WorldWideScience

Sample records for atomic force microscopy

  1. Atomic Force Microscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  2. Deep atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2013-12-15

    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  3. Quantum state atomic force microscopy

    OpenAIRE

    Passian, Ali; Siopsis, George

    2017-01-01

    New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the paramete...

  4. Atomic Force Microscopy of Coccoliths: Implications for Biomineralisation and Diagenesis

    DEFF Research Database (Denmark)

    Henriksen, Karen; Young, Jette F.; Bown, P.R.

    2002-01-01

    geochemistry, diagenesis, coccoliths, biomineralization, biological calcite, atomic force microscopy......geochemistry, diagenesis, coccoliths, biomineralization, biological calcite, atomic force microscopy...

  5. Coffee Cup Atomic Force Microscopy

    Science.gov (United States)

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  6. [Atomic force microscopy involved in protein study].

    Science.gov (United States)

    Lu, Zhengjian; Chen, Guoping; Wang, Jianhua

    2010-06-01

    Atomic force microscopy is a rather new type of nano microscopic technology. It has some advantages, such as high resolution (sub-nano scale); avoidance of special sample preparation; real-time detection of samples under nearly physiological environment; in situ study of samples under water environment; feasibility of investigating physical and chemical properties of samples at molecular level, etc. In recent years, the application of atomic force microscopy in protein study has brought about outstanding achievements. In this paper are introduced the principle and operation modes of atomic force microscopy, also presented are its application in protein imaging, adsorption, folding-and-unfolding, assembly, and single molecular recognition. Additionally, the future application of atomic force microscopy in protein study is prospected.

  7. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  8. Atomic Force Microscopy of Biological Membranes

    OpenAIRE

    Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas

    2009-01-01

    Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process...

  9. Imaging DNA Structure by Atomic Force Microscopy.

    Science.gov (United States)

    Pyne, Alice L B; Hoogenboom, Bart W

    2016-01-01

    Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA-DNA interactions and DNA-protein complexes.

  10. Reconstruction of Undersampled Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Arildsen, Thomas; Østergaard, Jan

    2013-01-01

    Atomic force microscopy (AFM) is one of the most advanced tools for high-resolution imaging and manipulation of nanoscale matter. Unfortunately, standard AFM imaging requires a timescale on the order of seconds to minutes to acquire an image which makes it complicated to observe dynamic processes...

  11. Tapping mode atomic force microscopy in liquid

    NARCIS (Netherlands)

    Putman, Constant A.J.; Putman, C.A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1994-01-01

    We show that standard silicon nitride cantilevers can be used for tapping mode atomic force microscopy (AFM) in air, provided that the energy of the oscillating cantilever is sufficiently high to overcome the adhesion of the water layer. The same cantilevers are successfully used for tapping mode

  12. CLAFEM: Correlative light atomic force electron microscopy.

    Science.gov (United States)

    Janel, Sébastien; Werkmeister, Elisabeth; Bongiovanni, Antonino; Lafont, Frank; Barois, Nicolas

    2017-01-01

    Atomic force microscopy (AFM) is becoming increasingly used in the biology field. It can give highly accurate topography and biomechanical quantitative data, such as adhesion, elasticity, and viscosity, on living samples. Nowadays, correlative light electron microscopy is a must-have tool in the biology field that combines different microscopy techniques to spatially and temporally analyze the structure and function of a single sample. Here, we describe the combination of AFM with superresolution light microscopy and electron microscopy. We named this technique correlative light atomic force electron microscopy (CLAFEM) in which AFM can be used on fixed and living cells in association with superresolution light microscopy and further processed for transmission or scanning electron microscopy. We herein illustrate this approach to observe cellular bacterial infection and cytoskeleton. We show that CLAFEM brings complementary information at the cellular level, from on the one hand protein distribution and topography at the nanometer scale and on the other hand elasticity at the piconewton scales to fine ultrastructural details. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  14. Visualization of mobility by atomic force microscopy.

    Science.gov (United States)

    Ando, Toshio; Kodera, Noriyuki

    2012-01-01

    Intrinsically disordered regions (IDRs) of proteins are very thin and hence hard to be visualized by electron microscopy. Thus far, only high-speed atomic force microscopy (HS-AFM) can visualize them. The molecular movies identify the alignment of IDRs and ordered regions in an intrinsically disordered protein (IDP) and show undulation motion of the IDRs. The visualized tail-like structures contain the information of mechanical properties of the IDRs. Here, we describe methods of HS-AFM visualization of IDPs and methods of analyzing the obtained images to characterize IDRs.

  15. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    DEFF Research Database (Denmark)

    van der Heijden, Nadine J.; Smith, Daniel; Calogero, Gaetano

    2016-01-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images...... as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Delta f(z) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene...

  16. Cadherin interaction probed by atomic force microscopy

    OpenAIRE

    Baumgartner, W.; Hinterdorfer, P.; Ness, W.; Raab, A.; Vestweber, D; Schindler, H; Drenckhahn, D

    2000-01-01

    Single molecule atomic force microscopy was used to characterize structure, binding strength (unbinding force), and binding kinetics of a classical cadherin, vascular endothelial (VE)-cadherin, secreted by transfected Chinese hamster ovary cells as cis-dimerized full-length external domain fused to Fc-portion of human IgG. In physiological buffer, the external domain of VE-cadherin dimers is a ≈20-nm-long rod-shaped molecule that collapses and dissociates into monomers (V-shaped structures) i...

  17. Force modulation for improved conductive-mode atomic force microscopy

    NARCIS (Netherlands)

    Koelmans, W.W.; Sebastian, Abu; Despont, Michel; Pozidis, Haris

    We present an improved conductive-mode atomic force microscopy (C-AFM) method by modulating the applied loading force on the tip. Unreliable electrical contact and tip wear are the primary challenges for electrical characterization at the nanometer scale. The experiments show that force modulation

  18. Spiral scanning method for atomic force microscopy.

    Science.gov (United States)

    Hung, Shao-Kang

    2010-07-01

    A spiral scanning method is proposed for atomic force microscopy with thoroughgoing analysis and implementation. Comparing with the traditional line-by-line scanning method, the spiral scanning method demonstrates higher imaging speed, minor image distortion, and lower acceleration, which can damage the piezoelectric scanner. Employing the spiral scanning method to replace the line-by-line scanning method, the experiment shows that the time to complete an imaging cycle can be reduced from 800 s to 314 s without sacrificing the image resolution.

  19. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Lulu Zhou

    2017-04-01

    Full Text Available Atomic force microscopy (AFM has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  20. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy.

    Science.gov (United States)

    Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda

    2017-04-24

    Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  1. Chemical Phenomena of Atomic Force Microscopy Scanning.

    Science.gov (United States)

    Ievlev, Anton V; Brown, Chance; Burch, Matthew J; Agar, Joshua C; Velarde, Gabriel A; Martin, Lane W; Maksymovych, Petro; Kalinin, Sergei V; Ovchinnikova, Olga S

    2018-02-12

    Atomic force microscopy is widely used for nanoscale characterization of materials by scientists worldwide. The long-held belief of ambient AFM is that the tip is generally chemically inert but can be functionalized with respect to the studied sample. This implies that basic imaging and scanning procedures do not affect surface and bulk chemistry of the studied sample. However, an in-depth study of the confined chemical processes taking place at the tip-surface junction and the associated chemical changes to the material surface have been missing as of now. Here, we used a hybrid system that combines time-of-flight secondary ion mass spectrometry with an atomic force microscopy to investigate the chemical interactions that take place at the tip-surface junction. Investigations showed that even basic contact mode AFM scanning is able to modify the surface of the studied sample. In particular, we found that the silicone oils deposited from the AFM tip into the scanned regions and spread to distances exceeding 15 μm from the tip. These oils were determined to come from standard gel boxes used for the storage of the tips. The explored phenomena are important for interpreting and understanding results of AFM mechanical and electrical studies relying on the state of the tip-surface junction.

  2. Cadherin interaction probed by atomic force microscopy

    Science.gov (United States)

    Baumgartner, W.; Hinterdorfer, P.; Ness, W.; Raab, A.; Vestweber, D.; Schindler, H.; Drenckhahn, D.

    2000-04-01

    Single molecule atomic force microscopy was used to characterize structure, binding strength (unbinding force), and binding kinetics of a classical cadherin, vascular endothelial (VE)-cadherin, secreted by transfected Chinese hamster ovary cells as cis-dimerized full-length external domain fused to Fc-portion of human IgG. In physiological buffer, the external domain of VE-cadherin dimers is a 20-nm-long rod-shaped molecule that collapses and dissociates into monomers (V-shaped structures) in the absence of Ca2+. Trans-interaction of dimers is a low-affinity reaction (KD = 10-3-10-5 M, koff = 1.8 s-1, kon = 103-105 M-1·s-1) with relatively low unbinding force (35-55 pN at retrace velocities of 200-4,000 nm·s-1). Higher order unbinding forces, that increase with interaction time, indicate association of cadherins into complexes with cumulative binding strength. These observations favor a model by which the inherently weak unit binding strength and affinity of cadherin trans-interaction requires clustering and cytoskeletal immobilization for amplification. Binding is regulated by low-affinity Ca2+ binding sites (KD = 1.15 mM) with high cooperativity (Hill coefficient of 5.04). Local changes of free extracellular Ca2+ in the narrow intercellular space may be of physiological importance to facilitate rapid remodeling of intercellular adhesion and communication.

  3. Microbial cells analysis by atomic force microscopy.

    Science.gov (United States)

    Alsteens, David

    2012-01-01

    Unraveling the structure of microbial cells is a major challenge in current microbiology and offers exciting prospects in biomedicine. Atomic force microscopy (AFM) appears as a powerful method to image the surface ultrastructure of live cells under physiological conditions and allows real-time imaging to follow dynamic processes such as cell growth, and division and effects of drugs and chemicals. The following chapter introduces different methods of sample preparation to gain insights into the microbial cell organization. Successful strategies to immobilize microorganisms, including physical entrapment and chemical attachment, are described. This step is a key step and a prerequisite of any analysis and persists as an important limitation to the application of AFM to microbiology due to the wide diversity of microorganisms. Finally, some applications are depicted which underlie the ability of AFM to explore living microbes with unprecedented resolution. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Atomic Force Microscopy for DNA SNP Identification

    Science.gov (United States)

    Valbusa, Ugo; Ierardi, Vincenzo

    The knowledge of the effects of single-nucleotide polymorphisms (SNPs) in the human genome greatly contributes to better comprehension of the relation between genetic factors and diseases. Sequence analysis of genomic DNA in different individuals reveals positions where variations that involve individual base substitutions can occur. Single-nucleotide polymorphisms are highly abundant and can have different consequences at phenotypic level. Several attempts were made to apply atomic force microscopy (AFM) to detect and map SNP sites in DNA strands. The most promising approach is the study of DNA mutations producing heteroduplex DNA strands and identifying the mismatches by means of a protein that labels the mismatches. MutS is a protein that is part of a well-known complex of mismatch repair, which initiates the process of repairing when the MutS binds to the mismatched DNA filament. The position of MutS on the DNA filament can be easily recorded by means of AFM imaging.

  5. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  6. Investigating cell mechanics with atomic force microscopy.

    Science.gov (United States)

    Haase, Kristina; Pelling, Andrew E

    2015-03-06

    Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells 'feel', we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Atomic force microscopy of virus shells.

    Science.gov (United States)

    Moreno-Madrid, Francisco; Martín-González, Natalia; Llauró, Aida; Ortega-Esteban, Alvaro; Hernando-Pérez, Mercedes; Douglas, Trevor; Schaap, Iwan A T; de Pablo, Pedro J

    2017-04-15

    Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study just as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in a liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property capable of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In the present revision, we start revising some recipes for adsorbing protein shells on surfaces. Then, we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  8. Atomic force microscopy of virus shells.

    Science.gov (United States)

    de Pablo, Pedro J

    2017-08-26

    Microscopes are used to characterize small specimens with the help of probes, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM) the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person manages a white cane to explore the surrounding. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables the manipulation of single protein cages, and the characterization of every physico-chemical property able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. Here we describe several AFM approaches to study individual protein cages, including imaging and spectroscopic methodologies for extracting mechanical and electrostatic properties. In addition, AFM allows discovering and testing the self-healing capabilities of protein cages because occasionally they may recover fractures induced by the AFM tip. Beyond the protein shells, AFM also is able of exploring the genome inside, obtaining, for instance, the condensation state of dsDNA and measuring its diffusion when the protein cage breaks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fast and gentle side approach for atomic force microscopy

    NARCIS (Netherlands)

    Wessels, W.A.; Broekmaat, Joska Johannes; Beerends, R.J.L.; Koster, Gertjan; Rijnders, Augustinus J.H.M.

    2013-01-01

    Atomic force microscopy is one of the most popular imaging tools with atomic resolution in different research fields. Here, a fast and gentle side approach for atomic force microscopy is proposed to image the same surface location and to reduce the time delay between modification and imaging without

  10. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Investigating bioconjugation by atomic force microscopy

    Science.gov (United States)

    2013-01-01

    Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448

  12. Ultrastable atomic force microscopy: improved force and positional stability.

    Science.gov (United States)

    Churnside, Allison B; Perkins, Thomas T

    2014-10-01

    Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience. Published by Elsevier B.V.

  13. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr; Scheuring, Simon, E-mail: atsushi.miyagi@inserm.fr, E-mail: simon.scheuring@inserm.fr [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  14. Electrochemical current-sensing atomic force microscopy in conductive solutions

    OpenAIRE

    Pobelov, Ilya; Mohos, Miklos; Yoshida, Koji; Kolivoska, Viliam; Avdic, Amra; Lugstein, Alois; Bertagnolli, Emmerich; Leonhardt, Kelly; Guy, Denuault; Gollas, Bernhard; Wandlowski, Thomas

    2013-01-01

    Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current–distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.

  15. Electrochemical current-sensing atomic force microscopy in conductive solutions.

    Science.gov (United States)

    Pobelov, Ilya V; Mohos, Miklós; Yoshida, Koji; Kolivoska, Viliam; Avdic, Amra; Lugstein, Alois; Bertagnolli, Emmerich; Leonhardt, Kelly; Denuault, Guy; Gollas, Bernhard; Wandlowski, Thomas

    2013-03-22

    Insulated atomic force microscopy probes carrying gold conductive tips were fabricated and employed as bifunctional force and current sensors in electrolyte solutions under electrochemical potential control. The application of the probes for current-sensing imaging, force and current-distance spectroscopy as well as scanning electrochemical microscopy experiments was demonstrated.

  16. Functionalization of atomic force microscopy Akiyama tips for magnetic force microscopy measurements

    OpenAIRE

    Stiller, Markus; Barzola-Quiquia, Jose; Esquinazi, Pablo D.; Sangiao, Soraya; De Teresa, Jose M.; Meijer, Jan; Abel, Bernd

    2017-01-01

    In this work we have used focused electron beam induced deposition of cobalt to functionalize atomic force microscopy Akiyama tips for application in magnetic force microscopy. The grown tips have a content of 90% Co after exposure to ambient air. The magnetic tips were characterized using energy dispersive X-ray spectroscopy and scanning electron microscopy. In order to investigate the magnetic properties, current loops were prepared by electron beam lithography. Measurements at room tempera...

  17. Atomic force microscopy in biomaterials surface science.

    Science.gov (United States)

    Variola, Fabio

    2015-02-07

    Recent progress in surface science, nanotechnology and biophysics has cast new light on the correlation between the physicochemical properties of biomaterials and the resulting biological response. One experimental tool that promises to generate an increasingly more sophisticated knowledge of how proteins, cells and bacteria interact with nanostructured surfaces is the atomic force microscope (AFM). This unique instrument permits to close in on interfacial events at the scale at which they occur, the nanoscale. This perspective covers recent developments in the exploitation of the AFM, and suggests insights on future opportunities that can arise from the exploitation of this powerful technique.

  18. Microfluidics, Chromatography, and Atomic-Force Microscopy

    Science.gov (United States)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  19. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.

    Science.gov (United States)

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2015-09-01

    The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative Atomic Force Microscopy with Carbon Monoxide Terminated Tips

    NARCIS (Netherlands)

    Sun, Zhixiang|info:eu-repo/dai/nl/314075674; Boneschanscher, Mark P.; Swart, Ingmar|info:eu-repo/dai/nl/304837652; Vanmaekelbergh, Daniel|info:eu-repo/dai/nl/304829137; Liljeroth, Peter|info:eu-repo/dai/nl/314007423

    2011-01-01

    Noncontact atomic force microscopy (AFM) has recently progressed tremendously in achieving atomic resolution imaging through the use of small oscillation amplitudes and well-defined modification of the tip apex. In particular, it has been shown that picking up simple inorganic molecules (such as CO)

  1. Pyramidal nanowire tip for atomic force microscopy and thermal imaging

    NARCIS (Netherlands)

    Burouni, N.; Sarajlic, Edin; Siekman, Martin Herman; Abelmann, Leon; Tas, Niels Roelof

    2012-01-01

    We present a novel 3D nanowire pyramid as scanning microscopy probe for thermal imaging and atomic force microscopy. This probe is fabricated by standard micromachining and conventional optical contact lithography. The probe features an AFM-type cantilever with a sharp pyramidal tip composed of four

  2. Intermittent contact atomic force microscopy in electrochemical environment

    Energy Technology Data Exchange (ETDEWEB)

    Haering, P.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H. [Bern Univ., Bern (Switzerland)

    1997-06-01

    In situ measurements with Atomic Force Microscopy may cause surface modifications due to the tip-surface interactions. As an alternative and less destructive method, Intermittent Contact Atomic Force Microscopy (ICAFM) has been tested in an electrolytic environment. In the ICAFM mode the tip is not constantly in contact with the surface under investigation but is tapping onto the surface with a certain frequency. A commercial Park Scientific Instruments Microscopy has been modified to enable in situ experiment with ICAFM. It was possible to image iridium oxide films with ICAFM in the electrolytic environment without any noticeable surface modifications. (author) 3 figs., 4 refs.

  3. Structural examination of lithium niobate ferroelectric crystals by combining scanning electron microscopy and atomic force microscopy

    Science.gov (United States)

    Efremova, P. V.; Ped'ko, B. B.; Kuznecova, Yu. V.

    2016-02-01

    The structure of lithium niobate single crystals is studied by a complex technique that combines scanning electron microscopy and atomic force microscopy. By implementing the piezoresponse force method on an atomic force microscope, the domain structure of lithium niobate crystals, which was not revealed without electron beam irradiation, is visualized

  4. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Atomic force microscopy and direct surface force measurements

    NARCIS (Netherlands)

    Ralston, J.; Larson, I.; Rutland, M.; Feiler, A.; Kleijn, J.M.

    2005-01-01

    The atomic force microscope (AFM) is designed to provide high-resolution (in the ideal case, atomic) topographical analysis, applicable to both conducting and nonconducting surfaces. The basic imaging principle is very simple: a sample attached to a piezoelectric positioner is rastered beneath a

  6. Principles and applications of force spectroscopy using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Kyu; Kim, Woong; Park, Joon Won [Dept. of Chemistry, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2016-12-15

    Single-molecule force spectroscopy is a powerful technique for addressing single molecules. Unseen structures and dynamics of molecules have been elucidated using force spectroscopy. Atomic force microscope (AFM)-based force spectroscopy studies have provided picoNewton force resolution, subnanometer spatial resolution, stiffness of substrates, elasticity of polymers, and thermodynamics and kinetics of single-molecular interactions. In addition, AFM has enabled mapping the distribution of individual molecules in situ, and the quantification of single molecules has been made possible without modification or labeling. In this review, we describe the basic principles, sample preparation, data analysis, and applications of AFM-based force spectroscopy and its future.

  7. Nanoindentation and atomic force microscopy measurements on ...

    Indian Academy of Sciences (India)

    The films were deposited on silicon (111) substrates at various process conditions, e.g. substrate bias voltage (B) and nitrogen partial pressure. Mechanical properties of the coatings were investigated by a nanoindentation technique. Force vs displacement curves generated during loading and unloading of a Berkovich ...

  8. Visualizing subsurface defects in graphite by acoustic atomic force microscopy.

    Science.gov (United States)

    Wang, Tian; Ma, Chengfu; Hu, Wei; Chen, Yuhang; Chu, Jiaru

    2017-01-01

    We describe a versatile platform, which combines atomic force acoustic microscopy, ultrasonic atomic force microscopy and heterodyne force microscopy. The AFM system can enable in-situ switching among these operation modes flexibly and thus benefit the discrimination of differences in mechanical properties and buried subsurface nanostructures. We demonstrate the potential of this platform for visualizing the subsurface defects of graphite. Our results show that tiny topographic edges are enhanced in acoustic oscillation signals whilst embedded defects and inhomogeneous in mechanical properties are made clearly distinguishable. The possibility of detecting subsurface defects in few-layer graphene is further discussed with first-principles calculations. Microsc. Res. Tech. 80:66-74, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Quantitative Atomic Force Microscopy with Carbon Monoxide Terminated Tips

    OpenAIRE

    Sun, Zhixiang; Boneschanscher, Mark P.; Swart, Ingmar; Vanmaekelbergh, Daniel; Liljeroth, Peter

    2011-01-01

    Noncontact atomic force microscopy (AFM) has recently progressed tremendously in achieving atomic resolution imaging through the use of small oscillation amplitudes and well-defined modification of the tip apex. In particular, it has been shown that picking up simple inorganic molecules (such as CO) by the AFM tip leads to a well-defined tip apex and to enhanced image resolution. Here, we use the same approach to study the three-dimensional intermolecular interaction potential between two mol...

  10. High temperature surface imaging using atomic force microscopy

    NARCIS (Netherlands)

    Broekmaat, Joska Johannes; Brinkman, Alexander; Blank, David H.A.; Rijnders, Augustinus J.H.M.

    2008-01-01

    Atomic force microscopy (AFM) is one of the most important tools in nanotechnology and surface science. Because of recent developments, nowadays, it is also used to study dynamic processes, such as thin film growth and surface reaction mechanisms. These processes often take place at high temperature

  11. Material properties of viral nanocages explored by atomic force microscopy

    NARCIS (Netherlands)

    van Rosmalen, Mariska G M; Roos, Wouter H; Wuite, Gijs J L

    2015-01-01

    Single-particle nanoindentation by atomic force microscopy (AFM) is an emergent technique to characterize the material properties of nano-sized proteinaceous systems. AFM uses a very small tip attached to a cantilever to scan the surface of the substrate. As a result of the sensitive feedback loop

  12. Atomic force microscopy of torus-bearing pit membranes

    Science.gov (United States)

    Roland R. Dute; Thomas Elder

    2011-01-01

    Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...

  13. Nanoscale optical imaging by atomic force infrared microscopy

    OpenAIRE

    Rice, James H.

    2010-01-01

    This review outlines progress in atomic force infrared microscopy, reviewing the methodology and its application in nanoscale infrared absorption imaging of both biological and functional materials, including an outline of where this emerging method has been applied to image cellular systems in aqueous environments.

  14. High Speed Atomic Force Microscopy of Biomolecules by Image Tracking

    NARCIS (Netherlands)

    van Noort, S.J.T.; van der Werf, Kees; de Grooth, B.G.; Greve, Jan

    1999-01-01

    An image-tracking procedure for atomic force microscopy is proposed and tested, which allows repeated imaging of the same area without suffering from lateral drift. The drift correction procedure is based on on-line cross-correlation of succeeding images. Using the image-tracking procedure allows

  15. Application of dynamic impedance spectroscopy to atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Kazimierz Darowicki, Artur Zieliński and Krzysztof J Kurzydłowski

    2008-01-01

    Full Text Available Atomic force microscopy (AFM is a universal imaging technique, while impedance spectroscopy is a fundamental method of determining the electrical properties of materials. It is useful to combine those techniques to obtain the spatial distribution of an impedance vector. This paper proposes a new combining approach utilizing multifrequency scanning and simultaneous AFM scanning of an investigated surface.

  16. [Application of atomic force microscopy in chromosome research].

    Science.gov (United States)

    Li, Qi; Zheng, Qi; Ding, Yan; Ma, Lu; Li, Li-Jia

    2009-06-01

    Atomic force microscopy (AFM) is an effective apparatus for examination of the surface structure of specimens with a higher resolution. It can be used for real-time observation in vacuum, air, and liquid conditions. This review presented the basic principle of AFM and its significant advantages in biological sample research relative to other types of microscopes and summarized its application in chromosome research.

  17. Chaos : The speed limiting phenomenon in dynamic atomic force microscopy

    NARCIS (Netherlands)

    Keyvani Janbahan, A.; Alijani, F.; Sadeghian, Hamed; Maturova, Klara; Goosen, J.F.L.; van Keulen, A.

    2017-01-01

    This paper investigates the closed-loop dynamics of the Tapping Mode Atomic Force Microscopy using a new mathematical model based on the averaging method in Cartesian coordinates. Experimental and numerical observations show that the emergence of chaos in conventional tapping mode AFM strictly

  18. Imaging and manipulation of single viruses by atomic force microscopy

    NARCIS (Netherlands)

    Baclayon, M.; Wuite, G. J. L.; Roos, W. H.

    2010-01-01

    The recent developments in virus research and the application of functional viral particles in nanotechnology and medicine rely on sophisticated imaging and manipulation techniques at nanometre resolution in liquid, air and vacuum. Atomic force microscopy (AFM) is a tool that combines these

  19. Development and testing of hyperbaric atomic force microscopy (AFM) and fluorescence microscopy for biological applications.

    Science.gov (United States)

    D'Agostino, D P; McNally, H A; Dean, J B

    2012-05-01

    A commercially available atomic force microscopy and fluorescence microscope were installed and tested inside a custom-designed hyperbaric chamber to provide the capability to study the effects of hyperbaric gases on biological preparations, including cellular mechanism of oxidative stress. In this report, we list details of installing and testing atomic force microscopy and fluorescence microscopy inside a hyperbaric chamber. The pressure vessel was designed to accommodate a variety of imaging equipment and ensures full functionality at ambient and hyperbaric conditions (≤85 psi). Electrical, gas and fluid lines were installed to enable remote operation of instrumentation under hyperbaric conditions, and to maintain viable biological samples with gas-equilibrated superfusate and/or drugs. Systems were installed for vibration isolation and temperature regulation to maintain atomic force microscopy performance during compression and decompression. Results of atomic force microscopy testing demonstrate sub-nanometre resolution at hyperbaric pressure in dry scans and fluid scans, in both contact mode and tapping mode. Noise levels were less when measurements were taken under hyperbaric pressure with air, helium (He) and nitrogen (N(2) ). Atomic force microscopy and fluorescence microscopy measurements were made on a variety of living cell cultures exposed to hyperbaric gases (He, N(2) , O(2) , air). In summary, atomic force microscopy and fluorescence microscopy were installed and tested for use at hyperbaric pressures and enables the study of cellular and molecular effects of hyperbaric gases and pressure per se in biological preparations. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  20. Gold-coated conducting-atomic force microscopy probes.

    Science.gov (United States)

    John, Neena Susan; Kulkarni, G U

    2005-04-01

    Some aspects of the performance of gold-coated conductive probes used in conducting atomic force microscopy (C-AFM) technique are discussed. The resistance of the nanocontact between the gold-coated AFM tip and the graphite substrate has been monitored at various applied forces. For small forces (forces in the range 100-150 nN, beyond which the tip seems to undergo plastic deformation. The resistance of the nanocontact increased when current on the order of 100 microA was allowed to pass through, finally resulting in melting of the gold coating.

  1. FEATURES OF MEASURING IN LIQUID MEDIA BY ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Mikhail V. Zhukov

    2016-11-01

    Full Text Available Subject of Research.The paper presents results of experimental study of measurement features in liquids by atomic force microscope to identify the best modes and buffered media as well as to find possible image artifacts and ways of their elimination. Method. The atomic force microscope Ntegra Aura (NT-MDT, Russia with standard prism probe holder and liquid cell was used to carry out measurements in liquids. The calibration lattice TGQ1 (NT-MDT, Russia was chosen as investigated structure with a fixed shape and height. Main Results. The research of probe functioning in specific pH liquids (distilled water, PBS - sodium phosphate buffer, Na2HPO4 - borate buffer, NaOH 0.1 M, NaOH 0.5 M was carried out in contact and semi-contact modes. The optimal operating conditions and the best media for the liquid measurements were found. Comparison of atomic force microscopy data with the results of lattice study by scanning electron microscopy was performed. The features of the feedback system response in the «probe-surface» interaction were considered by the approach/retraction curves in the different environments. An artifact of image inversion was analyzed and recommendation for its elimination was provided. Practical Relevance. These studies reveal the possibility of fine alignment of research method for objects of organic and inorganic nature by atomic force microscopy in liquid media.

  2. Single molecule probing of SNARE proteins by Atomic Force Microscopy

    Science.gov (United States)

    Liu, Wei; Parpura, Vladimir

    2009-01-01

    Atomic Force Microscopy (AFM) in force spectroscopy mode has recently emerged as a technique of choice for studying mechanical interactions between the proteins of the core Soluble N-ethylmalmeimide-sensitive fusion protein Attachment protein REceptor (SNARE) complex. In these experiments, the rupture force, extension, spontaneous dissociation times and interaction energy for SNARE protein-protein interactions can be obtained at the single molecule level. These measurements, which are complementary to results and conclusions drawn from other techniques, improve our understanding of the role of the SNARE complex in exocytosis. PMID:19161382

  3. Atomic force microscopy in biomedical research - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Pier Carlo Braga and Davide Ricci are old friends not only for those researchers familiar with Atomic force microscopy (AFM but also for those beginners (like the undersigned that already enthusiastically welcomed their 2004 edition (for the same Humana press printing types of Atomic force microscopy: Biomedical methods and applications, eventhough I never had used the AFM. That book was much intended to overview the possible AFM applications for a wide range of readers so that they can be in some way stimulated toward the AFM use. In fact, the great majority of scientists is afraid both of the technology behind AFM (that is naturally thought highly demanding in term of concepts not so familiar to biologists and physicians and of the financial costs: both these two factors are conceived unapproachable by the medium range granted scientist usually not educated in terms of biophysics and electronic background....

  4. Probing stem cell differentiation using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaobin [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan); Shi, Xuetao, E-mail: mrshixuetao@gmail.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Ostrovidov, Serge [WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Wu, Hongkai, E-mail: chhkwu@ust.hk [Department of Chemistry & Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Nakajima, Ken [Graduate School of Science and Engineering, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8550 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • Atomic force microscopy (AFM) was developed to probe stem cell differentiation. • The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. • AFM is a facile and useful tool for monitoring stem cell differentiation in a non-invasive manner. - Abstract: A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  5. Elasticity measurement of breast cancer cells by atomic force microscopy

    Science.gov (United States)

    Xu, Chaoxian; Wang, Yuhua; Jiang, Ningcheng; Yang, Hongqin; Lin, Juqiang; Xie, Shusen

    2014-09-01

    Mechanical properties of living cells play an important role in understanding various cells' function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QITM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell's elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell's apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.

  6. Improved atomic force microscopy cantilever performance by partial reflective coating

    OpenAIRE

    Zeno Schumacher; Yoichi Miyahara; Laure Aeschimann; Peter Grütter

    2015-01-01

    Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in ...

  7. Bituminous emulsions and their characterization by atomic force microscopy

    Science.gov (United States)

    Loeber; Alexandre; Muller; Triquigneaux; Jolivet; Malot

    2000-04-01

    We present a new method for observing oil-in-water emulsions with a continuous water phase and a dispersed bitumen phase. The fine polydispersed bitumen micelles were adsorbed to an atomically smooth mica substrate and imaged in solution by atomic force microscopy in a liquid cell. The height of the adsorbed bitumen sheet in wet and dry states can be measured and the homogeneity of film formation by coalescence can be determined. Localization of surfactant onto and between bitumen micelles is also visualized.

  8. Atomic Force Microscopy and Real Atomic Resolution. Simple Computer Simulations

    NARCIS (Netherlands)

    Koutsos, V.; Manias, E.; Brinke, G. ten; Hadziioannou, G.

    1994-01-01

    Using a simple computer simulation for AFM imaging in the contact mode, pictures with true and false atomic resolution are demonstrated. The surface probed consists of two f.c.c. (111) planes and an atomic vacancy is introduced in the upper layer. Changing the size of the effective tip and its

  9. Ultrastructural analysis of buckwheat starch components using atomic force microscopy.

    Science.gov (United States)

    Neethirajan, Suresh; Tsukamoto, Kazumi; Kanahara, Hiroko; Sugiyama, Shigeru

    2012-01-01

    Morphological and structural features of buckwheat starch granules and nanocrystals were examined using atomic force microscopy and dynamic light scattering. Partially digested starch granules revealed a clear pattern of growth rings with the central core revealing lamellar structure. Atomic force microscopy and dynamic light scattering experiments revealed that the buckwheat starch granules were polygonal in shape and were in the range of 2 to 19 μm in diameter. The optimized acid hydrolysis process produced nanocrystals with the shape of spherical structure with lengths ranging from 120 to 200 nm, and the diameter from 4 to 30 nm from aqueous suspensions of buckwheat starch solution. The sorption isotherms on buckwheat starch nanocrystal/glycerol composite exhibited a 3-stage transition of moisture in the blending. The biocompatible nature of buckwheat starch nanocrystals and their structural properties make them a promising green nanocomposite material. Buckwheat starches had never been studied on a nanoscale, but we have achieved new understanding of starch granule morphology and concentric growth rings using nanoscale imaging. Since buckwheat is an underutilized crop, we foresee the potential application of buckwheat starch, starch-based nanocrystals, and nanoparticles, to expand markets and encourage producers to expand their buckwheat acreage. The atomic force image analysis suggests that buckwheat starch could be used as a new biopolymer material in food industries. © 2011 Institute of Food Technologists®

  10. [Application of atomic force microscopy (AFM) to study bacterial biofilms].

    Science.gov (United States)

    Yang, Shanshan; Huang, Qiaoyun; Cai, Peng

    2017-09-25

    Because of the nanometre resolution, piconewton force sensitivity, label-free technique and the ability to operate in liquid environments, atomic force microscopy (AFM) has emerged as a powerful tool to explore the biofilm development processes. AFM provides three-dimensional topography and structural details of biofilm surfaces under in-situ conditions. It also helps to generate key information on the mechanical properties of biofilm surfaces, such as elasticity and stickiness. Additionally, single-molecule and single-cell force spectroscopies can be applied to measure the strength of adhesion, attraction, and repulsion forces between cell-solid and cell-cell surfaces. This paper outlined the basic principle of AFM technique and introduced recent advances in the application of AFM for the investigation of ultra-morphological, mechanical and interactive properties of biofilms. Furthermore, the existing problems and future prospects were discussed.

  11. Adhesive properties of Staphylococcus epidermidis probed by atomic force microscopy

    DEFF Research Database (Denmark)

    Hu, Yifan; Ulstrup, Jens; Zhang, Jingdong

    2011-01-01

    Mapping of the surface properties of Staphylococcus epidermidis and of biofilm forming bacteria in general is a key to understand their functions, particularly their adhesive properties. To gain a comprehensive view of the structural and chemical properties of S. epidermidis, four different strains...... (biofilm positive and biofilm negative strains) were analyzed using in situ atomic force microscopy (AFM). Force measurements performed using bare hydrophilic silicon nitride tips disclosed similar adhesive properties for each strain. However, use of hydrophobic tips showed that hydrophobic forces...... are not the driving forces for adhesion of the four strains. Rather, the observation of sawtooth force–distance patterns on the surface of biofilm positive strains documents the presence of modular proteins such as Aap that may mediate cell adhesion. Treatment of two biofilm positive strains with two chemical...

  12. Interaction between polystyrene spheres by atomic force microscopy

    CERN Document Server

    Looi, L

    2002-01-01

    The interaction between a single polystyrene particle and a polystyrene substrate has been previously reported by a number of investigators. However, the effects of relative humidity, applied load and contact time on the adhesion of polystyrene surfaces have not been investigated and these effects are poorly understood. It is the primary aim of the current work to characterise the effect of the aforementioned parameters on the adhesion of polystyrene surfaces using atomic force microscopy. The polystyrene used in this study contained 1% of di-vinyl benzene as a cross-linking agent. From the work conducted using the custom-built instrument, the dependency of adhesion forces on the relative humidity is greatest at relative humidities above 60% where capillary forces cause a sharp increase in adhesion with increasing relative humidity. Hysteresis was observed in the solid-solid contact gradient of the accompanying force curves, suggesting non-elastic behaviour at the contact area of the surfaces

  13. Mechanical characterization of cellulose single nanofiber by atomic force microscopy

    Science.gov (United States)

    Zhai, Lindong; Kim, Jeong Woong; Lee, Jiyun; Kim, Jaehwan

    2017-04-01

    Cellulose fibers are strong natural fibers and they are renewable, biodegradable and the most abundant biopolymer in the world. So to develop new cellulose fibers based products, the mechanical properties of cellulose nanofibers would be a key. The atomic microscope is used to measure the mechanical properties of cellulose nanofibers based on 3-points bending of cellulose nanofiber. The cellulose nanofibers were generated for an aqueous counter collision system. The cellulose microfibers were nanosized under 200 MPa high pressure. The cellulose nanofiber suspension was diluted with DI water and sprayed on the silicon groove substrate. By performing a nanoscale 3-points bending test using the atomic force microscopy, a known force was applied on the center of the fiber. The elastic modulus of the single nanofiber is obtained by calculating the fiber deflection and several parameters. The elastic modulus values were obtained from different resources of cellulose such as hardwood, softwood and cotton.

  14. Cautions to predicate multiferroic by atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2017-05-01

    Full Text Available With the ever-increasing research activities in multiferroic driven by its profound physics and enormous potential for application, magnetic force microscopy (MFM, as a variety of atomic force microscope (AFM, has been brought to investigate the magnetic properties and the voltage controlled magnetism, especially in thin films and heterostructures. Here by taking a representative multiferroic system BiFeO3/La0.67Sr0.33MnO3 heterostructure and a ferroelectric PMN-PT single crystal for examples, we demonstrated that the MFM image is prone to be seriously interfered by the electrostatic interaction between the tip and sample surface, and misleads the predication of multiferroic. Assisted by the scanning Kelvin probe microscopy (SKPM, the origin and mechanism were discussed and an effective solution was proposed.

  15. Cautions to predicate multiferroic by atomic force microscopy

    Science.gov (United States)

    Liu, Chen; Ma, Jing; Ma, Ji; Zhang, Yujun; Chen, Jiahui; Nan, Ce-Wen

    2017-05-01

    With the ever-increasing research activities in multiferroic driven by its profound physics and enormous potential for application, magnetic force microscopy (MFM), as a variety of atomic force microscope (AFM), has been brought to investigate the magnetic properties and the voltage controlled magnetism, especially in thin films and heterostructures. Here by taking a representative multiferroic system BiFeO3/La0.67Sr0.33MnO3 heterostructure and a ferroelectric PMN-PT single crystal for examples, we demonstrated that the MFM image is prone to be seriously interfered by the electrostatic interaction between the tip and sample surface, and misleads the predication of multiferroic. Assisted by the scanning Kelvin probe microscopy (SKPM), the origin and mechanism were discussed and an effective solution was proposed.

  16. Significant improvements in stability and reproducibility of atomic-scale atomic force microscopy in liquid

    OpenAIRE

    Akrami, S.M.R.; Nakayachi, H.; Watanabe-Nakayama, Takahiro; Asakawa, Hitoshi; Fukuma, Takeshi

    2014-01-01

    Recent advancement of dynamic-mode atomic force microscopy (AFM) for liquid-environment applications enabled atomic-scale studies on various interfacial phenomena. However, instabilities and poor reproducibility of the measurements often prevent systematic studies. To solve this problem, we have investigated the effect of various tip treatment methods for atomic-scale imaging and force measurements in liquid. The tested methods include Si coating, Ar plasma, Ar sputtering and UV/O3 cleaning. ...

  17. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    Science.gov (United States)

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  18. Polarization contrast in photon scanning tunnelling microscopy combined with atomic force microscopy

    NARCIS (Netherlands)

    Propstra, K.; Propstra, K.; van Hulst, N.F.

    1995-01-01

    Photon scanning tunnelling microscopy combined with atomic force microscopy allows simultaneous acquisition and direct comparison of optical and topographical images, both with a lateral resolution of about 30 nm, far beyond the optical diffraction limit. The probe consists of a modified

  19. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    Science.gov (United States)

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  20. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.

    Science.gov (United States)

    Neuman, Keir C; Nagy, Attila

    2008-06-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.

  1. Improved atomic force microscopy cantilever performance by partial reflective coating

    Directory of Open Access Journals (Sweden)

    Zeno Schumacher

    2015-07-01

    Full Text Available Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM. Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor. In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m and stiff (≈28 N/m rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds.

  2. Improved atomic force microscopy cantilever performance by partial reflective coating.

    Science.gov (United States)

    Schumacher, Zeno; Miyahara, Yoichi; Aeschimann, Laure; Grütter, Peter

    2015-01-01

    Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m) and stiff (≈28 N/m) rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds.

  3. Characterisation of dry powder inhaler formulations using atomic force microscopy.

    Science.gov (United States)

    Weiss, Cordula; McLoughlin, Peter; Cathcart, Helen

    2015-10-15

    Inhalation formulations are a popular way of treating the symptoms of respiratory diseases. The active pharmaceutical ingredient (API) is delivered directly to the site of action within the deep lung using an inhalation device such as the dry powder inhaler (DPI). The performance of the formulation and the efficiency of the treatment depend on a number of factors including the forces acting between the components. In DPI formulations these forces are dominated by interparticulate interactions. Research has shown that adhesive and cohesive forces depend on a number of particulate properties such as size, surface roughness, crystallinity, surface energetics and combinations of these. With traditional methods the impact of particulate properties on interparticulate forces could be evaluated by examining the bulk properties. Atomic force microscopy (AFM), however, enables the determination of local surface characteristics and the direct measurement of interparticulate forces using the colloidal probe technique. AFM is considered extremely useful for evaluating the surface topography of a substrate (an API or carrier particle) and even allows the identification of crystal faces, defects and polymorphs from high-resolution images. Additionally, information is given about local mechanical properties of the particles and changes in surface composition and energetics. The assessment of attractive forces between two bodies is possible by using colloidal probe AFM. This review article summarises the application of AFM in DPI formulations while specifically focussing on the colloidal probe technique and the evaluation of interparticulate forces. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Understanding the Plasmonics of Nanostructured Atomic Force Microscopy Tips

    CERN Document Server

    Sanders, Alan; Zhang, Liwu; Turek, Vladimir; Sigle, Daniel O; Lombardi, Anna; Weller, Lee; Baumberg, Jeremy J

    2016-01-01

    Structured metallic tips are increasingly important for optical spectroscopies such as tip-enhanced Raman spectroscopy (TERS), with plasmonic resonances frequently cited as a mechanism for electric field enhancement. We probe the local optical response of sharp and spherical-tipped atomic force microscopy (AFM) tips using a scanning hyperspectral imaging technique to identify plasmonic behaviour. Localised surface plasmon resonances which radiatively couple with far-field light are found only for spherical AFM tips, with little response for sharp AFM tips, in agreement with numerical simulations of the near-field response. The precise tip geometry is thus crucial for plasmon-enhanced spectroscopies, and the typical sharp cones are not preferred.

  5. Note: Double-hole cantilevers for harmonic atomic force microscopy

    Science.gov (United States)

    Zhang, Weijie; Chen, Yuhang; Chu, Jiaru

    2017-10-01

    To enhance the harmonic signals in intermittent contact atomic force microscopy, we proposed the double-hole structural modification. Finite element analyses and experiments demonstrated the capability and advantages of the developed method. An infinite set of harmonic cantilevers can be optimized by proper selections of hole size, position, and inter-distance. The second and third resonance frequencies are simultaneously regulated to be integer multiples of the fundamental frequency. In the meanwhile, the alteration of cantilever stiffness is kept minimum. The double-hole modifications have prominent advantages of regular geometry, flexible selection of cutting positions/dimensions, and easy-to-meet fabrication tolerances.

  6. Electrochemical atomic force microscopy: In situ monitoring of electrochemical processes

    Science.gov (United States)

    Reggente, Melania; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela; Terranova, Maria Letizia

    2017-08-01

    The in-situ electrodeposition of polyaniline (PANI), one of the most attractive conducting polymers (CP), has been monitored performing electrochemical atomic force microscopy (EC-AFM) experiments. The electropolymerization of PANI on a Pt working electrode has been observed performing cyclic voltammetry experiments and controlling the evolution of current flowing through the electrode surface, together with a standard AFM image. The working principle and the potentialities of this emerging technique are briefly reviewed and factors limiting the studying of the in-situ electrosynthesis of organic compounds discussed.

  7. Visualizing water molecule distribution by atomic force microscopy.

    Science.gov (United States)

    Kimura, Kenjiro; Ido, Shinichiro; Oyabu, Noriaki; Kobayashi, Kei; Hirata, Yoshiki; Imai, Takashi; Yamada, Hirofumi

    2010-05-21

    Hydration structures at biomolecular surfaces are essential for understanding the mechanisms of the various biofunctions and stability of biomolecules. Here, we demonstrate the measurement of local hydration structures using an atomic force microscopy system equipped with a low-noise deflection sensor. We applied this method to the analysis of the muscovite mica/water interface and succeeded in visualizing a hydration structure that is site-specific on a crystal. Furthermore, at the biomolecule/buffer solution interface, we found surface hydration layers that are more packed than those at the muscovite mica/water interface.

  8. Atomic Force Microscopy Application in Biological Research: A Review Study

    Directory of Open Access Journals (Sweden)

    Surena Vahabi

    2013-06-01

    Full Text Available Atomic force microscopy (AFM is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  9. Atomic force microscopy application in biological research: a review study.

    Science.gov (United States)

    Vahabi, Surena; Nazemi Salman, Bahareh; Javanmard, Anahita

    2013-06-01

    Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  10. Application of atomic force microscopy in bacterial research.

    Science.gov (United States)

    Dorobantu, Loredana S; Gray, Murray R

    2010-01-01

    The atomic force microscope (AFM) has evolved from an imaging device into a multifunctional and powerful toolkit for probing the nanostructures and surface components on the exterior of bacterial cells. Currently, the area of application spans a broad range of interesting fields from materials sciences, in which AFM has been used to deposit patterns of thiol-functionalized molecules onto gold substrates, to biological sciences, in which AFM has been employed to study the undesirable bacterial adhesion to implants and catheters or the essential bacterial adhesion to contaminated soil or aquifers. The unique attribute of AFM is the ability to image bacterial surface features, to measure interaction forces of functionalized probes with these features, and to manipulate these features, for example, by measuring elongation forces under physiological conditions and at high lateral resolution (force spectroscopy modes, such as chemical force microscopy, single-cell force spectroscopy, and single-molecule force spectroscopy, have been used to map the spatial arrangement of chemical groups and electrical charges on bacterial surfaces, to measure cell-cell interactions, and to stretch biomolecules. In this review, we present the fascinating options offered by the rapid advances in AFM with emphasizes on bacterial research and provide a background for the exciting research articles to follow. 2010 Wiley Periodicals, Inc.

  11. Multifarious applications of atomic force microscopy in forensic science investigations.

    Science.gov (United States)

    Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y

    2017-04-01

    Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Comparative study of clinical pulmonary surfactants using atomic force microscopy

    Science.gov (United States)

    Zhang, Hong; Fan, Qihui; Wang, Yi E.; Neal, Charles R.; Zuo, Yi Y.

    2016-01-01

    Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations. PMID:21439262

  13. Influence of biosurfactant on interactive forces between mutans streptococci and enamel measured by atomic force microscopy

    NARCIS (Netherlands)

    van Hoogmoed, CG; Dijkstra, RJB; van der Mei, HC; Busscher, HJ

    Although interactive forces, influenced by environmental conditions, between oral bacteria and tooth surfaces are important for the development of plaque, they have never been estimated. It is hypothesized that interactive forces, as measured by atomic force microscopy, between enamel with or

  14. Potential Role of Atomic Force Microscopy in Systems Biology

    Science.gov (United States)

    Ramachandran, Srinivasan; Arce, Fernando Teran; Lal, Ratnesh

    2011-01-01

    Systems biology is a quantitative approach for understanding a biological system at its global level through systematic perturbation and integrated analysis of all its components. Simultaneous acquisition of information datasets pertaining to the system components (e.g., genome, proteome) is essential to implement this approach. There are limitations to such an approach in measuring gene expression levels and accounting for all proteins in the system. The success of genomic studies is critically dependent on PCR for its amplification, but PCR is very uneven in amplifying the samples, ineffective in scarce samples and unreliable in low copy number transcripts. On the other hand, lack of amplifying techniques for proteins critically limits their identification to only a small fraction of high concentration proteins. Atomic force microscopy (AFM), AFM cantilever sensors and AFM force spectroscopy in particular, could address these issues directly. In this article, we reviewed and assessed their potential role in systems biology. PMID:21766465

  15. An atomic force microscopy study of Eurofer-97 steel

    Directory of Open Access Journals (Sweden)

    Stamopoulos D.

    2014-07-01

    Full Text Available In recent years the microstructure, mechanical and magnetic properties of Eurofer-97 steel are studied intensively due to its application in nuclear fusion power plants. Its microstructure is usually accessed by means of electron microscopy. Here we present an alternative approach utilizing Atomic Force Microscopy (AFM to study as-received Eurofer-97 steel. We recorded both the Height Signal (HS and Phase Signal (PS that provided information on the morphologic and inelastic topography, respectively. With the HS we detected spherical particles (SPs of size 50-2000 nm. Interestingly, micrometer SPs (0.1-2.0 μm are randomly distributed, while nanometer SPs (50-100 nm are sometimes arranged in correlation to grain boundaries. The PS clearly revealed that the micrometer SPs exhibit inelastic properties. Though we cannot identify the elemental composition of the SPs with AFM, based on relevant electron microscopy data we ascribe the nanometer ones to the TaC, TiN and VN and the coarse micrometer ones to M23C6 (M=Cr, Fe. The latter class of SPs can probably be active sites that influence the mechanical properties of Eurofer-97 steel upon annealing as observed in relevant electron microscopy based studies.

  16. Quality of corneal lamellar cuts quantified using atomic force microscopy

    Science.gov (United States)

    Ziebarth, Noël M.; Dias, Janice; Hürmeriç, Volkan; Shousha, Mohamed Abou; Yau, Chiyat Ben; Moy, Vincent T.; Culbertson, William; Yoo, Sonia H.

    2012-01-01

    PURPOSE To quantify the cut quality of lamellar dissections made with the femtosecond laser using atomic force microscopy (AFM). SETTING Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA. DESIGN Experimental study. METHODS Experiments were performed on 3 pairs of human cadaver eyes. The cornea was thinned to physiologic levels by placing the globe, cornea side down, in 25% dextran for 24 hours. The eyes were reinflated to normal pressures by injecting a balanced salt solution into the vitreous cavity. The eyes were placed in a holder, the epithelium was removed, and the eyes were cut with a Visumax femtosecond laser. The energy level was 180 nJ for the right eye and 340 nJ for the left eye of each pair. The cut depths were 200 μm, 300 μm, and 400 μm, with the cut depth maintained for both eyes of each pair. A 12.0 mm trephination was then performed. The anterior portion of the lamellar surface was placed in a balanced salt solution and imaged with AFM. As a control, the posterior surface was placed in 2% formalin and imaged with environmental scanning electron microscopy (SEM). Four quantitative parameters (root-mean-square deviation, average deviation, skewness, kurtosis) were calculated from the AFM images. RESULTS From AFM, the 300 μm low-energy cuts were the smoothest. Similar results were seen qualitatively in the environmental SEM images. CONCLUSION Atomic force microscopy provided quantitative information on the quality of lamellar dissections made using a femtosecond laser, which is useful in optimizing patient outcomes in refractive and lamellar keratoplasty surgeries. PMID:23141078

  17. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    Science.gov (United States)

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  18. Atomic force microscopy for university students: applications in biomaterials

    Science.gov (United States)

    Kontomaris, S. V.; Stylianou, A.

    2017-05-01

    Atomic force microscopy (AFM) is a powerful tool used in the investigation of the structural and mechanical properties of a wide range of materials including biomaterials. It provides the ability to acquire high resolution images of biomaterials at the nanoscale. It also provides information about the response of specific areas under controlled applied force, which leads to the mechanical characterization of the sample at the nanoscale. The wide range of information provided by AFM has established it as a powerful research tool. In this paper, we present a general overview of the basic operation and functions of AFM applications in biomaterials. The basic operation of AFM is explained in detail with a focus on the real interactions that take place at the nanoscale level during imaging. AFM’s ability to provide the mechanical characterization (force curves) of specific areas at the nanoscale is also explained. The basic models of applied mechanics that are used for processing the data obtained by the force curves are presented. The aim of this paper is to provide university students and young scientists in the fields of biophysics and nanotechnology with a better understanding of AFM.

  19. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  20. Atomic force microscopy of polymer and oligomer surfaces

    CERN Document Server

    Winkel, A K

    2001-01-01

    The surface of ultra-thin films of polyethylene, isotactic polypropylene, polybutene, isotactic polystyrene and polytetrafluoroethylene was studied using an atomic force microscope and resolution of individual molecules was achieved. Comparison of the images with Connolly surfaces enabled identification of which plane was observed in the AFM images, with greater accuracy than conclusions drawn on the basis of surface feature measurement alone. In particular, the results from the experiments with polybutene show that for samples aged sufficiently so that the stable phase is expected in the bulk, this phase is also stable on the surface. The samples were aged sufficiently to ensure that the bulk would be in the stable phase. It is found that this phase is also stable on the surface. Additionally, the annealing behaviour of once folded crystals of the long-chain alkane, C sub 1 sub 6 sub 2 H sub 3 sub 2 sub 6 , is examined in situ, in real time, by atomic force microscopy. Regions of thickening material can be c...

  1. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.

    Science.gov (United States)

    Kilpatrick, Jason I; Revenko, Irène; Rodriguez, Brian J

    2015-11-18

    The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Unlocking higher harmonics in atomic force microscopy with gentle interactions

    Directory of Open Access Journals (Sweden)

    Sergio Santos

    2014-03-01

    Full Text Available In dynamic atomic force microscopy, nanoscale properties are encoded in the higher harmonics. Nevertheless, when gentle interactions and minimal invasiveness are required, these harmonics are typically undetectable. Here, we propose to externally drive an arbitrary number of exact higher harmonics above the noise level. In this way, multiple contrast channels that are sensitive to compositional variations are made accessible. Numerical integration of the equation of motion shows that the external introduction of exact harmonic frequencies does not compromise the fundamental frequency. Thermal fluctuations are also considered within the detection bandwidth of interest and discussed in terms of higher-harmonic phase contrast in the presence and absence of an external excitation of higher harmonics. Higher harmonic phase shifts further provide the means to directly decouple the true topography from that induced by compositional heterogeneity.

  3. Factor Va alternative conformation reconstruction using atomic force microscopy.

    Science.gov (United States)

    Chaves, R C; Dahmane, S; Odorico, M; Nicolaes, G A F; Pellequer, J-L

    2014-12-01

    Protein conformational variability (or dynamics) for large macromolecules and its implication for their biological function attracts more and more attention. Collective motions of domains increase the ability of a protein to bind to partner molecules. Using atomic force microscopy (AFM) topographic images, it is possible to take snapshots of large multi-component macromolecules at the single molecule level and to reconstruct complete molecular conformations. Here, we report the application of a reconstruction protocol, named AFM-assembly, to characterise the conformational variability of the two C domains of human coagulation factor Va (FVa). Using AFM topographic surfaces obtained in liquid environment, it is shown that the angle between C1 and C2 domains of FVa can vary between 40° and 166°. Such dynamical variation in C1 and C2 domain arrangement may have important implications regarding the binding of FVa to phospholipid membranes.

  4. Novel insights into cardiomyocytes provided by atomic force microscopy.

    Science.gov (United States)

    Borin, Daniele; Pecorari, Ilaria; Pena, Brisa; Sbaizero, Orfeo

    2017-07-04

    Cardiovascular diseases (CVDs) are the number one cause of death globally, therefore interest in studying aetiology, hallmarks, progress and therapies for these disorders is constantly growing. Over the last decades, the introduction and development of atomic force microscopy (AFM) technique allowed the study of biological samples at the micro- and nanoscopic level, hence revealing noteworthy details and paving the way for investigations on physiological and pathological conditions at cellular scale. The present work is aimed to collect and review the literature on cardiomyocytes (CMs) studied by AFM, in order to emphasise the numerous potentialities of this approach and provide a platform for researchers in the field of cardiovascular diseases. Original data are also presented to highlight the application of AFM to characterise the viscoelastic properties of CMs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Atomic force microscopy spring constant determination in viscous liquids.

    Science.gov (United States)

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-01

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this "thermal noise method" is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.

  6. Destabilization induced by electropermeabilization analyzed by atomic force microscopy.

    Science.gov (United States)

    Chopinet, Louise; Roduit, Charles; Rols, Marie-Pierre; Dague, Etienne

    2013-09-01

    Electropermeabilization is a physical method that uses electric field pulses to deliver molecules into cells and tissues. Despite its increasing interest in clinics, little is known about plasma membrane destabilization process occurring during electropermeabilization. In this work, we took advantage of atomic force microscopy to directly visualize the consequences of electropermeabilization in terms of membrane reorganization and to locally measure the membrane elasticity. We visualized transient rippling of membrane surface and measured a decrease in membrane elasticity by 40%. Our results obtained both on fixed and living CHO cells give evidence of an inner effect affecting the entire cell surface that may be related to cytoskeleton destabilization. Thus, AFM appears as a useful tool to investigate basic process of electroporation on living cells in absence of any staining or cell preparation. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Atomic force microscopy studies on cellular elastic and viscoelastic properties.

    Science.gov (United States)

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-06-29

    In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.

  8. Atomic force microscopy and spectroscopy of native membrane proteins.

    Science.gov (United States)

    Müller, Daniel J; Engel, Andreas

    2007-01-01

    Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.

  9. GaN nanowire tips for nanoscale atomic force microscopy

    Science.gov (United States)

    Behzadirad, Mahmoud; Nami, Mohsen; Rishinaramagalam, Ashwin K.; Feezell, Daniel F.; Busani, Tito

    2017-05-01

    Imaging of high-aspect-ratio nanostructures with sharp edges and straight walls in nanoscale metrology by atomic force microscopy (AFM) has been challenging due to the mechanical properties and conical geometry of the majority of available commercial tips. Here we report on the fabrication of GaN probes for nanoscale metrology of high-aspect-ratio structures to enhance the resolution of AFM imaging and improve the durability of AFM tips. GaN nanowires were fabricated using bottom-up and top-down techniques and bonded to Si cantilevers to scan vertical trenches on Si substrates. Over several scans, the GaN probes demonstrated excellent durability while scanning uneven structures and showed resolution enhancements in topography images, independent of scan direction, compared to commercial Si tips.

  10. Thermoelectric measurements using different tips in atomic force microscopy

    Science.gov (United States)

    Kushvaha, S. S.; Hofbauer, W.; Loke, Y. C.; Singh, Samarendra P.; O'Shea, S. J.

    2011-04-01

    We use conducting atomic force microscopy (AFM) in ultra high vacuum to measure the thermoelectric power of Au, Pt, and 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) films. Tips coated with thick (1200 nm) Pt films or highly doped diamond film give reproducible data. The thermoelectric power of metal junctions formed with diamond tips is high but dominated by the diamond material thus making diamond tips of limited applicability in thermovoltage AFM. Pt coated tips on Au or Pt films gives small thermovoltage signal, making quantitative analysis of the thermopower on metal sample problematic. The thermovoltage AFM technique appears best suited to study organic thin films and the thermoelectric power of 1.5 nm and 2 nm thick PTCDA deposited on Au measured with Pt tips is -342 and -372 μV/K, respectively. The negative sign indicates that the lowest unoccupied molecular orbital level dominates electrical transport.

  11. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy

    Science.gov (United States)

    Gillis, Annika; Dupres, Vincent; Delestrait, Guillaume; Mahillon, Jacques; Dufrêne, Yves F.

    2012-02-01

    Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in

  12. Calibration of Friction Force Signals in Atomic Force Microscopy in Liquid Media

    NARCIS (Netherlands)

    Tocha, E.; Song, Jing; Schönherr, Holger; Vancso, Gyula J.

    2007-01-01

    The calibration factors for atomic force microscopy (AFM) friction force measurements in liquid media are shown to be different by 25-74% compared to measurements in air. Even though it is significantly more precise, the improved wedge calibration method using a universal calibration specimen

  13. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  14. Atomic force microscopy as an advanced tool in neuroscience

    Science.gov (United States)

    Jembrek, Maja Jazvinšćak; Šimić, Goran; Hof, Patrick R.; Šegota, Suzana

    2015-01-01

    This review highlights relevant issues about applications and improvements of atomic force microscopy (AFM) toward a better understanding of neurodegenerative changes at the molecular level with the hope of contributing to the development of effective therapeutic strategies for neurodegenerative illnesses. The basic principles of AFM are briefly discussed in terms of evaluation of experimental data, including the newest PeakForce Quantitative Nanomechanical Mapping (QNM) and the evaluation of Young’s modulus as the crucial elasticity parameter. AFM topography, revealed in imaging mode, can be used to monitor changes in live neurons over time, representing a valuable tool for high-resolution detection and monitoring of neuronal morphology. The mechanical properties of living cells can be quantified by force spectroscopy as well as by new AFM. A variety of applications are described, and their relevance for specific research areas discussed. In addition, imaging as well as non-imaging modes can provide specific information, not only about the structural and mechanical properties of neuronal membranes, but also on the cytoplasm, cell nucleus, and particularly cytoskeletal components. Moreover, new AFM is able to provide detailed insight into physical structure and biochemical interactions in both physiological and pathophysiological conditions. PMID:28123795

  15. Atomic force microscopy-based shape analysis of heart mitochondria.

    Science.gov (United States)

    Lee, Gi-Ja; Park, Hun-Kuk

    2015-01-01

    Atomic force microscopy (AFM) has become an important medical and biological tool for the noninvasive imaging of cells and biomaterials in medical, biological, and biophysical research. The major advantages of AFM over conventional optical and electron microscopes for bio-imaging include the facts that no special coating is required and that imaging can be done in all environments-air, vacuum, or aqueous conditions. In addition, it can also precisely determine pico-nano Newton force interactions between the probe tip and the sample surface from force-distance curve measurements.It is widely known that mitochondrial swelling is one of the most important indicators of the opening of the mitochondrial permeability transition (MPT) pore. As mitochondrial swelling is an ultrastructural change, quantitative analysis of this change requires high-resolution microscopic methods such as AFM. Here, we describe the use of AFM-based shape analysis for the characterization of nanostructural changes in heart mitochondria resulting from myocardial ischemia-reperfusion injury.

  16. Dynamics of podosome stiffness revealed by atomic force microscopy

    Science.gov (United States)

    Labernadie, Anna; Thibault, Christophe; Vieu, Christophe; Maridonneau-Parini, Isabelle; Charrière, Guillaume M.

    2010-01-01

    Podosomes are unique cellular entities specifically found in macrophages and involved in cell–matrix interactions, matrix degradation, and 3D migration. They correspond to a core of F-actin surrounded at its base by matrix receptors. To investigate the structure/function relationships of podosomes, soft lithography, atomic force microscopy (AFM), and correlative fluorescence microscopy were used to characterize podosome physical properties in macrophages differentiated from human blood monocytes. Podosome formation was restricted to delineated areas with micropatterned fibrinogen to facilitate AFM analyses. Podosome height and stiffness were measured with great accuracy in living macrophages (578 ± 209 nm and 43.8 ± 9.3 kPa) and these physical properties were independent of the nature of the underlying matrix. In addition, time-lapse AFM revealed that podosomes harbor two types of overlapping periodic stiffness variations throughout their lifespan, which depend on F-actin and myosin II activity. This report shows that podosome biophysical properties are amenable to AFM, allowing the study of podosomes in living macrophages at nanoscale resolution and the analysis of their intimate dynamics. Such an approach opens up perspectives to better understand the mechanical functionality of podosomes under physiological and pathological contexts. PMID:21081699

  17. Primate lens capsule elasticity assessed using Atomic Force Microscopy

    Science.gov (United States)

    Ziebarth, Noël M.; Arrieta, Esdras; Feuer, William J.; Moy, Vincent T.; Manns, Fabrice; Parel, Jean-Marie

    2011-01-01

    The purpose of this project is to measure the elasticity of the human and non-human primate lens capsule at the microscopic scale using Atomic Force Microscopy (AFM). Elasticity measurements were performed using AFM on the excised anterior lens capsule from 9 cynomolgus monkey (5.9–8.0 years), 8 hamadryas baboon (2.8–10.1 years), and 18 human lenses (33–79 years). Anterior capsule specimens were obtained by performing a 5mm continuous curvilinear capsulorhexis and collecting the resulting disk of capsular tissue. To remove the lens epithelial cells the specimen was soaked in 0.1% trypsin and 0.02% EDTA for five minutes, washed, and placed on a Petri dish and immersed in DMEM. Elasticity measurements of the capsule were performed with a laboratory-built AFM system custom designed for force measurements of ophthalmic tissues. The capsular specimens were probed with an AFM cantilever tip to produce force-indentation curves for each specimen. Young’s modulus was calculated from the force-indentation curves using the model of Sneddon for a conical indenter. Young’s modulus of elasticity was 20.1–131kPa for the human lens capsule, 9.19–117kPa for the cynomolgus lens capsule, and 13.1–62.4kPa for the baboon lens capsule. Young’s modulus increased significantly with age in humans (p=0.03). The age range of the monkey and baboon samples was not sufficient to justify an analysis of age dependence. The capsule elasticity of young humans (<45 years) was not statistically different from that of the monkey and baboon. In humans, there is an increase in lens capsule stiffness at the microscale that could be responsible for an increase in lens capsule bulk stiffness. PMID:21420953

  18. Atomic Force Microscopy and pharmacology: from microbiology to cancerology.

    Science.gov (United States)

    Pillet, Flavien; Chopinet, Louise; Formosa, Cécile; Dague, Etienne

    2014-03-01

    Atomic Force Microscopy (AFM) has been extensively used to study biological samples. Researchers take advantage of its ability to image living samples to increase our fundamental knowledge (biophysical properties/biochemical behavior) on living cell surface properties, at the nano-scale. AFM, in the imaging modes, can probe cells morphological modifications induced by drugs. In the force spectroscopy mode, it is possible to follow the nanomechanical properties of a cell and to probe the mechanical modifications induced by drugs. AFM can be used to map single molecule distribution at the cell surface. We will focus on a collection of results aiming at evaluating the nano-scale effects of drugs, by AFM. Studies on yeast, bacteria and mammal cells will illustrate our discussion. Especially, we will show how AFM can help in getting a better understanding of drug mechanism of action. This review demonstrates that AFM is a versatile tool, useful in pharmacology. In microbiology, it has been used to study the drugs fighting Candida albicans or Pseudomonas aeruginosa. The major conclusions are a better understanding of the microbes' cell wall and of the drugs mechanism of action. In cancerology, AFM has been used to explore the effects of cytotoxic drugs or as an innovative diagnostic technology. AFM has provided original results on cultured cells, cells extracted from patient and directly on patient biopsies. This review enhances the interest of AFM technologies for pharmacology. The applications reviewed range from microbiology to cancerology. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Measurement of nanomechanical properties of biomolecules using atomic force microscopy.

    Science.gov (United States)

    Kurland, Nicholas E; Drira, Zouheir; Yadavalli, Vamsi K

    2012-02-01

    The capabilities of atomic force microscopy (AFM) have been rapidly expanding beyond topographical imaging to now allow for the analysis of a wide range of properties of diverse materials. The technique of nanoindentation, traditionally performed via dedicated indenters can now be reliably achieved using AFM instrumentation, enabling mechanical property determination at the nanoscale using the high spatial and force resolutions of the AFM. In the study of biological systems, from biomolecules to complexes, this technique provides insight into how mesoscale properties and functions may arise from a myriad of single biomolecules. In vivo and in situ analyses of native structures under physiological conditions as well as the rapid analysis of molecular species under a variety of experimental treatments are made possible with this technique. As a result, AFM nanoindentation has emerged as a critical tool for the study of biological systems in their natural state, further contributing to both biomaterial design and pharmacological research. In this review, we detail the theory and progression of AFM-based nanoindentation, and present several applications of this technique as it has been used to probe biomolecules and biological nanostructures from single proteins to complex assemblies. We further detail the many challenges associated with mechanical models and required assumptions for model validity. AFM nanoindentation capabilities have provided an excellent improvement over conventional nanomechanical tools and by integration of topographical data from imaging, enabled the rapid extraction and presentation of mechanical data for biological samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Improving tapping mode atomic force microscopy with piezoelectric cantilevers.

    Science.gov (United States)

    Rogers, B; Manning, L; Sulchek, T; Adams, J D

    2004-08-01

    This article summarizes improvements to the speed, simplicity and versatility of tapping mode atomic force microscopy (AFM). Improvements are enabled by a piezoelectric microcantilever with a sharp silicon tip and a thin, low-stress zinc oxide (ZnO) film to both actuate and sense deflection. First, we demonstrate self-sensing tapping mode without laser detection. Similar previous work has been limited by unoptimized probe tips, cantilever thicknesses, and stress in the piezoelectric films. Tests indicate self-sensing amplitude resolution is as good or better than optical detection, with double the sensitivity, using the same type of cantilever. Second, we demonstrate self-oscillating tapping mode AFM. The cantilever's integrated piezoelectric film serves as the frequency-determining component of an oscillator circuit. The circuit oscillates the cantilever near its resonant frequency by applying positive feedback to the film. We present images and force-distance curves using both self-sensing and self-oscillating techniques. Finally, high-speed tapping mode imaging in liquid, where electric components of the cantilever require insulation, is demonstrated. Three cantilever coating schemes are tested. The insulated microactuator is used to simultaneously vibrate and actuate the cantilever over topographical features. Preliminary images in water and saline are presented, including one taken at 75.5 microm/s-a threefold improvement in bandwidth versus conventional piezotube actuators.

  1. Atomic force microscopy-based characterization and design of biointerfaces

    Science.gov (United States)

    Alsteens, David; Gaub, Hermann E.; Newton, Richard; Pfreundschuh, Moritz; Gerber, Christoph; Müller, Daniel J.

    2017-03-01

    Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques.

  2. [Application of atomic force microscopy (AFM) in ophthalmology].

    Science.gov (United States)

    Milka, Michał; Mróz, Iwona; Jastrzebska, Maria; Wrzalik, Roman; Dobrowolski, Dariusz; Roszkowska, Anna M; Moćko, Lucyna; Wylegała, Edward

    2012-01-01

    Atomic force microscopy (AFM) allows to examine surface of different biological objects in the nearly physiological conditions at the nanoscale. The purpose of this work is to present the history of introduction and the potential applications of the AFM in ophthalmology research and clinical practice. In 1986 Binnig built the AFM as a next generation of the scanning tunnelling microscope (STM). The functional principle of AFM is based on the measurement of the forces between atoms on the sample surface and the probe. As a result, the three-dimensional image of the surface with the resolution on the order of nanometres can be obtained. Yamamoto used as the first the AFM on a wide scale in ophthalmology. The first investigations used the AFM method to study structure of collagen fibres of the cornea and of the sclera. Our research involves the analysis of artificial intraocular lenses (IOLs). According to earlier investigations, e.g. Lombardo et al., the AFM was used to study only native IOLs. Contrary to the earlier investigations, we focused our measurements on lenses explanted from human eyes. The surface of such lenses is exposed to the influence of the intraocular aqueous environment, and to the related impacts of biochemical processes. We hereby present the preliminary results of our work in the form of AFM images depicting IOL surface at the nanoscale. The images allowed us to observe early stages of the dye deposit formation as well as local calcinosis. We believe that AFM is a very promising tool for studying the structure of IOL surface and that further observations will make it possible to explain the pathomechanism of artificial intraocular lens opacity formation.

  3. Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy

    Science.gov (United States)

    Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar

    2015-01-01

    Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials. PMID:26118408

  4. Measurements of electrostatic double layer potentials with atomic force microscopy

    Science.gov (United States)

    Giamberardino, Jason

    The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL. This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clears up previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.

  5. Atomic Force Microscopy Study of Atherosclerosis Progression in Arterial Walls.

    Science.gov (United States)

    Timashev, Peter S; Kotova, Svetlana L; Belkova, Galina V; Gubar'kova, Ekaterina V; Timofeeva, Lidia B; Gladkova, Natalia D; Solovieva, Anna B

    2016-04-01

    Cardiovascular disease remains the leading cause of mortality worldwide. Here we suggest a novel approach for tracking atherosclerosis progression based on the use of atomic force microscopy (AFM). Using AFM, we studied cross-sections of coronary arteries with the following types of lesions: Type II-thickened intima; Type III-thickened intima with a lipid streak; Type IV-fibrotic layer over a lipid core; Type Va-unstable fibrotic layer over a lipid core; Type Vc-very thick fibrotic layer. AFM imaging revealed that the fibrotic layer of an atherosclerotic plaque is represented by a basket-weave network of collagen fibers and a subscale network of fibrils that become looser with atherosclerosis progression. In an unstable plaque (Type Va), packing of the collagen fibers and fibrils becomes even less uniform than that at the previous stages, while a stable fibrotic plaque (Vc) has significantly tighter packing. Such alterations of the collagen network morphology apparently, led to deterioration of the Type Va plaque mechanical properties, that, in turn, resulted in its instability and propensity to rupture. Thus, AFM may serve as a useful tool for tracking atherosclerosis progression in the arterial wall tissue.

  6. Nanoscale observation of organic thin film by atomic force microscopy

    Science.gov (United States)

    Mochizuki, Shota; Uruma, Takeshi; Satoh, Nobuo; Saravanan, Shanmugam; Soga, Tetsuo

    2017-08-01

    Organic photovoltaics (OPVs) fabricated using organic semiconductors and hybrid solar cells (HSCs) based on organic semiconductors/quantum dots (QDs) have been attracting significant attention owing to their potential use in low-cost solar energy-harvesting applications and flexible, light-weight, colorful, large-area devices. In this study, we observed and evaluated the surface of a photoelectric conversion layer (active layer) of the OPVs and HSCs based on phenyl-C61-butyric acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT), and zinc oxide (ZnO) nanoparticles. The experiment was performed using atomic force microscopy (AFM) combined with a frequency modulation detector (FM detector) and a contact potential difference (CPD) detection circuit. We experimentally confirmed the changes in film thickness and surface potential, as affected by the ZnO nanoparticle concentration. From the experimental results, we confirmed that ZnO nanoparticles possibly affect the structures of PCBM and P3HT. Also, we prepared an energy band diagram on the basis of the observation results, and analyzed the energy distribution inside the active layer.

  7. Medical applications of atomic force microscopy and Raman spectroscopy.

    Science.gov (United States)

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  8. Wide Stiffness Range Cavity Optomechanical Sensors for Atomic Force Microscopy

    CERN Document Server

    Liu, Yuxiang; Aksyuk, Vladimir; Srinivasan, Kartik

    2012-01-01

    We report on progress in developing compact sensors for atomic force microscopy (AFM), in which the mechanical transducer is integrated with near-field optical readout on a single chip. The motion of a nanoscale, doubly-clamped cantilever was transduced by an adjacent high quality factor silicon microdisk cavity. In particular, we show that displacement sensitivity on the order of 1 fm/(Hz)^(1/2) can be achieved while the cantilever stiffness is varied over four orders of magnitude (\\approx 0.01 N/m to \\approx 290 N/m). The ability to transduce both very soft and very stiff cantilevers extends the domain of applicability of this technique, potentially ranging from interrogation of microbiological samples (soft cantilevers) to imaging with high resolution (stiff cantilevers). Along with mechanical frequencies (> 250 kHz) that are much higher than those used in conventional AFM probes of similar stiffness, these results suggest that our cavity optomechanical sensors may have application in a wide variety of hig...

  9. An atomic force microscopy investigation of cyanophage structure.

    Science.gov (United States)

    Kuznetsov, Yurii G; Chang, Sheng-Chieh; Credaroli, Arielle; Martiny, Jennifer; McPherson, Alexander

    2012-12-01

    Marine viruses have only relatively recently come to the attention of molecular biologists, and the extraordinary diversity of potential host organisms suggests a new wealth of genetic and structural forms. A promising technology for characterizing and describing the viruses structurally is atomic force microscopy (AFM). We provide examples here of some of the different architectures and novel structural features that emerge from even a very limited investigation, one focused on cyanophages, viruses that infect cyanobacteria (blue-green algae). These were isolated by phage selection of viruses collected from California coastal waters. We present AFM images of tailed, spherical, filamentous, rod shaped viruses, and others of eccentric form. Among the tailed phages numerous myoviruses were observed, some having long tail fibers, some other none, and some having no visible baseplate. Syphoviruses and a podovirus were also seen. We also describe a unique structural features found on some tailed marine phages that appear to have no terrestrial homolog. These are long, 450 nm, complex helical tail fibers terminating in a unique pattern of 3+1 globular units made up of about 20 small proteins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Feasibility and limitation of track studies using atomic force microscopy

    CERN Document Server

    Nikezic, D; Yip, C W Y; Koo, V S Y; Yu, K N

    2002-01-01

    Atomic force microscopy (AFM) has been employed to investigate characteristics of tracks of heavy charged particles in solid state nuclear track detectors (SSNTDs). In the present work, we have performed simulations of the track structures revealed by AFM based only on geometrical considerations of the tracks and two types of probes (the ultralever and the ultrahigh aspect ration probe). The purpose of this work is to determine the limitations and constraints of the AFM technique when it is applied to track investigations. The ultralever has comparable dimensions as the tracks in SSNTDs etched for a short time. In some cases, the ultralever is too large or its geometry does not match those of the tracks, so these tracks cannot be scanned properly. In most cases, the ultralever can measure the diameter of the tracks with a rather high precision, but measurements of the depths can be misleading if the track depths are larger than the length of the ultralever. The ultrahigh aspect ratio probe, with an aspect rat...

  11. Conductive-probe atomic force microscopy characterization of silicon nanowire

    Directory of Open Access Journals (Sweden)

    Yu Linwei

    2011-01-01

    Full Text Available Abstract The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs were investigated using a conductive-probe atomic force microscopy (AFM. Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V. Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

  12. Novel fractal characteristic of atomic force microscopy images.

    Science.gov (United States)

    Starodubtseva, Maria N; Starodubtsev, Ivan E; Starodubtsev, Evgenii G

    2017-05-01

    Fractal dimension (DF) is one of the important parameters in the description of object's properties in different fields including biology and medicine. The present paper is focused on the application of the fractal dimension (the box counting dimension) in the analysis of the properties of cell surface on the base of its images obtained by atomic force microscopy (AFM). Fractal dimension of digital 3D AFM images depends on interpoint distances determined by the scanning step in the XY-plane and Z-scale factor t. We have studied the dependence of DF of AFM images on the Z-scale factor (DF=φ(t)) with purpose to reveal the features of the dependence and its usefulness in the analysis of the maps of surface properties. Using the model digital surfaces such as the plane, sinusoidal surfaces and "hilly" surface, we revealed that the sizes and spatial frequency of surface structural elements determined the basic features of the dependence (the parameters of peaks on the curve DF=φ(t)) and the element of chance in the localization of the structural elements on the surface had no significant influence on the dependence. Our findings demonstrate that the dependence of the fractal dimension on the Z-scale factor characterizes the structure of the AFM images more comprehensively than the roughness Ra and fractal dimension DF evaluated at a certain t. The dependence DF=φ(t) can be considered as a novel characteristic of AFM images. On analyzing the AFM images (lateral force maps) of glutaraldehyde-fixed adhered human fibroblasts and A549 human lung epithelial cells we found the significant difference in the dependences DF=φ(t) for different cell types that could be related to the difference of structural and mechanical surface properties of the studied cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy

    OpenAIRE

    Mi Li; Dan Dang; Lianqing Liu; Ning Xi; Yuechao Wang

    2017-01-01

    The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used ...

  14. Universal aspects of adhesion and atomic force microscopy

    Science.gov (United States)

    Banerjea, Amitava; Smith, John R.; Ferrante, John

    1990-01-01

    Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.

  15. Multiparametric Atomic Force Microscopy Imaging of Biomolecular and Cellular Systems.

    Science.gov (United States)

    Alsteens, David; Müller, Daniel J; Dufrêne, Yves F

    2017-04-18

    There is a need in biochemical research for new tools that can image and manipulate biomolecular and cellular systems at the nanoscale. During the past decades, there has been tremendous progress in developing atomic force microscopy (AFM) techniques to analyze biosystems, down to the single-molecule level. Force-distance (FD) curve-based AFM in particular has enabled researchers to map and quantify biophysical properties and biomolecular interactions on a wide variety of specimens. Despite its great potential, this AFM method has long been limited by its low spatial and temporal resolutions. Recently, novel FD-based multiparametric imaging modalities have been developed, allowing us to simultaneously image the structure, elasticity and interactions of biological samples at high spatiotemporal resolution. By oscillating the AFM tip, spatially resolved FD curves are obtained at much higher frequency than before, and as a result, samples are mapped at a speed similar to that of conventional topographic imaging. In this Account, we discuss the general principle of multiparametric AFM imaging and we provide a snapshot of recent studies showing how this new technology has been applied to biological specimens, from soluble proteins to membranes and cells. We emphasize novel methodologies that we recently developed, in which multiparametric imaging is combined with probes functionalized with chemical groups, ligands, or even live cells, in order to image and quantify receptor interaction forces and free-energy landscapes in a way not possible before. Key breakthroughs include observing the mechanical and chemical properties of single proteins in purple membranes, measuring the electrostatic potential of transmembrane pore forming proteins, structurally localizing chemical groups of water-soluble proteins, mapping and nanomechanical analysis of single sensors on yeast cells, imaging the sites of assembly and extrusion of single filamentous bacteriophages in living bacteria

  16. Algorithms for Reconstruction of Undersampled Atomic Force Microscopy Images Supplementary Material

    DEFF Research Database (Denmark)

    2017-01-01

    Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods.......Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods....

  17. Universal aspects of brittle fracture, adhesion, and atomic force microscopy

    Science.gov (United States)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1989-01-01

    This universal relation between binding energy and interatomic separation was originally discovered for adhesion at bimetallic interfaces involving the simple metals Al, Zn, Mg, and Na. It is shown here that the same universal relation extends to adhesion at transition-metal interfaces. Adhesive energies have been computed for the low-index interfaces of Al, Ni, Cu, Ag, Fe, and W, using the equivalent-crystal theory (ECT) and keeping the atoms in each semiinfinite slab fixed rigidly in their equilibrium positions. These adhesive energy curves can be scaled onto each other and onto the universal adhesion curve. The effect of tip shape on the adhesive forces in the atomic-force microscope (AFM) is studied by computing energies and forces using the ECT. While the details of the energy-distance and force-distance curves are sensitive to tip shape, all of these curves can be scaled onto the universal adhesion curve.

  18. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level.

    Science.gov (United States)

    Jiang, Wenge; Pan, Haihua; Cai, Yurong; Tao, Jinhui; Liu, Peng; Xu, Xurong; Tang, Ruikang

    2008-11-04

    An approach to organic-inorganic interfacial structure at the atomic level is a great challenge in the studies of biomineralization. We demonstrate that atomic force microscopy (AFM) is powerful tool to discover the biomineral interface in detail. By using a model system of (100) hydroxyapatite (HAP) face and citrate, it reveals experimentally that only a side carboxylate and a surface calcium ion are involved in the binding effect during the citrate adsorption, which is against the previous understandings by using Langmuir adsorption and computer simulation. Furthermore, the adsorbed citrate molecules can use their free carboxylate and hydroxyl groups to be self-assembled on the HAP surface. AFM examination also finds that the presence of citrate molecules on the HAP crystal faces can enhance the adhesion force of the HAP surface. We suggest that the established AFM method can be used for a precise and direct understanding of biointerfaces at the atomic level.

  19. Lens capsule structure assessed with atomic force microscopy

    Science.gov (United States)

    Sueiras, Vivian M.; Moy, Vincent T.

    2015-01-01

    Purpose To image the ultrastructure of the anterior lens capsule at the nanoscale level using atomic force microscopy (AFM). Methods Experiments were performed on anterior lens capsules maintained in their in situ location surrounding the lens from six human cadavers (donor age range: 44–88 years), four cynomolgus monkeys (Macaca fascicularis age range: 4.83–8.92 years), and seven pigs (<6 months). Hydration of all samples was maintained using Dulbecco’s Modified Eagle Medium (DMEM). Whole lenses were removed from the eye and placed anterior side up in agarose gel before gel hardening where only the posterior half of the lens was contained within the gel. After the gel hardened, the Petri dish was filled with DMEM until the point where the intact lens was fully submerged. AFM was used to image the anterior lens surface in contact mode. An integrated analysis program was used to calculate the interfibrillar spacing, fiber diameter, and surface roughness of the samples. Results The AFM images depict a highly ordered fibrous structure at the surface of the lens capsule in all three species. The interfibrillar spacing for the porcine, cynomolgus monkey, and human lens capsules was 0.68±0.25, 1.80±0.39, and 1.08±0.25 μm, respectively. In the primate, interfibrillar spacing significantly decreased linearly as a function of age. The fiber diameters ranged from 50 to 950 nm. Comparison of the root mean square (RMS) and average deviation demonstrate that the surface of the porcine lens capsule is the smoothest, and that the human and cynomolgus monkey capsules are significantly rougher. Conclusions AFM was successful in providing high-resolution images of the nanostructure of the lens capsule samples. Species-dependent differences were observed in the overall structure and surface roughness. PMID:25814829

  20. Fractal analysis of pharmaceutical particles by atomic force microscopy.

    Science.gov (United States)

    Li, T; Park, K

    1998-08-01

    Reliable methods are needed to characterize the surface roughness of pharmaceutical solid particles for quality control and for finding the correlations with other properties. In this study, we used fractal analysis to describe the surface roughness. Atomic force microscopy (AFM) was used to obtain three-dimensional surface profiles. The variation method was used to calculate fractal dimensions. We have measured fractal dimensions of four granule samples, four powders, and two freeze-dried powders. A computer-program was written to implement the variation method. The implementation was verified using the model surfaces generated by fractional Brownian motion. The fractal dimensions of most particles and granules were between 2.1 and 2.2, and were independent of the scan size we measured. The freeze-dried samples, however showed wide variation in the values of fractal dimension, which were dependent on the scan size. As scan size increased, the fractal dimension also increased up to 2.5. Fractal analysis can be used to describe surface roughness of pharmaceutical particles. The variation method allows calculation of reliable fractal dimensions of surface profiles obtained by AFM. Careful analysis is required for the estimation of fractal dimension, since the estimates are dependent on the algorithm and the digitized model size (i.e., number of data points of the measured surface profile) used. The fractal dimension of pharmaceutical materials is also a function of the observation scale i.e., the scan size) used in the profile measurement. The multi-fractal features and the scale-dependency of fractal dimension result from the artificial processes controlling the surface morphology.

  1. Dimensional characterization of extracellular vesicles using atomic force microscopy

    Science.gov (United States)

    Sebaihi, N.; De Boeck, B.; Yuana, Y.; Nieuwland, R.; Pétry, J.

    2017-03-01

    Extracellular vesicles (EV) are small biological entities released from cells into body fluids. EV are recognized as mediators in intercellular communication and influence important physiological processes. It has been shown that the concentration and composition of EV in body fluids may differ from healthy subjects to patients suffering from particular disease. So, EV have gained a strong scientific and clinical interest as potential biomarkers for diagnosis and prognosis of disease. Due to their small size, accurate detection and characterization of EV remain challenging. The aim of the presented work is to propose a characterization method of erythrocyte-derived EV using atomic force microscopy (AFM). The vesicles are immobilized on anti-CD235a-modified mica and analyzed by AFM under buffer liquid and dry conditions. EV detected under both conditions show very similar sizes namely ~30 nm high and ~90 nm wide. The size of these vesicles remains stable over drying time as long as 7 d at room temperature. Since the detected vesicles are not spherical, EV are characterized by their height and diameter, and not only by the height as is usually done for spherical nanoparticles. In order to obtain an accurate measurement of EV diameters, the geometry of the AFM tip was evaluated to account for the lateral broadening artifact inherent to AFM measurements. To do so, spherical polystyrene (PS) nanobeads and EV were concomitantly deposited on the same mica substrate and simultaneously measured by AFM under dry conditions. By applying this procedure, direct calibration of the AFM tip could be performed together with EV characterization under identical experimental conditions minimizing external sources of uncertainty on the shape and size of the tip, thus allowing standardization of EV measurement.

  2. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz

    Science.gov (United States)

    Gratz, A. J.; Manne, S.; Hansma, P. K.

    1991-01-01

    The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.

  3. Correlative atomic force microscopy and localization-based super-resolution microscopy: revealing labelling and image reconstruction artefacts.

    Science.gov (United States)

    Monserrate, Aitor; Casado, Santiago; Flors, Cristina

    2014-03-17

    Hybrid microscopy: A correlative microscopy tool that combines in situ super-resolution fluorescence microscopy based on single-molecule localization and atomic force microscopy is presented. Direct comparison with high- resolution topography allows the authors to improve fluorescence labeling and image analysis in super-resolution imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    National Research Council Canada - National Science Library

    Spitzer-Sonnleitner, Birgit; Kempe, André; Lackner, Maximilian

    2016-01-01

      The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM...

  5. Contrast artifacts in tapping tip atomic force microscopy

    DEFF Research Database (Denmark)

    Kyhle, Anders; Sørensen, Alexis Hammer; Zandbergen, Julie Bjerring

    1998-01-01

    When recording images with an atomic force microscope using the resonant vibrating cantilever mode, surprising strange results are often achieved. Typical artifacts are strange contours, unexpected height shifts, and sudden changes of the apparent resolution in the acquired images. Such artifacts...

  6. Atomic force microscopy on domains in biological model membranes

    NARCIS (Netherlands)

    Rinia, H.A.

    2001-01-01

    This thesis describes the preparation and imaging of supported lipid bilayers, which can be regarded as biological modelmembranes, in the light of the formation of domains. The bilayers were prepared with either the Langmuir-Blodgett method, or with vesicle fusion. They were imaged with Atomic Force

  7. Observation of Individual Fluorine Atom from Highly Oriented Poly (tetrafluoroethylene) Films by Atomic Force Microscopy

    Science.gov (United States)

    Lee, Jonathan A.,; Paley, Mark S.

    1999-01-01

    Direct observation of the film thickness, molecular structure and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.70 A and 0.54 A respectively.

  8. Observation of Individual Fluorine Atoms from Highly Oriented Poly(Tetrafluoroethylene) Films by Atomic Force Microscopy

    Science.gov (United States)

    Lee, J. A.

    2000-01-01

    Direct observation of the film thickness, molecular structure, and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction-transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.7 and 0.54 A respectively.

  9. Comment on 'Field ion microscopy characterized tips in noncontact atomic force microscopy: Quantification of long-range force interactions'

    OpenAIRE

    Paul, William; Grütter, Peter

    2013-01-01

    A recent article by Falter et al. (Phys. Rev. B 87, 115412 (2013)) presents experimental results using field ion microscopy characterized tips in noncontact atomic force microscopy in order to characterize electrostatic and van der Waals long range forces. In the article, the tip radius was substantially underestimated at ~4.7 nm rather than ~8.1 nm due to subtleties in the application of the ring counting method. We point out where common errors in ring counting arise in order to benefit fut...

  10. Detection of Percolating Paths in PMMA/CB Segregated Network Composites Using Electrostatic Force Microscopy and Conductive Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, J. [Georgia Institute of Technology; Ou, R. [Georgia Institute of Technology; Gupta, S. [Georgia Institute of Technology; Parker, A. [Georgia Institute of Technology; Gerhardt, Dr. Rosario [Georgia Institute of Technology; Seal, Katyayani [ORNL; Kalinin, Sergei V [ORNL; Baddorf, Arthur P [ORNL

    2009-01-01

    Composite specimens possessing polyhedral segregated network microstructures require a very small amount of nanosize filler, <1 vol %, to reach percolation because percolation occurs by accumulation of the fillers along the edges of the deformed polymer matrix particles. In this paper, electrostatic force microscopy (EFM) and conductive atomic force microscopy (C-AFM) were used to confirm the location of the nanosize fillers and the corresponding percolating paths in polymethyl methacrylate/carbon black composites. The EFM and C-AFM images revealed that the polyhedral polymer particles were coated with filler, primarily on the edges as predicted by the geometric models provided.

  11. Use of atomic force microscopy and transmission electron microscopy for correlative studies of bacterial capsules.

    Science.gov (United States)

    Stukalov, Oleg; Korenevsky, Anton; Beveridge, Terry J; Dutcher, John R

    2008-09-01

    Bacteria can possess an outermost assembly of polysaccharide molecules, a capsule, which is attached to their cell wall. We have used two complementary, high-resolution microscopy techniques, atomic force microscopy (AFM) and transmission electron microscopy (TEM), to study bacterial capsules of four different gram-negative bacterial strains: Escherichia coli K30, Pseudomonas aeruginosa FRD1, Shewanella oneidensis MR-4, and Geobacter sulfurreducens PCA. TEM analysis of bacterial cells using different preparative techniques (whole-cell mounts, conventional embeddings, and freeze-substitution) revealed capsules for some but not all of the strains. In contrast, the use of AFM allowed the unambiguous identification of the presence of capsules on all strains used in the present study, including those that were shown by TEM to be not encapsulated. In addition, the use of AFM phase imaging allowed the visualization of the bacterial cell within the capsule, with a depth sensitivity that decreased with increasing tapping frequency.

  12. Indirect modulation of nonmagnetic probes for force modulation atomic force microscopy.

    Science.gov (United States)

    Li, Jie-Ren; Garno, Jayne C

    2009-02-15

    Frequency-dependent changes for phase and amplitude images are demonstrated with test platforms of organosilane ring patterns, using force modulation atomic force microscopy (FM-AFM) with an alternate instrument configuration. The imaging setup using indirect magnetic modulation (IMM) is based on indirect oscillation of soft, nonmagnetic cantilevers, with spring constants coating is not required to drive the periodic oscillation of the tip. The instrument configuration for IMM may not be practical for intermittent imaging modes, which often work best with stiff cantilevers. However, indirect actuation provides an effective approach for imaging with low force setpoints and is well-suited for dynamic AFM modes using continuous contact imaging.

  13. Effects of nonlinear forces on dynamic mode atomic force microscopy and spectroscopy.

    Science.gov (United States)

    Das, Soma; Sreeram, P A; Raychaudhuri, A K

    2007-06-01

    In this paper, we describe the effects of nonlinear tip-sample forces on dynamic mode atomic force microscopy and spectroscopy. The jumps and hysteresis observed in the vibration amplitude (A) versus tip-sample distance (h) curves have been traced to bistability in the resonance curve. A numerical analysis of the basic dynamic equation was used to explain the hysteresis in the experimental curve. It has been found that the location of the hysteresis in the A-h curve depends on the frequency of the forced oscillation relative to the natural frequency of the cantilever.

  14. Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces.

    Science.gov (United States)

    Lauritsen, J V; Reichling, M

    2010-07-07

    In the last two decades the atomic force microscope (AFM) has become the premier tool for topographical analysis of surface structures at the nanometre scale. In its ultimately sensitive implementation, namely dynamic scanning force microscopy (SFM) operated in the so-called non-contact mode (NC-AFM), this technique yields genuine atomic resolution and offers a unique tool for real space atomic-scale studies of surfaces, nanoparticles as well as thin films, single atoms and molecules on surfaces irrespective of the substrate being electrically conducting or non-conducting. Recent advances in NC-AFM have paved the way for groundbreaking atomic level insight into insulator surfaces, specifically in the most important field of metal oxides. NC-AFM imaging now strongly contributes to our understanding of the surface structure, chemical composition, defects, polarity and reactivity of metal oxide surfaces and related physical and chemical surface processes. Here we review the latest advancements in the field of NC-AFM applied to the fundamental atomic resolution studies of clean single crystal metal oxide surfaces with special focus on the representative materials Al(2)O(3)(0001), TiO(2)(110), ZnO(1000) and CeO(2)(111). © 2010 IOP Publishing Ltd

  15. Nanostructural analysis by atomic force microscopy followed by light microscopy on the same archival slide.

    Science.gov (United States)

    Wagner, Mathias; Kaehler, Dirk; Anhenn, Olaf; Betz, Thomas; Awad, Sally; Shamaa, Ali; Theegarten, Dirk; Linder, Roland

    2009-07-01

    Integrated information on ultrastructural surface texture and chemistry increasingly plays a role in the biomedical sciences. Light microscopy provides access to biochemical data by the application of dyes. Ultrastructural representation of the surface structure of tissues, cells, or macromolecules can be obtained by scanning electron microscopy (SEM). However, SEM often requires gold or coal coating of biological samples, which makes a combined examination by light microscopy and SEM difficult. Conventional histochemical staining methods are not easily applicable to biological material subsequent to such treatment. Atomic force microscopy (AFM) gives access to surface textures down to ultrastructural dimensions without previous coating of the sample. A combination of AFM with conventional histochemical staining protocols for light microscopy on a single slide is therefore presented. Unstained cores were examined using AFM (tapping mode) and subsequently stained histochemically. The images obtained by AFM were compared with the results of histochemistry. AFM technology did not interfere with any of the histochemical staining protocols. Ultrastructurally analyzed regions could be identified in light microscopy and histochemical properties of ultrastructurally determined regions could be seen. AFM-generated ultrastructural information with subsequent staining gives way to novel findings in the biomedical sciences. (c) 2009 Wiley-Liss, Inc.

  16. Stacking it up: Exploring the limits of ultra-high resolution atomic force microscopy

    NARCIS (Netherlands)

    van der Heijden, N.J.|info:eu-repo/dai/nl/369392205

    2017-01-01

    Atomic force microscopy (AFM) is a technique wherein an atomically sharp needle raster scans across a surface, detecting forces between it and the sample. In state-of-the-art AFM experiments the measured forces are typically on the order of pico-Newtons, and the lateral resolution is on the order of

  17. Observation of silicon carbide Schottky barrier diode under applied reverse bias using atomic force microscopy/Kelvin probe force microscopy/scanning capacitance force microscopy

    Science.gov (United States)

    Uruma, Takeshi; Satoh, Nobuo; Yamamoto, Hidekazu

    2017-08-01

    We have observed a commercial silicon-carbide Schottky barrier diode (SiC-SBD) using our novel analysis system, in which atomic force microscopy (AFM) is combined with both Kelvin probe force microscopy (KFM; for surface-potential measurement) and scanning capacitance force microscopy (SCFM; for differential-capacitance measurement). The results obtained for the SiC-SBD under an applied reverse bias indicate both the scan area in the sample and a peak value of the SCFM signal in the region where the existence of trapped electrons is deduced from the KFM analysis. Thus, our measurement system can be used to examine commercial power devices; however, novel polishing procedures are required in order to investigate the Schottky contact region.

  18. Application of atomic force microscopy measurements on cardiovascular cells.

    Science.gov (United States)

    Wu, Xin; Sun, Zhe; Meininger, Gerald A; Muthuchamy, Mariappan

    2012-01-01

    The atomic force microscope (AFM) is a state-of-the-art tool that can analyze and characterize samples on a scale from angstroms to 100 μm by physical interaction between AFM cantilever tip and sample surface. AFM imaging has been used incrementally over last decade in living cells in cardiovascular research. Beyond its high resolution 3D imaging, AFM allows the quantitative assessments on the structure and function of the underlying cytoskeleton and cell organelles, binding probability, adhesion forces, and micromechanical properties of the cell by "sensing" the cell surface with mechanical sharp cantilever tip. AFM measurements have enhanced our understanding of cell mechanics in normal physiological and pathological states.

  19. Atomic Force Microscopy Study of Conformational Change of Immobilized Calmodulin

    OpenAIRE

    Trajkovic, Sanja; Zhang, Xiaoning; Daunert, Sylvia; Cai, Yuguang

    2011-01-01

    Maintaining the biological functionality of immobilized proteins is the key to the success of numerous protein-based biomedical devices. To that end, we studied conformational change of calmodulin (CaM) immobilized on chemical patterns. 1-cysteine mutated calmodulin was immobilized on a mercapto-terminated surface through the cysteine-Hg-mercapto coupling. Utilizing Atomic Force Microscope (AFM), the average height of the immobilized calmodulin was determined to be 1.87 ± 0.19 nm. After incub...

  20. Atomic force microscopy probing in the measurement of cell mechanics

    OpenAIRE

    Kirmizis, Dimitrios

    2010-01-01

    Dimitrios Kirmizis, Stergios LogothetidisDepartment of Physics, Laboratory for Thin Films-Nanosystems and Nanometrology, Aristotle University, Thessaloniki, GreeceAbstract: Atomic force microscope (AFM) has been used incrementally over the last decade in cell biology. Beyond its usefulness in high resolution imaging, AFM also has unique capabilities for probing the viscoelastic properties of living cells in culture and, even more, mapping the spatial distribution of cell mechanical properties...

  1. Strength by Atomic Force Microscopy (A Kelly special issue)

    OpenAIRE

    Kendall, Kevin; Dhir, Aman; Yong, Chin

    2010-01-01

    Abstract Localised strength testing of materials is often carried out in the Atomic Force Microscope (AFM) as foreseen by Kelly in his book Strong Solids. It is known that contamination during AFM indentation experiments can strongly influence the observed strength, but a major problem is the theoretical interpretation of the results. Here we use molecular dynamics computer modelling to describe the contact of NaCl and MgO crystal probes onto surfaces, comparable to an AFM experime...

  2. Design of cantilever probes for Atomic Force Microscopy (AFM)

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2000-01-01

    A cantilever beam used in an Atomic Force Microscope is optimized with respect to two different objectives. The first goal is to maximize the first eigenfrequency while keeping the stiffness of the probe constant. The second goal is to maximize the tip angle of the first eigenmode while again kee...... beam finite elements and the optimizations are carried through with either SLP (Sequential Linear Programming) or MMA (Method of Moving Asymptotes) and similar results are obtained....

  3. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  4. Atomic force microscopy analysis of enamel nanotopography after interproximal reduction.

    Science.gov (United States)

    Meredith, Lydia; Farella, Mauro; Lowrey, Sam; Cannon, Richard D; Mei, Li

    2017-04-01

    Interproximal reduction (IPR) removes enamel and leaves grooves and furrows on the tooth surface, which may increase the risk of caries. The aims of this study were to assess the nanotopography of enamel surfaces produced by the most commonly used IPR instruments and to evaluate the effect of polishing after IPR. Enamel slabs were cut from the interproximal surfaces of healthy premolars and then treated with diamond burs, strips, or discs, or Sof-Lex polishing discs (3M ESPE, St Paul, Minn). All samples were cleaned by sonication in distilled water. The control group had no IPR performed and was subjected only to cleaning by sonication. The enamel surfaces were assessed using atomic force microscopy. The IPR instruments all produced surfaces rougher than the control sample; however, the samples that received polishing with Sof-Lex discs after enamel reduction were smoother than untreated enamel (P <0.05 for all comparisons). The larger grit medium diamond burs and medium strips generated rougher enamel surfaces than their smaller grit counterparts: fine diamond burs and fine strips (P <0.001). The difference in roughness generated by mesh and curved disks was not statistically significant (P = 0.122), nor was the difference caused by fine strips and mesh discs (P = 0.811) or by fine strips and curved discs (P = 0.076) (surface roughness values for medium bur, 702 ± 134 nm; medium strip, 501 ± 115 nm; mesh disc, 307 ± 107 nm; fine bur, 407 ± 95 nm; fine strip, 318 ± 50 nm; curved disc, 224 ± 65 nm). The smoothest surfaces were created by use of the entire series of Sof-Lex polishing discs after the enamel reduction (surface roughness, 37 ± 14 nm), and these surfaces were significantly smoother than the control surfaces (surface roughness, 149 ± 39 nm; P = 0.017). Different IPR instruments produced enamel surfaces with varied nanotopography and different degrees of roughness. Enamel surfaces treated with diamond-coated burs

  5. Capillary force between wetted nanometric contacts and its application to atomic force microscopy.

    Science.gov (United States)

    Crassous, Jérôme; Ciccotti, Matteo; Charlaix, Elisabeth

    2011-04-05

    We extend to the case of perfect wetting the exact calculation of Orr et al. (J. Fluid. Mech. 1975, 67, 723) for a pendular ring connecting two dry surfaces. We derive an approximate analytical expression for the capillary force between two highly curved surfaces covered by a wetting liquid film. The domain of validity of this expression is assessed and extended by a custom-made numerical simulation based on the full exact mathematical description. In the case of attractive liquid-solid van der Waals interactions, the capillary force increases monotonically with decreasing vapor pressure up to several times its saturation value. This accurate description of the capillary force makes it possible to estimate the adhesion force between wet nanoparticles; it can also be used to quantitatively interpret pull-off forces measured by atomic force microscopy.

  6. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.

    Science.gov (United States)

    Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T

    2015-03-13

    Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.

  7. Simultaneous Scanning Ion Conductance Microscopy and Atomic Force Microscopy with Microchanneled Cantilevers.

    Science.gov (United States)

    Ossola, Dario; Dorwling-Carter, Livie; Dermutz, Harald; Behr, Pascal; Vörös, János; Zambelli, Tomaso

    2015-12-04

    We combined scanning ion conductance microscopy (SICM) and atomic force microscopy (AFM) into a single tool using AFM cantilevers with an embedded microchannel flowing into the nanosized aperture at the apex of the hollow pyramid. An electrode was positioned in the AFM fluidic circuit connected to a second electrode in the bath. We could thus simultaneously measure the ionic current and the cantilever bending (in optical beam deflection mode). First, we quantitatively compared the SICM and AFM contact points on the approach curves. Second, we estimated where the probe in SICM mode touches the sample during scanning on a calibration grid and applied the finding to image a network of neurites on a Petri dish. Finally, we assessed the feasibility of a double controller using both the ionic current and the deflection as input signals of the piezofeedback. The experimental data were rationalized in the framework of finite elements simulations.

  8. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    Science.gov (United States)

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  9. Plastic-to-Elastic Transition in Aggregated Emulsion Networks, Studied with Atomic Force Microscopy-Confocal Scanning Laser Microscopy Microrheology

    NARCIS (Netherlands)

    Filip, D.; Duits, Michael H.G.; Uricanu, V.I.; Mellema, J.

    2006-01-01

    In this paper, we demonstrate how the simultaneous application of atomic force microscopy (AFM) and confocal scanning laser microscopy (CSLM) can be used to characterize the (local) rheological properties of soft condensed matter at micrometer length scales. Measurement of AFM force curves as a

  10. Ambient atomic resolution atomic force microscopy with qPlus sensors: Part 1.

    Science.gov (United States)

    Wastl, Daniel S

    2017-01-01

    Atomic force microscopy (AFM) is an enormous tool to observe nature in highest resolution and understand fundamental processes like friction and tribology on the nanoscale. Atomic resolution in highest quality was possible only in well-controlled environments like ultrahigh vacuum (UHV) or controlled buffer environments (liquid conditions) and more specified for long-term high-resolution analysis at low temperatures (∼4 K) in UHV where drift is nearly completely absent. Atomic resolution in these environments is possible and is widely used. However, in uncontrolled environments like air, with all its pollutants and aerosols, unspecified thin liquid films as thin as a single molecular water-layer of 200 pm or thicker condensation films with thicknesses up to hundred nanometer, have been a problem for highest resolution since the invention of the AFM. The goal of true atomic resolution on hydrophilic as well as hydrophobic samples was reached recently. In this manuscript we want to review the concept of ambient AFM with atomic resolution. The reader will be introduced to the phenomenology in ambient conditions and the problems will be explained and analyzed while a method for scan parameter optimization will be explained. Recently developed concepts and techniques how to reach atomic resolution in air and ultra-thin liquid films will be shown and explained in detail, using several examples. Microsc. Res. Tech. 80:50-65, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy.

    Science.gov (United States)

    Welker, Joachim; Illek, Esther; Giessibl, Franz J

    2012-01-01

    In frequency-modulation atomic force microscopy the direct observable is the frequency shift of an oscillating cantilever in a force field. This frequency shift is not a direct measure of the actual force, and thus, to obtain the force, deconvolution methods are necessary. Two prominent methods proposed by Sader and Jarvis (Sader-Jarvis method) and Giessibl (matrix method) are investigated with respect to the deconvolution quality. Both methods show a nontrivial dependence of the deconvolution quality on the oscillation amplitude. The matrix method exhibits spikelike features originating from a numerical artifact. By interpolation of the data, the spikelike features can be circumvented. The Sader-Jarvis method has a continuous amplitude dependence showing two minima and one maximum, which is an inherent property of the deconvolution algorithm. The optimal deconvolution depends on the ratio of the amplitude and the characteristic decay length of the force for the Sader-Jarvis method. However, the matrix method generally provides the higher deconvolution quality.

  12. Liquid Atomic Force Microscopy: Solvation Forces, Molecular Order, and Squeeze-Out

    Science.gov (United States)

    O'Shea, Sean J.; Gosvami, Nitya N.; Lim, Leonard T. W.; Hofbauer, Wulf

    2010-08-01

    We review the use of atomic force microscopy (AFM) in liquids to measure oscillatory solvation forces. We find solvation layering can occur for all the liquids studied (linear and branched alkanes) but marked variations in the force and dissipation may arise dependent on: a) the temperature, b) the tip shape/radius of curvature, and c) the degree of molecular branching. Several findings (e.g., the strong temperature dependence in measured solvation forces, solvation oscillations using branched molecules) differ from those observed using the Surface Force Apparatus, because of the nanoscale area probed by AFM. Conduction AFM is used to explore how liquid is squeezed out of the tip-sample gap, and enables the change in contact area of the tip-sample junction to be monitored and compared to mechanical models. We find elastic models provide a good description of the deformation of ordered, solid-like solvation layers but not disordered, liquid-like layers.

  13. Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy

    Science.gov (United States)

    Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro

    2017-07-01

    Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.

  14. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies.

    Science.gov (United States)

    Cazaux, Séverine; Sadoun, Anaïs; Biarnes-Pelicot, Martine; Martinez, Manuel; Obeid, Sameh; Bongrand, Pierre; Limozin, Laurent; Puech, Pierre-Henri

    2016-01-01

    A method is presented for combining atomic force microscopy (AFM) force mode and fluorescence microscopy in order to (a) mechanically stimulate immune cells while recording the subsequent activation under the form of calcium pulses, and (b) observe the mechanical response of a cell upon photoactivation of a small G protein, namely Rac. Using commercial set-ups and a robust signal coupling the fluorescence excitation light and the cantilever bending, the applied force and activation signals were very easily synchronized. This approach allows to control the entire mechanical history of a single cell up to its activation and response down to a few hundreds of milliseconds, and can be extended with very minimal adaptations to other cellular systems where mechanotransduction is studied, using either purely mechanical stimuli or via a surface bound specific ligand. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Understanding the Atomic-Scale Contrast in Kelvin Probe Force Microscopy

    OpenAIRE

    Nony, Laurent; Foster, Adam; Bocquet, Franck; Loppacher, Christian

    2009-01-01

    A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a noncontact atomic force microscope simulator including a Kelvin module. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and contact potential difference contrasts were reported. The local...

  16. Measuring the charge state of an adatom with noncontact atomic force microscopy

    NARCIS (Netherlands)

    Gross, L.; Mohn, F.; Liljeroth, P.|info:eu-repo/dai/nl/314007423; Repp, J.; Meyer, G.; Giessibl, F.J.

    2009-01-01

    Charge states of atoms can be investigated with scanning tunneling microscopy, but this method requires a conducting substrate. We investigated the charge-switching of individual adsorbed gold and silver atoms (adatoms) on ultrathin NaCl films on Cu(111) using a qPlus tuning fork atomic force

  17. Imaging stability in force-feedback high-speed atomic force microscopy.

    Science.gov (United States)

    Kim, Byung I; Boehm, Ryan D

    2013-02-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force-distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers

    Science.gov (United States)

    Unsay, Joseph D.; Cosentino, Katia; García-Sáez, Ana J.

    2015-01-01

    Atomic force microscopy (AFM) is a versatile, high-resolution imaging technique that allows visualization of biological membranes. It has sufficient magnification to examine membrane substructures and even individual molecules. AFM can act as a force probe to measure interactions and mechanical properties of membranes. Supported lipid bilayers are conventionally used as membrane models in AFM studies. In this protocol, we demonstrate how to prepare supported bilayers and characterize their structure and mechanical properties using AFM. These include bilayer thickness and breakthrough force. The information provided by AFM imaging and force spectroscopy help define mechanical and chemical properties of membranes. These properties play an important role in cellular processes such as maintaining cell hemostasis from environmental stress, bringing membrane proteins together, and stabilizing protein complexes. PMID:26273958

  19. The Effects of Orthophosphate in Drinking Water on the Initial Copper Corrosion Using Atomic Force Microscopy

    Science.gov (United States)

    Corroding of copper piping used in household drinking water plumbing may potentially impacts consumer’s health and economics. Copper corrosion studies conducted on newly corroding material with atomic force microscopy (AFM) may be particularly useful in understanding the impact ...

  20. Investigation of surface of photopolymer composite materials for dental application using atomic force microscopy

    OpenAIRE

    Zenon, Hotra; Makeev, Valentyn; Mykyevych, Nataliya; Voznyak, Lesya

    2012-01-01

    Surface microstructures of photopolymer composite materials Filtek Z250, Charisma, Dipol for dental application were investigated by using atomic force microscopy. It was shown that dental inlay Charisma characterized by the smoothest surface and small spread of the height distribution.

  1. An atomic force microscopy study of the interactions between indolicidin and supported planar bilayers

    DEFF Research Database (Denmark)

    Askou, Hans Jakob; Jakobsen, Rasmus Neergaard; Fojan, Peter

    2008-01-01

    Indolicidin, a tryptophane-rich antimicrobial peptide , was used to investigate the interactions with a zwitterionic phosphatidylcholine as a model membrane system. In situ atomic force microscopy in liquid medium and phosphatidylcholine supported planar bilayers enabled the study...

  2. Probing Single Membrane Proteins by Atomic Force Microscopy

    Science.gov (United States)

    Scheuring, S.; Sapra, K. Tanuj; Müller, Daniel J.

    In this book chapter, we describe the working principle of the atomic force microscope (AFM), followed by the applications of AFM in high-resolution imaging and single-molecule force spectroscopy of membrane proteins. In the imaging mode, AFM allows observing the assembly of membrane proteins directly in native membranes approaching a resolution of ~0.5 nm with an outstanding signal-to-noise ratio. Conformational deviations of individual membrane proteins can be observed and their functional states directly imaged. Time-lapse AFM can image membrane proteins at work. In conjunction with high- resolution imaging, the use of the AFM as a single-molecule force spectroscope (SMFS) has gained tremendous importance in recent years. This combination allows to locate the inter- and intramolecular interactions of single membrane proteins. SMFS allows characterization of interactions that guide the folding of proteins and describe the parameters that lead to their destabilization, malfunction and misfolding. Moreover, it enables to measure the interactions established by ligand- and inhibitor-binding and in membrane protein assemblies. Because of its practical use in characterizing various parameters of membrane proteins in their native environment, AFM can be aptly described as a `lab on a tip' device.

  3. Calculation of Intracellular Pressure of Red Blood Cells at Jaundice According to Atomic Force Microscopy Data

    OpenAIRE

    Yu.S. Nagornov; I.V. Zhilyaev

    2016-01-01

    The present work is devoted to the analysis of three-dimensional data of atomic force microscopy for research of the morphology of red blood cells. In this paper we built a biomechanical model of the erythrocyte, which allowed calculating the intracellular pressure of erythrocyte based on data of atomic force microscopy. As a result, we obtained the dependence intracellular pressure on the morphology of red blood cell. We have proposed a method of estimating of intracellular pressure of eryth...

  4. The Applications of Atomic Force Microscopy to Vision Science

    Science.gov (United States)

    Last, Julie A.; Russell, Paul; Nealey, Paul F.

    2010-01-01

    The atomic force microscope (AFM) is widely used in materials science and has found many applications in biological sciences but has been limited in use in vision science. The AFM can be used to image the topography of soft biological materials in their native environments. It can also be used to probe the mechanical properties of cells and extracellular matrices, including their intrinsic elastic modulus and receptor-ligand interactions. In this review, the operation of the AFM is described along with a review of how it has been thus far used in vision science. It is hoped that this review will serve to stimulate vision scientists to consider incorporating AFM as part of their research toolkit. PMID:21123767

  5. Exploiting cantilever curvature for noise reduction in atomic force microscopy.

    Science.gov (United States)

    Labuda, Aleksander; Grütter, Peter H

    2011-01-01

    Optical beam deflection is a widely used method for detecting the deflection of atomic force microscope (AFM) cantilevers. This paper presents a first order derivation for the angular detection noise density which determines the lower limit for deflection sensing. Surprisingly, the cantilever radius of curvature, commonly not considered, plays a crucial role and can be exploited to decrease angular detection noise. We demonstrate a reduction in angular detection shot noise of more than an order of magnitude on a home-built AFM with a commercial 450 μm long cantilever by exploiting the optical properties of the cantilever curvature caused by the reflective gold coating. Lastly, we demonstrate how cantilever curvature can be responsible for up to 45% of the variability in the measured sensitivity of cantilevers on commercially available AFMs.

  6. Significant improvements in stability and reproducibility of atomic-scale atomic force microscopy in liquid.

    Science.gov (United States)

    Akrami, S M R; Nakayachi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T

    2014-11-14

    Recent advancement of dynamic-mode atomic force microscopy (AFM) for liquid-environment applications enabled atomic-scale studies on various interfacial phenomena. However, instabilities and poor reproducibility of the measurements often prevent systematic studies. To solve this problem, we have investigated the effect of various tip treatment methods for atomic-scale imaging and force measurements in liquid. The tested methods include Si coating, Ar plasma, Ar sputtering and UV/O₃ cleaning. We found that all the methods provide significant improvements in both the imaging and force measurements in spite of the tip transfer through the air. Among the methods, we found that the Si coating provides the best stability and reproducibility in the measurements. To understand the origin of the fouling resistance of the cleaned tip surface and the difference between the cleaning methods, we have investigated the tip surface properties by x-ray photoelectron spectroscopy and contact angle measurements. The results show that the contaminations adsorbed on the tip during the tip transfer through the air should desorb from the surface when it is immersed in aqueous solution due to the enhanced hydrophilicity by the tip treatments. The tip surface prepared by the Si coating is oxidized when it is immersed in aqueous solution. This creates local spots where stable hydration structures are formed. For the other methods, there is no active mechanism to create such local hydration sites. Thus, the hydration structure formed under the tip apex is not necessarily stable. These results reveal the desirable tip properties for atomic-scale AFM measurements in liquid, which should serve as a guideline for further improvements of the tip treatment methods.

  7. Atomic force microscopy with sub-picoNewton force stability for biological applications

    Science.gov (United States)

    Sullan, Ruby May A.; Churnside, Allison B.; Nguyen, Duc M.; Bull, Matthew S.; Perkins, Thomas T.

    2013-01-01

    Atomic force microscopy (AFM) is widely used in the biological sciences. Despite 25 years of technical developments, two popular modes of bioAFM, imaging and single molecule force spectroscopy, remain hindered by relatively poor force precision and stability. Recently, we achieved both sub-pN force precision and stability under biologically useful conditions (in liquid at room temperature). Importantly, this sub-pN level of performance is routinely accessible using a commercial cantilever on a commercial instrument. The two critical results are that (i) force precision and stability were limited by the gold coating on the cantilevers, and (ii) smaller yet stiffer cantilevers did not lead to better force precision on time scales longer than 25 ms. These new findings complement our previous work that addressed tip-sample stability. In this review, we detail the methods needed to achieve this sub-pN force stability and demonstrate improvements in force spectroscopy and imaging when using uncoated cantilevers. With this improved cantilever performance, the widespread use of nonspecific biomolecular attachments becomes a limiting factor in high-precision studies. Thus, we conclude by briefly reviewing site-specific covalent-immobilization protocols for linking a biomolecule to the substrate and to the AFM tip. PMID:23562681

  8. Atomic force microscopy with sub-picoNewton force stability for biological applications.

    Science.gov (United States)

    Sullan, Ruby May A; Churnside, Allison B; Nguyen, Duc M; Bull, Matthew S; Perkins, Thomas T

    2013-04-01

    Atomic force microscopy (AFM) is widely used in the biological sciences. Despite 25 years of technical developments, two popular modes of bioAFM, imaging and single molecule force spectroscopy, remain hindered by relatively poor force precision and stability. Recently, we achieved both sub-pN force precision and stability under biologically useful conditions (in liquid at room temperature). Importantly, this sub-pN level of performance is routinely accessible using a commercial cantilever on a commercial instrument. The two critical results are that (i) force precision and stability were limited by the gold coating on the cantilevers, and (ii) smaller yet stiffer cantilevers did not lead to better force precision on time scales longer than 25 ms. These new findings complement our previous work that addressed tip-sample stability. In this review, we detail the methods needed to achieve this sub-pN force stability and demonstrate improvements in force spectroscopy and imaging when using uncoated cantilevers. With this improved cantilever performance, the widespread use of nonspecific biomolecular attachments becomes a limiting factor in high-precision studies. Thus, we conclude by briefly reviewing site-specific covalent-immobilization protocols for linking a biomolecule to the substrate and to the AFM tip. Published by Elsevier Inc.

  9. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies

    Energy Technology Data Exchange (ETDEWEB)

    Cazaux, Séverine; Sadoun, Anaïs; Biarnes-Pelicot, Martine; Martinez, Manuel; Obeid, Sameh [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); Bongrand, Pierre [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); APHM, Hôpital de la Conception, Laboratoire d’Immunologie, Marseille F-13385 (France); Limozin, Laurent [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France); Puech, Pierre-Henri, E-mail: pierre-henri.puech@inserm.fr [Aix Marseille Université, LAI UM 61, Marseille F-13288 (France); Inserm, UMR-S 1067, Marseille F-13288 (France); CNRS, UMR 7333, Marseille F-13288 (France)

    2016-01-15

    A method is presented for combining atomic force microscopy (AFM) force mode and fluorescence microscopy in order to (a) mechanically stimulate immune cells while recording the subsequent activation under the form of calcium pulses, and (b) observe the mechanical response of a cell upon photoactivation of a small G protein, namely Rac. Using commercial set-ups and a robust signal coupling the fluorescence excitation light and the cantilever bending, the applied force and activation signals were very easily synchronized. This approach allows to control the entire mechanical history of a single cell up to its activation and response down to a few hundreds of milliseconds, and can be extended with very minimal adaptations to other cellular systems where mechanotransduction is studied, using either purely mechanical stimuli or via a surface bound specific ligand. - Highlights: • A signal coupling AFM and fluorescence microscopy was characterized for soft cantilevers. • It can be used as an intrinsic timer to synchronize images and forces. • Mechanical stimulation of single immune cells while recording calcium fluxes was detailed. • Light-induced mechanical modifications of lymphocytes using a PA-Rac protein were demonstrated. • The precautions and limitations of use of this effect were presented.

  10. Brown algal morphogenesis: Atomic Force Microscopy as a tool to study the role of mechanical forces

    Directory of Open Access Journals (Sweden)

    Benoit eTesson

    2014-09-01

    Full Text Available Over the last few years, a growing interest has been directed toward the use of macroalgae as a source of energy, food and molecules for the cosmetic and pharmaceutical industries. Besides this, macroalgal development remains poorly understood compared to other multicellular organisms. Brown algae (Phaeophyceae form a monophyletic lineage of usually large multicellular algae which evolved independently from land plants. In their environment, they are subjected to strong mechanical forces (current, waves and tide, in response to which they modify rapidly and reversibly their morphology. Because of their specific cellular features (cell wall composition, cytoskeleton organization, deciphering how they cope with these forces might help discover new control mechanisms of cell wall softening and cellulose synthesis. Despite the current scarcity in knowledge on brown algal cell wall dynamics and protein composition, we will illustrate, in the light of methods adapted to Ectocarpus siliculosus, to what extent atomic force microscopy can contribute to advance this field of investigation.

  11. Surface properties and interaction forces of biopolymer-doped conductive polypyrrole surfaces by atomic force microscopy.

    Science.gov (United States)

    Pelto, Jani M; Haimi, Suvi P; Siljander, Aliisa S; Miettinen, Susanna S; Tappura, Kirsi M; Higgins, Michael J; Wallace, Gordon G

    2013-05-21

    Surface properties and electrical charges are critical factors elucidating cell interactions on biomaterial surfaces. The surface potential distribution and the nanoscopic and microscopic surface elasticity of organic polypyrrole-hyaluronic acid (PPy-HA) were studied by atomic force microscopy (AFM) in a fluid environment in order to explain the observed enhancement in the attachment of human adipose stem cells on positively charged PPy-HA films. The electrostatic force between the AFM tip and a charged PPy-HA surface, the tip-sample adhesion force, and elastic moduli were estimated from the AFM force curves, and the data were fitted to electrostatic double-layer and elastic contact models. The surface potential of the charged and dried PPy-HA films was assessed with Kelvin probe force microscopy (KPFM), and the KPFM data were correlated to the fluid AFM data. The surface charge distribution and elasticity were both found to correlate well with the nodular morphology of PPy-HA and to be sensitive to the electrochemical charging conditions. Furthermore, a significant change in the adhesion was detected when the surface was electrochemically charged positive. The results highlight the potential of positively charged PPy-HA as a coating material to enhance the stem cell response in tissue-engineering scaffolds.

  12. Imaging and measuring the molecular force of lymphoma pathological cells using atomic force microscopy.

    Science.gov (United States)

    Li, Mi; Xiao, Xiubin; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Dong, Zaili; Zhang, Weijing

    2013-01-01

    Atomic force microscopy (AFM) provides a new technology to visualize the cellular topography and quantify the molecular interactions at nanometer spatial resolution. In this work, AFM was used to image the cellular topography and measure the molecular force of pathological cells from B-cell lymphoma patients. After the fluorescence staining, cancer cells were recognized by their special morphological features and then the detailed topography was visualized by AFM imaging. The AFM images showed that cancer cells were much rougher than healthy cells. CD20 is a surface marker of B cells and rituximab is a monoclonal antibody against CD20. To measure the CD20-rituximab interaction forces, the polyethylene glycol (PEG) linker was used to link rituximab onto the AFM tip and the verification experiments of the functionalized probe indicated that rituximab molecules were successfully linked onto the AFM tip. The CD20-rituximab interaction forces were measured on about 20 pathological cells and the force measurement results indicated the CD20-rituximab binding forces were mainly in the range of 110-120 pN and 130-140 pN. These results can improve our understanding of the topography and molecular force of lymphoma pathological cells. © Wiley Periodicals, Inc.

  13. Interactive forces between lignin and cellulase as determined by atomic force microscopy

    Science.gov (United States)

    2014-01-01

    Background Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups involved in binding of cellulase to lignin. Results Trichoderma reesei, ATCC 26921, a commercial cellulase system, was immobilized onto silicon wafers and used as a substrate to measure forces involved in cellulase non-productive binding to lignin. Attraction forces between cellulase and lignin, and between cellulase and cellulose were compared using kraft lignin- and hydroxypropyl cellulose-coated tips with the immobilized cellulase substrate. The measured adhesion forces between kraft lignin and cellulase were on average 45% higher than forces between hydroxypropyl cellulose and cellulase. Specialized AFM tips with hydrophobic, -OH, and -COOH chemical characteristics were used with immobilized cellulase to represent hydrophobic, H-bonding, and charge-charge interactions, respectively. Forces between hydrophobic tips and cellulase were on average 43% and 13% higher than forces between cellulase with tips exhibiting OH and COOH groups, respectively. A strong attractive force during the AFM tip approach to the immobilized cellulase was observed with the hydrophobic tip. Conclusions This work shows that there is a greater overall attraction between kraft lignin and cellulase than between hydroxypropyl cellulose and cellulase, which may have implications during the enzymatic reaction process. Furthermore, hydrophobic interactions appear to be the dominating attraction force in cellulase binding to lignin, while a number of other interactions may establish the irreversible binding

  14. Interactive forces between lignin and cellulase as determined by atomic force microscopy.

    Science.gov (United States)

    Qin, Chengrong; Clarke, Kimberley; Li, Kecheng

    2014-01-01

    Lignin is a complex polymer which inhibits the enzymatic conversion of cellulose to glucose in lignocellulose biomass for biofuel production. Cellulase enzymes irreversibly bind to lignin, deactivating the enzyme and lowering the overall activity of the hydrolyzing reaction solution. Within this study, atomic force microscopy (AFM) is used to compare the adhesion forces between cellulase and lignin with the forces between cellulase and cellulose, and to study the moiety groups involved in binding of cellulase to lignin. Trichoderma reesei, ATCC 26921, a commercial cellulase system, was immobilized onto silicon wafers and used as a substrate to measure forces involved in cellulase non-productive binding to lignin. Attraction forces between cellulase and lignin, and between cellulase and cellulose were compared using kraft lignin- and hydroxypropyl cellulose-coated tips with the immobilized cellulase substrate. The measured adhesion forces between kraft lignin and cellulase were on average 45% higher than forces between hydroxypropyl cellulose and cellulase. Specialized AFM tips with hydrophobic, -OH, and -COOH chemical characteristics were used with immobilized cellulase to represent hydrophobic, H-bonding, and charge-charge interactions, respectively. Forces between hydrophobic tips and cellulase were on average 43% and 13% higher than forces between cellulase with tips exhibiting OH and COOH groups, respectively. A strong attractive force during the AFM tip approach to the immobilized cellulase was observed with the hydrophobic tip. This work shows that there is a greater overall attraction between kraft lignin and cellulase than between hydroxypropyl cellulose and cellulase, which may have implications during the enzymatic reaction process. Furthermore, hydrophobic interactions appear to be the dominating attraction force in cellulase binding to lignin, while a number of other interactions may establish the irreversible binding.

  15. Atomic Force Microscopy Study of Conformational Change of Immobilized Calmodulin

    Science.gov (United States)

    Trajkovic, Sanja; Zhang, Xiaoning; Daunert, Sylvia

    2011-01-01

    Maintaining the biological functionality of immobilized proteins is the key to the success of numerous protein-based biomedical devices. To that end, we studied conformational change of calmodulin (CaM) immobilized on chemical patterns. 1-cysteine mutated calmodulin was immobilized on a mercapto-terminated surface through the cysteine-Hg-mercapto coupling. Utilizing Atomic Force Microscope (AFM), the average height of the immobilized calmodulin was determined to be 1.87 ± 0.19 nm. After incubation in EGTA solution, the average height of protein changed to 2.26 ± 0.21 nm, indicating conformational change of CaM to Apo-CaM. The immobilized CaM also demonstrated conformational change upon the reaction with known calmodulin antagonist chlorpromazine (CPZ). After incubation in CPZ solution, the average height of CPZ-bound CaM increased to 2.32 ± 0.20 nm, demonstrating the immobilized CaM still has the similar response as in bulk solution. These results show that immobilization of calmodulin on a solid support does not interfere with the ability of the protein to bind calcium and calmodulin antagonists. Our results demonstrate the feasibility of employing AFM to probe and understand protein conformational changes. PMID:21766850

  16. Spectral analysis of irregular roughness artifacts measured by atomic force microscopy and laser scanning microscopy.

    Science.gov (United States)

    Chen, Yuhang; Luo, Tingting; Ma, Chengfu; Huang, Wenhao; Gao, Sitian

    2014-12-01

    Atomic force microscopy (AFM) and laser scanning microscopy (LSM) measurements on a series of specially designed roughness artifacts were performed and the results characterized by spectral analysis. As demonstrated by comparisons, both AFM and LSM can image the complex structures with high resolution and fidelity. When the surface autocorrelation length increases from 200 to 500 nm, the cumulative power spectral density spectra of the design, AFM and LSM data reach a better agreement with each other. The critical wavelength of AFM characterization is smaller than that of LSM, and the gap between the measured and designed critical wavelengths is reduced with an increase in the surface autocorrelation length. Topography measurements of surfaces with a near zero or negatively skewed height distribution were determined to be accurate. However, obvious discrepancies were found for surfaces with a positive skewness owing to more severe dilations of either the solid tip of the AFM or the laser tip of the LSM. Further surface parameter evaluation and template matching analysis verified that the main distortions in AFM measurements are tip dilations while those in LSM are generally larger and more complex.

  17. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality.

    Science.gov (United States)

    Carvalho, Filomena A; Martins, Ivo C; Santos, Nuno C

    2013-03-01

    Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    Science.gov (United States)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under

  19. Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy.

    Science.gov (United States)

    Gan, Tiansheng; Gong, Xiangjun; Schönherr, Holger; Zhang, Guangzhao

    2016-12-01

    Microrheology of growing biofilms provides insightful information about its structural evolution and properties. In this study, the authors have investigated the microrheology of Escherichia coli (strain HCB1) biofilms at different indentation depth (δ) by using magnetic force modulation atomic force microscopy as a function of disturbing frequency (f). As δ increases, the dynamic stiffness (ks) for the biofilms in the early stage significantly increases. However, it levels off when the biofilms are matured. The facts indicate that the biofilms change from inhomogeneous to homogeneous in structure. Moreover, ks is scaled to f, which coincides with the rheology of soft glasses. The exponent increases with the incubation time, indicating the fluidization of biofilms. In contrast, the upper layer of the matured biofilms is solidlike in that the storage modulus is always larger than the loss modulus, and its viscoelasticity is slightly influenced by the shear stress.

  20. Autopilot for frequency-modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il [Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2015-10-15

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  1. Autopilot for frequency-modulation atomic force microscopy

    Science.gov (United States)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  2. Atomic force microscopy and scanning electron microscopy analysis of daily disposable limbal ring contact lenses.

    Science.gov (United States)

    Lorenz, Kathrine Osborn; Kakkassery, Joseph; Boree, Danielle; Pinto, David

    2014-09-01

    Limbal ring (also known as 'circle') contact lenses are becoming increasingly popular, especially in Asian markets because of their eye-enhancing effects. The pigment particles that give the eye-enhancing effects of these lenses can be found on the front or back surface of the contact lens or 'enclosed' within the lens matrix. The purpose of this research was to evaluate the pigment location and surface roughness of seven types of 'circle' contact lenses. Scanning electron microscopic (SEM) analysis was performed using a variable pressure Hitachi S3400N instrument to discern the placement of lens pigments. Atomic force microscopy (Dimension Icon AFM from Bruker Nano) was used to determine the surface roughness of the pigmented regions of the contact lenses. Atomic force microscopic analysis was performed in fluid phase under contact mode using a Sharp Nitride Lever probe (SNL-10) with a spring constant of 0.06 N/m. Root mean square (RMS) roughness values were analysed using a generalised linear mixed model with a log-normal distribution. Least square means and their corresponding 95% confidence intervals were estimated for each brand, location and pigment combination. SEM cross-sectional images at 500× and 2,000× magnification showed pigment on the surface of six of the seven lens types tested. The mean depth of pigment for 1-DAY ACUVUE DEFINE (1DAD) lenses was 8.1 μm below the surface of the lens, while the remaining lens types tested had pigment particles on the front or back surface. Results of the atomic force microscopic analysis indicated that 1DAD lenses had significantly lower root mean square roughness values in the pigmented area of the lens than the other lens types tested. SEM and AFM analysis revealed pigment on the surface of the lens for all types tested with the exception of 1DAD. Further research is required to determine if the difference in pigment location influences on-eye performance. © 2014 The Authors. Clinical and Experimental

  3. Adhesion force mapping on wood by atomic force microscopy: influence of surface roughness and tip geometry.

    Science.gov (United States)

    Jin, X; Kasal, B

    2016-10-01

    This study attempts to address the interpretation of atomic force microscopy (AFM) adhesion force measurements conducted on the heterogeneous rough surface of wood and natural fibre materials. The influences of wood surface roughness, tip geometry and wear on the adhesion force distribution are examined by cyclic measurements conducted on wood surface under dry inert conditions. It was found that both the variation of tip and surface roughness of wood can widen the distribution of adhesion forces, which are essential for data interpretation. When a common Si AFM tip with nanometre size is used, the influence of tip wear can be significant. Therefore, control experiments should take the sequence of measurements into consideration, e.g. repeated experiments with used tip. In comparison, colloidal tips provide highly reproducible results. Similar average values but different distributions are shown for the adhesion measured on two major components of wood surface (cell wall and lumen). Evidence supports the hypothesis that the difference of the adhesion force distribution on these two locations was mainly induced by their surface roughness.

  4. Analysis of force-deconvolution methods in frequency-modulation atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Joachim Welker

    2012-03-01

    Full Text Available In frequency-modulation atomic force microscopy the direct observable is the frequency shift of an oscillating cantilever in a force field. This frequency shift is not a direct measure of the actual force, and thus, to obtain the force, deconvolution methods are necessary. Two prominent methods proposed by Sader and Jarvis (Sader–Jarvis method and Giessibl (matrix method are investigated with respect to the deconvolution quality. Both methods show a nontrivial dependence of the deconvolution quality on the oscillation amplitude. The matrix method exhibits spikelike features originating from a numerical artifact. By interpolation of the data, the spikelike features can be circumvented. The Sader–Jarvis method has a continuous amplitude dependence showing two minima and one maximum, which is an inherent property of the deconvolution algorithm. The optimal deconvolution depends on the ratio of the amplitude and the characteristic decay length of the force for the Sader–Jarvis method. However, the matrix method generally provides the higher deconvolution quality.

  5. Atomic force microscopy cantilever dynamics in liquid in the presence of tip sample interaction

    NARCIS (Netherlands)

    de Beer, Sissi; van den Ende, Henricus T.M.; Mugele, Friedrich

    2008-01-01

    We analyze the dynamics of an atomic force microscopy (AFM) cantilever oscillating in liquid at subnanometer amplitude in the presence of tip-sample interaction. We present AFM measurements of oscillatory solvation forces for octamethylcyclotetrasiloxane on highly oriented pyrolitic graphite and

  6. Noncontact atomic force microscopy in liquid environment with quartz tuning fork and carbon nanotube probe

    DEFF Research Database (Denmark)

    Kageshima, M.; Jensenius, Henriette; Dienwiebel, M.

    2002-01-01

    A force sensor for noncontact atomic force microscopy in liquid environment was developed by combining a multiwalled carbon nanotube (MWNT) probe with a quartz tuning fork. Solvation shells of octamethylcyclotetrasiloxane surface were detected both in the frequency shift and dissipation. Due...

  7. Self-oscillating mode for frequency modulation noncontact atomic force microscopy

    OpenAIRE

    Giessibl, Franz J.; Tortonese, Marco

    1997-01-01

    Frequency modulation atomic force microscopy (FM-AFM) has made imaging of surfaces in ultrahigh vacuum with atomic resolution possible. Here, we demonstrate a new approach which simplifies the implementation of FM-AFM considerably and enhances force sensitivity by directly exciting the cantilever with the thermal effects involved in the deflection measurement process. This approach reduces the mechanically oscillating mass by 6 to 8 orders of magnitude as compared to conventional FM-AFM, beca...

  8. A review of demodulation techniques for amplitude-modulation atomic force microscopy

    OpenAIRE

    Ruppert, Michael G; Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J.

    2017-01-01

    In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for moder...

  9. Looking at cell mechanics with atomic force microscopy: Experiment and theory

    OpenAIRE

    Benítez Suárez, Rafael; Toca-Herrera, J. L.

    2014-01-01

    This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The rev...

  10. Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy

    OpenAIRE

    Spedden, Elise; White, James D.; Naumova, Elena N.; Kaplan, David L.; Staii, Cristian

    2013-01-01

    Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here, we combine atomic force microscopy-based force spectroscopy with fluorescence microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglio...

  11. Minimizing tip-sample forces and enhancing sensitivity in atomic force microscopy with dynamically compliant cantilevers

    Science.gov (United States)

    Keyvani, Aliasghar; Sadeghian, Hamed; Tamer, Mehmet Selman; Goosen, Johannes Frans Loodewijk; van Keulen, Fred

    2017-06-01

    Due to the harmonic motion of the cantilever in Tapping Mode Atomic Force Microscopy, it is seemingly impossible to estimate the tip-sample interactions from the motion of the cantilever. Not directly observing the interaction force, it is possible to damage the surface or the tip by applying an excessive mechanical load. The tip-sample interactions scale with the effective stiffness of the probe. Thus, the reduction of the mechanical load is usually limited by the manufacturability of low stiffness probes. However, the one-to-one relationship between spring constant and applied force only holds when higher modes of the cantilever are not excited. In this paper, it is shown that, by passively tuning higher modes of the cantilever, it is possible to reduce the peak repulsive force. These tuned probes can be dynamically more compliant than conventional probes with the same static spring constant. Both theoretical and experimental results show that a proper tuning of dynamic modes of cantilevers reduces the contact load and increases the sensitivity considerably. Moreover, due to the contribution of higher modes, the tuned cantilevers provide more information on the tip-sample interaction. This extra information from the higher harmonics can be used for mapping and possibly identification of material properties of samples.

  12. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy

    Science.gov (United States)

    Dagdeviren, Omur E.; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I.; Schwarz, Udo D.

    2016-02-01

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip’s vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential’s nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator’s response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement.

  13. Structural and nanomechanical properties of paperboard coatings studied by peak force tapping atomic force microscopy.

    Science.gov (United States)

    Sababi, Majid; Kettle, John; Rautkoski, Hille; Claesson, Per M; Thormann, Esben

    2012-10-24

    Paper coating formulations containing starch, latex, and clay were applied to paperboard and have been investigated by scanning electron microscopy and Peak Force tapping atomic force microscopy. A special focus has been on the measurement of the variation of the surface topography and surface material properties with a nanometer scaled spatial resolution. The effects of coating composition and drying conditions were investigated. It is concluded that the air-coating interface of the coating is dominated by close-packed latex particles embedded in a starch matrix and that the spatial distribution of the different components in the coating can be identified due to their variation in material properties. Drying the coating at an elevated temperature compared to room temperature changes the surface morphology and the surface material properties due to partial film formation of latex. However, it is evident that the chosen elevated drying temperature and exposure time is insufficient to ensure complete film formation of the latex which in an end application will be needed.

  14. Complex patterning by vertical interchange atom manipulation using atomic force microscopy.

    Science.gov (United States)

    Sugimoto, Yoshiaki; Pou, Pablo; Custance, Oscar; Jelinek, Pavel; Abe, Masayuki; Perez, Ruben; Morita, Seizo

    2008-10-17

    The ability to incorporate individual atoms in a surface following predetermined arrangements may bring future atom-based technological enterprises closer to reality. Here, we report the assembling of complex atomic patterns at room temperature by the vertical interchange of atoms between the tip apex of an atomic force microscope and a semiconductor surface. At variance with previous methods, these manipulations were produced by exploring the repulsive part of the short-range chemical interaction between the closest tip-surface atoms. By using first-principles calculations, we clarified the basic mechanisms behind the vertical interchange of atoms, characterizing the key atomistic processes involved and estimating the magnitude of the energy barriers between the relevant atomic configurations that leads to these manipulations.

  15. An Undergraduate Nanotechnology Engineering Laboratory Course on Atomic Force Microscopy

    Science.gov (United States)

    Russo, D.; Fagan, R. D.; Hesjedal, T.

    2011-01-01

    The University of Waterloo, Waterloo, ON, Canada, is home to North America's first undergraduate program in nanotechnology. As part of the Nanotechnology Engineering degree program, a scanning probe microscopy (SPM)-based laboratory has been developed for students in their fourth year. The one-term laboratory course "Nanoprobing and…

  16. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  17. Direct Measurement of Interparticle Forces of Titan Aerosol Analogs ("Tholin") Using Atomic Force Microscopy

    Science.gov (United States)

    Yu, Xinting; Hörst, Sarah M.; He, Chao; McGuiggan, Patricia; Bridges, Nathan T.

    2017-12-01

    To understand the origin of the dunes on Titan, it is important to investigate the material properties of Titan's organic sand particles on Titan. The organic sand may behave distinctively compared to the quartz/basaltic sand on terrestrial planets (Earth, Venus, and Mars) due to differences in interparticle forces. We measured the surface energy (through contact angle measurements) and elastic modulus (through Atomic Force Microscopy) of the Titan aerosol analog (tholin). We find that the surface energy of a tholin thin film is about 70.9 mN/m, and its elastic modulus is about 3.0 GPa (similar to hard polymers like PMMA and polystyrene). For two 20 μm diameter particles, the theoretical cohesion force is therefore 3.3 μN. We directly measured interparticle forces for relevant materials: tholin particles are 0.8 ± 0.6 μN, while the interparticle cohesion between walnut shell particles (a typical model materials for the Titan Wind Tunnel, TWT) is only 0.4 ± 0.1 μN. The interparticle cohesion forces are much larger for tholins and presumably Titan sand particles than materials used in the TWT. This suggests that we should increase the interparticle force in both analog experiments (TWT) and threshold models to correctly translate the results to real Titan conditions. The strong cohesion of tholins may also inform us how the small aerosol particles (˜1 μm) in Titan's atmosphere are transformed into large sand particles (˜200 μm). It may also support the cohesive sand formation mechanism suggested by Rubin and Hesp (2009), where only unidirectional wind is needed to form linear dunes on Titan.

  18. Atomic force microscopy as a tool for the investigation of living cells.

    Science.gov (United States)

    Morkvėnaitė-Vilkončienė, Inga; Ramanavičienė, Almira; Ramanavičius, Arūnas

    2013-01-01

    Atomic force microscopy is a valuable and useful tool for the imaging and investigation of living cells in their natural environment at high resolution. Procedures applied to living cell preparation before measurements should be adapted individually for different kinds of cells and for the desired measurement technique. Different ways of cell immobilization, such as chemical fixation on the surface, entrapment in the pores of a membrane, or growing them directly on glass cover slips or on plastic substrates, result in the distortion or appearance of artifacts in atomic force microscopy images. Cell fixation allows the multiple use of samples and storage for a prolonged period; it also increases the resolution of imaging. Different atomic force microscopy modes are used for the imaging and analysis of living cells. The contact mode is the best for cell imaging because of high resolution, but it is usually based on the following: (i) image formation at low interaction force, (ii) low scanning speed, and (iii) usage of "soft," low resolution cantilevers. The tapping mode allows a cell to behave like a very solid material, and destructive shear forces are minimized, but imaging in liquid is difficult. The force spectroscopy mode is used for measuring the mechanical properties of cells; however, obtained results strongly depend on the cell fixation method. In this paper, the application of 3 atomic force microscopy modes including (i) contact, (ii) tapping, and (iii) force spectroscopy for the investigation of cells is described. The possibilities of cell preparation for the measurements, imaging, and determination of mechanical properties of cells are provided. The applicability of atomic force microscopy to diagnostics and other biomedical purposes is discussed.

  19. Recent progress in the application of atomic force microscopy for supported lipid bilayers.

    Science.gov (United States)

    Zhong, Jian; He, Dannong

    2012-04-02

    In the past two decades, atomic force microscopy has been widely used for studying supported lipid bilayer related research, including the structure and dynamics of membranes and membrane proteins, and the interaction of membranes with chemical and biological molecules. The focus of this minireview is on the recent progress in the application of atomic force microscopy for supported lipid bilayers. Such progress mainly includes the application in the following aspects: submolecular-resolution imaging, in situ observation, and nanomechanics measurement. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Contact atomic force microscopy using piezoresistive cantilevers in load force modulation mode.

    Science.gov (United States)

    Biczysko, P; Dzierka, A; Jóźwiak, G; Rudek, M; Gotszalk, T; Janus, P; Grabiec, P; Rangelow, I W

    2017-09-20

    Scanning probe microscopy (SPM) encompasses several techniques for imaging of the physical and chemical material properties at nanoscale. The scanning process is based on the detection of the deflection of the cantilever, which is caused by near field interactions, while the tip runs over the sample's surface. The variety of deflection detection methods including optical, piezoresistive, piezoelectric technologies has been developed and applied depending on the measurement mode and measurement environment. There are many advantages (compactness, vacuum compatibility, etc.) of the piezoresistive detection method, which makes it very attractive for almost all SPM experiments. Due to the technological limitations the stiffness of the piezoresistive beams is usually higher than the stiffness of the cantilever detected using optical methods. This is the basic constraint for the application of the piezoresistive beams in contact mode (CM) atomic force microscopy (AFM) investigations performed at low load forces (usually less than 20 nN). Drift of the deflection signal, which is related to thermal fluctuations of the measurement setup, causes that the microscope controller compensates the fluctuations instead of compensating the strength of tip-surface interactions. Therefore, it is quite difficult to keep near field interaction precisely at the setpoint level during the whole scanning process. This can lead to either damage of the cantilever's tip and material surface or loosing the contact with the investigated sample and making the measurement unreliable. For these reasons, load force modulation (LoFM) scanning mode, in which the interaction at the tip is precisely controlled at every point of the sample surface, is proposed to enable precise AFM surface investigations using the piezoresistive cantilevers. In this article we describe the developed measurement algorithm as well as proposed and introduced hardware and software solutions. The results of the experiments

  1. Going Vertical To Improve the Accuracy of Atomic Force Microscopy Based Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Walder, Robert; Van Patten, William J; Adhikari, Ayush; Perkins, Thomas T

    2018-01-23

    Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements. This inaccuracy is particularly problematic in AFM studies using double-stranded DNA and RNA due to their large persistence length (p ≈ 50 nm), often limiting such studies to other SMFS platforms (e.g., custom-built optical and magnetic tweezers). Here, we developed an automated algorithm that aligns the AFM tip above the DNA's attachment point to a coverslip. Importantly, this algorithm was performed at low force (10-20 pN) and relatively fast (15-25 s), preserving the connection between the tip and the target molecule. Our data revealed large uncorrected lateral offsets for 100 and 650 nm DNA molecules [24 ± 18 nm (mean ± standard deviation) and 180 ± 110 nm, respectively]. Correcting this offset yielded a 3-fold improvement in accuracy and precision when characterizing DNA's overstretching transition. We also demonstrated high throughput by acquiring 88 geometrically corrected force-extension curves of a single individual 100 nm DNA molecule in ∼40 min and versatility by aligning polyprotein- and PEG-based protein-ligand assays. Importantly, our software-based algorithm was implemented on a commercial AFM, so it can be broadly adopted. More generally, this work illustrates how to enhance AFM-based SMFS by developing more sophisticated data-acquisition protocols.

  2. Quantification of fenestrations in liver sinusoidal endothelial cells by atomic force microscopy.

    Science.gov (United States)

    Zapotoczny, Bartlomiej; Szafranska, Karolina; Kus, Edyta; Chlopicki, Stefan; Szymonski, Marek

    2017-10-01

    Liver sinusoidal endothelial cells present unique morphology characterized by the presence of transmembrane pores called fenestrations. The size and number of fenestrations in live cells change dynamically in response to variety of chemical and physical factors. Although scanning electron microscopy is a well-established method for investigation of fixed liver sinusoidal endothelial cells morphology, atomic force microscopy is the interesting alternative providing detailed 3D topographical information. Moreover, simple sample preparation, only by wet-fixation, minimizing sample preparation artifacts enable high-resolution atomic force microscopy-based measurements. In this work, we apply imaging methods based on atomic force microscopy, to describe characteristic features of glutaraldehyde-fixed primary murine liver sinusoidal endothelial cells, namely: mean fenestration diameter, porosity, and fenestrations frequency. We also investigate the effect of different tip apex radius on evaluation of single fenestration diameter. By quantitative description of fenestrations, we demonstrate that atomic force microscopy became a well competing tool for nondestructive quantitative investigation of the liver sinusoidal endothelial cell morphology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Stepwise unfolding of titin under force-clamp atomic force microscopy

    OpenAIRE

    Andres F. Oberhauser; Hansma, Paul K.; Carrion-Vazquez, Mariano; Fernandez, Julio M.

    2001-01-01

    Here we demonstrate the implementation of a single-molecule force clamp adapted for use with an atomic force microscope. We show that under force-clamp conditions, an engineered titin protein elongates in steps because of the unfolding of its modules and that the waiting times to unfold are exponentially distributed. Force-clamp measurements directly measure the force dependence of the unfolding probability and readily captures the different mechanical stability of the...

  4. Adhesion force imaging in air and liquid by adhesion mode atomic force microscopy

    NARCIS (Netherlands)

    van der Werf, Kees; Putman, C.A.J.; Putman, Constant A.; de Grooth, B.G.; Greve, Jan

    1994-01-01

    A new imaging mode for the atomic force microscope(AFM), yielding images mapping the adhesion force between tip and sample, is introduced. The adhesion mode AFM takes a force curve at each pixel by ramping a piezoactuator, moving the silicon‐nitride tip up and down towards the sample. During the

  5. Bacterial biofilms investigated by atomic force microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Hu, Yifan

    of bacterial biofilms with EPS (Extracellular polymeric substances) includes proteins, polysaccharides, extracellular DNA (e-DNA), peptidoglycans, lipids and phospholipids. These substances play an important role in the initial adhesion of bacteria to the surface and maintenance of the biofilm structure. In my......) and Streptococcus mutans (dental caries). AFM was used to investigate the adhesion force on single live cell surfaces. Four different strains of Staphylococcus epidermidis in liquid aqueous environments were adressed. These strains were selected because of their special surface proteins related with the initial...... and type IV pili during P. aeruginosa biofilm development. This study suggests that polysaccharides and e-DNA contribute to the biofilm development. Protein clusters were observed during P. pudita biofilm formation, but we need further investigation to identify or distinguish the surface protein Lap...

  6. Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications

    Science.gov (United States)

    Morawski, Ireneusz; Spiegelberg, Richard; Korte, Stefan; Voigtländer, Bert

    2015-12-01

    A method which allows scanning tunneling microscopy (STM) tip biasing independent of the sample bias during frequency modulated atomic force microscopy (AFM) operation is presented. The AFM sensor is supplied by an electronic circuit combining both a frequency shift signal and a tunneling current signal by means of an inductive coupling. This solution enables a control of the tip potential independent of the sample potential. Individual tip biasing is specifically important in order to implement multi-tip STM/AFM applications. An extensional quartz sensor (needle sensor) with a conductive tip is applied to record simultaneously topography and conductivity of the sample. The high resonance frequency of the needle sensor (1 MHz) allows scanning of a large area of the surface being investigated in a reasonably short time. A recipe for the amplitude calibration which is based only on the frequency shift signal and does not require the tip being in contact is presented. Additionally, we show spectral measurements of the mechanical vibration noise of the scanning system used in the investigations.

  7. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy

    Science.gov (United States)

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-01-01

    The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed. PMID:28117741

  8. Imaging and Force Recognition of Single Molecular Behaviors Using Atomic Force Microscopy.

    Science.gov (United States)

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-01-22

    The advent of atomic force microscopy (AFM) has provided a powerful tool for investigating the behaviors of single native biological molecules under physiological conditions. AFM can not only image the conformational changes of single biological molecules at work with sub-nanometer resolution, but also sense the specific interactions of individual molecular pair with piconewton force sensitivity. In the past decade, the performance of AFM has been greatly improved, which makes it widely used in biology to address diverse biomedical issues. Characterizing the behaviors of single molecules by AFM provides considerable novel insights into the underlying mechanisms guiding life activities, contributing much to cell and molecular biology. In this article, we review the recent developments of AFM studies in single-molecule assay. The related techniques involved in AFM single-molecule assay were firstly presented, and then the progress in several aspects (including molecular imaging, molecular mechanics, molecular recognition, and molecular activities on cell surface) was summarized. The challenges and future directions were also discussed.

  9. Bacterial immobilization for imaging by atomic force microscopy.

    Science.gov (United States)

    Allison, David P; Sullivan, Claretta J; Mortensen, Ninell Pollas; Retterer, Scott T; Doktycz, Mitchel

    2011-08-10

    AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved mica surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.

  10. A review of demodulation techniques for amplitude-modulation atomic force microscopy.

    Science.gov (United States)

    Ruppert, Michael G; Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J

    2017-01-01

    In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode.

  11. A review of demodulation techniques for amplitude-modulation atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Michael G. Ruppert

    2017-07-01

    Full Text Available In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode.

  12. Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy.

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Yu, Pu; Ben Carmichael; Kalinin, Sergei V; Tselev, Alexander

    2016-10-21

    Detection of dynamic surface displacements associated with local changes in material strain provides access to a number of phenomena and material properties. Contact resonance-enhanced methods of atomic force microscopy (AFM) have been shown capable of detecting ∼1-3 pm-level surface displacements, an approach used in techniques such as piezoresponse force microscopy, atomic force acoustic microscopy, and ultrasonic force microscopy. Here, based on an analytical model of AFM cantilever vibrations, we demonstrate a guideline to quantify surface displacements with high accuracy by taking into account the cantilever shape at the first resonant contact mode, depending on the tip-sample contact stiffness. The approach has been experimentally verified and further developed for piezoresponse force microscopy (PFM) using well-defined ferroelectric materials. These results open up a way to accurate and precise measurements of surface displacement as well as piezoelectric constants at the pm-scale with nanometer spatial resolution and will allow avoiding erroneous data interpretations and measurement artifacts. This analysis is directly applicable to all cantilever-resonance-based scanning probe microscopy (SPM) techniques.

  13. Direct observation of defect structure in protein crystals by atomic force and transmission electron microscopy.

    OpenAIRE

    Devaud, G; Furcinitti, P S; Fleming, J.C.; Lyon, M K; Douglas, K

    1992-01-01

    We have examined the structure of S-layers isolated from Sulfolobus acidocaldarius using atomic force microscopy (AFM) and transmission electron microscopy (TEM). From the AFM images, we were able to directly observe individual dimers of the crystal, defects in the crystal structure, and twin boundaries. We have identified two types of boundaries, one defined by a mirror plane and the other by a glide plane. This work shows that twin boundaries are highly structured regions that are directly ...

  14. Short unligated sticky ends enable the observation of circularised DNA by atomic force and electron microscopies.

    OpenAIRE

    Révet, B; Fourcade, A

    1998-01-01

    A comparative study of the stabilisation of DNA sticky ends by divalent cations was carried out by atomic force microscopy (AFM), electron microscopy and agarose gel electrophoresis. At room temperature, molecules bearing such extremities are immediately oligomerised or circularised by addition of Mg2+or Ca2+. This phenomenon, more clearly detected by AFM, requires the presence of uranyl salt, which stabilises the structures induced by Mg2+or Ca2+. DNA fragments were obtained by restriction e...

  15. Height anomalies in tappingmode atomic force microscopy in air caused by adhesion

    NARCIS (Netherlands)

    van Noort, S.J.T.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1997-01-01

    Height anomalies in tapping mode atomic force microscopy (AFM) in air are shown to be caused by adhesion. Depending o­n the damping of the oscillation the height of a sticking surface is reduced compared to less sticking surfaces. It is shown that the height artefacts result from a modulation of

  16. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy

    Science.gov (United States)

    Ryan Wagner; Robert J. Moon; Arvind Raman

    2016-01-01

    Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...

  17. Probing buried carbon nanotubes within polymer-nanotube composite matrices by Atomic Force Microscopy

    NARCIS (Netherlands)

    Phang, In Yee; Liu, Tianxi; Zhang, Wei-De; Schönherr, Holger; Vancso, Gyula J.

    2007-01-01

    Multi-walled carbon nanotubes (MW-CNT) inside a polyamide-6 (PA6)–MW-CNT composite were visualized by atomic force microscopy (i) in a field-assisted intermittent contact and (ii) in the tunneling (TUNA) mode. Individual buried MW-CNTs were clearly discerned within the PA6 matrix. An average

  18. Influence of spring stiffness and anisotropy on stick-slip atomic force microscopy imaging

    NARCIS (Netherlands)

    Kerssemakers, J.W J; de Hosson, J.T.M.

    1996-01-01

    This paper presents a detailed analysis of high-load friction atomic force microscopy (AFM) images of layered structures in terms of a discrete stick-slip model. It turned out that based on a geometric approach, the characteristics of slip behavior can be linked to the cantilever/sample spring

  19. Dynamics of a Disturbed Sessile Drop Measured by Atomic Force Microscopy (AFM)

    NARCIS (Netherlands)

    McGuiggan, Patricia M.; Grave, Daniel A.; Wallace, Jay S.; Cheng, Shengfeng; Prosperetti, Andrea; Robbins, Mark O.

    2011-01-01

    A new method for studying the dynamics of a sessile drop by atomic force microscopy (AFM) is demonstrated. A hydrophobic microsphere (radius, r 20–30 μm) is brought into contact with a small sessile water drop resting on a polytetrafluoroethylene (PTFE) surface. When the microsphere touches the

  20. Magni: A Python Package for Compressive Sampling and Reconstruction of Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Oxvig, Christian Schou; Pedersen, Patrick Steffen; Arildsen, Thomas

    2014-01-01

    Magni is an open source Python package that embraces compressed sensing and Atomic Force Microscopy (AFM) imaging techniques. It provides AFM-specific functionality for undersampling and reconstructing images from AFM equipment and thereby accelerating the acquisition of AFM images. Magni also...

  1. Langmuir- Blodgett layers of amphiphilic molecules investigated by Atomic Force Microscopy

    NARCIS (Netherlands)

    Zdravkova, Aneliya Nikolova

    2007-01-01

    Langmuir - Blodgett technique and Atomic Force Microscopy were used to study the phase behaviour of organic molecules (fatty alcohols and monoacid saturated triglycerides) at air-water and air-solid interfaces. The structure of binary mixed LB monolayers of fatty alcohols was reported. The

  2. Metrological investigation of nanostructured polymer surfaces replication using atomic force microscopy

    DEFF Research Database (Denmark)

    Quagliotti, D.; Tosello, G.; Hansen, H. N.

    2015-01-01

    Polymer specimens have been manufactured by injection moulding and measured by atomic force microscopy (AFM) with the aim to investigate the possibility of replicating their surfaces with good fidelity at the sub-μm dimensional scale. Three different cases with surface features in the 100 nm...

  3. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  4. Viscoelasticity of Living Cells Allows High Resolution Imaging by Tapping Mode Atomic Force Microscopy

    NARCIS (Netherlands)

    Putman, C.A.J.; Putman, Constant A.J.; van der Werf, Kees; de Grooth, B.G.; van Hulst, N.F.; Greve, Jan

    1994-01-01

    Application of atomic force microscopy (AFM) to biological objects and processes under physiological conditions has been hampered so far by the deformation and destruction of the soft biological materials invoked. Here we describe a new mode of operation in which the standard V-shaped silicon

  5. Sample Preparation and Imaging of Single Adenovirus Particle Using Atomic Force Microscopy in Liquid

    NARCIS (Netherlands)

    Liang, Yan; Li Chen, [Unknown; van Rosmalen, Mariska G M; Wuite, Gijs J L; Roos, Wouter H

    2015-01-01

    Atomic force microscopy (AFM), as a sophisticated imaging tool with nanoscale resolution, is widely used in virus research and the application of functional viral particles. To investigate single viruses by AFM in a physiologically relevant environment (liquid), an appropriate surface treatment to

  6. Growth monitoring during pulsed laser deposition of oxides using atomic force microscopy

    NARCIS (Netherlands)

    Wessels, W.A.

    2016-01-01

    Throughout this thesis, an atomic force microscopy (AFM) design, containing a high resonance frequency AFM scanner together with high bandwidth SPM electronics is demonstrated, with focus on growth monitoring during PLD of oxides. Moreover, perovskite oxide growth (related) studies are explored

  7. Vesicle Adsorption and Lipid Bilayer Formation on Glass Studied by Atomic Force Microscopy

    NARCIS (Netherlands)

    Schönherr, Holger; Johnson, Joseph M.; Lenz, Peter; Frank, Curtis W.; Boxer, Steven G.

    2004-01-01

    The adsorption of phosphatidylcholine (PC) vesicles (30, 50, and 100 nm nominal diameters) and of dye-labeled PC vesicles (labeled with 6% Texas Red fluorophore (TR) and encapsulated carboxy fluorescein (CF)) to glass surfaces was studied by contact mode atomic force microscopy in aqueous buffer.

  8. Hybridisation of short DNA molecules investigated with in situ atomic force microscopy

    DEFF Research Database (Denmark)

    Holmberg, Maria; Kuhle, A.; Garnaes, J.

    2003-01-01

    By introducing the complementary DNA (cDNA) strand to a molecular layer of short single stranded DNA (ssDNA), immobilised on a gold surface, we have investigated hybridisation between the two DNA strands through the technique of in situ atomic force microscopy (AFM). Before introduction of c...

  9. Microcontroller-driven fluid-injection system for atomic force microscopy.

    Science.gov (United States)

    Kasas, S; Alonso, L; Jacquet, P; Adamcik, J; Haeberli, C; Dietler, G

    2010-01-01

    We present a programmable microcontroller-driven injection system for the exchange of imaging medium during atomic force microscopy. Using this low-noise system, high-resolution imaging can be performed during this process of injection without disturbance. This latter circumstance was exemplified by the online imaging of conformational changes in DNA molecules during the injection of anticancer drug into the fluid chamber.

  10. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Muhunthan, N.; Singh, Om Pal [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India); Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N., E-mail: singhvn@nplindia.org [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India)

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  11. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    Science.gov (United States)

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  12. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    Science.gov (United States)

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  13. Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

    OpenAIRE

    Birgit Spitzer-Sonnleitner; André Kempe; Maximilian Lackner

    2016-01-01

    The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young's modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data...

  14. Atomic force microscopy of swelling and hardening of intact erythrocytes fixed on substrate

    Science.gov (United States)

    Khalisov, M. M.; Timoshchuk, K. I.; Ankudinov, A. V.; Timoshenko, T. E.

    2017-02-01

    Peak force measurements with the aid of atomic force microscopy are used to quantitatively map nanomechanical properties of intact erythrocytes of rats under conditions that are close to physiological conditions. Erythrocytes that are immobilized on the substrate preliminary processed using poly-L-lysine predominantly exhibit plane shape. However, cells may also exhibit stepwise transformation to semispherical objects with an increase in volume and hardening. Possible reasons for such transformations are discussed.

  15. Compositional mapping of bitumen using local electrostatic force interactions in atomic force microscopy.

    Science.gov (United States)

    Magonov, Sergei; Alexander, John; Surtchev, Marko; Hung, Albert M; Fini, Elham H

    2017-02-01

    In recent years, many researchers have investigated bitumen surface morphology, especially the so-called bee-like structures, in an attempt to relate the chemical composition and molecular conformation to bitumen micromechanics and ultimately performance properties. Even though recent studies related surface morphology and its evolution to stiffness and stress localization, the complex chemical nature of bitumen and its time- and temperature-dependent properties still engender significant questions about the nature and origin of the observed morphological features and how they evolve due to exposure to various environmental and loading conditions. One such question is whether the observed surface features are formed from wax or from the coprecipitation of wax and asphaltene. Our prior work was mainly theoretical; it used density functional theory and showed that the coprecipitation theory may not stand, mainly because wax-asphaltene interactions are not thermodynamically favourable compared to wax-wax interactions. This paper presents a comprehensive approach based on experiments to study surface morphology of bitumen and conduct compositional mapping to shed light on the origin of the bee-like surface morphological features. We used Atomic Force Microscopy (AFM), with the main focus being on single-pass detection and mapping of local electric properties, as a novel approach to enhance existing compositional mapping techniques. This method was found to be highly effective in differentiating various domains with respect to their polarity. The results of our study favour the hypothesis that the bee-like features are mainly composed of wax, including a variety of alkanes. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  16. Implementing atomic force microscopy (AFM) for studying kinetics of gold nanoparticle's growth

    DEFF Research Database (Denmark)

    Georgiev, P.; Bojinova, A.; Kostova, B.

    2013-01-01

    In a novel experimental approach Atomic Force Microscopy (AFM) was applied as a tool for studying the kinetics of gold nanoparticle growth. The gold nanoparticles were obtained by classical Turkevich citrate synthesis at two different temperatures. From the analysis of AFM images during the synth......In a novel experimental approach Atomic Force Microscopy (AFM) was applied as a tool for studying the kinetics of gold nanoparticle growth. The gold nanoparticles were obtained by classical Turkevich citrate synthesis at two different temperatures. From the analysis of AFM images during...... approach. We also compared AFM experimental data with Dynamic Light Scattering (DLS) and with Transmission Electron Microscopy (TEM) data. The experimental data from all the applied methods were fitted with two step Finke-Watzky kinetics model and the corresponding kinetics constants were obtained...

  17. Single cycle and transient force measurements in dynamic atomic force microscopy

    Science.gov (United States)

    Gadelrab, Karim; Santos, Sergio; Font, Josep; Chiesa, Matteo

    2013-10-01

    The monitoring of the deflection of a micro-cantilever, as the end of a sharp probe mounted at its end, i.e. the tip, interacts with a surface, forms the foundation of atomic force microscopy AFM. In a nutshell, developments in the field are driven by the requirement of obtaining ever increasing throughput and sensitivity, and enhancing the versatility of the instrument to simultaneously map the topography and quantify nanoscale processes and properties. In the most common dynamic mode of operation, the motion of the driven cantilever is monitored at a single point on its longitudinal axis. Here, we show that from this single point a waveform is obtained that contains all the details about conservative and dissipative interactions. Then a formalism that accounts for multiple arbitrary flexural modes is developed for an indirectly driven cantilever. The formalism is shown to allow recovery of the details of the interaction even in the presence of complex and relevant hysteretic forces when the cantilever oscillates in the steady state. In a different approach, we develop a formalism that monitors the wave profile of the cantilever, i.e. the waveform at five different points on its longitudinal axis. With this formalism the interaction can be reconstructed during a single oscillation cycle even in the transient state of oscillation. Finally, we discuss the potential and advantages of the proposed methods and future technical challenges. Other standard and state of the art techniques and methods are also discussed and compared with the ones presented here. This work should also provide insight into the current high throughput-high sensitivity developments dealing with multifrequency dynamic AFM where information is recovered from multiple eigenmodes.

  18. Understanding the atomic-scale contrast in Kelvin probe force microscopy.

    Science.gov (United States)

    Nony, Laurent; Foster, Adam S; Bocquet, Franck; Loppacher, Christian

    2009-07-17

    A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a noncontact atomic force microscope simulator including a Kelvin module. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and contact potential difference contrasts were reported. The local contact potential difference does reflect the periodicity of the ionic crystal, but not the magnitude of its Madelung surface potential. The imaging mechanism relies on the induced polarization of the ions at the tip-surface interface owing to the modulation of the applied bias voltage. Our findings are in excellent agreement with previous theoretical expectations and experimental observations.

  19. Comparison of Atomic Force Microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods

    NARCIS (Netherlands)

    Vadillo-Rodriguez, V.; Busscher, H.J.; Norde, W.; Vries, de J.; Dijkstra, R.J.B.; Stokroos, I.; Mei, van der H.C.

    2004-01-01

    Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a

  20. Comparision of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods

    NARCIS (Netherlands)

    Vadillo-Rodríguez, Virginia; Busscher, Henk J; Norde, Willem; de Vries, Joop; Dijkstra, René JB; Stokroos, Ietse; van der Mei, Henderina

    Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a

  1. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  2. Note: Production of stable colloidal probes for high-temperature atomic force microscopy applications.

    Science.gov (United States)

    Ditscherlein, L; Peuker, U A

    2017-04-01

    For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.

  3. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Pia C. Lansåker

    2014-10-01

    Full Text Available Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness dg—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM combined with image analysis as well as by atomic force microscopy (AFM. The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for dg were obtained by SEM with image analysis and by AFM.

  4. Stochastic adhesion of hydroxylated atomic force microscopy tips to supported lipid bilayers.

    Science.gov (United States)

    Apetrei, Aurelia; Sirghi, Lucel

    2013-12-31

    This work reports results of an atomic force microscopy (AFM) study of adhesion force between hydroxylated AFM tips and supported lipid bilayers (SLBs) of phosphatidylcholine in phosphate buffer saline solution at neutral pH. Silicon nitride AFM probes were hydroxylated by treatment in water vapor plasma and used in force spectroscopy measurements of adhesion force on SLBs with control of contact loading force and residence time. The measurements showed a stochastic behavior of adhesion force that was attributed to stochastic formation of hydrogen bonds between the hydroxyl groups on the AFM tip and oxygen atoms from the phosphate groups of the phosphatidylcholine molecules. Analysis of a large number of force curves revealed a very low probability of hydrogen bond formation, a probability that increased with the increase of contact loading force and residence time. The variance and mean values of adhesion force showed a linear dependence on each other, which indicated that hydrogen bond formation obeyed the Poisson distribution of probability. This allowed for the quantitative determination of the rupture force per hydrogen bond of about 40 pN and showed the absence of other nonspecific interaction forces.

  5. Stepwise unfolding of titin under force-clamp atomic force microscopy.

    Science.gov (United States)

    Oberhauser, A F; Hansma, P K; Carrion-Vazquez, M; Fernandez, J M

    2001-01-16

    Here we demonstrate the implementation of a single-molecule force clamp adapted for use with an atomic force microscope. We show that under force-clamp conditions, an engineered titin protein elongates in steps because of the unfolding of its modules and that the waiting times to unfold are exponentially distributed. Force-clamp measurements directly measure the force dependence of the unfolding probability and readily captures the different mechanical stability of the I27 and I28 modules of human cardiac titin. Force-clamp spectroscopy promises to be a direct way to probe the mechanical stability of elastic proteins such as those found in muscle, the extracellular matrix, and cell adhesion.

  6. Mechanical properties of viruses analyzed by atomic force microscopy: a virological perspective.

    Science.gov (United States)

    Mateu, Mauricio G

    2012-09-01

    The advent of nanoscience and nanotechnology and the development of atomic force microscopy and other single-molecule techniques are leading to a renewed look at viruses from the point of view of the physical sciences. As any other solid-state object, virus particles are endowed with mechanical properties such as elasticity or brittleness. Emerging studies on virus mechanics may facilitate the engineering of the physical properties of viruses to improve their potential application in nanotechnology, and may be also relevant to understand virus biology. Viruses are subject to internal and external forces, and as evolving entities they may have selectively adapted their mechanical behavior to resist, or even use, those forces. This article adopts the perspective of structural and molecular virology to review the results obtained to date, using the atomic force microscope, on the mechanical properties of virus particles, their molecular determinants, and possible biological implications. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques.

    Science.gov (United States)

    Kimura, Kuniko; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2013-10-01

    Recently, some papers reported successful imaging of subsurface features using atomic force microscopy (AFM). Some theoretical studies have also been presented, however the imaging mechanisms are not fully understood yet. In the preceeding papers, imaging of deeply buried nanometer-scale features has been successful only if they were buried in a soft matrix. In this paper, subsurface features (Au nanoparticles) buried in a soft polymer matrix were visualized. To elucidate the imaging mechanisms, various AFM techniques; heterodyne force microscopy, ultrasonic atomic force microscopy (UAFM), 2nd-harmonic UAFM and force modulation microscopy (FMM) were employed. The particles buried under 960 nm from the surface were successfully visualized which has never been achieved. The results elucidated that it is important for subsurface imaging to choose a cantilever with a suitable stiffness range for a matrix. In case of using the most suitable cantilever, the nanoparticles were visualized using every technique shown above except for FMM. The experimental results suggest that the subsurface features buried in a soft matrix with a depth of at least 1 µm can affect the local viscoelasticity (mainly viscosity) detected as the variation of the amplitude and phase of the tip oscillation on the surface. This phenomenon presumably makes it possible to visualize such deeply buried nanometer-scale features in a soft matrix. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Studying the Adhesion Force and Glass Transition of Thin Polystyrene Films by Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Kang, Hua; Qian, Xiaoqin; Guan, Li

    2018-01-01

    microscopy (AFM)-based forcedistance curve to study the relaxation dynamics and the film thickness dependence of glass transition temperature (T-g) for normal thin polystyrene (PS) films supported on silicon substrate. The adhesion force (F-ad) between AFM tip and normal thin PS film surfaces...

  9. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jorge R., E-mail: jorge.rr@cea.cu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Canto Blanco, 28049 Madrid, España (Spain)

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  10. Higher order structure of short immunostimulatory oligonucleotides studied by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Dionne C.G., E-mail: dionne.c.g.klein@ntnu.no [Department of Physics, Norwegian University of Science and Technology, N-7491, Trondheim (Norway); Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489, Trondheim (Norway); Latz, Eicke [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489, Trondheim (Norway); Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605 (United States); Institute of Innate Immunity, University Hospitals, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Espevik, Terje [Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7489, Trondheim (Norway); Stokke, Bjorn T. [Department of Physics, Norwegian University of Science and Technology, N-7491, Trondheim (Norway)

    2010-05-15

    Immunostimulatory CpG-DNA activates the innate immune system by binding to Toll-like receptor 9. Structurally different CpG-containing oligonucleotides trigger a different type of immune response while activating the same receptor. We therefore investigated the higher order structure of two different classes of immunostimulatory CpG-DNA. Class A, which contains a partly self-complementary sequence and poly-G ends, forms duplexes and nanoparticles in salt solution, while class B, which does not contain these features and is purely linear, does not form a duplex or nanoparticles. Results obtained here by high-resolution atomic force microscopy of classes A and B CpG-DNA, reflect these differences in secondary structure. Detailed structural analysis of the atomic force microscopy topographs is presented for two different sample preparation methods.

  11. A novel self-sensing technique for tapping-mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, Michael G.; Moheimani, S. O. Reza [The University of Newcastle, University Drive, Callaghan NSW 2308 (Australia)

    2013-12-15

    This work proposes a novel self-sensing tapping-mode atomic force microscopy operation utilizing charge measurement. A microcantilever coated with a single piezoelectric layer is simultaneously used for actuation and deflection sensing. The cantilever can be batch fabricated with existing micro electro mechanical system processes. The setup enables the omission of the optical beam deflection technique which is commonly used to measure the cantilever oscillation amplitude. Due to the high amount of capacitive feedthrough in the measured charge signal, a feedforward control technique is employed to increase the dynamic range from less than 1 dB to approximately 35 dB. Experiments show that the conditioned charge signal achieves excellent signal-to-noise ratio and can therefore be used as a feedback signal for atomic force microscopy imaging.

  12. A high-bandwidth amplitude estimation technique for dynamic mode atomic force microscopy.

    Science.gov (United States)

    Karvinen, K S; Moheimani, S O R

    2014-02-01

    While often overlooked, one of the prerequisites for high-speed amplitude modulation atomic force microscopy is a high-bandwidth amplitude estimation technique. Conventional techniques, such as RMS to DC conversion and the lock-in amplifier, have proven useful, but offer limited measurement bandwidth and are not suitable for high-speed imaging. Several groups have developed techniques, but many of these are either difficult to implement or lack robustness. In this contribution, we briefly outline existing amplitude estimation methods and propose a new high-bandwidth estimation technique, inspired by techniques employed in microwave and RF circuit design, which utilizes phase cancellation to significantly improve the performance of the lock-in amplifier. We conclude with the design and implementation of a custom circuit to experimentally demonstrate the improvements and discuss its application in high-speed and multifrequency atomic force microscopy.

  13. High-speed atomic force microscopy: Structure and dynamics of single proteins.

    Science.gov (United States)

    Casuso, Ignacio; Rico, Felix; Scheuring, Simon

    2011-10-01

    For surface analysis of biological molecules, atomic force microscopy (AFM) is an appealing technique combining data acquisition under physiological conditions, for example buffer solution, room temperature and ambient pressure, and high resolution. However, a key feature of life, dynamics, could not be assessed until recently because of the slowness of conventional AFM setups. Thus, for observing bio-molecular processes, the gain of image acquisition speed signifies a key progress. Here, we review the development and recent achievements using high-speed atomic force microscopy (HS-AFM). The HS-AFM is now the only technique to assess structure and dynamics of single molecules, revealing molecular motor action and diffusion dynamics. From this imaging data, watching molecules at work, novel and direct insights could be gained concerning the structure, dynamics and function relationship at the single bio-molecule level. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. [Atomic force microscopy monitoring of temperature dependence of cytochrome BM3 oligomeric state].

    Science.gov (United States)

    Bukharina, N S; Ivanov, Iu D; Pleshakova, T O; Frantsuzov, P A; Ivanova, N D; Krokhin, N V; Petushkova, N A; Archakov, A I

    2015-01-01

    The change in temperature is one of the factors affecting the activity of enzymes. In this work thermal denaturation and aggregation of cytochrome P450 BM3 were studied by atomic force microscopy. To determine specific temperature transitions the fluorescence analysis was used. In the low melting temperature range, 10-33 degrees C, a decrease in the fluorescence intensity of aromatic residues was observed with an increase in the fluorescence intensity of flavin groups. Protein melting in this range indicated three narrow S-shaped cooperative transitions at temperatures 16, 22 and 29 degrees C. Atomic force microscopy analysis in this temperature range showed that the shape of BM3 molecules remained globular in the form of compact objects (heights h < 7 nm, lateral dimensions d < 50 nm), but protein oligomeric state changed. The first two transitions were accompanied by a decrease in the degree of oligomerization and the third one was accompanied by its increase.

  15. High resolution imaging of the dolomite (104) cleavage surface by atomic force microscopy

    OpenAIRE

    Pina Martínez, Carlos Manuel; Pimentel, Carlos; García Merino, Marta

    2010-01-01

    In this paper we present high resolution atomic force microscopy (AFM) images of dolomite (104) cleavage surfaces immersed in pure water. These images show a rectangular lattice with surface unit cell dimensions in general agreement with those derived from the dolomite bulk structure. Furthermore, the twodimensional fast Fourier transform (2D-FFT) plots of the high resolution images exhibit a pattern of periodicities consistent with both the alternate orientation of the carbonate ...

  16. Investigating the fundamentals of drug crystal growth using Atomic Force Microscopy

    OpenAIRE

    Thompson, Claire

    2003-01-01

    The importance of crystals to the pharmaceutical industry is evident - over 90% of pharmaceutical products contain a drug in crystalline form. However, the crystallization phenomena of drug compounds are poorly understood. An increased understanding of these processes may allow a greater degree of control over the crystallization outcomes, such as morphology, purity, or stability. In these studies, we have applied Atomic Force Microscopy (AFM) to the in situ investigations of drug crystal gro...

  17. Atomic Force Microscopy in Microbiology: New Structural and Functional Insights into the Microbial Cell Surface

    Science.gov (United States)

    2014-01-01

    ABSTRACT Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights. PMID:25053785

  18. Surface Morphology of Fe(III)-Porphyrin Thin Layers as Characterized by Atomic Force Microscopy

    OpenAIRE

    Utari Utari; Kusumandari Kusumandari; Budi Purnama; Mudasir Mudasir; Kamsul Abraha

    2016-01-01

    Surface morphology of Fe(III)–porphyrin thin layers was studied using atomic force microscopy. The thin layer samples used in these experiments were deposited by spin coating methods on indium–tin-oxide substrates at room temperature under atmospheric conditions. Variations of thin layer of Fe(III)-porphyrin were done by modifying the rotational speed and the concentration of the solution. The experimental results demonstrated that the Fe(III)–porphyrin layers were observed as discrete nanomo...

  19. Prior Surface Integrity Assessment of Coated and Uncoated Carbide Inserts Using Atomic Force Microscopy

    OpenAIRE

    Abdulla Almazrouee; Ayman Alaskari; Samy Oraby

    2011-01-01

    Coated carbide inserts are considered vital components in machining processes and advanced functional surface integrity of inserts and their coating are decisive factors for tool life. Atomic Force Microscopy (AFM) implementation has gained acceptance over a wide spectrum of research and science applications. When used in a proper systematic manner, the AFM features can be a valuable tool for assessment of tool surface integrity. The aim of this paper is to assess the integrity of coated and ...

  20. Atomic force microscopy study of the arrangement and mechanical properties of astrocytic cytoskeleton in growth medium

    OpenAIRE

    Efremov, Yu.; Dzyubenko, E.; Bagrov, D.; Maksimov, G.; Shram, S.; Shaitan, K.

    2011-01-01

    Astrocytes are quite interesting to study because of their role in the development of various neurodegenerative disorders. The present work describes an examination of the arrangement and mechanical properties of cytoskeleton of living astrocytes using atomic force microscopy (AFM). The experiments were performed with an organotypic culture of dorsal root ganglia (DRG) obtained from a chicken embryo. The cells were cultivated on a gelatinous substrate and showed strong adhesion. AFM allows on...

  1. Investigation into the correlation factor of substrate and multilayer film surfaces by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, J. V., E-mail: grishchenko.jv@gmail.com; Zanaveskin, M. L. [NBIC Centre, National Research Centre ' Kurchatov Institute' (Russian Federation)

    2013-05-15

    A method for studying the correlations between substrate and film-coating profiles by atomic force microscopy, which makes it possible to calculate the correlation factor (a function of spatial frequency), has been developed. The spatial-frequency range in which the correlation factor can be reliably calculated is established. The method proposed is used to calculate the dependence of the correlation factor on spatial frequency for multilayer interference mirror elements.

  2. Error sources in atomic force microscopy for dimensional measurements: Taxonomy and modeling

    DEFF Research Database (Denmark)

    Marinello, F.; Voltan, A.; Savio, E.

    2010-01-01

    This paper aimed at identifying the error sources that occur in dimensional measurements performed using atomic force microscopy. In particular, a set of characterization techniques for errors quantification is presented. The discussion on error sources is organized in four main categories......: scanning system, tip-surface interaction, environment, and data processing. The discussed errors include scaling effects, squareness errors, hysteresis, creep, tip convolution, and thermal drift. A mathematical model of the measurement system is eventually described, as a reference basis for errors...

  3. Comparison of photothermal and piezoacoustic excitation methods for frequency and phase modulation atomic force microscopy in liquid environments

    OpenAIRE

    Labuda, A.; Kobayashi, K; D. Kiracofe; Suzuki, K; P. H. Grütter; Yamada, H

    2011-01-01

    In attempting to perform frequency modulation atomic force microscopy (FM-AFM) in liquids, a non-flat phase transfer function in the self-excitation system prevents proper tracking of the cantilever natural frequency. This results in frequency-and-phase modulation atomic force microscopy (FPM-AFM) which lies in between phase modulation atomic force microscopy (PM-AFM) and FM-AFM. We derive the theory necessary to recover the conservative force and damping in such a situation, where standard F...

  4. Harnessing the damping properties of materials for high-speed atomic force microscopy.

    Science.gov (United States)

    Adams, Jonathan D; Erickson, Blake W; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E

    2016-02-01

    The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.

  5. A quantitative comparison of dura mater tissue structures measured with atomic force microscopy.

    Science.gov (United States)

    Sikora, Andrzej; Kedzia, Alicja

    2012-01-01

    The growth of a human embryo is a very sophisticated process. Understanding the way it proceeds is a key factor in pathology preventing and treating diseases. Therefore one needs to use advanced to tools and methods to investigate various aspects of the anatomy and physiology of humans during the first months of growth. This work is focused on the structure of dura mater tissue, one of the membranes protecting the brain, which can be responsible for a number of health issues if it develops abnormally. The aim of the work was to observe dura mater tissue structure with atomic force microscopy and to provide a quantitative method of discrimination of both the periosteal and meningeal layers in a 6-month-old human embryo. The measurements were performed with atomic force microscopy, in air, using tapping mode. The sample was stored in formaldehyde and dried prior to the measurements. The results obtained permitted observation of the structure of the tissue, in particular the presence of collagen fibers. By applying various image analysis tools, quantitative descriptions of both layers were created in order to distinguish them. The experiment proved that atomic force microscopy can be a useful tool in the investigation of the development process of the dura mater tissue in terms of the appearance of differences related to various functions of the periosteal and meningeal layers.

  6. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy.

    Science.gov (United States)

    Manibog, K; Yen, C F; Sivasankar, S

    2017-01-01

    Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges. © 2017 Elsevier Inc. All rights reserved.

  7. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bippes, Christian A; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J [BioTechnological Center, University of Technology, Tatzberg 47, D-01307 Dresden (Germany)

    2007-01-31

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.

  8. Microwave atomic force microscopy imaging for nanometer-scale electrical property characterization.

    Science.gov (United States)

    Zhang, Lan; Ju, Yang; Hosoi, Atsushi; Fujimoto, Akifumi

    2010-12-01

    We introduce a new type of microscopy which is capable of investigating surface topography and electrical property of conductive and dielectric materials simultaneously on a nanometer scale. The microwave atomic force microscopy is a combination of the principles of the scanning probe microscope and the microwave-measurement technique. As a result, under the noncontact AFM working conditions, we successfully generated a microwave image of a 200-nm Au film coating on a glass wafer substrate with a spatial resolution of 120 nm and a measured voltage difference of 19.2 mV between the two materials.

  9. Frequency Function in Atomic Force Microscopy Applied to a Liquid Environment

    Directory of Open Access Journals (Sweden)

    Po-Jen Shih

    2014-05-01

    Full Text Available Scanning specimens in liquids using commercial atomic force microscopy (AFM is very time-consuming due to the necessary try-and-error iteration for determining appropriate triggering frequencies and probes. In addition, the iteration easily contaminates the AFM tip and damages the samples, which consumes probes. One reason for this could be inaccuracy in the resonant frequency in the feedback system setup. This paper proposes a frequency function which varies with the tip-sample separation, and it helps to improve the frequency shift in the current feedback system of commercial AFMs. The frequency function is a closed-form equation, which allows for easy calculation, as confirmed by experimental data. It comprises three physical effects: the quasi-static equilibrium condition, the atomic forces gradient effect, and hydrodynamic load effect. While each of these has previously been developed in separate studies, this is the first time their combination has been used to represent the complete frequency phenomenon. To avoid “jump to contact” issues, experiments often use probes with relatively stiffer cantilevers, which inevitably reduce the force sensitivity in sensing low atomic forces. The proposed frequency function can also predict jump to contact behavior and, thus, the probe sensitivity could be increased and soft probes could be widely used. Additionally, various tip height behaviors coupling with the atomic forces gradient and hydrodynamic effects are discussed in the context of carbon nanotube probes.

  10. Noncontact Atomic Force Microscopy: An Emerging Tool for Fundamental Catalysis Research.

    Science.gov (United States)

    Altman, Eric I; Baykara, Mehmet Z; Schwarz, Udo D

    2015-09-15

    Although atomic force microscopy (AFM) was rapidly adopted as a routine surface imaging apparatus after its introduction in 1986, it has not been widely used in catalysis research. The reason is that common AFM operating modes do not provide the atomic resolution required to follow catalytic processes; rather the more complex noncontact (NC) mode is needed. Thus, scanning tunneling microscopy has been the principal tool for atomic scale catalysis research. In this Account, recent developments in NC-AFM will be presented that offer significant advantages for gaining a complete atomic level view of catalysis. The main advantage of NC-AFM is that the image contrast is due to the very short-range chemical forces that are of interest in catalysis. This motivated our development of 3D-AFM, a method that yields quantitative atomic resolution images of the potential energy surfaces that govern how molecules approach, stick, diffuse, and rebound from surfaces. A variation of 3D-AFM allows the determination of forces required to push atoms and molecules on surfaces, from which diffusion barriers and variations in adsorption strength may be obtained. Pushing molecules towards each other provides access to intermolecular interaction between reaction partners. Following reaction, NC-AFM with CO-terminated tips yields textbook images of intramolecular structure that can be used to identify reaction intermediates and products. Because NC-AFM and STM contrast mechanisms are distinct, combining the two methods can produce unique insight. It is demonstrated for surface-oxidized Cu(100) that simultaneous 3D-AFM/STM yields resolution of both the Cu and O atoms. Moreover, atomic defects in the Cu sublattice lead to variations in the reactivity of the neighboring O atoms. It is shown that NC-AFM also allows a straightforward imaging of work function variations which has been used to identify defect charge states on catalytic surfaces and to map charge transfer within an individual

  11. Atomic Force Microscopy Based Nanorobotics Modelling, Simulation, Setup Building and Experiments

    CERN Document Server

    Xie, Hui; Régnier, Stéphane; Sitti, Metin

    2012-01-01

    The atomic force microscope (AFM) has been successfully used to perform nanorobotic manipulation operations on nanoscale entities such as particles, nanotubes, nanowires, nanocrystals, and DNA since 1990s. There have been many progress on modeling, imaging, teleoperated or automated control, human-machine interfacing, instrumentation, and applications of AFM based nanorobotic manipulation systems in literature. This book aims to include all of such state-of-the-art progress in an organized, structured, and detailed manner as a reference book and also potentially a textbook in nanorobotics and any other nanoscale dynamics, systems and controls related research and education. Clearly written and well-organized, this text introduces designs and prototypes of the nanorobotic systems in detail with innovative principles of three-dimensional manipulation force microscopy and parallel imaging/manipulation force microscopy.

  12. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy.

    Science.gov (United States)

    Kannan, Ashwin; Karumanchi, Subbalakshmi Latha; Krishna, Vinatha; Thiruvengadam, Kothai; Ramalingam, Subramaniam; Gautam, Pennathur

    2014-01-01

    Colonization of surfaces by bacterial cells results in the formation of biofilms. There is a need to study the factors that are important for formation of biofilms since biofilms have been implicated in the failure of semiconductor devices and implants. In the present study, the adhesion force of biofilms (formed by Pseudomonas aeruginosa) on porous silicon substrates of varying surface roughness was quantified using atomic force microscopy (AFM). The experiments were carried out to quantify the effect of surface roughness on the adhesion force of biofilm. The results show that the adhesion force increased from 1.5 ± 0.5 to 13.2 ± 0.9 nN with increase in the surface roughness of silicon substrate. The results suggest that the adhesion force of biofilm is affected by surface roughness of substrate. © 2014 Wiley Periodicals, Inc.

  13. Application of atomic force microscopy to the study of natural and model soil particles.

    Science.gov (United States)

    Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J

    2008-09-01

    The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with

  14. Nanomechanical imaging of soft samples in liquid using atomic force microscopy

    Science.gov (United States)

    Minary-Jolandan, Majid; Yu, Min-Feng

    2013-10-01

    The widely used dynamic mode atomic force microscopy (AFM) suffers severe sensitivity degradation and noise increase when operated in liquid. The large hydrodynamic drag between the oscillating AFM cantilever and the surrounding liquid overwhelms the dissipative tip-sample interaction forces that are employed for nanomechanical imaging. In this article, we show that the recently developed Trolling-Mode AFM based on a nanoneedle probe can resolve nanomechanical properties on soft samples in liquid, enabled by the significantly reduced hydrodynamic drag between the cantilever and the liquid. The performance of the method was demonstrated by mapping mechanical properties of the membrane of living HeLa cells.

  15. Application of atomic force microscopy for investigation of Na(+),K(+)-ATPase signal-transducing function.

    Science.gov (United States)

    Khalisov, M M; Ankudinov, A V; Penniyaynen, V A; Dobrota, D; Krylov, Boris V

    2015-06-01

    The Young's modulus of 10-12-day-old chick embryos' sensory neurons cultivated in dissociated cell culture was measured using a PeakForce Quantitative Nanomechanical Mapping atomic force microscopy. The native cells were tested in control experiments and after application of ouabain. At low "endogenous" concentration of 10⁻¹⁰ M, ouabain tended to increase the rigidity of sensory neurons. We hypothesize that this trend resulted from activation of Na⁺,K⁺-ATPase signal-transducing function.

  16. Free-standing biomimetic polymer membrane imaged with atomic force microscopy

    DEFF Research Database (Denmark)

    Rein, Christian; Pszon-Bartosz, Kamila Justyna; Jensen, Karin Bagger Stibius

    2011-01-01

    Fluid polymeric biomimetic membranes are probed with atomic force microscopy (AFM) using probes with both normal tetrahedrally shaped tips and nanoneedle-shaped Ag2Ga rods. When using nanoneedle probes, the collected force volume data show three distinct membrane regions which match the expected...... membrane structure when spanning an aperture in a hydrophobic scaffold. The method used provides a general method for mapping attractive fluid surfaces. In particular, the nanoneedle probing allows for characterization of free-standing biomimetic membranes with thickness on the nanometer scale suspended...

  17. Local surface cleaning and cluster assembly using contact mode atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, D.-Q.; Sacher, E

    2003-04-15

    Conventional contact mode atomic force microscopy (AFM) has been used for local surface cleaning and cluster alignment. By using the AFM tip to sweep and push in contact mode, we have demonstrated that Cu clusters, prepared by vacuum evaporation onto Dow Cyclotene 3022 polymer and subsequent exposure to atmosphere, can easily be moved by the AFM tip, and assembled at the outer edge of the scanned region to form a line of clusters. We have found that the force applied by the tip plays an important role in the ease of cluster motion. Cyclotene surface treatment that enhances cluster adhesion hinders this ability, and may be used as a method of nanofabrication.

  18. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merghni, Abderrahmen, E-mail: abderrahmen_merghni@yahoo.fr [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Kammoun, Dorra [Laboratoire de Biomatériaux et Biotechnologie, Faculté de Médecine Dentaire, Monastir (Tunisia); Hentati, Hajer [Laboratoire de Recherche en Santé Orale et Réhabilitation Bucco-Faciale (LR12ES11), Faculté de Médecine Dentaire de Monastir, Université de Monastir (Tunisia); Janel, Sébastien [BioImaging Center Lille-FR3642, Lille (France); Popoff, Michka [Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Lafont, Frank [BioImaging Center Lille-FR3642, Lille (France); Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Aouni, Mahjoub [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Mastouri, Maha [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Laboratoire de Microbiologie, CHU Fattouma Bourguiba de Monastir (Tunisia)

    2016-08-30

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  19. Probing the interactions between lignin and inorganic oxides using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyu; Qian, Yong, E-mail: qianyong86@163.com; Deng, Yonghong; Liu, Di; Li, Hao; Qiu, Xueqing, E-mail: xueqingqiu66@163.com

    2016-12-30

    Graphical abstract: The interactions between lignin and inorganic oxides are quantitatively probed by atomic force microscopy, which is fundamental but beneficial for understanding and optimizing the absorption-dispersion and catalytic degradation processes of lignin. - Highlights: • The interactions between lignin and inorganic oxides are measured using AFM. • The adhesion forces between lignin and metal oxides are larger than that in nonmetal systems. • Hydrogen bond plays an important role in lignin-inorganic oxides system. - Abstract: Understanding the interactions between lignin and inorganic oxides has both fundamental and practical importance in industrial and energy fields. In this work, the specific interactions between alkali lignin (AL) and three inorganic oxide substrates in aqueous environment are quantitatively measured using atomic force microscopy (AFM). The results show that the average adhesion force between AL and metal oxide such as Al{sub 2}O{sub 3} or MgO is nearly two times bigger than that between AL and nonmetal oxide such as SiO{sub 2} due to the electrostatic difference and cation-π interaction. When 83% hydroxyl groups of AL is blocked by acetylation, the adhesion forces between AL and Al{sub 2}O{sub 3}, MgO and SiO{sub 2} decrease 43, 35 and 75% respectively, which indicate hydrogen bonds play an important role between AL and inorganic oxides, especially in AL-silica system.

  20. Quantitative imaging of electrospun fibers by PeakForce Quantitative NanoMechanics atomic force microscopy using etched scanning probes.

    Science.gov (United States)

    Chlanda, Adrian; Rebis, Janusz; Kijeńska, Ewa; Wozniak, Michal J; Rozniatowski, Krzysztof; Swieszkowski, Wojciech; Kurzydlowski, Krzysztof J

    2015-05-01

    Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Development of a combined atomic force microscopy and side-view imaging system for mechanotransduction research

    Science.gov (United States)

    Beicker, Kellie N.

    Key metrics for understanding cell response to mechanical stimuli include rearrangement of the cytoskeletal and nucleoskeletal structure, induced strains and biochemical distributions; however, structural information during applied stress is limited by our ability to image cells under load. In order to study the mechanics of single cells and subcellular components under load, I have developed a unique imaging system that combines an atomic force microscope (AFM) with both vertical light-sheet (VLS) illumination and a new imaging technique called PRISM - Pathway Rotated Imaging for Sideways Microscopy. The combined AFM and PRISM system facilitates the imaging of cell deformation in the direction of applied force with accompanying pico-Newton resolution force measurements. The additional inclusion of light-sheet microscopy improves the signal-to-noise ratio achieved by illumination of only a thin layer of the cell. This system is capable of pico-newton resolution force measurements with simultaneous side-view high frame rate imaging for single-molecule and single-cell force studies. Longer-term goals for this instrument are to investigate how external mechanical stimuli, specifically single-molecule interactions, alter gene expression, motility, and differentiation. The overall goal of my dissertation work is to design a tool useful for mechanobiology studies of single cells. This requires the design and implementation of PRISM and VLS systems that can be coupled to the standard Asylum AFM on inverted optical microscope. I also examine the strategy and implementation of experimental procedures and data analysis pipelines for single-cell and single-molecule force spectroscopy. These goals can be broken down as follows: • Performed single-molecule force spectroscopy experiments. • Performed single-cell force spectroscopy experiments. • Constructed and characterized the side-view microscopy system. • Applied combined AFM and side-vew microscopy system.

  2. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Science.gov (United States)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-08-01

    In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  3. Assessment of micro-mechanical variations in experimental arteriovenous fistulae using atomic force microscopy.

    Science.gov (United States)

    Laurito, Tyler; Sueiras, Vivian; Fernandez, Natasha; Escobar, Luis A; Martinez, Laisel; Andreopoulos, Fotios; Salman, Loay H; Vazquez-Padron, Roberto I; Ziebarth, Noël M

    2016-05-07

    This study presents a method to quantify micro-stiffness variations in experimental arteriovenous fistulae (AVF). AVF created by anastomosing the superficial epigastric vein to the femoral artery in Sprague-Dawley rats were allowed to remodel for 21 days before being harvested and preserved in culture medium. A custom atomic force microscope was used to measure microvascular stiffness (Young's modulus) in three areas of the AVF: the inflow artery, the juxta-anastomotic area, and the outflow vein. Morphometric measurements and collagen and elastin contents were also determined. Atomic force microscopy indentation revealed an increased stiffness in the juxta-anastomotic area of the AVF compared to the outflow vein and inflow artery. The juxta-anastomotic area was also significantly stiffer than the contralateral vein. The lack of elasticity (higher Young's modulus) of the juxta-anastomotic region was associated with a thicker vascular wall that was rich in collagen but poor in elastin. This study demonstrates for the first time the feasibility of using atomic force microscopy to measure local stiffness variations in experimental AVF. This technique could be instrumental in advancing our understanding of how micro-spatial organization of the AVF wall determines the overall biomechanical performance of this type of vascular access.

  4. The development of the spatially correlated adjustment wavelet filter for atomic force microscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, Andrzej, E-mail: sikora@iel.wroc.pl [Electrotechnical Institute, Division of Electrotechnology and Materials Science, M. Skłodowskiej-Curie 55/61, 50-369 Wrocław (Poland); Rodak, Aleksander [Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Unold, Olgierd [Institute of Computer Engineering, Control and Robotics, Faculty of Electronics, Wrocław University of Technology, Janiszewskiego 11/17, 50-372 Wrocław (Poland); Klapetek, Petr [Czech Metrology Institute, Okružní 31, 638 00 Brno (Czech Republic)

    2016-12-15

    In this paper a novel approach for the practical utilization of the 2D wavelet filter in terms of the artifacts removal from atomic force microscopy measurements results is presented. The utilization of additional data such as summary photodiode signal map is implemented in terms of the identification of the areas requiring the data processing, filtering settings optimization and the verification of the process performance. Such an approach allows to perform the filtering parameters adjustment by average user, while the straightforward method requires an expertise in this field. The procedure was developed as the function of the Gwyddion software. The examples of filtering the phase imaging and Electrostatic Force Microscopy measurement result are presented. As the wavelet filtering feature may remove a local artifacts, its superior efficiency over similar approach with 2D Fast Fourier Transformate based filter (2D FFT) can be noticed. - Highlights: • A novel approach to 2D wavelet-based filter for atomic force microscopy is shown. • The additional AFM measurement signal is used to adjust the filter. • Efficient removal of the local interference phenomena caused artifacts is presented.

  5. Real-Time Nanoparticle-Cell Interactions in Physiological Media by Atomic Force Microscopy.

    Science.gov (United States)

    Pyrgiotakis, Georgios; Blattmann, Christoph O; Demokritou, Philip

    2014-07-07

    Particle-cell interactions in physiological media are important in determining the fate and transport of nanoparticles and biological responses to them. In this work, these interactions are assessed in real time using a novel atomic force microscopy (AFM) based platform. Industry-relevant CeO2 and Fe2O3 engineered nanoparticles (ENPs) of two primary particle sizes were synthesized by the flame spray pyrolysis (FSP) based Harvard Versatile Engineering Nanomaterials Generation System (Harvard VENGES) and used in this study. The ENPs were attached on AFM tips, and the atomic force between the tip and lung epithelia cells (A549), adhered on a substrate, was measured in biological media, with and without the presence of serum proteins. Two metrics were used to assess the nanoparticle cell: the detachment force required to separate the ENP from the cell and the number of bonds formed between the cell and the ENPs. The results indicate that these atomic level ENP-cell interaction forces strongly depend on the physiological media. The presence of serum proteins reduced both the detachment force and the number of bonds by approximately 50% indicating the important role of the protein corona on the particle cell interactions. Additionally, it was shown that particle to cell interactions were size and material dependent.

  6. Adhesion measurement of micropatterned surfaces using three-dimensional-printed atomic force microscopy tips

    Science.gov (United States)

    Hung, Chih-Yi; Yeh, Yun-Peng; Sung, Cheng-Kuo; Liao, Wei-Chien; Chuang, Tzu-Han; Fu, Chien-Chung

    2017-06-01

    The aim of the present work is to fabricate three-dimensional-printed (3D-printed) atomic force microscopy (AFM) tips for the measurement of the adhesion force on micropatterned surfaces. The shape of the microstructure strongly affects the peeling-off process in the fabrication of flexible electronic devices, and we demonstrate the fabrication of a micropatterned structure for the peeling-off process from soft materials. Furthermore, the 3D-printed AFM tips not only have an optimized design but also increase the sensitivity of adhesion force measurement. We have demonstrated the conical 3D-printed AFM tips with the radii of the spherical end from 2 to 10 µm with various sensitivities of adhesive force measurement.

  7. Mapping power-law rheology of living cells using multi-frequency force modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryosuke; Okajima, Takaharu, E-mail: okajima@ist.hokudai.ac.jp [Graduate School of Information Science and Technology, Hokkaido University, Kita-ku N14 W9, Sapporo 060-0814 (Japan)

    2015-10-26

    We present multi-frequency force modulation atomic force microscopy (AFM) for mapping the complex shear modulus G* of living cells as a function of frequency over the range of 50–500 Hz in the same measurement time as the single-frequency force modulation measurement. The AFM technique enables us to reconstruct image maps of rheological parameters, which exhibit a frequency-dependent power-law behavior with respect to G{sup *}. These quantitative rheological measurements reveal a large spatial variation in G* in this frequency range for single cells. Moreover, we find that the reconstructed images of the power-law rheological parameters are much different from those obtained in force-curve or single-frequency force modulation measurements. This indicates that the former provide information about intracellular mechanical structures of the cells that are usually not resolved with the conventional force measurement methods.

  8. Looking at cell mechanics with atomic force microscopy: experiment and theory.

    Science.gov (United States)

    Benitez, Rafael; Toca-Herrera, José L

    2014-11-01

    This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented. © 2014 Wiley Periodicals, Inc.

  9. Preparation and atomic force microscopy of CTAB stabilized polythiophene nanoparticles thin film

    Energy Technology Data Exchange (ETDEWEB)

    Graak, Pinki; Devi, Ranjna; Kumar, Dinesh; Kumar, Sacheen, E-mail: sacheen3@gmail.com [Department of Electronic Science, Kurukshetra University, Kurukshetra, Haryana, India -136119 (India); Singh, Vishal [Centre for Material Science and Engineering, National Institute of Technology, Hamirpur, H.P. (India)

    2016-05-06

    Polythiophene nanoparticles were synthesized by iron catalyzed oxidative polymerization method. Polythiophene formation was detected by UV-Visible spectroscopy with λmax 375nm. Thin films of CTAB stabilized polythiophene nanoparticles was deposited on n-type silicon wafer by spin coating technique at 3000rpm in three cycles. Thickness of the thin films was computed as 300-350nm by ellipsometry. Atomic force micrscopyrevealws the particle size of polymeric nanoparticles in the range of 30nm to 100nm. Roughness of thinfilm was also analyzed from the atomic force microscopy data by Picoimage software. The observed RMS value lies in the range of 6 nm to 12 nm.

  10. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Eric M [ORNL

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  11. The development of the spatially correlated adjustment wavelet filter for atomic force microscopy data.

    Science.gov (United States)

    Sikora, Andrzej; Rodak, Aleksander; Unold, Olgierd; Klapetek, Petr

    2016-12-01

    In this paper a novel approach for the practical utilization of the 2D wavelet filter in terms of the artifacts removal from atomic force microscopy measurements results is presented. The utilization of additional data such as summary photodiode signal map is implemented in terms of the identification of the areas requiring the data processing, filtering settings optimization and the verification of the process performance. Such an approach allows to perform the filtering parameters adjustment by average user, while the straightforward method requires an expertise in this field. The procedure was developed as the function of the Gwyddion software. The examples of filtering the phase imaging and Electrostatic Force Microscopy measurement result are presented. As the wavelet filtering feature may remove a local artifacts, its superior efficiency over similar approach with 2D Fast Fourier Transformate based filter (2D FFT) can be noticed. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering.

    Science.gov (United States)

    Marrese, Marica; Guarino, Vincenzo; Ambrosio, Luigi

    2017-02-13

    Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM) are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles).

  13. Atomic Force Microscopy: A Powerful Tool to Address Scaffold Design in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Marica Marrese

    2017-02-01

    Full Text Available Functional polymers currently represent a basic component of a large range of biological and biomedical applications including molecular release, tissue engineering, bio-sensing and medical imaging. Advancements in these fields are driven by the use of a wide set of biodegradable polymers with controlled physical and bio-interactive properties. In this context, microscopy techniques such as Atomic Force Microscopy (AFM are emerging as fundamental tools to deeply investigate morphology and structural properties at micro and sub-micrometric scale, in order to evaluate the in time relationship between physicochemical properties of biomaterials and biological response. In particular, AFM is not only a mere tool for screening surface topography, but may offer a significant contribution to understand surface and interface properties, thus concurring to the optimization of biomaterials performance, processes, physical and chemical properties at the micro and nanoscale. This is possible by capitalizing the recent discoveries in nanotechnologies applied to soft matter such as atomic force spectroscopy to measure surface forces through force curves. By tip-sample local interactions, several information can be collected such as elasticity, viscoelasticity, surface charge densities and wettability. This paper overviews recent developments in AFM technology and imaging techniques by remarking differences in operational modes, the implementation of advanced tools and their current application in biomaterials science, in terms of characterization of polymeric devices in different forms (i.e., fibres, films or particles.

  14. Nanoprobing of α-synuclein misfolding and aggregation with atomic force microscopy.

    Science.gov (United States)

    Yu, Junping; Warnke, Julia; Lyubchenko, Yuri L

    2011-04-01

    Atomic force microscopy (AFM) force spectroscopy is a technique with broad nanomedical applications, widely used for the characterization of molecular interactions on the nanoscale. Here we test this technique to evaluate compounds for influencing the protein aggregation process. The results demonstrate that Zn(2+) or Al(3+) cations bring about a dramatic increase of α-synuclein interactions in unfavorable conditions for α-synuclein misfolding (neutral pH). We did not observe the effect of dopamine at favorable conditions for α-synuclein misfolding (acidic pH). We also found that electrostatic interactions do not play a significant role at acidic pH. These findings are generally in line with previous studies by various techniques. The high sensitivity of AFM force spectroscopy as well as its ability to test compounds for the same experimental system makes AFM an efficient nanotool for rapid analysis of compounds inhibiting early protein aggregation studies and quantitative selection of potential therapeutics for neurodegenerative diseases. Atomic force microscopy is used to interrogate the influence of cations and α-synuclein on the protein aggregation process. The report illustrates an application of AFM to unravel the potential of novel therapeutics on early protein aggregation intrinsic in neurodegenerative diseases. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Probing deviations from traditional colloid filtration theory by atomic forces microscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Reno, Marissa Devan

    2005-12-01

    Colloid transport through saturated media is an integral component of predicting the fate and transport of groundwater contaminants. Developing sound predictive capabilities and establishing effective methodologies for remediation relies heavily on our ability to understand the pertinent physical and chemical mechanisms. Traditionally, colloid transport through saturated media has been described by classical colloid filtration theory (CFT), which predicts an exponential decrease in colloid concentration with travel distance. Furthermore, colloid stability as determined by Derjaguin-Landau-Veney-Overbeek (DLVO) theory predicts permanent attachment of unstable particles in a primary energy minimum. However, recent studies show significant deviations from these traditional theories. Deposition in the secondary energy minimum has been suggested as a mechanism by which observed deviations can occur. This work investigates the existence of the secondary energy minimum as predicted by DLVO theory using direct force measurements obtained by Atomic Forces Microscopy. Interaction energy as a function of separation distance between a colloid and a quartz surface in electrolyte solutions of varying ionic strength are obtained. Preliminary force measurements show promise and necessary modifications to the current experimental methodology have been identified. Stringent surface cleaning procedures and the use of high-purity water for all injectant solutions is necessary for the most accurate and precise measurements. Comparisons between direct physical measurements by Atomic Forces Microscopy with theoretical calculations and existing experimental findings will allow the evaluation of the existence or absence of a secondary energy minimum.

  16. Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001

    Science.gov (United States)

    Steele, A.; Goddard, D.; Beech, I. B.; Tapper, R. C.; Stapleton, D.; Smith, J. R.

    1998-01-01

    A combination of scanning electron microscopy (SEM) and environmental scanning electron microscopy (ESEM) techniques, as well as atomic force microscopy (AFM) methods has been used to study fragments of the Martian meteorite ALH84001. Images of the same areas on the meteorite were obtained prior to and following gold/palladium coating by mapping the surface of the fragment using ESEM coupled with energy-dispersive X-ray analysis. Viewing of the fragments demonstrated the presence of structures, previously described as nanofossils by McKay et al. (Search for past life on Mars--possible relic biogenic activity in martian meteorite ALH84001. Science, 1996, pp. 924-930) of NASA who used SEM imaging of gold-coated meteorite samples. Careful imaging of the fragments revealed that the observed structures were not an artefact introduced by the coating procedure.

  17. Investigating biomolecular recognition at the cell surface using atomic force microscopy.

    Science.gov (United States)

    Wang, Congzhou; Yadavalli, Vamsi K

    2014-05-01

    Probing the interaction forces that drive biomolecular recognition on cell surfaces is essential for understanding diverse biological processes. Force spectroscopy has been a widely used dynamic analytical technique, allowing measurement of such interactions at the molecular and cellular level. The capabilities of working under near physiological environments, combined with excellent force and lateral resolution make atomic force microscopy (AFM)-based force spectroscopy a powerful approach to measure biomolecular interaction forces not only on non-biological substrates, but also on soft, dynamic cell surfaces. Over the last few years, AFM-based force spectroscopy has provided biophysical insight into how biomolecules on cell surfaces interact with each other and induce relevant biological processes. In this review, we focus on describing the technique of force spectroscopy using the AFM, specifically in the context of probing cell surfaces. We summarize recent progress in understanding the recognition and interactions between macromolecules that may be found at cell surfaces from a force spectroscopy perspective. We further discuss the challenges and future prospects of the application of this versatile technique. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Investigation of atomic species in Pt-induced nanowires on Ge(001) surface by combined atomic force and scanning tunneling microscopy

    Science.gov (United States)

    Inami, Eiichi; Sugimoto, Yoshiaki; Shinozaki, Takuya; Gurlu, Oguzhan; Yurtsever, Ayhan

    2017-10-01

    We have studied identification of atomic species in Pt-induced nanowires self-assembled on the Ge(001) surface by combining scanning tunneling microscopy (STM) and atomic force microscopy (AFM). A small number of Sn atoms substituted in the top atomic chains were utilized as references to identify the target atomic species. Force spectroscopy data taken above single atoms on the Sn-substituted nanowires showed that the ratio between the maximum attractive forces above the Sn and the pristine chain atoms exhibited a constant value of 0.86. The obtained ratio was identical to that between Sn and Ge atoms, strongly suggestive that the top ridge of the Pt-induced nanowire was composed of Ge dimers. Our findings also demonstrate that AFM chemical identification method can be used to identify the unknown atomic species on surfaces, regardless of the homogeneity in the atomic composition, which has not been addressed so far.

  19. Role of lateral forces on atom manipulation process on Si(111)-(7 ×7 ) surface in dynamic force microscopy

    Science.gov (United States)

    Yurtsever, Ayhan; Abe, Masayuki; Morita, Seizo; Sugimoto, Yoshiaki

    2017-10-01

    We investigated the role of lateral force components on the lateral manipulation of intrinsic Si adatoms toward a vacancy site on a Si(111)-(7 ×7 ) surface using noncontact atomic force microscopy at room temperature. Lateral atom manipulation was accomplished via constant-height scans using a set of tips with varying chemical reactivities. We determined the vertical and lateral force as well as the interaction energy profiles associated with the lateral manipulation of a Si adatom on a Si(111)-(7 ×7 ) surface. Our results demonstrate that lateral forces do not play a decisive role in the manipulation process while the vertical force component is key for the manipulation process, and the ability to manipulate the Si adatom depends primarily on the chemical nature of the tip apex. Our results further reveal that the tips that exhibit high chemical reactivity with Si adatoms have a sharper interaction energy profile above Si adatoms than tips with less chemical reactivity, indicating the stronger atom-trapping ability of the chemically reactive tips. This characteristic property gives tips the ability to create localized reductions in the energy barrier required for adatom movement, thereby enabling thermally induced adatom hopping toward the tip. These findings can enhance our understanding of the underlying mechanisms involved in the lateral manipulation of intrinsic adatoms of semiconductor surfaces, as well as adsorbate atoms/molecules forming covalent bonds with tip-surface systems, i.e., chemisorption systems.

  20. Investigating the crystal growth behavior of biodegradable polymer blend thin films using in situ atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-01-01

    Full Text Available This article reports the crystal growth behavior of biodegradable polylactide (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend thin films using atomic force microscopy (AFM). Currently, polymer thin films have received increased research...

  1. Roles of curli, cellulose and BapA in Salmonella biofilm morphology studied by atomic force microscopy

    National Research Council Canada - National Science Library

    Jonas, Kristina; Tomenius, Henrik; Kader, Abdul; Normark, Staffan; Römling, Ute; Belova, Lyubov M; Melefors, Ojar

    2007-01-01

    .... In this study we have investigated the roles of these components for the morphology of bacteria grown as colonies on agar plates and within a biofilm on submerged mica surfaces by applying atomic force microscopy (AFM...

  2. Correction: Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy.

    Science.gov (United States)

    Amano, Ken-Ichi; Liang, Yunfeng; Miyazawa, Keisuke; Kobayashi, Kazuya; Hashimoto, Kota; Fukami, Kazuhiro; Nishi, Naoya; Sakka, Tetsuo; Onishi, Hiroshi; Fukuma, Takeshi

    2016-08-07

    Correction for 'Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy' by Ken-ichi Amano et al., Phys. Chem. Chem. Phys., 2016, 18, 15534-15544.

  3. Quantification of tip-broadening in non-contact atomic force microscopy with carbon nanotube tips

    DEFF Research Database (Denmark)

    Meinander, Kristoffer; Jensen, Thomas N.; Simonsen, Soren B.

    2012-01-01

    Carbon nanotube terminated atomic force microscopy (AFM) probes have been used for the imaging of 5 nm wide surface supported Pt nanoclusters by non-contact (dynamic mode) AFM in an ultra-high vacuum. The results are compared to AFM measurements done with conventional Si-tips, as well as with tra......Carbon nanotube terminated atomic force microscopy (AFM) probes have been used for the imaging of 5 nm wide surface supported Pt nanoclusters by non-contact (dynamic mode) AFM in an ultra-high vacuum. The results are compared to AFM measurements done with conventional Si-tips, as well...... as with transmission electron microscopy images, which give accurate measures for cluster widths. Despite their ideal aspect ratio, tip-broadening is concluded to be a severe problem even when imaging with carbon nanotube tips, which overestimates the cluster width by several times the nominal width of the nanotube...... tip. This broadening is attributed to a bending of the carbon nanotubes, and not to pure geometrical factors, which coincidentally results in a significant improvement for relative height measurements of tightly spaced high aspect ratio structures, as compared to what can be achieved...

  4. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.; Jämting, Åsa K.; Herrmann, Jan [National Measurement Institute, 36 Bradfield Road, West Lindfield, New South Wales 2070 (Australia)

    2016-06-07

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation to zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.

  5. Drive-amplitude-modulation atomic force microscopy: From vacuum to liquids

    Directory of Open Access Journals (Sweden)

    Miriam Jaafar

    2012-04-01

    Full Text Available We introduce drive-amplitude-modulation atomic force microscopy as a dynamic mode with outstanding performance in all environments from vacuum to liquids. As with frequency modulation, the new mode follows a feedback scheme with two nested loops: The first keeps the cantilever oscillation amplitude constant by regulating the driving force, and the second uses the driving force as the feedback variable for topography. Additionally, a phase-locked loop can be used as a parallel feedback allowing separation of the conservative and nonconservative interactions. We describe the basis of this mode and present some examples of its performance in three different environments. Drive-amplutide modulation is a very stable, intuitive and easy to use mode that is free of the feedback instability associated with the noncontact-to-contact transition that occurs in the frequency-modulation mode.

  6. Mapping of endoglucanases displayed on yeast cell surface using atomic force microscopy.

    Science.gov (United States)

    Takenaka, Musashi; Kobayashi, Takuya; Inokuma, Kentaro; Hasunuma, Tomohisa; Maruyama, Tatsuo; Ogino, Chiaki; Kondo, Akihiko

    2017-03-01

    The surface of yeast cells has been an attractive interface for the effective use of cellulose. Surface enzymes, however, are difficult to visualize and evaluate. In this study, two kinds of unique anchoring regions were used to display the cellulase, endoglucanase (EG), on a yeast cell surface. Differences in the display level and the localization of EG were observed by atomic force microscopy. By surveying the yeast cell surface with a chemically modified cantilever, the interactive force between the cellulose and EG was measured. Force curve mapping revealed differences in the display levels and the localization of EG according to anchoring regions. The proposed methodology enables visualization of displayed enzymes such as EG on the yeast cell surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Nanoscale imaging and characterization of Caenorhabditis elegans epicuticle using atomic force microscopy.

    Science.gov (United States)

    Fakhrullina, Gölnur; Akhatova, Farida; Kibardina, Maria; Fokin, Denis; Fakhrullin, Rawil

    2017-02-01

    Here we introduce PeakForce Tapping non-resonance atomic force microscopy for imaging and nanomechanical mapping of Caenorhabditis elegans nematodes. The animals were imaged both in air and water at nanoscale resolution. Layer-by-layer glass surface modification was employed to secure the worms for imaging in water. Microtopography of head region, annuli, furrows, lateral alae and tail region was visualized. Analysis of nanoscale surface features obtained during AFM imaging of three larval and adult hermaphrodite nematodes in natural environment allowed for numerical evaluation of annuli periodicity, furrows depth and annuli roughness. Nanomechanical mapping of surface deformation, Young modulus and adhesion confirms that the mechanical properties of the nematode cuticle are non-uniform. Overall, PeakForce Tapping AFM is a robust and simple approach applicable for nanoscale three-dimensional imaging and characterization of C. elegans nematodes. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A Novel Graphene Oxide-Based Protein Interaction Measurement Using Atomic Force Microscopy.

    Science.gov (United States)

    Han, Sung-Woong; Morita, Kyohei; Adachi, Taiji

    2015-02-01

    Graphene oxide (GO) is a promising material for biological applications because of its excellent physical/chemical properties such as aqueous processability, amphiphilicity, and surface functionalizability. Here we introduce a new biological application of GO, a novel GO-based technique for probing protein interactions using atomic force microscopy (AFM). GO sheets were intercalated between the protein-modified AFM probe and the polymer substrate in order to reduce the non-specific adhesion force observed during single-molecule force spectroscopy (SMFS). In this study, we used SMFS to probe the interaction of the actin filament and actin-related protein 2/3 complex (Arp2/3), an actin-binding protein. Our results confirm that the GO sheet reduces nonspecific adhesion of the probe to the substrate. Using the GO-based technique, we succeeded in estimating the dissociation constant of the actin filament-binding protein interaction.

  9. Specialized probes based on hydroxyapatite calcium for heart tissues research by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, Mikhail, E-mail: cloudjyk@yandex.ru; Golubok, Alexander [St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskii pr. 49, St. Petersburg, 197101 (Russian Federation); Institute for Analytical Instrumentation, Russian Academy of Sciences (RAS), Rizhskii pr. 26, St. Petersburg, 190103 (Russian Federation); Gulyaev, Nikolai [Military Medical Academy named after S.M. Kirov, Academic Lebedev str. 6, St. Petersburg, 194044 (Russian Federation)

    2016-06-17

    The new specialized AFM-probes with hydroxyapatite structures for atomic force microscopy of heart tissues calcification were created and studied. A process of probe fabrication is demonstrated. The adhesive forces between specialized hydroxyapatite probe and endothelium/subendothelial layers were investigated. It was found that the adhesion forces are significantly higher for the subendothelial layers. We consider that it is connected with the formation and localization of hydroxyapatite in the area of subendothelial layers of heart tissues. In addition, the roughness analysis and structure visualization of the endothelial surface of the heart tissue were carried out. The results show high efficiency of created specialized probes at study a calcinations process of the aortic heart tissues.

  10. Atomic force microscopy identifies regions of distinct desmoglein 3 adhesive properties on living keratinocytes.

    Science.gov (United States)

    Vielmuth, Franziska; Hartlieb, Eva; Kugelmann, Daniela; Waschke, Jens; Spindler, Volker

    2015-04-01

    Desmosomes provide strong cell-cell adhesion which is crucial for the integrity of tissues such as the epidermis. However, nothing is known about the distribution and binding properties of desmosomal adhesion molecules on keratinocytes. Here we used atomic force microscopy (AFM) to simultaneously visualize the topography of living human keratinocytes and the distribution and binding properties of the desmosomal adhesion molecule desmoglein 3 (Dsg3). Using recombinant Dsg3 as sensor, binding events were detectable diffusely and in clusters on the cell surface and at areas of cell-cell contact. This was blocked by removing Ca(2+) and by addition of Dsg3-specific antibodies indicating homophilic Dsg3 binding. Binding forces of Dsg3 molecules were lower on the cell surface compared to areas of cell-cell contact. Our data for the first time directly demonstrate the occurrence of Dsg3 molecules outside of desmosomes and show that Dsg3 adhesive properties differ depending on their localization. From the clinical editor: Using atomic force microscopy in the study of keratinocytes, this study directly demonstrates the occurrence of desmoglein 3 molecules outside of desmosomes and reveales that the adhesive properties of these molecules do differ depending on their localization. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Cellulose fibril aggregation studies of Eucalyptus dissolving pulps using atomic force microscopy

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2006-11-01

    Full Text Available AGGREGATION STUDIES OF Eucalyptus DISSOLVING PULPS USING ATOMIC FORCE MICROSCOPY V. Chunilall1,3, J.Wesley-Smith2 and T. Bush1,3 1CSIR, Forestry and Forest Product Research Centre, P.O. Box 17001, Congella, 4013, South Africa. 2Electron Microscope... by previous studies using solid state NMR, where it was shown that oven drying irreversibly increases the LFAD of dissolving pulps 2, 3. References 1. Chunilall, V., Wesley-Smith, J., Bush, T. (2006) Proc. Microsc. Soc. South Afr., 36, 45. 2. Larsson...

  12. Atomic Force Microscopy Studies on DNA Structural Changes Induced by Vincristine Sulfate and Aspirin

    Science.gov (United States)

    Zhu, Yi; Zeng, Hu; Xie, Jianming; Ba, Long; Gao, Xiang; Lu, Zuhong

    2004-04-01

    We report that atomic force microscopy (AFM) studies on structural variations of a linear plasmid DNA interact with various concentrations of vincristine sulfate and aspirin. The different binding images show that vincrinstine sulfate binding DNA chains caused some loops and cleavages of the DNA fragments, whereas aspirin interaction caused the width changes and conformational transition of the DNA fragments. Two different DNA structural alternations could be explained by the different mechanisms of the interactions with these two components. Our work indicates that the AFM is a powerful tool in studying the interaction between DNA and small molecules.

  13. Three-dimensional nanometrology of microstructures by replica molding and large-range atomic force microscopy

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Michael-Lindhard, Jonas; Simons, Hugh

    2015-01-01

    We have used replica molding and large-range atomic force microscopy to characterize the threedimensional shape of high aspect ratio microstructures. Casting inverted replicas of microstructures using polydimethylsiloxane (PDMS) circumvents the inability of AFM probes to measure deep and narrow...... cavities. We investigated cylindrical deep reactive ion etched cavities in silicon wafers and determined the radius of curvature (ROC) of the sidewalls as a function of depth. Statistical analysis verified the reliability and reproducibility of the replication procedure. The mean ROC was determined as (6...

  14. Nanosecond switching in GeSe phase change memory films by atomic force microscopy

    Science.gov (United States)

    Bosse, James L.; Grishin, Ilya; Gyu Choi, Yong; Cheong, Byung-ki; Lee, Suyoun; Kolosov, Oleg V.; Huey, Bryan D.

    2014-02-01

    Nanosecond scale threshold switching is investigated with conducting atomic force microscopy (AFM) for an amorphous GeSe film. Switched bits exhibit 2-3 orders of magnitude variations in conductivity, as demonstrated in phase change based memory devices. Through the nm-scale AFM probe, this crystallization was achieved with pulse durations of as low as 15 ns, the fastest reported with scanning probe based methods. Conductance AFM imaging of the switched bits further reveals correlations between the switched volume, pulse amplitude, and pulse duration. The influence of film heterogeneities on switching is also directly detected, which is of tremendous importance for optimal device performance.

  15. Fabrication of metal nanostructures by atomic force microscopy nanomachining and related applications.

    Science.gov (United States)

    Lin, Hsin-Yu; Chen, Hsiang-An; Wu, Yi-Jen; Huang, Jyh-Hann; Lin, Heh-Nan

    2010-07-01

    In this work, the fabrication of metal nanostructures by a combination of atomic force microscopy nanomachining on a thin polymer resist, metal coating and lift-off is presented. Nanodots with sizes down to 20 nm and nanowires with widths ranging between 40 and 100 nm have been successfully created by nanoindenting and nanoscratching. The results exemplify the feasibility and effectiveness of the present technique as an alternative to e-beam lithography. The localized surface plasmon resonance properties of the fabricated nanostructures are characterized. The chemical sensing capability of a single nanowire based on resistance increase is also demonstrated.

  16. A review of the application of atomic force microscopy (AFM) in food science and technology.

    Science.gov (United States)

    Liu, Shaoyang; Wang, Yifen

    2011-01-01

    Atomic force microscopy (AFM) is a powerful nanoscale analysis technique used in food area. This versatile technique can be used to acquire high-resolution sample images and investigate local interactions in air or liquid surroundings. In this chapter, we explain the principles of AFM and review representative applications of AFM in gelatin, casein micelle, carrageenan, gellan gum, starch, and interface. We elucidate new knowledge revealed with AFM as well as ways to use AFM to obtain morphology and rheology information in different food fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Adsorption of chitosan onto carbonaceous surfaces and its application: atomic force microscopy study.

    Science.gov (United States)

    Tan, Shengnan; Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Xing, Zhimin; Zhao, Lin; Sun, Tongze; Zhou, Zhen

    2011-04-15

    The adsorption of chitosan onto highly ordered pyrolytic graphite(HOPG) surfaces and its applications have been studied by atomic force microscopy (AFM). The results indicated that chitosan topography formed on the HOPG surface significantly depends on the pH conditions and its concentration for the incubation. Under strongly acidic conditions (pH applications of these chitosan structures on HOPG have been explored. Preliminary results characterized by AFM and XPS indicated that the chitosan network formed on the HOPG surface can be used for AFM lithography, selective adsorption of gold nanoparticles and DNA molecules.

  18. The use of atomic force microscopy for 3D analysis of nucleic acid hybridization on microarrays

    OpenAIRE

    Dubrovin, E.; Presnova, G.; Rubtsova, M.; Egorov, A.; Grigorenko, V.; Yaminsky, I.

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, ...

  19. Frequency, amplitude, and phase measurements in contact resonance atomic force microscopies

    Directory of Open Access Journals (Sweden)

    Gheorghe Stan

    2014-03-01

    Full Text Available The resonance frequency, amplitude, and phase response of the first two eigenmodes of two contact-resonance atomic force microscopy (CR-AFM configurations, which differ in the method used to excite the system (cantilever base vs sample excitation, are analyzed in this work. Similarities and differences in the observables of the cantilever dynamics, as well as the different effect of the tip–sample contact properties on those observables in each configuration are discussed. Finally, the expected accuracy of CR-AFM using phase-locked loop detection is investigated and quantification of the typical errors incurred during measurements is provided.

  20. Atomic force microscopy study of the adsorption of protein molecules on transferred Langmuir monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Gainutdinov, R. V., E-mail: radmir@ns.crys.ras.ru; Tolstikhina, A. L.; Stepina, N. D. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Novikova, N. N. [Russian Research Center Kurchatov Institute (Russian Federation); Yur' eva, E. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Khripunov, A. K. [Russian Academy of Sciences, Institute of Macromolecular Compounds (Russian Federation)

    2010-09-15

    Ordered protein films have been obtained by the adsorption of protein molecules on a Langmuir monolayer, which had previously formed on a silicon substrate, using the Langmuir-Blodgett and molecular self-organization methods. A mixture of cholesterol with dipalmitoylphosphatidylcholine (DPPC) and a polymer-cellulose acetopivalinate-were used as immobilization materials. Protein molecules (catalase and alkaline phosphatase) immobilized on solid substrates have been investigated by atomic force micros-copy. It was shown that the developed combined technique provides a deposition of homogeneous ultrathin protein films with a high degree of filling.

  1. Molecular positional order in Langmuir-Blodgett films by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bourdieu, L.; Ronsin, O.; Chatenay, D. (Inst. Curie, Paris (France))

    1993-02-05

    Langmuir-Blodgett films of barium arachidate have been studied on both macroscopic and microscopic scales by atomic force microscopy. As prepared, the films exhibit a disordered hexagonal structure; molecularly resolved images in direct space establish a connection between the extent of the positional order and the presence of defects such as dislocations. Upon heating, the films reorganize into a more condensed state with a centered rectangular crystallographic arrangement; in this new state the films exhibit long-range positional order and unusual structural features, such as a height modulation of the arachidic acid molecules. 22 refs., 4 figs.

  2. Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xiaoning; Tittmann, Bernhard [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Kim, Seong H. [Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-01-14

    An atomic force microscopy based nanoindentation method was employed to study how the structure of cellulose microfibril packing and matrix polymers affect elastic modulus of fully hydrated primary plant cell walls. The isolated, single-layered abaxial epidermis cell wall of an onion bulb was used as a test system since the cellulose microfibril packing in this cell wall is known to vary systematically from inside to outside scales and the most abundant matrix polymer, pectin, can easily be altered through simple chemical treatments such as ethylenediaminetetraacetic acid and calcium ions. Experimental results showed that the pectin network variation has significant impacts on the cell wall modulus, and not the cellulose microfibril packing.

  3. Imaging three-dimensional surface objects with submolecular resolution by atomic force microscopy.

    Science.gov (United States)

    Moreno, César; Stetsovych, Oleksandr; Shimizu, Tomoko K; Custance, Oscar

    2015-04-08

    Submolecular imaging by atomic force microscopy (AFM) has recently been established as a stunning technique to reveal the chemical structure of unknown molecules, to characterize intramolecular charge distributions and bond ordering, as well as to study chemical transformations and intermolecular interactions. So far, most of these feats were achieved on planar molecular systems because high-resolution imaging of three-dimensional (3D) surface structures with AFM remains challenging. Here we present a method for high-resolution imaging of nonplanar molecules and 3D surface systems using AFM with silicon cantilevers as force sensors. We demonstrate this method by resolving the step-edges of the (101) anatase surface at the atomic scale by simultaneously visualizing the structure of a pentacene molecule together with the atomic positions of the substrate and by resolving the contour and probe-surface force field on a C60 molecule with intramolecular resolution. The method reported here holds substantial promise for the study of 3D surface systems such as nanotubes, clusters, nanoparticles, polymers, and biomolecules using AFM with high resolution.

  4. Number density distribution of solvent molecules on a substrate: a transform theory for atomic force microscopy.

    Science.gov (United States)

    Amano, Ken-Ichi; Liang, Yunfeng; Miyazawa, Keisuke; Kobayashi, Kazuya; Hashimoto, Kota; Fukami, Kazuhiro; Nishi, Naoya; Sakka, Tetsuo; Onishi, Hiroshi; Fukuma, Takeshi

    2016-06-21

    Atomic force microscopy (AFM) in liquids can measure a force curve between a probe and a buried substrate. The shape of the measured force curve is related to hydration structure on the substrate. However, until now, there has been no practical theory that can transform the force curve into the hydration structure, because treatment of the liquid confined between the probe and the substrate is a difficult problem. Here, we propose a robust and practical transform theory, which can generate the number density distribution of solvent molecules on a substrate from the force curve. As an example, we analyzed a force curve measured by using our high-resolution AFM with a newly fabricated ultrashort cantilever. It is demonstrated that the hydration structure on muscovite mica (001) surface can be reproduced from the force curve by using the transform theory. The transform theory will enhance AFM's ability and support structural analyses of solid/liquid interfaces. By using the transform theory, the effective diameter of a real probe apex is also obtained. This result will be important for designing a model probe of molecular scale simulations.

  5. Robust High-Resolution Imaging and Quantitative Force Spectroscopy in Vacuum with Tuned-Oscillator Atomic Force Microscopy.

    Science.gov (United States)

    Schwarz, Udo; Dagdeviren, Omur; GöTzen, Jan; HöLscher, Hendrik; Altman, Eric

    Atomic force microscopy and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip's vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential's nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact atomic force microscopy has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator's response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement. Financial support from National Science Foundation through the Yale Materials Research Science and Engineering Center (Grant No. MRSEC DMR-1119826) is gratefully acknowledged.

  6. Measurements on hydrophobic and hydrophilic surfaces using a porous gamma alumina nanoparticle aggregate mounted on Atomic Force Microscopy cantilevers

    NARCIS (Netherlands)

    Das, Theerthankar; Becker, Thomas; Nair, Balagopal N.

    2010-01-01

    Atomic Force Microscopy (AFM) measurements are extensively used for a detailed understanding of molecular and surface forces. In this study, we present a technique for measuring such forces, using an AFM cantilever attached with a porous gamma alumina nanoparticle aggregate. The modified cantilever

  7. Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies.

    Science.gov (United States)

    Mollick, Safiul Alam; Kumar, Mohit; Singh, Ranveer; Satpati, Biswarup; Ghose, Debabrata; Som, Tapobrata

    2016-10-28

    Nanoarchitecture by atomic manipulation is considered to be one of the emerging trends in advanced functional materials. It has a gamut of applications to offer in nanoelectronics, chemical sensing, and nanobiological science. In particular, highly ordered one-dimensional semiconductor nanostructures fabricated by self-organization methods are in high demand for their high aspect ratios and large number of applications. An efficient way of fabricating semiconductor nanostructures is by molecular beam epitaxy, where atoms are added to a crystalline surface at an elevated temperature during growth, yielding the desired structures in a self-assembled manner. In this article, we offer a room temperature process, in which atoms are sputtered away by ion impacts. Using gold ion implantation, the present study reports on the formation of highly ordered self-organized long grating-like nanostructures, with grooves between them, on a germanium surface. The ridges of the patterns are shown to have flower-like protruding nanostructures, which are mostly decorated by gold atoms. By employing local probe microscopic techniques like Kelvin probe force microscopy and conductive atomic force microscopy, we observe a spatial variation in the work function and different nanoscale electrical conductivity on the ridges of the patterns and the grooves between them, which can be attributed to gold atom decorated ridges. Thus, the architecture  presented offers the advantage of using the patterned germanium substrates as periodic arrays of conducting ridges and poorly conducting grooves between them.

  8. Characterization of virus-like particles by atomic force microscopy in ambient conditions

    Science.gov (United States)

    Oropesa, Reinier; Ramos, Jorge R.; Falcón, Viviana; Felipe, Ariel

    2013-06-01

    Recombinant virus-like particles (VLPs) are attractive candidates for vaccine design since they resemble native viroids in size and morphology, but they are non-infectious due to the absence of a viral genome. The visualization of surface morphologies and structures can be used to deepen the understanding of physical, chemical, and biological phenomena. Atomic force microscopy (AFM) is a useful tool for the visualization of soft biological samples in a nanoscale resolution. In this work we have investigated the morphology of recombinant surface antigens of hepatitis B (rHBsAg) VLPs from Cuban vaccine against hepatitis B. The rHBsAg VLPs sizes estimated by AFM between 15 and 30 nm are similar to those reported on previous transmission electron microscopy (TEM) studies.

  9. Observation of liposomes of differing lipid composition in aqueous medium by means of atomic force microscopy.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Sakai-Kato, Kumiko; Abe, Yasuhiro; Kawanishi, Toru; Okuda, Haruhiro; Goda, Yukihiro

    2016-08-01

    Liposomes present a challenge for atomic force microscopy (AFM) observation in aqueous medium because they easily collapse. Here, we demonstrate that bovine serum albumin coating of a glass substrate enables AFM observation of various liposomes in aqueous medium. With this AFM system, liposomes can be systematically observed and morphologically analyzed regardless of their surface charge, phase state, degree of lipid acyl chain unsaturation or PEG modification. This system thus has the potential to reveal the mechanical properties of liposomes of various lipid types and contents. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Identifying dynamic membrane structures with atomic-force microscopy and confocal imaging.

    Science.gov (United States)

    Timmel, Tobias; Schuelke, Markus; Spuler, Simone

    2014-04-01

    Combining the biological specificity of fluorescence microscopy with topographical features revealed by atomic force microscopy (AFM) provides new insights into cell biology. However, the lack of systematic alignment capabilities especially in scanning-tip AFM has limited the combined application approach as AFM drift leads to increasing image mismatch over time. We present an alignment correction method using the cantilever tip as a reference landmark. Since the precise tip position is known in both the fluorescence and AFM images, exact re-alignment becomes possible. We used beads to demonstrate the validity of the method in a complex artificial sample. We then extended this method to biological samples to depict membrane structures in fixed and living human fibroblasts. We were able to map nanoscale membrane structures, such as clathrin-coated pits, to their respective fluorescent spots. Reliable alignment between fluorescence signals and topographic structures opens possibilities to assess key biological processes at the cell surface such as endocytosis and exocytosis.

  11. Application of atomic force microscopy on rapid determination of microorganisms for food safety.

    Science.gov (United States)

    Yang, H; Wang, Y

    2008-10-01

    Rapid detection and quantification of microorganisms is important for food quality, safety, and security. In this field, nanotechnology appears to be promising in its ability to characterize an individual microorganism and detect heterogeneous distribution of microbes in food samples. In this study, atomic force microscopy (AFM), a nanotechnology tool, was used to investigate Escherichia coli (E. coli) qualitatively and quantitatively. E. coli strains B and K12 were used as surrogates to represent pathogenic strains, such as E. coli O157: H7. The results from AFM were compared with those from scanning/transmission electron microscopy (SEM/TEM). The qualitative determination was obtained using morphology and characteristic parameters from AFM images, and the quantitative determination was obtained by calculating the microorganisms in AFM images. The results show that AFM provides a new approach for rapid determination of microorganisms for food safety.

  12. Local analysis of semiconductor nanoobjects by scanning tunneling atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Natalia A. Lashkova

    2015-03-01

    Full Text Available The features of the current–voltage (I–V measurements in local regions of semiconductor nanostructures by conductive atomic force microscopy (AFM are discussed. The standard procedure of I–V measurements in conductive AFM leads not infrequently to the thermomechanical stresses in the sample and, as a consequence, nonreproducibility and unreliability of measurements. The technique of obtaining reproducible current–voltage characteristics is proposed. According to the technique, a series of measurements of the selected scanning area in the mode of conducting AFM should be taken, each at the certain value of the potential. According to a series of scans I–V curve at a particular point (for any point of the scan was plotted. The program is realized in the LabVIEW software. The proposed method extends the capabilities of scanning probe microscopy in the diagnosis of nanostructured semiconductor materials.

  13. Probing poly(N-isopropylacrylamide-co-butylacrylate)/cell interactions by atomic force microscopy.

    Science.gov (United States)

    Natalia, Becerra; Henry, Andrade; Betty, López; Marina, Restrepo Luz; Roberto, Raiteri

    2015-01-01

    Poly(N-isopropylacrylamide) based hydrogels have been proposed as cell culture supports in cell sheet engineering. Toward this goal, we characterized the poly(N-isopropylacrylamide-co-butylacrylate) copolymer thermo-sensitivity and the cell/copolymer interactions above and below the copolymer lower critical solution temperature. We did that by direct force measurements at different temperatures using an atomic force microscope with either a polystyrene or a glass microbead as probes. We used a copolymer-coated microbead to measure adhesion after a short contact time with a single fibroblast in culture. Statistical analysis of the maximum adhesion force and the mechanical work necessary to separate the probe from the cell surface confirmed the hydrophilic/hydrophobic behavior of poly(N-isopropylacrylamide-co-butylacrylate) as a function of temperature in the range 20-37°C and, consequently, a reversible increase/decrease in cell adhesion with the copolymer. As control experiments we measured interactions between uncoated microbeads with the copolymer hydrogel or cells as well as interaction of the Poly(N-isopropylacrylamide) homopolymer with cells. These results show the potential of an assay based on atomic force microscopy for an in situ and quantitative assessment of cell/substrate interactions and support the use of poly(N-isopropylacrylamide-co-butylacrylate) copolymer as an efficient culture substrate in cell sheet engineering. © 2014 Wiley Periodicals, Inc.

  14. Atomic oxygen effects on thin film space coatings studied by spectroscopic ellipsometry, atomic force microscopy, and laser light scattering

    Science.gov (United States)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1992-01-01

    The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  15. Nanostructure and optoelectronic characterization of small molecule bulk heterojunction solar cells by photoconductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Xuan-Dung; Tamayo, Arnold B.; Seo, Junghwa; Hoven, Corey V.; Walker, Bright; Nguyen, Thuc-Quyen [Departments of Chemistry and Biochemistry, Department of Materials, Institute for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106 (United States)

    2010-10-08

    Photoconductive atomic force microscopy is employed to study the nanoscale morphology and optoelectronic properties of bulk heterojunction solar cells based on small molecules containing a benzofuran substituted diketopyrrolopyrrole (DPP) core (3,6-bis(5-(benzofuran-2-yl)thiophen-2-yl))-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione, DPP(TBFu){sub 2}, and[6,6]-phenyl-C{sub 71}-butyric acid methyl ester (PC{sub 71}BM), which were recently reported to have power conversion efficiencies of 4.4%. Electron and hole collection networks are visualized for blends with different donor:acceptor ratios. Formation of nanostructures in the blends leads to a higher interfacial area for charge dissociation, while maintaining bicontinuous collection networks; conditions that lead to the high efficiency observed in the devices. An excellent agreement between nanoscale and bulk open-circuit voltage measurements is achieved by surface modification of the indium tin oxide (ITO) substrate by using aminopropyltrimethoxysilane. The local open-circuit voltage is linearly dependent on the cathode work function. These results demonstrate that photoconductive atomic force microscopy coupled with surface modification of ITO substrate can be used to study nanoscale optoelectronic phenomena of organic solar cells. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  16. Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Giehl Zanetti-Ramos, Betina [Laboratorio de Bioenergetica e Bioquimica de Macromoleculas, Departamento de Ciencias Farmaceuticas (Brazil)], E-mail: betinagzramos@pq.cnpq.br; Beddin Fritzen-Garcia, Mauricia [Laboratorio de Bioenergetica e Bioquimica de Macromoleculas, Departamento de Ciencias Farmaceuticas (Brazil); Schweitzer de Oliveira, Cristian; Avelino Pasa, Andre [Laboratorio de Filmes Finos e Superficie, Departamento de Fisica (Brazil); Soldi, Valdir [Grupo de Estudos em Materiais Polimericos, Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borsali, Redouane [Centre de Recherche sur les Macromolecules Vegetales CERMAV/CNRS, 38041 - Grenoble (France); Creczynski-Pasa, Tania Beatriz [Laboratorio de Bioenergetica e Bioquimica de Macromoleculas, Departamento de Ciencias Farmaceuticas (Brazil)

    2009-03-01

    Nanoparticles have applications in various industrial fields principally in drug delivery. Nowadays, there are several processes for manufacturing colloidal polymeric systems and methods of preparation as well as of characterization. In this work, Dynamic Light Scattering and Atomic Force Microscopy techniques were used to characterize polyurethane nanoparticles. The nanoparticles were prepared by miniemulsion technique. The lipophilic monomers, isophorone diisocyanate (IPDI) and natural triol, were emulsified in water containing surfactant. In some formulations the poly(ethylene glycol) was used as co-monomer to obtain the hydrophilic and pegylated nanoparticles. Polyurethane nanoparticles observed by atomic force microscopy (AFM) were spherical with diameter around 209 nm for nanoparticles prepared without PEG. From AFM imaging two populations of nanoparticles were observed in the formulation prepared with PEG (218 and 127 nm) while dynamic light scattering (DLS) measurements showed a monodisperse size distribution around 250 nm of diameters for both formulations. The polydispersity index of the formulations and the experimental procedures could influence the particle size determination with these techniques.

  17. Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands.

    Science.gov (United States)

    Whited, Allison M; Park, Paul S-H

    2014-01-01

    Membrane proteins are embedded in lipid bilayers and facilitate the communication between the external environment and the interior of the cell. This communication is often mediated by the binding of ligands to the membrane protein. Understanding the nature of the interaction between a ligand and a membrane protein is required to both understand the mechanism of action of these proteins and for the development of novel pharmacological drugs. The highly hydrophobic nature of membrane proteins and the requirement of a lipid bilayer for native function have hampered the structural and molecular characterizations of these proteins under physiologically relevant conditions. Atomic force microscopy offers a solution to studying membrane proteins and their interactions with ligands under physiologically relevant conditions and can provide novel insights about the nature of these critical molecular interactions that facilitate cellular communication. In this review, we provide an overview of the atomic force microscopy technique and discuss its application in the study of a variety of questions related to the interaction between a membrane protein and a ligand. This article is part of a Special Issue entitled: Structural and biophysical characterization of membrane protein-ligand binding. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Control of the higher eigenmodes of a microcantilever: applications in atomic force microscopy.

    Science.gov (United States)

    Karvinen, K S; Moheimani, S O R

    2014-02-01

    While conventional techniques in dynamic mode atomic force microscopy typically involve the excitation of the first flexural mode of a microcantilever, situations arise where the excitation of higher modes may result in image artefacts. Strong nonlinear coupling between the cantilever modes in liquid environments may result in image artefacts, limiting the accuracy of the image. Similar observations have been made in high-speed contact mode AFM. To address this issue, we propose the application of the modulated-demodulated control technique to attenuate problematic modes to eliminate the image artefacts. The modulated-demodulated control technique is a high-bandwidth technique, which is well suited to the control of next generation of high-speed cantilevers. In addition to potential improvements in image quality, a high-bandwidth controller may also find application in multifrequency AFM experiments. To demonstrate the high-bandwidth nature of the control technique, we construct an amplitude modulation AFM experiment in air utilizing low amplitude setpoints, which ensures that harmonic generation and nonlinear coupling of the modes result in image artefacts. We then utilize feedback control to highlight the improvement in image quality. Such a control technique appears extremely promising in high-speed atomic force microscopy and is likely to have direct application in AFM in liquids. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Atomic force microscopy as a tool applied to nano/biosensors.

    Science.gov (United States)

    Steffens, Clarice; Leite, Fabio L; Bueno, Carolina C; Manzoli, Alexandra; Herrmann, Paulo Sergio De Paula

    2012-01-01

    This review article discusses and documents the basic concepts and principles of nano/biosensors. More specifically, we comment on the use of Chemical Force Microscopy (CFM) to study various aspects of architectural and chemical design details of specific molecules and polymers and its influence on the control of chemical interactions between the Atomic Force Microscopy (AFM) tip and the sample. This technique is based on the fabrication of nanomechanical cantilever sensors (NCS) and microcantilever-based biosensors (MC-B), which can provide, depending on the application, rapid, sensitive, simple and low-cost in situ detection. Besides, it can provide high repeatability and reproducibility. Here, we review the applications of CFM through some application examples which should function as methodological questions to understand and transform this tool into a reliable source of data. This section is followed by a description of the theoretical principle and usage of the functionalized NCS and MC-B technique in several fields, such as agriculture, biotechnology and immunoassay. Finally, we hope this review will help the reader to appreciate how important the tools CFM, NCS and MC-B are for characterization and understanding of systems on the atomic scale.

  20. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy

    Science.gov (United States)

    Stolz, Martin; Gottardi, Riccardo; Raiteri, Roberto; Miot, Sylvie; Martin, Ivan; Imer, Raphaël; Staufer, Urs; Raducanu, Aurelia; Düggelin, Marcel; Baschong, Werner; Daniels, A. U.; Friederich, Niklaus F.; Aszodi, Attila; Aebi, Ueli

    2009-03-01

    The pathological changes in osteoarthritis-a degenerative joint disease prevalent among older people-start at the molecular scale and spread to the higher levels of the architecture of articular cartilage to cause progressive and irreversible structural and functional damage. At present, there are no treatments to cure or attenuate the degradation of cartilage. Early detection and the ability to monitor the progression of osteoarthritis are therefore important for developing effective therapies. Here, we show that indentation-type atomic force microscopy can monitor age-related morphological and biomechanical changes in the hips of normal and osteoarthritic mice. Early damage in the cartilage of osteoarthritic patients undergoing hip or knee replacements could similarly be detected using this method. Changes due to aging and osteoarthritis are clearly depicted at the nanometre scale well before morphological changes can be observed using current diagnostic methods. Indentation-type atomic force microscopy may potentially be developed into a minimally invasive arthroscopic tool to diagnose the early onset of osteoarthritis in situ.

  1. Visualising the Micro World of Chemical/Geochemical Interactions Using Atomic Force Microscopy (AFM)

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G.M.; Sorbie, K.S.

    1996-12-31

    Scanning force microscopy, in particular AFM (Atomic Force Microscopy), provides a particular useful and interesting tool for the examination of surface structure at the near-atomic level. AFM is particularly well suited to the study of interactions at the surface in aqueous solutions using real time in-situ measurements. In this paper there is presented AFM images showing in situ crystal growth from supersaturated BaSO{sub 4} solutions onto the surface of barite. Growth structures in the form of spiral crystal growth features, presumably originating from screw dislocations, are illustrated. AFM images of novel scale crystal growth inhibition experiments are presented. Examination of the manner in which generically different species adsorb onto growth structures may help to explain mechanistic differences in the way which different inhibitor species perform against barium sulphate scale formation. Adsorption of polyacrylamide species onto mica surfaces have been viewed. The general utility of AFM to a number of other common surface interactions in oil field chemistry will be discussed. 17 refs., 3 figs.

  2. Atomic Force Microscopy as a Tool Applied to Nano/Biosensors

    Directory of Open Access Journals (Sweden)

    Paulo Sergio De Paula Herrmann

    2012-06-01

    Full Text Available This review article discusses and documents the basic concepts and principles of nano/biosensors. More specifically, we comment on the use of Chemical Force Microscopy (CFM to study various aspects of architectural and chemical design details of specific molecules and polymers and its influence on the control of chemical interactions between the Atomic Force Microscopy (AFM tip and the sample. This technique is based on the fabrication of nanomechanical cantilever sensors (NCS and microcantilever-based biosensors (MC-B, which can provide, depending on the application, rapid, sensitive, simple and low-cost in situ detection. Besides, it can provide high repeatability and reproducibility. Here, we review the applications of CFM through some application examples which should function as methodological questions to understand and transform this tool into a reliable source of data. This section is followed by a description of the theoretical principle and usage of the functionalized NCS and MC-B technique in several fields, such as agriculture, biotechnology and immunoassay. Finally, we hope this review will help the reader to appreciate how important the tools CFM, NCS and MC-B are for characterization and understanding of systems on the atomic scale.

  3. Adhesion of melanoma cells to the surfaces of microspheres studied by atomic force microscopy.

    Science.gov (United States)

    Shinto, Hiroyuki; Aso, Yuki; Fukasawa, Tomonori; Higashitani, Ko

    2012-03-01

    It is of fundamental importance to understand the mechanism of adhesion between a mammalian cell and a material surface. In the present study, we have used atomic force microscopy (AFM) to measure the interaction forces between the murine melanoma cells and the single polystyrene microspheres of different surface chemistries in serum-free culture media: the unmodified hydrophobic polystyrene (bare/PS) and the carboxyl-modified polystyrene (COOH/PS). The cell-microsphere interaction forces have been also measured in the culture media containing the free Arg-Gly-Asp (RGD) peptides as an integrin inhibitor. In the absence of free RGD peptides, the adhesion force for COOH/PS was larger than that for bare/PS. The adhesion force for COOH/PS decreased with increasing the concentration of free RGD peptides added in the culture media and then became almost constant at the RGD concentrations larger than 0.5 mg/mL, whereas that for bare/PS remained very small regardless of the RGD concentration. In addition, the effects of the microsphere diameter and the contact time on the adhesion forces were investigated. On the basis of the AFM results, possible mechanism of cell-microsphere adhesion will be discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy.

    Science.gov (United States)

    Soumetz, Federico Caneva; Saenz, Jose F; Pastorino, Laura; Ruggiero, Carmelina; Nosi, Daniele; Raiteri, Roberto

    2010-03-01

    The transforming growth factor beta1 (TGF-beta1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-beta1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalized with monoclonal antibodies specific to the beta1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-beta1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the beta1 integrin subunit was enhanced by TGF-beta1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-beta1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale. (c) 2010 Elsevier B.V. All rights reserved.

  5. Investigation of integrin expression on the surface of osteoblast-like cells by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Caneva Soumetz, Federico [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Saenz, Jose F. [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy); Pastorino, Laura; Ruggiero, Carmelina [Department of Communication, Computer and System Sciences, University of Genova, Via Opera Pia, 13-16145 Genova (Italy); Nosi, Daniele [Department of Anatomy, Histology and Forensic Medicine, Bio-photonic Laboratory, University of Florence, viale Morgagni, 85 Firenze, CAP 50134 Florence (Italy); Raiteri, Roberto, E-mail: rr@unige.it [Biophysical and Electronic Engineering Department, University of Genova, Via All' Opera Pia 11a, 16145 Genova (Italy)

    2010-03-15

    The transforming growth factor {beta}1 (TGF-{beta}1) is a human cytokine which has been demonstrated to modulate cell surface integrin repertoire. In this work integrin expression in response to TGF-{beta}1 stimulation has been investigated on the surface of human osteoblast-like cells. We used atomic force microscopy (AFM) and confocal laser scanning microscopy to assess integrin expression and to evaluate their distribution over the dorsal side of the plasma membrane. AFM probes have been covalently functionalised with monoclonal antibodies specific to the {beta}1 integrin subunit. Force curves have been collected in order to obtain maps of the interaction between the immobilized antibody and the respective cell membrane receptors. Adhesion peaks have been automatically detected by means of an ad hoc developed data analysis software. The specificity of the detected interactions has been assessed by adding free antibody in the solution and monitoring the dramatic decrease in the recorded interactions. In addition, the effect of TGF-{beta}1 treatment on both the fluorescence signal and the adhesion events has been tested. The level of expression of the {beta}1 integrin subunit was enhanced by TGF-{beta}1. As a further analysis, the adhesion force of the single living cells to the substrate was measured by laterally pushing the cell with the AFM tip and measuring the force necessary to displace it. The treatment with TGF-{beta}1 resulted in a decrease of the cell/substrate adhesion force. Results obtained by AFM have been validated by confocal laser scanning microscopy thus demonstrating the high potential of the AFM technique for the investigation of cell surface receptors distribution and trafficking at the nanoscale.

  6. Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy.

    Science.gov (United States)

    Churnside, Allison B; Sullan, Ruby May A; Nguyen, Duc M; Case, Sara O; Bull, Matthew S; King, Gavin M; Perkins, Thomas T

    2012-07-11

    Force drift is a significant, yet unresolved, problem in atomic force microscopy (AFM). We show that the primary source of force drift for a popular class of cantilevers is their gold coating, even though they are coated on both sides to minimize drift. Drift of the zero-force position of the cantilever was reduced from 900 nm for gold-coated cantilevers to 70 nm (N = 10; rms) for uncoated cantilevers over the first 2 h after wetting the tip; a majority of these uncoated cantilevers (60%) showed significantly less drift (12 nm, rms). Removing the gold also led to ∼10-fold reduction in reflected light, yet short-term (0.1-10 s) force precision improved. Moreover, improved force precision did not require extended settling; most of the cantilevers tested (9 out of 15) achieved sub-pN force precision (0.54 ± 0.02 pN) over a broad bandwidth (0.01-10 Hz) just 30 min after loading. Finally, this precision was maintained while stretching DNA. Hence, removing gold enables both routine and timely access to sub-pN force precision in liquid over extended periods (100 s). We expect that many current and future applications of AFM can immediately benefit from these improvements in force stability and precision.

  7. Metrology of electromagnetic static actuation of MEMS microbridge using atomic force microscopy.

    Science.gov (United States)

    Moczała, M; Majstrzyk, W; Sierakowski, A; Dobrowolski, R; Grabiec, P; Gotszalk, T

    2016-05-01

    The objective of this paper is to describe application of atomic force microscopy (AFM) for characterization and calibration of static deflection of electromagnetically and/or thermally actuated micro-electromechanical (MEMS) bridge. The investigated MEMS structure is formed by a silicon nitride bridge and a thin film metal path enabling electromagnetic and/or thermal deflection actuation. We present how static microbridge deflection can be measured using contact mode AFM technology with resolution of 0.05nm in the range of up to tens of nm. We also analyze, for very small structure deflections and under defined and controlled load force varied in the range up to ca. 32nN, properties of thermal and electromagnetical microbridge deflection actuation schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Tracking Unfolding and Refolding Reactions of Single Proteins using Atomic Force Microscopy Methods

    Science.gov (United States)

    Bujalowski, Paul J.; Oberhauser, Andres F.

    2013-01-01

    During the last two decades single-molecule manipulation techniques such as atomic force microscopy (AFM) has risen to prominence through their unique capacity to provide fundamental information on the structure and function of biomolecules. Here we describe the use of single-molecule AFM to track protein unfolding and refolding pathways, enzymatic catalysis and the effects of osmolytes and chaperones on protein stability and folding. We will outline the principles of operation for two different AFM pulling techniques: length clamp and force-clamp discuss prominent applications. We provide protocols for the construction of polyproteins which are amenable for AFM experiments, the preparation of different coverslips, choice and calibration of AFM cantilevers. We also discuss the selection criteria for AFM recordings, the calibration of AFM cantilevers, protein sample preparations and analysis of the obtained data. PMID:23523554

  9. Analytical method for parameterizing the random profile components of nanosurfaces imaged by atomic force microscopy

    CERN Document Server

    Mirsaidov, Utkur; Polyakov, Yuriy S; Misurkin, Pavel I; Musaev, Ibrahim; Polyakov, Sergey V

    2010-01-01

    The functional properties of many technological surfaces in biotechnology, electronics, and mechanical engineering depend to a large degree on the individual features of their nanoscale surface texture, which in turn are a function of the surface manufacturing process. Among these features, the surface irregularities and self-similarity structures at different spatial scales, especially in the range of 1 to 100 nm, are of high importance because they greatly affect the surface interaction forces acting at a nanoscale distance. An analytical method for parameterizing the surface irregularities and their correlations in nanosurfaces imaged by atomic force microscopy (AFM) is proposed. In this method, flicker noise spectroscopy - a statistical physics approach - is used to develop six nanometrological parameters characterizing the high-frequency contributions of jump- and spike-like irregularities into the surface texture. These contributions reflect the stochastic processes of anomalous diffusion and inertial e...

  10. Tunable atomic force microscopy bias lithography on electron beam induced carbonaceous platforms

    Directory of Open Access Journals (Sweden)

    Narendra Kurra

    2013-09-01

    Full Text Available Tunable local electrochemical and physical modifications on the carbonaceous platforms are achieved using Atomic force microscope (AFM bias lithography. These carbonaceous platforms are produced on Si substrate by the technique called electron beam induced carbonaceous deposition (EBICD. EBICD is composed of functionalized carbon species, confirmed through X-ray photoelectron spectroscopy (XPS analysis. AFM bias lithography in tapping mode with a positive tip bias resulted in the nucleation of attoliter water on the EBICD surface under moderate humidity conditions (45%. While the lithography in the contact mode with a negative tip bias caused the electrochemical modifications such as anodic oxidation and etching of the EBICD under moderate (45% and higher (60% humidity conditions respectively. Finally, reversible charge patterns are created on these EBICD surfaces under low (30% humidity conditions and investigated by means of electrostatic force microscopy (EFM.

  11. Passive microrheology of soft materials with atomic force microscopy: A wavelet-based spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Torres, C.; Streppa, L. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); Arneodo, A.; Argoul, F. [CNRS, UMR5672, Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 Allée d' Italie, Université de Lyon, 69007 Lyon (France); CNRS, UMR5798, Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Argoul, P. [Université Paris-Est, Ecole des Ponts ParisTech, SDOA, MAST, IFSTTAR, 14-20 Bd Newton, Cité Descartes, 77420 Champs sur Marne (France)

    2016-01-18

    Compared to active microrheology where a known force or modulation is periodically imposed to a soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of tracers inherent or external to the material. Passive microrheology studies of soft or living materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the spectral densities, the rheological response of the materials is hardly distinguishable from other sources of random or periodic perturbations. To circumvent this difficulty, we propose here a wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying this multi-scale method to soft polymer layers and to living myoblasts, the structural damping exponents of these soft materials can be retrieved.

  12. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chiou

    Full Text Available Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young's modulus (E(eff relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.

  13. Quantitative measurement of the nanoparticle size and number concentration from liquid suspensions by atomic force microscopy.

    Science.gov (United States)

    Baalousha, M; Prasad, A; Lead, J R

    2014-05-01

    Microscopy techniques are indispensable to the nanoanalytical toolbox and can provide accurate information on the number size distribution and number concentration of nanoparticles (NPs) at low concentrations (ca. ppt to ppb range) and small sizes (ca. microscopy techniques are limited by the traditional sample preparation based on drying a small volume of suspension of NPs on a microscopy substrate. This method is limited by low recovery of NPs (ca. atomic force microscopy (AFM) that overcomes the above-mentioned shortcomings and allows full recovery and representativeness of the NPs under consideration by forcing the NPs into the substrate via ultracentrifugation and strongly attaches the NPs to the substrate by surface functionalization of the substrate or by adding cations to the NP suspension. The high efficiency of the analysis is demonstrated by the uniformity of the NP distribution on the substrate (that is low variability between the number of NPs counted on different images on different areas of the substrate), the high recovery of the NPs up to 71%) and the good correlation (R > 0.95) between the mass and number concentrations. Therefore, for the first time, we developed a validated quantitative sampling technique that enables the use of the full capabilities of microscopy tools to quantitatively and accurately determine the number size distribution and number concentration of NPs at environmentally relevant low concentrations (i.e. 0.34-100 ppb). This approach is of high environmental relevance and can be applied widely in environmental nanoscience and nanotoxicology for (i) measuring the number concentration dose in nanotoxicological studies and (ii) accurately measuring the number size distribution of NPs; both are key requirements for the implementation of the European Commission recommendation for definition of nanomaterials.

  14. Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology.

    Science.gov (United States)

    Yang, Dingzheng; Xie, Lei; Bobicki, Erin; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2014-09-16

    Understanding the surface properties and interactions of nonspherical particles is of both fundamental and practical importance in the rheology of complex fluids in various engineering applications. In this work, natural chrysotile, a phyllosilicate composed of 1:1 stacked silica and brucite layers which coil into cylindrical structure, was chosen as a model rod-shaped particle. The interactions of chrysotile brucite-like basal or bilayered edge planes and a silicon nitride tip were measured using an atomic force microscope (AFM). The force-distance profiles were fitted using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which demonstrates anisotropic and pH-dependent surface charge properties of brucite-like basal plane and bilayered edge surface. The points of zero charge (PZC) of the basal and edge planes were estimated to be around pH 10-11 and 6-7, respectively. Rheology measurements of 7 vol % chrysotile (with an aspect ratio of 14.5) in 10 mM NaCl solution showed pH-dependent yield stress with a local maximum around pH 7-9, which falls between the two PZC values of the edge and basal planes of the rod particles. On the basis of the surface potentials of the edge and basal planes obtained from AFM measurements, theoretical analysis of the surface interactions of edge-edge, basal-edge, and basal-basal planes of the chrysotile rods suggests the yield stress maximum observed could be mainly attributed to the basal-edge attractions. Our results indicate that the anisotropic surface properties (e.g., charges) of chrysotile rods play an important role in the particle-particle interaction and rheological behavior, which also provides insight into the basic understanding of the colloidal interactions and rheology of nonspherical particles.

  15. Study of laser uncaging induced morphological alteration of rat cortical neurites using atomic force microscopy.

    Science.gov (United States)

    Tian, Jian; Tu, Chunlong; Liang, Yitao; Zhou, Jian; Ye, Xuesong

    2015-09-30

    Activity-dependent structural remodeling is an important aspect of neuronal plasticity. In the previous researches, neuronal structure variations resulting from external interventions were detected by the imaging instruments such as the fluorescence microscopy, the scanning/transmission electron microscopy (SEM/TEM) and the laser confocal microscopy. In this article, a new platform which combined the photochemical stimulation with atomic force microscopy (AFM) was set up to detect the activity-dependent structural remodeling. In the experiments, the cortical neurites on the glass coverslips were stimulated by locally uncaged glutamate under the ultraviolet (UV) laser pulses, and a calcium-related structural collapse of neurites (about 250 nm height decrease) was observed by an AFM. This was the first attempt to combine the laser uncaging with AFM in living cell researches. With the advantages of highly localized stimulation (<5 μm), super resolution imaging (<3.8 nm), and convenient platform building, this system was suitable for the quantitative observation of the neuron mechanical property variations and morphological alterations modified by neural activities under different photochemical stimulations, which would be helpful for studying physiological and pathological mechanisms of structural and functional changes induced by the biomolecule acting. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Atomic force microscopy analysis and confocal Raman microimaging of coated pellets.

    Science.gov (United States)

    Ringqvist, Ann; Taylor, Lynne S; Ekelund, Katarina; Ragnarsson, Gert; Engström, Sven; Axelsson, Anders

    2003-11-28

    Polymer-coated pellets with different coating thicknesses have been studied regarding coating morphology and drug release properties with atomic force microscopy (AFM) and confocal Raman microscopy. The results were compared with those from scanning electron microscopy (SEM) and drug release profiles, which have been measured previously for these systems and found to vary depending on coating thickness. Results from AFM studies indicated that these pellets differ in the amount of crystalline material on the surface of the coating. The amount was found to be highest on the pellet with the thinnest coating. Confocal Raman microscopy studies confirmed that the active component (remoxipride hydrochloride monohydrate) is present at or close to the surface and that the amount is higher for the thinnest coating. AFM studies in aqueous media showed that the crystalline material on the surface was almost instantaneously dissolved and released into the liquid. AFM has proven to be a powerful tool in the study of the surface of dry formulations and in the study of the controlled release mechanism of a pharmaceutical in a liquid cell. The method can be combined with Raman, giving the added possibility to identify the chemical composition in selected small areas of the coating surface.

  17. Phase imaging and nanoscale energy dissipation of supported graphene using amplitude modulation atomic force microscopy

    Science.gov (United States)

    Vasić, Borislav; Matković, Aleksandar; Gajić, Radoš

    2017-11-01

    We investigate the phase imaging of supported graphene using amplitude modulation atomic force microscopy (AFM), the so-called tapping mode. The phase contrast between graphene and the neighboring substrate grows in hard tapping conditions and the contrast is enhanced compared to the topographic one. Therefore, phase measurements could enable the high-contrast imaging of graphene and related two-dimensional materials and heterostructures, which is not achievable with conventional AFM based topographic measurements. Obtained phase maps are then transformed into energy dissipation maps, which are important for graphene applications in various nano-mechanical systems. From a fundamental point of view, energy dissipation gives further insight into mechanical properties. Reliable measurements, obtained in the repulsive regime, show that the energy dissipation on a graphene-covered substrate is lower than that on a bare one, so graphene provides certain shielding in tip–substrate interaction. Based on the obtained phase curves and their derivatives, as well as on correlation measurements based on AFM nanoindentation and force modulation microscopy, we conclude that the main dissipation channels in graphene–substrate systems are short-range hysteresis and long-range interfacial forces.

  18. Characterisation of spin coated engineered Escherichia coli biofilms using atomic force microscopy.

    Science.gov (United States)

    Tsoligkas, Andreas N; Bowen, James; Winn, Michael; Goss, Rebecca J M; Overton, Tim W; Simmons, Mark J H

    2012-01-01

    The ability of biofilms to withstand chemical and physical extremes gives them the potential to be developed as robust biocatalysts. Critical to this issue is their capacity to withstand the physical environment within a bioreactor; in order to assess this capability knowledge of their surface properties and adhesive strength is required. Novel atomic force microscopy experiments conducted under growth conditions (30°C) were used to characterise Escherichia coli biofilms, which were generated by a recently developed spin-coating method onto a poly-l-lysine coated glass substrate. High-resolution topographical images were obtained throughout the course of biofilm development, quantifying the tip-cell interaction force during the 10 day maturation process. Strikingly, the adhesion force between the Si AFM tip and the biofilm surface increased from 0.8 nN to 40 nN within 3 days. This was most likely due to the production of extracellular polymer substance (EPS), over the maturation period, which was also observed by electron microscopy. At later stages of maturation, multiple retraction events were also identified corresponding to biofilm surface features thought to be EPS components. The spin coated biofilms were shown to have stronger surface adhesion than an equivalent conventionally grown biofilm on the same glass substrate. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+ T cells using atomic force microscopy.

    Science.gov (United States)

    Hu, Mingqian; Wang, Jiongkun; Cai, Jiye; Wu, Yangzhe; Wang, Xiaoping

    2008-09-12

    To date, nanoscale imaging of the morphological changes and adhesion force of CD4(+) T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4(+) T cells. The AFM images revealed that the volume of activated CD4(+) T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4(+) T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.

  20. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    Science.gov (United States)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  1. Binding activity of patterned concanavalin A studied by atomic force microscopy

    Science.gov (United States)

    Lebed, Kateryna; Pyka-Fosciak, Grazyna; Raczkowska, Joanna; Lekka, Malgorzata; Styczen, Jan

    2005-05-01

    The mode of protein immobilization plays a crucial role in the preparation of protein microarrays used for a wide spectrum of applications in analytical biochemistry. The microcontact printing technique was used to form a protein pattern using concanavalin A (Con A) since Con A belongs to a group of proteins widely used in analytical assays due to their selectivity as regards different kinds of carbohydrates. Atomic force microscopy was used to image surface topography, delivering information about the quality of the protein pattern. The force spectroscopy mode was used to verify the functional activity of deposited proteins via determination of the forces of interaction between Con A and carboxypeptidase Y bearing carbohydrate structure recognized by Con A. The calculated binding force between Con A and CaY was 105 ± 2 pN and it was compared with that measured for Con A deposited directly from the protein solution. The similarity of the value obtained for the interaction force was independent of the mode of protein deposition, thereby verifying that the microcontact printing technique did not influence the carbohydrate binding activity of Con A. The correlation between the surface topography of patterned samples and adhesion maps obtained showed the possible use of AFM for studying the chemical properties of different regions of the micropatterns produced.

  2. Bacteria-polymeric membrane interactions: atomic force microscopy and XDLVO predictions.

    Science.gov (United States)

    Thwala, Justice M; Li, Minghua; Wong, Mavis C Y; Kang, Seoktae; Hoek, Eric M V; Mamba, Bhekie B

    2013-11-12

    Atomic force microscopy (AFM) in conjunction with a bioprobe developed using a polydopamine wet adhesive was used to directly measure the adhesive force between bacteria and different polymeric membrane surfaces. Bacterial cells of Pseudomonas putida and Bacillus subtilis were immobilized onto the tip of a standard AFM cantilever, and force measurements made using the modified cantilever on various membranes. Interaction forces measured with the bacterial probe were compared, qualitatively, to predictions by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory with steric interactions included. The XDLVO theory predicted attractive interactions between low energy hydrophobic membranes with high energy hydrophilic bacterium (P. putida). It also predicted a shallow primary maximum with the most hydrophilic bacterium, B. subtilis . Discrepancies between predictions using the XDLVO theory and theory require involvement of factors such as bridging effects. Differences in interaction between P. putida and B. subtilis are attributed to acid-base interactions and steric interactions. P. putida is Gram negative with lipopolysaccharides present in the outer cell membrane. A variation in forces of adhesion for bacteria on polymeric membranes studied was interpreted in terms of hydrophilicity and interfacial surface potential calculated from physicochemical properties.

  3. Improved in situ spring constant calibration for colloidal probe atomic force microscopy

    Science.gov (United States)

    McBride, Sean P.; Law, Bruce M.

    2010-11-01

    In colloidal probe atomic force microscopy (AFM) surface forces cannot be measured without an accurate determination of the cantilever spring constant. The effective spring constant k depends upon the cantilever geometry and therefore should be measured in situ; additionally, k may be coupled to other measurement parameters. For example, colloidal probe AFM is frequently used to measure the slip length b at solid/liquid boundaries by comparing the measured hydrodynamic force with Vinogradova slip theory (V-theory). However, in this measurement k and b are coupled, hence, b cannot be accurately determined without knowing k to high precision. In this paper, a new in situ spring constant calibration method based upon the residuals, namely, the difference between experimental force-distance data and V-theory is presented and contrasted with two other popular spring constant determination methods. In this residuals calibration method, V-theory is fitted to the experimental force-distance data for a range of systematically varied spring constants where the only adjustable parameter in V-theory is the slip length b. The optimal spring constant k is that value where the residuals are symmetrically displaced about zero for all colloidal probe separations. This residual spring constant calibration method is demonstrated by studying three different liquids (n-decanol, n-hexadecane, and n-octane) and two different silane coated colloidal probe-silicon wafer systems (n-hexadecyltrichlorosilane and n-dodecyltrichlorosilane).

  4. Improved in situ spring constant calibration for colloidal probe atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Sean P.; Law, Bruce M. [Department of Physics, Cardwell Hall, Kansas State University, Manhattan, Kansas 66506-2601 (United States)

    2010-11-15

    In colloidal probe atomic force microscopy (AFM) surface forces cannot be measured without an accurate determination of the cantilever spring constant. The effective spring constant k depends upon the cantilever geometry and therefore should be measured in situ; additionally, k may be coupled to other measurement parameters. For example, colloidal probe AFM is frequently used to measure the slip length b at solid/liquid boundaries by comparing the measured hydrodynamic force with Vinogradova slip theory (V-theory). However, in this measurement k and b are coupled, hence, b cannot be accurately determined without knowing k to high precision. In this paper, a new in situ spring constant calibration method based upon the residuals, namely, the difference between experimental force-distance data and V-theory is presented and contrasted with two other popular spring constant determination methods. In this residuals calibration method, V-theory is fitted to the experimental force-distance data for a range of systematically varied spring constants where the only adjustable parameter in V-theory is the slip length b. The optimal spring constant k is that value where the residuals are symmetrically displaced about zero for all colloidal probe separations. This residual spring constant calibration method is demonstrated by studying three different liquids (n-decanol, n-hexadecane, and n-octane) and two different silane coated colloidal probe-silicon wafer systems (n-hexadecyltrichlorosilane and n-dodecyltrichlorosilane).

  5. Individual globular domains and domain unfolding visualized in overstretched titin molecules with atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Zsolt Mártonfalvi

    Full Text Available Titin is a giant elastomeric protein responsible for the generation of passive muscle force. Mechanical force unfolds titin's globular domains, but the exact structure of the overstretched titin molecule is not known. Here we analyzed, by using high-resolution atomic force microscopy, the structure of titin molecules overstretched with receding meniscus. The axial contour of the molecules was interrupted by topographical gaps with a mean width of 27.7 nm that corresponds well to the length of an unfolded globular (immunoglobulin and fibronectin domain. The wide gap-width distribution suggests, however, that additional mechanisms such as partial domain unfolding and the unfolding of neighboring domain multimers may also be present. In the folded regions we resolved globules with an average spacing of 5.9 nm, which is consistent with a titin chain composed globular domains with extended interdomain linker regions. Topographical analysis allowed us to allocate the most distal unfolded titin region to the kinase domain, suggesting that this domain systematically unfolds when the molecule is exposed to overstretching forces. The observations support the prediction that upon the action of stretching forces the N-terminal ß-sheet of the titin kinase unfolds, thus exposing the enzyme's ATP-binding site and hence contributing to the molecule's mechanosensory function.

  6. Reverse engineering of an affinity-switchable molecular interaction characterized by atomic force microscopy single-molecule force spectroscopy.

    Science.gov (United States)

    Anselmetti, Dario; Bartels, Frank Wilco; Becker, Anke; Decker, Björn; Eckel, Rainer; McIntosh, Matthew; Mattay, Jochen; Plattner, Patrik; Ros, Robert; Schäfer, Christian; Sewald, Norbert

    2008-02-19

    Tunable and switchable interaction between molecules is a key for regulation and control of cellular processes. The translation of the underlying physicochemical principles to synthetic and switchable functional entities and molecules that can mimic the corresponding molecular functions is called reverse molecular engineering. We quantitatively investigated autoinducer-regulated DNA-protein interaction in bacterial gene regulation processes with single atomic force microscopy (AFM) molecule force spectroscopy in vitro, and developed an artificial bistable molecular host-guest system that can be controlled and regulated by external signals (UV light exposure and thermal energy). The intermolecular binding functionality (affinity) and its reproducible and reversible switching has been proven by AFM force spectroscopy at the single-molecule level. This affinity-tunable optomechanical switch will allow novel applications with respect to molecular manipulation, nanoscale rewritable molecular memories, and/or artificial ion channels, which will serve for the controlled transport and release of ions and neutral compounds in the future.

  7. Atomic force microscopy imaging and single molecule recognition force spectroscopy of coat proteins on the surface of Bacillus subtilis spore.

    Science.gov (United States)

    Tang, Jilin; Krajcikova, Daniela; Zhu, Rong; Ebner, Andreas; Cutting, Simon; Gruber, Hermann J; Barak, Imrich; Hinterdorfer, Peter

    2007-01-01

    Coat assembly in Bacillus subtilis serves as a tractable model for the study of the self-assembly process of biological structures and has a significant potential for use in nano-biotechnological applications. In the present study, the morphology of B. subtilis spores was investigated by magnetically driven dynamic force microscopy (MAC mode atomic force microscopy) under physiological conditions. B. subtilis spores appeared as prolate structures, with a length of 0.6-3 microm and a width of about 0.5-2 microm. The spore surface was mainly covered with bump-like structures with diameters ranging from 8 to 70 nm. Besides topographical explorations, single molecule recognition force spectroscopy (SMRFS) was used to characterize the spore coat protein CotA. This protein was specifically recognized by a polyclonal antibody directed against CotA (anti-CotA), the antibody being covalently tethered to the AFM tip via a polyethylene glycol linker. The unbinding force between CotA and anti-CotA was determined as 55 +/- 2 pN. From the high-binding probability of more than 20% in force-distance cycles it is concluded that CotA locates in the outer surface of B. subtilis spores. Copyright (c) 2007 John Wiley & Sons, Ltd.

  8. Forced Unbinding of Individual Urea – Aminotriazine Supramolecular Polymers by Atomic Force Microscopy: A Closer Look at the Potential Energy Landscape and Binding Lengths at Fixed Loading Rates

    NARCIS (Netherlands)

    Embrechts, A.; Schönherr, Holger; Vancso, Gyula J.

    2012-01-01

    Atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) was used to study the forced unbinding of quadruple self-complementary hydrogen-bonded urea–aminotriazine (UAT) complexes in hexadecane (HD). To elucidate the bond strength of individual linkages the unbinding forces of UAT

  9. Local elasticity and adhesion of nanostructures on Drosophila melanogaster wing membrane studied using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ryan, E-mail: rbwagner@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States); Pittendrigh, Barry R. [Department of Entomology, University of Illinois, Champaign (United States); Raman, Arvind, E-mail: raman@purdue.edu [School of Mechanical Engineering, Purdue University, West Lafayette (United States); Brick Nanotechnology Center, Purdue University, West Lafayette (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We studied the wing membrane of Drosophila melanogaster with atomic force microscopy. Black-Right-Pointing-Pointer We report the structure, elasticity, and adhesion on the wing membrane in air and nitrogen environments. Black-Right-Pointing-Pointer Results provide insight into the nature of the wing membrane enabling the development of biomimetic surface and micro air vehicles. - Abstract: Insect wings have a naturally occurring, complex, functional, hierarchical microstructure and nanostructure, which enable a remarkably water-resistant and self-cleaning surface. Insect wings are used as a basis for engineering biomimetic materials; however, the material properties of these nanostructures such as local elastic modulus and adhesion are poorly understood. We studied the wings of the Canton-S strain of Drosophila melanogaster (hereafter referred to as Drosophila) with atomic force microscopy (AFM) to quantify the local material properties of Drosophila wing surface nanostructures. The wings are found to have a hierarchical structure of 10-20 {mu}m long, 0.5-1 {mu}m diameter hair, and at a much smaller scale, 100 nm diameter and 30-60 nm high bumps. The local properties of these nanoscale bumps were studied under ambient and dry conditions with force-volume AFM. The wing membrane was found to have a elastic modulus on the order of 1000 MPa and the work of adhesion between the probe and wing membrane surface was found to be on the order of 100 mJ/m{sup 2}, these properties are the same order of magnitude as common thermoplastic polymers such as polyethylene. The difference in work of adhesion between the nanoscale bump and membrane does not change significantly between ambient (relative humidity of 30%) or dry conditions. This suggests that the nanoscale bumps and the surrounding membrane are chemically similar and only work to increase hydrophobicity though surface roughening or the geometric lotus effect.

  10. Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    David Martinez-Martin

    Full Text Available Structural Biology (SB techniques are particularly successful in solving virus structures. Taking advantage of the symmetries, a heavy averaging on the data of a large number of specimens, results in an accurate determination of the structure of the sample. However, these techniques do not provide true single molecule information of viruses in physiological conditions. To answer many fundamental questions about the quickly expanding physical virology it is important to develop techniques with the capability to reach nanometer scale resolution on both structure and physical properties of individual molecules in physiological conditions. Atomic force microscopy (AFM fulfills these requirements providing images of individual virus particles under physiological conditions, along with the characterization of a variety of properties including local adhesion and elasticity. Using conventional AFM modes is easy to obtain molecular resolved images on flat samples, such as the purple membrane, or large viruses as the Giant Mimivirus. On the contrary, small virus particles (25-50 nm cannot be easily imaged. In this work we present Frequency Modulation atomic force microscopy (FM-AFM working in physiological conditions as an accurate and powerful technique to study virus particles. Our interpretation of the so called "dissipation channel" in terms of mechanical properties allows us to provide maps where the local stiffness of the virus particles are resolved with nanometer resolution. FM-AFM can be considered as a non invasive technique since, as we demonstrate in our experiments, we are able to sense forces down to 20 pN. The methodology reported here is of general interest since it can be applied to a large number of biological samples. In particular, the importance of mechanical interactions is a hot topic in different aspects of biotechnology ranging from protein folding to stem cells differentiation where conventional AFM modes are already being used.

  11. Resolving structure and mechanical properties at the nanoscale of viruses with frequency modulation atomic force microscopy.

    Science.gov (United States)

    Martinez-Martin, David; Carrasco, Carolina; Hernando-Perez, Mercedes; de Pablo, Pedro J; Gomez-Herrero, Julio; Perez, Rebeca; Mateu, Mauricio G; Carrascosa, Jose L; Kiracofe, Daniel; Melcher, John; Raman, Arvind

    2012-01-01

    Structural Biology (SB) techniques are particularly successful in solving virus structures. Taking advantage of the symmetries, a heavy averaging on the data of a large number of specimens, results in an accurate determination of the structure of the sample. However, these techniques do not provide true single molecule information of viruses in physiological conditions. To answer many fundamental questions about the quickly expanding physical virology it is important to develop techniques with the capability to reach nanometer scale resolution on both structure and physical properties of individual molecules in physiological conditions. Atomic force microscopy (AFM) fulfills these requirements providing images of individual virus particles under physiological conditions, along with the characterization of a variety of properties including local adhesion and elasticity. Using conventional AFM modes is easy to obtain molecular resolved images on flat samples, such as the purple membrane, or large viruses as the Giant Mimivirus. On the contrary, small virus particles (25-50 nm) cannot be easily imaged. In this work we present Frequency Modulation atomic force microscopy (FM-AFM) working in physiological conditions as an accurate and powerful technique to study virus particles. Our interpretation of the so called "dissipation channel" in terms of mechanical properties allows us to provide maps where the local stiffness of the virus particles are resolved with nanometer resolution. FM-AFM can be considered as a non invasive technique since, as we demonstrate in our experiments, we are able to sense forces down to 20 pN. The methodology reported here is of general interest since it can be applied to a large number of biological samples. In particular, the importance of mechanical interactions is a hot topic in different aspects of biotechnology ranging from protein folding to stem cells differentiation where conventional AFM modes are already being used.

  12. Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation

    Science.gov (United States)

    Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.

    2016-02-01

    Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.

  13. Fractal analysis of wood combustion aggregates by contact mode atomic force microscopy

    Science.gov (United States)

    Mavrocordatos, D.; Kaegi, R.; Schmatloch, V.

    Atomic force microscopy (AFM) is a powerful tool for the characterization of nanoparticles allowing to obtain fundamental parameters of morphology such as the size of individual particles, the number of particles per aggregate, the size distribution and finally the AFM allows one to determine the volume. All these parameters are accessible for the native aspect of the particles while AFM works under ambient temperature and pressure. We present here the analysis of wood combustion particles and their morphological parameters. Using our results for the 3D values, we were able to calculate the fractal dimension (Df) of the aggregates. As the Df is characteristic to the aggregation regime that particles undergo, we determined that wood particle aggregates follow a diffusion limited aggregation regime (Df=1.95). In parallel, in-situ analysis of the hydration effect has been studied in water at pH 7 and shows that the morphology is significantly influenced by the hydration. The composition observed by analytical electron microscopy (AEM) and atomic emission spectrometry (AES) enabled us to correlate the in-situ measurements by AFM with the hydration behavior of these particles and the fractal dimension.

  14. Enhanced efficiency in the excitation of higher modes for atomic force microscopy and mechanical sensors operated in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Penedo, M., E-mail: mapenedo@imm.cnm.csic.es; Hormeño, S.; Fernández-Martínez, I.; Luna, M.; Briones, F. [IMM-Instituto de Microelectrónica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Raman, A. [Birck Nanotechnology Center and School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47904 (United States)

    2014-10-27

    Recent developments in dynamic Atomic Force Microscopy where several eigenmodes are simultaneously excited in liquid media are proving to be an excellent tool in biological studies. Despite its relevance, the search for a reliable, efficient, and strong cantilever excitation method is still in progress. Herein, we present a theoretical modeling and experimental results of different actuation methods compatible with the operation of Atomic Force Microscopy in liquid environments: ideal acoustic, homogeneously distributed force, distributed applied torque (MAC Mode™), photothermal and magnetostrictive excitation. From the analysis of the results, it can be concluded that magnetostriction is the strongest and most efficient technique for higher eigenmode excitation when using soft cantilevers in liquid media.

  15. Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy.

    Science.gov (United States)

    Lavanya Devi, A L; Nongthomba, Upendra; Bobji, M S

    2016-01-01

    Atomic force Microscopy (AFM) has become a versatile tool in biology due to its advantage of high-resolution imaging of biological samples close to their native condition. Apart from imaging, AFM can also measure the local mechanical properties of the surfaces. In this study, we explore the possibility of using AFM to quantify the rough eye phenotype of Drosophila melanogaster through mechanical properties. We have measured adhesion force, stiffness and elastic modulus of the corneal lens using AFM. Various parameters affecting these measurements like cantilever stiffness and tip geometry are systematically studied and the measurement procedures are standardized. Results show that the mean adhesion force of the ommatidial surface varies from 36 nN to 16 nN based on the location. The mean stiffness is 483 ± 5 N/m, and the elastic modulus is 3.4 ± 0.05 GPa (95% confidence level) at the center of ommatidia. These properties are found to be different in corneal lens of eye expressing human mutant tau gene (mutant). The adhesion force, stiffness and elastic modulus are decreased in the mutant. We conclude that the measurement of surface and mechanical properties of D. melanogaster using AFM can be used for quantitative evaluation of 'rough eye' surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Mechanosensitivity of a Rapid Bioluminescence Reporter System Assessed by Atomic Force Microscopy

    Science.gov (United States)

    Tesson, Benoit; Latz, Michael I.

    2015-01-01

    Cells are sophisticated integrators of mechanical stimuli that lead to physiological, biochemical, and genetic responses. The bioluminescence of dinoflagellates, alveolate protists that use light emission for predator defense, serves as a rapid noninvasive whole-cell reporter of mechanosensitivity. In this study, we used atomic force microscopy (AFM) to explore the relationship between cell mechanical properties and mechanosensitivity in live cells of the dinoflagellate Pyrocystis lunula. Cell stiffness was 0.56 MPa, consistent with cells possessing a cell wall. Cell response depended on both the magnitude and velocity of the applied force. At the maximum stimulation velocity of 390 μm s−1, the threshold response occurred at a force of 7.2 μN, resulting in a contact time of 6.1 ms and indentation of 2.1 μm. Cells did not respond to a low stimulation velocity of 20 μm s−1, indicating a velocity dependent response that, based on stress relaxation experiments, was explained by the cell viscoelastic properties. This study demonstrates the use of AFM to study mechanosensitivity in a cell system that responds at fast timescales, and provides insights into how viscoelastic properties affect mechanosensitivity. It also provides a comparison with previous studies using hydrodynamic stimulation, showing the discrepancy in cell response between direct compressive forces using AFM and those within flow fields based on average flow properties. PMID:25809248

  17. Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy.

    Science.gov (United States)

    Lee, Gi-Ja; Chae, Su-Jin; Jeong, Jae Hoon; Lee, So-Ra; Ha, Sang-Jin; Pak, Youngmi Kim; Kim, Weon; Park, Hun-Kuk

    2011-04-01

    Mitochondria play critical roles in both the life and the death of cardiac myocytes. Various factors, such as the loss of ATP synthesis and increase of ATP hydrolysis, impairment in ionic homeostasis, formation of reactive oxygen species (ROS), and release of proapoptotic proteins are related to the generation of irreversible damage. It has been proposed that the release of cytochrome c is caused by a swelling of the mitochondrial matrix triggered by the apoptotic stimuli. However, there is a controversy about whether or not the mitochondria, indeed, swell during apoptosis. The major advantages of atomic force microscopy (AFM) over conventional optical and electron microscopes for bio-imaging include the fact that no special coating and vacuum are required and imaging can be done in all environments--air, vacuum or aqueous conditions. In addition, AFM force-distance curve measurements have become a fundamental tool in the fields of surface chemistry, biochemistry, and material science. In this study, we used AFM to observe the morphological and property changes in heart mitochondria that were isolated from a rat myocardial infarction model. From the shape parameters of the mitochondria in the AFM topographic image, it seemed that myocardial infarction caused the mitochondrial swelling. Also, the results of force-distance measurements showed that the adhesion force of heart mitochondria was significantly decreased by myocardial in infarction. Therefore, we suggested that myocardial infarction might be the cause of mitochondrial swelling and the changes in outer membrane of heart mitochondria. © 2010 Elsevier Ltd. All rights reserved.

  18. Application of atomic force microscopy for characteristics of single intermolecular interactions.

    Science.gov (United States)

    Safenkova, I V; Zherdev, A V; Dzantievf, B B

    2012-12-01

    Atomic force microscopy (AFM) can be used to make measurements in vacuum, air, and water. The method is able to gather information about intermolecular interaction forces at the level of single molecules. This review encompasses experimental and theoretical data on the characterization of ligand-receptor interactions by AFM. The advantage of AFM in comparison with other methods developed for the characterization of single molecular interactions is its ability to estimate not only rupture forces, but also thermodynamic and kinetic parameters of the rupture of a complex. The specific features of force spectroscopy applied to ligand-receptor interactions are examined in this review from the stage of the modification of the substrate and the cantilever up to the processing and interpretation of the data. We show the specificities of the statistical analysis of the array of data based on the results of AFM measurements, and we discuss transformation of data into thermodynamic and kinetic parameters (kinetic dissociation constant, Gibbs free energy, enthalpy, and entropy). Particular attention is paid to the study of polyvalent interactions, where the definition of the constants is hampered due to the complex stoichiometry of the reactions.

  19. Functional atomic force microscopy investigation of osteopontin affinity for silicon stabilized tricalcium phosphate bioceramic surfaces.

    Science.gov (United States)

    Pietak, Alexis M; Sayer, Michael

    2006-01-01

    Resorbable silicon stabilized tricalcium phosphate (Si-TCP)-based bioceramics are characterized from a biological perspective by measuring the intermolecular interaction force between osteopontin (OPN) protein and the material surface using atomic force microscopy (AFM). OPN protein was covalently bound to silicon nitride AFM tips and adsorption and adhesion forces were measured in an electrolyte with a composition similar to that of physiological fluids. A strong relationship exists between the adhesion force of OPN on the material surface, the number of adherent osteoclasts (OC) and the resorption of the material. OPN adhesion is strongest on hydroxyapatite (HA) surfaces, or in samples that induce a HA-like surface through a precipitation reaction in electrolytic media. It is proposed that the increased biological response of the Si-TCP phase can be attributed in part to its reactivity in a physiological electrolyte, which involves a rapid conversion to a calcium deficient HA phase with a corresponding increase in the adhesion strength of OPN to the material, with a consequentially higher OC resorption response.

  20. Bi-harmonic cantilever design for improved measurement sensitivity in tapping-mode atomic force microscopy.

    Science.gov (United States)

    Loganathan, Muthukumaran; Bristow, Douglas A

    2014-04-01

    This paper presents a method and cantilever design for improving the mechanical measurement sensitivity in the atomic force microscopy (AFM) tapping mode. The method uses two harmonics in the drive signal to generate a bi-harmonic tapping trajectory. Mathematical analysis demonstrates that the wide-valley bi-harmonic tapping trajectory is as much as 70% more sensitive to changes in the sample topography than the standard single-harmonic trajectory typically used. Although standard AFM cantilevers can be driven in the bi-harmonic tapping trajectory, they require large forcing at the second harmonic. A design is presented for a bi-harmonic cantilever that has a second resonant mode at twice its first resonant mode, thereby capable of generating bi-harmonic trajectories with small forcing signals. Bi-harmonic cantilevers are fabricated by milling a small cantilever on the interior of a standard cantilever probe using a focused ion beam. Bi-harmonic drive signals are derived for standard cantilevers and bi-harmonic cantilevers. Experimental results demonstrate better than 30% improvement in measurement sensitivity using the bi-harmonic cantilever. Images obtained through bi-harmonic tapping exhibit improved sharpness and surface tracking, especially at high scan speeds and low force fields.

  1. Multi-MHz micro-electro-mechanical sensors for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Legrand, Bernard, E-mail: bernard.legrand@laas.fr [LAAS-CNRS, Université de Toulouse, CNRS, 7 avenue du colonel Roche, F-31400 Toulouse (France); Salvetat, Jean-Paul [CRPP, 115 avenue Schweitzer, F-33600 Pessac (France); Walter, Benjamin; Faucher, Marc; Théron, Didier [IEMN, avenue Henri Poincaré, F-59652 Villeneuve d’Ascq (France); Aimé, Jean-Pierre [CBMN, allée Geoffroy Saint Hilaire, Bât. B14, F-33600 Pessac (France)

    2017-04-15

    Silicon ring-shaped micro-electro-mechanical resonators have been fabricated and used as probes for dynamic atomic force microscopy (AFM) experiments. They offer resotnance frequency above 10 MHz, which is notably greater than that of usual cantilevers and quartz-based AFM probes. On-chip electrical actuation and readout of the tip oscillation are obtained by means of built-in capacitive transducers. Displacement and force resolutions have been determined from noise analysis at 1.5 fm/√Hz and 0.4 pN/√Hz, respectively. Despite the high effective stiffness of the probes, the tip-surface interaction force is kept below 1 nN by using vibration amplitude significantly below 100 pm and setpoint close to the free vibration conditions. Imaging capabilities in amplitude- and frequency-modulation AFM modes have been demonstrated on block copolymer surfaces. Z-spectroscopy experiments revealed that the tip is vibrating in permanent contact with the viscoelastic material, with a pinned contact line. Results are compared to those obtained with commercial AFM cantilevers driven at large amplitudes (>10 nm). - Highlights: • Silicon MEMS resonators are used as AFM probes above 10 MHz. • Integrated capacitive transducers drive and sense sub-nanometer tip oscillation. • Force resolution is below 1 pN/√Hz. • Block copolymer surface is imaged using AM and FM AFM modes. • Probes are operated at small vibration amplitude in permanent viscoelastic contact.

  2. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.

    Science.gov (United States)

    Nalam, Prathima C; Gosvami, Nitya N; Caporizzo, Matthew A; Composto, Russell J; Carpick, Robert W

    2015-11-07

    We present a magnetic force-based direct drive modulation method to measure local nano-rheological properties of soft materials across a broad frequency range (10 Hz to 2 kHz) using colloid-attached atomic force microscope (AFM) probes in liquid. The direct drive method enables artefact-free measurements over several decades of excitation frequency, and avoids the need to evaluate medium-induced hydrodynamic drag effects. The method was applied to measure the local mechanical properties of polyacrylamide hydrogels. The frequency-dependent storage stiffness, loss stiffness, and loss tangent (tan δ) were quantified for hydrogels having high and low crosslinking densities by measuring the amplitude and the phase response of the cantilever while the colloid was in contact with the hydrogel. The frequency bandwidth was further expanded to lower effective frequencies (0.1 Hz to 10 Hz) by obtaining force-displacement (FD) curves. Slow FD measurements showed a recoverable but highly hysteretic response, with the contact mechanical behaviour dependent on the loading direction: approach curves showed Hertzian behaviour while retraction curves fit the JKR contact mechanics model well into the adhesive regime, after which multiple detachment instabilities occurred. Using small amplitude dynamic modulation to explore faster rates, the load dependence of the storage stiffness transitioned from Hertzian to a dynamic punch-type (constant contact area) model, indicating significant influence of material dissipation coupled with adhesion. Using the appropriate contact model across the full frequency range measured, the storage moduli were found to remain nearly constant until an increase began near ∼100 Hz. The softer gels' storage modulus increased from 7.9 ± 0.4 to 14.5 ± 2.1 kPa (∼85%), and the stiffer gels' storage modulus increased from 16.3 ± 1.1 to 31.7 ± 5.0 kPa (∼95%). This increase at high frequencies may be attributed to a contribution from solvent

  3. Peculiarities of living cell response to the external stimuli revealed via quasistatic mode of atomic force microscopy

    Science.gov (United States)

    Khalisov, M. M.; Ankudinov, A. V.; Penniyaynen, V. A.; Timoshenko, T. E.; Timoshchuk, K. I.; Samsonov, M. V.; Shirinsky, V. P.

    2017-10-01

    The technique of atomic force microscopy allows revealing living cell morphology and mechanical properties characterization under physiologically relevant conditions. Here, we review our recent results on living cell reaction to different external influences obtained by this technique. The Bruker PeakForce QNM quasistatic mode was used to study living fibroblasts, erythrocytes, sensory neurons, and endothelial cells.

  4. High-sensitivity imaging with lateral resonance mode atomic force microscopy.

    Science.gov (United States)

    Ding, Ren-Feng; Yang, Chih-Wen; Huang, Kuang-Yuh; Hwang, Ing-Shouh

    2016-11-03

    In the operation of a dynamic mode atomic force microscope, a micro-fabricated rectangular cantilever is typically oscillated at or near its mechanical resonance frequency. Lateral bending resonances of cantilevers are rarely used because the resonances are not expected to be detected by the beam-deflection method. In this work, we found that micro-cantilevers with a large tip produced an out-of-plane displacement in lateral resonance (LR), which could be detected with the beam-deflection method. Finite-element analysis indicated that the presence of a large tip is the major source of the out-of-plane coupling for the LR. We also imaged a heterogeneous sample by operating a cantilever in LR, torsional resonance, and tapping modes. LR mode yielded a small deformation and noise level in the height maps as well as a high contrast and small noise level in the phase maps. LR mode also had a resonance frequency that was orders of magnitude higher than that of tapping mode. Operation with LR mode may have the benefits of high-speed scanning, high-sensitivity imaging, and mapping of in-plane mechanical properties of the sample surface. In general, LR mode may become a powerful new atomic force microscopy technique for characterizing sample materials.

  5. Label-free quantification of Tacrolimus in biological samples by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Menotta, Michele, E-mail: michele.menotta@uniurb.it [Department of Biomolecular Sciences, University of Urbino “Carlo Bo” via Saffi 2, Urbino (Italy); Biagiotti, Sara [Department of Biomolecular Sciences, University of Urbino “Carlo Bo” via Saffi 2, Urbino (Italy); Streppa, Laura [Physics Laboratory, CNRS-ENS, UMR 5672, Lyon (France); Cell and Molecular Biology Laboratory, CNRS-ENS Lyon, UMR 5239, IFR128, Lyon (France); Rossi, Luigia; Magnani, Mauro [Department of Biomolecular Sciences, University of Urbino “Carlo Bo” via Saffi 2, Urbino (Italy)

    2015-07-16

    Highlights: • Tacrolimus is a potent immunosuppressant drug that has to be continually monitored. • We present an atomic force microscope approach for quantification of Tacrolimus in blood samples. • Detection and quantification have been successfully achieved. - Abstract: In the present paper we describe an atomic force microscopy (AFM)-based method for the quantitative analysis of FK506 (Tacrolimus) in whole blood (WB) samples. Current reference methods used to quantify this immunosuppressive drug are based on mass spectrometry. In addition, an immunoenzymatic assay (ELISA) has been developed and is widely used in clinic, even though it shows a small but consistent overestimation of the actual drug concentration when compared with the mass spectrometry method. The AFM biosensor presented herein utilises the endogen drug receptor, FKBP12, to quantify Tacrolimus levels. The biosensor was first assayed to detect the free drug in solution, and subsequently used for the detection of Tacrolimus in blood samples. The sensor was suitable to generate a dose–response curve in the full range of clinical drug monitoring. A comparison with the clinically tested ELISA assay is also reported.

  6. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy.

    Science.gov (United States)

    König, Thomas; Simon, Georg H; Heinke, Lars; Lichtenstein, Leonid; Heyde, Markus

    2011-01-01

    Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001) and line defects in aluminum oxide on NiAl(110), respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM) and the electronic structure by scanning tunneling spectroscopy (STS). On magnesium oxide, different color centers, i.e., F(0), F(+), F(2+) and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F(2+)-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  7. Localization of cesium on montmorillonite surface investigated by frequency modulation atomic force microscopy

    Science.gov (United States)

    Araki, Yuki; Satoh, Hisao; Okumura, Masahiko; Onishi, Hiroshi

    2017-11-01

    Cation exchange of clay mineral is typically analyzed without microscopic study of the clay surfaces. In order to reveal the distribution of exchangeable cations at the clay surface, we performed in situ atomic-scale observations of the surface changes in Na-rich montmorillonite due to exchange with Cs cations using frequency modulation atomic force microscopy (FM-AFM). Lines of protrusion were observed on the surface in aqueous CsCl solution. The amount of Cs of the montmorillonite particles analyzed by energy dispersive X-ray spectrometry was consistent with the ratio of the number of linear protrusions to all protrusions in the FM-AFM images. The results showed that the protrusions represent adsorbed Cs cations. The images indicated that Cs cations at the surface were immobile, and their occupancy remained constant at 10% of the cation sites at the surface with different immersion times in the CsCl solution. This suggests that the mobility and the number of Cs cations at the surface are controlled by the permanent charge of montmorillonite; however, the Cs distribution at the surface is independent of the charge distribution of the inner silicate layer. Our atomic-scale observations demonstrate that surface cations are distributed in different ways in montmorillonite and mica.

  8. Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

    Directory of Open Access Journals (Sweden)

    Thomas König

    2011-01-01

    Full Text Available Surfaces of thin oxide films were investigated by means of a dual mode NC-AFM/STM. Apart from imaging the surface termination by NC-AFM with atomic resolution, point defects in magnesium oxide on Ag(001 and line defects in aluminum oxide on NiAl(110, respectively, were thoroughly studied. The contact potential was determined by Kelvin probe force microscopy (KPFM and the electronic structure by scanning tunneling spectroscopy (STS. On magnesium oxide, different color centers, i.e., F0, F+, F2+ and divacancies, have different effects on the contact potential. These differences enabled classification and unambiguous differentiation by KPFM. True atomic resolution shows the topography at line defects in aluminum oxide. At these domain boundaries, STS and KPFM verify F2+-like centers, which have been predicted by density functional theory calculations. Thus, by determining the contact potential and the electronic structure with a spatial resolution in the nanometer range, NC-AFM and STM can be successfully applied on thin oxide films beyond imaging the topography of the surface atoms.

  9. High molecular orientation in mono- and tri-layer polydiacetylene films imaged by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    SASAKI,DARRYL Y.; CARPICK,ROBERT W.; BURNS,ALAN R.

    2000-03-06

    Atomically flat monolayer and trilayer films of polydiacetylenes have been prepared on mica and silicon using a horizontal deposition technique from a pure water subphase. Langmuir films of 10,12-pentacosadiynoic acid (I) and N-(2-ethanol)-10,12-pentacosadiynamide (II) were compressed to 20 mN/m and subsequently polymerized by UV irradiation at the air-water interface. Blue and red forms of the films were prepared by varying exposure times and incident power. Polymerization to the blue-phase films produced slight contractions in the film of 2 and 5% for the films of II and I, respectively. Longer UV exposures yielded red-phase films with dramatic film contraction of 15 and 32% for II and I, respectively. The horizontal deposition technique provided transfer ratios of unity with minimal film stress or structure modification. Atomic force microscopy images revealed nearly complete coverage of the substrate with atomically flat films. Crystalline domains of up to 100 microns of highly oriented polydiacetylene molecules were observed. The results reported herein provided insight into the roles of molecular packing and chain orientations in converting the monomeric film to the polymerized blue- and red-phases.

  10. Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy

    CERN Document Server

    Spedden, Elise; Naumova, Elena N; Kaplan, David L; Staii, Cristian

    2013-01-01

    Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here we combine Atomic Force Microscopy based force spectroscopy with Fluorescence Microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglion, and P-19 (mouse embryonic carcinoma stem cells) neurons. We measure how the stiffness of neurons changes both during neurite outgrowth and upon disruption of microtubules of the cell. We find reversible local stiffening of the cell during growth, and show that the increase in local elastic modulus is primarily due to the formation of microtubules. We also report that cortical and P-19 neurons have similar elasticity maps, with elastic moduli in the range 0.1-2 kPa, with typical average values of 0.4 kPa (P-19) and 0.2 k...

  11. Resolving Intra- and Inter-Molecular Structure with Non-Contact Atomic Force Microscopy.

    Science.gov (United States)

    Jarvis, Samuel Paul

    2015-08-21

    A major challenge in molecular investigations at surfaces has been to image individual molecules, and the assemblies they form, with single-bond resolution. Scanning probe microscopy, with its exceptionally high resolution, is ideally suited to this goal. With the introduction of methods exploiting molecularly-terminated tips, where the apex of the probe is, for example, terminated with a single CO, Xe or H2 molecule, scanning probe methods can now achieve higher resolution than ever before. In this review, some of the landmark results related to attaining intramolecular resolution with non-contact atomic force microscopy (NC-AFM) are summarised before focussing on recent reports probing molecular assemblies where apparent intermolecular features have been observed. Several groups have now highlighted the critical role that flexure in the tip-sample junction plays in producing the exceptionally sharp images of both intra- and apparent inter-molecular structure. In the latter case, the features have been identified as imaging artefacts, rather than real intermolecular bonds. This review discusses the potential for NC-AFM to provide exceptional resolution of supramolecular assemblies stabilised via a variety of intermolecular forces and highlights the potential challenges and pitfalls involved in interpreting bonding interactions.

  12. Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy.

    Science.gov (United States)

    Spedden, Elise; White, James D; Naumova, Elena N; Kaplan, David L; Staii, Cristian

    2012-09-05

    Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here, we combine atomic force microscopy-based force spectroscopy with fluorescence microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglion, and P-19 (mouse embryonic carcinoma stem cells) neurons. We measure how the stiffness of neurons changes both during neurite outgrowth and upon disruption of microtubules of the cell. We find reversible local stiffening of the cell during growth, and show that the increase in local elastic modulus is primarily due to the formation of microtubules. We also report that cortical and P-19 neurons have similar elasticity maps, with elastic moduli in the range 0.1-2 kPa, with typical average values of 0.4 kPa (P-19) and 0.2 kPa (cortical). In contrast, dorsal root ganglion neurons are stiffer than P-19 and cortical cells, yielding elastic moduli in the range 0.1-8 kPa, with typical average values of 0.9 kPa. Finally, we report no measurable influence of substrate protein coating on cell body elasticity for the three types of neurons. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Optical and atomic force microscopy of an explanted AcrySof intraocular lens with glistenings.

    Science.gov (United States)

    Dogru, M; Tetsumoto, K; Tagami, Y; Kato, K; Nakamae, K

    2000-04-01

    To assess the surface morphology and cause of glistenings in an explanted AcrySof intraocular lens (IOL). Shakai Hoken Kobe Central Hospital, Kobe, Japan. A 63-year-old Japanese man had implantation of an AcrySof IOL in the capsular bag. One month postoperatively, he had a neodymium:YAG laser capsulotomy for posterior capsule opacification, which changed the IOL's position in the capsular bag. A few months later, the patient developed disabling night glare from intralenticular glistenings and progressive hyperopic refractive error. The IOL was explanted and then analyzed by optical microscopy and atomic force microscopy (AFM). Laboratory analysis of control AcrySof IOLs kept in a balanced salt solution at steady room and body temperature for 2 months was also performed to evaluate the cause of the glistenings observed clinically. Optical microscopy showed that the explanted AcrySof IOL had several microvacuoles; no abnormalities were observed in the control AcrySof IOLs before or after folding at the room and body temperatures. The AFM analysis showed a significant change in the surface morphology of the explanted IOL, including vacuolar formations in the posterior surface as well as numerous anterior surface irregularities. No microvacuoles or surface morphology alterations were observed in the control AcrySof IOLs by AFM analysis. The glistenings in the explanted AcrySof IOL were likely caused by temperature changes and not mechanical stress from folding.

  14. Robot-Guided Atomic Force Microscopy for Mechano-Visual Phenotyping of Cancer Specimens.

    Science.gov (United States)

    Chen, Wenjin; Brandes, Zachary; Roy, Rajarshi; Chekmareva, Marina; Pandya, Hardik J; Desai, Jaydev P; Foran, David J

    2015-10-01

    Atomic force microscopy (AFM) and other forms of scanning probe microscopy have been successfully used to assess biomechanical and bioelectrical characteristics of individual cells. When extending such approaches to heterogeneous tissue, there exists the added challenge of traversing the tissue while directing the probe to the exact location of the targeted biological components under study. Such maneuvers are extremely challenging owing to the relatively small field of view, limited availability of reliable visual cues, and lack of context. In this study we designed a system that leverages the visual topology of the serial tissue sections of interest to help guide robotic control of the AFM stage to provide the requisite navigational support. The process begins by mapping the whole-slide image of a stained specimen with a well-matched, consecutive section of unstained section of tissue in a piecewise fashion. The morphological characteristics and localization of any biomarkers in the stained section can be used to position the AFM probe in the unstained tissue at regions of interest where the AFM measurements are acquired. This general approach can be utilized in various forms of microscopy for navigation assistance in tissue specimens.

  15. Correlated Fluorescence-Atomic Force Microscopy Studies of the Clathrin Mediated Endocytosis in SKMEL Cells

    Science.gov (United States)

    Smith, Steve; Hor, Amy; Luu, Anh; Kang, Lin; Scott, Brandon; Bailey, Elizabeth; Hoppe, Adam

    Clathrin-mediated endocytosis is one of the central pathways for cargo transport into cells, and plays a major role in the maintenance of cellular functions, such as intercellular signaling, nutrient intake, and turnover of plasma membrane in cells. The clathrin-mediated endocytosis process involves invagination and formation of clathrin-coated vesicles. However, the biophysical mechanisms of vesicle formation are still debated. We investigate clathrin vesicle formation mechanisms through the utilization of tapping-mode atomic force microscopy for high resolution topographical imaging in neutral buffer solution of unroofed cells exposing the inner membrane, combined with fluorescence imaging to definitively label intracellular constituents with specific fluorescent fusion proteins (actin filaments labeled with green phalloidin-antibody and clathrin coated vesicles with the fusion protein Tq2) in SKMEL (Human Melanoma) cells. Results from our work are compared against dynamical polarized total internal fluorescence (TIRF), super-resolution photo-activated localization microscopy (PALM) and transmission electron microscopy (TEM) to draw conclusions regarding the prominent model of vesicle formation in clathrin-mediated endocytosis. Funding provided by NSF MPS/DMR/BMAT award # 1206908.

  16. Biomechanics of the anterior human corneal tissue investigated with atomic force microscopy.

    Science.gov (United States)

    Lombardo, Marco; Lombardo, Giuseppe; Carbone, Giovanni; De Santo, Maria P; Barberi, Riccardo; Serrao, Sebastiano

    2012-02-29

    To investigate the biomechanics of the anterior human corneal stroma using atomic force microscopy (AFM). AFM measurements were performed in liquid on the anterior stroma of human corneas, after gently removing the epithelium, using an atomic force microscope in the force spectroscopy mode. Rectangular silicon cantilevers with tip radius of 10 nm and spring elastic constants of 25- and 33-N/m were used. Each specimen was subjected to increasing loads up to a maximum of 2.7 μN with scan speeds ranging between 3- and 95-μm/s. The anterior stromal hysteresis during the extension-retraction cycle was quantified as a function of the application load and scan rate. The elastic modulus of the anterior stroma was determined by fitting force curve data to the Sneddon model. The anterior stroma exhibited significant viscoelasticity at micrometric level: asymmetry in the curve loading-unloading response with considerable hysteresis dependent both on the application load and scan rate (P < 0.01). The mean elastic modulus ranged between 1.14 and 2.63 MPa and was constant over the range of indentation depths between 1.0 and 2.7 μm in the stroma. At microscale level, the mechanical response of the most anterior stroma is complex and nonlinear. The microstructure (fibers' packing, number of cross-links, water content) and the combination of elastic (collagen fibers) and viscous (matrix) components of the tissue influence the type of viscoelastic response. Efforts in modeling the biomechanics of human corneal tissue at micrometric level are needed.

  17. Monitoring the elasticity changes of HeLa cells during mitosis by atomic force microscopy

    Science.gov (United States)

    Jiang, Ningcheng; Wang, Yuhua; Zeng, Jinshu; Ding, Xuemei; Xie, Shusen; Yang, Hongqin

    2016-10-01

    Cell mitosis plays a crucial role in cell life activity, which is one of the important phases in cell division cycle. During the mitosis, the cytoskeleton micro-structure of the cell changed and the biomechanical properties of the cell may vary depending upon different mitosis stages. In this study, the elasticity property of HeLa cells during mitosis was monitored by atomic force microscopy. Also, the actin filaments in different mitosis stages of the cells were observed by confocal imaging. Our results show that the cell in anaphase is stiffer than that in metaphase and telophase. Furthermore, lots of actin filaments gathered in cells' center area in anaphase, which contributes to the rigidity of the cell in this phase. Our findings demonstrate that the nano-biomechanics of living cells could provide a new index for characterizing cell physiological states.

  18. Atomic force microscopy study of anion intercalation into highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Alliata, D.; Haering, P.; Haas, O.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H. [University of Berne (Switzerland)

    1999-08-01

    In the context of ion transfer batteries, we studied highly oriented pyrolytic graphite (HOPG) in perchloric acid, as a model to elucidate the mechanism of electrochemical intercalation in graphite. Aim of the work is the local and time dependent investigation of dimensional changes of the host material during electrochemical intercalation processes on the nanometer scale. We used atomic force microscopy (AFM), combined with cyclic voltammetry, as in-situ tool of analysis during intercalation and expulsion of perchloric anions into the HOPG electrodes. According to the AFM measurements, the HOPG interlayer spacing increases by 32% when perchloric anions intercalate, in agreement with the formation of stage IV of graphite intercalation compounds. (author) 3 figs., 3 refs.

  19. Investigations of Silk Fibers Using X-Ray Scattering and Atomic Force Microscopy

    Science.gov (United States)

    Miller, Lance D.; Putthanarat, Sirina; Eby, Ronald K.; Adams, W. W.; Liu, G. F.

    1998-03-01

    Silk fibers from the cocoon of Bombyx mori and the dragline of Nephila clavipes have been investigated by small angle x-ray scattering (SAXS) and atomic force microscopy (AFM). The large scale morphology of these silks have minimum scattering dimensions, and correlation length on the order of 150-300 nm. Several types of AFM measurements on peeled and abraided silk samples have revealed dimensions in agreement with SAXS results. Further agreemeent has been found through the incorporation of discrete Fourier transform theory on AFM topographic information as compared to SAXS patterns. This incorporation allows the materials scientist a way of visualizing the relationship between a material and its resulting scattering function. All of these studies yield a more complete view of the silk morphology and give a new method of model building from scattering experiments.

  20. Atomic force microscopy observation of lipopolysaccharide-induced cardiomyocyte cytoskeleton reorganization.

    Science.gov (United States)

    Wang, Liqun; Chen, Tangting; Zhou, Xiang; Huang, Qiaobing; Jin, Chunhua

    2013-08-01

    We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    Science.gov (United States)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  2. Current status and perspectives in atomic force microscopy-based identification of cellular transformation.

    Science.gov (United States)

    Dong, Chenbo; Hu, Xiao; Dinu, Cerasela Zoica

    2016-01-01

    Understanding the complex interplay between cells and their biomechanics and how the interplay is influenced by the extracellular microenvironment, as well as how the transforming potential of a tissue from a benign to a cancerous one is related to the dynamics of both the cell and its surroundings, holds promise for the development of targeted translational therapies. This review provides a comprehensive overview of atomic force microscopy-based technology and its applications for identification of cellular progression to a cancerous phenotype. The review also offers insights into the advancements that are required for the next user-controlled tool to allow for the identification of early cell transformation and thus potentially lead to improved therapeutic outcomes.

  3. [Atomic force microscopy fishing of gp120 on immobilized aptamer and its mass spectrometry identification].

    Science.gov (United States)

    Bukharina, N S; Ivanov, Yu D; Pleshakova, T O; Frantsuzov, P A; Andreeva, E Yu; Kaysheva, A L; Izotov, A A; Pavlova, T I; Ziborov, V S; Radko, S P; Archakov, A I

    2015-01-01

    A method of atomic force microscopy-based fishing (AFM fishing) has been developed for protein detection in the analyte solution using a chip with an immobilized aptamer. This method is based on the biospecific fishing of a target protein from a bulk solution onto the small AFM chip area with the immobilized aptamer to this protein used as the molecular probe. Such aptamer-based approach allows to increase an AFM image contrast compared to the antibody-based approach. Mass spectrometry analysis used after the biospecific fishing to identify the target protein on the AFM chip has proved complex formation. Use of the AFM chip with the immobilized aptamer avoids interference of the antibody and target protein peaks in a mass spectrum.

  4. Visualization of Bacterial Microcompartment Facet Assembly Using High-Speed Atomic Force Microscopy.

    Science.gov (United States)

    Sutter, Markus; Faulkner, Matthew; Aussignargues, Clément; Paasch, Bradley C; Barrett, Steve; Kerfeld, Cheryl A; Liu, Lu-Ning

    2016-03-09

    Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla. They compartmentalize enzymes within a selectively permeable shell and play important roles in CO2 fixation, pathogenesis, and microbial ecology. Here, we combine X-ray crystallography and high-speed atomic force microscopy to characterize, at molecular resolution, the structure and dynamics of BMC shell facet assembly. Our results show that preformed hexamers assemble into uniformly oriented shell layers, a single hexamer thick. We also observe the dynamic process of shell facet assembly. Shell hexamers can dissociate from and incorporate into assembled sheets, indicating a flexible intermolecular interaction. Furthermore, we demonstrate that the self-assembly and dynamics of shell proteins are governed by specific contacts at the interfaces of shell proteins. Our study provides novel insights into the formation, interactions, and dynamics of BMC shell facets, which are essential for the design and engineering of self-assembled biological nanoreactors and scaffolds based on BMC architectures.

  5. Insights into the Pathophysiology of the Antiphospholipid Syndrome Provided by Atomic Force Microscopy

    Science.gov (United States)

    Quinn, Anthony S.; Wu, Xiao-Xuan; Rand, Jacob H.; Taatjes, Douglas J.

    2012-01-01

    The antiphospholipid syndrome (APS) is an enigmatic autoimmune disorder in which patients present with thrombosis and/or recurrent pregnancy losses together with laboratory evidence for the presence of autoantibodies in the blood that recognize proteins that bind to anionic phospholipids – the most important of which is β2-glycoprotein I (β2GPI). Earlier, we hypothesized that the clinical manifestations arise from antibody-induced disruption of a 2-dimensional anticoagulant crystal shield, composed of annexin A5, present on placental trophoblast plasma membranes. Accordingly, we reasoned that a high resolution imaging technology such as atomic force microscopy could be used to investigate such molecular interactions at high resolution in a non-fixed hydrated environment. This review will focus on the contribution of this technique to the elucidation of the mechanism of APS. PMID:22483857

  6. Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy

    Science.gov (United States)

    Li, Mi; Liu, Lian-qing; Xi, Ning; Wang, Yue-chao

    2015-01-01

    Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed. PMID:26027658

  7. Effect of Zn doping on the sublimation rate of pentaerythritol tetranitrate using atomic force microscopy.

    Science.gov (United States)

    Mridha, Subrata; Weeks, Brandon L

    2009-01-01

    A series of Zn ion-doped pentaerythritol tetranitrate (PETN) nanoislands in the form of thin films were prepared on Si substrates using spin coating. The effect of Zn concentrations on the sublimation energy was investigated by atomic force microscopy (AFM). The pure and Zn-doped nanoislands are imaged by AFM in contact mode at room temperature after annealing isothermally for a given time. The volume of the islands starts to decrease after annealing at 45 degrees C for pure PETN, whereas Zn-doped nanoislands start to decrease in height and volume after annealing at 55-58 degrees C. The minimum activation energy is found to be 29.7 Kcal/mol for 1,000 ppm Zn concentration. These studies are important for the long-term stabilization of PETN.

  8. Surface Morphology of Fe(III-Porphyrin Thin Layers as Characterized by Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Utari Utari

    2016-12-01

    Full Text Available Surface morphology of Fe(III–porphyrin thin layers was studied using atomic force microscopy. The thin layer samples used in these experiments were deposited by spin coating methods on indium–tin-oxide substrates at room temperature under atmospheric conditions. Variations of thin layer of Fe(III-porphyrin were done by modifying the rotational speed and the concentration of the solution. The experimental results demonstrated that the Fe(III–porphyrin layers were observed as discrete nanomolecular islands. Both the number of nano-islands and thickness of the layer increased significantly with increasing concentration. A layer thickness of 15 nm was obtained for low concentrations of 0.00153 M and become 25 nm for dense concentrations of 0.153 M. Conversely, the higher number of islands were deposited on the surface of the substrate at a lower rotational speed.

  9. Short-term effect of cryotherapy on human scleral tissue by atomic force microscopy.

    Science.gov (United States)

    Lee, Seung Jun; Choi, Samjin; Kim, Moo Sang; Cheong, Youjin; Kwak, Hyung-Woo; Park, Hun-Kuk; Jin, Kyung-Hyun

    2013-01-01

    This study investigated the inflammatory effect of cryotherapy application on collagen matrix network in human infant sclera. Donor scleral tissues taken from three infant patients divided into five groups: control group, sham-treated group, and three cryotreated groups. In the cryotherapy groups, the sclera was treated for 5 s, 10 s, and 20 s with -80°C freezing by a cryosurgical system. The cryotreated reactions were examined using double histological analysis with hematoxylin-eosin and Masson's trichrome, and atomic force microscopy analysis to quantify the diameter and D-banding of collagen fibrils. The infant scleral tissues treated with cryotherapy showed a significantly increased collagen density associated with inflammatory response (p < 0.05), increased fibril diameter (p < 0.005) compared to the scleral tissues in the control group. The results directly suggest that the cryotherapy affects the morphology of scleral collagen. © Wiley Periodicals, Inc.

  10. Single virus detection by means of atomic force microscopy in combination with advanced image analysis.

    Science.gov (United States)

    Bocklitz, Thomas; Kämmer, Evelyn; Stöckel, Stephan; Cialla-May, Dana; Weber, Karina; Zell, Roland; Deckert, Volker; Popp, Jürgen

    2014-10-01

    In the present contribution virions of five different virus species, namely Varicella-zoster virus, Porcine teschovirus, Tobacco mosaic virus, Coliphage M13 and Enterobacteria phage PsP3, are investigated using atomic force microscopy (AFM). From the resulting height images quantitative features like maximal height, area and volume of the viruses could be extracted and compared to reference values. Subsequently, these features were accompanied by image moments, which quantify the morphology of the virions. Both types of features could be utilized for an automatic discrimination of the five virus species. The accuracy of this classification model was 96.8%. Thus, a virus detection on a single-particle level using AFM images is possible. Due to the application of advanced image analysis the morphology could be quantified and used for further analysis. Here, an automatic recognition by means of a classification model could be achieved in a reliable and objective manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Electrical tomography using atomic force microscopy and its application towards carbon nanotube-based interconnects.

    Science.gov (United States)

    Schulze, A; Hantschel, T; Dathe, A; Eyben, P; Ke, X; Vandervorst, W

    2012-08-03

    The fabrication and integration of low-resistance carbon nanotubes (CNTs) for interconnects in future integrated circuits requires characterization techniques providing structural and electrical information at the nanometer scale. In this paper we present a slice-and-view approach based on electrical atomic force microscopy. Material removal achieved by successive scanning using doped ultra-sharp full-diamond probes, manufactured in-house, enables us to acquire two-dimensional (2D) resistance maps originating from different depths (equivalently different CNT lengths) on CNT-based interconnects. Stacking and interpolating these 2D resistance maps results in a three-dimensional (3D) representation (tomogram). This allows insight from a structural (e.g. size, density, distribution, straightness) and electrical point of view simultaneously. By extracting the resistance evolution over the length of an individual CNT we derive quantitative information about the resistivity and the contact resistance between the CNT and bottom electrode.

  12. Adsorption of human serum albumin onto highly orientated pyrolytic graphite surface studied by atomic force microscopy.

    Science.gov (United States)

    Peng, Xiao; Fu, Haoran; Liu, Ruisi; Zhao, Lin; Zu, Yuangang; Xu, Fengjie; Liu, Zhiguo

    2015-01-01

    It is important to know the adsorption behavior and assembly structure of human serum albumin (HSA) molecules onto a carbonaceous substrate for further application of carbon nanomaterials in biomedical field. Individual HSA molecules and oligmers (dimer and trimer) adsorbed onto HOPG surface have been imaged by atomic force microscopy (AFM). Individual HSA molecule appeared as an ellipsoid on HOPG surface with average length of 12.6, width of 6.5, and height of 1.9 nm when they were incubated at the physiological condition (pH 7.4). HSA molecules also can form the interconnected chains, uniform network, and monolayer by tuning the initial concentrations and adsorption time. Furthermore, HSA molecules can assemble into quite different network structures and irregular chains at pH of 2, 5, and 10. This study could expand our knowledge of the interactions between protein and carbonaceous surfaces. © Wiley Periodicals, Inc.

  13. Controllable nanoreactor confined to atomic force microscopy tips and its application in low copy DNA ligation.

    Science.gov (United States)

    Zhou, Hualan; Shi, Wenjian

    2010-11-01

    Less molecules reaction, especially at the single molecule level, plays an important role in biochemical or chemical research. It is also significant to achieve low copy or single molecule DNA ligation during the whole genome project. In this paper, a new type of nanoreactor was constructed around atomic force microscopy (AFM) tips under certain humidity, where DNA molecules can be limited to a special space through water meniscus, so the probability of molecules collision was increased and the efficiency of DNA ligation was greatly enhanced. Combined with the nanomanipulation based on AFM, controllable nanoreactor may provide a new tool to single molecule reaction. Low copy DNA ligation was successfully achieved by this method. Results showed the number of DNA molecules involved in the nanoreactor can not be more than sixty. This method will found a base for the ultimate realization of single-molecule DNA ligation.

  14. Design and optimization of a harmonic probe with step cross section in multifrequency atomic force microscopy

    Science.gov (United States)

    Cai, Jiandong; Wang, Michael Yu; Zhang, Li

    2015-12-01

    In multifrequency atomic force microscopy (AFM), probe's characteristic of assigning resonance frequencies to integer harmonics results in a remarkable improvement of detection sensitivity at specific harmonic components. The selection criterion of harmonic order is based on its amplitude's sensitivity on material properties, e.g., elasticity. Previous studies on designing harmonic probe are unable to provide a large design capability along with maintaining the structural integrity. Herein, we propose a harmonic probe with step cross section, in which it has variable width in top and bottom steps, while the middle step in cross section is kept constant. Higher order resonance frequencies are tailored to be integer times of fundamental resonance frequency. The probe design is implemented within a structural optimization framework. The optimally designed probe is micromachined using focused ion beam milling technique, and then measured with an AFM. The measurement results agree well with our resonance frequency assignment requirement.

  15. The electrically detected magnetic resonance microscope: combining conductive atomic force microscopy with electrically detected magnetic resonance.

    Science.gov (United States)

    Klein, Konrad; Hauer, Benedikt; Stoib, Benedikt; Trautwein, Markus; Matich, Sonja; Huebl, Hans; Astakhov, Oleksandr; Finger, Friedhelm; Bittl, Robert; Stutzmann, Martin; Brandt, Martin S

    2013-10-01

    We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical readout of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 8×10(6)spins/√Hz at room temperature.

  16. The Use of Atomic Force Microscopy for 3D Analysis of Nucleic Acid Hybridization on Microarrays.

    Science.gov (United States)

    Dubrovin, E V; Presnova, G V; Rubtsova, M Yu; Egorov, A M; Grigorenko, V G; Yaminsky, I V

    2015-01-01

    Oligonucleotide microarrays are considered today to be one of the most efficient methods of gene diagnostics. The capability of atomic force microscopy (AFM) to characterize the three-dimensional morphology of single molecules on a surface allows one to use it as an effective tool for the 3D analysis of a microarray for the detection of nucleic acids. The high resolution of AFM offers ways to decrease the detection threshold of target DNA and increase the signal-to-noise ratio. In this work, we suggest an approach to the evaluation of the results of hybridization of gold nanoparticle-labeled nucleic acids on silicon microarrays based on an AFM analysis of the surface both in air and in liquid which takes into account of their three-dimensional structure. We suggest a quantitative measure of the hybridization results which is based on the fraction of the surface area occupied by the nanoparticles.

  17. Nonlinear dynamics for estimating the tip radius in atomic force microscopy

    Science.gov (United States)

    Rull Trinidad, E.; Gribnau, T. W.; Belardinelli, P.; Staufer, U.; Alijani, F.

    2017-09-01

    The accuracy of measurements in Amplitude Modulation Atomic Force Microscopy (AFM) is directly related to the geometry of the tip. The AFM tip is characterized by its radius of curvature, which could suffer from alterations due to repetitive mechanical contact with the surface. An estimation of the tip change would allow the user to assess the quality during imaging. In this work, we introduce a method for tip radius evaluation based on the nonlinear dynamic response of the AFM cantilever. A nonlinear fitting procedure is used to match several curves with softening nonlinearity in the noncontact regime. By performing measurements in this regime, we are able to maximize the influence of the tip radius on the AFM probe response, and this can be exploited to estimate with good accuracy the AFM tip radius.

  18. High-speed atomic force microscopy for observing protein molecules in dynamic action

    Science.gov (United States)

    Ando, T.

    2017-02-01

    Directly observing protein molecules in dynamic action at high spatiotemporal resolution has long been a holy grail for biological science. To materialize this long quested dream, I have been developing high-speed atomic force microscopy (HS-AFM) since 1993. Tremendous strides were recently accomplished in its high-speed and low-invasive performances. Consequently, various dynamic molecular actions, including bipedal walking of myosin V and rotary propagation of structural changes in F1-ATPase, were successfully captured on video. The visualized dynamic images not only provided irrefutable evidence for speculated actions of the protein molecules but also brought new discoveries inaccessible with other approaches, thus giving great mechanistic insights into how the molecules function. HS-AFM is now transforming "static" structural biology into dynamic structural bioscience.

  19. Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis.

    Science.gov (United States)

    Zhou, Peilin; Yu, Haibo; Yang, Wenguang; Wen, Yangdong; Wang, Zhidong; Li, Wen Jung; Liu, Lianqing

    2017-05-17

    In this article, we present a novel method of spatial manipulation and assembly of nanoparticles via atomic force microscopy tip-induced dielectrophoresis (AFM-DEP). This method combines the high-accuracy positioning of AFM with the parallel manipulation of DEP. A spatially nonuniform electric field is induced by applying an alternating current (AC) voltage between the conductive AFM probe and an indium tin oxide glass substrate. The AFM probe acted as a movable DEP tweezer for nanomanipulation and assembly of nanoparticles. The mechanism of AFM-DEP was analyzed by numerical simulation. The effects of solution depth, gap distance, AC voltage, solution concentration, and duration time were experimentally studied and optimized. Arrays of 200 nm polystyrene nanoparticles were assembled into various nanostructures, including lines, ellipsoids, and arrays of dots. The sizes and shapes of the assembled structures were controllable. It was thus demonstrated that AFM-DEP is a flexible and powerful tool for nanomanipulation.

  20. Imaging modes of atomic force microscopy for application in molecular and cell biology

    Science.gov (United States)

    Dufrêne, Yves F.; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J.

    2017-04-01

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  1. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    Science.gov (United States)

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  2. Characterization of single-crystal sapphire substrates by X-ray methods and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, I. A.; Zakharov, B. G., E-mail: zakharov@kaluga.rosmail.com [Russian Academy of Sciences, Research Center Space Materials Science, Shubnikov Institute of Crystallography (Kaluga Branch) (Russian Federation); Asadchikov, V. E.; Butashin, A. V.; Roshchin, B. S.; Tolstikhina, A. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Zanaveskin, M. L.; Grishchenko, Yu. V.; Muslimov, A. E. [Russian Research Center Kurchatov Institute (Russian Federation); Yakimchuk, I. V.; Volkov, Yu. O.; Kanevskii, V. M.; Tikhonov, E. O. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-05-15

    The possibility of characterizing a number of practically important parameters of sapphire substrates by X-ray methods is substantiated. These parameters include wafer bending, traces of an incompletely removed damaged layer that formed as a result of mechanical treatment (scratches and marks), surface roughness, damaged layer thickness, and the specific features of the substrate real structure. The features of the real structure of single-crystal sapphire substrates were investigated by nondestructive methods of double-crystal X-ray diffraction and plane-wave X-ray topography. The surface relief of the substrates was investigated by atomic force microscopy and X-ray scattering. The use of supplementing analytical methods yields the most complete information about the structural inhomogeneities and state of crystal surface, which is extremely important for optimizing the technology of substrate preparation for epitaxy.

  3. Atomic force microscopy – looking at mechanosensors on the cell surface

    Science.gov (United States)

    Heinisch, Jürgen J.; Lipke, Peter N.; Beaussart, Audrey; El Kirat Chatel, Sofiane; Dupres, Vincent; Alsteens, David; Dufrêne, Yves F.

    2012-01-01

    Summary Living cells use cell surface proteins, such as mechanosensors, to constantly sense and respond to their environment. However, the way in which these proteins respond to mechanical stimuli and assemble into large complexes remains poorly understood at the molecular level. In the past years, atomic force microscopy (AFM) has revolutionized the way in which biologists analyze cell surface proteins to molecular resolution. In this Commentary, we discuss how the powerful set of advanced AFM techniques (e.g. live-cell imaging and single-molecule manipulation) can be integrated with the modern tools of molecular genetics (i.e. protein design) to study the localization and molecular elasticity of individual mechanosensors on the surface of living cells. Although we emphasize recent studies on cell surface proteins from yeasts, the techniques described are applicable to surface proteins from virtually all organisms, from bacteria to human cells. PMID:23077172

  4. Multiscale modeling and experimental validation for nanochannel depth control in atomic force microscopy-based nanofabrication

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jiaqi; Liu, Pinkuan, E-mail: pkliu@sjtu.edu.cn; Zhu, Xiaobo; Zhang, Fan; Chen, Guozhen [State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-08-21

    Nanochannels are essential features of many microelectronic and biomedical devices. To date, the most commonly employed method to fabricate these nanochannels is atomic force microscopy (AFM). However, there is presently a very poor understanding on the fundamental principles underlying this process, which limits its reliability and controllability. In this study, we present a comprehensive multiscale model by incorporating strain gradient plasticity and strain gradient elasticity theories, which can predict nanochannel depths during AFM-based nanofabrication. The modeling results are directly verified with experiments performed on Cu and Pt substrates. As this model can also be extended to include many additional conditions, it has broad applicability in a wide range of AFM-based nanofabrication applications.

  5. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy.

    Science.gov (United States)

    Bhushan, Bharat; Wang, Yuliang; Maali, Abdelhamid

    2009-07-21

    Slip length has been measured using the dynamic atomic force microscopy (AFM) method. Unlike the contact AFM method, the sample surface approaches an oscillating sphere with a very low velocity in the dynamic AFM method. During this process, the amplitude and phase shift data are recorded to calculate the hydrodynamic damping coefficient, which is then used to obtain slip length. In this study, a glass sphere with a large radius was glued to the end of an AFM cantilever to measure the slip length on rough surfaces. Experimental results for hydrophilic, hydrophobic, and superhydrophobic surfaces show that the hydrodynamic damping coefficient decreases from the hydrophilic surface to the hydrophobic surface and from the hydrophobic one to the superhydrophobic one. The slip lengths obtained on the hydrophobic and superhydrophobic surfaces are 43 and 236 nm, respectively, which indicates increasing boundary slip from the hydrophobic surface to the superhydrophobic one.

  6. Atomic force microscopy imaging of polyurethane nanoparticles onto different solid substrates

    Energy Technology Data Exchange (ETDEWEB)

    Beddin Fritzen-Garcia, Mauricia [Laboratorio de Bioenergetica e Bioquimica de Macromoleculas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); POLIMAT, Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil)], E-mail: maurifritzen@hotmail.com; Giehl Zanetti-Ramos, Betina [Laboratorio de Bioenergetica e Bioquimica de Macromoleculas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Schweitzer de Oliveira, Cristian [Laboratorio de Filmes Finos e Superficies, Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Soldi, Valdir [POLIMAT, Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Avelino Pasa, Andre [Laboratorio de Filmes Finos e Superficies, Departamento de Fisica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Creczynski-Pasa, Tania Beatriz [Laboratorio de Bioenergetica e Bioquimica de Macromoleculas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil)

    2009-03-01

    Atomic force microscopy (AFM) is a technique suited for characterizing nanoparticles on solid surfaces because it offers the capability of 3D visualization and quantitative information about the topography of the samples. In the present work, contact-mode AFM has been applied to imaging polyurethane nanoparticles formulated from a natural triol and isophorone diisocyanate (IPDI) in the presence of poly(ethylene glycol) (PEG). The colloidal polymeric system was deposited on mica, hydrophilic and hydrophobic silicon solid substrates to evaluate the size and shape of the nanoparticles. Our data showed that the nanoparticles were better distributed on mica and hydrophilic silicon. From the analysis of line-scan profiles we obtained different values for the ratio between the diameter and the height of the nanoparticles, indicating that the shape of the particles depends on the interaction between the nanoparticles and the substrate.

  7. Improving image contrast and material discrimination with nonlinear response in bimodal atomic force microscopy

    Science.gov (United States)

    Forchheimer, Daniel; Forchheimer, Robert; Haviland, David B.

    2015-02-01

    Atomic force microscopy has recently been extented to bimodal operation, where increased image contrast is achieved through excitation and measurement of two cantilever eigenmodes. This enhanced material contrast is advantageous in analysis of complex heterogeneous materials with phase separation on the micro or nanometre scale. Here we show that much greater image contrast results from analysis of nonlinear response to the bimodal drive, at harmonics and mixing frequencies. The amplitude and phase of up to 17 frequencies are simultaneously measured in a single scan. Using a machine-learning algorithm we demonstrate almost threefold improvement in the ability to separate material components of a polymer blend when including this nonlinear response. Beyond the statistical analysis performed here, analysis of nonlinear response could be used to obtain quantitative material properties at high speeds and with enhanced resolution.

  8. Observations and morphological analysis of supermolecular structure of natural bitumens by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yevgeny A. Golubev; Olga V. Kovaleva; Nikolay P. Yushkin [Institute of Geology of RAS, Syktyvkar (Russian Federation)

    2008-01-15

    The supermolecular structures of natural bitumens of the thermal consequent row asphaltites lower kerites (albertites), higher kerites (impsonites), anthraxolites from the Timan-Pechora petroleum province and Karelian shungite rocks, Russia, were studied in details. The experimental technique used was atomic force microscopy (AFM), following fracture preparation. The element distribution of the sample surfaces was analyzed by an X-ray microanalyser 'Link ISIS', combined with a scanning electron microscope (SEM). In this work, we characterized the supermolecular evolution of natural solid bitumens in the carbonization sequence by quantitative parameters. We showed that supermolecular structure can be important in defining to which classification group solid bitumens belong. 29 refs., 7 figs., 2 tabs.

  9. Observation of nuclear track in organic material by atomic force microscopy in real time during etching

    CERN Document Server

    Palmino, F; Labrune, J C

    1999-01-01

    The developments of Atomic Force Microscopy (AFM) allow to investigated solid surfaces with a nanometer scale. These techniques are useful methods allowing direct observation of surface morphologies. Particularly in the nuclear track fields, they offer a new tool to give many new informations on track formation. In this paper we present the preliminary results of a new use of this technique to characterize continuously the formation of the revealed track in a cellulose nitrate detector (LR115) after an alpha particle irradiation. For that, a specific cell has been used to observe, by nano-observations, the evolution of track shapes simultaneously with chemical treatment. Thus, the track shape evolution has been studied; visualizing the evolution of the tracks in real time, in situ during the chemical etching process.

  10. Three-dimensional molecular imaging using mass spectrometry and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wucher, Andreas [Department of Physics, University of Duisburg-Essen, D-47048 Duisburg (Germany)], E-mail: andreas.wucher@uni-due.de; Cheng Juan; Zheng Leiliang; Willingham, David; Winograd, Nicholas [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States)

    2008-12-15

    We combine imaging ToF-SIMS depth profiling and wide area atomic force microscopy to analyze a test structure consisting of a 300 nm trehalose film deposited on a Si substrate and pre-structured by means of a focused 15-keV Ga{sup +} ion beam. Depth profiling is performed using a 40-keV C{sub 60}{sup +} cluster ion beam for erosion and mass spectral data acquisition. A generic protocol for depth axis calibration is described which takes into account both lateral and in-depth variations of the erosion rate. By extrapolation towards zero analyzed lateral area, an 'intrinsic' depth resolution of about 8 nm is found which appears to be characteristic of the cluster-surface interaction process.

  11. Morphologies of eumelanins from the ink of six cephalopods species measured by atomic force microscopy

    Science.gov (United States)

    Sun, Yulin; Tian, Li; Wen, Jing; Zhao, Juan; Zhang, Wei; Xie, Chunyao; Zhou, Meiqing; Qiu, Xiaoying; Chen, Daohai

    2017-06-01

    The morphologies of eumelanin, isolated from the six cephalopods species Sepia esculenta, Sepia lycidas, Sepia pharaonis, Sepiella japonica, Euprymna berryi, and Uroteuthis (Photololigo) edulis, were investigated using atomic force microscopy (AFM). The results showed that the hierarchical aggregate structures of irregular spherical particles with different diameters are the common characteristics of these eumelanins. Furthermore, the diameters of these spherical particles present an uneven distribution in a wide range and mainly concentrate in the range of about 20-150 nm. In addition, the eumelanin from different cephalopods species show obvious differences in the morphologies, which is illustrated by different assembly forms of diverse aggregate units and the quantitative features of eumelanin particles derived from the images.

  12. Atomic force microscopy studies of bioprocess engineering surfaces - imaging, interactions and mechanical properties mediating bacterial adhesion.

    Science.gov (United States)

    James, Sean A; Hilal, Nidal; Wright, Chris J

    2017-07-01

    The detrimental effect of bacterial biofilms on process engineering surfaces is well documented. Thus, interest in the early stages of bacterial biofilm formation; in particular bacterial adhesion and the production of anti-fouling coatings has grown exponentially as a field. During this time, Atomic force microscopy (AFM) has emerged as a critical tool for the evaluation of bacterial adhesion. Due to its versatility AFM offers not only insight into the topographical landscape and mechanical properties of the engineering surfaces, but elucidates, through direct quantification the topographical and biomechnical properties of the foulants The aim of this review is to collate the current research on bacterial adhesion, both theoretical and practical, and outline how AFM as a technique is uniquely equipped to provide further insight into the nanoscale world at the bioprocess engineering surface. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Determination of electrostatic force and its characteristics based on phase difference by amplitude modulation atomic force microscopy.

    Science.gov (United States)

    Wang, Kesheng; Cheng, Jia; Yao, Shiji; Lu, Yijia; Ji, Linhong; Xu, Dengfeng

    2016-12-01

    Electrostatic force measurement at the micro/nano scale is of great significance in science and engineering. In this paper, a reasonable way of applying voltage is put forward by taking an electrostatic chuck in a real integrated circuit manufacturing process as a sample, applying voltage in the probe and the sample electrode, respectively, and comparing the measurement effect of the probe oscillation phase difference by amplitude modulation atomic force microscopy. Based on the phase difference obtained from the experiment, the quantitative dependence of the absolute magnitude of the electrostatic force on the tip-sample distance and applied voltage is established by means of theoretical analysis and numerical simulation. The results show that the varying characteristics of the electrostatic force with the distance and voltage at the micro/nano scale are similar to those at the macroscopic scale. Electrostatic force gradually decays with increasing distance. Electrostatic force is basically proportional to the square of applied voltage. Meanwhile, the applicable conditions of the above laws are discussed. In addition, a comparison of the results in this paper with the results of the energy dissipation method shows the two are consistent in general. The error decreases with increasing distance, and the effect of voltage on the error is small.

  14. Antimicrobial properties of analgesic kyotorphin peptides unraveled through atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marta M.B.; Franquelim, Henri G.; Torcato, Ines M. [Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa (Portugal); Ramu, Vasanthakumar G.; Heras, Montserrat; Bardaji, Eduard R. [Laboratori d' Innovacio en Processos i Productes de Sintesi Organica (LIPPSO), Departament de Quimica, Universitat de Girona, Campus Montilivi, 17071 Girona (Spain); Castanho, Miguel A.R.B., E-mail: macastanho@fm.ul.pt [Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa (Portugal)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer New kyotorphin derivatives have antimicrobial properties against S. aureus. Black-Right-Pointing-Pointer Atomic force microscopy show membrane disturbing effects of KTP-NH{sub 2} and IbKTP-NH{sub 2}. Black-Right-Pointing-Pointer None of the KTP derivatives are hemolytic. Black-Right-Pointing-Pointer The minimal peptidic sequence with antimicrobial activity is Tyr-Arg, if amidated. -- Abstract: Antimicrobial peptides (AMPs) are promising candidates as alternatives to conventional antibiotics for the treatment of resistant pathogens. In the last decades, new AMPs have been found from the cleavage of intact proteins with no antibacterial activity themselves. Bovine hemoglobin hydrolysis, for instance, results in AMPs and the minimal antimicrobial peptide sequence was defined as Tyr-Arg plus a positively charged amino acid residue. The Tyr-Arg dipeptide alone, known as kyotorphin (KTP), is an endogenous analgesic neuropeptide but has no antimicrobial activity itself. In previous studies new KTP derivatives combining C-terminal amidation and Ibuprofen (Ib) - KTP-NH{sub 2}, IbKTP, IbKTP-NH{sub 2} - were designed in order to improve KTP brain targeting. Those modifications succeeded in enhancing peptide-cell membrane affinity towards fluid anionic lipids and higher analgesic activity after systemic injection resulted therefrom. Here, we investigated if this affinity for anionic lipid membranes also translates into antimicrobial activity because bacteria have anionic membranes. Atomic force microscopy revealed that KTP derivatives perturbed Staphylococcus aureus membrane structure by inducing membrane blebbing, disruption and lysis. In addition, these peptides bind to red blood cells but are non-hemolytic. From the KTP derivatives tested, amidated KTP proves to be the most active antibacterial agent. The combination of analgesia and antibacterial activities with absence of toxicity is highly appealing from the clinical point of view

  15. Diabetes increases stiffness of live cardiomyocytes measured by atomic force microscopy nanoindentation.

    Science.gov (United States)

    Benech, Juan C; Benech, Nicolás; Zambrana, Ana I; Rauschert, Inés; Bervejillo, Verónica; Oddone, Natalia; Damián, Juan P

    2014-11-15

    Stiffness of live cardiomyocytes isolated from control and diabetic mice was measured using the atomic force microscopy nanoindentation method. Type 1 diabetes was induced in mice by streptozotocin administration. Histological images of myocardium from mice that were diabetic for 3 mo showed disorderly lineup of myocardial cells, irregularly sized cell nuclei, and fragmented and disordered myocardial fibers with interstitial collagen accumulation. Phalloidin-stained cardiomyocytes isolated from diabetic mice showed altered (i.e., more irregular and diffuse) actin filament organization compared with cardiomyocytes from control mice. Sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a) pump expression was reduced in homogenates obtained from the left ventricle of diabetic animals compared with age-matched controls. The apparent elastic modulus (AEM) for live control or diabetic isolated cardiomyocytes was measured using the atomic force microscopy nanoindentation method in Tyrode buffer solution containing 1.8 mM Ca(2+) and 5.4 mM KCl (physiological condition), 100 nM Ca(2+) and 5.4 mM KCl (low extracellular Ca(2+) condition), or 1.8 mM Ca(2+) and 140 mM KCl (contraction condition). In the physiological condition, the mean AEM was 112% higher for live diabetic than control isolated cardiomyocytes (91 ± 14 vs. 43 ± 7 kPa). The AEM was also significantly higher in diabetic than control cardiomyocytes in the low extracellular Ca(2+) and contraction conditions. These findings suggest that the material properties of live cardiomyocytes were affected by diabetes, resulting in stiffer cells, which very likely contribute to high diastolic LV stiffness, which has been observed in vivo in some diabetes mellitus patients. Copyright © 2014 the American Physiological Society.

  16. [Application of molecular dynamics simulation to the interpretation of atomic force microscopy data].

    Science.gov (United States)

    Godzi, M G; Tolstova, A P; Oferkin, I V

    2010-01-01

    A new approach to the interpretation and refining of experimental atomic force microscopy (AFM) data has been developed, which is based on the comparison with the simulated static imaging mode operations output. We have applied the approach to atomic force microscopy studies of lisozyme. During this test, we have obtained distinct precise AFM images of lysozyme monomers adsorbed from a clear aqueous solution onto a mica wafer. The images were compared with the corresponding images obtained by molecular dynamics simulations. We performed two steps of simulations to reproduce the environment and processes of the AFM study of lysozyme. The first step was intended to obtain the adsorbed structure of lysozyme; it was performed using the NAMD molecular dynamics software. At this step, the simulated environment of lysozyme was a water box, and the mica wafer was manually modeled according to its crystal structure. At the second step, we applied molecular mechanics calculations to reproduce tip interactions with the lysozyme on the surface. As a result, we have obtained the height as a function of horizontal coordinates. The function was compared with the AFM real experimental surface height function for adsorbed lysozyme. The results of this comparison showed the excellent equivalence in the shape of experimental and modeled lysozyme structures and a significant difference in their sizes. The investigation of this difference led us to the conclusion that more detailed simulations of AFM imaging are needed to reach a better correspondence between the experiment and the model. We consider our approach to be applicable to refine the AFM images of proteins by a visual comparison with the results of simulation based on precise X-ray structures of these proteins. The first results of the application of this approach provide sufficient information on how to improve the accuracy in further applications.

  17. Protective effect of casein phosphopeptide-amorphous calcium phosphate on enamel erosion: Atomic force microscopy studies.

    Science.gov (United States)

    Ceci, Matteo; Mirando, Maria; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio

    2015-01-01

    The aim of this study was to investigate the in vitro effect of a casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste (GC Tooth Mousse- TM, GC Corporation, Tokyo, Japan) on preventing enamel erosion, by using Atomic Force Microscopy (AFM). 30 human incisors, were equally assigned to 6 groups: intact enamel, enamel + soft drink, enamel + TM, enamel + TM + soft drink, enamel + soft drink + TM, enamel + soft drink + TM + soft drink. Specimens were observed through atomic force microscopy (AFM). The most common topographical parameters were determined, such as the surface roughness (Rrms ). The use of soft drink on intact enamel has roughened the surface of the sample. The application of the CPP-ACP paste on non-treated enamel made the surface smoother. A significant decrease in roughness was seen after remineralization with CPP-ACP paste. Significant differences were recorded when comparing softened enamel with softened enamel remineralized with CPP-ACP paste. Comparing eroded enamel with demineralized/remineralized specimens, the application of a CPP-ACP paste leads to a significant reduction in roughness values. AFM images of enamel surface treated with CPP-ACP resulted in less morphological changes of the tooth substrate when compared with the only eroded enamel surface morphology; thus, indicating that CPP-ACP paste promoted remineralization. Specimens' surface roughness remained similar regardless that the protective agent is used before or after exposure to coke or between two demineralizing cycles. The results confirmed the effectiveness of the CPP-ACP paste on preventing enamel erosion produced by soft drinks. © Wiley Periodicals, Inc.

  18. DEVELOPMENT OF A COMPUTER LABORATORY WORK ON ATOMIC FORCE MICROSCOPY OF BIOOBJECTS

    Directory of Open Access Journals (Sweden)

    T. A. Kuchmenko

    2015-01-01

    Full Text Available Innovations in Education are based on the use of new effective educational and information technologies, introduction of progressive forms of organization of educational process, active learning methods. The significant role in the educational system is the development and implementation of virtual labs. For the development of the contemporary science section as bioinformatics, it is necessary to extend the possibility of using computers for processing the information received with the use of modern devices. These research methods include atomic force microscopy. For Students of the specialty 06.05.01 "Bioengineering and Bioinformatics" in the SD "Basics of Nanobiotechnology" it has been developed a virtual laboratory work on "Processing of nanostructured images of biomolecules." The basis for the development of laboratory work was the handbook modified for affordable performance. Laboratory workshop allows you to briefly find out the theory of atomic force microscopy, the organization and the principle of operation of the device. It allows Students to quickly learn the using the program at the AFM image processing Nova 1.0.26.1443. In the laboratory work for the tasks solution the biological objects are selected from the images catalog, and to study and describe of these objects the software is used. Students work with images of biomolecules in the program: change them (increasing, selection of separate areas, evaluate the geometrical parameters, work with 3D-image, writing a description and compare objects with each other. The results are summarized in a table and conclusion. The effectiveness and usefulness of the created laboratory work are proved by the results of Student’s survey and tested in the final and interim certification. This kind of work is suitable for distance learning, to provide a laboratory practicum in SD "Nanotechnology", "Modern methods of analysis" for other specialties as an educational and methodological materials.

  19. Piezoelectric tuning fork probe for atomic force microscopy imaging and specific recognition force spectroscopy of an enzyme and its ligand.

    Science.gov (United States)

    Makky, Ali; Viel, Pascal; Chen, Shu-wen Wendy; Berthelot, Thomas; Pellequer, Jean-Luc; Polesel-Maris, Jérôme

    2013-11-01

    Piezoelectric quartz tuning fork has drawn the attention of many researchers for the development of new atomic force microscopy (AFM) self-sensing probes. However, only few works have been done for soft biological materials imaging in air or aqueous conditions. The aim of this work was to demonstrate the efficiency of the AFM tuning fork probe to perform high-resolution imaging of proteins and to study the specific interaction between a ligand and its receptor in aqueous media. Thus, a new kind of self-sensing AFM sensor was introduced to realize imaging and biochemical specific recognition spectroscopy of glucose oxidase enzyme using a new chemical functionalization procedure of the metallic tips based on the electrochemical reduction of diazonium salt. This scanning probe as well as the functionalization strategy proved to be efficient respectively for the topography and force spectroscopy of soft biological materials in buffer conditions. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Plasma-deposited fluorocarbon films: insulation material for microelectrodes and combined atomic force microscopy-scanning electrochemical microscopy probes.

    Science.gov (United States)

    Wiedemair, Justyna; Balu, Balamurali; Moon, Jong-Seok; Hess, Dennis W; Mizaikoff, Boris; Kranz, Christine

    2008-07-01

    Pinhole-free insulation of micro- and nanoelectrodes is the key to successful microelectrochemical experiments performed in vivo or in combination with scanning probe experiments. A novel insulation technique based on fluorocarbon insulation layers deposited from pentafluoroethane (PFE, CF3CHF2) plasmas is presented as a promising electrical insulation approach for microelectrodes and combined atomic force microscopy-scanning electrochemical microscopy (AFM-SECM) probes. The deposition allows reproducible and uniform coating, which is essential for many analytical applications of micro- and nanoelectrodes such as, e.g., in vivo experiments and SECM experiments. Disk-shaped microelectrodes and frame-shaped AFM tip-integrated electrodes have been fabricated by postinsulation focused ion beam (FIB) milling. The thin insulation layer for combined AFM-SECM probes renders this fabrication technique particularly useful for submicro insulation providing radius ratios of the outer insulation versus the disk electrode (RG values) suitable for SECM experiments. Characterization of PFE-insulated AFM-SECM probes will be presented along with combined AFM-SECM approach curves and imaging.

  1. Studying biological membranes with extended range high-speed atomic force microscopy

    Science.gov (United States)

    Nievergelt, Adrian P.; Erickson, Blake W.; Hosseini, Nahid; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    High—speed atomic force microscopy has proven to be a valuable tool for the study of biomolecular systems at the nanoscale. Expanding its application to larger biological specimens such as membranes or cells has, however, proven difficult, often requiring fundamental changes in the AFM instrument. Here we show a way to utilize conventional AFM instrumentation with minor alterations to perform high-speed AFM imaging with a large scan range. Using a two—actuator design with adapted control systems, a 130 × 130 × 5 μm scanner with nearly 100 kHz open—loop small-signal Z—bandwidth is implemented. This allows for high-speed imaging of biologically relevant samples as well as high-speed measurements of nanomechanical surface properties. We demonstrate the system performance by real-time imaging of the effect of charged polymer nanoparticles on the integrity of lipid membranes at high imaging speeds and peak force tapping measurements at 32 kHz peak force rate. PMID:26169348

  2. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging

    Science.gov (United States)

    Nellist, Michael R.; Chen, Yikai; Mark, Andreas; Gödrich, Sebastian; Stelling, Christian; Jiang, Jingjing; Poddar, Rakesh; Li, Chunzeng; Kumar, Ravi; Papastavrou, Georg; Retsch, Markus; Brunschwig, Bruce S.; Huang, Zhuangqun; Xiang, Chengxiang; Boettcher, Shannon W.

    2017-03-01

    Multimodal nano-imaging in electrochemical environments is important across many areas of science and technology. Here, scanning electrochemical microscopy (SECM) using an atomic force microscope (AFM) platform with a nanoelectrode probe is reported. In combination with PeakForce tapping AFM mode, the simultaneous characterization of surface topography, quantitative nanomechanics, nanoelectronic properties, and electrochemical activity is demonstrated. The nanoelectrode probe is coated with dielectric materials and has an exposed conical Pt tip apex of ∼200 nm in height and of ∼25 nm in end-tip radius. These characteristic dimensions permit sub-100 nm spatial resolution for electrochemical imaging. With this nanoelectrode probe we have extended AFM-based nanoelectrical measurements to liquid environments. Experimental data and numerical simulations are used to understand the response of the nanoelectrode probe. With PeakForce SECM, we successfully characterized a surface defect on a highly-oriented pyrolytic graphite electrode showing correlated topographical, electrochemical and nanomechanical information at the highest AFM-SECM resolution. The SECM nanoelectrode also enabled the measurement of heterogeneous electrical conductivity of electrode surfaces in liquid. These studies extend the basic understanding of heterogeneity on graphite/graphene surfaces for electrochemical applications.

  3. Studying biological membranes with extended range high-speed atomic force microscopy.

    Science.gov (United States)

    Nievergelt, Adrian P; Erickson, Blake W; Hosseini, Nahid; Adams, Jonathan D; Fantner, Georg E

    2015-07-14

    High-speed atomic force microscopy has proven to be a valuable tool for the study of biomolecular systems at the nanoscale. Expanding its application to larger biological specimens such as membranes or cells has, however, proven difficult, often requiring fundamental changes in the AFM instrument. Here we show a way to utilize conventional AFM instrumentation with minor alterations to perform high-speed AFM imaging with a large scan range. Using a two-actuator design with adapted control systems, a 130 × 130 × 5 μm scanner with nearly 100 kHz open-loop small-signal Z-bandwidth is implemented. This allows for high-speed imaging of biologically relevant samples as well as high-speed measurements of nanomechanical surface properties. We demonstrate the system performance by real-time imaging of the effect of charged polymer nanoparticles on the integrity of lipid membranes at high imaging speeds and peak force tapping measurements at 32 kHz peak force rate.

  4. Studying biological membranes with extended range high-speed atomic force microscopy

    Science.gov (United States)

    Nievergelt, Adrian P.; Erickson, Blake W.; Hosseini, Nahid; Adams, Jonathan D.; Fantner, Georg E.

    2015-07-01

    High—speed atomic force microscopy has proven to be a valuable tool for the study of biomolecular systems at the nanoscale. Expanding its application to larger biological specimens such as membranes or cells has, however, proven difficult, often requiring fundamental changes in the AFM instrument. Here we show a way to utilize conventional AFM instrumentation with minor alterations to perform high-speed AFM imaging with a large scan range. Using a two—actuator design with adapted control systems, a 130 × 130 × 5 μm scanner with nearly 100 kHz open—loop small-signal Z—bandwidth is implemented. This allows for high-speed imaging of biologically relevant samples as well as high-speed measurements of nanomechanical surface properties. We demonstrate the system performance by real-time imaging of the effect of charged polymer nanoparticles on the integrity of lipid membranes at high imaging speeds and peak force tapping measurements at 32 kHz peak force rate.

  5. Investigation of structural transition of dsDNA on various substrates studied by atomic force microscopy.

    Science.gov (United States)

    Nguyen, T H; Kim, Y U; Kim, K J; Choi, S S

    2009-03-01

    Structural transition of single dsDNA molecule which is immobilized on 3-aminopropyltriethoxysilane (APTES) treated substrate (APTES/substrate) or alkylthiol treated substrate (alkylthiol/substrate) has been investigated by atomic force microscopy (AFM). The obtained force versus distance (F-D) curves are used to dissect the transition from B-form to S-form, the melting from double stranded (ds) to single stranded (ss) DNA, and its Young's modulus as well as persistence length. The melt from dsDNA to ssDNA is evidenced by fitting with freely jointed chain (FJC) model. FJC fit and Young's modulus or persistence length values when the molecules are fixed on alkylthiol/substrate are more agreeable with other studies than those on APTES. We have clarified the different results of those experiments by analyzing the binding force between DNA molecules and APTES or alkylthiol linkers on the substrate. The DNA binding to APTES linker is much stronger than that on alkylthiol/substrate.

  6. Characterization of the mechanodynamic response of cardiomyocytes with atomic force microscopy.

    Science.gov (United States)

    Chang, Wei-Tien; Yu, David; Lai, Yu-Cheng; Lin, Kuen-You; Liau, Ian

    2013-02-05

    Coordinated and synchronous contraction of cardiomyocytes ensures a normal cardiac function while deranged contraction of cardiomyocytes can lead to heart failure and circulatory dysfunction. Detailed assessment of the contractile property of cardiomyocytes not only helps elucidate the pathophysiology of heart failure but also facilitates development of novel therapies. Herein, we report application of atomic force microscopy to determine essential mechanodynamic characteristics of self-beating cardiomyocytes including the contractile amplitude, force, and frequency. The contraction was continuously measured on the same point of the cell surface; the result assessed postintervention was then compared with the baseline, and the fractional change was obtained. We employed short-time Fourier transform to analyze the time-varying contractile properties and calculate the spectrogram, based on which subtle dynamic changes in the contractile rhythmicity were delicately illustrated. To demonstrate potential applications of this approach, we examined the inotropic and chronotropic responses of cardiomyocyte contraction induced by various pharmacological interventions. The administration of epinephrine significantly increased the contractile amplitude, force, and frequency whereas esmolol markedly decreased these contractile properties. As uniquely illustrated in the spectrogram, doxorubicin not only impaired the contractility of cardiomyocytes but also drastically compromised the rhythmicity. We envision that our approach should be useful in research fields that require detailed evaluation of the mechanodynamic response of cardiomyocytes, for example, to screen drugs that possess cardiac activity or cardiotoxicity, or to assess chemicals that could direct differentiation of stem cells into functioning cardiomyocytes.

  7. Passive microrheology of normal and cancer cells after ML7 treatment by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lyapunova, Elena, E-mail: lyapunova@icmm.ru [Institute of Continuous Media Mechanics, Ak. Korolev Str. 1, Perm, 614013 (Russian Federation); Ural Federal University, Kuibyishev Str. 48, Ekaterinburg, 620000 (Russian Federation); Nikituk, Alexander, E-mail: nas@icmm.ru; Bayandin, Yuriy; Naimark, Oleg, E-mail: naimark@icmm.ru [Institute of Continuous Media Mechanics, Ak. Korolev Str. 1, Perm, 614013 (Russian Federation); Rianna, Carmela, E-mail: cr@biophysik.uni-bremen.de; Radmacher, Manfred, E-mail: mr@biophysik.uni-bremen.de [Institute of Biophysics, University of Bremen, Otto-Hahn-Allee 1, NW1, Bremen, 28359 Germany (Germany)

    2016-08-02

    Mechanical properties of living cancer and normal thyroidal cells were investigated by atomic force microscopy (AFM). Cell mechanics was compared before and after treatment with ML7, which is known to reduce myosin activity and induce softening of cell structures. We recorded force curves with extended dwell time of 6 seconds in contact at maximum forces from 500 pN to 1 nN. Data were analyzed within different frameworks: Hertz fit was applied in order to evaluate differences in Young’s moduli among cell types and conditions, while the fluctuations of the cantilever in contact with cells were analyzed with both conventional algorithms (probability density function and power spectral density) and multifractal detrended fluctuation analysis (MF-DFA). We found that cancer cells were softer than normal cells and ML7 had a substantial softening effect on normal cells, but only a marginal one on cancer cells. Moreover, we observed that all recorded signals for normal and cancer cells were monofractal with small differences between their scaling parameters. Finally, the applicability of wavelet-based methods of data analysis for the discrimination of different cell types is discussed.

  8. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells.

    Science.gov (United States)

    Shibata, Mikihiro; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2015-03-04

    Visualization of morphological dynamics of live cells with nanometer resolution under physiological conditions is highly desired, but challenging. It has been demonstrated that high-speed atomic force microscopy is a powerful technique for visualizing dynamics of biomolecules under physiological conditions. However, application of high-speed atomic force microscopy for imaging larger objects such as live mammalian cells has been complicated because of the collision between the cantilever and samples. Here, we demonstrate that attaching an extremely long (~3 μm) and thin (~5 nm) tip by amorphous carbon to the cantilever allows us to image the surface structure of live cells with the spatiotemporal resolution of nanometers and seconds. We demonstrate that long-tip high-speed atomic force microscopy is capable of imaging morphogenesis of filopodia, membrane ruffles, pit formation, and endocytosis in COS-7, HeLa cells and hippocampal neurons.

  9. Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Strus, Mark C; Lahiji, Roya R; Raman, Arvind; Reifenberger, Ron [Birck Nanotechnology Center, Purdue University, West Lafayette, IN (United States); Ares, Pablo [Nanotec Electronica, Madrid (Spain); Lopez, Vicente, E-mail: mark.strus@nist.go [Universidad Autonoma de Madrid, Madrid (Spain)

    2009-09-23

    The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the length of a deformed nanotube supported on a substrate. We present a method using nonlinear elastic rod theory in which we compute the flexural strain energy and static frictional forces along the length of single walled carbon nanotubes (SWCNTs) manipulated into various shapes on a clean SiO{sub 2} substrate. Using only high resolution atomic force microscopy images of curved single walled nanotubes, we estimate flexural strain energy distributions on the order of attojoules per nanometer and the static frictional forces between a SWCNT and SiO{sub 2} surface to be a minimum of 230 pN nm{sup -1}.

  10. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment.

    Science.gov (United States)

    Legleiter, Justin

    2009-06-17

    In tapping mode atomic force microscopy (AFM), a sharp probe tip attached to an oscillating cantilever is allowed to intermittently strike a surface. By raster scanning the probe while monitoring the oscillation amplitude of the cantilever via a feedback loop, topographical maps of surfaces with nanoscale resolution can be acquired. While numerous studies have employed numerical simulations to elucidate the time-resolved tapping force between the probe tip and surface, until recent technique developments, specific read-outs from such models could not be experimentally verified. In this study, we explore, via numerical simulation, the impact of imaging parameters, i.e. set point ratio and drive frequency as a function of resonance, on time-varying tip-sample force interactions, which are directly compared to reconstructed tapping forces from real AFM experiments. As the AFM model contains a feedback loop allowing for the simulation of the entire scanning process, we further explore the impact that various tip-sample force have on the entire imaging process.

  11. Tip localization of an atomic force microscope in transmission microscopy with nanoscale precision.

    Science.gov (United States)

    Baumann, Fabian; Heucke, Stephan F; Pippig, Diana A; Gaub, Hermann E

    2015-03-01

    Since the atomic force microscope (AFM) has evolved into a general purpose platform for mechanical experiments at the nanoscale, the need for a simple and generally applicable localization of the AFM cantilever in the reference frame of an optical microscope has grown. Molecular manipulations like in single molecule cut and paste or force spectroscopy as well as tip mediated nanolithography are prominent examples for the broad variety of applications implemented to date. In contrast to the different kinds of superresolution microscopy where fluorescence is used to localize the emitter, we, here, employ the absorbance of the tip to localize its position in transmission microscopy. We show that in a low aperture illumination, the tip causes a significant reduction of the intensity in the image plane of the microscope objective when it is closer than a few hundred nm. By independently varying the z-position of the sample slide, we could verify that this diffraction limited image of the tip is not caused by a near field effect but is rather caused by the absorbance of the transmitted light in the low apex needle-like tip. We localized the centroid position of this tip image with a precision of better than 6 nm and used it in a feedback loop to position the tip into nano-apertures of 110 nm radius. Single-molecule force spectroscopy traces on the unfolding of individual green fluorescent proteins within the nano-apertures showed that their center positions were repeatedly approached with very high fidelity leaving the specific handle chemistry on the tip's surface unimpaired.

  12. Effects of antibacterial agents and drugs monitored by atomic force microscopy.

    Science.gov (United States)

    Longo, Giovanni; Kasas, Sandor

    2014-01-01

    Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria. © 2014 Wiley Periodicals, Inc.

  13. Tip localization of an atomic force microscope in transmission microscopy with nanoscale precision

    Science.gov (United States)

    Baumann, Fabian; Heucke, Stephan F.; Pippig, Diana A.; Gaub, Hermann E.

    2015-03-01

    Since the atomic force microscope (AFM) has evolved into a general purpose platform for mechanical experiments at the nanoscale, the need for a simple and generally applicable localization of the AFM cantilever in the reference frame of an optical microscope has grown. Molecular manipulations like in single molecule cut and paste or force spectroscopy as well as tip mediated nanolithography are prominent examples for the broad variety of applications implemented to date. In contrast to the different kinds of superresolution microscopy where fluorescence is used to localize the emitter, we, here, employ the absorbance of the tip to localize its position in transmission microscopy. We show that in a low aperture illumination, the tip causes a significant reduction of the intensity in the image plane of the microscope objective when it is closer than a few hundred nm. By independently varying the z-position of the sample slide, we could verify that this diffraction limited image of the tip is not caused by a near field effect but is rather caused by the absorbance of the transmitted light in the low apex needle-like tip. We localized the centroid position of this tip image with a precision of better than 6 nm and used it in a feedback loop to position the tip into nano-apertures of 110 nm radius. Single-molecule force spectroscopy traces on the unfolding of individual green fluorescent proteins within the nano-apertures showed that their center positions were repeatedly approached with very high fidelity leaving the specific handle chemistry on the tip's surface unimpaired.

  14. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy

    Science.gov (United States)

    Håti, Armend Gazmeno; Aachmann, Finn Lillelund; Stokke, Bjørn Torger; Skjåk-Bræk, Gudmund; Sletmoen, Marit

    2015-01-01

    Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase–polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ), lifetimes in the absence of external perturbation (τ0) and free energies (ΔG#) were determined for the different epimerase–alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate. Together with the

  15. Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy.

    Directory of Open Access Journals (Sweden)

    Armend Gazmeno Håti

    Full Text Available Mannuronan C-5 epimerases are a family of enzymes that catalyze epimerization of alginates at the polymer level. This group of enzymes thus enables the tailor-making of various alginate residue sequences to attain various functional properties, e.g. viscosity, gelation and ion binding. Here, the interactions between epimerases AlgE4 and AlgE6 and alginate substrates as well as epimerization products were determined. The interactions of the various epimerase-polysaccharide pairs were determined over an extended range of force loading rates by the combined use of optical tweezers and atomic force microscopy. When studying systems that in nature are not subjected to external forces the access to observations obtained at low loading rates, as provided by optical tweezers, is a great advantage since the low loading rate region for these systems reflect the properties of the rate limiting energy barrier. The AlgE epimerases have a modular structure comprising both A and R modules, and the role of each of these modules in the epimerization process were examined through studies of the A- module of AlgE6, AlgE6A. Dynamic strength spectra obtained through combination of atomic force microscopy and the optical tweezers revealed the existence of two energy barriers in the alginate-epimerase complexes, of which one was not revealed in previous AFM based studies of these complexes. Furthermore, based on these spectra estimates of the locations of energy transition states (xβ, lifetimes in the absence of external perturbation (τ0 and free energies (ΔG# were determined for the different epimerase-alginate complexes. This is the first determination of ΔG# for these complexes. The values determined were up to 8 kBT for the outer barrier, and smaller values for the inner barriers. The size of the free energies determined are consistent with the interpretation that the enzyme and substrate are thus not tightly locked at all times but are able to relocate

  16. Applications of atomic force microscopy to the studies of biomaterials in biomolecular systems

    Science.gov (United States)

    Ma, Xiang

    Atomic force microscopy (AFM) is a unique tool for the studies of nanoscale structures and interactions. In this dissertation, I applied AFM to study transitions among multiple states of biomaterials in three different microscopic biomolecular systems: MukB-dependent DNA condensation, holdfast adhesion, and virus elasticity. To elucidate the mechanism of MukB-dependent DNA condensation, I have studied the conformational changes of MukB proteins as indicators for the strength of interactions between MukB, DNA and other molecular factors, such as magnesium and ParC proteins, using high-resolution AFM imaging. To determine the physical origins of holdfast adhesion, I have investigated the dynamics of adhesive force development of the holdfast, employing AFM force spectroscopy. By measuring rupture forces between the holdfast and the substrate, I showed that the holdfast adhesion is strongly time-dependent and involves transformations at multiple time scales. Understanding the mechanisms of adhesion force development of the holdfast will be critical for future engineering of holdfasts properties for various applications. Finally, I have examined the elasticity of self-assembled hepatitis B virus-like particles (HBV VLPs) and brome mosaic virus (BMV) in response to changes of pH and salinity, using AFM nanoindentation. The distributions of elasticity were mapped on a single particle level and compared between empty, RNA- and gold-filled HBV VLPs. I found that a single HBV VLP showed heterogeneous distribution of elasticity and a two-step buckling transition, suggesting a discrete property of HBV capsids. For BMV, I have showed that viruses containing different RNA molecules can be distinguished by mechanical measurements, while they are indistinguishable by morphology. I also studied the effect of pH on the elastic behaviors of three-particle BMV and R3/4 BMV. This study can yield insights into RNA presentation/release mechanisms, and could help us to design novel drug

  17. Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Ilko Bald

    2014-09-01

    Full Text Available DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.

  18. OPTIMIZATION AND CHARACTERIZATION OF ELECTRON BEAM RESIST USING ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    - Sutikno

    2012-01-01

    Full Text Available Resis negatif ma-N 2403 dan 495 K PMMA memiliki resolusi yang baik untuk aplikasi litografi berkas elektron (EBL. Ketebalanresist optimal memainkan peran penting dalam paparan berkas elektron. Oleh karena itu, dalam penelitian ini, ketebalan darikedua resist yang dioptimalkan menggunakan spincoater dalam jangkauan laju spin 1000-6000 rpm. Semakin laju spin meningkat,ketebalan resist menurun juga. Morfologi permukaan resist dikarakterisasi dengan mikroskop gaya atom. Butir butir resist nampakpanjang. Dalam analisis AFM, permukaan profil resist negatif ma-N 2403 dan 495 K PMMA nampak seperti kerucut. Negative resist ma-N 2403 and 495 K PMMA have good resolution for electron beam lithography (EBL application. The optimumresist thickness plays significant role in e-beam exposure. Therefore, in this research, thicknesses of both resists were optimizedusing spincoater within spin speeds of 1000-6000 rpm. As spin speed increased, resist thickness decreased as well. Morphology ofresist surfaces were characterized using atomic force microscopy (AFM. Grains of resist show long grains. In AFM analyses,surface profiles of negative resist ma-N 2403 and 495 K PMMA show cone peaks.Keywords: e-beam resist; spincoater; e-beam lithography

  19. Single molecule atomic force microscopy of aerolysin pore complexes reveals unexpected star-shaped topography.

    Science.gov (United States)

    He, Jianfeng; Wang, Jiabin; Hu, Jun; Sun, Jielin; Czajkowsky, Daniel Mark; Shao, Zhifeng

    2016-04-01

    Aerolysin is the paradigmatic member of a large family of toxins that convert from a water-soluble monomer/dimer into a membrane-spanning oligomeric pore. While there is x-ray crystallographic data of its water-soluble conformation, the most recent structural model of the membrane-inserted pore is based primarily on data of water-soluble tetradecamers of mutant protein, together with computational modeling ultimately performed in vacuum. Here we examine this pore model with atomic force microscopy (AFM) of membrane-associated wild-type complexes and all-atom molecular dynamics (MD) simulations in water. In striking contrast to a disc-shaped cap region predicted by the present model, the AFM images reveal a star-shaped complex, with a central ring surrounded by seven radial projections. Further, the MD simulations suggest that the locations of the receptor-binding (D1) domains in the present model are not correct. However, a modified model in which the D1 domains, rather than localized at fixed positions, adopt a wide range of configurations through fluctuations of an intervening linker is compatible with existing data. Thus our work not only demonstrates the importance of directly resolving such complexes in their native environment but also points to a dynamic receptor binding region, which may be critical for toxin assembly on the cell surface. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Operation of astigmatic-detection atomic force microscopy in liquid environments.

    Science.gov (United States)

    Liao, H-S; Huang, K-Y; Hwang, I-S; Chang, T-J; Hsiao, Wesley W; Lin, H-H; Hwu, E-T; Chang, C-S

    2013-10-01

    The astigmatic detection system (ADS) based on commercial optical pickup head was demonstrated to achieve a sub-nanometer sensitivity in detecting the vertical movement of an object surface in air. The detection laser spot of the ADS was sub-μm and the detection bandwidth was over 80 MHz. These advantages allow detection of high-frequency mechanical resonance of very small objects, which would have many important applications in nanotechnology. In this work, we optimized the operation conditions of ADS to achieve good sensitivity in aqueous solutions. We demonstrated good contrast and good spatial resolution of cancer cells in water with the optical profilometry mode. We also built an ADS-AFM (atomic force microscopy) for imaging in water. A novel cantilever holder was designed, and the spurious peaks were suppressed down to 26.0% of the real resonance peak. Most importantly, we demonstrated that the ADS-AFM could resolve single atomic steps on a graphite substrate and image soft DNA molecules on mica in water.

  1. An ultra-low noise optical head for liquid environment atomic force microscopy

    Science.gov (United States)

    Schlesinger, I.; Kuchuk, K.; Sivan, U.

    2015-08-01

    The design considerations and eventual performance of a new, ultra-low noise optical head for dynamic atomic force microscopy (AFM) are presented. The head, designed specifically for the study of hydration layers and ion organization next to solid surfaces and biomolecules, displays an integrated tip-sample distance noise below 3 pm. The sensitivity of the optical beam deflection sensor, operating at frequencies up to 8.6 MHz (3 dB roll-off), is typically below 10 fm / √{ Hz } , enabling utilization of high frequency cantilevers of low thermal noise for fundamental and higher mode imaging. Exceptional signal stability and low optical noise are achieved by replacing the commonly used laser diode with a helium-neon laser. An integral photothermal excitation of the cantilever produces pure harmonic oscillations, minimizing the generation of higher cantilever modes and deleterious sound waves characterizing the commonly used excitation by a piezoelectric crystal. The optical head is designed to fit on top of the widespread Multimode® (Bruker) piezo-tube and accommodate its commercial liquid cell. The performance of the new AFM head is demonstrated by atomic resolution imaging of a muscovite mica surface in aqueous solution.

  2. Time-lapse imaging of in vitro myogenesis using atomic force microscopy.

    Science.gov (United States)

    Städler, B; Blättler, T M; Franco-Obregón, A

    2010-01-01

    Myoblast therapy relies on the integration of skeletal muscle stem cells into distinct muscular compartments for the prevention of clinical conditions such as heart failure, or bladder dysfunction. Understanding the fundamentals of myogenesis is hence crucial for the success of these potential medical therapies. In this report, we followed the rearrangement of the surface membrane structure and the actin cytoskeletal organization in C2C12 myoblasts at different stages of myogenesis using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). AFM imaging of living myoblasts undergoing fusion unveiled that within minutes of making cell-cell contact, membrane tubules appear that unite the myoblasts and increase in girth as fusion proceeds. CLSM identified these membrane tubules as built on scaffolds of actin filaments that nucleate at points of contact between fusing myoblasts. In contrast, similarly behaving membrane tubules are absent during cytokinesis. The results from our study in combination with recent findings in literature further expand the understanding of the biochemical and membrane structural rearrangements involved in the two fundamental cellular processes of division and fusion.

  3. Biological Atomic Force Microscopy for Imaging Gold-Labeled Liposomes on Human Coronary Artery Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ana-María Zaske

    2013-01-01

    Full Text Available Although atomic force microscopy (AFM has been used extensively to characterize cell membrane structure and cellular processes such as endocytosis and exocytosis, the corrugated surface of the cell membrane hinders the visualization of extracellular entities, such as liposomes, that may interact with the cell. To overcome this barrier, we used 90 nm nanogold particles to label FITC liposomes and monitor their endocytosis on human coronary artery endothelial cells (HCAECs in vitro. We were able to study the internalization process of gold-coupled liposomes on endothelial cells, by using AFM. We found that the gold-liposomes attached to the HCAEC cell membrane during the first 15–30 min of incubation, liposome cell internalization occurred from 30 to 60 min, and most of the gold-labeled liposomes had invaginated after 2 hr of incubation. Liposomal uptake took place most commonly at the periphery of the nuclear zone. Dynasore monohydrate, an inhibitor of endocytosis, obstructed the internalization of the gold-liposomes. This study showed the versatility of the AFM technique, combined with fluorescent microscopy, for investigating liposome uptake by endothelial cells. The 90 nm colloidal gold nanoparticles proved to be a noninvasive contrast agent that efficiently improves AFM imaging during the investigation of biological nanoprocesses.

  4. Having Fun with High School Teachers and Students Making Atomic Force Microscopy

    Science.gov (United States)

    Ryu, Chang Y.; Fedoroff, Paul; Pittman, Tom

    2008-03-01

    As a type of scanning probe microscopy, atomic force microscopy (AFM) is a powerful tool that allows us scientists and engineers to visualize, characterize and manipulate nanostructures in both hard and soft materials. In particular, AFM has served as an invaluable tool for researchers working on nanotechnology, which is a subject of uprising interests to many high school students and teachers. As a part of high school educational outreach program called ``Bringing Nanotechnology to the Classroom'' in the NSF Nanoscale Science and Engineering Center (NSEC) at Rensselaer Polytechnic Institute, we were fortunate to interact with high school teachers and learn more about the opportunities to infuse principles used in AFM into the physics laboratory sessions in high schools. After showing AFM at NSEC to high school teachers, using wood blocks, hex saw and speaker coils, we have constructed AFM model and used it to demonstrate the resonance frequency of vibration and magnetic properties of materials in high school physics classroom. In addition, using LEGO Mindstorm Robotics, conceptual AFM has been made by high school students as a part of high school engineering course. Principles of controlling the motion of objects using gears with an emphasis of team work have been covered in the LEGO AFM project for high school students.

  5. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Marinello, Francesco, E-mail: francesco.marinello@unipd.it; Pezzuolo, Andrea; Sartori, Luigi; Cavalli, Raffaele [University of Padova, Department of Land, Environment, Agriculture and Forestry, Viale dell’Università 16, 35020 Legnaro, Padova (Italy); Carmignato, Simone [University of Padova, Department of Management and Engineering, Stradella San Nicola 3, 36100 Vicenza (Italy); Savio, Enrico [University of Padova, Department of Industrial Engineering, Via Venezia 1, 35131 Padova (Italy); De Chiffre, Leonardo [Technical University of Denmark, Department of Mechanical Engineering, Produktionstorvet 425, 2800 Kgs. Lyngby (Denmark)

    2015-06-23

    Miniaturization of products and need for further improvement of machines performance introduce new serious challenges in materials characterization. In particular non-destructive mechanical testing in the sub-micrometer scale is needed to better understand and improve micro-manufacturing operations. To this regard, some open issues are of particular interest: low depth of penetration, high lateral resolution and measurements at elevated temperatures. An interesting solution is given by acoustic microscopy techniques, which can be successfully implemented for advanced research in surface elasticity, allowing fast direct and non-destructive measurement of Young’s modulus and related surface parameters. In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever during scanning, in order to allow exploitation of high resolution measurements at relatively high temperatures. Such instrument set up was undergone a set of calibration experiments in order to allow not only qualitative but also quantitative characterization of surfaces. The work was completed with a feasibility study with mechanical and topography measurements at temperatures as high as 150°C, with lateral resolution lower than 100 nm.

  6. Effects of methotrexate on the viscoelastic properties of single cells probed by atomic force microscopy.

    Science.gov (United States)

    Li, Mi; Liu, Lianqing; Xiao, Xiubin; Xi, Ning; Wang, Yuechao

    2016-10-01

    Methotrexate is a commonly used anti-cancer chemotherapy drug. Cellular mechanical properties are fundamental parameters that reflect the physiological state of a cell. However, so far the role of cellular mechanical properties in the actions of methotrexate is still unclear. In recent years, probing the behaviors of single cells with the use of atomic force microscopy (AFM) has contributed much to the field of cell biomechanics. In this work, with the use of AFM, the effects of methotrexate on the viscoelastic properties of four types of cells were quantitatively investigated. The inhibitory and cytotoxic effects of methotrexate on the proliferation of cells were observed by optical and fluorescence microscopy. AFM indenting was used to measure the changes of cellular viscoelastic properties (Young's modulus and relaxation time) by using both conical tip and spherical tip, quantitatively showing that the stimulation of methotrexate resulted in a significant decrease of both cellular Young's modulus and relaxation times. The morphological changes of cells induced by methotrexate were visualized by AFM imaging. The study improves our understanding of methotrexate action and offers a novel way to quantify drug actions at the single-cell level by measuring cellular viscoelastic properties, which may have potential impacts on developing label-free methods for drug evaluation.

  7. Evaluating the morphology of erythrocyte population: An approach based on atomic force microscopy and flow cytometry.

    Science.gov (United States)

    Ghosh, Sayari; Chakraborty, Ishita; Chakraborty, Monojit; Mukhopadhyay, Ashis; Mishra, Raghwendra; Sarkar, Debasish

    2016-04-01

    Erythrocyte morphology is gaining importance as a powerful pathological index in identifying the severity of any blood related disease. However, the existing technique of quantitative microscopy is highly time consuming and prone to personalized bias. On the other hand, relatively unexplored, complementary technique based on flow cytometry has not been standardized till date, particularly due to the lack of a proper morphological scoring scale. In this article, we have presented a new approach to formulate a non-empirical scoring scale based on membrane roughness (R(rms)) data obtained from atomic force microscopy. Subsequently, the respective morphological quantifier of the whole erythrocyte population, commonly known as morphological index, was expressed as a function of highest correlated statistical parameters of scattered signal profiles generated by flow cytometry. Feed forward artificial neural network model with multilayer perceptron architecture was used to develop the intended functional form. High correlation coefficient (R(2) = 0.95), even for model-formulation exclusive samples, clearly indicates the universal validity of the proposed model. Moreover, a direct pathological application of the proposed model has been illustrated in relation to patients, diagnosed to be suffering from a wide variety of cancer. Copyright © 2016 Elsevier B.V. All rights reserved

  8. Electron-beam-induced carbon contamination on silicon: characterization using Raman spectroscopy and atomic force microscopy.

    Science.gov (United States)

    Lau, Deborah; Hughes, Anthony E; Muster, Tim H; Davis, Timothy J; Glenn, A Matthew

    2010-02-01

    Electron-beam-induced carbon film deposition has long been recognized as a side effect of scanning electron microscopy. To characterize the nature of this type of contamination, silicon wafers were subjected to prolonged exposure to 15 kV electron beam energy with a probe current of 300 pA. Using Raman spectroscopy, the deposited coating was identified as an amorphous carbon film with an estimated crystallite size of 125 A. Using atomic force microscopy, the cross-sectional profile of the coating was found to be raised and textured, indicative of the beam raster pattern. A map of the Raman intensity across the coating showed increased intensity along the edges and at the corner of the film. The intensity profile was in excess of that which could be explained by thickness alone. The enhancement was found to correspond with a modeled local field enhancement induced by the coating boundary and showed that the deposited carbon coating generated a localized disturbance in the opto-electrical properties of the substrate, which is compared and contrasted with Raman edge enhancement that is produced by surface structure in silicon.

  9. Demonstration of correlative atomic force and transmission electron microscopy using actin cytoskeleton.

    Science.gov (United States)

    Yamada, Yutaro; Konno, Hiroki; Shimabukuro, Katsuya

    2017-01-01

    In this study, we present a new technique called correlative atomic force and transmission electron microscopy (correlative AFM/TEM) in which a targeted region of a sample can be observed under AFM and TEM. The ultimate goal of developing this new technique is to provide a technical platform to expand the fields of AFM application to complex biological systems such as cell extracts. Recent advances in the time resolution of AFM have enabled detailed observation of the dynamic nature of biomolecules. However, specifying molecular species, by AFM alone, remains a challenge. Here, we demonstrate correlative AFM/TEM, using actin filaments as a test sample, and further show that immuno-electron microscopy (immuno-EM), to specify molecules, can be integrated into this technique. Therefore, it is now possible to specify molecules, captured under AFM, by subsequent observation using immuno-EM. In conclusion, correlative AFM/TEM can be a versatile method to investigate complex biological systems at the molecular level.

  10. Application of atomic force microscopy and ultrasonic resonator technology on nanoscale: distinction of nanoemulsions from nanocapsules.

    Science.gov (United States)

    Preetz, Claudia; Hauser, Anton; Hause, Gerd; Kramer, Armin; Mäder, Karsten

    2010-01-31

    Oily core nanocapsules were prepared by sequential addition of positively and negatively charged polyelectrolytes based on a nanoemulsion and transformation thereof into a core-shell structure. The capsules were well characterized by photon correlation spectroscopy, laser diffraction, zeta-potential and transmission electron microscopy and feature an average size of 150nm and a negative surface charge. The aim of the current study was to improve the dispersion stability and mechanic rigidity of the capsule wall by depositing an increasing number of up to five layers. Therefore, atomic force microscopy (AFM) and ultrasonic resonator technology (URT) were applied to investigate the shell of the nanoemulsion, the intermediate and final nanocapsules in more detail. AFM was performed to investigate the shape, morphology and mechanic properties of the emulsion and capsule shell. It proved to be a feasible technique to distinguish nanoemulsions from nanocapsules by stiffness analysis. URT was utilized in order to observe the ultrasound velocity and could confirm the AFM results. Both techniques demonstrated that the shell around an oil droplet solidified with increasing number of polyelectrolyte layers. Since a solid wall might have the potential of a strong diffusion barrier, nanocapsules might present a feasible prolonged release drug delivery system in contrast to nanoemulsions. Copyright 2009 Elsevier B.V. All rights reserved.

  11. Smoking and fluidity of erythrocyte membranes: a high resolution scanning electron and atomic force microscopy investigation.

    Science.gov (United States)

    Pretorius, Etheresia; du Plooy, Jeanette N; Soma, Prashilla; Keyser, Ina; Buys, Antoinette V

    2013-11-30

    Smoking affects the general health of an individual, however, the red blood cells (RBCs) and their architecture are particularly vulnerable to inhaled toxins related to smoking. Smoking is one of the lifestyle diseases that are responsible for the most deaths worldwide and an individual who smokes is exposed to excessive amounts of oxidants and toxins which generate up to 10(18) free radicals in the human body. Recently, it was reported that smoking decreases RBC membrane fluidity. Here we confirm this and we show changes visible in the topography of RBC membranes, using scanning electron microscopy (SEM). RBC membranes show bubble formation of the phospholipid layer, as well as balloon-like smooth areas; while their general discoid shapes are changed to form pointed extensions. We also investigate membrane roughness using atomic force microscopy (AFM) and these results confirm SEM results. Due to the vast capability of RBCs to be adaptable, their state of well-being is a major indication for the general health status of an individual. We conclude that these changes, using an old technique in a novel application, may provide new insights and new avenues for future improvements in clinical medicine pertaining to conditions like COPD. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  12. High-speed atomic force microscopy imaging of live mammalian cells.

    Science.gov (United States)

    Shibata, Mikihiro; Watanabe, Hiroki; Uchihashi, Takayuki; Ando, Toshio; Yasuda, Ryohei

    2017-01-01

    Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons.

  13. Elastic-properties measurement at high temperatures through contact resonance atomic force microscopy

    Science.gov (United States)

    Marinello, Francesco; Pezzuolo, Andrea; Carmignato, Simone; Savio, Enrico; De Chiffre, Leonardo; Sartori, Luigi; Cavalli, Raffaele

    2015-06-01

    Miniaturization of products and need for further improvement of machines performance introduce new serious challenges in materials characterization. In particular non-destructive mechanical testing in the sub-micrometer scale is needed to better understand and improve micro-manufacturing operations. To this regard, some open issues are of particular interest: low depth of penetration, high lateral resolution and measurements at elevated temperatures. An interesting solution is given by acoustic microscopy techniques, which can be successfully implemented for advanced research in surface elasticity, allowing fast direct and non-destructive measurement of Young's modulus and related surface parameters. In this work an instrument set up for Contact Resonance Atomic Force Microscopy is proposed, where the sample with is coupled to a heating stage and a piezoelectric transducer directly vibrate the cantilever during scanning, in order to allow exploitation of high resolution measurements at relatively high temperatures. Such instrument set up was undergone a set of calibration experiments in order to allow not only qualitative but also quantitative characterization of surfaces. The work was completed with a feasibility study with mechanical and topography measurements at temperatures as high as 150°C, with lateral resolution lower than 100 nm.

  14. Directly watching biomolecules in action by high-speed atomic force microscopy.

    Science.gov (United States)

    Ando, Toshio

    2017-07-31

    Proteins are dynamic in nature and work at the single molecule level. Therefore, directly watching protein molecules in dynamic action at high spatiotemporal resolution must be the most straightforward approach to understanding how they function. To make this observation possible, high-speed atomic force microscopy (HS-AFM) has been developed. Its current performance allows us to film biological molecules at 10-16 frames/s, without disturbing their function. In fact, dynamic structures and processes of various proteins have been successfully visualized, including bacteriorhodopsin responding to light, myosin V walking on actin filaments, and even intrinsically disordered proteins undergoing order/disorder transitions. The molecular movies have provided insights that could not have been reached in other ways. Moreover, the cantilever tip can be used to manipulate molecules during successive imaging. This capability allows us to observe changes in molecules resulting from dissection or perturbation. This mode of imaging has been successfully applied to myosin V, peroxiredoxin and doublet microtubules, leading to new discoveries. Since HS-AFM can be combined with other techniques, such as super-resolution optical microscopy and optical tweezers, the usefulness of HS-AFM will be further expanded in the near future.

  15. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.

    Science.gov (United States)

    Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U

    2006-07-01

    In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.

  16. Short unligated sticky ends enable the observation of circularised DNA by atomic force and electron microscopies.

    Science.gov (United States)

    Révet, B; Fourcade, A

    1998-05-01

    A comparative study of the stabilisation of DNA sticky ends by divalent cations was carried out by atomic force microscopy (AFM), electron microscopy and agarose gel electrophoresis. At room temperature, molecules bearing such extremities are immediately oligomerised or circularised by addition of Mg2+or Ca2+. This phenomenon, more clearly detected by AFM, requires the presence of uranyl salt, which stabilises the structures induced by Mg2+or Ca2+. DNA fragments were obtained by restriction enzymes producing sticky ends of 2 or 4 nucleotides (nt) in length with different guanine plus cytosine (GC) contents. The stability of the pairing is high when ends of 4 nt display a 100% GC-content. In that case, 95% of DNA fragments are maintained circular by the divalent cations, although 2 nt GC-sticky ends are sufficient for a stable pairing. DNA fragments with one blunt end and the other sticky appear as dimers in the presence of Mg2+. Dimerisation was analysed by varying the lengths and concentrations of DNA fragments, the base composition of the sticky ends, and also the temperature. Our observation provides a new powerful tool for construction of inverted dimers, and circularisation, ligation analysis or short bases sequence interaction studies.

  17. Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu [Department of Pediatrics, Division of Immunology, Allergy and Rheumatology, Stanford University, Stanford, California 94305 (United States)

    2014-08-04

    We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, and results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.

  18. Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

    Directory of Open Access Journals (Sweden)

    Gemma Rius

    2015-01-01

    Full Text Available Many nanofabrication methods based on scanning probe microscopy have been developed during the last decades. Local anodic oxidation (LAO is one of such methods: Upon application of an electric field between tip and surface under ambient conditions, oxide patterning with nanometer-scale resolution can be performed with good control of dimensions and placement. LAO through the non-contact mode of atomic force microscopy (AFM has proven to yield a better resolution and tip preservation than the contact mode and it can be effectively performed in the dynamic mode of AFM. The tip plays a crucial role for the LAO-AFM, because it regulates the minimum feature size and the electric field. For instance, the feasibility of carbon nanotube (CNT-functionalized tips showed great promise for LAO-AFM, yet, the fabrication of CNT tips presents difficulties. Here, we explore the use of a carbon nanofiber (CNF as the tip apex of AFM probes for the application of LAO on silicon substrates in the AFM amplitude modulation dynamic mode of operation. We show the good performance of CNF-AFM probes in terms of resolution and reproducibility, as well as demonstration that the CNF apex provides enhanced conditions in terms of field-induced, chemical process efficiency.

  19. Morphological characteristics of fulvic acid fractions observed by atomic force microscopy.

    Science.gov (United States)

    Yu, J; Xu, Q; Liu, Z; Guo, X; Han, S; Yuan, S; Tong, L

    2013-10-01

    Structural studies on fulvic acids (FAs) are significantly important since they are believed to be involved in many environmentally important processes, such as adsorption and transportation of organic and inorganic pollutants. In this research, morphology characteristics of FAs were studied by atomic force microscopy (AFM). FAs that were isolated from three soil layers (A1, B and C) of the same vertical profile in a Korean pine forest were divided into four fractions (FA-1, FA-2, FA-3 and FA-4) by a sequence of successive elution processes. Most of FAs appeared as a platy particle in the AFM topographic and phase images. Among these platy particles, some have a regular shape, such as round flake and oblong flake; others have irregular structures, such as sand heaps. Particle morphologies of different FA fractions, including hydrophilic and hydrophobic FAs fractions, were similar. However, particle sizes and distributions of FA fractions from different soil layers at the same vertical profile did differ. Particle sizes of hydrophobic FAs were relevant with respect to the soil depth. They were increased with the increasing of the soil depth. FAs from C layers were more heterogeneous with respect to the A1 and B. Our results may foster a better understanding for the relevance between the morphology of FA particles with the soil layers and the soil depth. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  20. A New Method for Characterization of Natural Zeolites and Organic Nanostructure Using Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Domenico Fuoco

    2012-03-01

    Full Text Available In order to study and develop an economical solution to environmental pollution in water, a wide variety of materials have been investigated. Natural zeolites emerge from that research as the best in class of this category. Zeolites are natural materials which are relatively abundant and non biodegradable, economical and serve to perform processes of environmental remediation. This paper contains a full description of a new method to characterize the superficial properties of natural zeolites of exotic provenience (Caribbean Islets with atomic force microscopy (AFM. AFM works with the simplicity of the optical microscope and the high resolution typical of a transmission electron microscope (TEM. If the sample is conductive, structural information of mesoporous material is obtained using scanning and transmission electron microscopy (SEM and TEM, otherwise the sample has to be processed through the grafitation technique, but this procedure induces errors of topography. Therefore, the existing AFM method, to observe zeolite powders, is made in a liquid cell-head scanner. This work confirms that it is possible to use an ambient air-head scanner to obtain a new kind of microtopography. Once optimized, this new method will allow investigation of organic micelles, a very soft nanostructure of cetyltriammonium bromide (CTAB, upon an inorganic surface such as natural zeolites. The data also demonstrated some correlation between SEM microphotographies and AFM 3D images.