentina); Juaristi, J.I. [Departamento de Física de Materiales, Facultad de Químicas, UPV/EHU, 20018 San Sebastián (Spain); Donostia International Physics Center (DIPC) and Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 San Sebastián (Spain); Gravielle, M.S., E-mail: [Instituto de Astronomía y Física del Espacio (CONICET-UBA), Casilla de correo 67, sucursal 28, 1428 Buenos Aires (Argentina)


    Angle- and energy-loss-resolved distributions of helium atoms grazingly scattered from a Ag(110) surface along low indexed crystallographic directions are investigated considering impact energies in the few keV range. Final projectile distributions are evaluated within a semi-classical formalism that includes dissipative effects due to electron–hole excitations through a friction force. For mono-energetic beams impinging along the [11{sup ¯}0],[11{sup ¯}2] and [001] directions, the model predicts the presence of multiple peak structures in energy-loss spectra. Such structures provide detailed information about the trajectory-dependent energy loss. However, when the experimental dispersion of the incident beam is taken into account, these energy-loss peaks are completely washed out, giving rise to a smooth energy-loss distribution, in fairly good agreement with available experimental data.

  11. Effect of electron correlation on positronium formation in positron-helium scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, P.; Adhikari, S.K. [Universidad Estadual Paulista, Sao Paulo (Brazil). Inst. de Fisica Teorica; Talukdar, B.; Bhattacharyya, S. [Department of Physics, Visva Bharati University, Santiniketan 731235 (India)


    A three-parameter correlated wave function for the helium ground state is used to study the scattering reaction e{sup +}+He{yields}He{sup +}+Ps, where Ps stands for positronium atom. An exact analytical expression is constructed for the first Born scattering amplitude for Ps formation from helium. Based on this numerical results are presented for both differential and total cross-sections. It is demonstrated that the inner electronic correlation of the target atom plays a crucial role in explaining the discrepancy between theory and experiment. (orig.) 13 refs.

  12. Pierre Gorce working on a helium pump.

    CERN Multimedia


    This type of pump was designed by Mario Morpurgo, to circulate liquid helium in superconducting magnets wound with hollow conductors. M. Morpurgo, Design and construction of a pump for liquid helium, CRYIOGENICS, February 1977, p. 91

  13. Atomic hydrogen storage method and apparatus (United States)

    Woollam, J. A. (Inventor)


    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  14. Chemical reactions studied at ultra-low temperature in liquid helium clusters (United States)

    Huisken, Friedrich; Krasnokutski, Serge A.


    Low-temperature reaction rates are important ingredients for astrophysical reaction networks modeling the formation of interstellar matter in molecular clouds. Unfortunately, such data is difficult to obtain by experimental means. In an attempt to study low-temperature reactions of astrophysical interest, we have investigated relevant reactions at ultralow temperature in liquid helium droplets. Being prepared by supersonic expansion of helium gas at high pressure through a nozzle into a vacuum, large helium clusters in the form of liquid droplets constitute nano-sized reaction vessels for the study of chemical reactions at ultra-low temperature. If the normal isotope 4He is used, the helium droplets are superfluid and characterized by a constant temperature of 0.37 K. Here we present results obtained for Mg, Al, and Si reacting with O2. Mass spectrometry was employed to characterize the reaction products. As it may be difficult to distinguish between reactions occurring in the helium droplets before they are ionized and ion-molecule reactions taking place after the ionization, additional techniques were applied to ensure that the reactions actually occurred in the helium droplets. This information was provided by measuring the chemiluminescence light emitted by the products, the evaporation of helium atoms by the release of the reaction heat, or by laser-spectroscopic identification of the reactants and products.

  15. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation. (United States)

    Ohba, Tomonori


    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2-5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4-0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems.

  16. 21 CFR 184.1355 - Helium. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Helium. 184.1355 Section 184.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1355 Helium. (a) Helium (empirical formula He, CAS Reg. No. 7440-59-7) is a...

  17. 21 CFR 582.1355 - Helium. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Helium. 582.1355 Section 582.1355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Helium. (a) Product. Helium. (b) Conditions of use. This substance is generally recognized as safe when...

  18. 30 CFR 256.11 - Helium. (United States)


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Helium. 256.11 Section 256.11 Mineral Resources... Helium. (a) Each lease issued or continued under these regulations shall be subject to a reservation by the United States, under section 12(f) of the Act, of the ownership of and the right to extract helium...

  19. Low energy and low fluence helium implantations in tungsten: Molecular dynamics simulations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pentecoste, L. [GREMI, UMR7344 CNRS Université d’Orléans BP6744, 45067 Orléans Cedex 2 (France); Brault, P., E-mail: [GREMI, UMR7344 CNRS Université d’Orléans BP6744, 45067 Orléans Cedex 2 (France); Thomann, A.-L., E-mail: [GREMI, UMR7344 CNRS Université d’Orléans BP6744, 45067 Orléans Cedex 2 (France); Desgardin, P. [CEMHTI, UPR3079 CNRS, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2 (France); Lecas, T. [GREMI, UMR7344 CNRS Université d’Orléans BP6744, 45067 Orléans Cedex 2 (France); Belhabib, T.; Barthe, M.-F.; Sauvage, T. [CEMHTI, UPR3079 CNRS, 1D Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2 (France)


    300 eV Helium implantation process into tungsten at 300 K has been studied with molecular dynamic simulations (MD). Predicted retention doses were compared to that obtained from experiments performed in equivalent conditions. A saturation phenomenon of the helium retention was evidenced for a number of impinging He atoms and a retention dose similar in both, experiments and simulations. From MD simulations it is learnt that observed Helium diffusion, formation and coalescence of clusters are the phenomena leading to the flaking of the substrate. These processes could explain the saturation of the Helium retention observed experimentally at low energies. - Highlights: • MD simulations give He retention rate decreasing with increasing incident He number. • MD simulations reveal He saturation level in W close to experiments. • MD simulations show W flaking due to He accumulation. • MD simulations show stratification phenomena of the He depth distribution in W.

  20. Whole-cell imaging at nanometer resolutions using fast and slow focused helium ions. (United States)

    Chen, Xiao; Udalagama, Chammika N B; Chen, Ce-Belle; Bettiol, Andrew A; Pickard, Daniel S; Venkatesan, T; Watt, Frank


    Observations of the interior structure of cells and subcellular organelles are important steps in unraveling organelle functions. Microscopy using helium ions can play a major role in both surface and subcellular imaging because it can provide subnanometer resolutions at the cell surface for slow helium ions, and fast helium ions can penetrate cells without a significant loss of resolution. Slow (e.g., 10-50 keV) helium ion beams can now be focused to subnanometer dimensions (∼0.25 nm), and keV helium ion microscopy can be used to image the surfaces of cells at high resolutions. Because of the ease of neutralizing the sample charge using a flood electron beam, surface charging effects are minimal and therefore cell surfaces can be imaged without the need for a conducting metallic coating. Fast (MeV) helium ions maintain a straight path as they pass through a cell. Along the ion trajectory, the helium ion undergoes multiple electron collisions, and for each collision a small amount of energy is lost to the scattered electron. By measuring the total energy loss of each MeV helium ion as it passes through the cell, we can construct an energy-loss image that is representative of the mass distribution of the cell. This work paves the way to use ions for whole-cell investigations at nanometer resolutions through structural, elemental (via nuclear elastic backscattering), and fluorescence (via ion induced fluorescence) imaging. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Direct evidence of mismatching effect on H emission in laser-induced atmospheric helium gas plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zener Sukra Lie; Koo Hendrik Kurniawan [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); May On Tjia [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia); Rinda, Hedwig [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Suliyanti, Maria Margaretha [Research Center for Physics, Indonesia Institute of Sciences, Kawasan PUSPIPTEK, Serpong, Tangerang Selatan 15314, Banten (Indonesia); Syahrun Nur Abdulmadjid; Nasrullah Idris [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Alion Mangasi Marpaung [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, Rawamangun, Jakarta 12440 (Indonesia); Marincan Pardede [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Jobiliong, Eric [Department of Industrial Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Muliadi Ramli [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Heri Suyanto [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Fukumoto, Kenichi; Kagawa, Kiichiro [Research Institute of Nuclear Engineering, University of Fukui, Fukui 910-8507 (Japan)


    A time-resolved orthogonal double pulse laser-induced breakdown spectroscopy (LIBS) with helium surrounding gas is developed for the explicit demonstration of time mismatch between the passage of fast moving impurity hydrogen atoms and the formation of thermal shock wave plasma generated by the relatively slow moving major host atoms of much greater masses ablated from the same sample. Although this so-called 'mismatching effect' has been consistently shown to be responsible for the gas pressure induced intensity diminution of hydrogen emission in a number of LIBS measurements using different ambient gases, its explicit demonstration has yet to be reported. The previously reported helium assisted excitation process has made possible the use of surrounding helium gas in our experimental set-up for showing that the ablated hydrogen atoms indeed move faster than the simultaneously ablated much heavier major host atoms as signaled by the earlier H emission in the helium plasma generated by a separate laser prior to the laser ablation. This conclusion is further substantiated by the observed dominant distribution of H atoms in the forward cone-shaped target plasma.

  2. Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator. (United States)

    Takamizawa, Akifumi; Yanagimachi, Shinya; Tanabe, Takehiko; Hagimoto, Ken; Hirano, Iku; Watabe, Ken-ichi; Ikegami, Takeshi; Hartnett, John G


    The frequency stability of an atomic fountain clock was significantly improved by employing an ultra-stable local oscillator and increasing the number of atoms detected after the Ramsey interrogation, resulting in a measured Allan deviation of 8.3 × 10(-14)τ(-1/2)). A cryogenic sapphire oscillator using an ultra-low-vibration pulse-tube cryocooler and cryostat, without the need for refilling with liquid helium, was applied as a local oscillator and a frequency reference. High atom number was achieved by the high power of the cooling laser beams and optical pumping to the Zeeman sublevel m(F) = 0 employed for a frequency measurement, although vapor-loaded optical molasses with the simple (001) configuration was used for the atomic fountain clock. The resulting stability is not limited by the Dick effect as it is when a BVA quartz oscillator is used as the local oscillator. The stability reached the quantum projection noise limit to within 11%. Using a combination of a cryocooled sapphire oscillator and techniques to enhance the atom number, the frequency stability of any atomic fountain clock, already established as primary frequency standard, may be improved without opening its vacuum chamber.

  3. Theoretical investigation on helium incorporation in Ti{sub 3}AlC{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jingren; Wang, Chenxu; Yang, Tengfei; Kong, Shuyan; Xue, Jianming; Wang, Yugang, E-mail:


    Ti{sub 3}AlC{sub 2} known as representing material in MAX phases, has been suggested for next generation nuclear reactor applications for their advantages of thermal/mechanical properties in high temperature and radiation damage resistance. In this paper the helium incorporation properties in Ti{sub 3}AlC{sub 2} are investigated via ab initio methods. The energetically preferred interstitial sites of helium atom in Ti{sub 3}AlC{sub 2} are identified with respect to the chemical potential of each component element. The formation energies of interstitial and substitutional helium atoms are compared to decide the most favorable sites for He in Ti{sub 3}AlC{sub 2} lattice. The calculations show that in most situations helium atom favors the interstitial sites in aluminum layer, whereas it is more likely to substitute on Al sites in the (Ti- and C-rich) environment. Furthermore, the energetics of vacancies were calculated because the presence of single vacancies and bivacancies in the early stage of irradiation damage is thought to modify He behavior in materials to a great extent. These preliminary results lay a solid foundation for further understanding of the underlying mechanisms of helium bubble nucleation and formation in Ti{sub 3}AlC{sub 2}.

  4. Boron gettering on cavities induced by helium implantation in Si (United States)

    Roqueta, F.; Alquier, D.; Ventura, L.; Dubois, Ch.; Jérisian, R.


    In this paper, we shed light on the strong interaction between the cavity layer induced by helium implantation and boron. First of all, we evidence the impact of He gettering step on a boron-diffused profile. In order to study the boron-cavity interaction, we had used uniformly boron-doped wafers implanted with helium at high dose and anneal using usual furnace annealing (FA) as well as rapid thermal annealing. Then, to avoid any precipitation phenomena, conditions were chosen to not exceed the boron solid solubility value. Our experimental results exhibit a large trapping of boron within the cavity layer. This trapping occurs since the early stage of the annealing. These results enable us to have better understanding of this He gettering step as well as its interaction with boron atoms, which are of great interest for device.

  5. A stable compound of helium and sodium at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; Stavrou, Elissaios; Lobanov, Sergey; Saleh, Gabriele; Qian, Guang-Rui; Zhu, Qiang; Gatti, Carlo; Deringer, Volker L.; Dronskowski, Richard; Zhou, Xiang-Feng; Prakapenka, Vitali B.; Konôpková, Zuzana; Popov, Ivan A.; Boldyrev, Alexander I.; Wang, Hui-Tian


    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes this material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na8 cubes. We also predict the existence of Na2HeO with a similar structure at pressures above 15 GPa.

  6. Effects of helium implantation on hardness of pure iron and a reduced activation ferritic-martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hiroyasu E-mail:; Jitsukawa, Shiro; Hishinuma, Akimichi; Ando, Masami; Katoh, Yutai; Kohyama, Akira; Iwai, Takeo


    Helium was implanted into high purity Fe and F82H at room temperature up to 2000 appm to investigate helium effects on hardening. Ultra micro-indentation tests were performed on the specimens before and after helium implantation with loads that penetrate in 300 nm depth. After the indentation tests, the specimens were prepared with a focused ion beam (FIB) processing system for transmission electron microscopy (TEM) of the deformed regions. Results of the indentation tests indicated clearly that helium implantation caused hardening for both pure Fe and F82H. For pure Fe, it was also observed by TEM that the propagation of the plastic deformation zone formed during the indentation was limited to the helium-implanted layer, ranging from 600 to 800 nm from the incident surface.

  7. Simplicity works for superfluid helium

    Energy Technology Data Exchange (ETDEWEB)

    Bowley, Roger [University of Nottingham, Nottingham (United Kingdom)


    The famous philosopher Karl Popper once said that ''science is the art of systematic oversimplification''. Indeed, when faced with a new puzzle the trick is to simplify it without losing the essential physics - something that is easier said than done. However, this approach has paid off recently in low-temperature physics. Last year Richard Packard, Seamus Davis and co-workers at the University of California at Berkeley encountered a puzzling new phenomenon in superfluid helium-3, a quantum fluid that remains a liquid close to absolute zero and exhibits unusual properties such as the ability to flow without friction (A Machenkov et al. 1999 Phys. Rev. Lett. 83 3860). Previous experiments had revealed that certain effects in liquid helium are analogous to effects observed in superconductors, materials that lose all resistance to electric current at low temperatures. When the Berkeley researchers connected two reservoirs of superfluid helium-3, the superfluid flowed back and forth through apertures that formed a ''weak link'' between the two containers. This behaviour is similar to the oscillatory current of electrons that can flow across an insulating gap separating two superconductors - a device that is known as a Josephson junction. What was puzzling about the Berkeley results was that the helium-3 had two different stable configurations, both of which behaved in an unconventional way compared with a Josephson junction. This puzzle has now been solved independently by Sidney Yip at the National Center for Theoretical Sciences in Taiwan, and by Janne Viljas and Erkki Thuneberg at the Helsinki University of Technology in Finland (Phys. Rev. Lett. 1999 83 3864 and 3868). In this article the author describes the latest research on superfluid helium. (UK)

  8. The primordial helium abundance from updated emissivities

    Energy Technology Data Exchange (ETDEWEB)

    Aver, Erik [Department of Physics, Gonzaga University, 502 E Boone Ave, Spokane, WA, 99258 (United States); Olive, Keith A.; Skillman, Evan D. [School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN, 55455 (United States); Porter, R.L., E-mail:, E-mail:, E-mail:, E-mail: [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602 (United States)


    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y{sub p}. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y{sub p}. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y{sub p} = 0.2465 ± 0.0097, in good agreement with the BBN result, Y{sub p} = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination.

  9. Beam-beam instability

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A.W.


    The subject of beam-beam instability has been studied since the invention of the colliding beam storage rings. Today, with several colliding beam storage rings in operation, it is not yet fully understood and remains an outstanding problem for the storage ring designers. No doubt that good progress has been made over the years, but what we have at present is still rather primitive. It is perhaps possible to divide the beam-beam subject into two areas: one on luminosity optimization and another on the dynamics of the beam-beam interaction. The former area concerns mostly the design and operational features of a colliding beam storage ring, while the later concentrates on the experimental and theoretical aspects of the beam-beam interaction. Although both areas are of interest, our emphasis is on the second area only. In particular, we are most interested in the various possible mechanisms that cause the beam-beam instability.

  10. From the UV to the static-field limit: rates and scaling laws of intense-field ionization of helium

    Energy Technology Data Exchange (ETDEWEB)

    Parker, J S; Armstrong, G S J; Taylor, K T [Department of Applied Mathematics and Theoretical Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Boca, M [Faculty of Physics, University of Bucharest, 70709 Bucharest (Romania)


    We present high-accuracy calculations of ionization rates of helium at UV (195 nm) wavelengths. The data are obtained from full-dimensionality integrations of the helium-laser time-dependent Schroedinger equation. Comparison is made with our previously obtained data at 390 nm and 780 nm. We show that scaling laws introduced by Parker et al extend unmodified from the near-infrared limit into the UV limit. Static-field ionization rates of helium are also obtained, again from time-dependent full-dimensionality integrations of the helium Schroedinger equation. We compare the static-field ionization results with those of Scrinzi et al and Themelis et al, who also treat the full-dimensional helium atom, but with time-independent methods. Good agreement is obtained.

  11. beam-beam interaction

    CERN Multimedia


    The Beam 1 (represented in blue) and the Beam 2 (represented in red) are colliding with an angle at the Interaction Point (IP). The angle is needed to avoid unwanted multiple collisions along the interaction region. Despite of the separation introduced by the angle, the two beams interact via their electromagnetic field, the so called "beam-beam" interaction.

  12. HeREF-2003 : Helium Refrigeration Techniques

    CERN Multimedia


    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. • Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 • Cost per participant: 500.- CHF ...

  13. HeREF-2003: Helium Refrigeration Techniques

    CERN Multimedia


    CERN Technical Training 2003: Learning for the LHC ! Theory, Technology, Maintenance and Control of Helium Refrigerators HeREF-2003 is a course in the framework of the 2002 Technical Training Programme, that will provide a complete introduction to Helium refrigeration, with a practical approach to theory, technology, maintenance and control of Helium refrigeration installations. Theoretical aspects and equations will be limited to a minimum. HeREF-2003 targets an audience of technicians and operators of Helium refrigeration plants at CERN, as well as physicists and engineers needing an overview of current Helium refrigeration techniques. HeREF-2003 will address, among other, issues related to component technology, installation maintenance, process control and Helium purity. A commented visit to a couple of CERN Helium refrigeration or liquefaction plants will also take place. Duration: 7 half days (4 mornings and 3 afternoons), 6-10 October, 2003 Cost per participant: 500.- CHF Language: Bilingual English...

  14. Absorption imaging of ultracold atoms on atom chips

    DEFF Research Database (Denmark)

    Smith, David A.; Aigner, Simon; Hofferberth, Sebastian


    Imaging ultracold atomic gases close to surfaces is an important tool for the detailed analysis of experiments carried out using atom chips. We describe the critical factors that need be considered, especially when the imaging beam is purposely reflected from the surface. In particular we present...... methods to measure the atom-surface distance, which is a prerequisite for magnetic field imaging and studies of atom surface-interactions....

  15. Absorption spectroscopy of adenine, 9-methyladenine, and 2-aminopurine in helium nanodroplets

    NARCIS (Netherlands)

    Smolarek, S.; Rijs, A. M.; Buma, W. J.; Drabbels, M.


    High-resolution absorption spectra of adenine, 9-methyladenine and 2-aminopurine in helium nanodroplets have been recorded. In contrast to molecular beam experiments, large variations in linewidths are observed for adenine and 9-methyladenine. At the same time, the spectrum of 2-aminopurine remains

  16. Atomic data for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A. (eds.); Barnett, C.F.


    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  17. Frequency Metrology in Quantum Degenerate Helium: Direct Measurement of the 2 3S1 → 2 1S0 Transition (United States)

    van Rooij, R.; Borbely, J. S.; Simonet, J.; Hoogerland, M. D.; Eikema, K. S. E.; Rozendaal, R. A.; Vassen, W.


    Precision spectroscopy of simple atomic systems has refined our understanding of the fundamental laws of quantum physics. In particular, helium spectroscopy has played a crucial role in describing two-electron interactions, determining the fine-structure constant and extracting the size of the helium nucleus. Here we present a measurement of the doubly forbidden 1557-nanometer transition connecting the two metastable states of helium (the lowest energy triplet state 2 3S1 and first excited singlet state 2 1S0), for which quantum electrodynamic and nuclear size effects are very strong. This transition is weaker by 14 orders of magnitude than the most predominantly measured transition in helium. Ultracold, submicrokelvin, fermionic 3He and bosonic 4He atoms are used to obtain a precision of 8 × 10-12, providing a stringent test of two-electron quantum electrodynamic theory and of nuclear few-body theory.

  18. Monte Carlo simulations of nanoscale focused neon ion beam sputtering. (United States)

    Timilsina, Rajendra; Rack, Philip D


    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  19. XUV Transient Absorption Spectroscopy: Probing Laser-Perturbed Dipole Polarization in Single Atom, Macroscopic, and Molecular Regimes


    Chen-Ting Liao; Arvinder Sandhu


    We employ an extreme ultraviolet (XUV) pulse to impulsively excite dipole polarization in atoms or molecules, which corresponds to coherently prepared superposition of excited states. A delayed near infrared (NIR) pulse then perturbs the fast evolving polarization, and the resultant absorbance change is monitored in dilute helium, dense helium, and sulfur hexafluoride (SF6) molecules. We observe and quantify the time-dependence of various transient phenomena in helium atoms,includinglaser-indu...

  20. Calculation of transition probabilities and ac Stark shifts in two-photon laser transitions of antiprotonic helium

    CERN Document Server

    Hori, Masaki


    Numerical ab initio variational calculations of the transition probabilities and ac Stark shifts in two-photon transitions of antiprotonic helium atoms driven by two counter-propagating laser beams are presented. We found that sub-Doppler spectroscopy is in principle possible by exciting transitions of the type (n,L)->(n-2,L-2) between antiprotonic states of principal and angular momentum quantum numbers n~L-1~35, first by using highly monochromatic, nanosecond laser beams of intensities 10^4-10^5 W/cm^2, and then by tuning the virtual intermediate state close (e.g., within 10-20 GHz) to the real state (n-1,L-1) to enhance the nonlinear transition probability. We expect that ac Stark shifts of a few MHz or more will become an important source of systematic error at fractional precisions of better than a few parts in 10^9. These shifts can in principle be minimized and even canceled by selecting an optimum combination of laser intensities and frequencies. We simulated the resonance profiles of some two-photon ...

  1. European Group for Atomic Spectroscopy. Summaries of contributions, eleventh annual conference, Paris-Orsay, July 10-13, 1979

    Energy Technology Data Exchange (ETDEWEB)


    Summaries are presented of talks given at the eleventh conference of the European group for atomic spectroscopy. Topics covered include: lifetimes; collisions; line shape; hyperfine structure; isotope shifts; saturation spectroscopy; Hanle effect; Rydberg levels; quantum beats; helium and helium-like atoms; metrology; and molecules. (GHT)

  2. Molecular beam photoionization and gas-surface scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ceyer, S.T.


    The energetics of the ethylene ion-molecule reactions was investigated in more detail than previously possible in two body collision experiments by photoionization of the neutral van der Waals ethylene dimer. The stability of the (C/sub 2/H/sub 4/)/sup +/C/sub 2/H/sub 4/ ion-molecule collision complex has been determined to be 18.2 +- 0.5 kcal. The highest potential barriers along the reaction coordinate for decomposition of this collision complex into C/sub 4/H/sub 7//sup +/ + H and C/sub 3/H/sub 5//sup +/ + CH/sub 3/ have been determined to be 0 +- 1.5 and 8.7 +- 1.5 kcal. In a similar manner, the energetics of the solvated ethylene dimer ion was investigated by the photoionization of the ethylene trimer. The absolute proton affinity of NH/sub 3/ (203.6 +- 1.3 kcal/mole) and the proton solvation energies by more than one NH/sub 3/ have been determined by molecular beam photoionization. In addition, the NH/sub 3//sup +/-NH/sub 3/ interaction energy (0.79 +- 0.05 eV) was measured by photoionization of the neutral van der Waals dimer. These experiments have shown that photoionization of van der Waals clusters is a very powerful method of determining the energetics of gas phase proton solvation. The scattering of helium atomic beams from a high Miller index platinum surface that exhibits ordered, periodic steps on the atomic scale to probe the effect of atomic steps on the scattering distribution is explored. Rainbow scattering is observed when the step edges are perpendicular to the incident helium atoms. The design, construction and operation of a beam-surface scattering apparatus are described. The first data obtained in this apparatus are presented and the interesting dynamical aspects of the oxidation of D, D/sub 2/ and CO are discussed. 75 references.

  3. Fabrication of semiconductor microspheres with laser ablation in superfluid helium (United States)

    Minowa, Yosuke; Oguni, Yuya; Ashida, Masaaki


    We fabricated semiconductor ZnO microspheres via the pulsed laser ablation in the superfluid helium. The scanning electron microscope observation revealed the high sphericity and smooth surface. We also observed whispering gallery mode resonances, the electromagnetic eigenmode resonances within the microspheres, in the cathodoluminescence spectrum, verifying the high symmetry of the fabricated microspheres. Further, we cross-sectioned the microspheres with using focused ion beam. The scanning electron microscope observation of the cross section uncovers the existence of small holes within the microspheres. The inner structure examination helps us to understand the microscopic mechanism of our fabrication method.

  4. Modern atomic physics

    CERN Document Server

    Natarajan, Vasant


    Much of our understanding of physics in the last 30-plus years has come from research on atoms, photons, and their interactions. Collecting information previously scattered throughout the literature, Modern Atomic Physics provides students with one unified guide to contemporary developments in the field. After reviewing metrology and preliminary material, the text explains core areas of atomic physics. Important topics discussed include the spontaneous emission of radiation, stimulated transitions and the properties of gas, the physics and applications of resonance fluorescence, coherence, cooling and trapping of charged and neutral particles, and atomic beam magnetic resonance experiments. Covering standards, a different way of looking at a photon, stimulated radiation, and frequency combs, the appendices avoid jargon and use historical notes and personal anecdotes to make the topics accessible to non-atomic physics students. Written by a leader in atomic and optical physics, this text gives a state-of-the...

  5. Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Brimbal, Daniel, E-mail: [AREVA NP, Tour AREVA, 1 Place Jean Millier, 92084 Paris La Défense (France); Fournier, Lionel [AREVA NP, Tour AREVA, 1 Place Jean Millier, 92084 Paris La Défense (France); Barbu, Alain [Alain Barbu Consultant, 6 Avenue Pasteur Martin Luther King, 78230 Le Pecq (France)


    A mean field cluster dynamics model has been developed in order to study the effect of high dose irradiation and helium on the microstructural evolution of metals. In this model, self-interstitial clusters, stacking-fault tetrahedra and helium-vacancy clusters are taken into account, in a configuration well adapted to austenitic stainless steels. For small helium-vacancy cluster sizes, the densities of each small cluster are calculated. However, for large sizes, only the mean number of helium atoms per cluster size is calculated. This aspect allows us to calculate the evolution of the microstructural features up to high irradiation doses in a few minutes. It is shown that the presence of stacking-fault tetrahedra notably reduces cavity sizes below 400 °C, but they have little influence on the microstructure above this temperature. The binding energies of vacancies to cavities are calculated using a new method essentially based on ab initio data. It is shown that helium has little effect on the cavity microstructure at 300 °C. However, at higher temperatures, even small helium production rates such as those typical of sodium-fast-reactors induce a notable increase in cavity density compared to an irradiation without helium. - Highlights: • Irradiation of steels with helium is studied through a new cluster dynamics model. • There is only a small effect of helium on cavity distributions in PWR conditions. • An increase in helium production causes an increase in cavity density over 500 °C. • The role of helium is to stabilize cavities via reduced emission of vacancies.

  6. Vacancy-type defects and hardness of helium implanted CLAM steel studied by positron-annihilation spectroscopy and nano-indentation technique

    Energy Technology Data Exchange (ETDEWEB)

    Xin Yong [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Ju Xin, E-mail: [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Qiu Jie [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Guo Liping; Chen Jihong; Yang Zheng [Accelerator Laboratories, School of Physics, Wuhan University, Wuhan, Hubei 430072 (China); Zhang Peng; Cao Xinzhong; Wang Baoyi [Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)


    Highlights: Black-Right-Pointing-Pointer Helium implantation is performed to CLAM steel at different temperatures. Black-Right-Pointing-Pointer Positron annihilation is used to investigate vacancy-type defects. Black-Right-Pointing-Pointer Nano-hardness is investigated to study irradiation induced hardening. Black-Right-Pointing-Pointer Vacancy-helium complexes are main defects after implantation. Black-Right-Pointing-Pointer Both helium-vacancy clusters and helium bubbles contribute to hardening. - Abstract: China Low Activation Martensitic (CLAM) steel was implanted with helium up to 1e + 16/cm{sup 2} at 300-873 K using 140 keV helium ions. Vacancy-type defects induced by implantation were investigated with positron beam Doppler broadening technique, and then nano-hardness measurements were performed to investigate helium-induced hardening effect. He implantation produced a large number of vacancy-type defects in CLAM steel, and the concentration of vacancy-type defects decreased with increasing temperature. Vacancy-helium complexes were main defects at different temperatures. Irradiation induced hardening was observed at all irradiation temperatures, and the peak value of hardness was at 473 K. The result suggested that both vacancy-helium complexes and helium bubbles had contribution to irradiation induced hardening. The decomposition and annihilation of irradiation-induced defects became more and more significant with increasing temperature, which induced the increment of hardness became more and more small.

  7. Antiproton impact ionization of atomic hydrogen and helium

    Energy Technology Data Exchange (ETDEWEB)

    McGovern, M; Walters, H R J [Department of Applied Mathematics and Theoretical Physics, Queen' s University, Belfast BT7 INN (United Kingdom); Assafrao, D; Mohallem, J R [Laboratorio de Atomos e Moleculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, P.O Box 702, 30123-970 Belo Horizonte, MG (Brazil); Whelan, Colm T, E-mail: [Department of Physics, Old Dominion University, Norfolk, VA 23529-0116 (United States)


    We shall present results for antiproton ionization of H and He ranging from fully differential cross sections to total ionization. The calculations have been made in a coupled pseudostate impact parameter approximation. It will be shown that the interaction between the antiproton and the target nucleus is very important at low energies.

  8. Numerical calculation of the ground state of Helium atom using ...

    African Journals Online (AJOL)

    Hylleraas did the calculation of the ground state in 1926 using the variational parameter a. In this paper we trace Hylleraas historic calculation, the use of computer enables us to improve the approximation found by Hylleraas . The program was written in FORTRAN language, designed in such away that for a particular value ...

  9. Rotational spectrum of cyanoacetylene solvated with helium atoms. (United States)

    Topic, W; Jäger, W; Blinov, N; Roy, P-N; Botti, M; Moroni, S


    The high resolution microwave spectra of He(N)-HCCCN clusters were studied in the size ranges of 1-18 and 25-31. In the absence of an accompanying infrared study, rotational excitation energies were computed by the reptation quantum Monte Carlo method and used to facilitate the search and assignment of R(0) transitions from N > 6, as well as R(1) transitions with N > 1. The assignments in the range of 25-31 are accurate to +/-2 cluster size units, with an essentially certain relative ordering. The rotational transition frequencies decrease with N = 1-6 and then show oscillatory behavior for larger cluster sizes, which is now recognized to be a manifestation of the onset and microscopic evolution of superfluidity. For cluster sizes beyond completion of the first solvation shell the rotational frequencies increase significantly above the large-droplet limit. This behavior, common to other linear molecules whose interaction with He features a strong nearly equatorial minimum, is analyzed using path integral Monte Carlo simulations. The He density in the incipient second solvation shell is shown to open a new channel for long permutation cycles, thus increasing the decoupling of the quantum solvent from the rotation of the dopant molecule.

  10. Novel Applications of Buffer-gas Cooling to Cold Atoms, Diatomic Molecules, and Large Molecules (United States)

    Drayna, Garrett Korda

    Cold gases of atoms and molecules provide a system for the exploration of a diverse set of physical phenomena. For example, cold gasses of magnetically and electrically polar atoms and molecules are ideal systems for quantum simulation and quantum computation experiments, and cold gasses of large polar molecules allow for novel spectroscopic techniques. Buffer-gas cooling is a robust and widely applicable method for cooling atoms and molecules to temperatures of approximately 1 Kelvin. In this thesis, I present novel applications of buffer-gas cooling to obtaining gases of trapped, ultracold atoms and diatomic molecules, as well as the study of the cooling of large organic molecules. In the first experiment of this thesis, a buffer-gas beam source of atoms is used to directly load a magneto-optical trap. Due to the versatility of the buffer-gas beam source, we obtain trapped, sub-milliKelvin gases of four different lanthanide species using the same experimental apparatus. In the second experiment of this thesis, a buffer-gas beam is used as the initial stage of an experiment to directly laser cool and magneto-optically trap the diatomic molecule CaF. In the third experiment of this thesis, buffer-gas cooling is used to study the cooling of the conformational state of large organic molecules. We directly observe conformational relaxation of gas-phase 1,2-propanediol due to cold collisions with helium gas. Lastly, I present preliminary results on a variety of novel applications of buffer-gas cooling, such as mixture analysis, separation of chiral mixtures, the measurement of parity-violation in chiral molecules, and the cooling and spectroscopy of highly unstable reaction intermediates.

  11. Accuracy of helium accumulation fluence monitor for fast reactor dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Chikara; Aoyama, Takafumi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center


    A helium (He) accumulation fluence monitor (HAFM) has been developed for fast reactor dosimetry. In order to evaluate the measurement accuracy of neutron fluence by the HAFM method, the HAFMs of enriched boron (B) and beryllium (Be) were irradiated in the Fast Neutron Source Reactor `YAYOI`. The number of He atoms produced in the HAFMs were measured and compared with the calculated values. As a result of this study, it was confirmed that the neutron fluence could be measured within 5 % by the HAFM method, and that met the required accuracy for fast reactor dosimetry. (author)

  12. The prospects of a subnanometer focused neon ion beam. (United States)

    Rahman, F H M; McVey, Shawn; Farkas, Louis; Notte, John A; Tan, Shida; Livengood, Richard H


    The success of the helium ion microscope has encouraged extensions of this technology to produce beams of other ion species. A review of the various candidate ion beams and their technical prospects suggest that a neon beam might be the most readily achieved. Such a neon beam would provide a sputtering yield that exceeds helium by an order of magnitude while still offering a theoretical probe size less than 1-nm. This article outlines the motivation for a neon gas field ion source, the expected performance through simulations, and provides an update of our experimental progress. © Wiley Periodicals, Inc.

  13. Cavity microstructure and kinetics during gas tungsten arc welding of helium-containing stainless steel (United States)

    Lin, H. T.; Grossbeck, M. L.; Chin, B. A.


    Helium was implanted in type 316 stainless steel, through tritium decay, to levels of 0. 18, 2. 5, 27, 105, and 256 atomic parts per million (appm). Bead-on-sheet welds were then made using the gas tungsten arc (GTA) process. Intergranular cracking occurred in the heat-affected zones (HAZs) of specimens with helium concentrations equal to or greater than 2.5 appm. No such cracking was observed in helium-free control specimens or in specimens containing the lowest helium concentration. In addition to the HAZ cracking, brittle, centerline cracking occurred in the fusion zone of specimens containing 105 and 256 appm helium. Transmission and scanning electron microscopy results indicated that both the HAZ cracking and centerline cracking in the fusion zone resulted from the stress-induced growth and coalescence of cavities initiated at helium bubbles on interfaces. For the HAZ case, the cavity growth rate is modeled and shown to predict the experimentally measured 1-second time lag between peak weld temperature and the onset of cracking.

  14. Design of Helium Brayton Cycle for Small Modular High Temperature Gas cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoon Han; Lee, Je Kyoung; Lee, Jeong Ik [Korea Advanced Institue of Science and Technology, Daejeon (Korea, Republic of)


    The small modular reactor (SMR) is gaining a lot of interest recently. Not only it can achieve better passive safety, but also it can be potentially utilized for the diverse applications to respond to the increasing global energy demands. As a part of the SMR development effort, SM-HTGR (Small Modular-High Temperature Gas-cooled Reactor), a 20MWth reactor is under development by the Korean Atomic Energy Research Institute (KAERI) for the complete passive safety, desalination and industrial process heat application. The Helium Brayton cycle is considered as a promising candidate for the SM-HTGR power conversion. The advantages of Helium Brayton cycles are: 1) helium is an inert gas that does not interact with structure material. 2) helium is chemically stable that helium Brayton cycle can be utilized under the high temperature circumstance. 3) higher thermal efficiency is achievable under higher outlet temperature range. Moreover, high temperature advantage can be utilized (reinforced) by diverting part of the heat for industrial process heat. This paper will discuss the progress on the helium power conversion cycle operating condition optimization by studying the sensitivity of the maximum pressure, pressure ratio and the component cooling on the total cycle efficiency

  15. High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium (United States)

    Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik


    The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol-1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.

  16. The identification of autoionizing states of atomic chromium for the resonance ionization laser ion source of the ISOLDE radioactive ion beam facility

    CERN Document Server

    Goodacre, T Day; Fedorovc, D; Fedosseev, V N; Marsh, B A; Molkanov, P; Rossel, R E; Rothe, S; Seiffert, C


    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source resonance ionization spectroscopy, an optimal three-step, three-resonance photo-ionization scheme has been developed for chromium. The scheme uses an ionizing transition to one of the 14 newly observed autoionizing states. This work increases the range of ISOLDE-RILIS ionized beams to 32 chemical elements. Details of the spectroscopic studies are described and the new ionization scheme is summarized. A link to the complete version of this document will be added here following publication:

  17. Ras Laffan helium recovery unit 2 (United States)

    Fauve, Eric Arnaud; Grabié, Veronique; Grillot, David; Delcayre, Franck; Deschildre, Cindy


    In May 2010, Air Liquide was awarded a contract for the Engineering Procurement and Construction (Turnkey EPC) for a second helium recovery unit [RLH II] dedicated to the Ras Laffan refinery in Qatar. This unit will come in addition to the one [RLH I] delivered and commissioned by Air Liquide in 2005. It will increase the helium production of Qatar from 10% to 28% of worldwide production. RLH I and RLH II use Air Liquide Advanced Technologies helium liquefiers. With a production of 8 tons of liquid helium per day, the RLH I liquefier is the world largest, but not for long. Thanks to the newly developed turbine TC7, Air Liquide was able to propose for RLH II a single liquefier able to produce over 20 tons per day of liquid helium without liquid nitrogen pre-cooling. This liquefier using 6 Air Liquide turbines (TC series) will set a new record in the world of helium liquefaction.

  18. The effect of laser beam size in a zig-zag collimator on transverse ...

    Indian Academy of Sciences (India)

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser ...

  19. Parameters of helium absorption by porous structures (United States)

    Bukin, A. N.; Ivanova, A. S.; Marunich, S. A.; Pak, Yu. S.; Rozenkevich, M. B.


    Results from investigating the parameters of helium absoption by hollow glass-crystalline cenospheres obtained at the Reftinsky regional power station in the city of Asbest are presented. The permeability coefficients of helium penetrating through shells are determined, and the apparent activation energy is estimated ( E act = 33 ± 5 kJ/mol). The possibility of selectively extracting helium from mixtures of it and nitrogen is shown.

  20. Cavity optomechanics in a levitated helium drop (United States)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.


    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  1. Coherent Atom Optics with fast metastable rare gas atoms (United States)

    Grucker, J.; Baudon, J.; Karam, J.-C.; Perales, F.; Bocvarski, V.; Vassilev, G.; Ducloy, M.


    Coherent atom optics experiments making use of an ultra-narrow beam of fast metastable atoms generated by metastability exchange are reported. The transverse coherence of the beam (coherence radius of 1.7 μm for He*, 1.2 μm for Ne*, 0.87 μm for Ar*) is demonstrated via the atomic diffraction by a non-magnetic 2μm-period reflection grating. The combination of the non-scalar van der Waals (vdW) interaction with the Zeeman interaction generated by a static magnetic field gives rise to "vdW-Zeeman" transitions among Zeeman sub-levels. Exo-energetic transitions of this type are observed with Ne*(3P2) atoms traversing a copper micro-slit grating. They can be used as a tunable beam splitter in an inelastic Fresnel bi-prism atom interferometer.

  2. Effects of ionizing radiation on the light sensing elements of the retina. [Structural and physiological effects of carbon, helium, and neon ions on rods and cones of salamanders and mice

    Energy Technology Data Exchange (ETDEWEB)

    Malachowski, M.J.


    This investigation was undertaken to quantitate possible morphological and physiological effects of particles of high linear energy transfer on the retina, in comparison with x-ray effects. The particles used were accelerated atomic nuclei of helium, carbon, and neon at kinetic energies of several hundred MeV/nucleon. For morphological studies, scanning and transmission electron microscopy and light microscopy were used. Physiological studies consisted of autoradiographic data of the rate of incorporation of labeled protein in the structures (opsin) of the outer segment of visual cells. Structural changes were found in the nuclei, as well as the inner and outer segments of visual cells, rods and cones. At a low dose of 10 rad, x rays and helium had no statistically significant morphological effects, but carbon and neon beams did cause significant degeneration of individual cells, pointing to the existence of a linear dose--effect relationship. At high doses of several hundred rads, a Pathologic Index determined the relative biological effectiveness of neon against alpha particles to have a value of greater than 6. The severity of effects per particle increased with atomic number. Labeling studies demonstrated a decreased rate of incorporation of labeled proteins in the structural organization of the outer segments of visual rods. The rate of self-renewal of visual rod discs was punctuated by irradiation and the structures themselves were depleted of amino acids. A model of rod discs (metabolic and catabolic) was postulated for correlated early and late effects to high and low doses.

  3. Behaviour of helium after implantation in molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    Viaud, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France)], E-mail:; Maillard, S.; Carlot, G.; Valot, C. [Commissariat a l' Energie Atomique (CEA), Cadarache (France); Gilabert, E. [Chimie Nucleaire Analytique and Bio-environnementale (CNAB), Gradignan (France); Sauvage, T. [CEMHTI-CNRS, Orleans (France); Peaucelle, C.; Moncoffre, N. [Institut de Physique Nucleaire de Lyon (IPNL), Lyon (France)


    This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature.

  4. Helium resources of the United States, 1989 (United States)

    Miller, Richard D.; Hamak, John E.

    The helium resources base of the United States was estimated by the Bureau of Mines to be 894.6 Bcf as of January 1, 1989. These resources are divided into four categories in decreasing degree of the assurance of their existence: (1) helium in storage and in proved natural gas reserves, 282.4 Bcf; (2) helium in probable natural gas resources, estimated at 237.7 Bcf; (3) helium in possible natural gas resources, estimated to be 263.2 Bcf; and (4) helium in speculative natural gas resources, 111.4 Bcf. These helium resources are further divided into depleting and nondepleting, with the helium in storage being in a separate classification. The depleting resources are those associated with natural gasfields that are, or will be, produced for the natural gas they contain. Almost all of the helium in potential (probable, possible, and speculative) natural gas resources is included in this classification. These depleting resources are estimated to contain 775 Bcf of the total helium resource base.

  5. Investigation of Cellular Interactions of Nanoparticles by Helium Ion Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arey, Bruce W.; Shutthanandan, V.; Xie, Yumei; Tolic, Ana; Williams, Nolann G.; Orr, Galya


    The helium ion mircroscope (HIM) probes light elements (e.g. C, N, O, P) with high contrast due to the large variation in secondary electron yield, which minimizes the necessity of specimen staining. A defining characteristic of HIM is its remarkable capability to neutralize charge by the implementation of an electron flood gun, which eliminates the need for coating non-conductive specimens for imaging at high resolution. In addition, the small convergence angle in HeIM offers a large depth of field (~5x FE-SEM), enabling tall structures to be viewed in focus within a single image. Taking advantage of these capabilities, we investigate the interactions of engineered nanoparticles (NPs) at the surface of alveolar type II epithelial cells grown at the air-liquid interface (ALI). The increasing use of nanomaterials in a wide range of commercial applications has the potential to increase human exposure to these materials, but the impact of such exposure on human health is still unclear. One of the main routs of exposure is the respiratory tract, where alveolar epithelial cells present a vulnerable target at the interface with ambient air. Since the cellular interactions of NPs govern the cellular response and ultimately determine the impact on human health, our studies will help delineating relationships between particle properties and cellular interactions and response to better evaluate NP toxicity or biocompatibility. The Rutherford backscattered ion (RBI) is a helium ions imaging mode, which backscatters helium ions from every element except hydrogen, with a backscatter yield that depends on the atomic number of the target. Energy-sensitive backscatter analysis is being developed, which when combined with RBI image information, supports elemental identification at helium ion nanometer resolution. This capability will enable distinguishing NPs from cell surface structures with nanometer resolution.

  6. The New Element Curium (Atomic Number 96) (United States)

    Seaborg, G. T.; James, R. A.; Ghiorso, A.


    Two isotopes of the element with atomic number 96 have been produced by the helium-ion bombardment of plutonium. The name curium, symbol Cm, is proposed for element 96. The chemical experiments indicate that the most stable oxidation state of curium is the III state.

  7. The mean excitation energy of atomic ions

    DEFF Research Database (Denmark)

    Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.


    A method for calculation of the mean excitation energies of atomic ions is presented, making the calculation of the energy deposition of fast ions to plasmas, warm, dense matter, and complex biological systems possible. Results are reported to all ions of helium, lithium, carbon, neon, aluminum, ...

  8. Measurement of O and OH radical produced by an atmospheric-pressure helium plasma jet nearby rat skin (United States)

    Yonemori, Seiya; Ono, Ryo


    Atmospheric-pressure helium plasma jet is getting much attention because it enables many kinds of plasma applications including biomedical application such as sterilization and cancer treatment. In biomedical plasma applications, it is though that active species like ions and radicals play important role. Especially, OH radical and O atom is very chemically reactive that they are deemed as major factors in cancer treatment. In this study, O and OH density distribution and its temporal behavior nearby rat skin were measured to demonstrate actual application. Plasma discharge was under AC10 kVp-p, 10 kHz with 1.5 slm (standard litter per minute) of helium gas flow. OH density was around 1 ppm and O atom density was around 10 ppm at maximum. We also measured time-evolution of OH and O atom density. Both OH and O density was almost constant between discharge pulses because lifetime of active species could be prolonged in helium. And density distribution of both species varied depending on helium flow rate and water concentration on the surface; on rat skin or on the grass surface. Those results suggest the production mechanisms and provision mechanisms of O atom and OH radical by an atmospheric-pressure helium plasma jet. This work is partially supported by the Grant-in-Aid for Science Research by the Ministry of Education, Culture, Sport, Science and Technology.

  9. Effective doping of low energy ions into superfluid helium droplets (United States)

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei


    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 104 ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 105/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies. PMID:26298127

  10. Small-Scale Bolometers for Cryogenic Helium Turbulence Experiments (United States)

    Smith, Jolinda; Wybourne, M. N.


    We have developed small (50 =B5m) bolometers for use at the Cryogenic Helium Turbulence Laboratory at the University of Oregon. The devices are composed of AuGe sensing elements on 50 =B5m diameter optic fibers. Micron-size bolometers have recently been reported; however, in these devices the sensing elements were defined using a crude wire-masking technique.(O. Chanal, B. Baguenard, O. B=E9thoux, and B. Chabaud, Rev. Sci. Instrum. 68), 2442 (1997) By using electron-beam lithography to define the sensing elements, we have greater control over their geometry and electrical characteristics. We will also discuss the application of electron-beam lithography to the fabrication of submicron bolometers and anemometers.

  11. Ion beam polarization in storage rings. Production, controlling and preservation

    Energy Technology Data Exchange (ETDEWEB)

    Prozorov, A. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics; Labzowsky, L. [St. Petersburg State Univ. (Russian Federation). V.A. Fock Research Institute for Physics]|[St. Petersburg Nuclear Physics Institute (Russian Federation); Plunien, G. [Technische Univ. Dresden (Germany). Inst. fuer Theoretische Physik; Liesen, D. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.; Bosch, F. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Fritzsche, S. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)]|[Heidelberg Univ. (Germany). Physikalisches Inst.]|[Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany); Surzhykov, A. [Max-Planck Insitute of Nuclear Physics, Heidelberg (Germany)


    The present paper reports on the actual status of the theoretical concepts for the production of polarized heavy ion beams in storage rings and for methods to control online the degree of polarization as well as investigations of the preservation of the polarization during the ion movement across the magnetic system of the ring. It is argued that for hydrogen-like ions beam polarization can be built up efficiently by optical pumping of the Zeeman sublevels of ground-state hyperfine levels and that the maximal achievable nuclear polarization exceeds 90%. Of special interest are polarized helium-like ions which can be produced by the capture of one electron, because in selected cases parity nonconservation effects are found to be of unprecedented size in Atomic Physics. The measurements of these effects require online-diagnostics of the degree of the ion beam polarization. It is shown that this can be accomplished by an online-detection of the linear polarization of the X-rays which are emitted with the capture of the electron. In order to investigate the preservation of the polarization of the ions stored in the ring, the concept of an instantaneous quantization axis is introduced. The dynamics of this axis and the behaviour of the polarization with respect to it are explored in detail. (orig.)

  12. Photoionization Energies and Oscillator Strengths of Helium and Helium-like Ions (United States)

    Faye, N. A. B.; Ndao, A. S.; Konte, A.; Biaye, M.; Wague, A.


    We first studied the resonant photoionization of helium-like ions, such as C4+, N5+, and O6+, and determined the wave functions, the excitation energies, and the partial and total widths of the autoionizing states of these ions lying under the n = 3 thresholds of the residual ion. For more detailed analysis of the theory, and a better comprehension of the internal dynamics of atomic resonances and electronic phenomena of correlation, we extended these calculations to other helium-like ions, under higher thresholds (n = 4 and 5) of the hydrogen ions H-, and of Li+, C4+, N5+, and O6+. We were also interested in oscillator strengths. These parameters are important for interpreting the spectra and diagnosing astrophysical and laboratory plasmas, as well as for analyzing the spectra coming from space and determining the composition and relative abundance from the various elements of the stellar and interstellar environment. We sought a better comprehension of the coupling between autoionizing and continuum states and of the phenomena of electronic correlations. We used the method of diagonalization that has been used below the n = 2 threshold of the residual ion. The results are important for astrophysicists and physicists studying matter-radiation interaction and for the invention of new laser systems. We also measured laser-induced chlorophyll fluorescence (LICF) emission spectra of the leaves of some tropical plants using a compact fiber-optic fluorosensor with a continuous-wave violet diode laser as the exciting source and an integrated digital spectrometer to analyze the state of stress of the plants.

  13. Design of a High-Perveance Electron Gun for Electron Cooling in the Low Energy Ion Ring (LEIR) at CERN and Non-Interceptive Proton Beam Profile Monitors using Ion or Atomic Probe Beams

    CERN Document Server

    Dimopoulou, Christina


    For an efficient electron cooling of the low-energy Pb54+ ions in LEIR a high-perveance (at least 3.6microperv) electron gun had to be designed. The theoretical study of electron guns has shown that the required perveance can be achieved by using a convex cathode. The gun should be immersed in a strong magnetic field (B=2-6kG) in order to obtain a parallel beam with very low transverse energy (typically 0.1 eV). This idea was confirmed by experimental tests at Fermilab. An adiabatic magnetic expansion is foreseen after the gun in order to reduce the magnetic field to accpetable values (0.6-1 kG) in the cooling section. The internal geometry of a convex cathode gun for the LEIR electron cooler together with the parameters of the magnetic expansion are proposed. The scheme fulfils the requirements. In addition, the author has made an important contribution in the field of beam instrumentation for the LHC and other accelerators at CERN. A profile monitor has been developed that uses a Xe ion probe beam that inte...

  14. Energetic Study of Helium Cluster Nucleation and Growth in 14YWT through First Principles

    Directory of Open Access Journals (Sweden)

    Yingye Gan


    Full Text Available First principles calculations have been performed to energetically investigate the helium cluster nucleation, formation and growth behavior in the nano-structured ferritic alloy 14YWT. The helium displays strong affinity to the oxygen:vacancy (O:Vac pair. By investigating various local environments of the vacancy, we find that the energy cost for He cluster growth increases with the appearance of solutes in the reference unit. He atom tends to join the He cluster in the directions away from the solute atoms. Meanwhile, the He cluster tends to expand in the directions away from the solute atoms. A growth criterion is proposed based on the elastic instability strain of the perfect iron lattice in order to determine the maximum number of He atoms at the vacancy site. We find that up to seven He atoms can be trapped at a single vacancy. However, it is reduced to five if the vacancy is pre-occupied by an oxygen atom. Furthermore, the solute atoms within nanoclusters, such as Ti and Y, will greatly limit the growth of the He cluster. A migration energy barrier study is performed to discuss the reduced mobility of the He atom/He cluster in 14YWT.

  15. LOX Tank Helium Removal for Propellant Scavenging (United States)

    Chato, David J.


    System studies have shown a significant advantage to reusing the hydrogen and oxygen left in these tanks after landing on the Moon in fuel cells to generate power and water for surface systems. However in the current lander concepts, the helium used to pressurize the oxygen tank can substantially degrade fuel cell power and water output by covering the reacting surface with inert gas. This presentation documents an experimental investigation of methods to remove the helium pressurant while minimizing the amount of the oxygen lost. This investigation demonstrated that significant quantities of Helium (greater than 90% mole fraction) remain in the tank after draining. Although a single vent cycle reduced the helium quantity, large amounts of helium remained. Cyclic venting appeared to be more effective. Three vent cycles were sufficient to reduce the helium to small (less than 0.2%) quantities. Two vent cycles may be sufficient since once the tank has been brought up to pressure after the second vent cycle the helium concentration has been reduced to the less than 0.2% level. The re-pressurization process seemed to contribute to diluting helium. This is as expected since in order to raise the pressure liquid oxygen must be evaporated. Estimated liquid oxygen loss is on the order of 82 pounds (assuming the third vent cycle is not required).

  16. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.


    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  17. Organ protection by the noble gas helium

    NARCIS (Netherlands)

    Smit, K.F.


    The aims of this thesis were to investigate whether helium induces preconditioning in humans, and to elucidate the mechanisms behind this possible protection. First, we collected data regarding organ protective effects of noble gases in general, and of helium in particular (chapters 1-3). In chapter

  18. Nanofabrication with a helium ion microscope

    NARCIS (Netherlands)

    Maas, D.; Van Veldhoven, E.; Chen, P.; Sidorkin, V.; Salemink, H.; Van der Drift, E.; Alkemade, P.


    The recently introduced helium ion microscope (HIM) is capable of imaging and fabrication of nanostructures thanks to its sub-nanometer sized ion probe [1,2]. The unique interaction of the helium ions with the sample material provides very localized secondary electron emission, thus providing a

  19. Helium Speech: An Application of Standing Waves (United States)

    Wentworth, Christopher D.


    Taking a breath of helium gas and then speaking or singing to the class is a favorite demonstration for an introductory physics course, as it usually elicits appreciative laughter, which serves to energize the class session. Students will usually report that the helium speech "raises the frequency" of the voice. A more accurate description of the…

  20. Solid Hydrogen Particles Analyzed for Atomic Fuels (United States)

    Palaszewski, Bryan A.


    Solid hydrogen particles have been selected as a means of storing atomic propellants in future launch vehicles (refs. 1 to 2). In preparation for this, hydrogen particle formation in liquid helium was tested experimentally. These experiments were conducted to visually characterize the particles and to observe their formation and molecular transformations (aging) while in liquid helium. The particle sizes, molecular transformations, and agglomeration times were estimated from video image analyses. The experiments were conducted at the NASA Glenn Research Center in the Supplemental Multilayer Insulation Research Facility (SMIRF, ref. 3). The facility has a vacuum tank, into which the experimental setup was placed. The vacuum tank prevented heat leaks and subsequent boiloff of the liquid helium, and the supporting systems maintained the temperature and pressure of the liquid helium bath where the solid particles were created. As the operation of the apparatus was developed, the hydrogen particles were easily visualized. The figures (ref. 1) show images from the experimental runs. The first image shows the initial particle freezing, and the second image shows the particles after the small particles have agglomerated. The particles finally all clump, but stick together loosely. The solid particles tended to agglomerate within a maximum of 11 min, and the agglomerate was very weak. Because the hydrogen particles are buoyant in the helium, the agglomerate tends to compact itself into a flat pancake on the surface of the helium. This pancake agglomerate is easily broken apart by reducing the pressure above the liquid. The weak agglomerate implies that the particles can be used as a gelling agent for the liquid helium, as well as a storage medium for atomic boron, carbon, or hydrogen. The smallest particle sizes that resulted from the initial freezing experiments were about 1.8 mm. About 50 percent of the particles formed were between 1.8 to 4.6 mm in diameter. These very

  1. Studies of Atomic Free Radicals Stored in a Cryogenic Environment (United States)

    Lee, David M.; Hubbard, Dorthy (Technical Monitor); Alexander, Glen (Technical Monitor)


    Impurity-Helium Solids are porous gel-like solids consisting of impurity atoms and molecules surrounded by thin layers of solid helium. They provide an ideal medium for matrix isolation of free radicals to prevent recombination and store chemical energy. In this work electron spin resonance, nuclear magnetic resonance, X-ray diffraction, and ultrasound techniques have all been employed to study the properties of these substances. Detailed studies via electron spin resonance of exchange tunneling chemical reactions involving hydrogen and deuterium molecular and atomic impurities in these solids have been performed and compared with theory. Concentrations of hydrogen approaching the quantum solid criterion have been produced. Structured studies involving X ray diffraction, ultrasound, and electron spin resonance have shown that the impurities in impurity helium solids are predominantly contained in impurity clusters, with each cluster being surrounded by thin layers of solid helium.

  2. Comparative study of image contrast in scanning electron microscope and helium ion microscope. (United States)

    O'Connell, R; Chen, Y; Zhang, H; Zhou, Y; Fox, D; Maguire, P; Wang, J J; Rodenburg, C


    Images of Ga+ -implanted amorphous silicon layers in a 110 n-type silicon substrate have been collected by a range of detectors in a scanning electron microscope and a helium ion microscope. The effects of the implantation dose and imaging parameters (beam energy, dwell time, etc.) on the image contrast were investigated. We demonstrate a similar relationship for both the helium ion microscope Everhart-Thornley and scanning electron microscope Inlens detectors between the contrast of the images and the Ga+ density and imaging parameters. These results also show that dynamic charging effects have a significant impact on the quantification of the helium ion microscope and scanning electron microscope contrast. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  3. Absorption spectroscopy of adenine, 9-methyladenine, and 2-aminopurine in helium nanodroplets. (United States)

    Smolarek, Szymon; Rijs, Anouk M; Buma, Wybren Jan; Drabbels, Marcel


    High-resolution absorption spectra of adenine, 9-methyladenine and 2-aminopurine in helium nanodroplets have been recorded. In contrast to molecular beam experiments, large variations in linewidths are observed for adenine and 9-methyladenine. At the same time, the spectrum of 2-aminopurine remains sharp upon solvation in helium droplets. The line broadening observed for adenine and 9-methyladenine is attributed to a significant decrease of the lifetime of the (1)L(b)(ππ*) state and of (1)nπ* levels vibronically coupled to this state. The origin of the lifetime reduction is argued to be related to the increased accessibility of the (1)nπ*/(1)L(b)(ππ*) conical intersection upon solvation of these molecules in liquid helium.

  4. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.


    instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...... of accelerators for producing intense positron pulses will be discussed in the context of atomic physics experiments....

  5. Permeability of Hollow Microspherical Membranes to Helium (United States)

    Zinoviev, V. N.; Kazanin, I. V.; Pak, A. Yu.; Vereshchagin, A. S.; Lebiga, V. A.; Fomin, V. M.


    This work is devoted to the study of the sorption characteristics of various hollow microspherical membranes to reveal particles most suitable for application in the membrane-sorption technologies of helium extraction from a natural gas. The permeability of the investigated sorbents to helium and their impermeability to air and methane are shown experimentally. The sorption-desorption dependences of the studied sorbents have been obtained, from which the parameters of their specific permeability to helium are calculated. It has been established that the physicochemical modification of the original particles exerts a great influence on the coefficient of the permeability of a sorbent to helium. Specially treated cenospheres have displayed high efficiency as membranes for selective extraction of helium.

  6. Global helium particle balance in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Motojima, G., E-mail: [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Masuzaki, S.; Tokitani, M.; Kasahara, H.; Yoshimura, Y.; Kobayashi, M.; Sakamoto, R.; Morisaki, T.; Miyazawa, J.; Akiyama, T. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ohno, N. [Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603 (Japan); Mutoh, T.; Yamada, H. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)


    Global helium particle balance in long-pulse discharges is analyzed for the first time in the Large Helical Device (LHD) with the plasma-facing components of the first wall and the divertor tiles composed of stainless steel and carbon, respectively. During the 2-min discharge sustained by ion cyclotron resonance heating (ICRH) and electron cyclotron heating (ECH), helium is observed to be highly retained in the wall (regarded as both the first wall and the divertor tiles). Almost all (about 96%) puffed helium particles (1.3 × 10{sup 22} He) are absorbed in the wall near the end of the discharge. Even though a dynamic retention is eliminated, 56% is still absorbed. The analysis is also applied to longer pulse discharges over 40 min by ICRH and ECH, indicating that the helium wall retention is dynamically changed in time. At the initial phase of the discharge, a mechanism for adsorbing helium other than dynamical retention is invoked.

  7. Photoionization Dynamics in Pure Helium Droplets

    Energy Technology Data Exchange (ETDEWEB)

    Peterka, Darcy S.; Kim, Jeong Hyun; Wang, Chia C.; Poisson,Lionel; Neumark, Daniel M.


    The photoionization and photoelectron spectroscopy of pure He droplets are investigated at photon energies between 24.6 eV (the ionization energy of He) and 28 eV. Time-of-flight mass spectra and photoelectron images were obtained at a series of molecular beam source temperatures and pressures to assess the effect of droplet size on the photoionization dynamics. At source temperatures below 16 K, the photoelectron images are dominated by fast electrons produced via direct ionization of He atoms, with a small contribution from very slow electrons with kinetic energies below 1 meV arising from an indirect mechanism. The fast photoelectrons have as much as 0.5 eV more kinetic energy than those from atomic He at the same photon energy. This result is interpreted and simulated within the context of a 'dimer model', in which one assumes vertical ionization from two nearest neighbor He atoms to the attractive region of the He2+ potential energy curve. Possible mechanism for the slow electrons, which were also seen at energies below IE(He), are discussed, including vibrational autoionizaton of Rydberg states comprising an electron weakly bound to the surface of a large HeN+ core.

  8. Neutron-induced dpa, transmutations, gas production, and helium embrittlement of fusion materials

    CERN Document Server

    Gilbert, M R; Nguyen-Manh, D; Zheng, S; Packer, L W; Sublet, J -Ch


    In a fusion reactor materials will be subjected to significant fluxes of high-energy neutrons. As well as causing radiation damage, the neutrons also initiate nuclear reactions leading to changes in the chemical composition of materials (transmutation). Many of these reactions produce gases, particularly helium, which cause additional swelling and embrittlement of materials. This paper investigates, using a combination of neutron-transport and inventory calculations, the variation in displacements per atom (dpa) and helium production levels as a function of position within the high flux regions of a recent conceptual model for the "next-step" fusion device DEMO. Subsequently, the gas production rates are used to provide revised estimates, based on new density-functional-theory results, for the critical component lifetimes associated with the helium-induced grain-boundary embrittlement of materials. The revised estimates give more optimistic projections for the lifetimes of materials in a fusion power plant co...

  9. Density decrease in vanadium-base alloys irradiated in the dynamic helium charging experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Galvin, T.M.; Smith, D.L. [Argonne National Laboratory, Chicago, IL (United States)


    Combined effects of dynamically charged helium and neutron damage on density decrease (swelling) of V-4Cr-4Ti, V-5Ti, V-3Ti-1Si, and V-8Cr-6Ti alloys have been determined after irradiation to 18-31 dpa at 425-600{degrees}C in the Dynamic helium Charging Experiment (DHCE). To ensure better accuracy in density measurement, broken pieces of tensile specimens {approx} 10 times heavier than a transmission electron microscopy (TEM) disk were used. Density increases of the four alloys irradiated in the DHCE were <0.5%. This small change seems to be consistent with the negligible number density of microcavities characterized by TEM. Most of the dynamically produced helium atoms seem to have been trapped in the grain matrix without significant cavity nucleation or growth.

  10. Study and conception of the decay ring of a neutrino facility using the {beta} decays of the helium 6 and neon 18 nuclei produced by an intense beam of protons hitting various targets; Etude et conception de l'anneau de desintegration d'une usine a neutrinos utilisant les decroissances {beta} des noyaux helium 6 et neon 18 produits par un faisceau intense de protons frappant diverses cibles

    Energy Technology Data Exchange (ETDEWEB)

    Chance, A


    The study of the neutrino oscillation between its different flavours needs pure and very intense flux of energetic, well collimated neutrinos with a well determined energy spectrum. So, a dedicated machine seems necessary nowadays. Among the different concepts of neutrino facilities, the one which will be studied here, called Beta-Beams, lies on the neutrino production by beta decay of radioactive ions after their acceleration. More precisely, the thesis is focused on the study and the design of the race-track-shaped storage ring of the high energy ions. Its aim is to store the ions until decaying. After a brief description of the neutrino oscillation mechanism and a review of the different experiments, an introduction to the neutrino facility concept and more precisely to the Beta-Beams will be given. Then, the issues linked to the Beta-Beams will be presented. After a description of the beam transport formalism, a first design and the optical properties of the ring will be then given. The effects of the misalignment and of the field errors in the dipoles have been studied. The dynamic aperture optimization is then realized. Handling of the decay losses or the energy collimation scheme will be developed. The off-momentum injection needed in presence of a circulating beam will be explained. Finally, the specific radiofrequency program needed by the beam merging will be presented. (author)

  11. Helium release and microstructural changes in Er(D,T)2-x3Hex films).

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D. S. (Pacific Northwest National Laboratory, Richland, WA); Browning, James Frederick; Snow, Clark Sheldon; Banks, James Clifford; Mangan, Michael A.; Rodriguez, Mark Andrew; Brewer, Luke N.; Kotula, Paul Gabriel


    Er(D,T){sub 2-x} {sup 3}He{sub x}, erbium di-tritide, films of thicknesses 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm were grown and analyzed by Transmission Electron Microscopy, X-Ray Diffraction, and Ion Beam Analysis to determine variations in film microstructure as a function of film thickness and age, due to the time-dependent build-up of {sup 3}He in the film from the radioactive decay of tritium. Several interesting features were observed: One, the amount of helium released as a function of film thickness is relatively constant. This suggests that the helium is being released only from the near surface region and that the helium is not diffusing to the surface from the bulk of the film. Two, lenticular helium bubbles are observed as a result of the radioactive decay of tritium into {sup 3}He. These bubbles grow along the [111] crystallographic direction. Three, a helium bubble free zone, or 'denuded zone' is observed near the surface. The size of this region is independent of film thickness. Four, an analysis of secondary diffraction spots in the Transmission Electron Microscopy study indicate that small erbium oxide precipitates, 5-10 nm in size, exist throughout the film. Further, all of the films had large erbium oxide inclusions, in many cases these inclusions span the depth of the film.

  12. Plasma/Neutral-Beam Etching Apparatus (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert


    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  13. Atomic form factor for twisted vortex photons interacting with atoms (United States)

    Guthrey, Pierson; Kaplan, Lev; McGuire, J. H.


    The relatively new atomic form factor for twisted (vortex) beams, which carry orbital angular momentum (OAM), is considered and compared to the conventional atomic form factor for plane-wave beams that carry only spin angular momentum. Since the vortex symmetry of a twisted photon is more complex that that of a plane wave, evaluation of the atomic form factor is also more complex for twisted photons. On the other hand, the twisted photon has additional parameters, including the OAM quantum number, ℓ, the nodal radial number, p, and the Rayleigh range, zR, which determine the cone angle of the vortex. This Rayleigh range may be used as a variable parameter to control the interaction of twisted photons with matter. Here we address (i) normalization of the vortex atomic form factor, (ii) displacement of target atoms away from the center of the beam vortex, and (iii) formulation of transition probabilities for a variety of photon-atom processes. We attend to features related to experiments that can test the range of validity and accuracy of calculations of these variations of the atomic form factor. Using the absolute square of the form factor for vortex beams, we introduce a vortex factor that can be directly measured.

  14. Helium Detonations on Neutron Stars (United States)

    Zingale, M.; Timmes, F. X.; Fryxell, B.; Lamb, D. Q.; Olson, K.; Calder, A. C.; Dursi, L. J.; Ricker, P.; Rosner, R.; Truran, J. W.; MacNeice, P.; Tufo, H.


    We present the results of a numerical study of helium detonations on the surfaces of neutron stars. We analyze the evolution of a detonation as it breaks through the envelope of the neutron star and propagates across its surface. A series of surface waves propagate across the pool of hot ash with a speed of 1.3 x 109 \\ cm \\ s-1, matching the speed expected from shallow water wave theory. The entire envelope bounces in the gravitational potential well of the neutron star with a period of 50 μ s. The photosphere reaches a height of 15 km above the surface of the neutron star. The sensitivity of the results to the spatial resolution and assumed initial conditions are analyzed, and the relevance of this model to Type I X-ray bursts is discussed. This work is supported by the Department of Energy under Grant No. B341495 to the Center for Astrophysical Thermonuclear Flashes at the University of Chicago.

  15. Electric response in superfluid helium (United States)

    Chagovets, Tymofiy V.


    We report an experimental investigation of the electric response of superfluid helium that arises in the presence of a second sound standing wave. It was found that the signal of the electric response is observed in a narrow range of second sound excitation power. The linear dependence of the signal amplitude has been derived at low excitation power, however, above some critical power, the amplitude of the signal is considerably decreased. It was established that the rapid change of the electric response is not associated with a turbulent regime generated by the second sound wave. A model of the appearance of the electric response as a result of the oscillation of electron bubbles in the normal fluid velocity field in the second sound wave is presented. Possible explanation for the decrease of the electric response are presented.

  16. Positron and deuteron depth profiling in helium-3-implanted electrum-like alloy (United States)

    Grynszpan, R. I.; Baclet, N.; Darque, A.; Flament, J. L.; Zielinski, F.; Anwand, W.; Brauer, G.


    In spite of previous extensive studies, the helium behavior in metals still remains an issue in microelectronics as well as in nuclear technology. A gold-silver solid solution (Au 60Ag 40: synthetic gold-rich electrum) was chosen as a relevant model to study helium irradiation of heavy metals. After helium-3 ion implantation at an energy ranging from 4.2 to 5.6 MeV, nuclear reaction analysis (NRA) based on the 3He(d,p) 4He reaction, was performed in order to study the thermal diffusion of helium atoms. At room temperature, NRA data reveal that a single Gaussian can fit the He-distribution, which remains unchanged after annealing at temperatures below 0.45 of the melting point. Slow positron implantation spectroscopy, used to monitor the fluence dependence of induced defects unveils a positron saturation trapping, which occurs for He contents of the order of 50-100 appm, whereas concentrations larger than 500 appm seem to favor an increase in the S-parameter of Doppler broadening. Moreover, at high temperature, NRA results clearly show that helium long range diffusion occurs, though, without following a simple Fick law.

  17. A compact molecular beam machine. (United States)

    Jansen, Paul; Chandler, David W; Strecker, Kevin E


    We have developed a compact, low cost, modular, crossed molecular beam machine. The new apparatus utilizes several technological advancements in molecular beams valves, ion detection, and vacuum pumping to reduce the size, cost, and complexity of a molecular beam apparatus. We apply these simplifications to construct a linear molecular beam machine as well as a crossed-atomic and molecular beam machine. The new apparatus measures almost 50 cm in length, with a total laboratory footprint less than 0.25 m(2) for the crossed-atomic and molecular beam machine. We demonstrate the performance of the apparatus by measuring the rotational temperature of nitric oxide from three common molecular beam valves and by observing collisional energy transfer in nitric oxide from a collision with argon.

  18. On the stability of cationic complexes of neon with helium--solving an experimental discrepancy. (United States)

    Bartl, Peter; Denifl, Stephan; Scheier, Paul; Echt, Olof


    Helium nanodroplets are doped with neon and ionized by electrons. The size-dependence of the ion abundance of HenNex(+), identified in high-resolution mass spectra, is deduced for complexes containing up to seven neon atoms and dozens of helium atoms. Particularly stable ions are inferred from anomalies in the abundance distributions. Two pronounced anomalies at n = 11 and 13 in the HenNe(+) series confirm drift-tube data reported by Kojima et al. [T. M. Kojima et al., Z. Phys. D, 1992, 22, 645]. The discrepancy with previously published spectra of neon-doped helium droplets, which did not reveal any abundance anomalies [T. Ruchti et al., J. Chem. Phys., 1998, 109, 10679-10687; C. A. Brindle et al., J. Chem. Phys., 2005, 123, 064312], is most likely due to limited mass resolution, which precluded unambiguous analysis of contributions from different ions with identical nominal mass. However, calculated dissociation energies of HenNe(+) reported so far do not correlate with the present data, possibly because of challenges in correctly treating the linear, asymmetric [He-Ne-He](+) ionic core in HenNe(+). Anomalies identified in the distributions of HenNex(+) for x > 1, including prominent ones at He12Ne2(+) and He14Ne2(+), may help to better understand solvation of Ne(+) and Nex(+) in helium.

  19. 21 CFR 868.1640 - Helium gas analyzer. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Helium gas analyzer. 868.1640 Section 868.1640...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1640 Helium gas analyzer. (a) Identification. A helium gas analyzer is a device intended to measure the concentration of helium in a gas...

  20. Quantum entanglement in two-electron atomic models

    Energy Technology Data Exchange (ETDEWEB)

    Manzano, D; Plastino, A R; Dehesa, J S [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, Granada E-18071 (Spain); Koga, T, E-mail: arplastino@ugr.e [Applied Chemistry Research Unit, Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan)


    We explore the main entanglement properties exhibited by the eigenfunctions of two exactly soluble two-electron models, the Crandall atom and the Hooke atom, and compare them with the entanglement features of helium-like systems. We compute the amount of entanglement associated with the wavefunctions corresponding to the fundamental and first few excited states of these models. We investigate the dependence of the entanglement on the parameters of the models and on the quantum numbers of the eigenstates. It is found that the amount of entanglement of the system tends to increase with energy in both models. In addition, we study the entanglement of a few states of helium-like systems, which we compute using high-quality Kinoshita-like eigenfunctions. The dependence of the entanglement of helium-like atoms on the nuclear charge and on energy is found to be consistent with the trends observed in the previous two model systems.