WorldWideScience

Sample records for atomic force microscopic

  1. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  2. Atomic Force Microscope Operation

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation (large file) This animation is a scientific illustration of the operation of NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA. The AFM is used to image the smallest Martian particles using a very sharp tip at the end of one of eight beams. The beam of the AFM is set into vibration and brought up to the surface of a micromachined silicon substrate. The substrate has etched in it a series of pits, 5 micrometers deep, designed to hold the Martian dust particles. The microscope then maps the shape of particles in three dimensions by scanning them with the tip. At the end of the animation is a 3D representation of the AFM image of a particle that was part of a sample informally called 'Sorceress.' The sample was delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate. A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit. The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil. The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Coaxial Atomic Force Microscope Tweezers

    CERN Document Server

    Brown, K A; Westervelt, R M

    2010-01-01

    We demonstrate coaxial atomic force microscope (AFM) tweezers that can trap and place small objects using dielectrophoresis (DEP). An attractive force is generated at the tip of a coaxial AFM probe by applying a radio frequency voltage between the center conductor and a grounded shield; the origin of the force is found to be DEP by measuring the pull-off force vs. applied voltage. We show that the coaxial AFM tweezers (CAT) can perform three dimensional assembly by picking up a specified silica microsphere, imaging with the microsphere at the end of the tip, and placing it at a target destination.

  4. Atomic Force Microscope Mediated Chromatography

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  5. First Atomic Force Microscope Image from Mars

    Science.gov (United States)

    2008-01-01

    This calibration image presents three-dimensional data from the atomic force microscope on NASA's Phoenix Mars Lander, showing surface details of a substrate on the microscope station's sample wheel. It will be used as an aid for interpreting later images that will show shapes of minuscule Martian soil particles. The area imaged by the microscope is 40 microns by 40 microns, small enough to fit on an eyelash. The grooves in this substrate are 14 microns (0.00055 inch) apart, from center to center. The vertical dimension is exaggerated in the image to make surface details more visible. The grooves are 300 nanometers (0.00001 inch) deep. This is the first atomic force microscope image recorded on another planet. It was taken on July 9, 2008, during the 44th Martian day, or sol, of the Phoenix mission since landing. Phoenix's Swiss-made atomic force microscope builds an image of the surface shape of a particle by sensing it with a sharp tip at the end of a spring, all microfabricated out of a silicon wafer. A strain gauge records how far the spring flexes to follow the contour of the surface. It can provide details of soil-particle shapes smaller than one-hundredth the width of a human hair. This is about 20 times smaller than what can be resolved with Phoenix's optical microscope, which has provided much higher-magnification imaging than anything seen on Mars previously. Both microscopes are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer.

  6. Atomic Force Microscope for Imaging and Spectroscopy

    Science.gov (United States)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  7. Sharp Tips on the Atomic Force Microscope

    Science.gov (United States)

    2008-01-01

    This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA. The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007. The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Digital atomic force microscope Moire method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-M. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Chen, L.-W. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)]. E-mail: chenlw@mail.ncku.edu.tw

    2004-11-15

    In this study, a novel digital atomic force microscope (AFM) moire method is established to measure the displacement and strain fields. The moire pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by the 2-D wavelet transformation to obtain clear interference moire patterns. From moire patterns, the displacement and strain fields can be analyzed. The experimental results show that the digital AFM moire method is very sensitive and easy to realize in nanoscale measurements.

  9. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  10. Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope

    DEFF Research Database (Denmark)

    Jensen, Carsten P.

    Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope......Calibrated atomic force microscope measurements of vickers hardness indentations and tip production and characterisation for scanning tunelling microscope...

  11. Polymerized LB films imaged with a combined atomic force microscope-fluorescence microscope

    NARCIS (Netherlands)

    Putman, Constant A.J.; Hansma, Helen G.; Gaub, Hermann E.; Hansma, Paul K.

    1992-01-01

    The first results obtained with a new stand-alone atomic force microscope (AFM) integrated with a standard Zeiss optical fluorescence microscope are presented. The optical microscope allows location and selection of objects to be imaged with the high-resolution AFM. Furthermore, the combined microsc

  12. Fabrication of an all-metal atomic force microscope probe

    DEFF Research Database (Denmark)

    Rasmussen, Jan Pihl; Tang, Peter Torben; Hansen, Ole

    1997-01-01

    This paper presents a method for fabrication of an all-metal atomic force microscope probe (tip, cantilever and support) for optical read-out, using a combination of silicon micro-machining and electroforming. The paper describes the entire fabrication process for a nickel AFM-probe. In addition...

  13. Stitching Grid-wise Atomic Force Microscope Images

    DEFF Research Database (Denmark)

    Vestergaard, Mathias Zacho; Bengtson, Stefan Hein; Pedersen, Malte

    2016-01-01

    Atomic Force Microscopes (AFM) are able to capture images with a resolution in the nano metre scale. Due to this high resolution, the covered area per image is relatively small, which can be problematic when surveying a sample. A system able to stitch AFM images has been developed to solve...

  14. Controlled manipulation of nanoparticles with an atomic force microscope

    Science.gov (United States)

    Junno, T.; Deppert, K.; Montelius, L.; Samuelson, L.

    1995-06-01

    We report on the application of the atomic force microscope (AFM) to manipulate and position nanometer-sized particles with nanometer precision. The technique, which can be regarded as a nanometer-scale analogy to atomic level manipulation with the scanning tunneling microscope, allowed us to form arbitrary nanostructures, under ambient conditions, by controlled manipulation of individual 30 nm GaAs particles. A whole new set of nanodevices can be fabricated particle-by-particle for studies of quantum effects and single electron tunneling. We also demonstrate a method, based on the AFM manipulation, to determine the true lateral dimensions of nano-objects, in spite of the tip-sample convolution.

  15. Reconstructing the distributed force on an atomic force microscope cantilever

    Science.gov (United States)

    Wagner, Ryan; Killgore, Jason

    2017-03-01

    A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli–Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip–sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.

  16. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  17. Edge Effects and Coupling Effects in Atomic Force Microscope Images

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang-jun; MENGYong-gang; WENShi-zhu

    2004-01-01

    The AFM images were obtained by an atomic force microscope (AFM) and transformed from the deformation of AFM micro cantilever probe. However, due to the surface topography and surface forces applied on the AFM tip of sample, the deformation of AFM probe results in obvious edge effects and coupling effects in the AFM images. The deformation of AFM probe was analyzed,the mechanism of the edge effects and the coupling effects was investigated, and their results in the AFM images were studied. It is demanstrated by the theoretical analysis and AFM experiments that the edge effects make lateral force images more clear than the topography images, also make extraction of frictional force force from lateral force images mare complex and difficult. While the coupling effects make the comparison between topography images and lateral force images mare advantage to acquire precise topography information by AFM.

  18. New approaches to atomic force microscope lithography on silicon

    DEFF Research Database (Denmark)

    Birkelund, Karen; Thomsen, Erik Vilain; Rasmussen, Jan Pihl

    1997-01-01

    We have investigated new approaches to the formation of conducting nanowires on crystalline silicon surfaces using atomic force microscope (AFM) lithography. To increase processing speed and reduce wear of the AFM tip, large-scale structures are formed with a direct laser write setup, while the A......, which do not wear out as rapidly as metal-coated Si3N4 tips. (C) 1997 American Vacuum Society....

  19. Atomic force microscope characterization of a resonating nanocantilever

    DEFF Research Database (Denmark)

    Abadal, G.; Davis, Zachary James; Borrise, X.

    2003-01-01

    parallel to the cantilever. In order to minimize the interaction between AFM probe and the resonating transducer cantilever, the AFM is operated in a dynamic noncontact mode, using oscillation amplitudes corresponding to a low force regime. The dependence of the static cantilever deflection on DC voltage......An atomic force microscope (AFM) is used as a nanometer-scale resolution tool for the characterization of the electromechanical behaviour of a resonant cantilever-based mass sensor. The cantilever is actuated electrostatically by applying DC and AC voltages from a driver electrode placed closely...

  20. Imaging using lateral bending modes of atomic force microscope cantilevers

    Science.gov (United States)

    Caron, A.; Rabe, U.; Reinstädtler, M.; Turner, J. A.; Arnold, W.

    2004-12-01

    Using scanning probe techniques, surface properties such as shear stiffness and friction can be measured with a resolution in the nanometer range. The torsional deflection or buckling of atomic force microscope cantilevers has previously been used in order to measure the lateral forces acting on the tip. This letter shows that the flexural vibration modes of cantilevers oscillating in their width direction parallel to the sample surface can also be used for imaging. These lateral cantilever modes exhibit vertical deflection amplitudes if the cantilever is asymmetric in thickness direction, e.g., by a trapezoidal cross section.

  1. Direct observation of uncoated spectrin with atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    张平城; 白春礼; 成英俊; 方晔; 冯立明; 潘华珍

    1996-01-01

    Spectrin molecules extracted from human blood ceil membrane have been examined by atomic force microscopy (AFM) without using shadowing or staining procedures. A drop of the solution containing spectrin molecules was deposited on the freshly deaved mica substrate. After about 1 min, the residual solution was removed with a piece of filter paper. Afterwards the sample was imaged with a home-made atomic force microscope (AFM) in air in a constant force mode. The obtained AFM images revealed that the spectrin molecules prepared from the above procedures exhibit several kinds of structures as follows: (i) the compact rod-like spectrin heterodimers with a length of around 100 nm; (ii) bent or curved linear tetramers with a length of around 200 nm; (iii) somewhat curved spectrin hexamers, octomers or decamers with lengths of about 300, 400, or 500 nm; and (iv) high oligomers with a length above 1 000 nm.

  2. MIDAS: Lessons learned from the first spaceborne atomic force microscope

    CERN Document Server

    Bentley, Mark S; Butler, Bart; Gavira, Jose; Jeszenszky, Harald; Mannel, Thurid; Romstedt, Jens; Schmied, Roland; Torkar, Klaus

    2016-01-01

    The Micro-Imaging Dust Analysis System (MIDAS) atomic force microscope (AFM) onboard the Rosetta orbiter was the first such instrument launched into space in 2004. Designed only a few years after the technique was invented, MIDAS is currently orbiting comet 67P Churyumov-Gerasimenko and producing the highest resolution 3D images of cometary dust ever made in situ. After more than a year of continuous operation much experience has been gained with this novel instrument. Coupled with operations of the Flight Spare and advances in terrestrial AFM a set of "lessons learned" has been produced, cumulating in recommendations for future spaceborne atomic force microscopes. The majority of the design could be reused as-is, or with incremental upgrades to include more modern components (e.g. the processor). Key additional recommendations are to incorporate an optical microscope to aid the search for particles and image registration, to include a variety of cantilevers (with different spring constants) and a variety of ...

  3. Nonlinear control techniques for an atomic force microscope system

    Institute of Scientific and Technical Information of China (English)

    Yongchun FANG; Matthew FEEMSTER; Darren DAWSON; Nader M.JALILI

    2005-01-01

    Two nonlinear control techniques are proposed for an atomic force microscope system.Initially,a learning-based control algorithm is developed for the microcantilever-sample system that achieves asymptotic cantilever tip tracking for periodic trajectories.Specifically,the control approach utilizes a learning-based feedforward term to compensate for periodic dynamics and high-gain terms to account for non-periodic dynamics.An adaptive control algorithm is then developed to achieve asymptotic cantilever tip tracking for bounded tip trajectories despite uncertainty throughout the system parameters.Simulation results are provided to illustrate the efficacy and performance of the control strategies.

  4. Scanned-cantilever atomic force microscope with large scanning range

    Institute of Scientific and Technical Information of China (English)

    Jintao Yang; Wendong Xu

    2006-01-01

    A scanned-cantilever atomic force microscope (AFM) with large scanning range is proposed, which adopts a new design named laser spot tracking. The scanned-cantilever AFM uses the separate flexure x-y scanner and z scanner instead of the conventional piezoelectric tube scanner. The closed-loop control and integrated capacitive sensors of these scanners can insure that the images of samples have excellent linearity and stability. According to the experimental results, the scanned-cantilever AFM can realize maximal 100 × 100 (μm) scanning range, and 1-nm resolution in z direction, which can meet the requirements of large scale sample testing.

  5. Interlaboratory comparison of traceable atomic force microscope pitch measurements

    Science.gov (United States)

    Dixson, Ronald; Chernoff, Donald A.; Wang, Shihua; Vorburger, Theodore V.; Tan, Siew Leng; Orji, Ndubuisi G.; Fu, Joseph

    2010-06-01

    The National Institute of Standards and Technology (NIST), Advanced Surface Microscopy (ASM), and the National Metrology Centre (NMC) of the Agency for Science, Technology, and Research (A*STAR) in Singapore have completed a three-way interlaboratory comparison of traceable pitch measurements using atomic force microscopy (AFM). The specimen being used for this comparison is provided by ASM and consists of SiO2 lines having a 70 nm pitch patterned on a silicon substrate. NIST has a multifaceted program in atomic force microscope (AFM) dimensional metrology. One component of this effort is a custom in-house metrology AFM, called the calibrated AFM (C-AFM). The NIST C-AFM has displacement metrology for all three axes traceable to the 633 nm wavelength of the iodine-stabilized He-Ne laser - a recommended wavelength for realization of the SI (Système International d'Unités, or International System of Units) meter. NIST used the C-AFM to participate in this comparison. ASM used a commercially available AFM with an open-loop scanner, calibrated by a 144 nm pitch transfer standard. In a prior collaboration with Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, ASM's transfer standard was calibrated using PTB's traceable optical diffractometry instrument. Thus, ASM's measurements are also traceable to the SI meter. NMC/A*STAR used a large scanning range metrological atomic force microscope (LRM-AFM). The LRM-AFM integrates an AFM scanning head into a nano-stage equipped with three built-in He-Ne laser interferometers so that its measurement related to the motion on all three axes is directly traceable to the SI meter. The measurements for this interlaboratory comparison have been completed and the results are in agreement within their expanded uncertainties and at the level of a few parts in 104.

  6. Atomic force microscope chamber for in situ studies of ice

    Science.gov (United States)

    Zepeda, Salvador; Yeh, Yin; Orme, Christine A.

    2001-11-01

    To investigate the surface morphologies of biological systems in a controlled gaseous environment (e.g., the temperature, humidity and composition), most commercial atomic force microscopes require modification. We have designed a double-jacketed environmental chamber specifically for a Nanoscope IIIa (Digital Instruments, Santa Barbara, CA) force microscope. We use cold nitrogen and thermoelectric devices to control the temperature in the chamber; the nitrogen simultaneously serves to create an inert environment. We have also designed a temperature controlled sample stage utilizing thermoelectric devices for fine temperature regulation. A variation of this sample stage allows us to image samples in fluids at cold temperatures with an O-ringless configuration. The relative humidity within the chamber is also measured with commercially available relative humidity sensors. We investigate the surface morphology of ice Ih in its pure phase and shall extend the study to ice in the presence of biological molecules, such as antifreeze proteins. We present a detailed description of our design and our first images of polycrystalline ice and single crystals of ice grown in situ from the vapor.

  7. A Conceptual Atomic Force Microscope using LEGO for Nanoscience Education

    Directory of Open Access Journals (Sweden)

    Tsung-Han Hsieh

    2014-05-01

    Full Text Available A lack of effective educational materials is limited general public awareness of, and interest in, nanoscience. This paper presents a conceptual atomic force microscope (AFM model built by using the LEGO® MINDSTORMS series. AFMs are perhaps one of the most fundamental and widely-used instruments in nanoscience and nanotechnology, thus the introduction of this LEGO® AFM should be beneficial to nanoscience education. Programmed in LabVIEW, this LEGO® model has the ability to scan the samples and construct a three-dimensional (3D surface graphs of the sample, based on the mechanism used for AFM. With this LEGO® AFM, the students can directly access nanoscience concepts through hands-on experience constructing an AFM model. This interaction will lead to a better understanding of nanoscience principles, and motivate learners to further explore both the theoretical and experimental aspects of the domain.

  8. Digital phase-shifting atomic force microscope Moire method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chiaming; Chen Lienwen [Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 70101 (China)

    2005-04-21

    In this study, the digital atomic force microscope (AFM) Moire method with phase-shifting technology is established to measure the in-plane displacement and strain fields. The Moire pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by two-dimensional wavelet transformation to obtain the clear interference Moire patterns. The four-step phase-shifting method is realized by translating the phase of the virtual reference grating from 0 to 2{pi}. The principle of the digital AFM Moire method and the phase-shifting technology are described in detail. Experimental results show that this method is convenient to use and efficient in realizing the microscale measurement.

  9. A subsurface add-on for standard atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Verbiest, G. J., E-mail: Verbiest@physik.rwth-aachen.de [JARA-FIT and II. Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Zalm, D. J. van der; Oosterkamp, T. H.; Rost, M. J., E-mail: Rost@physics.leidenuniv.nl [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)

    2015-03-15

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  10. Experimental Investigation of the Velocity Effect on Adhesion Forces with an Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    魏征; 赵亚溥

    2004-01-01

    Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM)in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity.It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.

  11. z calibration of the atomic force microscope by means of a pyramidal tip

    DEFF Research Database (Denmark)

    Jensen, Flemming

    1993-01-01

    A new method for imaging the probe tip of an atomic force microscope cantilever by the atomic force microscope itself (self-imaging) is presented. The self-imaging is accomplished by scanning the probe tip across a sharper tip on the surface. By using a pyramidal probe tip with a very well...

  12. Contact resonances of U-shaped atomic force microscope probes

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu [Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, Nebraska 68588 (United States)

    2016-01-21

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFM research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.

  13. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    Science.gov (United States)

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  14. Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment

    Institute of Scientific and Technical Information of China (English)

    阳丽; 涂育松; 谭惠丽

    2014-01-01

    In micro-manipulation, the adhesion force has very important influence on behaviors of micro-objects. Here, a theoretical study on the effects of humidity on the adhesion force is presented between atomic force microscope (AFM) tips and substrate. The analysis shows that the precise tip geometry plays a critical role on humidity depen-dence of the adhesion force, which is the dominant factor in manipulating micro-objects in AFM experiments. For a blunt (paraboloid) tip, the adhesion force versus humidity curves tends to the apparent contrast (peak-to-valley corrugation) with a broad range. This paper demonstrates that the abrupt change of the adhesion force has high correla-tion with probe curvatures, which is mediated by coordinates of solid-liquid-vapor contact lines (triple point) on the probe profiles. The study provides insights for further under-standing nanoscale adhesion forces and the way to choose probe shapes in manipulating micro-objects in AFM experiments.

  15. Fabrication of Josephson junctions by using an atomic force microscope

    CERN Document Server

    Song, I S; Kim, D H; Park, G S

    2000-01-01

    Josephson junctions have been fabricated by using an atomic foce microscope (AFM) for surface modification. YBCO films were fabricated on MgO substrates by using pulsed laser deposition. Surface modification of YBCO strips in the field of conductive AFM tips results in controlled and systematic growth of protrusions across the entire strip. Increasing the negative bias voltage to the AFM tip linearly increases the size of the modified structures. The offset superconducting transition temperature and the critical current values systematically shift to lower temperature and current values with increasing degree of AFM modification.

  16. Theoretical Study on the Capillary Force between an Atomic Force Microscope Tip and a Nanoparticle

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-Xia; ZHANG Li-Juan; YI Hou-Hui; FANG Hai-Ping

    2007-01-01

    @@ Considering that capillary force is one of the most important forces between nanoparticles and atomic force microscope (AFM) tips in ambient atmosphere, we develop an analytic approach on the capillary force between an AFM tip and a nanoparticle. The results show that the capillary forces are considerably affected by the geometry of the AFM tip, the humidity of the environment, the vertical distance between the AFM tip and the nanoparticle, as well as the contact angles of the meniscus with an AFM tip and a nanoparticle. It is found that the sharper the AFM tip, the smaller the capillary force. The analyses and results are expected to be helpful for the quantitative imaging and manipulating of nanoparticles by AFMs.

  17. Model based control of dynamic atomic force microscope.

    Science.gov (United States)

    Lee, Chibum; Salapaka, Srinivasa M

    2015-04-01

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  18. Model based control of dynamic atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chibum [Department of Mechanical System Design Engineering, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Salapaka, Srinivasa M., E-mail: salapaka@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-04-15

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  19. Investigation of penetration force of living cell using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Eun Young; Kim, Young Tae; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of)

    2009-07-15

    Recently, the manipulation of a single cell has been receiving much attention in transgenesis, in-vitro fertilization, individual cell based diagnosis, and pharmaceutical applications. As these techniques require precise injection and manipulation of cells, issues related to penetration force arise. In this work the penetration force of living cell was studied using an atomic force microscope (AFM). L929, HeLa, 4T1, and TA3 HA II cells were used for the experiments. The results showed that the penetration force was in the range of 2{approx}22 nN. It was also found that location of cell penetration and stiffness of the AFM cantilever affected the penetration force significantly. Furthermore, double penetration events could be detected, due to the multi-membrane layers of the cell. The findings of this work are expected to aid in the development of precision micro-medical instruments for cell manipulation and treatment

  20. Atomic force microscope study of three-dimensional nanostructure sidewalls

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Muhammad Mustafa [SEMATECH, 2706 Montopolis Drive, Austin, TX 78741 (United States); Gondran, Carolyn F H [Advanced Technology Development Facility, 2706 Montopolis Drive, Austin, TX 78741 (United States); Michelson, Diane K [International SEMATECH Manufacturing Initiative, 2706 Montopolis Drive, Austin, TX 78741 (United States)

    2007-08-22

    Next generation planar and non-planar complementary metal oxide semiconductor (CMOS) structures are three-dimensional nanostructures with multi-layer stacks that can contain films thinner than ten atomic layers. The high resolution of transmission electron microscopy (TEM) is typically chosen for studying properties of these stacks such as film thickness, interface and interfacial roughness. However, TEM sample preparation is time-consuming and destructive, and TEM analysis is expensive and can provide problematic results for surface and interface roughness. Therefore, in this paper, we present the use of direct measurements of sidewall surface structures by conventional atomic force microscopy (AFM) as an alternative or complementary method for studying multi-layer film stacks and as the preferred method for studying FinFET sidewall surface roughness. In addition to these semiconductor device applications, this AFM sidewall measurement technique could be used for other three-dimensional nanostructures.

  1. Development of Atomic Force Microscope for Arthroscopic Knee Cartilage Inspection

    Science.gov (United States)

    Imer, Raphaël; Akiyama, Terunobu; de Rooij, Nicolaas F.; Stolz, Martin; Aebi, Ueli; Friederich, Niklaus F.; Koenig, Uwe; Wirz, Dieter; Daniels, A. U.; Staufer, Urs

    2006-03-01

    A recent study, based on ex vivo unconfined compression testing of normal, diseased, and enzymatically altered cartilage, revealed that a scanning force microscope (SFM), used as a nano-intender, is sensitive enough to enable measurement of alterations in the biomechanical properties of cartilage. Based on these ex vivo measurements, we have designed a quantitative diagnosis tool, the scanning force arthroscope (SFA), able to perform in vivo measurements during a standard arthroscopic procedure. For stabilizing and positioning the instrument relative to the surface under investigation, a pneumatic system has been developed. A segmented piezoelectric tube was used to perform the indentation displacement, and a pyramidal nanometer-scale silicon tip mounted on a cantilever with an integrated deflection sensor measured the biomechanical properties of cartilage. Mechanical means were designed to protect the fragile cantilever during the insertion of the instrument into the knee joint. The stability of the pneumatic stage was checked with a prototype SFA. In a series of tests, load-displacement curves were recorded in a knee phantom and, more recently, in a pig’s leg.

  2. High-Throughput Atomic Force Microscopes Operating in Parallel

    CERN Document Server

    Sadeghian, H; Dekker, B; Winters, J; Bijnagte, T; Rijnbeek, R

    2016-01-01

    Atomic force microscopy (AFM) is an essential nanoinstrument technique for several applications such as cell biology and nanoelectronics metrology and inspection. The need for statistically significant sample sizes means that data collection can be an extremely lengthy process in AFM. The use of a single AFM instrument is known for its very low speed and not being suitable for scanning large areas, resulting in very-low-throughput measurement. We address this challenge by parallelizing AFM instruments. The parallelization is achieved by miniaturizing the AFM instrument and operating many of them simultaneously. This nanoinstrument has the advantages that each miniaturized AFM can be operated independently and that the advances in the field of AFM, both in terms of speed and imaging modalities, can be implemented more easily. Moreover, a parallel AFM instrument also allows one to measure several physical parameters simultaneously; while one instrument measures nano-scale topography, another instrument can meas...

  3. Relaxation of a simulated lipid bilayer vesicle compressed by an atomic force microscope

    Science.gov (United States)

    Barlow, Ben M.; Bertrand, Martine; Joós, Béla

    2016-11-01

    Using coarse-grained molecular dynamics simulations, we study the relaxation of bilayer vesicles, uniaxially compressed by an atomic force microscope cantilever. The relaxation time exhibits a strong force dependence. Force-compression curves are very similar to recent experiments wherein giant unilamellar vesicles were compressed in a nearly identical manner.

  4. Photothermal excitation setup for a modified commercial atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Adam, Holger; Rode, Sebastian; Schreiber, Martin; Kühnle, Angelika, E-mail: kuehnle@uni-mainz.de [Institute of Physical Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55099 Mainz (Germany); Kobayashi, Kei; Yamada, Hirofumi [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan)

    2014-02-15

    High-resolution imaging in liquids using frequency modulation atomic force microscopy is known to suffer from additional peaks in the resonance spectrum that are unrelated to the cantilever resonance. These unwanted peaks are caused by acoustic modes of the liquid and the setup arising from the indirect oscillation excitation by a piezoelectric transducer. Photothermal excitation has been identified as a suitable method for exciting the cantilever in a direct manner. Here, we present a simple design for implementing photothermal excitation in a modified Multimode scan head from Bruker. Our approach is based on adding a few components only to keep the modifications as simple as possible and to maintain the low noise level of the original setup with a typical deflection noise density of about 15 fm/√(Hz) measured in aqueous solution. The success of the modification is illustrated by a comparison of the resonance spectra obtained with piezoelectric and photothermal excitation. The performance of the systems is demonstrated by presenting high-resolution images on bare calcite in liquid as well as organic adsorbates (Alizarin Red S) on calcite with simultaneous atomic resolution of the underlying calcite substrate.

  5. A Cost-Effective Atomic Force Microscope for Undergraduate Control Laboratories

    Science.gov (United States)

    Jones, C. N.; Goncalves, J.

    2010-01-01

    This paper presents a simple, cost-effective and robust atomic force microscope (AFM), which has been purposely designed and built for use as a teaching aid in undergraduate controls labs. The guiding design principle is to have all components be open and visible to the students, so the inner functioning of the microscope has been made clear to…

  6. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    OpenAIRE

    Andreae, M. O.; G. Helas

    2008-01-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly...

  7. Refined tip preparation by electrochemical etching and ultrahigh vacuum treatment to obtain atomically sharp tips for scanning tunneling microscope and atomic force microscope.

    Science.gov (United States)

    Hagedorn, Till; El Ouali, Mehdi; Paul, William; Oliver, David; Miyahara, Yoichi; Grütter, Peter

    2011-11-01

    A modification of the common electrochemical etching setup is presented. The described method reproducibly yields sharp tungsten tips for usage in the scanning tunneling microscope and tuning fork atomic force microscope. In situ treatment under ultrahigh vacuum (p ≤10(-10) mbar) conditions for cleaning and fine sharpening with minimal blunting is described. The structure of the microscopic apex of these tips is atomically resolved with field ion microscopy and cross checked with field emission.

  8. High-throughput atomic force microscopes operating in parallel

    Science.gov (United States)

    Sadeghian, Hamed; Herfst, Rodolf; Dekker, Bert; Winters, Jasper; Bijnagte, Tom; Rijnbeek, Ramon

    2017-03-01

    Atomic force microscopy (AFM) is an essential nanoinstrument technique for several applications such as cell biology and nanoelectronics metrology and inspection. The need for statistically significant sample sizes means that data collection can be an extremely lengthy process in AFM. The use of a single AFM instrument is known for its very low speed and not being suitable for scanning large areas, resulting in a very-low-throughput measurement. We address this challenge by parallelizing AFM instruments. The parallelization is achieved by miniaturizing the AFM instrument and operating many of them simultaneously. This instrument has the advantages that each miniaturized AFM can be operated independently and that the advances in the field of AFM, both in terms of speed and imaging modalities, can be implemented more easily. Moreover, a parallel AFM instrument also allows one to measure several physical parameters simultaneously; while one instrument measures nano-scale topography, another instrument can measure mechanical, electrical, or thermal properties, making it a lab-on-an-instrument. In this paper, a proof of principle of such a parallel AFM instrument has been demonstrated by analyzing the topography of large samples such as semiconductor wafers. This nanoinstrument provides new research opportunities in the nanometrology of wafers and nanolithography masks by enabling real die-to-die and wafer-level measurements and in cell biology by measuring the nano-scale properties of a large number of cells.

  9. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    Science.gov (United States)

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  10. Investigation of structural change of purple membrane in storage by transmission electron microscope and atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The structural change of purple membrane during storage has been investigated by means of transmission electron microscope and atomic force microscope. It is found that many liposomes have spontaneously evolved from the purple membrane sheets isolated three years ago. The membrane proteins on the liposomes, bacteriorhodopsin, are still presented as trimers in 2-D hexagonal structure, which is the same as that in natural cell membrane. However, the cytoplasmic surface of purple membrane faced outside on the liposomes.

  11. Characterization of Akiyama probe applied to dual-probes atomic force microscope

    Science.gov (United States)

    Wang, Hequn; Gao, Sitian; Li, Wei; Shi, Yushu; Li, Qi; Li, Shi; Zhu, Zhendong

    2016-10-01

    The measurement of nano-scale line-width has always been important and difficult in the field of nanometer measurements, while the rapid development of integrated circuit greatly raises the demand again. As one kind of scanning probe microscope (SPM), atomic force microscope (AFM) can realize quasi three-dimensional measurement, which is widely used in nanometer scale line-width measurement. Our team researched a dual-probes atomic force microscope, which can eliminate the prevalent effect of probe width on measurement results. In dual-probes AFM system, a novel head are newly designed. A kind of self-sensing and self-exciting probes which is Nanosensors cooperation's patented probe—Akiyama probe, is used in this novel head. The Akiyama probe applied to dual-probe atomic force microscope is one of the most important issues. The characterization of Akiyama probe would affect performance and accuracy of the whole system. The fundamental features of the Akiyama probe are electrically and optically characterized in "approach-withdraw" experiments. Further investigations include the frequency response of an Akiyama probe to small mechanical vibrations externally applied to the tip and the effective loading force yielding between the tip and the sample during the periodic contact. We hope that the characterization of the Akiyama probe described in this paper will guide application for dual-probe atomic force microscope.

  12. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  13. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  14. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    Science.gov (United States)

    Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-03-01

    We present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1pm could successfully be resolved. In addition, lateral drifts rates of below 15pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  15. Combined laser and atomic force microscope lithography on aluminum: Mask fabrication for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Berini, Abadal Gabriel; Boisen, Anja; Davis, Zachary James;

    1999-01-01

    A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production of nanoelectromecha......A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production...

  16. Higher Harmonics Generation in Tapping Mode Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    LI Yuan; QIAN Jian-Qiang

    2009-01-01

    The contribution of higher harmonics to the movement of a micro rectangular cantilever in tapping mode AFM is investigated. The dependence between the phase lag of the higher harmonic components and tip-sample separation are found to be an order of magnitude higher than the base one, reflecting an increasing sensitivity to local variations of surface properties compared to the normal phase signal.The strong correlation between the higher harmonic amplitude and average sample deformation implies that the higher harmonic amplitude can be taken to monitor the tapping force or as feedback variable to fulfill a constant repulsive force mode.

  17. Massively Parallel Atomic Force Microscope with Digital Holographic Readout

    Energy Technology Data Exchange (ETDEWEB)

    Sache, L [Laboratory of Robotic Systems, Ecole Polytechnique Federale de Lausanne, EPFLSRO1, Station 9, CH-1015 Lausanne (Switzerland); Kawakatsu, H [Institute of Industrial Science, University of Tokyo, Tokyo (Japan); Emery, Y [Lyncee Tec SA, PSE-A, CH-1015 Lausanne (Switzerland); Bleuler, H [Laboratory of Robotic Systems, Ecole Polytechnique Federale de Lausanne, EPFLSRO1, Station 9, CH-1015 Lausanne (Switzerland)

    2007-03-15

    Massively Parallel Scanning Probe Microscopy is an obvious path for data storage (E Grochowski, R F Hoyt, Future Trends in Hard disc Drives, IEEE Trans. Magn. 1996, 32, 1850- 1854; J L Griffin, S W Schlosser, G R Ganger and D F Nagle, Modeling and Performance of MEMS-Based Storage Devices, Proc. ACM SIGMETRICS, 2000). Current experimental systems still lay far behind Hard Disc Drive (HDD) or Digital Video Disk (DVD), be it in access speed, data throughput, storage density or cost per bit. This paper presents an entirely new approach with the promise to break several of these barriers. The key idea is readout of a Scanning Probes Microscope (SPM) array by Digital Holographic Microscopy (DHM). This technology directly gives phase information at each pixel of a CCD array. This means that no contact line to each individual SPM probes is needed. The data is directly available in parallel form. Moreover, the optical setup needs in principle no expensive components, optical (or, to a large extent, mechanical) imperfections being compensated in the signal processing, i.e. in electronics. This gives the system the potential for a low cost device with fast Terabit readout capability.

  18. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    Science.gov (United States)

    Fink, Samuel D.; Fondeur, Fernando F.

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  19. Nano Goes to School: A Teaching Model of the Atomic Force Microscope

    Science.gov (United States)

    Planinsic, Gorazd; Kovac, Janez

    2008-01-01

    The paper describes a teaching model of the atomic force microscope (AFM), which proved to be successful in the role of an introduction to nanoscience in high school. The model can demonstrate the two modes of operation of the AFM (contact mode and oscillating mode) as well as some basic principles that limit the resolution of the method. It can…

  20. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    Science.gov (United States)

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-01-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale--reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use…

  1. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM) phase images

    Science.gov (United States)

    Helas, G.; Andreae, M. O.

    2008-10-01

    We show that atomic force microscopy (AFM) phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  2. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  3. Atomic force microscopic imaging of Acanthamoeba castellanii and Balamuthia mandrillaris trophozoites and cysts.

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Ateeq, Muhammad; Raza Shah, Muhammad; Kulsoom, Huma; Khan, Naveed Ahmed

    2015-01-01

    Light microscopy and electron microscopy have been successfully used in the study of microbes, as well as free-living protists. Unlike light microscopy, which enables us to observe living organisms or the electron microscope which provides a two-dimensional image, atomic force microscopy provides a three-dimensional surface profile. Here, we observed two free-living amoebae, Acanthamoeba castellanii and Balamuthia mandrillaris under the phase contrast inverted microscope, transmission electron microscope and atomic force microscope. Although light microscopy was of lower magnification, it revealed functional biology of live amoebae such as motility and osmoregulation using contractile vacuoles of the trophozoite stage, but it is of limited value in defining the cyst stage. In contrast, transmission electron microscopy showed significantly greater magnification and resolution to reveal the ultra-structural features of trophozoites and cysts including intracellular organelles and cyst wall characteristics but it only produced a snapshot in time of a dead amoeba cell. Atomic force microscopy produced three-dimensional images providing detailed topographic description of shape and surface, phase imaging measuring boundary stiffness, and amplitude measurements including width, height and length of A. castellanii and B. mandrillaris trophozoites and cysts. These results demonstrate the importance of the application of various microscopic methods in the biological and structural characterization of the whole cell, ultra-structural features, as well as surface components and cytoskeleton of protist pathogens.

  4. Development of novel and sensitive sensors based on microcantilever of atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    JIN Yan; WANG Kemin; JIN Rong

    2006-01-01

    Recently, the development of sensors based on microfabricated cantilevers of atomic force microscope (AFM) has attracted considerable attention from the designers of novel physical, chemical, and biological sensors. Many kinds of sensors have been developed taking the advantages of its high-resolution imaging, force measurement and force sensitivity, such as immunosensor and DNA biosensor and the sensors for detection of intermolecular interaction. This paper reviews the progress made in this field and discusses the signal transfer principles by which the design of the sensors is achieved.

  5. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips.

  6. Surface Electromechanical Coupling on DLC Film with Conductive Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    朱守星; 丁建宁; 范真; 李长生; 蔡兰; 杨继昌

    2004-01-01

    Diamond-like carbon (DLC) film composed of microscopically insulation but microscopically a mixture of conducting (sp2) and insulating (spa) phases was discussed on the local modification with a conductive atomic force microscope (C-AFM). Especially, a topographic change was observed when a direct current (DC) bias-voltage was applied to the DLC film. Experimental results show that a nanoscale pit on DLC surface was formed when applying a positive 25 V on DLC film. According to the interacting force between CoCr-coated microelectronic scanning probe (MESP) tip and DLC surface, as well as the Sondheimer oscillation theory, the "scalewing effect" of the pit was explained. Electromechanical coupling on DLC film suggested that the depth of pits increased with an increase of load applied to surface when the cantilever-deflected signal was less than a certain threshold voltage.

  7. A Study on HA Titanium Surface with Atomic Force Microscope (AFM)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Three kinds of titanium surface especially the HA surface are analyzed. Titanium was treated by 3 kinds of methods that were acid & alkali, calcic solution and apatite solution. Samples were observed by optic microscope and atomic force microscope ( AFM). The typical surface morphology of the acid and alkali group is little holes, and on the two HA surface the tiny protuberances is typical. The surface treated by apatite solution was smoother than the two formers. The rough surface treated with acid and alkali was propitious to Ca + , Pand proteins' adhesion, and the relatively smooth HA surface was of benefit to the cell adhesion.

  8. Visualization of Cellulose Microfibrils of Phyllostachys pubescens Fibers with Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Atomic force microscope(AFM) was used to investigate the arrangement of cellulose microfibrils (CMF) in Moso bamboo (Phyllostachys pubescens) fibers. Two methods of sample preparation were used here for different purposes. The first method was chemical maceration with a mixture of hydrogen peroxide and glacial acetic acid, through which the obtained fibers were suitable for observing the orientation of CMF in the primary wal1. The other method was to prepare tangential microtomed sections with a thickness o...

  9. Effect of hydration film on scanning images of atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A standard calibration grating was used for image scanning to investigate the effect of hydration films on imaging resolution by Atomic Force Microscope (AFM). The results showed that the hydration films greatly affect the imaging resolution for the tapping mode, but no evident effect on the contact mode. The possible reasons for the effect of hydration films on scanning images of AFM are also brought forward here.

  10. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    Science.gov (United States)

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  11. The NanoBeamBalance: A passive, tensile-test device for the atomic force microscope

    Science.gov (United States)

    Wenger, M. P. E.; Mesquida, P.

    2011-05-01

    An add-on device is presented, which significantly expands the force measurement capabilities of the atomic force microscope (AFM). The device consists of a completely passive mechanism, which translates the vertical motion of the AFM tip in force measurements into a horizontal motion of two sample support pads. The advantage is that it is much easier to deposit microscopic samples from suspension onto flat surfaces than to attach them reliably between tip and a surface. The working-principle and the design of the device is comprehensively described and demonstrated on the example of collagen fibres with a diameter of a few μm. Well-defined tensile measurements in longitudinal direction were performed, showing that the tensile stiffness of collagen fibres from rat tail tendon decreases by a factor of 5 when rehydrated from a dried sample and slowly increases upon cross-linking with glutaraldehyde.

  12. Probing molecular interaction between transferrin and anti-transferrin by atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The interaction between transferrin (Tf) and its antibody was investigated by atomic force microscope. Tf-antibody was immobilized on the Au-coated glass slide, and the specific combination between antibody and antigen was also characterized by AFM. The results showed that holo-transferrin was jogged with anti-transferrin, and binded anti-tran- sferrin more tightly than apo-transferrin. The force- distance curves revealed that the affinity of anti-trans- ferrin and holo-transferrin was much stronger than that of apo-transferrin.

  13. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  14. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    G. Helas

    2008-08-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  15. Cellular replication and atomic force microscope imaging using a UV-Bioimprint technique.

    Science.gov (United States)

    Muys, J J; Alkaisi, M M; Evans, J J

    2006-09-01

    Replication and fixation techniques have been of considerable interest for imaging and analysis of biological cells since the introduction of electron and scanning probe microscopy. Although such tools as the atomic force microscope (AFM) permit in situ morphological studies at a magnitude of resolution beyond traditional optical microscopy, they are difficult to operate and their resolution capabilities are rarely realized. We used a UV-Bioimprint replication technique to imprint a polymer layer onto cells attached to a substrate and rapidly cure to create an impression of cell topography. Replicas of chemically fixed and untreated cells analyzed by atomic force microscopy demonstrate nanometer resolution in the transfer of replicated features. UV-Bioimprint presents an improvement over techniques using heat-curable polymers as well as an alternative technique to the direct imaging of cells. The motivation for UV-Bioimprint is to effectively integrate scanning probe microscopy tools for imaging of cellular ultrastructure.

  16. Nanostethoscopy: A new mode of operation of the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, A.; Holzrichter, J.F.; Balhorn, R.; Siekaus, W.J.

    1994-02-01

    The authors introduce a new mode of operation of the atomic force microscope (AFM). This detection scheme, a {open_quotes}Nano-Stethoscope{close_quotes}. Involves using the atomic force microscope in a novel acoustic mode not generally recognized. The Nano-Stethoscope uses the conventional scanning feature to locate a desired site, positions the AFM microscope tip over the site, holds the cantilever stationary (in x and v) and records the tip`s z-motion as a function of time. The tip/cantilever system thus functions as a micro-motion detector to respond to characteristic {open_quotes}pulsations{close_quotes}, nano-configurational chances, or any other event that influences the position of the tip as a function of time. The authors have demonstrated the feasibility of using the tip of an AFM in this manner in a biological system with a measurement of the vibrations of an emerging shrimp egg nauplius ({approximately}3 {mu}m. -10 Hz) and on the Angstrom scale in a non-biological system i.e.. the thermal expansion of metal interconnect lines on a microelectronic circuit.

  17. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, F., E-mail: tmfiwat@ipc.shizuoka.ac.jp [Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Ohashi, Y.; Ishisaki, I. [Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Picco, L.M. [H Will Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ushiki, T. [Graduate School of Medical and Dental Sciences, Niigata University, Asahimachidori, Niigata, 951-8122 (Japan)

    2013-10-15

    The atomic force microscope (AFM) has been widely used for surface fabrication and manipulation. However, nanomanipulation using a conventional AFM is inefficient because of the sequential nature of the scan-manipulation scan cycle, which makes it difficult for the operator to observe the region of interest and perform the manipulation simultaneously. In this paper, a nanomanipulation technique using a high-speed atomic force microscope (HS-AFM) is described. During manipulation using the AFM probe, the operation is periodically interrupted for a fraction of a second for high-speed imaging that allows the topographical image of the manipulated surface to be periodically updated. With the use of high-speed imaging, the interrupting time for imaging can be greatly reduced, and as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. This creates a more intuitive interface with greater feedback and finesse to the operator. Nanofabrication under real-time monitoring was performed to demonstrate the utility of this arrangement for real-time nanomanipulation of sample surfaces under ambient conditions. Furthermore, the HS-AFM is coupled with a haptic device for the human interface, enabling the operator to move the HS-AFM probe to any position on the surface while feeling the response from the surface during the manipulation. - Highlights: • A nanomanipulater based on a high-speed atomic force microscope was developped. • High-speed imaging provides a valuable feedback during the manipulation operation. • Operator can feel the response from the surface via a haptic device during manipulation. • Nanofabrications under real-time monitoring were successfully performed.

  18. Visualization of interaction between ribosome-inactivating proteins and supercoiled DNA with an atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    吴晓华; 刘望夷; 欧阳振乾; 李民乾

    1997-01-01

    The interaction between ribosome-inactivating proteins (RIPs) and supercoiled DNA was observed with an atomic force microscope (AFM). It was found that RIPs can bind to both supercoiled DNA and the unwound double stranded loop region in supercoiled DNA. The RIPs hound to the supercoils can induce the conformational change of supercoiled DNA. Furthermore, the supercoiled DNA was relaxed and cleaved into nick or linear form by RIPs. It indicated that RIP seemed to be a supercoil-dependent DNA binding protein and exhibited the activity of su-percoil-dependent DNA endonuclease.

  19. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  20. Track sensitivity and the surface roughness measurements of CR-39 with atomic force microscope

    CERN Document Server

    Yasuda, N; Amemiya, K; Takahashi, H; Kyan, A; Ogura, K

    1999-01-01

    Atomic Force Microscope (AFM) has been applied to evaluate the surface roughness and the track sensitivity of CR-39 track detector. We experimentally confirmed the inverse correlation between the track sensitivity and the roughness of the detector surface after etching. The surface of CR-39 (CR-39 doped with antioxidant (HARZLAS (TD-1)) and copolymer of CR-39/NIPAAm (TNF-1)) with high sensitivity becomes rough by the etching, while the pure CR-39 (BARYOTRAK) with low sensitivity keeps its original surface clarity even for the long etching.

  1. Enhancing thermally induced effects on atomic force microscope cantilevers using optical microcavities

    Science.gov (United States)

    Duy Vy, Nguyen; Iida, Takuya

    2016-12-01

    A theory of enhancing thermally induced effects on atomic force microscope cantilevers with respect to the input power is proposed. An optical microcavity is used to increase the absorbed power and radiation pressure on thin films. We show that the response to the input power is enhanced up to an order of magnitude for cantilevers of ∼200 µm in length and ∼0.5 µm in thickness. A decrease in the absorbed power in the presence of cantilever deflection increases system endurability with respect to the input power. The study gives methods for amplifying and tuning vibration amplitudes in amplitude modulation modes with high sensitivity and low controlling input power.

  2. Aligning DNA on Si surface and cutting off by tips of atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    DNA is a kind of promising molecule as nano-lead to build or connect nano-devices due to its stable linear structure and certain conductivity. Many methods have been applied to constructing nano-patterns by using DNA molecule. In this report it is presented that (-DNA was aligned on Si substrate by using the free-flowing method and then imaged by an atomic force microscope (AFM). After the second liquid flow, a catenary-like pattern and a crossed network of -DNA were formed. In addition, the aligned (-DNA was successfully cut off by tips of AFM.

  3. 3D mechanical measurements with an atomic force microscope on 1D structures

    DEFF Research Database (Denmark)

    Kallesøe, Christian; Larsen, Martin Benjamin Barbour Spanget; Bøggild, Peter;

    2012-01-01

    We have developed a simple method to characterize the mechanical properties of three dimensional nanostructures, such as nanorods standing up from a substrate. With an atomic force microscope the cantilever probe is used to deflect a horizontally aligned nanorod at different positions along...... the nanorod, using the apex of the cantilever itself rather than the tip normally used for probing surfaces. This enables accurate determination of nanostructures' spring constant. From these measurements, Young's modulus is found on many individual nanorods with different geometrical and material structures...... in a short time. Based on this method Young's modulus of carbon nanofibers and epitaxial grown III-V nanowires has been determined....

  4. Building a multi-walled carbon nanotube-based mass sensor with the atomic force microscope

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Kuhle, A.; Marie, Rodolphe Charly Willy;

    2005-01-01

    We report an approach for building a mass sensor based on multi-walled carbon nanotubes (MWCNT). We propose a method with a great potential for the positioning of MWCNTs based on self-assembly onto patterned hydrophilic areas. For the experiments ultra flat mica substrates covered with gold...... are used. The gold substrate is first covered with hydrophobic thiol molecules: octadecanthiol. The octadecanthiol molecules are then selectively removed from small areas by nanoshaving the gold substrate with the tip of an atomic force microscope (AFM) operating in contact mode. Hydrophilic thiols (2...

  5. A virtual instrument to standardise the calibration of atomic force microscope cantilevers

    CERN Document Server

    Sader, John E; Gibson, Christopher T; Haviland, David B; Higgins, Michael J; Kilpatrick, Jason I; Lu, Jianing; Mulvaney, Paul; Shearer, Cameron J; Slattery, Ashley D; Thorén, Per-Anders; Tran, Jim; Zhang, Heyou; Zhang, Hongrui; Zheng, Tian

    2016-01-01

    Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This is performed without reference to a global standard, which hinders robust comparison of force measurements reported by different laboratories. In this article, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others - standardising AFM force measurements - and simultaneously enabling non-invasive calibration of AFM cantilevers of any geometry. This global calibration initiative requires no additional instrumentation or data processing on the part of the user. It utilises a single website where users upload currently available data. A proof-of-principle demonstration of this initiative is presented using measured data from five independent laboratories across three countries, which also allows for an assessment of current calibratio...

  6. Observation on Surface and Cross Section of Thin Film Solar Cells Using Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    FENG Liang-huan; WU Li-li; CAI Wei; CAI Ya-ping; ZHENG Jia-gui; ZHANG Jing-quan; LI Bing; LI Wei

    2005-01-01

    Atomic force microscope (AFM) is able to produce three-dimensional digital data in both forcemode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force-mode to image the repulsive and attractive force patterns. The cross sections of polycrystalline CdS/CdTe and amorphous silicon heterojunction solar cells are observed with AFM. In case of short circuit,the microstructures of different layers in the samples are clearly displayed. When the cells are open circuit, the topographical images are altered, the potential outline due to the space charge in junction region is observed.Obviously, AFM can be employed to investigate experimentally built-in potential in junction of semiconductor devices, such as solar cells.

  7. Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging

    Science.gov (United States)

    Chacko, Jenu Varghese; Harke, Benjamin; Canale, Claudio; Diaspro, Alberto

    2014-10-01

    Atomic force microscopes (AFM) provide topographical and mechanical information of the sample with very good axial resolution, but are limited in terms of chemical specificity and operation time-scale. An optical microscope coupled to an AFM can recognize and target an area of interest using specific identification markers like fluorescence tags. A high resolution fluorescence microscope can visualize fluorescence structures or molecules below the classical optical diffraction limit and reach nanometer scale resolution. A stimulated emission depletion (STED) microscopy superresolution (SR) microscope coupled to an AFM is an example in which the AFM tip gains nanoscale manipulation capabilities. The SR targeting and visualization ability help in fast and specific identification of subdiffraction-sized cellular structures and manoeuvring the AFM tip onto the target. We demonstrate how to build a STED AFM and use it for biological nanomanipulation aided with fast visualization. The STED AFM based bionanomanipulation is presented for the first time in this article. This study points to future nanosurgeries performable at single-cell level and a physical targeted manipulation of cellular features as it is currently used in research domains like nanomedicine and nanorobotics.

  8. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  9. Biophysical Measurements of Cells, Microtubules, and DNA with an Atomic Force Microscope

    CERN Document Server

    Devenica, Luka M; Cabrejo, Raysa; Kurek, Matthew; Deveney, Edward F; Carter, Ashley R

    2015-01-01

    Atomic force microscopes (AFMs) are ubiquitous in research laboratories and have recently been priced for use in teaching laboratories. Here we review several AFM platforms (Dimension 3000 by Digital Instruments, EasyScan2 by Nanosurf, ezAFM by Nanomagnetics, and TKAFM by Thorlabs) and describe various biophysical experiments that could be done in the teaching laboratory using these instruments. In particular, we focus on experiments that image biological materials and quantify biophysical parameters: 1) imaging cells to determine membrane tension, 2) imaging microtubules to determine their persistence length, 3) imaging the random walk of DNA molecules to determine their contour length, and 4) imaging stretched DNA molecules to measure the tensional force.

  10. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly

    Energy Technology Data Exchange (ETDEWEB)

    Xie Hui; Haliyo, Dogan Sinan; Regnier, Stephane [Institut des Systemes Intelligents et de Robotique, Universite Pierre et Marie Curie/CNRS UMR7222, BC 173, 4 Place Jussieu, F-75005 Paris (France)], E-mail: xie@robot.jussieu.fr

    2009-05-27

    A conventional atomic force microscope (AFM) has been successfully applied to manipulating nanoparticles (zero-dimensional), nanowires (one-dimensional) or nanotubes (one- or two-dimensional) by widely used pushing or pulling operations on a single surface. However, pick-and-place nanomanipulation in air is still a challenge. In this research, a modified AFM, called a three-dimensional (3D) manipulation force microscope (3DMFM), was developed to realize 3D nanomanipulation in air. This system consists of two individually actuated cantilevers with protruding tips that are facing each other, constructing a nanotweezer for the pick-and-place nanomanipulation. Before manipulation, one of the cantilevers is employed to position nano-objects and locate the tip of the other cantilever by image scanning. During the manipulation, these two cantilevers work collaboratively as a nanotweezer to grasp, transport and place the nano-objects with real-time force sensing. The manipulation capabilities of the nanotweezer were demonstrated by grabbing and manipulating silicon nanowires to build 3D nanowire crosses. 3D nanomanipulation and nanoassembly performed in air could become feasible through this newly developed 3DMFM.

  11. High-speed atomic force microscope based on an astigmatic detection system

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.-S.; Chen, Y.-H.; Hwu, E.-T.; Chang, C.-S.; Hwang, I.-S., E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Ding, R.-F.; Huang, H.-F.; Wang, W.-M. [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Huang, K.-Y. [Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-10-15

    High-speed atomic force microscopy (HS-AFM) enables visualizing dynamic behaviors of biological molecules under physiological conditions at a temporal resolution of 1s or shorter. A small cantilever with a high resonance frequency is crucial in increasing the scan speed. However, detecting mechanical resonances of small cantilevers is technically challenging. In this study, we constructed an atomic force microscope using a digital versatile disc (DVD) pickup head to detect cantilever deflections. In addition, a flexure-guided scanner and a sinusoidal scan method were implemented. In this work, we imaged a grating sample in air by using a regular cantilever and a small cantilever with a resonance frequency of 5.5 MHz. Poor tracking was seen at the scan rate of 50 line/s when a cantilever for regular AFM imaging was used. Using a small cantilever at the scan rate of 100 line/s revealed no significant degradation in the topographic images. The results indicate that a smaller cantilever can achieve a higher scan rate and superior force sensitivity. This work shows the potential for using a DVD pickup head in future HS-AFM technology.

  12. Combination of Universal Mechanical Testing Machine with Atomic Force Microscope for Materials Research

    Science.gov (United States)

    Zhong, Jian; He, Dannong

    2015-08-01

    Surface deformation and fracture processes of materials under external force are important for understanding and developing materials. Here, a combined horizontal universal mechanical testing machine (HUMTM)-atomic force microscope (AFM) system is developed by modifying UMTM to combine with AFM and designing a height-adjustable stabilizing apparatus. Then the combined HUMTM-AFM system is evaluated. Finally, as initial demonstrations, it is applied to analyze the relationship among macroscopic mechanical properties, surface nanomorphological changes under external force, and fracture processes of two kinds of representative large scale thin film materials: polymer material with high strain rate (Parafilm) and metal material with low strain rate (aluminum foil). All the results demonstrate the combined HUMTM-AFM system overcomes several disadvantages of current AFM-combined tensile/compression devices including small load force, incapability for large scale specimens, disability for materials with high strain rate, and etc. Therefore, the combined HUMTM-AFM system is a promising tool for materials research in the future.

  13. The study of nanoscratch and nanomachining on hard multilayer thin films using atomic force microscope.

    Science.gov (United States)

    Huang, Jen-Ching; Li, Chia-Lin; Lee, Jyh-Wei

    2012-01-01

    In this study, nanoscratching and nanomachining were conducted using an atomic force microscope (AFM) equipped with a doped diamond-coated probe (DDESP-10; VEECO) to evaluate the fabrication of nanopatterns on hard, Cr₂N/Cu multilayer thin films. The influence of normal force, scratch speed, and repeated scratches on the properties of hard multilayer thin films was also investigated. The nanoscratch experiments led researchers to establish a probe preparation and selection criteria (PPS criteria) to enhance the stability and accuracy of machining hard materials. Experimental results indicate that the depth of grooves produced by nanoscratching increased with an increase in normal force, while an increase in the number of scratches in a single location increased the groove depth but decreased friction. Therelationships among normal force and groove depth more closely resembled a logarithmic form than other mathematical models, as did the relationship between repeated scratching and its effect on groove depth and friction. The influence of scratch speed on friction was divided into two ranges. Between 0.1 and 2 µm/s, friction decreased logarithmically with an increase in scratch speed; however, when the speed exceeded 2 µm/s, the friction appeared stable. In this study, multilayered coatings were successfully machined, demonstrating considerable promise for the fabrication of nanopatterns in multilayered coatings at the nanoscale.

  14. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  15. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu;

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process...... is a combination of a rapid collapse phase and a slow degradation phase. The damages of box origami mainly happen in the collapse phase. Thus, the structure stability of 3D DNA box origami should be further improved, especially in the collapse phase, before clinical applications...

  16. Scanning thermal microscopy based on a modified atomic force microscope combined with pyroelectric detection

    Science.gov (United States)

    Antoniow, J.-S.; Chirtoc, M.; Trannoy, N.; Raphael, O.; Pelzl, J.

    2005-06-01

    We propose a novel approach in scanning thermal microscopy of layered samples. The thermal probe (ThP) (Wollaston wire) acts as a local a.c. heat source at the front of a sample layer deposited on a pyroelectric (PE) sensor. The PE signal is proportional to the heat wave transmitted through the sample. The ThP and PE signals can be used to generate complementary thermal conductivity maps and with some restrictions, thermal diffusivity maps of the sample. Additionally, the topography map is obtained in the usual way from the atomic force microscope. We give the theoretical background for the interpretation of PE signal obtained at low and at high frequency, and we demonstrate that it carries information on the thermal diffusivity of a test sample (12 μm thick PET polymer sheet). Finally, we discuss the contributions of heat transfer channels between ThP and sample, and the role of contact thermal resistance.

  17. Nanometer-scale lithography of ultrathin films with atomic force microscope

    CERN Document Server

    Kim, J C; Shin, Y W; Park, S W

    1998-01-01

    Ultrathin resist films have been prepared by both Langmuir-Blodgett (LB) and self-assembly (SA) techniques. Nanometer-scale patterning of these thin films has been performed by using the atomic force microscope (AFM) as the exposing tool. The poly (methylphenylmethacrylate) (PMPMA) LB films were prepared and fabricated by AFM lithography. When the exposure was carried out at the bias voltage of -25V, the protruding lines appeared in the exposed regions. The preoptimized LB films at various conditions exhibited 120 nm line resolution. An organosilane monolayer composed of octadecyldimethylsilyl groups was prepared on a Si substrate. It was then patterned through the localized degradation of the monolayer due to anodic reaction induced by an AFM tip. When the bias voltage was -30 V, the protruding lines appeared in the exposed regions.

  18. Atomic force microscope observation of branching in single transcript molecules derived from human cardiac muscle

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jason; Hsueh, Carlin; Gimzewski, James K [Department of Chemistry and Biochemistry, UCLA, 607 Charles Young Drive East, Los Angeles, CA 90095 (United States); Mishra, Bud [Courant Institute of Mathematical Sciences, NYU, 251 Mercer Street, New York, NY 10012 (United States)], E-mail: jreed@chem.ucla.edu, E-mail: gim@chem.ucla.edu

    2008-09-24

    We have used an atomic force microscope to examine a clinically derived sample of single-molecule gene transcripts, in the form of double-stranded cDNA, (c: complementary) obtained from human cardiac muscle without the use of polymerase chain reaction (PCR) amplification. We observed a log-normal distribution of transcript sizes, with most molecules being in the range of 0.4-7.0 kilobase pairs (kb) or 130-2300 nm in contour length, in accordance with the expected distribution of mRNA (m: messenger) sizes in mammalian cells. We observed novel branching structures not previously known to exist in cDNA, and which could have profound negative effects on traditional analysis of cDNA samples through cloning, PCR and DNA sequencing.

  19. Design of mechanical components for vibration reduction in an atomic force microscope.

    Science.gov (United States)

    Kim, Chulsoo; Jung, Jongkyu; Youm, Woosub; Park, Kyihwan

    2011-03-01

    Vibration is a key factor to be considered when designing the mechanical components of a high precision and high speed atomic force microscope (AFM). It is required to design the mechanical components so that they have resonant frequencies higher than the external and internal vibration frequencies. In this work, the mechanical vibration in a conventional AFM system is analyzed by considering its mechanical components, and a vibration reduction is then achieved by reconfiguring the mechanical components. To analyze the mechanical vibration, a schematic of the lumped model of the AFM system is derived and the vibrational influences of the AFM components are experimentally examined. Based on this vibration analysis, a reconfigured AFM system is proposed and its effects are compared to a conventional system through a series of simulations and experiments.

  20. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....... values in the order of 1 nm. The positioning repeatability of the two horizontal axes of the CMM was determined to +/-1 mu m. Sets of four 20 mu m x 20 mu m areas were traced on fiat objects, combining the data into single 40 mu m x 40 mu m areas, and comparing the roughness values to those for the same...

  1. Invited Review Nanoscale devices fabricated by dynamic ploughing with an atomic force microscope

    Science.gov (United States)

    Kunze, Ulrich

    2002-01-01

    A review is given on the dynamic ploughing technique and its application on the fabrication of nanoscale semiconductor structures. The vibrating tip of an atomic force microscope is used to dynamically plough furrows into a polymer layer of a few nm thickness on top of the semiconductor surface. Wet-chemical etching transfers the desired line pattern. The resulting grooves of 50-100 nm width form an arrangement of barriers in the electron layer of a conventional modulation-doped GaAs/AlGaAs heterostructure. A new type of heterostructure with a compensating p-type doped cap layer shows an electron enhancement if the cap layer is selectively removed. Etching a groove in these structures enables one to induce a one-dimensional electron system. Both types of structures are used to fabricate various ballistic quantum devices and Coulomb-blockade structures.

  2. Nanotribological characterization of digital micromirror devices using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Liu Huiwen; Bhushan, Bharat

    2004-08-15

    Texas Instruments' digital micromirror device (DMD) comprises an array of fast digital micromirrors, monolithically integrated onto and controlled by an underlying silicon memory chip. The DMD is one of the few success stories in the emerging field of MEMS. In this study, an atomic force microscope (AFM) has been used to characterize the nanotribological properties of the elements of the DMD. An AFM methodology was developed to identify and remove micromirrors of interest. The surface roughness, adhesion, friction, and stiffness properties of the DMD elements were studied. The influence of relative humidity and temperature on the behavior of the DMD element surfaces was also investigated. Potential mechanisms for wear and stiction are discussed in light of the findings.

  3. Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique

    Directory of Open Access Journals (Sweden)

    Sakuma Y

    2006-01-01

    Full Text Available AbstractAn atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs. Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.

  4. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    Science.gov (United States)

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-12-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale—reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use a tactile probe to map the topography or some other property of a sample, the rastering of the probe over the sample is manually controlled, which is both tedious and potentially inaccurate. Other groups have used simulation or tele-operation of an AFM probe. In this paper we describe a teaching AFM with complete computer control to map out topographic and magnetic properties of a "crystal" consisting of two-dimensional arrays of spherical marble "atoms." Our AFM is well suited for lessons on the "Big Ideas of Nanoscale" such as tools and instrumentation, as well as a pre-teaching activity for groups with remote access AFM or mobile AFM. The principle of operation of our classroom AFM is the same as that of a real AFM, excepting the nature of the force between sample and probe.

  5. Direct observation of phase transition of GeSbTe thin films by Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yang Fei [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang Rui; Geng Lei; Tong Liang; Xu Jun [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Su Weining; Yu Yao [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ma Zhongyuan; Chen Kunji [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2012-10-01

    Graphical abstract: Nano-sized marks on GST thin film were fabricated using Conductive-AFM (Atomic Force Microscope). The AFM morphology images show that the marks are ablated at the center and a raised ring surrounding it. Highlights: Black-Right-Pointing-Pointer Microstructure of GeSbTe thin films was characterized by XRD and AFM. Black-Right-Pointing-Pointer Annealing and applying electrical field can induce crystallization on thin film. Black-Right-Pointing-Pointer Conductive-AFM was used to modify the surface of GeSbTe thin film. - Abstract: GeSbTe (GST) thin films were deposited on quartz substrates using electron beam evaporation system and then annealed in nitrogen atmosphere at different temperatures, ranging from 20 Degree-Sign C to 300 Degree-Sign C. X-ray diffraction (XRD) and Atomic Force microscope (AFM) measurements were used to characterize the as-deposited and post-annealed thin films. Annealing treatment was found to induce changes on microstructure, surface roughness and grain size, indicating that with the increase of annealing temperature, the amorphous GST films first changed to face-centered-cubic (fcc) phase and then the stable hexagonal (hex) phase. Meanwhile, conductive-AFM (C-AFM) was used to produce crystallized GST dots on thin films. I-V spectroscopy results show that GST films can switch from amorphous state to crystalline state at threshold voltage. After switching, I-V curve exhibits ohmic characteristic, which is usually observed in crystallized GST films. By applying repeated I-V spectroscopies on the thin films, crystallized nuclei were observed. As the times of I-V spectroscopies increases, the area of written dots increases, and the center of the mark begin to ablate. The AFM images show that the shape of marks is an ablated center with a raised ring surrounding it.

  6. A high-pressure atomic force microscope for imaging in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Lea, A. S.; Higgins, S. R.; Knauss, K. G.; Rosso, K. M.

    2011-01-01

    A high-pressure atomic force microscope(AFM) that enables in situ, atomic scale measurements of topography of solid surfaces in contact with supercritical CO2 (scCO2) fluids has been developed. This apparatus overcomes the pressure limitations of the hydrothermal AFM and is designed to handle pressures up to 100 atm at temperatures up to ~350 K. A standard optically-based cantilever deflection detection system was chosen. When imaging in compressible supercritical fluids such as scCO2, precise control of pressure and temperature in the fluid cell is the primary technical challenge. Noise levels and imaging resolution depend on minimization of fluid density fluctuations that change the fluidrefractive index and hence the laser path. We demonstrate with our apparatus in situ atomic scale imaging of a calcite (CaCO3) mineral surface in scCO2; both single, monatomic steps and dynamic processes occurring on the (101¯4) surface are presented. Finally, this new AFM provides unprecedented in situ access to interfacial phenomena at solid–fluid interfaces under pressure.

  7. Re-calibration of the NIST SRM 2059 master standard using traceable atomic force microscope metrology

    Science.gov (United States)

    Dixson, Ronald; Potzick, James; Orji, Ndubuisi G.

    2008-10-01

    The current photomask linewidth Standard Reference Material (SRM) supplied by the National Institute of Standards and Technology (NIST), SRM 2059, is the fifth generation of such standards for mask metrology. An in house optical microscope tool developed at NIST, called the NIST ultra-violet (UV) microscope, was used in transmission mode to calibrate the SRM 2059 photomasks. Due to the limitations of available optical models for determining the edge response in the UV microscope, the tool was used in a comparator mode. One of the masks was selected as a master standard - and the features on this mask were calibrated using traceable critical dimension atomic force microscope (CD-AFM) dimensional metrology. The optical measurements were then used to determine the relative offsets between the widths on the master standard and individual masks for sale to customers. At the time of these measurements, however, the uncertainties in the CD-AFM reference metrology on the master standard were larger than can now be achieved because the NIST single crystal critical dimension reference material (SCCDRM) project had not been completed. Using our CD-AFM at NIST, we have performed new measurements on the SRM 2059 master standard. The new AFM results are in agreement with the prior measurements and have expanded uncertainties approximately one fourth of those of the earlier results for sub-micrometer features. When the optical comparator data for customers masks are reanalyzed using these new AFM results, we expect to reduce the combined reported uncertainties for the linewidths on the actual SRMs by at least 40 % for the nominal 0.25 μm features.

  8. Indirect identification and compensation of lateral scanner resonances in atomic force microscopes.

    Science.gov (United States)

    Burns, D J; Youcef-Toumi, K; Fantner, G E

    2011-08-05

    Improving the imaging speed of atomic force microscopy (AFM) requires accurate nanopositioning at high speeds. However, high speed operation excites resonances in the AFM's mechanical scanner that can distort the image, and therefore typical users of commercial AFMs elect to operate microscopes at speeds below which scanner resonances are observed. Although traditional robust feedforward controllers and input shaping have proven effective at minimizing the influence of scanner distortions, the lack of direct measurement and use of model-based controllers have required disassembling the microscope to access lateral scanner motion with external sensors in order to perform a full system identification experiment, which places excessive demands on routine microscope operators. Further, since the lightly damped instrument dynamics often change from experiment to experiment, model-based controllers designed from offline system identification experiments must trade off high speed performance for robustness to modeling errors. This work represents a new way to automatically characterize the lateral scanner dynamics without addition of lateral sensors, and shape the commanded input signals in such a way that disturbing dynamics are not excited. Scanner coupling between the lateral and out-of-plane directions is exploited and used to build a minimal model of the scanner that is also sufficient to describe the nature of the distorting resonances. This model informs the design of an online input shaper used to suppress spectral components of the high speed command signals. The method presented is distinct from alternative approaches in that neither an information-complete system identification experiment nor microscope modification are required. Because the system identification is performed online immediately before imaging, no tradeoff of performance is required. This approach has enabled an increase in the scan rates of unmodified commercial AFMs from 1-4 lines s(-1) to

  9. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    Science.gov (United States)

    Seppä, Jeremias; Reischl, Bernhard; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Raiteri, Paolo; Rohl, Andrew L.; Nordlund, Kai; Lassila, Antti

    2017-03-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation.

  10. Lipid memberane:inelastic deformation of surface structure by an atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The stability of the 1,2-Dioleoyl-sn-Glycero-3-[phospho-rac-1-Glycerol-Na] liposome in the liquid crystalline state have been investigated using an atomic force microscope(AFM),We have observed the inelastic deformation of the sample surface,The AFM tip causes persistent deformation of the surface of the lipid membrane,in which some of the lipid molecules are eventually pushed or dragged by the AFM tip.The experiment shows how the surface structure of the lipid membrane can be created by the interaction between the AFM tip and lipid membrane.When the operating force exceeds 10-8N,it leads to large deformations of the surface.A squareregion of about 1×1um2 is created by the scanning probe on the surface,When the operating force is between 10-11N and 10-8N,it can image the topography of the surface of the lipid membrane.The stability of the sample is related to the concentration of the medium in which the sample is prepared.

  11. Design of a self-aligned, wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with 10 nm magnetic force microscope resolution

    Energy Technology Data Exchange (ETDEWEB)

    Karcı, Özgür [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Dede, Münir [NanoMagnetics Instruments Ltd., Hacettepe - İvedik OSB Teknokent, 1368. Cad., No: 61/33, 06370, Yenimahalle, Ankara (Turkey); Oral, Ahmet, E-mail: orahmet@metu.edu.tr [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-01

    We describe the design of a wide temperature range (300 mK-300 K) atomic force microscope/magnetic force microscope with a self-aligned fibre-cantilever mechanism. An alignment chip with alignment groves and a special mechanical design are used to eliminate tedious and time consuming fibre-cantilever alignment procedure for the entire temperature range. A low noise, Michelson fibre interferometer was integrated into the system for measuring deflection of the cantilever. The spectral noise density of the system was measured to be ~12 fm/√Hz at 4.2 K at 3 mW incident optical power. Abrikosov vortices in BSCCO(2212) single crystal sample and a high density hard disk sample were imaged at 10 nm resolution to demonstrate the performance of the system.

  12. Graphene-coated atomic force microscope tips for reliable nanoscale electrical characterization.

    Science.gov (United States)

    Lanza, M; Bayerl, A; Gao, T; Porti, M; Nafria, M; Jing, G Y; Zhang, Y F; Liu, Z F; Duan, H L

    2013-03-13

    Graphene single-layer films are grown by chemical vapor deposition and transferred onto commercially available conductive tips for atomic force microscopy. Graphene-coated tips are much more resistant to both high currents and frictions than commercially available, metal-varnished, conductive atomic force microscopy tips, leading to much larger lifetimes and more reliable imaging due to a lower tip-sample interaction.

  13. An analytic model for accurate spring constant calibration of rectangular atomic force microscope cantilevers.

    Science.gov (United States)

    Li, Rui; Ye, Hongfei; Zhang, Weisheng; Ma, Guojun; Su, Yewang

    2015-10-29

    Spring constant calibration of the atomic force microscope (AFM) cantilever is of fundamental importance for quantifying the force between the AFM cantilever tip and the sample. The calibration within the framework of thin plate theory undoubtedly has a higher accuracy and broader scope than that within the well-established beam theory. However, thin plate theory-based accurate analytic determination of the constant has been perceived as an extremely difficult issue. In this paper, we implement the thin plate theory-based analytic modeling for the static behavior of rectangular AFM cantilevers, which reveals that the three-dimensional effect and Poisson effect play important roles in accurate determination of the spring constants. A quantitative scaling law is found that the normalized spring constant depends only on the Poisson's ratio, normalized dimension and normalized load coordinate. Both the literature and our refined finite element model validate the present results. The developed model is expected to serve as the benchmark for accurate calibration of rectangular AFM cantilevers.

  14. Lipid membrane: inelastic deformation of surface structure by an atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    张静; 孙润广

    2002-01-01

    The stability of the 1,2-Dioleoyl-sn-Glycero-3-[phospho-rac-1-Glycerol-Na] liposome in the liquid crystalline statehave been investigated using an atomic force microscope (AFM). We have observed the inelastic deformation of thesample surface. The AFM tip causes persistent deformation of the surface of the lipid membrane, in which some of thelipid molecules are eventually pushed or dragged by the AFM tip. The experiment shows how the surface structure ofthe lipid membrane can be created by the interaction between the AFM tip and lipid membrane. When the operatingforce exceeds 10-8 N, it leads to large deformations of the surface. A square region of about 1×1μm2 is created by thescanning probe on the surface. When the operating force is between 10-11N and 10-8N, it can image the topographyof the surface of the lipid membrane. The stability of the sample is related to the concentration of the medium in whichthe sample is prepared.

  15. Microdrops on atomic force microscope cantilevers: evaporation of water and spring constant calibration.

    Science.gov (United States)

    Bonaccurso, Elmar; Butt, Hans-Jürgen

    2005-01-13

    The evaporation of water drops with radii approximately 20 microm was investigated experimentally by depositing them onto atomic force microscope (AFM) cantilevers and measuring the deflection versus time. Because of the surface tension of the liquid, the Laplace pressure inside the drop, and the change of interfacial stress at the solid-liquid interface, the cantilever is deflected by typically a few hundred nanometers. The experimental results are in accordance with an analytic theory developed. The evaporation process could be monitored with high accuracy even at the last stage of evaporation because (1) cantilever deflections can be measured with nanometer resolution and (2) the time resolution, given by the inverse of the resonance frequency of the cantilever of approximately 0.3 ms, is much faster than the typical evaporation time of 1 s. Experimental results indicate that evaporation of the last thin layer of water is significantly slower than the rest of the drop, which can be due to surface forces. This drop-on-cantilever system can also be used to analyze the drop impact dynamics on a surface and to determine the spring constant of cantilevers.

  16. Determination of the Elastic Properties of Tomato Fruit Cells with an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Andrzej Kurenda

    2013-09-01

    Full Text Available Since the mechanical properties of single cells together with the intercellular adhesive properties determine the macro-mechanical properties of plants, a method for evaluation of the cell elastic properties is needed to help explanation of the behavior of fruits and vegetables in handling and food processing. For this purpose, indentation of tomato mesocarp cells with an atomic force microscope was used. The Young’s modulus of a cell using the Hertz and Sneddon models, and stiffness were calculated from force-indentation curves. Use of two probes of distinct radius of curvature (20 nm and 10,000 nm showed that the measured elastic properties were significantly affected by tip geometry. The Young’s modulus was about 100 kPa ± 35 kPa and 20 kPa ± 14 kPa for the sharper tip and a bead tip, respectively. Moreover, large variability regarding elastic properties (>100% among cells sampled from the same region in the fruit was observed. We showed that AFM provides the possibility of combining nano-mechanical properties with topography imaging, which could be very useful for the study of structure-related properties of fruits and vegetables at the cellular and sub-cellular scale.

  17. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

    NARCIS (Netherlands)

    Herfst, R.W.; Dekker, A.; Witvoet, G.; Crowcombe, W.E.; Lange, T.J. de; Sadeghian Marnani, H.

    2015-01-01

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is lim

  18. In situ observation of surface structures of cardiovascular endothelial cells with atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    Tong Yin; Jin Luo; YaMin Ma; Xiao-Long Ji; Yu-Sheng Zhao; Shi-Wen Wang

    2009-01-01

    Objective To observe the surface structures of cardiovascular endothelial cells in situ with atomic force microscope (AFM). Methods Fresh aorta and aortic valve were dissected from 10 healthy male New Zealand white rabbits. Before fixed in 1% formaldehyde, the fresh tissues were washed in the buffer phosphate solution. Under general microscope, the fixed aorta or valve was spread on the double side stick tape which had already been stuck on the glass slide. The intima of aorta or the aorta side of valve was towards upside. Then the specimen was dried under 37 degrees centigrade in an attemperator and was washed with pure water. After dried again, the specimen was loaded on the platform ofNanoScope llla AFM and was scanned in tapping mode with the scanning speed of 0.5 HZ. Results The surface structures of endothelial cell on the fixed and dried tissue could be obsserved clearly in situ with AFM. Aortic endothclial cells were large, branched and arranged sparsely and parallel to the direction of blood flow, whereas endothelial cells on aorta valve surface were small, less branched and arranged intensively and vertical to the direction of blood flow. When the scanning range was dwindled, granular ultra-structures could be observed on the surface of endothelial cells, and, as the scanning range was dwindled further, fissure and convolution could be seen on the surface of granules from aortic endothelial cells. Centre cavity and surrounding swelling volcano-like structure could be seen on the surface of granules from endothelial cells of aortic valve. Conclusions It's feasible to observe the surface ultra-structures of cardiovascular endothelial cells in situ with AFM and morphological information provided by A FM might be of clinical value in future histopathological diagnosis.

  19. Measurements of dispersion forces between colloidal latex particles with the atomic force microscope and comparison with Lifshitz theory.

    Science.gov (United States)

    Elzbieciak-Wodka, Magdalena; Popescu, Mihail N; Montes Ruiz-Cabello, F Javier; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal

    2014-03-14

    Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10(-21) J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.

  20. Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope

    Science.gov (United States)

    Zhao, X. S.; Geng, Y. Q.; Li, W. B.; Yan, Y. D.; Hu, Z. J.; Sun, T.; Liang, Y. C.; Dong, S.

    2012-11-01

    In order to machine and measure nanostructures on the micro ball surface, a modified atomic force microscope (AFM) combining a commercial AFM system with a home built precision air bearing spindle is established. Based on this system, motions of both the AFM scanner and the air bearing spindle are controlled to machine nanostructures on the micro ball based on the AFM tip-based nano mechanical machining approach. The eccentric error between the axis of the micro ball and the axis of the spindle is reduced to 3-4 μm by the provided fine adjusting method. A 1000 nano lines array, 36 square pits structure, 10 square pits structure, and a zig-zag structure on the circumference of the micro ball with the diameter of 1.5 mm are machined successfully. The measurement results achieved by the same system reveal that the profiles and mode-power spectra curves of the micro ball are influenced by the artificially machined nanostructures significantly according to their distributions. This work is an useful attempt for modifying the micro ball profile and manufacture of the spherical modulation targets to study the experimental performance of the micro ball in implosion.

  1. The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope.

    Science.gov (United States)

    Xu, Haijiao; Su, Weiheng; Cai, Mingjun; Jiang, Junguang; Zeng, Xianlu; Wang, Hongda

    2013-01-01

    The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.

  2. The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope.

    Directory of Open Access Journals (Sweden)

    Haijiao Xu

    Full Text Available The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.

  3. AN INTELLIGENT NEURO-FUZZY TERMINAL SLIDING MODE CONTROL METHOD WITH APPLICATION TO ATOMIC FORCE MICROSCOPE

    Directory of Open Access Journals (Sweden)

    Seied Yasser Nikoo

    2016-11-01

    Full Text Available In this paper, a neuro-fuzzy fast terminal sliding mode control method is proposed for controlling a class of nonlinear systems with bounded uncertainties and disturbances. In this method, a nonlinear terminal sliding surface is firstly designed. Then, this sliding surface is considered as input for an adaptive neuro-fuzzy inference system which is the main controller. A proportinal-integral-derivative controller is also used to asist the neuro-fuzzy controller in order to improve the performance of the system at the begining stage of control operation. In addition, bee algorithm is used in this paper to update the weights of neuro-fuzzy system as well as the parameters of the proportinal-integral-derivative controller. The proposed control scheme is simulated for vibration control in a model of atomic force microscope system and the results are compared with conventional sliding mode controllers. The simulation results show that the chattering effect in the proposed controller is decreased in comparison with the sliding mode and the terminal sliding mode controllers. Also, the method provides the advantages of fast convergence and low model dependency compared to the conventional methods.

  4. The Asymmetrical Structure of Golgi Apparatus Membranes Revealed by In situ Atomic Force Microscope

    Science.gov (United States)

    Xu, Haijiao; Su, Weiheng; Cai, Mingjun; Jiang, Junguang; Zeng, Xianlu; Wang, Hongda

    2013-01-01

    The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm –200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level. PMID:23613878

  5. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hua; Xing, Xiaobo [Chemistry Department, Jinan University, Guangzhou 510632 (China); Zhao, Hongxia [Chemistry Department, Jinan University, Guangzhou 510632 (China); Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510090 (China); Chen, Yong [Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Xun [Chemistry Department, Jinan University, Guangzhou 510632 (China); Ma, Shuyuan [Chemistry Department, Jinan University, Guangzhou 510632 (China); The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Ye, Hongyan [Chemistry Department, Jinan University, Guangzhou 510632 (China); Cai, Jiye, E-mail: tjycai@jnu.edu.cn [Chemistry Department, Jinan University, Guangzhou 510632 (China)

    2010-01-22

    The pathophysiological changes of erythrocytes are detected at the molecular scale, which is important to reveal the onset of diseases. Type 2 diabetes is an age-related metabolic disorder with high prevalence in elderly (or old) people. Up to now, there are no treatments to cure diabetes. Therefore, early detection and the ability to monitor the progression of type 2 diabetes are very important for developing effective therapies. Type 2 diabetes is associated with high blood glucose in the context of insulin resistance and relative insulin deficiency. These abnormalities may disturb the architecture and functions of erythrocytes at molecular scale. In this study, the aging- and diabetes-induced changes in morphological and biomechanical properties of erythrocytes are clearly characterized at nanometer scale using atomic force microscope (AFM). The structural information and mechanical properties of the cell surface membranes of erythrocytes are very important indicators for determining the healthy, diseased or aging status. So, AFM may potentially be developed into a powerful tool in diagnosing diseases.

  6. Direct observation of phase transition of GeSbTe thin films by Atomic Force Microscope

    Science.gov (United States)

    Yang, Fei; Xu, Ling; Zhang, Rui; Geng, Lei; Tong, Liang; Xu, Jun; Su, Weining; Yu, Yao; Ma, Zhongyuan; Chen, Kunji

    2012-10-01

    GeSbTe (GST) thin films were deposited on quartz substrates using electron beam evaporation system and then annealed in nitrogen atmosphere at different temperatures, ranging from 20 °C to 300 °C. X-ray diffraction (XRD) and Atomic Force microscope (AFM) measurements were used to characterize the as-deposited and post-annealed thin films. Annealing treatment was found to induce changes on microstructure, surface roughness and grain size, indicating that with the increase of annealing temperature, the amorphous GST films first changed to face-centered-cubic (fcc) phase and then the stable hexagonal (hex) phase. Meanwhile, conductive-AFM (C-AFM) was used to produce crystallized GST dots on thin films. I-V spectroscopy results show that GST films can switch from amorphous state to crystalline state at threshold voltage. After switching, I-V curve exhibits ohmic characteristic, which is usually observed in crystallized GST films. By applying repeated I-V spectroscopies on the thin films, crystallized nuclei were observed. As the times of I-V spectroscopies increases, the area of written dots increases, and the center of the mark begin to ablate. The AFM images show that the shape of marks is an ablated center with a raised ring surrounding it.

  7. Preliminarily Investigating the Polymorphism of Self-organized Actin Filament in Vitro by Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    Jun ZHANG; Yuan-Liang WANG; Xin-Yong Chen; Chuang-Long HE; Chao CHENG; Yang CAO

    2004-01-01

    With the atomic force microscope (AFM), we preliminarily investigated the large-scale structure of actin filaments formed in low concentration protein solution (5 μg/ml) via self-organization without the presence of any F-actin dynamic interfering factors (such as phalloidin) in vitro. It was found that the G-actin could be polymerized into ordered filamentous structures with different diameter from the slimmest filament of single F-actin to giant filament in tree-like branched aggregates. The observed polymerized actin filaments, to which our most intense attention was attracted, was discretely distributed and showed obvious polymorphism distinctly different from those in the presence of phalloidin or actin binding proteins (fimbrin, gelsolin, etc.) in previous experiments. Latter structures were mainly composed of single F-actin and/or multifilaments clearly consisting of several single F-actin. The experimental results clearly demonstrated that non-interference with the F-actin intrinsic dynamics in self-organizing could lead to the polymorphism of actin filamentous structures, and further analysis implied that the disturbance of normal F-actin dynamics by many factors could prevent the emergence of structural polymorphism, more often than not, give rise to formation of specific structures instead and different interference would bring about various particular structures under certain conditions.

  8. Nanoimaging and ultra structure of Entamoeba histolytica and its pseudopods by using atomic force microscope

    Science.gov (United States)

    Joshi, Narahari V.; Medina, Honorio; Urdaneta, H.; Barboza, J.

    2000-04-01

    Nan-imaging of Entamoeba histolytica was carried out by using Atomic Force Microscope (AFM). The structure of the nucleus, endoplasm and ectoplasm were studied separately. The diameter of the nucleus in living E. histolytica was found to be of the order of 10 micrometers which is slightly higher than the earlier reported value. The presence of karysome was detected in the nucleus. Well-organized patterns of chromatoid bodies located within the endoplasm, were detected and their repetitive patterns were examined. The organized structure was also extended within the ectoplasm. The dimensions and form of the organization suggest that chromatic bodies are constituted with ribosomes ordered in the form of folded sheet. Such structures were found to be absent in non-living E. histolytica. AFM images were also captured just in the act when ameba was extending its pseudopods. Alteration in the ultrastructure caused during the process of extension was viewed. Well marked canals of width 694.05 nm. And height 211.05 nm are clearly perceptible towards the direction of the pseudopods. 3D images are presented to appreciate the height variation, which can not be achieved by conventional well-established techniques such as electron microscopy.

  9. Atomic force microscopic study on topological structures of pBR322 DNA

    Institute of Scientific and Technical Information of China (English)

    张平城; 白春礼; 成英俊; 方晔; 王中怀; 黄熙泰

    1996-01-01

    Plasmid pBR322 DNA (0.5mg/mL) isolated from Escherichia coli HB101 was suspended in Tris-HCl-EDTA (1 mol/L - 0.1 mol/L, pH8.5); then a drop of the above solution was deposited on freshly cleaved mica substrate. After adsorption for about 1 min, the sample was stained with phosphotungstic acid. The residua] solution was removed with a piece of filter paper. Afterwards the sample was imaged with a home-made atomic force microscope (AFM) in air. The AFM images of pBR322 DNA with a molecular resolution have been obtained. These images show that pBR322 DNA exists in several different topological structures: (i) relaxed circular DNA with a different diameter; (ii) supercondensed DNA with different particle sizes; (iii) dimeric catenane connected by one relaxed circular molecule and another dose-compacted molecule which might be either supercoiled or intramolecular knotted form; (iv) oligomeric catenane with multiple irregular molecules in which DNA is interlocked into a complex oligomer; (v) possibly-existing

  10. In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Higinio González-Jorge

    2010-04-01

    Full Text Available Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production.

  11. Atomic force microscopic observation on substructure of pollen exine in Cedrus deodara and Metasequoia glyptostroboides

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The substructure of pollen exine in Cedrus deodara (Roxb.) Loud. and Metasequoia glyptostroboides Hu et Cheng has been examined with an atomic force microscope (AFM). The results indicate that the exine substructure units containing sporopollenin in two species are similar in shape, which are granular, but slightly different in size. In Cedrus the substructure unit of pollen exine appears to be 56-99 nm long and 42-74 nm wide, while in Metasequoia it appears to be 81-118 nm long and 43-98 nm wide. It has been observed that the subunits of pollen exine in Cedrus arranged tightly to form short-rod-like or spheroidal pollen exine units, several or more than ten of which formed an island-like structure. There are various spaces among these island-like structures which are interconnected to occupy the entire pollen exine. In Metasequoia, the subunits of pollen exine also arranged tightly with a distribution tendency of cluster of 3-10, however, no obvious boundary exists among these clusters. From our results, it is concluded that there is no tendency of helical arrangement for the subunits of pollen exine in Cedrus and Metasequoia, and the results support Southworth' view that subunits of pollen exine are granular shape in lattice structure.

  12. Single-molecule force spectroscopy studies of fibrin 'A-a' polymerization interactions via the atomic force microscope

    Science.gov (United States)

    Averett, Laurel E.

    Fibrin, the polymerized form of the soluble plasma protein fibrinogen, plays a critical role in hemostasis as the structural scaffold of blood clots. The primary functions of fibrin are to withstand the shear forces of blood flow and provide mechanical stability to the clot, protecting the wound. While studies have investigated the mechanical properties of fibrin constructs, the response to force of critical polymerization interactions such as the 'A--a' knob--hole interaction remains unclear. Herein, the response of the 'A--a' bond to force was examined at the single-molecule level using the atomic force microscope. Force spectroscopy methodology was developed to examine the 'A--a' interaction while reducing the incidence of both nonspecific and multiple molecule interactions. The rupture of this interaction resulted in a previously unreported characteristic force profile comprised of up to four events. We hypothesized that the first event represented reorientation of the fibrinogen molecule, the second and third represented unfolding of structures in the D region of fibrinogen, and the last event was the rupture of the 'A--a' bond weakened by prior structural unfolding. The configuration, molecular extension, and kinetic parameters of each event in the characteristic pattern were examined to compare the unfolding of fibrin to other proteins unfolded by force. Fitting the pattern with polymer models showed that the D region of fibrinogen could lengthen by ˜50% of the length of a fibrin monomer before rupture of the 'A--a' bond. Analysis showed that the second and third events had kinetic parameters similar to other protein structures unfolded by force. Studies of the dependence of the characteristic pattern on calcium, concentration of sodium chloride, pH, and temperature demonstrated that the incidence of the last event was affected by solution conditions. However, only low pH and high temperatures reduced the probability that an interaction was characteristic

  13. 'Sub-atomic' resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study.

    Science.gov (United States)

    Campbellová, Anna; Ondráček, Martin; Pou, Pablo; Pérez, Rubén; Klapetek, Petr; Jelínek, Pavel

    2011-07-22

    A Si adatom on a Si(111)-(7 × 7) reconstructed surface is a typical atomic feature that can rather easily be imaged by a non-contact atomic force microscope (nc-AFM) and can be thus used to test the atomic resolution of the microscope. Based on our first principles density functional theory (DFT) calculations, we demonstrate that the structure of the termination of the AFM tip plays a decisive role in determining the appearance of the adatom image. We show how the AFM image changes depending on the tip-surface distance and the composition of the atomic apex at the end of the tip. We also demonstrate that contaminated tips may give rise to image patterns displaying so-called 'sub-atomic' features even in the attractive force regime.

  14. Fabrication of large scale nanostructures based on a modified atomic force microscope nanomechanical machining system.

    Science.gov (United States)

    Hu, Z J; Yan, Y D; Zhao, X S; Gao, D W; Wei, Y Y; Wang, J H

    2011-12-01

    The atomic force microscope (AFM) tip-based nanomechanical machining has been demonstrated to be a powerful tool for fabricating complex 2D∕3D nanostructures. But the machining scale is very small, which holds back this technique severely. How to enlarge the machining scale is always a major concern for the researches. In the present study, a modified AFM tip-based nanomechanical machining system is established through combination of a high precision X-Y stage with the moving range of 100 mm × 100 mm and a commercial AFM in order to enlarge the machining scale. It is found that the tracing property of the AFM system is feasible for large scale machining by controlling the constant normal load. Effects of the machining parameters including the machining direction and the tip geometry on the uniform machined depth with a large scale are evaluated. Consequently, a new tip trace and an increasing load scheme are presented to achieve a uniform machined depth. Finally, a polymer nanoline array with the dimensions of 1 mm × 0.7 mm, the line density of 1000 lines/mm and the average machined depth of 150 nm, and a 20 × 20 polymer square holes array with the scale of 380 μm × 380 μm and the average machined depth of 250 nm are machined successfully. The uniform of the machined depths for all the nanostructures is acceptable. Therefore, it is verified that the AFM tip-based nanomechanical machining method can be used to machine millimeter scale nanostructures.

  15. Evaluation of carbon nanotube probes in critical dimension atomic force microscopes.

    Science.gov (United States)

    Choi, Jinho; Park, Byong Chon; Ahn, Sang Jung; Kim, Dal-Hyun; Lyou, Joon; Dixson, Ronald G; Orji, Ndubuisi G; Fu, Joseph; Vorburger, Theodore V

    2016-07-01

    The decreasing size of semiconductor features and the increasing structural complexity of advanced devices have placed continuously greater demands on manufacturing metrology, arising both from the measurement challenges of smaller feature sizes and the growing requirement to characterize structures in more than just a single critical dimension. For scanning electron microscopy, this has resulted in increasing sophistication of imaging models. For critical dimension atomic force microscopes (CD-AFMs), this has resulted in the need for smaller and more complex tips. Carbon nanotube (CNT) tips have thus been the focus of much interest and effort by a number of researchers. However, there have been significant issues surrounding both the manufacture and use of CNT tips. Specifically, the growth or attachment of CNTs to AFM cantilevers has been a challenge to the fabrication of CNT tips, and the flexibility and resultant bending artifacts have presented challenges to using CNT tips. The Korea Research Institute for Standards and Science (KRISS) has invested considerable effort in the controlled fabrication of CNT tips and is collaborating with the National Institute of Standards and Technology on the application of CNT tips for CD-AFM. Progress by KRISS on the precise control of CNT orientation, length, and end modification, using manipulation and focused ion beam processes, has allowed us to implement ball-capped CNT tips and bent CNT tips for CD-AFM. Using two different generations of CD-AFM instruments, we have evaluated these tip types by imaging a line/space grating and a programmed line edge roughness specimen. We concluded that these CNTs are capable of scanning the profiles of these structures, including re-entrant sidewalls, but there remain important challenges to address. These challenges include tighter control of tip geometry and careful optimization of scan parameters and algorithms for using CNT tips.

  16. Influence of measuring parameters on the accuracy of atomic force microscope in industrial applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Antico, Andrea; Hansen, Hans Nørgaard;

    2009-01-01

    Atomic Force Microscopy (AFM) is a powerful technique providing 3D surface topographies with very high resolution in both lateral and vertical direction. Thanks to its relatively easy use, AFM can be well introduced in process control, gaining great advantage in research as well as in the evaluat......Atomic Force Microscopy (AFM) is a powerful technique providing 3D surface topographies with very high resolution in both lateral and vertical direction. Thanks to its relatively easy use, AFM can be well introduced in process control, gaining great advantage in research as well...

  17. Influence of atomic force microscope tip-sample interaction on the study of scaling behavior

    NARCIS (Netherlands)

    Aue, J.; de Hosson, J.T.M.

    1997-01-01

    Images acquired with atomic force microscopy are based on tip-sample interaction. It is shown that using scanning probe techniques for determining scaling parameters of a surface leads to an underestimate of the actual scaling dimension, due to the dilation of tip and surface. How much we underestim

  18. Position-resolved Surface Characterization and Nanofabrication Using an Optical Microscop e Combined with a Nanopip ette/Quartz Tuning Fork Atomic Force Microscop e

    Institute of Scientific and Technical Information of China (English)

    Sangmin An; Baekman Sung; Haneol Noh; Corey Stambaugh; Soyoung Kwon; Kunyoung Lee; Bongsu Kim; Qhwan Kim; Wonho Jhe

    2014-01-01

    In this work, we introduce position-resolved surface characterization and nanofabrication us-ing an optical microscope (OM) combined with a nanopipette-based quartz tuning fork atomic force micro-scope (nanopipette/QTF-AFM) system. This system is used to accurately determine substrate position and nanoscale phenomena under ambient conditions. Solutions consisting of 5 nm Au nanoparticles, nanowires, and polydimethylsiloxane (PDMS) are deposited onto the substrate through the nano/microaperture of a pulled pipette. Nano/microscale patterning is performed using a nanopipette/QTF-AFM, while position is resolved by monitoring the substrate with a custom OM. With this tool, one can perform surface characterization (force spectroscopy/microscopy) using the quartz tuning fork (QTF) sensor. Nanofabrication is achieved by accu-rately positioning target materials on the surface, and on-demand delivery and patterning of various solutions for molecular architecture.

  19. Atomic force microscope controlled topographical imaging and proximal probe thermal desorption/ionization mass spectrometry imaging.

    Science.gov (United States)

    Ovchinnikova, Olga S; Kjoller, Kevin; Hurst, Gregory B; Pelletier, Dale A; Van Berkel, Gary J

    2014-01-21

    This paper reports on the development of a hybrid atmospheric pressure atomic force microscopy/mass spectrometry imaging system utilizing nanothermal analysis probes for thermal desorption surface sampling with subsequent atmospheric pressure chemical ionization and mass analysis. The basic instrumental setup and the general operation of the system were discussed, and optimized performance metrics were presented. The ability to correlate topographic images of a surface with atomic force microscopy and a mass spectral chemical image of the same surface, utilizing the same probe without moving the sample from the system, was demonstrated. Co-registered mass spectral chemical images and atomic force microscopy topographical images were obtained from inked patterns on paper as well as from a living bacterial colony on an agar gel. Spatial resolution of the topography images based on pixel size (0.2 μm × 0.8 μm) was better than the resolution of the mass spectral images (2.5 μm × 2.0 μm), which were limited by current mass spectral data acquisition rate and system detection levels.

  20. Determination of the elastic moduli of thin samples and adherent cells using conical atomic force microscope tips

    Science.gov (United States)

    Gavara, Núria; Chadwick, Richard S.

    2012-12-01

    The atomic force microscope can detect the mechanical fingerprints of normal and diseased cells at the single-cell level under physiological conditions. However, atomic force microscopy studies of cell mechanics are limited by the `bottom effect' artefact that arises from the stiff substrates used to culture cells. Because cells adhered to substrates are very thin, this artefact makes cells appear stiffer than they really are. Here, we show an analytical correction that accounts for this artefact when conical tips are used for atomic force microscope measurements of thin samples. Our bottom effect cone correction (BECC) corrects the Sneddon's model, which is widely used to measure Young's modulus, E. Comparing the performance of BECC and Sneddon's model on thin polyacrylamide gels, we find that although Sneddon's model overestimates E, BECC yields E values that are thickness-independent and similar to those obtained on thick regions of the gel. The application of BECC to measurements on live adherent fibroblasts demonstrates a significant improvement on the estimation of their local mechanical properties.

  1. Micropore Structure Representation of Sandstone in Petroleum Reservoirs Using an Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    BAI Yong-Qiang; ZHU Xing; WU Jun-Zheng; BAI Wen-Guang

    2011-01-01

    @@ The pore structure of sandstone in an oil reservoir is investigated using atomic force microscopy(AFM).At nanoscale resolution,AFM images of sandstone show us the fine structure.The real height data of images display the three-dimensional space structure of sandstone effectively.The three-dimensional analysis results show that the AFM images of sandstone have unique characteristics that,like fingerprints,can identify different structural properties of sandstones.The results demonstrate that AFM is an effective method used to represent original sandstone in petroleum reservoirs,and may help geologists to appreciate the sandstone in oil reservoirs fully.

  2. Dual-cut graphene transistors with constant-current regions fabricated by the atomic force microscope anode oxidation

    Science.gov (United States)

    Wu, Chong-Rong; Dou, Kun Peng; Wang, Cheng-Hung; Chang, Chung-En; Kaun, Chao-Cheng; Wu, Chao-Hsin; Lin, Shih-Yen

    2017-01-01

    Graphene bandgap opening is an important issue for the application of this material. We have demonstrated that by atomic force microscope (AFM) anode oxidation, long nonconductive oxidation lines can be fabricated on graphene surfaces. By using this fabrication technique with the dual-cut transistor architecture, the phenomenon of constant-current regions near the Dirac point can be observed in devices at room temperature when the cut separation is smaller than 100 nm. The results may provide evidence of the phenomenon of graphene bandgap opening at room temperature. The theoretical bandgap values are further estimated by density-function-derived tight-binding calculations.

  3. Preparation of La-Ti Composite Oxide Nanocrystal and Examination of Their Surface Topography with Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With sol-gel method, nanometer La-Ti composite oxide was successfully prepared at a low temperature (750~800℃) using polyethylene glycol as dispersant. By means of atomic force microscope, the surface pattern, particle size distribution, and specific surface area were studied. The compound particle surface appears as a smooth sheet, the mean size of the compound is 25.38 nm. On the specific surface, the particle erects at a height of 4.69 nm. The surface area is 58.90 nm2. The La-Ti composite oxide nanocrystal prefers to narrow and even particle size distribution and the homogeneity of surface topography.

  4. A study of the morphology of photochromic and thermochromic MoO 3 amorphous films using an atomic force microscope

    Science.gov (United States)

    Chudnovskii, F. A.; Schaefer, D. M.; Gavrilyuk, A. I.; Reifenberger, R.

    The surface morphology of amorphous MoO 3 films enhanced by a coating of N.N-dimethylformamide was studied with an atomic force microscope. Images of the as-grown films revealed a surface structure consisting of ˜25 nm diameter clusters which had coalesced to form irregular-shaped grains with dimensions ranging between 100 and 190 nm. Similar structure was found in the films after a photochromic or thermochromic transition had occured. The relative surface areas of the films have been calculated and little change is observed after the photochromic transition while a ˜29 increase in surface area is observed after the thermochromic transition has taken place.

  5. Modification of a YBa2Cu3O7-δ Thin Film Using an Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    尤立星; 尹晓波; 冯一军; 杨森祖; 康琳; 王牧; 吴培亨

    2002-01-01

    A YBa2Cu3O7-δ thin film is modified by a probe electric field of an atomic force microscope to form a ridge with the width of only a grain cell. The modification varies with the operation parameters of the bias voltage,the moving velocity of the probe and the ambient humidity. Energy dispersive spectroscopy analysis shows only oxygen deficiency in the modified YBCO thin film. As a result, the suppressed superconductivity was found in the junction crossing the ridge.

  6. Improving the electrical performance of a conductive atomic force microscope with a logarithmic current-to-voltage converter

    Science.gov (United States)

    Aguilera, L.; Lanza, M.; Porti, M.; Grifoll, J.; Nafría, M.; Aymerich, X.

    2008-07-01

    A new configuration of conductive atomic force microscope (CAFM) is presented, which is based in a standard CAFM where the typical I-V converter has been replaced by a logI-V amplifier. This substitution extends the current dynamic range from 1-100pAto1pA -1mA. With the broadening of the current dynamic range, the CAFM can access new applications, such as the reliability evaluation of metal-oxide-semiconductor gate dielectrics. As an example, the setup has been tested by analyzing breakdown spots induced in SiO2 layers.

  7. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  8. Modified atomic force microscope applied to the measurement of elastic modulus for a single peptide molecule

    Science.gov (United States)

    Ptak, Arkadiusz; Takeda, Seiji; Nakamura, Chikashi; Miyake, Jun; Kageshima, Masami; Jarvis, Suzanne P.; Tokumoto, Hiroshi

    2001-09-01

    A modified atomic force microscopy (AFM) system, based on a force modulation technique, has been used to find an approximate value for the elastic modulus of a single peptide molecule directly from a mechanical test. For this purpose a self-assembled monolayer built from two kinds of peptides, reactive (able to anchor to the AFM tip) and nonreactive, was synthesized. In a typical experiment a single C3K30C (C=cysteine, K=lysine) peptide molecule was stretched between a Au(111) substrate and the gold-coated tip of an AFM cantilever to which it was attached via gold-sulfur bonds. The amplitude of the cantilever oscillations, due to an external force applied via a magnetic particle to the cantilever, was recorded by a lock-in amplifier and recalculated into stiffness of the stretched molecule. A longitudinal Young's modulus for the α-helix of a single peptide molecule and for the elongated state of this molecule has been estimated. The obtained values; 1.2±0.3 and 50±15 GPa, for the peptide α-helix and elongated peptide backbone, respectively, seem to be reasonable comparing them to the Young's modulus of protein crystals and linear organic polymers. We believe this research opens up a means by which scientists can perform quantitative studies of the elastic properties of single molecule, especially of biologically important polymers like peptides or DNA.

  9. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning.

    Science.gov (United States)

    Kim, Uksu; Morita, Noboru; Lee, Deug; Jun, Martin; Park, Jeong Woo

    2017-03-27

    Pulse electrochemical nanopatterning (PECN), a non-contact scanning probe lithography (NC-SPL) process using ultrashort voltage pulses, is based primarily on an electrochemical machining (ECM) process using localized electrochemical oxidation between a sharp tool tip and the sample surface. In this study, nanoscale oxide patterns were formed on silicon Si (100) wafer surfaces via electrochemical surface nanopatterning, by supplying external pulsed currents through non-contact atomic force microscopy. Nanoscale oxide width and height were controlled by modulating the applied pulse duration. Additionally, protruding nanoscale oxides were removed completely by simple chemical etching, showing a depressed pattern on the sample substrate surface. Nanoscale two-dimensional oxides, prepared by a localized electrochemical reaction, can be defined easily by controlling physical and electrical variables, before proceeding further to a layer-by-layer nanofabrication process.

  10. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Hike Nikiyan

    2010-01-01

    Full Text Available The effect of a relative humidity (RH in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells.

  11. Femtosecond laser irradiation of indium phosphide in air: Raman spectroscopic and atomic force microscopic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Bonse, J.; Wrobel, J.M.; Brzezinka, K.-W.; Esser, N.; Kautek, W

    2002-12-30

    Surface modification and ablation of crystalline indium phosphide was performed with single and double 130 fs pulses from a Ti:sapphire laser. The morphological features resulting from laser processing, have been investigated by means of micro Raman spectroscopy as well as by optical, atomic force and scanning electron microscopy. The studies indicate amorphous, ablated and recrystallized zones on the processed surface. In the single-pulse irradiation experimentsveral different threshold fluences could be assigned to the processes of melting, ablation and polycrystalline resolidification. Residual stress has been detected within the irradiated areas. Double-pulse exposure experiments have been analyzed in order to clarify the effect of cumulative damage in the ablation process of indium phosphide.

  12. System design and new applications for atomic force microscope based on tunneling

    Science.gov (United States)

    Wang, X.; Liu, A. P.; Yang, X. H.

    2015-09-01

    The design of atomic force microscopy (AFM) with high resolution is introduced in this paper. Mainly, we have developed the system design of the apparatus based on tunneling. AFM.IPC-208B, this kind of apparatus combines scanning tunnel microscopy (STM) and AFM availability, and its lens body with original frame enhances the capability of the machine. In order to analyze the performance of AFM.IPC-208B, as a new tool in the field of Life Science, we make use of the system to study natural mica and molecular protein structures of Cattle-insulin and human antibody immunoglobulin G (IgG) coupled with staphylococcus protein A (SPA). As the results of new applications, the resolution of AFM.IPC-208B is proved to be 0.1 nm, and these nanometer measurement results provide much valuable information for the study of small molecular proteins and HIV experiments.

  13. Competitive Adsorption between Bovine Serum Albumin and Collagen Observed by Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    Yong YU; Pei Qing YING; Gang JIN

    2004-01-01

    Atomic force microscopy (AFM) was used to study the competitive adsorption between bovine serum albumin (BSA) and type Ⅰ collagen on hydrophilic and hydrophobic silicon wafers.BSA showed a grain shape and the type I collagen displayed fibril-like molecules with relatively homogeneous height and width, characterized with clear twisting (helical formation). These AFM images illustrated that quite a lot of type I collagen appeared in the adsorption layer on hydrophilic surface in a competitive adsorption state, but the adsorption of BSA was more preponderant than that of type I collagen on hydrophobic silicon wafer surface. The experiments showed that the influence of BSA on type I collagen adsorption on hydrophilic surface was less than that on hydrophobic surface.

  14. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    Directory of Open Access Journals (Sweden)

    Manfred Lange

    2012-03-01

    Full Text Available Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements. When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111 √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle.

  15. Bias-assisted atomic force microscope nanolithography on NbS2 thin films grown by chemical vapor deposition

    Science.gov (United States)

    Bark, Hunyoung; Kwon, Sanghyuk; Lee, Changgu

    2016-12-01

    Niobium disulfide, one of the metallic transition metal dichalcogenides, has a high potential as an electrode material for electronic devices made of 2D materials. Here, we investigated the bias-assisted atomic force microscope nanolithography of NbS2 thin films synthesized by chemical vapor deposition. We analyzed the lithographed pattern using Raman spectroscopy, transmission electron microscopy and friction force microscopy. These analyses showed that lines having various widths and thicknesses could be generated using the lithography technique by simply varying the scan speed and applied voltage. These analyses also revealed that the NbS2 film transformed from a layered crystalline structure into an amorphous structure upon being lithographed. By generating four line segments forming a square and measuring I/V curves inside and outside of the square, the electrical properties of the lithographed material were characterized. These analyses indicate that NbS2 became hydrogenated and an insulator upon being lithographed.

  16. Temperature and non-linear response of cantilever-type mechanical oscillators used in atomic force microscopes with interferometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Fläschner, G.; Ruschmeier, K.; Schwarz, A., E-mail: aschwarz@physnet.uni-hamburg.de; Wiesendanger, R. [Institut für Angewandte Physik, Universität Hamburg, Jungiusstrasse 11, 20355 Hamburg (Germany); Bakhtiari, M. R.; Thorwart, M. [I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrae 9, 20355 Hamburg (Germany)

    2015-03-23

    The sensitivity of atomic force microscopes is fundamentally limited by the cantilever temperature, which can be, in principle, determined by measuring its thermal spectrum and applying the equipartition theorem. However, the mechanical response can be affected by the light field inside the cavity of a Fabry-Perot interferometer due to light absorption, radiation pressure, photothermal forces, and laser noise. By evaluating the optomechanical Hamiltonian, we are able to explain the peculiar distance dependence of the mechanical quality factor as well as the appearance of thermal spectra with symmetrical Lorentzian as well as asymmetrical Fano line shapes. Our results can be applied to any type of mechanical oscillator in an interferometer-based detection system.

  17. Adsorption behavior of mercury on functionalized aspergillus versicolor mycelia: atomic force microscopic study.

    Science.gov (United States)

    Das, Sujoy K; Das, Akhil R; Guha, Arun K

    2009-01-06

    The adsorption characteristics of mercury on Aspergillus versicolor mycelia have been studied under varied environments. The mycelia are functionalized by carbon disulfide (CS(2)) treatment under alkaline conditions to examine the enhance uptake capacity and explore its potentiality in pollution control management. The functionalized A. versicolor mycelia have been characterized by scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDXA), attenuated total reflection infrared (ATR-IR), and atomic force microscopy (AFM) probing. SEM and AFM images exhibit the formation of nanoparticles on the mycelial surface. ATR-IR profile confirms the functionalization of the mycelia following chemical treatment. ATR-IR and EDXA results demonstrate the binding of the sulfur groups of the functionalized mycelia to the mercury and consequent formation metal sulfide. AFM study reveals that the mycelial surface is covered by a layer of densely packed domain like structures. Sectional analysis yields significant increase in average roughness (R(rms)) value (20.5 +/- 1.82 nm) compared to that of the pristine mycelia (4.56 +/- 0.82 nm). Surface rigidity (0.88 +/- 0.06 N/m) and elasticity (92.6 +/- 10.2 MPa) obtained from a force distance curve using finite element modeling are found to increase significantly with respect to the corresponding values of (0.65 +/- 0.05 N/m and 32.8 +/- 4.5 MPa) of the nonfunctionalized mycelia. The maximum mercury adsorption capacity of the functionalized mycelia is observed to be 256.5 mg/g in comparison to 80.71 mg/g for the pristine mycelia.

  18. Effects of a slow harmonic displacement on an Atomic Force Microscope system under Lennard-Jones forces

    Directory of Open Access Journals (Sweden)

    Khadraoui Morad

    2016-01-01

    Full Text Available We focus in this paper on the modeling and dynamical analysis of a tapping mode atomic force microscopy (AFM. The microbeam is subjected to a low frequency harmonic displacement of its base and to the Lennard-Jones (LJ forces at its free end. Static and modal analysis are performed for various gaps between the tip of the microbeam and a sample. The Galerkin method is employed to reduce the equations of motion to a fast-slow dynamical system. We show that the dynamics of the AFM system is governed by the contact and the noncontact invariant slow manifolds. The tapping mode is triggered via two saddle-node bifurcations of these manifolds. Moreover, the contact time is computed and the effects of the base motion amplitude and the initial gap are discussed.

  19. Atomic force microscope tracking observation of Chinese hamster ovary cell mitosis.

    Science.gov (United States)

    Wu, Yangzhe; Cai, Jiye; Cheng, Longqiu; Xu, Yanfang; Lin, Zhiyan; Wang, Chenxi; Chen, Yong

    2006-01-01

    CHO cells possess easily identifiable karyotypes, and CHO cell chromosomes are large and few in number, making these cells ideal for mutational and drug toxicity studies and suitable for investigations of animal chromosome structure. Here, we used atomic force microscopy (AFM) in the tapping mode for detailed visualizations of Chinese hamster ovary (CHO) cell chromosomes during various mitotic phases, including typical prophase, prometaphase, metaphase, anaphase and telophase. Based on our detailed observations, we were able to divide metaphase and anaphase into sub-phases: metaphase I, II and III, and anaphase I and II. Furthermore, we used the AFM error-signal mode to visualize chromosomal ultrastructures and cytokinesis. While these visualizations were all successful, we found that the image quality was affected by cellular debris, contamination. Collectively, our results show that the AFM technique has great potential for the detailed study of chromosomes and chromosomal ultrastructures during all phases of the cell cycle, but that careful standards of sample preparation must be maintained.

  20. Continuous electrospinning of polymer nanofibers of Nylon-6 using an atomic force microscope tip.

    Science.gov (United States)

    Gururajan, Giriprasath; Sullivan, S P; Beebe, T P; Chase, D B; Rabolt, J F

    2011-08-01

    An atomic force microscopy (AFM) probe is successfully utilized as an electrospinning tip for fabricating Nylon-6 nanofibers. The nanometre-size tip enabled controlled deposition of uniform polymeric nanofibers within a 1 cm diameter area. Nylon-6 nanofibers were continuously electrospun at a solution concentration as low as 1 wt% Nylon-6 in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). Wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC) results of the AFM electrospun fibers indicated that the nanofibers predominantly display the meta-stable γ crystalline form suggesting rapid crystallization rate during the process. In addition to precise control over fiber deposition and diameter, some of the drawbacks of conventional electrospinning such as large volume of solutions and clogging of needles can be overcome using this AFM based electrospinning technique. Lastly, a comparison of electrospun fibers from syringe-needle based electrospinning and AFM probe-tip based electrospinning indicated significant morphological and microstructural differences in the case of AFM based electrospinning.

  1. Atomic force microscopic examination of chromosomes treated with trypsin or ethidium bromide.

    Science.gov (United States)

    Wu, Yangzhe; Cai, Jiye; Cheng, Longqiu; Yun, Keyu; Wang, Chenxi; Chen, Yong

    2006-04-01

    Trypsin treatment is frequently used during chromosome preparation for removal of cellular contaminants, and ethidium bromide (EB) staining of bands is often used to facilitate high-resolution observations by optical microscopy. However, conventional optical microscopy is unable to visualize potential aberrations of chromosome structures caused by these physicochemical treatments. In this article, we use atomic force microscopy (AFM) in the tapping mode to obtain and analyze high-resolution images of chromosome surface structure damage associated with trypsinization and EB treatment. According to our results, the trypsin-based digestion effects became more severe as incubations increased across a range from 10 to 40 s; a digestion time of 10 to 20 s appeared to be most suitable for observation by AFM. In terms of chromosomal damage induced by EB treatment, addition of EB into the media of cultured human blood cells induced chromosomal breakage in a dose-dependent fashion, and the results indicate centromeric region damnifyed severer than arms. Together, these results indicate that EB staining and the standard chromosomal preparative techniques of trypsinization can induce chromosomal damage that may affect the observed results.

  2. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    Science.gov (United States)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  3. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    Science.gov (United States)

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  4. Set-up of a High-Resolution 300 mK Atomic Force Microscope in an Ultra-High Vacuum Compatible 3He/10T Cryostat

    CERN Document Server

    von Allwörden, Henning; Köhler, Arne; Eelbo, Thomas; Schwarz, Alexander; Wiesendanger, Roland

    2016-01-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where tip and sample can be exchanged in-situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  5. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible 3He/10 T cryostat

    Science.gov (United States)

    von Allwörden, H.; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A.; Wiesendanger, R.

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  6. Growth of InGaAs-capped InAs quantum dots characterized by Atomic Force Microscope and Scanning Electron Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shende; Tsai Chiouyun; Lee Sichen [National Taiwan University, Department of Electrical Engineering, Graduate Institute of Electronics Engineering (China)

    2004-08-15

    Atomic force microscopy (AFM) is typically used to measure the quantum dot shape and density formed by lattice mismatched epitaxial growth such as InAs on GaAs. However, AFM images are distorted when two dots are situated in juxtaposition with a distance less than the AFM tip width. Scanning electron Microscope (SEM) is much better in distinguishing the dot density but not the dot height. Through these measurements of the growth of In{sub x}Ga{sub 1-x}As cap layer on InAs quantum dots, it was observed that the InGaAs layer neither covered the InAs quantum dots and wetting layer uniformly nor 100% phase separates into InAs and GaAs grown on InAs quantum dots and wetting layer, respectively.

  7. Atomic force microscopic study of the structure of high-density polyethylene deformed in liquid medium by crazing mechanism.

    Science.gov (United States)

    Bagrov, D V; Yarysheva, A Y; Rukhlya, E G; Yarysheva, L M; Volynskii, A L; Bakeev, N F

    2014-02-01

    A procedure has been developed for the direct atomic force microscopic (AFM) examination of the native structure of high-density polyethylene (HDPE) deformed in an adsorption-active liquid medium (AALM) by the crazing mechanism. The AFM investigation has been carried out in the presence of a liquid medium under conditions preventing deformed films from shrinkage. Deformation of HDPE in AALM has been shown to proceed through the delocalized crazing mechanism and result in the development of a fibrillar-porous structure. The structural parameters of the crazed polymer have been determined. The obtained AFM images demonstrate a nanosized nonuniformity of the deformation and enable one to observe the structural rearrangements that take place in the deformed polymer after removal of the liquid medium and stress relaxation. A structural similarity has been revealed between HDPE deformed in the AALM and hard elastic polymers.

  8. Sensitivity analysis of rectangular atomic force microscope cantilevers immersed in liquids based on the modified couple stress theory.

    Science.gov (United States)

    Lee, Haw-Long; Chang, Win-Jin

    2016-01-01

    The modified couple stress theory is adopted to study the sensitivity of a rectangular atomic force microscope (AFM) cantilever immersed in acetone, water, carbon tetrachloride (CCl4), and 1-butanol. The theory contains a material length scale parameter and considers the size effect in the analysis. However, this parameter is difficult to obtain via experimental measurements. In this study, a conjugate gradient method for the parameter estimation of the frequency equation is presented. The optimal method provides a quantitative approach for estimating the material length scale parameter based on the modified couple stress theory. The results show that the material length scale parameter of the AFM cantilever immersed in acetone, CCl4, water, and 1-butanol is 0, 25, 116.3, and 471 nm, respectively. In addition, the vibration sensitivities of the AFM cantilever immersed in these liquids are investigated. The results are useful for the design of AFM cantilevers immersed in liquids.

  9. Temperature dependence of viscosity and density of viscous liquids determined from thermal noise spectra of uncalibrated atomic force microscope cantilevers.

    Science.gov (United States)

    McLoughlin, Neal; Lee, Stephen L; Hähner, Georg

    2007-08-01

    We demonstrate that the thermal response of uncalibrated atomic force microscope cantilevers can be used to extract the density and the viscosity of viscous liquids with good accuracy. Temperature dependent thermal noise spectra were measured in water/poly(ethylene glycol) mixtures. Empirical parameters characteristic of the resonance behavior of the system were extracted from data recorded for one of the solutions at room temperature. These parameters were then employed to determine both viscosity and density values of the solutions simultaneously at different temperatures. In addition, activation energies for viscous flow were determined from the viscosity values obtained. The method presented is both fast and reliable and has the potential to be applied in connection with microfluidic systems, making macroscopic amounts of liquid and separate measurements with a viscometer and a densimeter redundant.

  10. A new type of horizontal atomic force microscope%卧式原子力显微镜的研制

    Institute of Scientific and Technical Information of China (English)

    张冬仙; 黄峰

    2001-01-01

    提出原子力显微镜(AFM)的新设计,讨论卧式AFM的工作原理及其性能特点,简要介绍AFM的控制电路系统及其图像扫描和图像处理软件系统,给出AFM扫描获得的部分样品的图像结果。%A new design of horizontal atomic force microscope(AFM)was developed.The principle and characteristics of the new horizontal AFM were discussed.The control circuits and software systems for image scanning and processing were introduced.Some experimental results of image acquisition by using the horizontal AFM were also presented

  11. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....... values in the order of 1 nm. The positioning repeatability of the two horizontal axes of the CMM was determined to +/-1 mu m. Sets of four 20 mu m x 20 mu m areas were traced on fiat objects, combining the data into single 40 mu m x 40 mu m areas, and comparing the roughness values to those for the same...

  12. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    Science.gov (United States)

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  13. Analyzing the Effect of Capillary Force on Vibrational Performance of the Cantilever of an Atomic Force Microscope in Tapping Mode with Double Piezoelectric Layers in an Air Environment.

    Science.gov (United States)

    Nahavandi, Amir; Korayem, Moharam Habibnejad

    2015-10-01

    The aim of this paper is to determine the effects of forces exerted on the cantilever probe tip of an atomic force microscope (AFM). These forces vary according to the separation distance between the probe tip and the surface of the sample being examined. Hence, at a distance away from the surface (farther than d(on)), these forces have an attractive nature and are of Van der Waals type, and when the probe tip is situated in the range of a₀≤ d(ts) ≤ d(on), the capillary force is added to the Van der Waals force. At a distance of d(ts) ≤ a₀, the Van der Waals and capillary forces remain constant at intermolecular distances, and the contact repulsive force repels the probe tip from the surface of sample. The capillary force emerges due to the contact of thin water films with a thickness of h(c) which have accumulated on the sample and probe. Under environmental conditions a layer of water or hydrocarbon often forms between the probe tip and sample. The capillary meniscus can grow until the rate of evaporation equals the rate of condensation. For each of the above forces, different models are presented. The smoothness or roughness of the surfaces and the geometry of the cantilever tip have a significant effect on the modeling of forces applied on the probe tip. Van der Waals and the repulsive forces are considered to be the same in all the simulations, and only the capillary force is altered in order to evaluate the role of this force in the AFM-based modeling. Therefore, in view of the remarkable advantages of the piezoelectric microcantilever and also the extensive applications of the tapping mode, we investigate vibrational motion of the piezoelectric microcantilever in the tapping mode. The cantilever mentioned is entirely covered by two piezoelectric layers that carry out both the actuation of the probe tip and the measuringof its position.

  14. In situ studies of the atomic layer deposition of thin HfO{sub 2} dielectrics by ultra high vacuum atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kolanek, Krzysztof, E-mail: kolanek@tu-cottbus.d [Brandenburg University of Technology, Department of Applied Physics and Sensors, Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany); Tallarida, Massimo; Karavaev, Konstantin; Schmeisser, Dieter [Brandenburg University of Technology, Department of Applied Physics and Sensors, Konrad-Wachsmann-Allee 17, 03046 Cottbus (Germany)

    2010-06-01

    We studied in situ the initial stages of atomic layer deposition (ALD) of HfO{sub 2} by an ultra high vacuum atomic force microscope working in frequency-modulation mode. The ALD cycles, made by using tetrakis-di-methyl-amido-Hf and water as precursors, were performed on the Si(001)/SiO{sub 2} substrate maintained at 230 {sup o}C. After each ALD cycle we studied the influence of the HfO{sub 2} growth on the surface height histogram, the root mean square roughness, the surface fractal dimension and the autocorrelation function. This detailed analysis of the surface topography allowed us to confirm the completion of the first HfO{sub 2} layer after four ALD cycles.

  15. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Futoshi, E-mail: iwata.futoshi@shizuoka.ac.jp [Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Adachi, Makoto; Hashimoto, Shigetaka [Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan)

    2015-10-07

    We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells was evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.

  16. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate

    Science.gov (United States)

    Iwata, Futoshi; Adachi, Makoto; Hashimoto, Shigetaka

    2015-10-01

    We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells was evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.

  17. Atomic force and optical near-field microscopic investigations of polarization holographic gratings in a liquid crystalline azobenzene side-chain polyester

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Holme, N.C.R.; Hvilsted, S.

    1996-01-01

    Atomic force and scanning near-field optical microscopic investigations have been carried out on a polarization holographic grating recorded in an azobenzene side-chain Liquid crystalline polyester. It has been found that immediately following laser irradiation, a topographic surface grating...

  18. Piezoelectric bimorph-based scanner in the tip-scan mode for high speed atomic force microscope.

    Science.gov (United States)

    Zhao, Jianyong; Gong, Weitao; Cai, Wei; Shang, Guangyi

    2013-08-01

    A piezoelectric bimorph-based scanner operating in tip-scan mode for high speed atomic force microscope (AFM) is first presented. The free end of the bimorph is used for fixing an AFM cantilever probe and the other one is mounted on the AFM head. The sample is placed on the top of a piezoelectric tube scanner. High speed scan is performed with the bimorph that vibrates at the resonant frequency, while slow scanning is carried out by the tube scanner. The design and performance of the scanner is discussed and given in detailed. Combined with a commercially available data acquisition system, a high speed AFM has been built successfully. By real-time observing the deformation of the pores on the surface of a commercial piezoelectric lead zirconate titanate (PZT-5) ceramics under electric field, the dynamic imaging capability of the AFM is demonstrated. The results show that the notable advantage of the AFM is that dynamic process of the sample with large dimensions can be easily investigated. In addition, this design could provide a way to study a sample in real time under the given experimental condition, such as under an external electric field, on a heating stage, or in a liquid cell.

  19. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

    Energy Technology Data Exchange (ETDEWEB)

    Herfst, Rodolf; Dekker, Bert; Witvoet, Gert; Crowcombe, Will; Lange, Dorus de [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Delft (Netherlands)

    2015-11-15

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.

  20. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points.

    Science.gov (United States)

    Herfst, Rodolf; Dekker, Bert; Witvoet, Gert; Crowcombe, Will; de Lange, Dorus; Sadeghian, Hamed

    2015-11-01

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of "light and stiff" and "static determinacy," the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.

  1. Optical and atomic force microscopic study on step bunching in BaB2O4 crystal growth

    Institute of Scientific and Technical Information of China (English)

    Pan Xiu-Hong; Jin Wei-Qing; Liu Yan; Ai Fei; Jin Fei; Xie Jun-Jie

    2011-01-01

    The formation of macrostep during high-temperature phase of barium meta-borate (α-BaB2O4) single crystal growth has been investigated by both optical in-situ observation system and atomic force microscopy (AFM). The in-situ observation results demonstrate that the critical linear size of growing facet exceeding the size that the macrostep generates is significantly anisotropic. The critical linear sizes are around 280 μm and 620 μm for {10(1)0} and {(1)010} planes, respectively. AFM study illustrates that macrostep train with a height of 150 nm~200 nm is one typical morphological feature of the as-grown crystal surface. The riser of each macrostep consists of several straight and parallel sub-steps, indicating the occurrence of step bunching. Additionally, triangular sub-steps with heights of several nanometers on the treads of the macrosteps are found to be another typical feature of surface morphology, which implies a microscopically competitive bunching of sub-steps between various crystallographic orientations.

  2. Variable - temperature scanning optical and force microscope

    OpenAIRE

    2004-01-01

    The implementation of a scanning microscope capable of working in confocal, atomic force and apertureless near field configurations is presented. The microscope is designed to operate in the temperature range 4 - 300 K, using conventional helium flow cryostats. In AFM mode, the distance between the sample and an etched tungsten tip is controlled by a self - sensing piezoelectric tuning fork. The vertical position of both the AFM head and microscope objective can be accurately controlled using...

  3. Electrical conductivity in Langmuir-Blodgett films of n-alkyl cyanobiphenyls using current sensing atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, H. N.; Suresh, K. A., E-mail: suresh@cnsms.res.in [Centre for Nano and Soft Matter Sciences, P. B. No. 1329, Jalahalli, Bangalore 560013 (India)

    2015-06-28

    We report our studies on the nanoscale electrical conductivity in monolayers of n-alkyl cyanobiphenyl materials deposited on solid surface. Initially, the 8CB, 9CB, and 10CB monolayer films were prepared by the Langmuir technique at air-water interface and characterized by surface manometry and Brewster angle microscopy. The monolayer films were transferred on to solid substrates by the Langmuir-Blodgett (L-B) technique. The 8CB, 9CB, and 10CB monolayer L-B films were deposited on freshly cleaved mica and studied by atomic force microscope (AFM), thereby measuring the film thickness as ∼1.5 nm. The electrical conductivity measurements were carried out on 9CB and 10CB monolayer L-B films deposited onto highly ordered pyrolytic graphite using current sensing AFM. The nanoscale current-voltage (I-V) measurements show a non-linear variation. The nature of the curve indicates electron tunneling to be the mechanism for electrical conduction. Furthermore, analysis of the I-V curve reveals a transition in the electron conduction mechanism from direct tunneling to injection tunneling. From the transition voltage, we have estimated the values of barrier height for 9CB and 10CB to be 0.71 eV and 0.37 eV, respectively. For both 9CB and 10CB, the effective mass of electron was calculated to be 0.021 m{sub e} and 0.065 m{sub e}, respectively. These parameters are important in the design of molecular electronic devices.

  4. High-speed spiral imaging technique for an atomic force microscope using a linear quadratic Gaussian controller

    Science.gov (United States)

    Habibullah, H.; Pota, H. R.; Petersen, I. R.

    2014-03-01

    This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFM's piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method.

  5. High-speed spiral imaging technique for an atomic force microscope using a linear quadratic Gaussian controller

    Energy Technology Data Exchange (ETDEWEB)

    Habibullah, H., E-mail: h.habib@student.adfa.edu.au; Pota, H. R., E-mail: h.pota@adfa.edu.au; Petersen, I. R., E-mail: i.petersen@adfa.edu.au [School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2612 (Australia)

    2014-03-15

    This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFM’s piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method.

  6. High-speed spiral imaging technique for an atomic force microscope using a linear quadratic Gaussian controller.

    Science.gov (United States)

    Habibullah, H; Pota, H R; Petersen, I R

    2014-03-01

    This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFM's piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method.

  7. High-speed broadband nanomechanical property quantification and imaging of life science materials using atomic force microscope

    Science.gov (United States)

    Ren, Juan

    Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next

  8. Parameters affecting the adhesion strength between a living cell and a colloid probe when measured by the atomic force microscope.

    Science.gov (United States)

    McNamee, Cathy E; Pyo, Nayoung; Tanaka, Saaya; Vakarelski, Ivan U; Kanda, Yoichi; Higashitani, Ko

    2006-03-15

    In this study, we used the colloid probe atomic force microscopy (AFM) technique to investigate the adhesion force between a living cell and a silica colloid particle in a Leibovitz's L-15 medium (L-15). The L-15 liquid maintained the pharmaceutical conditions necessary to keep the cells alive in the outside environment during the AFM experiment. The force curves in such a system showed a steric repulsion in the compression force curve, due to the compression of the cells by the colloid probe, and an adhesion force in the decompression force curve, due to binding events between the cell and the probe. We also investigated for the first time how the position on the cell surface, the strength of the pushing force, and the residence time of the probe at the cell surface individually affected the adhesion force between a living cell and a 6.84 microm diameter silica colloid particle in L-15. The position of measuring the force on the cell surface was seen not to affect the value of the maximum adhesion force. The loading force was also seen not to notably affect the value of the maximum adhesion force, if it was small enough not to pierce and damage the cell. The residence time of the probe at the cell surface, however, clearly affected the adhesion force, where a longer residence time gave a larger maximum force. From these results, we could conclude that the AFM force measurements should be made using a loading force small enough not to damage the cell and a fixed residence time, when comparing results of different systems.

  9. Electron transport in dodecylamine capped gold nanocluster films using current sensing atomic force microscope (C-AFM).

    Science.gov (United States)

    Chaudhary, Minakshi; Dey, Shirshendu; Date, Kalyani; Iyyer, S B; Dharmadhikaril, C V

    2009-09-01

    Electron transport across cataphoretically deposited dodecylamine capped gold nanocluster rough films on Si(111) substrate is investigated using current sensing atomic force microscopy. Contact mode images depict uniform deposition of agglomerates of gold nanoparticles. The current images display strong correlation with topographic images. The I-V measurement on a single agglomerate of approximately = 250 nm size at different forces exhibits force dependent threshold voltage. The electron transport from tip to sample is found to be ohmic in contrast to that from sample to tip which, exhibits Fowler-Nordheim behavior up to 35 nN force. At higher forces, the I-V behavior could be attributed to other electron transfer processes such as Schottky/Poole-Frenkel or trapping/detrapping, although no exact mechanism could be identified. The results are discussed in the light of models based on Coulomb blockaded collective charge transport in nanoparticle arrays duly accounting for the potential role of the capping layer.

  10. Wide-range length metrology by dual-imaging-unit atomic force microscope based on porous alumina.

    Science.gov (United States)

    Zhang, Dongxian; Zhang, Haijun; Lin, Xiaofeng

    2004-06-15

    A new dual-imaging-unit atomic force microscope (DIU-AFM) was developed for wide-range length metrology. In the DIU-AFM, two AFM units were combined, one as a reference unit, and the other a test one. Their probes with Z piezo elements and tips were horizontally set in parallel at the same height to reduce errors due to geometric asymmetry. An XY scanner was attached to an XY block that was able to move in the X direction with a step of about 500 nm. A standard porous alumina film was employed as the reference sample. Both reference sample and test sample were installed at the center of the XY scanner on the same surface and were simultaneously imaged. The two images had the same lateral size, and thus the length of the test sample image could be accurately measured by counting the number of periodic features of the reference one. The XY block together with the XY scanner were next moved in the X direction for about 1.5 microm and a second pair of reference and test images were obtained by activating the scanner. In this way, a series of pairs of images were acquired and could be spliced into two wide-range reference and test images, respectively. Again, the two spliced images were of the same size and the length of test image was measured based on the reference one. This article presents a discussion about the structure and control of the DIU-AFM system. Some experiments were carried out on the system to demonstrate the method of length calculation and measurement. Experiments show a satisfactory result of wide-range length metrology based on the hexagonal features of the porous alumina with a periodic length of several tens of nanometers. Using this method the DIU-AFM is capable of realizing nanometer-order accuracy length metrology when covering a wide range from micron to several hundreds of microns, or even up to millimeter order.

  11. Spatial dependence of polycrystalline FTO’s conductance analyzed by conductive atomic force microscope (C-AFM)

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Alexandre Pessoa; Costa, J. C. da [Department of Electrical Engineering, University of Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, PO Box 4386, Brasília - DF, 70919-970 (Brazil)

    2014-05-15

    Fluorine-doped Tin oxide (FTO) is a highly transparent, electrically conductive polycrystalline material frequently used as an electrode in organic solar cells and optical-electronic devices [1–2]. In this work a spatial analysis of the conductive behavior of FTO was carried out by Conductive-mode Atomic Force Microscopy (C-AFM). Rare highly oriented grains sample give us an opportunity to analyze the top portion of polycrystalline FTO and compare with the border one. It is shown that the current flow essentially takes place through the polycrystalline edge at grain boundaries.

  12. 原子力显微镜在生命科学中的应用%The application of atomic force microscope in life science

    Institute of Scientific and Technical Information of China (English)

    曾洁铭; 曾耀英; 蔡继业; 肇静娴

    2001-01-01

    During the past few years, atomic force microscope (AFM) isbecoming a powerful tool in life science research. With their high-resolution and capability to image under aqueous solution, AFM is applied to investigate the structure of biomolecules and biological process in real time. From visualization of DNA and IgG to DNA transcription, the advances in sample preparation methods have made these events come true. In addition, AFM can be used in molecular recognition. This article illustrates these major achievements of AFM in biological studies.

  13. Direct method for magnetostriction coefficient measurement based on atomic force microscope, illustrated by the example of Tb–Co film

    Energy Technology Data Exchange (ETDEWEB)

    Lima, B.L.S. [Laboratório de Sensores Óticos, Escola Politécnica, Universidade de São Paulo, SP (Brazil); Maximino, F.L. [Laboratório de Materiais Magnéticos, Instituto de Física, Universidade de São Paulo, CEP:05314-970 São Paulo, SP (Brazil); Santos, J.C. [Laboratório de Sensores Óticos, Escola Politécnica, Universidade de São Paulo, SP (Brazil); Santos, A.D., E-mail: adsantos@if.usp.br [Laboratório de Materiais Magnéticos, Instituto de Física, Universidade de São Paulo, CEP:05314-970 São Paulo, SP (Brazil)

    2015-12-01

    This paper presents a method based on the Atomic Force Microscopy technique for direct measurement of magnetostriction coefficient of amorphous Tb–Co films deposited on Si(100) substrate. The magnetostriction coefficient of the film is determined by AFM measuring the deflection of the sample when applying a magnetic field. In order to maximize the deflection of the sample, in-plane magnetic anisotropy was induced by heat treatment under a magnetic field of 5 kOe. The value obtained for the saturation magnetostriction is 204×10{sup −6} for the Tb{sub 23}Co{sub 77} film. - Highlights: • Measurement of magnetostriction coefficient using AFM. • Tb–Co thin films produced by magnetron sputtering. • Magnetostriction characterization of magnetic thin films on nonmagnetic substrates.

  14. Si2Sb2Te5 phase change material studied by an atomic force microscope nano-tip

    Institute of Scientific and Technical Information of China (English)

    Liu Yanbo; Zhang Ting; Niu Xiaoming; Song Zhitang; Min Guoquan; Zhang Jing; Zhou Weimin; Wan Yongzhong; Zhang Jianping; Li Xiaoli; Feng Songlin

    2009-01-01

    The Si2Sb2Te5 phase change material has been studied by applying a nano-tip (30 nm in diameter) on an atomic force microscopy system. Memory switching from a high resistance state to a low resistance state has been achieved, with a resistance change of about 1000 times. In a typical Ⅰ-Ⅴ curve, the current increases significantly after the voltage exceeds~4.3 V. The phase transformation of a Si2Sb2Te5 film was studied in situ by means of in situ X-ray diffraction and temperature dependent resistance measurements. The thermal stability of Si2Sb2Te5 and Ge2Sb2Te5 was characterized and compared as well.

  15. Research on a Diamond Tip Wear Mechanism in Atomic Force Microscope-based Micro/nano-machining

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The object is to investigate the wear of an atomic forcemicroscope (AFM) diamond tip when conducting micro/nano-machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro-machining process. The wear rate was calculated as 1.7(10~10mm3/(N*m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.

  16. Formation and characterization of thin films from phthalocyanine complexes: An electrosynthesis study using the atomic-force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, M.E. [Departamento de Ingenieria Mecatronica, Escuela de Ingenieria, Universidad Anahuac del Norte, Avenida Lomas de la Anahuac s/n, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)]. E-mail: elena.sanchez@anahuac.mx; Islas Bernal, I.F. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510, Mexico D.F. (Mexico); Rivera, M. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510, Mexico D.F. (Mexico); Ortiz Rebollo, A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, Coyoacan, 04510, Mexico, D.F. (Mexico); Alvarez Bada, J.R. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Ciudad de Mexico, Calle del Puente 222, Col. Ejidos de Huipulco, 14380, Mexico D.F. (Mexico)

    2007-05-07

    ({mu}-Cyano)(phthalocyaninato)metal(III) [PcMCN]{sub n} species with a central transition metal ion, such as Fe(III) and Co(III), were used to prepare molecular films on a highly oriented pyrolytic graphite electrode substrate by using the cyclic voltammetry technique. In order to investigate the influence of the ligand on the film properties, 1,8-dihydroxyanthraquinone and 2,6-dihydroxyanthraquinone as bivalent ligands were employed. The structure of the molecular materials was analyzed by infrared spectroscopy. The in situ film formation, texture, composition and conductivity of each film were further investigated using atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and the four-probe technique, respectively. The [PcMCN]{sub n} complexes provided conductive films with an electrical conductivity of 1 x 10{sup -6} {omega}{sup -1} cm{sup -1} at 298 K.

  17. Evaluation of the interactions between polymeric chains and surfaces with different structures performed by an atomic force microscope

    Directory of Open Access Journals (Sweden)

    Oréfice Rodrigo Lambert

    1998-01-01

    Full Text Available Interactions between polymers and inorganic surfaces are present in a series of phenomena involving processes such as coagulation and deffloculation of ceramic powder and adsorption of organic macromolecules on the surface of implants, among others. In this work, Atomic Force Microscopy (AFM was modified to allow the evaluation of interactions between polymeric chains and inorganic surfaces (silica with different structures. Polymers (sulfonated polysulfone were grafted onto AFM cantilevers. AFM force-distance curves were obtained for this modified tip against a series of substrates produced by depositing silica films on silicon wafers. The structure of the silica layer was modified by employing heat treatments at different temperatures. The results showed that the interactions between polymer and surfaces are dependent on the structure of the surfaces. Penetration of the polymeric chains can occur through a soft gel layer (substrates treated at low temperature, 110 °C. For surfaces with dense silica layers, the results showed that not only the concentration of hydroxy groups but also their spatial distribution along the surfaces are important in defining the magnitude of interactions between polymers and surfaces. A model involving a molecular recognition process, in which interactions are maximized for inorganic surfaces with structures that can match the chemical architecture of the polymer, was then used to explain the obtained results.

  18. Coffee Cup Atomic Force Microscopy

    Science.gov (United States)

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  19. Effect of the interaction conditions of the probe of an atomic-force microscope with the n-GaAs surface on the triboelectrization phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Baklanov, A. V., E-mail: baklanov@mail.ioffe.ru [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation); Gutkin, A. A.; Kalyuzhnyy, N. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Brunkov, P. N. [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation)

    2015-08-15

    Triboelectrization as a result of the scanning of an atomic-force-microscope probe over an n-GaAs surface in the contact mode is investigated. The dependences of the local potential variation on the scanning rate and the pressing force of the probe are obtained. The results are explained by point-defect formation in the surface layers of samples under the effect of deformation of these layers during probe scanning. The charge localized at these defects in the case of equilibrium changes the potential of surface, which is subject to triboelectrization. It is shown that, for qualitative explanation of the observed dependences, it is necessary to take into account both the generation and annihilation of defects in the region experiencing deformation.

  20. Power spectrum analysis with least-squares fitting: Amplitude bias and its elimination, with application to optical tweezers and atomic force microscope cantilevers

    DEFF Research Database (Denmark)

    Nørlykke, Simon F.; Flyvbjerg, Henrik

    2010-01-01

    Optical tweezers and atomic force microscope (AFM) cantilevers are often calibrated by fitting their experimental power spectra of Brownian motion. We demonstrate here that if this is done with typical weighted least-squares methods, the result is a bias of relative size between -2/n and + 1/n...... on the value of the fitted diffusion coefficient. Here, n is the number of power spectra averaged over, so typical calibrations contain 10%-20% bias. Both the sign and the size of the bias depend on the weighting scheme applied. Hence, so do length-scale calibrations based on the diffusion coefficient....... The fitted value for the characteristic frequency is not affected by this bias. For the AFM then, force measurements are not affected provided an independent length-scale calibration is available. For optical tweezers there is no such luck, since the spring constant is found as the ratio...

  1. The relationship between local liquid density and force applied on a tip of atomic force microscope: A theoretical analysis for simple liquids

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Ken-ichi, E-mail: aman@tohoku-pharm.ac.jp; Takahashi, Ohgi [Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558 (Japan); Suzuki, Kazuhiro [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510 (Japan); Fukuma, Takeshi [Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Onishi, Hiroshi [Department of Chemistry, Faculty of Science, Kobe University, Nada-ku, Kobe 657-8501 (Japan)

    2013-12-14

    The density of a liquid is not uniform when placed on a solid. The structured liquid pushes or pulls a probe employed in atomic force microscopy, as demonstrated in a number of experimental studies. In the present study, the relation between the force on a probe and the local density of a liquid is derived based on the statistical mechanics of simple liquids. When the probe is identical to a solvent molecule, the strength of the force is shown to be proportional to the vertical gradient of ln(ρ{sub DS}) with the local liquid's density on a solid surface being ρ{sub DS}. The intrinsic liquid's density on a solid is numerically calculated and compared with the density reconstructed from the force on a probe that is identical or not identical to the solvent molecule.

  2. Atomic force microscopic study of aggregation of RecA-DNA nucleoprotein filaments into left-handed supercoiled bundles.

    Science.gov (United States)

    Shi, Wei-Xian; Larson, Ronald G

    2005-12-01

    RecA and its complexes with double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) are responsible for homologous recombination and DNA repair. In this study, we have observed, by atomic force microscopy (AFM), two-filament left-handed superhelices of RecA-dsDNA filaments that further interwind into four- or six-filament bundles, in addition to previously reported left-handed bundles of three or six filaments. Also revealed are four-filament bundles formed by further interwinding of two intrafilament superhelices of individual filaments. Pitches of superhelices of RecA-DNA filaments are similar to each other regardless the number of component filaments, and those formed on Phix174 RFII dsDNA and pNEB206A dsDNA are measured as 339.3 +/- 6.2 nm (690 counts of pitch/2) and 321.6 +/- 11.7 nm (101 counts of pitch/2), respectively, consistent with earlier measurements made by electron microscopy with a much smaller sample size. The study of these structures provides insight into the self-interactions of RecA and RecA-like proteins, which are present in all living cells, and into the general phenomenon of bundling, which is relevant to both biological and nonbiological filaments.

  3. Atomic force microscopic view of the fine topography on the tobacco stigma surface during its response to pollination

    Institute of Scientific and Technical Information of China (English)

    WU Hui; LI Meng; SUN MengXiang

    2008-01-01

    During compatible pollination in tobacco, an extracellular matrix (ECM) is secreted from the stigma surface; however, it is unknown whether the pattern of secretion across the stigma depends on the pollen source. In fact, technical limitations have prevented clear observation of ECM secretion. Here, we report the detailed topographic changes on the stigma surface that accompanies intraspecies and interspecies pollination in tobacco using contact mode atomic force microscopy (AFM). Our results, which show the dynamics and time course of ECM secretion after pollination, indicate that a certain pattern of secretion already exists on the stigma prior to pollination. Intraspecies induced a two-step response, characterized by topograPhical changes on the stigma surface several hours after pollina-tion, which was distinct from the pattern of ECM secretion induced by interspecies pollination. This difference was confirmed by root-mean-square analysis, which assessed the roughness of the stigma surface. Our findings indicate that compatible pollination not only induces ECM secretion from the stigma, but also results in a specific distribution of the ECM. Thus, this study demonstrates the pow-erful potential of AFM in studying the pollen-stigma interaction.

  4. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Shingo [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Uchihashi, Takayuki; Ando, Toshio [Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Core Research for Evolutional Science and Technology of the Japan Science and Technology Agency, 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076 (Japan)

    2015-06-15

    In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner’s fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α{sub 3}β{sub 3} subcomplex of F{sub 1}-ATPase in dynamic action at ∼7 frames/s.

  5. [Connection of magnetic antisense probe with SK-Br-3 oncocyte mRNA nucleotide detected by high resolution atomic force microscope].

    Science.gov (United States)

    Tan, Shude; Ouyang, Yu; Li, Xinyou; Wen, Ming; Li, Shaolin

    2011-06-01

    The present paper is aimed to detect superparamagnetic iron oxide labeled c-erbB2 oncogene antisense oligonucleotide probe (magnetic antisense probe) connected with SK-Br-3 oncocyte mRNA nucleotide by high resolution atomic force microscope (AFM). We transfected SK-Br-3 oncocyte with magnetic antisense probe, then observed the cells by AFM with high resolution and detected protein expression and magnetic resonance imagine (MRI). The high resolution AFM clearly showed the connection of the oligonucleotide remote end of magnetic antisense probe with the mRNA nucleotide of oncocyte. The expression of e-erbB2 protein in SK-Br3 cells were highly inhibited by using magnetic antisense probe. We then obtained the lowest signal to noise ratio (SNR) of SK-Br-3 oncocyte transfected with magnetic antisense probe by MRI (PSK-Br-3 mRNA of tumor cell nuclear.

  6. Analyzing the effect of the forces exerted on cantilever probe tip of atomic force microscope with tapering-shaped geometry and double piezoelectric extended layers in the air and liquid environments

    Science.gov (United States)

    Korayem, Moharam Habibnejad; Nahavandi, Amir

    2017-01-01

    The aim of the present study is to assess the force vibrational performance of tapering-shaped cantilevers, using Euler-Bernoulli theory. Tapering-shaped cantilevers have plan-view geometry consisting of a rectangular section at the clamped end and a triangular section at the tip. Hamilton's principle is utilized to obtain the partial differential equations governing the nonlinear vibration of the system as well as the corresponding boundary conditions. In this model, a micro cantilever, which is covered by two piezoelectric layers at the top and the bottom, is modeled at angle α. Both of these layers are subjected to similar AC and DC voltages. This paper attempts to determine the effect of the capillary force exerted on the cantilever probe tip of an atomic force microscope. The capillary force emerges due to the contact between thin water films with a thickness of hc which have accumulated on the sample and the probe. In addition, an attempt is made to develop the capillary force between the tip and the sample surface with respect to the geometry obtained. The smoothness or the roughness of the surfaces as well as the geometry of the cantilever tip have significant effects on the modeling of forces applied to the probe tip. In this article, the Van der Waals and the repulsive forces are considered to be the same in all of the simulations, and only is the capillary force altered in order to evaluate the role of this force in the atomic force microscope based modeling. We also indicate that the tip shape and the radial distance of the meniscus greatly influence the capillary force. The other objective of our study is to draw a comparison between tapering-and rectangular-shaped cantilevers. Furthermore, the equation for converting the tip of a tapering-shaped cantilever into a rectangular cantilever is provided. Moreover, the modal analysis method is employed to solve the motion equation. The mode shape function for the two tapering-shaped sections of the first

  7. Oligo(ethylene glycol)-terminated monolayers on silicon surfaces and their nanopatterning with a conductive atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Functionalization of silicon substrate surfaces with a stable monolayer for resisting non-specific adsorption of proteins has attracted great interest,since it is directly relevant to the development of miniature,silicon-based biosensors and implantable microdevices,such as silicon-neuron interfaces.This brief review summarizes our contribution to the development of robust monolayers grown by surface hydrosilylation on atomically flat,hydrogen-terminated silicon surfaces.The review also outlines our strategy and progress on the fabrication of single molecule patterns on such monolayer platforms.

  8. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Nikiforov, Maxim [ORNL; Bradshaw, James A [ORNL; Jesse, Stephen [ORNL; Van Berkel, Gary J [ORNL

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.

  9. Correlation of embryonic skeletal muscle myotube physical characteristics with contractile force generation on an atomic force microscope-based bio-microelectromechanical systems device

    Science.gov (United States)

    Pirozzi, K. L.; Long, C. J.; McAleer, C. W.; Smith, A. S. T.; Hickman, J. J.

    2013-08-01

    Rigorous analysis of muscle function in in vitro systems is needed for both acute and chronic biomedical applications. Forces generated by skeletal myotubes on bio-microelectromechanical cantilevers were calculated using a modified version of Stoney's thin-film equation and finite element analysis (FEA), then analyzed for regression to physical parameters. The Stoney's equation results closely matched the more intensive FEA and the force correlated to cross-sectional area (CSA). Normalizing force to measured CSA significantly improved the statistical sensitivity and now allows for close comparison of in vitro data to in vivo measurements for applications in exercise physiology, robotics, and modeling neuromuscular diseases.

  10. A Scanning Quantum Cryogenic Atom Microscope

    CERN Document Server

    Yang, Fan; Taylor, Stephen F; Turner, Richard W; Lev, Benjamin L

    2016-01-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a noise floor of 300 pT and provides a 100x improvement in magnetic flux sensitivity over previous atomic scanning probe magnetometers. These capabilities are carefully benchmarked by imaging magnet...

  11. Effect of 16% Carbamide Peroxide Bleaching Gel on Enamel and Dentin Surface Micromorphology and Roughness of Uremic Patients: An Atomic Force Microscopic Study

    OpenAIRE

    2010-01-01

    Objectives: To investigate the effect of 16% carbamide peroxide bleaching gel on surface micromorphology and roughness of enamel and root dentin of uremic patients receiving hemodialysis using atomic force microscopy (AFM). Methods: A total of 20 sound molars were collected from healthy individuals (n=10) and uremic patients (n=10). The roots were separated from their crowns at the cemento-enamel junction. Dental slabs (3 mm x 2 mm x 2 mm) were obtained from the buccal surface for enamel slab...

  12. US Atom-Resolving Microscope Project

    Energy Technology Data Exchange (ETDEWEB)

    Gronsky, R.

    1980-03-01

    The largest project in transmission electron microscopy in this country has recently been initiated. This project has been given the name Atomic Resolution Microscopy and its goal is to provide the instrumentation and expertise necessary to conduct materials research directly at the atomic level. Taking advantage of the best available technology in electron-optical design, its core instrumentation is a unique machine, the Atomic Resolution Microscope (ARM), which is to be built by commercial manufacturers to the specifications of LBL and used in basic research programs requiring atomic imaging capabilities. The project will also include an in-house instrument development effort to maintain state-of-the-art performance from the ARM. Details of history, organization and performance specifications are given.

  13. Atomic Force Microscopy in Liquids

    Science.gov (United States)

    Weisenhorn, Albrecht Ludwig

    The atomic force microscope (AFM) was invented by Binnig, Quate, and Gerber in 1986 as an offspring of the very successful scanning tunneling microscope (STM), which Binnig and Rohrer invented in 1982 and for which they shared the Nobel prize. While the STM can only image conducting surfaces, the AFM has overcome this limitation. An AFM creates a three-dimensional image of the sample surface by raster scanning this surface under a sharp tip that is attached to a cantilever. The tip moves the cantilever up and down while going over "hills" and through "valleys" of the surface. The vertical motion of the cantilever deflects a laser beam that is reflected off the back of the cantilever toward a two-segment photodiode. The difference of the intensity of the two segments is used as the deflection signal. A feedback loop is used to keep the deflection signal constant by moving the sample surface up and down accordingly. This vertical motion gives a direct measurement of the surface height. The forces involved in the imaging process have been studied in air and water. Due to adsorbed layers on tip and sample surface when scanning in air (capillary condensation) the imaging forces are >10 ^{-7} N. If the tip and sample surface are immersed in water the forces can be reduced to {~}10^{ -9} N. An AFM with a large scanner can image up to tens of micrometers like an optical microscope. Zooming in allows one to get resolution of a few nanometers, which makes the AFM a natural continuation of the optical microscope towards higher magnification. Integrated circuit chips, photographic film, bacteria, red and white blood cells, purple membrane, polymerized Langmuir-Blodgett (LB) films, and stoma have been imaged at low and high magnification. The AFM has shown its power by imaging "hard" and "soft" surfaces with atomic and (sub)molecular resolution respectively. The "hard" crystalline surfaces of mica, graphite, RuCl_3, Ge(111), Bi(111), and zeolites (clinoptilolite (010

  14. Quantum Gas Microscope for Fermionic Atoms

    Science.gov (United States)

    Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin

    2016-05-01

    Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.

  15. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

    Directory of Open Access Journals (Sweden)

    Matthias Wasem

    2014-01-01

    Full Text Available Amplitude-modulation atomic force microscopy (AM-AFM is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles.

  16. Atomic force fluorescence microscopy : combining the best of two worlds

    NARCIS (Netherlands)

    Kassies, Roelf

    2005-01-01

    The complementary strengths and weaknesses of AFM and optical microscopy leads to the desire to integrate both techniques into a single microscope. This thesis describes the development of a com-bined AFM / confocal °uorescence microscope. This atomic force °uorescence microscope (AFFM) combines hig

  17. 蛋白质对 PVDF 超滤膜污染行为的界面微观作用力解析%Adhesion Force Analysis of Protein Fouling of PVDF Ultrafiltration Membrane Using Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    王旭东; 周淼; 孟晓荣; 王磊; 黄丹曦; 夏四清

    2015-01-01

    To determine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration membrane over a range of pH, atomic force microscopy (AFM) and self-made colloidal probes were used to detect the microscopic adhesion forces of membrane-BSA and BSA-BSA, respectively. The results showed a positive correlation between the flux decline extent and the membrane-foulant adhesion force in the initial filtration stage, whereas the foulant-foulant interaction force was closely related to the membrane fouling in the later filtration stage. Moreover, the membrane-BSA adhesion interaction was stronger than the BSA-BSA adhesion interaction, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and foulant. At the same pH, the adhesion force between PA membrane-BSA was smaller than that of PP membrane-BSA, illustrating the more hydrophilic the membrane was, the better the antifouling ability it had. The adhesion force between BSA-BSA fouled PA membrane was similar to that between BSA-BSA fouled PP membrane. These results confirmed that elimination of the membrane-BSA adhesion force is important to control the protein fouling of membranes.%采用原子力显微镜,结合自制微颗粒探针,对膜-污染物及污染物-污染物间微观作用力进行了检测分析,考察了不同 pH条件下牛血清蛋白(BSA)在不同界面特性 PVDF 超滤膜上的膜污染行为。结果表明,在膜过滤初期,通量剧烈衰减主要由 BSA和膜之间黏附力作用导致,在膜过滤后期,BSA 与 BSA 之间的黏聚作用则是影响后期膜污染行为的主要因素; PA 膜-BSA 和PP 膜-BSA 之间的黏附作用力均大于 BSA-BSA 之间的黏聚作用力,说明在整个膜过滤过程中,BSA 与 PVDF 超滤膜之间的黏附作用对膜污染起主导作用;相同 pH 条件下,PA 膜-BSA 之间的微观作用小于 PP 膜-BSA 之间的相互作用力,说明亲水性较强的 PA 膜具

  18. The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

    Directory of Open Access Journals (Sweden)

    Christian Wagner

    2014-02-01

    Full Text Available Scanning probe microscopy (SPM plays an important role in the investigation of molecular adsorption. The possibility to probe the molecule–surface interaction while tuning its strength through SPM tip-induced single-molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the good agreement between the experiment and those simulations, systematic inconsistencies remained that we attribute to effects omitted from the initial model. Here we develop a more realistic simulation of single-molecule manipulation by non-contact AFM that includes the atomic surface corrugation, the tip elasticity, and the tip oscillation amplitude. In short, we simulate a full tip oscillation cycle at each step of the manipulation process and calculate the frequency shift by solving the equation of motion of the tip. The new model correctly reproduces previously unexplained key features of the experiment, and facilitates a better understanding of the mechanics of single-molecular junctions. Our simulations reveal that the surface corrugation adds a positive frequency shift to the measurement that generates an apparent repulsive force. Furthermore, we demonstrate that the scatter observed in the experimental data points is related to the sliding of the molecule across the surface.

  19. Microscopic origin of Casimir-Polder forces

    OpenAIRE

    2006-01-01

    We establish a general relation between dispersion forces. First, based on QED in causal media, leading-order perturbation theory is used to express both the single-atom Casimir-Polder and the two-atom van der Waals potentials in terms of the atomic polarizabilities and the Green tensor for the body-assisted electromagnetic field. Endowed with this geometry-independent framework, we then employ the Born expansion of the Green tensor together with the Clausius-Mosotti relation to prove that th...

  20. Characterization of surface modification in atomic force microscope-induced nanolithography of oxygen deficient La0.67Ba0.33MnO3−δ thin films

    Directory of Open Access Journals (Sweden)

    E. Kevin Tanyi

    2014-12-01

    Full Text Available We report our studies of the nanolithographic surface modifications induced by an Atomic Force Microscope (AFM in epitaxial thin films of oxygen deficient Lanthanum Barium Manganese Oxide (La0.67Ba0.33MnO3−δ. The pattern characteristics depend on the tip voltage, tip polarity, voltage duration, tip force, and humidity. We have used Electron Energy Dispersive X-Ray Spectroscopy (EDS to analyze the chemical changes associated with the surface modifications produced with a negatively biased AFM tip. A significant increase in the oxygen stoichiometry for the patterned regions relative to the pristine film surface is observed. The results also indicate changes in the cation stoichiometry, specifically a decrease in the Lanthanum and Manganese concentrations and an increase in the Barium concentration in the patterned regions.

  1. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Grooth, de Bart G.; Hansma, Paul K.; Hulst, van Niek F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect imm

  2. Atomic Force Controlled Capillary Electrophoresis

    Science.gov (United States)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  3. Observation of Switchable Photoresponse of a Monolayer WSe 2 –MoS 2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging

    KAUST Repository

    Son, Youngwoo

    2016-04-27

    In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that

  4. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials.

    Science.gov (United States)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu

    2011-07-15

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  5. A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Seiji; Kubo, Osamu; Kuramochi, Hiromi; Aono, Masakazu; Nakayama, Tomonobu, E-mail: higuchi.seiji@nims.go.jp, E-mail: nakayama.tomonobu@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 (Japan)

    2011-07-15

    Four-terminal electrical measurement is realized on a microscopic structure in air, without a lithographic process, using a home-built quadruple-scanning-probe force microscope (QSPFM). The QSPFM has four probes whose positions are individually controlled by obtaining images of a sample in the manner of atomic force microscopy (AFM), and uses the probes as contacting electrodes for electrical measurements. A specially arranged tuning fork probe (TFP) is used as a self-detection force sensor to operate each probe in a frequency modulation AFM mode, resulting in simultaneous imaging of the same microscopic feature on an insulator using the four TFPs. Four-terminal electrical measurement is then demonstrated in air by placing each probe electrode in contact with a graphene flake exfoliated on a silicon dioxide film, and the sheet resistance of the flake is measured by the van der Pauw method. The present work shows that the QSPFM has the potential to measure the intrinsic electrical properties of a wide range of microscopic materials in situ without electrode fabrication.

  6. Adaptive control of force microscope cantilever dynamics

    Science.gov (United States)

    Jensen, S. E.; Dougherty, W. M.; Garbini, J. L.; Sidles, J. A.

    2007-09-01

    Magnetic resonance force microscopy (MRFM) and other emerging scanning probe microscopies entail the detection of attonewton-scale forces. Requisite force sensitivities are achieved through the use of soft force microscope cantilevers as high resonant-Q micromechanical oscillators. In practice, the dynamics of these oscillators are greatly improved by the application of force feedback control computed in real time by a digital signal processor (DSP). Improvements include increased sensitive bandwidth, reduced oscillator ring up/down time, and reduced cantilever thermal vibration amplitude. However, when the cantilever tip and the sample are in close proximity, electrostatic and Casimir tip-sample force gradients can significantly alter the cantilever resonance frequency, foiling fixed-gain narrow-band control schemes. We report an improved, adaptive control algorithm that uses a Hilbert transform technique to continuously measure the vibration frequency of the thermally-excited cantilever and seamlessly adjust the DSP program coefficients. The closed-loop vibration amplitude is typically 0.05 nm. This adaptive algorithm enables narrow-band formally-optimal control over a wide range of resonance frequencies, and preserves the thermally-limited signal to noise ratio (SNR).

  7. Nanoscale infrared (IR) spectroscopy and imaging of structural lipids in human stratum corneum using an atomic force microscope to directly detect absorbed light from a tunable IR laser source.

    Science.gov (United States)

    Marcott, Curtis; Lo, Michael; Kjoller, Kevin; Domanov, Yegor; Balooch, Guive; Luengo, Gustavo S

    2013-06-01

    An atomic force microscope (AFM) and a tunable infrared (IR) laser source have been combined in a single instrument (AFM-IR) capable of producing ~200-nm spatial resolution IR spectra and absorption images. This new capability enables IR spectroscopic characterization of human stratum corneum at unprecendented levels. Samples of normal and delipidized stratum corneum were embedded, cross-sectioned and mounted on ZnSe prisms. A pulsed tunable IR laser source produces thermomechanical expansion upon absorption, which is detected through excitation of contact resonance modes in the AFM cantilever. In addition to reducing the total lipid content, the delipidization process damages the stratum corneum morphological structure. The delipidized stratum corneum shows substantially less long-chain CH2 -stretching IR absorption band intensity than normal skin. AFM-IR images that compare absorbances at 2930/cm (lipid) and 3290/cm (keratin) suggest that regions of higher lipid concentration are located at the perimeter of corneocytes in the normal stratum corneum.

  8. Exploration of Comparison Method in Application to Atomic Force Microscope Instrument Teaching%比较教学法应用于原子力显微镜仪器教学的探索

    Institute of Scientific and Technical Information of China (English)

    祝向荣; 许中平; 黎阳; 朱志刚; 于伟; 谢华清

    2016-01-01

    As one kind of widely used instruments for characterizing nanoscale structures of materials, atomic force microscope (AFM) has been listed as the practice course of material major by many technique universities. In this paper, comparison method is explored and practiced in AFM course teaching. Graphene, one research focus in modern materials field, is used as the comparison teaching object. Three types of comparisons are made. The first is the comparison of the AFM morphologies between the oxide graphene and the large sheet of graphene. The second is the comparison of the AFM morphology and scanning electronic microscope (SEM) mor-phology of the grapheme samples. The third is the comparison of the AFM morphologies of oxide graphene obtained under different experiment conditions. By conducting these comparisons, the students would well understand the principle and function of AFM. Their AFM operating skills could also be enhanced. Additionally, they could obtain more intuitionistic knowledge about the micro-structure characteristics of graphene.%原子力显微镜(Atomic Force Microscope, AFM)作为一种广泛使用的材料纳米尺度微结构表征仪器,已列入许多理工科大学材料相关专业的仪器教学课程。利用比较教学法在AFM仪器教学中的应用进行了探索和实践。以材料科学研究热点对象石墨烯的微结构表征为例,在教学过程中,比较了氧化石墨烯和大片多层石墨烯的AFM形貌特征,氧化石墨烯和多层石墨烯的AFM成像和扫描电子显微镜(Scanning Electronic Microscope, SEM)成像特征,以及不同实验条件下氧化石墨烯的AFM成像形貌。通过这些比较教学内容,使学生对AFM仪器的工作原理和功能有了更深入的理解和掌握, AFM仪器的操作技能也得到了提升,并且对石墨烯材料的微结构特征有了更直观的了解。

  9. Dissipation and oscillatory solvation forces in confined liquids studied by small-amplitude atomic force spectroscopy

    NARCIS (Netherlands)

    Beer, de Sissi; Ende, van den Dirk; Mugele, Frieder

    2010-01-01

    We determine conservative and dissipative tip–sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat su

  10. Microfluidics, Chromatography, and Atomic-Force Microscopy

    Science.gov (United States)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  11. Atomic force microscopy of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).

  12. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier.

    Science.gov (United States)

    Aytac Korkmaz, Sevcan

    2016-05-05

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3×180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller.

  13. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier

    Science.gov (United States)

    Aytac Korkmaz, Sevcan

    2016-05-01

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3 × 180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. She has been a Faculty Member at Fırat University in the Electrical- Electronic Engineering Department since 2007. Her research interests include image processing, computer vision systems, pattern recognition, data fusion, wavelet theory, artificial neural

  14. 原子力显微镜对常用7种单克隆抗体形态的观察%Morphologies of seven commonly used monoclonal antibodies under atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    侯永微; 纪小龙; 王美娥

    2013-01-01

    Objective To lay the foundation for establishing a morphological structure database of commonly used antibodies by studying the morphology of antigen-antibody reaction under atomic forced microscope. Methods Seven antibodies were added onto slides and placed into a wet kit containing 10%neutral buffer formalin. One hour after the antibodies were kept in an incubator at 37℃, they were washed with distilled water and dried. Their morphologies were observed under atomic force microscope. The width, maximum height and mean roughness of particles were measured. Results The long rod cytokeratin and S100 protein muse anti-human monoclonal antibodies, the oblate round common antigens of vimentin and leukocyte as well as cytokeratin 7 and Dog-1 mouse antihuman monoclonal antibodies, and the triangle thyroglobulin monoclonal antibodies were observed in 2D figures. The width and maximum height of monoclonal antibodies were significantly different (P0.05). Conclusion The morphologies of 7 monoclonal antibodies can be divided into long rod, oblate round and triangle types, which directly prove the relative specificity of antibodies and can thus provide the morphological foundation for further studying the co-expression and exceptional expression of antigens.%  目的为抗原抗体反应提供原子力显微镜下的形态学基础,为建立常用抗体形态结构的形态库打下基础。方法将7种常用单克隆抗体分别滴加于载玻片上,放入加有10%中性缓冲甲醛的湿盒内,置于37℃温箱中1 h,用蒸馏水轻轻涮洗,晾干,用原子力显微镜(atomic force microscope,AFM)进行扫描,观察形态,测量扫描颗粒的宽度、最大峰高度和平均粗糙度。结果在2D图中,细胞角蛋白(广谱)、S100蛋白鼠抗人单克隆抗体为长杆状,波形蛋白、白细胞共同抗原、细胞角蛋白7、Dog-1鼠抗人单克隆抗体为类圆形,甲状腺球蛋白鼠抗人单克隆抗体为三角形;不同组间

  15. High-resolution noncontact atomic force microscopy.

    Science.gov (United States)

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-07-01

    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  16. Noncontact atomic force microscopy v.3

    CERN Document Server

    Morita, Seizo; Meyer, Ernst

    2015-01-01

    This book presents the latest developments in noncontact atomic force microscopy. It deals with the following outstanding functions and applications that have been obtained with atomic resolution after the publication of volume 2: (1) Pauli repulsive force imaging of molecular structure, (2) Applications of force spectroscopy and force mapping with atomic resolution, (3) Applications of tuning forks, (4) Applications of atomic/molecular manipulation, (5) Applications of magnetic exchange force microscopy, (6) Applications of atomic and molecular imaging in liquids, (7) Applications of combine

  17. Food toxin detection with atomic force microscope

    Science.gov (United States)

    Externally introduced toxins or internal spoilage correlated pathogens and their metabolites are all potential sources of food toxins. To prevent and protect unsafe food, many food toxin detection techniques have been developed to detect various toxins for quality control. Although several routine m...

  18. Atomic Force Microscope 1: Veeco Dimension 3100

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: AFM 1 A tool used to characterize the material surface, nanostructures generated by nanofabrication, nanomanipulation, and nanolithography....

  19. Scanning force microscope for in situ nanofocused X-ray diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhe, E-mail: zhe.ren@im2np.fr; Mastropietro, Francesca; Davydok, Anton [Aix-Marseille Université, CNRS, Faculté des Sciences, Campus de Saint-Jérôme, Avenue Escadrille Normandie Niemen – Case 142, F-13397 Marseille (France); Langlais, Simon [Grenoble Institute of Technology and CNRS, BP 75, F-38402 Saint-Martin d’Hères Cedex (France); Richard, Marie-Ingrid [Aix-Marseille Université, CNRS, Faculté des Sciences, Campus de Saint-Jérôme, Avenue Escadrille Normandie Niemen – Case 142, F-13397 Marseille (France); European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, BP 220, 38043 Grenoble (France); Furter, Jean-Jacques; Thomas, Olivier [Aix-Marseille Université, CNRS, Faculté des Sciences, Campus de Saint-Jérôme, Avenue Escadrille Normandie Niemen – Case 142, F-13397 Marseille (France); Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume [Grenoble Institute of Technology and CNRS, BP 75, F-38402 Saint-Martin d’Hères Cedex (France); Boesecke, Peter [European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, BP 220, 38043 Grenoble (France); Cornelius, Thomas W. [Aix-Marseille Université, CNRS, Faculté des Sciences, Campus de Saint-Jérôme, Avenue Escadrille Normandie Niemen – Case 142, F-13397 Marseille (France)

    2014-08-06

    An atomic force microscope has been developed for combination with sub-micrometer focused X-ray diffraction at synchrotron beamlines and in situ mechanical tests on single nanostructures. A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials.

  20. Atomic Force Microscopy: Theory and Experiment

    Science.gov (United States)

    Gould, Scot A. C.

    When the scanning tunnelling microscope (STM) was invented in 1980, it was hoped that all scientists would benefit from a device that could image surfaces with atomic resolution. Unfortunately while conductors and semiconductors could be imaged with the STM, the vast number of non-conductors, for examples, most ceramics, proteins and cells were virtually unobservable. With the invention of a new device, the atomic force microscope (AFM) suddenly scientists could image the topography of all samples, including non-conductors. The basic construction and operation of the AFM consists of placing a small probe at the end of a spring and measuring the deflection of the spring. Along with the STM, the AFM has revolutionized the study of surfaces in air, water and vacuum. This dissertation reports some of the work I have been involved in. Specifically: (1) building an AFM that used an STM to measure the deflection of the cantilever, (2) building an improved AFM that used an optical level to measure the deflection of the cantilever, microfabricated tips and a water cell, (3) adding a force modulation imaging mode for imaging the surface elasticity, (4) the creation of a theoretical model to help explain atomic imaging, and (5) the creation of image processing techniques that filter out noise inherent in the system and enhance the topographical features of the surface. Using these techniques, we have imaged and analyzed (1) the amino acid crystal DL-leucine and noted that the surface represents an extension of the bulk crystal, (2) imaged polyalanine demonstrating the ability of the microscope to image polymers with molecular resolution, (3) observed the process of blood clotting at the molecular level, (4) imaged important samples including germanium and graphite with atomic resolution and large scale objects including red and white blood cells with nanometer resolution, (5) imaged photographic film as an example of industrial quality control, (6) demonstrated through

  1. Vacuum chamber for sample attachment in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Werf, van der Kees O.; Oort, van Geeske; Grooth, de Bart G.; Hulst, van Niek F.; Greve, Jan

    1992-01-01

    A small ring-shaped vacuum chamber has been constructed and connected to the piezotube used for scanning samples in the atomic force microscope (AFM). Samples made up of any material, up to 50 mm in diameter, can be firmly attached o­nto the piezotube without causing damage to the sample. A 50-l bee

  2. Atomic Force Analysis of Elastic Deformations of CD

    Directory of Open Access Journals (Sweden)

    A. Kuzmenko

    2013-12-01

    Full Text Available The procedure for the determination of elastic parameters according to reference nanometer lithographic marks by atomic force microscopy on samples with up to microscopic sizes is proposed. Analysis of dynamic changes of elastic characteristics that makes it possible to establish the critical rotation velocity of a CD without plastic deformations has been made.

  3. Atomic and molecular manipulation with the scanning tunneling microscope.

    Science.gov (United States)

    Stroscio, J A; Eigler, D M

    1991-11-29

    The prospect of manipulating matter on the atomic scale has fascinated scientists for decades. This fascination may be motivated by scientific and technological opportunities, or from a curiosity about the consequences of being able to place atoms in a particular location. Advances in scanning tunneling microscopy have made this prospect a reality; single atoms can be placed at selected positions and structures can be built to a particular design atom-by-atom. Atoms and molecules may be manipulated in a variety of ways by using the interactions present in the tunnel junction of a scanning tunneling microscope. Some of these recent developments and some of the possible uses of atomic and molecular manipulation as a tool for science are discussed.

  4. Nanoscale study of the ferroelectric properties of SrBi{sub 2}Nb{sub 2}O{sub 9} thin films grown by pulsed laser deposition on epitaxial Pt electrodes using atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, Brice; Duclere, Jean-Rene; Guilloux-Viry, Maryline

    2003-07-15

    SrBi{sub 2}Nb{sub 2}O{sub 9} (SBN) thin films deposited by laser ablation on epitaxial (1 0 0)Pt and (1 1 0)Pt have been studied using an atomic force microscope (AFM) in the so-called 'piezoresponse' mode. Previous X-ray studies have shown that in the first case two different orientations coexist in the film: a predominant (0 0 1) orientation with a (1 1 5) orientation. AFM topographical images reveal the presence of two different kinds of grains of different shape corresponding to each orientation and AFM piezoresponse images are in agreement with the crystallographic orientation of the grains: only the expected (1 1 5) oriented grains show a piezoelectric contrast. Moreover, hysteresis loops are obtained over (1 1 5) grains and not over (0 0 1) regions. Although (1 1 5) grains can be in a monodomain state, they also show intragranular ferroelectric domains with nanometric sizes, which orientation can be reversed by applying a dc field between the AFM tip and the grounded conductive bottom electrode of the sample. In the second case, the use of a (1 1 0)Pt electrode instead of a (1 0 0)Pt electrode leads to preferentially (1 1 6) SBN oriented films, inducing far better ferroelectrics properties. In spite of a weak remnant polarization, the surface shows an homogeneous polarization when a 1 {mu}mx1 {mu}m area is probed after the reversal of the polarization by the AFM tip.

  5. Microstructural Observation of Leucaena glaucal Seed Polysaccharides under Atomic Force Microscope%银合欢种子多糖微结构的原子力显微镜观察

    Institute of Scientific and Technical Information of China (English)

    杨永利; 郭守军; 叶文斌; 潘显辉; 林月娟; 林海雄

    2012-01-01

    Objective: The microstructure of Leucaena glaucal seed polysaccharides was studied based on morphological observation under atomic force microscope(AFM).Methods: Polysaccharides from were extracted by hot water extraction.The structure and morphology of aggregates and non-aggregates from Leucaena glaucal seed polysaccharides formed through varying polysaccharide concentration or chemically modifying the surface of mica substrates were visualized under AFM.Results: Membranous,granular aggregates structure and non-aggregate structure of a single polysaccharide molecule could be observed in the samples prepared at various conditions.Conclusion: A single Leucaena glaucal seeds polysaccharide molecule was linear spiral,and had short branch structure and entangled molecular chains to form a reticulation structure.%目的:通过对银合欢种子多糖的形貌观察,研究其微结构。方法:采用热水浸提法提取银合欢种子多糖,通过改变溶液的质量浓度、云母基底表面的化学修饰等不同制样方式,用原子力显微镜(AFM)可视化不同样品制备条件形成的聚集体和非聚集体银合欢半乳甘露聚糖结构形貌。结果:样品在不同制备条件下得到膜状、颗粒状的聚集体结构和非聚集体单糖分子结构。结论:银合欢种子多糖的单个糖分子呈线形螺旋状,并具有短的分枝结构,分子链间互相缠绕,而形成网格状。

  6. A comparative evaluation of the effect of 5.25% sodium hypochlorite and 2% chlorhexidine on the surface texture of Gutta-percha and resilon cones using atomic force microscope

    Directory of Open Access Journals (Sweden)

    Mahima Tilakchand

    2014-01-01

    Full Text Available Aims & Objectives: The purpose of this study was to investigate the effects of 5.25% sodium hypochlorite (NaOCl and 2% chlorhexidine (CHX on Gutta-percha and Resilon cones using an atomic force microscope (AFM. Materials and Methods: Gutta-percha cones (n = 15 and Resilon cones (n = 15 were cut 3 mm from their tip, attached to a glass slide with cyanoacrylate glue and immersed in 5.25% NaOCl and CHX for 1, 5, 10, 20 and 30 min. Five each of Gutta-percha and Resilon cones not treated with any disinfectant were used as control. The analysis of the surface topography was performed on the region between 1 and 2 mm from the tip using the AFM. The root mean square (RMS parameters for contact mode imaging were measured. The differences between RMS values were tested by SPSS-16.0 version statistical software [IBM SPSS (Statistical Product and Service Solutions Data Software, Chicago, US] using Kruskal-Wallis ANOVA, Mann-Whitney U-test and Wilcoxon matched pairs test. Results: There was no deterioration in the surfac e topography of Gutta-percha and Resilon when treated with 2% CHX in comparison to baseline (P < 0.05. Resilon exhibited no deterioration in topography when immersed in 5.25% NaOCl. There was a significant decrease in the mean RMS values of Gutta-percha treated with NaOCl from the control at time intervals of 1, 5, 10, 20 and 30 min.

  7. The Contact Measuring Head of in Dual-probe Atomic Force Microscope%原子力显微镜的双探针接触测量研究

    Institute of Scientific and Technical Information of China (English)

    张华坤; 高思田; 李伟

    2016-01-01

    In order to align two probes of dual-probe atomic force microscope( AFM ),it is necessary to establish a measuring head to do in-depth research on the probe A scanning the probe B. Firstly,the mechanical characteristics of the probe are obtained by finite element( FE)simulations. Secondly,using the locked-in amplifier to attain the amplitude and frequency signals to analyze the system resolution( better than 1 nm),the probe is rotated 90 degrees compared traditional AFM. Lastly,probe B is scanned by probe A in YOZ plane,reducing the scanning range and scanning step gradually. The alignment accuracy is of 5 nm.%为实现双探针原子力显微镜的探针对准,用探针A对探针B的成像进行了深入的研究。首先对音叉探针进行有限元仿真,分析探针的机械特性。其次用锁相放大器获取探针的幅度和频率信号,让探针接近样品(硅片)以获得系统的分辨率。最后在YOZ平面用探针A对探针B扫描成像,逐步缩小扫描范围并同时减小扫描步进。实验表明,探针的分辨率优于1 nm,双探针对准精度可达5 nm。

  8. Note: Artificial neural networks for the automated analysis of force map data in atomic force microscopy

    Science.gov (United States)

    Braunsmann, Christoph; Schäffer, Tilman E.

    2014-05-01

    Force curves recorded with the atomic force microscope on structured samples often show an irregular force versus indentation behavior. An analysis of such curves using standard contact models (e.g., the Sneddon model) would generate inaccurate Young's moduli. A critical inspection of the force curve shape is therefore necessary for estimating the reliability of the generated Young's modulus. We used a trained artificial neural network to automatically recognize curves of "good" and of "bad" quality. This is especially useful for improving the analysis of force maps that consist of a large number of force curves.

  9. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  10. Introduction to light forces, atom cooling, and atom trapping

    OpenAIRE

    Savage, Craig,

    1995-01-01

    This paper introduces and reviews light forces, atom cooling and atom trapping. The emphasis is on the physics of the basic processes. In discussing conservative forces the semi-classical dressed states are used rather than the usual quantized field dressed states.

  11. Can Atomic Force Microscopy Achieve Atomic Resolution in Contact Mode?

    Science.gov (United States)

    Jarvis, M. R.; Pérez, Rubén; Payne, M. C.

    2001-02-01

    Atomic force microscopy operating in the contact mode is studied using total-energy pseudopotential calculations. It is shown that, in the case of a diamond tip and a diamond surface, it is possible for a tip terminated by a single atom to sustain forces in excess of 30 nN. It is also shown that imaging at atomic resolution may be limited by blunting of the tip during lateral scanning.

  12. Electric charges and forces in atomic force microscopy and nano-xerography

    Energy Technology Data Exchange (ETDEWEB)

    Stemmer, A; Ziegler, D; Seemann, L; Naujoks, N [Nanotechnology Group, ETH Zurich, Tannenstrasse 3, 8092 Zurich (Switzerland); Rychen, J [Nanonis GmbH, Technoparkstrasse 1, 8005 Zurich (Switzerland)], E-mail: astemmer@ethz.ch

    2008-12-01

    Electrostatic forces generated by contact potential differences, localized charges, or externally applied voltages play a crucial role in atomic force microscopy. Electrostatic forces mediate the non-contact measurement of local potentials by the Kelvin probe technique, enabling compositional mapping of surfaces. However, if not compensated properly, electrostatic forces lead to height errors in topography images acquired in tapping mode. We present a single scan Kelvin probe force microscopy technique that compensates local electrostatic forces and allows simultaneous height and potential measurements in tapping mode. Electrostatic forces also direct the localized assembly of structures in nano-xerography. Here we describe how positive charges, written into a thin film of poly(methyl)methacrylate with the conductive tip of an atomic force microscope, guide the deposition of carboxyl-functionalized multiwalled carbon nanotubes suspended in isopropyl-alcohol.

  13. Envejecimiento de Almidones Termoplásticos Agrios de Yuca y Nativos de Papa por Microscopía de Fuerza Atómica Ageing of Sour Cassava and Native Potato Thermoplastic Starches by Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Harold A Acosta

    2006-01-01

    Full Text Available En este trabajo, se determinó la topografía de almidones termoplásticos (TPS agrio de yuca y nativo de papa, mediante microscopía de fuerza atómica (AFM, durante un periodo de 120 días de almacenamiento. Mezclas de almidones agrios (fermentados de yuca y nativo de papa, y glicerina, se procesaron en un extrusor de husillo sencillo. Láminas de TPS agrio de yuca (SCTPS y nativo de papa (NPTPS, se observaron y midieron por AFM (en modo contacto. Sus superficies mostraron incremento en rugosidad y partes lisas solo a altos contenidos de plastificante, pero SCTPS siempre tuvo menor rugosidad que NPTPS, debido a la fermentación natural del almidón agrio. Estos cambios se relacionaron con el tamaño, la forma del gránulo y particularmente con el contenido de plastificante. Los NPTPS de mayor rugosidad presentaron separación de fases a los 120 días, dada la retrogradación de las moléculas del almidón, que tienden a formar cristalitos. Estos resultados indican que el almidón agrio de yuca puede retardar la retrogradación de almidones termoplásticos, lo cual es importante durante el desarrollo de nuevos empaques biodegradables.This study reports on the topography of thermoplastic starches (TPS from sour cassava and native potato using atomic force microscopy (AFM, over a 120 day-storage period. Mixtures of sour cassava (fermented and native potato starches plus glycerine, were processed using a single-screw extruder. Sour cassava thermoplastic starch (SCTPS and native potato thermoplastic starch (NPTPS films were observed and measured by AFM (in contact mode. Their surfaces showed increased rugosity, and smooth parts only at high plasticizer content. However, SCTPS always had lower rugosity than NPTPS, due to the natural fermentation of sour cassava starch. These changes were related to starch granule size and shape, and particularly to plasticizer content. NPTPS with higher rugosity presented phase separation at 120 days, due to

  14. 白术多糖WAM-1结构的色谱分析和原子力显微镜观察%Chromatographic Analysis and Atomic Force Microscope Observation of Polysaccharide Extracted from Atractylodes macrocephala Koidz.

    Institute of Scientific and Technical Information of China (English)

    伍乐芹; 姜绍芬; 张静

    2012-01-01

    Polysaccharides extracted from the stem of Atractylodes macrocephala Koidz by hot water,were fractionated by DEAE-52 cellulose chromatography,and purified by Sephadex G-200 gel filtration chromatography to obtain a fraction, named WAM-1. HPLC and GC analysis showed that WAM-1 was a homogeneous and consisted of glucose and galactose in the molar ratio of 3. 01: 1. The molecular morphology of WAM-1 was observed under an atomic force microscope (AFM).The results showed that WAM-1 existed in different forms with different concentrations. The concentration of polysaccharide had effects on the conformation and form of chain interactions, which might be related to the interaction of intramolecular and intermolecular hydrogen bonds. At 10 μg/mL,the morphology of WAM-1 was observed clearly in rigid chains with many branches.%通过热水浸提法从草本植物白术根茎提取的水溶性粗多糖,经DEAE-52纤维素柱层析分离和Sephadex G-200凝胶过滤柱层析纯化,得到组分WAM-1.采用高效液相色谱(HPLC)检测WAM-1的纯度,气相色谱(GC)对其单糖组分进行分析,原子力显微镜(AFM)对其分子外貌进行观测.结果显示:WAM-1为均一多糖,由葡萄糖和半乳糖以3.01:1摩尔比构成;在不同浓度溶液条件下,WAM-1分子以不同形态存在,多糖溶液的浓度对WAM-1的分子链构象及链间相互作用形式产生影响,推测可能与WAM-1分子内、分子间的氢键缔合作用有关.多糖浓度为10μg/mL时,可清晰的观察到WAM-1是以刚性链状形态存在,且具有多分支结构.

  15. Microscopic derivation of electromagnetic force density in magnetic dielectric media

    NARCIS (Netherlands)

    Shevchenko, A.; Hoenders, B. J.

    2010-01-01

    Macroscopic force density imposed on a linear isotropic magnetic dielectric medium by an arbitrary electromagnetic field is derived by spatially averaging the microscopic Lorentz force density. The obtained expression differs from the commonly used expressions, but the energy-momentum tensor derived

  16. Fountain pen nanochemistry: Atomic force control of chrome etching

    Science.gov (United States)

    Lewis, Aaron; Kheifetz, Yuri; Shambrodt, Efim; Radko, Anna; Khatchatryan, Edward; Sukenik, Chaim

    1999-10-01

    In this report we demonstrate a general method for affecting chemical reactions with a high degree of spatial control that has potentially wide applicability in science and technology. Our technique is based on complexing the delivery of liquid or gaseous materials through a cantilevered micropipette with an atomic force microscope that is totally integrated into a conventional optical microscope. Controlled etching of chrome is demonstrated without detectable effects on the underlying glass substrate. This simple combination allows for the nanometric spatial control of the whole world of chemical reactions in defined regions of surfaces. Applications of the technique in critical areas such as mask repair are likely.

  17. ATOMIC FORCE MICROSCOPY STUDIES OF POLYCAPROLACTONE RINGED SPHERULITES

    Institute of Scientific and Technical Information of China (English)

    Jian-bin Zhang; De-zhu Ma; Hua Zhong; Xiao-lie Luo

    2000-01-01

    The surface morphology of free-surface PCL ringed spherulites was investigated by using atomic force microscopy. The spherulites were obtained by crystallization of PCL/PVC blends of different compositions. It was found that the ringed spherulite exhibited regularly fluctuating rings on its surface. Compared with the bright-dark ring pattern of the spherulite under a polarizing microscope, it was proved that the optical characteristics of the ringed spherulite under polarizing microscope coincided with its surface characteristics. The bright rings in polarizing micrographs of the spherulite coincided with the convex rings on its surface, while the dark rings coincided with the concave rings.

  18. The Applications of Atomic Force Microscopy to Vision Science

    OpenAIRE

    2010-01-01

    The atomic force microscope (AFM) is widely used in materials science and has found many applications in biological sciences but has been limited in use in vision science. The AFM can be used to image the topography of soft biological materials in their native environments. It can also be used to probe the mechanical properties of cells and extracellular matrices, including their intrinsic elastic modulus and receptor-ligand interactions. In this review, the operation of the AFM is described ...

  19. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    DEFF Research Database (Denmark)

    van der Heijden, Nadine J.; Smith, Daniel; Calogero, Gaetano

    2016-01-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images...... as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Delta f(z) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene...

  20. Arrays of microscopic magnetic traps for cold atoms and their applications in atom optics

    Institute of Scientific and Technical Information of China (English)

    印建平; 高伟建; 胡建军

    2002-01-01

    A single microscopic magnetic trap for neutral atoms using planar current-carrying wires was proposed and studiedtheoretically by Weinstein et al. In this paper, we propose three structures of composite current-carrying wires to provide1D, 2D and 3D arrays of microscopic magnetic traps for cold alkali atoms. The spatial distributions of magnetic fieldsgenerated by these structures are calculated and the field gradient and curvature in each single microtrap are analysed.Our study shows that arrays of microscopic magnetic traps can be used to provide 1D, 2D or 3D atomic magneticlattices, and even to realize 1D, 2D and 3D arrays of magneto-optical traps, and so on.

  1. Atomic force microscopy in cell biology

    Institute of Scientific and Technical Information of China (English)

    LU Zhexue; ZHANG Zhiling; PANG Daiwen

    2005-01-01

    The history, characteristic, operation modes and coupling techniques of atomic force microscopy (AFM) are introduced. Then the application in cell biology is reviewed in four aspects: cell immobilization methods, cell imaging, force spectrum study and cell manipulation. And the prospect of AFM application in cell biology is discussed.

  2. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  3. Fabrication method for microscopic vapor cells for alkali atoms.

    Science.gov (United States)

    Baluktsian, T; Urban, C; Bublat, T; Giessen, H; Löw, R; Pfau, T

    2010-06-15

    A quantum network that consists of several components should ideally work on a single physical platform. Neutral alkali atoms have the potential to be very well suited for this purpose due to their electronic structure, which involves long-lived nuclear spins and very sensitive highly excited Rydberg states. In this Letter, we describe a fabrication method based on quartz glass to structure arbitrary shapes of microscopic vapor cells. We show that the usual spectroscopic properties known from macroscopic vapor cells are almost unaffected by the strong confinement.

  4. Interplay between radiation pressure force and scattered light intensity in the cooperative scattering by cold atoms

    CERN Document Server

    Bienaime, Tom; Chabe, Julien; Rouabah, Mohamed-Taha; Bellando, Louis; Courteille, Philippe W; Piovella, Nicola; Kaiser, Robin

    2013-01-01

    The interplay between the superradiant emission of a cloud of cold two-level atoms and the radiation pressure force is discussed. Using a microscopic model of coupled atomic dipoles driven by an external laser, the radiation field and the average radiation pressure force are derived. A relation between the far-field scattered intensity and the force is derived, using the optical theorem. Finally, the scaling of the sample scattering cross section with the parameters of the system is studied.

  5. Atomically resolved graphitic surfaces in air by atomic force microscopy.

    Science.gov (United States)

    Wastl, Daniel S; Weymouth, Alfred J; Giessibl, Franz J

    2014-05-27

    Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip-sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.

  6. Sharing my fifteen years experiences in the research field of Atomic Force Microscopy (AFM)

    OpenAIRE

    Guha T

    2014-01-01

    Atomic Force Microscope (AFM) was developed by Binnig and his coworkers in the year 1986. He was awarded Nobel Prize in physics for this work in 1986 in sharing with Rohrer and Ruska. Rationale to develop AFM: Scanning Tunneling Microscope (STM), the precursor to AFM is efficient in imaging electrically conducting specimen at atomic resolution. The impetus for development of AFM came to Binnig’s mind because of relatively poor efficiency of STM to image electrically non-conducting bi...

  7. Multifarious applications of atomic force microscopy in forensic science investigations.

    Science.gov (United States)

    Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y

    2017-02-11

    Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science.

  8. Interfacial forces between silica surfaces measured by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    DUAN Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  9. Interfacial forces between silica surfaces measured by atomic force microscopy.

    Science.gov (United States)

    Duan, Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  10. From atoms to steps: The microscopic origins of crystal evolution

    Science.gov (United States)

    Patrone, Paul N.; Einstein, T. L.; Margetis, Dionisios

    2014-07-01

    The Burton-Cabrera-Frank (BCF) theory of crystal growth has been successful in describing a wide range of phenomena in surface physics. Typical crystal surfaces are slightly misoriented with respect to a facet plane; thus, the BCF theory views such systems as composed of staircase-like structures of steps separating terraces. Adsorbed atoms (adatoms), which are represented by a continuous density, diffuse on terraces, and steps move by absorbing or emitting these adatoms. Here we shed light on the microscopic origins of the BCF theory by deriving a simple, one-dimensional (1D) version of the theory from an atomistic, kinetic restricted solid-on-solid (KRSOS) model without external material deposition. We define the time-dependent adatom density and step position as appropriate ensemble averages in the KRSOS model, thereby exposing the non-equilibrium statistical mechanics origins of the BCF theory. Our analysis reveals that the BCF theory is valid in a low adatom-density regime, much in the same way that an ideal gas approximation applies to dilute gasses. We find conditions under which the surface remains in a low-density regime and discuss the microscopic origin of corrections to the BCF model.

  11. Design of cantilever probes for Atomic Force Microscopy (AFM)

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2000-01-01

    A cantilever beam used in an Atomic Force Microscope is optimized with respect to two different objectives. The first goal is to maximize the first eigenfrequency while keeping the stiffness of the probe constant. The second goal is to maximize the tip angle of the first eigenmode while again...... keeping the stiffness constant. The resulting design of the beam from the latter optimization gives almost the same result as when maximizing the first eigenfrequency. Adding a restriction on the second eigenfrequency result in a significant change of the optimal design. The beam is modelled with 12 DOF...

  12. Contrast artifacts in tapping tip atomic force microscopy

    DEFF Research Database (Denmark)

    Kyhle, Anders; Sørensen, Alexis Hammer; Zandbergen, Julie Bjerring;

    1998-01-01

    When recording images with an atomic force microscope using the resonant vibrating cantilever mode, surprising strange results are often achieved. Typical artifacts are strange contours, unexpected height shifts, and sudden changes of the apparent resolution in the acquired images. Such artifacts...... interaction. The oscillating cantilever will be in a specific swing mode according to which type of interaction is dominating, and it is the switching between these modes that is responsible for a range of artifacts observed during image acquisition. This includes the artifact often referred to as "contrast...

  13. Atomic force microscopic comparison of remineralization with casein-phosphopeptide amorphous calcium phosphate paste, acidulated phosphate fluoride gel and iron supplement in primary and permanent teeth: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Nikita Agrawal

    2014-01-01

    Full Text Available Context: Demineralization of tooth by erosion is caused by frequent contact between the tooth surface and acids present in soft drinks. Aim: The present study objective was to evaluate the remineralization potential of casein-phosphopeptide-amorphous calcium phosphate (CPP-ACP paste, 1.23% acidulated phosphate fluoride (APF gel and iron supplement on dental erosion by soft drinks in human primary and permanent enamel using atomic force microscopy (AFM. Materials and Methods: Specimens were made from extracted 15 primary and 15 permanent teeth which were randomly divided into three treatment groups: CPP-ACP paste, APF gel and iron supplement. AFM was used for baseline readings followed by demineralization and remineralization cycle. Results and Statistics: Almost all group of samples showed remineralization that is a reduction in surface roughness which was higher with CPP-ACP paste. Statistical analysis was performed using by one-way ANOVA and Mann-Whitney U-test with P < 0.05. Conclusions: It can be concluded that the application of CPP-ACP paste is effective on preventing dental erosion from soft drinks.

  14. Origin of current-induced forces in an atomic gold wire: A first-principles study

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy Philip;

    2003-01-01

    We address the microscopic origin of the current-induced forces by analyzing results of first principles density functional calculations of atomic gold wires connected to two gold electrodes with different electrochemical potentials. We find that current induced forces are closely related...

  15. Graphene control cutting using an atomic force microscope based nanorobot%基于原子力显微镜的石墨烯可控裁剪方法研究

    Institute of Scientific and Technical Information of China (English)

    张嵛; 刘连庆; 席宁; 王越超; 董再励

    2012-01-01

    石墨烯是一种新奇的纳米材料,其电学特性与几何构型密切相关,因此特定几何构型的加工技术是石墨烯基纳米器件走入实际应用的关键.然而迄今为止,还没有能够快速、低成本实现上述目标的方法.本文提出了一种基于原子力显微镜(AFM)机械切割的石墨烯裁剪方法,实现了各种石墨烯纳米结构如纳米带、三角形等的可控加工;探索了载荷与裁剪效果之间的关系,同时结合旋转基底法实现了AFM针尖效应对切割力检测影响的有效克服,在理论和实验上系统研究了晶格切割方向对纳米切割力大小的影响.本研究表明实时切割力可以作为纳米加工过程的状态反馈信息来指引纳米切割的进行,这为实现晶格精度的石墨烯可控加工奠定了理论与实验基础,由于该方法还具有与并行探针相兼容的优点,因此有望在规模化、批量化、低成本的石墨烯基纳米器件制造中发挥重要作用.%The electrical properties of graphene strongly rely on its size, geometry and edge structure. Therefore, the ability of fabricaiing graphene into desired configuration is one of the enabled techniques to manufacture graphene-based nanodevices and push ii into practical applications. However, there is no effective way to achieve this goal till today. In this paper, an Atomic Force Microscopy (AFM) based mechanical cutting method is developed to meet the urgent need of graphene fabrication. Theoretical analysis between cutting force and lattice cutting angle is carried out, which reveals that the value of the cutting force is related with the graphene cutting direction. Different graphene shapes are fabricated to demonstrate the efficiency and effectiveness of the proposed method. Furthermore, after many times of cutting experiments with the rotation sample method, we proved that the cutting forces do vary with the lattice cutting direction. The experimental results keep consistent

  16. Influence of scanning force microscope loading force on measurement of ion—track diameter

    Institute of Scientific and Technical Information of China (English)

    WangYu-Gang; AckermannJ; 等

    1997-01-01

    Scanning force microscope(SFM) was operated in the lateral-force mode with different loading forces.The mica samples were irradiated by Se ions with a kinetic energy of 11.4MeV/u.The"full-height width" and the "half-height width" of track profiles were used to evaluate the ion-track diameter,For the former method,the average track diameter increases slowly with increasing loading force between SFM tip and sample.For the later method,the average diameters of ion track nearly keep a common value as the SFM loading force increases.

  17. Application of Tuning Fork Sensors for In-situ Studies of Dynamic Force Interactions Inside Scanning and Transmission Electron Microscopes

    Directory of Open Access Journals (Sweden)

    Jana ANDZANE

    2012-06-01

    Full Text Available Mechanical properties of nanoscale contacts have been probed in-situ by specially developed force sensor based on a quartz tuning fork resonator (TF. Additional control is provided by observation of process in scanning electron microscope (SEM and transmission electron microscope (TEM. A piezoelectric manipulator allows precise positioning of atomic force microscope (AFM probe in contact with another electrode and recording of the TF oscillation amplitude and phase while simultaneously visualizing the contact area in electron microscope. Electrostatic control of interaction between the electrodes is demonstrated during observation of the experiment in SEM. In the TEM system the TF sensor operated in shear force mode: Use of TEM allowed for direct control of separation between electrodes. New opportunities for in situ studies of nanomechanical systems using these instruments are discussed.DOI: http://dx.doi.org/10.5755/j01.ms.18.2.1927

  18. Comparison of DC and AC Transport in 1.5-7.5 nm Oligophenylene Imine Molecular Wires across Two Junction Platforms: Eutectic Ga-In versus Conducting Probe Atomic Force Microscope Junctions.

    Science.gov (United States)

    Sangeeth, C S Suchand; Demissie, Abel T; Yuan, Li; Wang, Tao; Frisbie, C Daniel; Nijhuis, Christian A

    2016-06-15

    We have utilized DC and AC transport measurements to measure the resistance and capacitance of thin films of conjugated oligophenyleneimine (OPI) molecules ranging from 1.5 to 7.5 nm in length. These films were synthesized on Au surfaces utilizing the imine condensation chemistry between terephthalaldehyde and 1,4-benzenediamine. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded molecular tilt angles of 33-43°. To probe DC and AC transport, we employed Au-S-OPI//GaOx/EGaIn junctions having contact areas of 9.6 × 10(2) μm(2) (10(9) nm(2)) and compared to previously reported DC results on the same OPI system obtained using Au-S-OPI//Au conducting probe atomic force microscopy (CP-AFM) junctions with 50 nm(2) areas. We found that intensive observables agreed very well across the two junction platforms. Specifically, the EGaIn-based junctions showed: (i) a crossover from tunneling to hopping transport at molecular lengths near 4 nm; (ii) activated transport for wires >4 nm in length with an activation energy of 0.245 ± 0.008 eV for OPI-7; (iii) exponential dependence of conductance with molecular length with a decay constant β = 2.84 ± 0.18 nm(-1) (DC) and 2.92 ± 0.13 nm(-1) (AC) in the tunneling regime, and an apparent β = 1.01 ± 0.08 nm(-1) (DC) and 0.99 ± 0.11 nm(-1) (AC) in the hopping regime; (iv) previously unreported dielectric constant of 4.3 ± 0.2 along the OPI wires. However, the absolute resistances of Au-S-OPI//GaOx/EGaIn junctions were approximately 100 times higher than the corresponding CP-AFM junctions due to differences in metal-molecule contact resistances between the two platforms.

  19. Force Density Balance inside the Hydrogen Atom

    CERN Document Server

    Himpsel, F J

    2015-01-01

    Motivated by the long-debated question about the internal stability of the electron, the force densities acting on the charge density of the 1s electron in the H atom are investigated. The problem is mapped onto the canonical formalism for a classical Dirac field coupled to the electric field of an external point charge. An explicit calculation shows that the attractive Coulomb force density is balanced exactly at every point in space by the repulsive confinement force density. The latter requires evaluating the divergence of the stress tensor for the 1s solution of the Dirac equation. Such a local force balance goes beyond the global stability criteria that are usually given for the H atom. This concept is extended to the internal stability of any charged particle by investigating the force densities acting on its surrounding vacuum polarization. At large distances one has to consider only the charge density of virtual electrons and positrons, induced by a point charge in the vacuum of quantum electrodynamic...

  20. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  1. Imaging DNA Structure by Atomic Force Microscopy.

    Science.gov (United States)

    Pyne, Alice L B; Hoogenboom, Bart W

    2016-01-01

    Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA-DNA interactions and DNA-protein complexes.

  2. Measurement of inter-particle forces by an interfacial force microscope

    Institute of Scientific and Technical Information of China (English)

    Qing Huang; Asghar Mesbah-Nejad; Seyed M. Tadayyon; Peter Norton; Hui Zhang; Jesse Zhu

    2010-01-01

    An inteffacial force microscope (IFM) was employed to measure the inter-particle forces between two individual glass beads with diameters varying from 8 to 20 μm. With the feedback function of IFM turned off, attractive forces were obtained. The forces varied in the range of 0.1-0.34 μN, and their validity was confirmed by a theoretical analysis of the van der Waals force between the same glass beads. With the feedback function switched on, no attractive forces between particles were detected by the IFM when the probe approached the sample substrate. This may be attributed to the dramatic change of the attractive forces within a very short separation distance and/or the relatively poor signal-to-noise ratio of the IFM.

  3. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.

  4. Multiple membrane tethers probed by atomic force microscopy.

    Science.gov (United States)

    Sun, Mingzhai; Graham, John S; Hegedüs, Balazs; Marga, Françoise; Zhang, Ying; Forgacs, Gabor; Grandbois, Michel

    2005-12-01

    Using the atomic force microscope to locally probe the cell membrane, we observed the formation of multiple tethers (thin nanotubes, each requiring a similar pulling force) as reproducible features within force profiles recorded on individual cells. Forces obtained with Chinese hamster ovary cells, a malignant human brain tumor cell line, and human endothelial cells (EA hy926) were found to be 28 +/- 10 pN, 29 +/- 9 pN, and 29 +/- 10 pN, respectively, independent of the nature of attachment to the cantilever. The rather large variation of the tether pulling forces measured at several locations on individual cells points to the existence of heterogeneity in the membrane properties of a morphologically homogeneous cell. Measurement of the summary lengths of the simultaneously extracted tethers provides a measure of the size of the available membrane reservoir through which co-existing tethers are associated. As expected, partial disruption of the actin cytoskeleton and removal of the hyaluronan backbone of the glycocalyx were observed to result in a marked decrease (30-50%) in the magnitude and a significant sharpening of the force distribution indicating reduced heterogeneity of membrane properties. Taken together, our results demonstrate the ability of the plasma membrane to locally produce multiple interdependent tethers-a process that could play an important role in the mechanical association of cells with their environment.

  5. Atomic force microscopy and scanning electron microscopic study on the fluorosis of enamel in rats%氟影响大鼠牙釉质发育的扫描电镜和原子力显微镜观察

    Institute of Scientific and Technical Information of China (English)

    陈黎明; 汤晔; 唐杰

    2015-01-01

    Objective To investigate the ultrastructure of enamel in the mandibular incisor tooth in a rat model of dental fluorosis.Methods Thirty 5-week-old male and female rats of SD strain were divided into three groups of ten.The animals in the control group were maintained for 8 weeks on pure deionized water,in the low-fluoride group deionized water with 22.5 mg/L of fluorine(50 mg/L NaF) was used,and in the high-fluoride group deionized water with 45 mg/L of fluorine(100 mg/L NaF) was used.All specimens examined were obtained from the mandibular incisors.Mid-sagittal ground sections were prepared from the direction of incisal point of each incisor for scanning electron microscopy(SEM) and atomic force microscopy (AFM).Results According to the SEM results,the prisms in the control group had a complete and clear column structure with closely packed enamel rods or enamel prisms.The prisms in the high-fluoride experimental group were collapsed and showed curved and fractured crystallites.The level of prism structural changes in the low-fluoride experimental group was in between that of the control group and the high-fluoride group.AFM for the middle layer enamel showed an average roughness(Ra) of (550.6±32.0) nm in the control group,(415.0±24.2) nm in the low-fluoride group,and (194.3± 11.3) nm for the high-fluoride group.There was significant difference between the high-fluoride group and the control group(P<0.05).Conclusions Formation of rat enamel in the high fluoride environment presented obvious structural collapse and no clearance between prisms.Such changes appear to indicate a loss of normal prism structure in rat enamels from exposure to high levels of fluorine during the maturation period.%目的 观察大鼠氟斑牙模型下颌切牙釉质的超微结构,探讨过量氟对牙体微观结构的影响.方法 30只5周龄SD大鼠雌雄各半,均分为3组,对照组用不含氟的去离子水喂养,低氟组用含22.5 mg/L F-(50 mg/L NaF)、高氟组用含45 mg

  6. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    Science.gov (United States)

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential.

  7. The development of a novel electromagnetic force microscope

    CERN Document Server

    Windmill, J F C

    2002-01-01

    This thesis describes the development of a new type of Magnetic Force Microscope (MFM) probe based on a unique electromagnetic design. In addition the design, construction and testing of a new MFM system, complete in both hardware and software, is also described. The MFM allowed initial tests on prototypes of the new probe, and is to provide a base for future new probe integration. The microscope uses standard MFM micro-cantilever probes in static modes of imaging. A new computer hosted DSP control system, software, and its various interfaces with the MFM have been integrated into the system. The system has been tested using standard probes with various specimens and satisfactory results have been produced. A novel probe has been designed to replace the standard MFM magnetic coated tip with a field generated about a sub-micron aperture in a conducting film. The field from the new probe is modelled and its imaging capability investigated, with iterative designs analysed in this way. The practical construction ...

  8. Periodicity in bimodal atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chia-Yun; Santos, Sergio, E-mail: santos-en@yahoo.com; Chiesa, Matteo [Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates); Barcons, Victor [Departament de Disseny i Programació de Sistemes Electrònics, UPC - Universitat Politècnica de Catalunya, Av. Bases, 61, 08242 Manresa (Barcelona) (Spain)

    2015-07-28

    Periodicity is fundamental for quantification and the application of conservation principles of many important systems. Here, we discuss periodicity in the context of bimodal atomic force microscopy (AFM). The relationship between the excited frequencies is shown to affect and control both experimental observables and the main expressions quantified via these observables, i.e., virial and energy transfer expressions, which form the basis of the bimodal AFM theory. The presence of a fundamental frequency further simplifies the theory and leads to close form solutions. Predictions are verified via numerical integration of the equation of motion and experimentally on a mica surface.

  9. Rectified optical force on dark-state atoms

    Science.gov (United States)

    Korsunsky, E. A.; Kosachiov, D. V.

    1997-12-01

    We show that an imperfection of velocity-selective coherent population trapping (VSCPT) in three-level atoms excited by standing light waves causes a rectified force on cooled atoms. The rectified force as well as the cooling force are calculated both analytically and numerically for 0953-4075/30/24/010/img5 and cascade three-level systems. Combination of these forces with the VSCPT mechanism can lead to localization of very cold atoms in potential wells created by the rectified force. This effect should be taken into account in experiments with VSCPT in standing waves, and can be used for realizing superlattices of cold atoms, in particular, cold Rydberg atoms.

  10. Can Point Defects in Surfaces in Solution be Atomically Resolved by Atomic Force Microscopy?

    Science.gov (United States)

    Reischl, Bernhard; Raiteri, Paolo; Gale, Julian D.; Rohl, Andrew L.

    2016-11-01

    While the atomic force microscope (AFM) is able to image mineral surfaces in solution with atomic resolution, so far, it has been a matter of debate whether imaging point defects is also possible under these conditions. The difficulties stem from the limited knowledge of what types of defects may be stable in the presence of an AFM tip, as well as from the complicated imaging mechanism involving interactions between hydration layers over the surface and around the tip apex. Here, we present atomistic molecular dynamics and free energy calculations of the AFM imaging of vacancies and ionic substitutions in the calcite (10 1 ¯ 4 ) surface in water, using a new silica AFM tip model. Our results indicate that both calcium and carbonate vacancies, as well as a magnesium substitution, could be resolved in an AFM experiment, albeit with different imaging mechanisms.

  11. Force dependent metalloprotein conductance by conducting atomic force microscopy

    Science.gov (United States)

    Zhao, Jianwei; Davis, Jason J.

    2003-09-01

    Our ability to analyse charge transport through a biological macromolecule, pertinent to our understanding not only of biological redox processes but also, for example, to our interpretation of tunnelling imaging, remains a significant practical and theoretical issue. Though much information can be gained by carrying out such examinations at a molecular level, there exist few methods where such controlled analyses are, in fact, feasible. Here we report on the electron transport characteristics of a blue copper metalloprotein as characterized at a refined level by conductive-probe atomic force microscopy. The modulation of this conductance with compressional force has also been examined. Though highly resistive, observations are consistent with the ability of the protein matrix to mediate appreciable tunnelling current. This work, then, paves the way for designed implementation of biomacromolecules into electronic devices.

  12. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merghni, Abderrahmen, E-mail: abderrahmen_merghni@yahoo.fr [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Kammoun, Dorra [Laboratoire de Biomatériaux et Biotechnologie, Faculté de Médecine Dentaire, Monastir (Tunisia); Hentati, Hajer [Laboratoire de Recherche en Santé Orale et Réhabilitation Bucco-Faciale (LR12ES11), Faculté de Médecine Dentaire de Monastir, Université de Monastir (Tunisia); Janel, Sébastien [BioImaging Center Lille-FR3642, Lille (France); Popoff, Michka [Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Lafont, Frank [BioImaging Center Lille-FR3642, Lille (France); Cellular Microbiology and Physics of Infection-CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Lille University (France); Aouni, Mahjoub [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Mastouri, Maha [Laboratoire des Maladies Transmissibles et Substances biologiquement actives (LR99ES27) Faculté de Pharmacie de Monastir, Université de Monastir (Tunisia); Laboratoire de Microbiologie, CHU Fattouma Bourguiba de Monastir (Tunisia)

    2016-08-30

    Highlights: • 4 dental restorative materials were characterized for roughness, angle contact water and surface free energy. • AFM adhesion forces of S. aureus to tested materials were achieved in presence and absence of salivary conditioning film. • S. aureus initial adhesion is dependent on the surface free energy and roughness. - Abstract: In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  13. Use of atomic force microscopy to quantify slip irreversibility in a nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Risbet, M.; Feaugas, X.; Guillemer-Neel, C.; Clavel, M

    2003-09-15

    Atomic force microscopy was used to study the evolution of surface deformation during cyclic loading in a nickel-base superalloy. Cyclic slip irreversibility has been investigated using quantitative evaluation of extrusion heights and inter-band spacing. This approach is applied to formulate a microscopic crack initiation law, compared to a classical Manson-Coffin relationship.

  14. STUDY OF MAGNETOSTRICTIVE PROPERTIES OF MATERIALS BY MEANS OF METHOD OF ATOMIC FORCE MICROSCOPY

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2014-01-01

    Full Text Available The article studies and experimentally proves possibility of application of atomic force microscope for measurement of small magnetostrictive deformations of materials. Exemplary results of measurements for the samples made of technically pure nickel exhibiting strong magnetostrictive effect are presented.

  15. Atomic Force Microscopy for Soil Analysis

    Science.gov (United States)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  16. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Science.gov (United States)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-08-01

    In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  17. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy

    Science.gov (United States)

    Gillis, Annika; Dupres, Vincent; Delestrait, Guillaume; Mahillon, Jacques; Dufrêne, Yves F.

    2012-02-01

    Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in

  18. ATOMIC-FORCE MICROSCOPY IMAGING OF TRANSITION-METAL LAYERED COMPOUNDS - A 2-DIMENSIONAL STICK-SLIP SYSTEM

    NARCIS (Netherlands)

    Kerssemakers, J.W J; de Hosson, J.T.M.

    1995-01-01

    Various layered transition metal dichalcogenides were scanned with an optical-lever atomic force microscope (AFM). The microscopic images indicate the occurrence of strong lateral stick-slip effects. In this letter, two models are presented to describe the observations due to stick-slip, i.e., eithe

  19. Atomic force microscopy imaging of transition metal layered compounds : A two-dimensional stick–slip system

    NARCIS (Netherlands)

    Kerssemakers, J.; Hosson, J.Th.M. De

    1995-01-01

    Various layered transition metal dichalcogenides were scanned with an optical-lever atomic force microscope (AFM). The microscopic images indicate the occurrence of strong lateral stick–slip effects. In this letter, two models are presented to describe the observations due to stick–slip, i.e., eithe

  20. Nanoscopic oxidation of p-type and un-doped Si (100) surfaces using un-externally biased atomic force microscope tips (AFM) in the presence of selected organic solvents

    Science.gov (United States)

    McCausland, Jeffrey; Withanage, Sajeevi; Mallik, Robert; Lyuksyutov, Sergei

    A conductive un-biased AFM tip oscillating above p-type or un-doped Si (100) treated with toluene, butan-2-ol, and propan-2-ol creates nanostructures ranging in height from 1-100 nm. The tip was oscillated in ambient conditions (30-70% Rel. Humidity) at frequencies in the 102 kHz range. It was repeatable with various concentrations of solvent in aqueous solution. It is suggested that mechanical oscillations of the AFM tip polarizes the solvent molecules deposited on the surface resulting in electron transfer from the tip to the surface followed by feature formation. This process effectively creates an electrochemical cell at the microscopic level and the miscibility of the solvents is the key to enabling the process. Species which ionize during the process may be consumed in irreversible reactions whereas the alcohols act as catalysts and are not consumed. The influence of boron defects in the Si substrates is also discussed. It appears that the observed oxidation is different from all other similar reported phenomena including local anodic oxidation, and chemo-mechanical lithographic techniques utilizing AFM.

  1. Atomic force microscopy of model lipid membranes.

    Science.gov (United States)

    Morandat, Sandrine; Azouzi, Slim; Beauvais, Estelle; Mastouri, Amira; El Kirat, Karim

    2013-02-01

    Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.

  2. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  3. Application fo tunneling and atomic force detection to machines and scientific instruments. Tunnel gensho ya genshikan no mechatronics eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, H. (The University of Tokyo, Tokyo (Japan). Institute of Industrial Science)

    1991-11-01

    It is now about ten years since the scanning tunnel microscope (STM) and the atomic force microscope (AFM) were invented. These microscopes are used very importantly today as a surface analyzer capable of atomic order analysis for their very high resolution. The STM and AFM obtain images of atomic orders by means of mechanical scanning of the probes. This means that the microscopes can control positioning, force detection and displacement in regions of sub-nanometer orders. Examples of researches may include detection of acceleration, length measurement, positioning, force detection, nano-tripology, processing and gravitational wave detection. As described above, this paper notes the researches derived from the operational principles of the STM and AFM, rather than the researches on the observation objects. The great diversity of the researches taken up and the greatness in the number of researches in the STM and AFM gather how superbly germinative these were. 34 refs.

  4. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications.

  5. Multifunctional hydrogel nano-probes for atomic force microscopy

    Science.gov (United States)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  6. Nanoscale Subsurface Imaging via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    Science.gov (United States)

    Cantrell, Sean A.; Cantrell, John H.; Lilehei, Peter T.

    2007-01-01

    A novel scanning probe microscope methodology has been developed that employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by the fundamental resonance frequency of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever fundamental resonance. The resonance-enhanced difference-frequency signals are used to create images of embedded nanoscale features.

  7. Fuzzy logic algorithm to extract specific interaction forces from atomic force microscopy data

    Science.gov (United States)

    Kasas, Sandor; Riederer, Beat M.; Catsicas, Stefan; Cappella, Brunero; Dietler, Giovanni

    2000-05-01

    The atomic force microscope is not only a very convenient tool for studying the topography of different samples, but it can also be used to measure specific binding forces between molecules. For this purpose, one type of molecule is attached to the tip and the other one to the substrate. Approaching the tip to the substrate allows the molecules to bind together. Retracting the tip breaks the newly formed bond. The rupture of a specific bond appears in the force-distance curves as a spike from which the binding force can be deduced. In this article we present an algorithm to automatically process force-distance curves in order to obtain bond strength histograms. The algorithm is based on a fuzzy logic approach that permits an evaluation of "quality" for every event and makes the detection procedure much faster compared to a manual selection. In this article, the software has been applied to measure the binding strength between tubuline and microtubuline associated proteins.

  8. Dynamic nuclear polarization in a magnetic resonance force microscope experiment.

    Science.gov (United States)

    Issac, Corinne E; Gleave, Christine M; Nasr, Paméla T; Nguyen, Hoang L; Curley, Elizabeth A; Yoder, Jonilyn L; Moore, Eric W; Chen, Lei; Marohn, John A

    2016-04-01

    We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor ε was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was ε = +10 to +20 for spins proximal to the magnet, and was ε = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a ∼10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.

  9. Cold atoms in microscopic traps from wires to chips

    CERN Document Server

    Cassettari, D

    2000-01-01

    Ioffe-Pritchard trap. In the latter we have achieved the trapping parameters required in the experiments with Bose-Einstein condensates with much reduced power consumption. In a second time we have replaced the free standing wires with an atom chip, which we have used to compress the atomic cloud in potentials with trap frequencies above 100 kHz and ground state sizes below 100 nm. Such potentials are especially interesting for quantum information proposals of performing quantum gate operations with controlled collisions between trapped atoms. Finally, by combining two wire guides we have experimentally realized an innovative kind of beam splitter for guided atoms. We have investigated the splitting potential generated by a Y-shaped wire which has one input, i.e. the central arm of the Y, and two outputs corresponding to the left and right arms of the Y. By tuning the current ratio in the two outputs we have observed atoms switching from left to right as well as symmetric splitting. This and other similar des...

  10. Development of the Atomic-Resolution Environmental Transmission Electron Microscope

    DEFF Research Database (Denmark)

    2016-01-01

    is described. Applications of the ETEM include investigations of catalytic reactions such as biofuel synthesis from biomass, hydrogenation reactions of interest in synthetic fuel cell technologies, and hydrocarbon oxidation along with various other mainly supported metal catalysts. In other fields, the ETEM...... is used to study steels, graphene, nanowires, etc. In this chapter, the experimental setup of the microscope column and its peripherals are described....

  11. Effects of Microscopic Three-body Forces in Asymmetric Nuclear Matter

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The efiects of microscopic three-body forces on the equatioil of state(EOS)and the single particle properties of isospin asymmetric nuclear matter have been studied within Brueckner-Hartree-Fock framework~[1]The microscopic three-body force model constructed from meson exchange current approach in Ref.~[2] has been extended to isospin asymmetric nuclear matter

  12. Macroscopic irreversibility and microscopic paradox: A Constructal law analysis of atoms as open systems

    Science.gov (United States)

    Lucia, Umberto

    2016-10-01

    The relation between macroscopic irreversibility and microscopic reversibility is a present unsolved problem. Constructal law is introduced to develop analytically the Einstein’s, Schrödinger’s, and Gibbs’ considerations on the interaction between particles and thermal radiation (photons). The result leads to consider the atoms and molecules as open systems in continuous interaction with flows of photons from their surroundings. The consequent result is that, in any atomic transition, the energy related to the microscopic irreversibility is negligible, while when a great number of atoms (of the order of Avogadro’s number) is considered, this energy related to irreversibility becomes so large that its order of magnitude must be taken into account. Consequently, macroscopic irreversibility results related to microscopic irreversibility by flows of photons and amount of atoms involved in the processes.

  13. Atomic Force Microscopy Studies on The Surface Morphologies of Chemical Bath Deposited Cus Thin Films

    Directory of Open Access Journals (Sweden)

    Ho Soonmin

    2016-06-01

    Full Text Available In this work, copper sulphide thin films were deposited onto microscope glass slide by chemical bath deposition technique. The tartaric acid was served as complexing agent to chelate with Cu2+ to obtain complex solution. The influence of pH value on the surface morphologies of the films has been particularly investigated using the atomic force microscopy technique. The atomic force microscopy results indicate that the CuS films deposited at pH 1 were uniform, compact and pinhole free. However, the incomplete surface coverage observed for the films prepared at high pH (pH 2 and 2.5 values.

  14. Investigating bioconjugation by atomic force microscopy

    Science.gov (United States)

    2013-01-01

    Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448

  15. Sharing my fifteen years experiences in the research field of Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Guha T

    2014-03-01

    Full Text Available Atomic Force Microscope (AFM was developed by Binnig and his coworkers in the year 1986. He was awarded Nobel Prize in physics for this work in 1986 in sharing with Rohrer and Ruska. Rationale to develop AFM: Scanning Tunneling Microscope (STM, the precursor to AFM is efficient in imaging electrically conducting specimen at atomic resolution. The impetus for development of AFM came to Binnig’s mind because of relatively poor efficiency of STM to image electrically non-conducting biological samples. He wondered why the surfaces be always imaged with a current but not with a force. He thought if small forces of interactions between a probe tip atoms and specimen surface atoms could be detected and amplified then imaging of biological specimen would be possible at a very high resolution. AFM working Principle: AFM is a Scanning Probe Microscopy (SPM by which imaging is realized by interaction of a probe with sample surface without any beam (light, electron and lens system. The probe is attached to a soft and sensitive cantilever and either specimen is scanned by probe or specimen scans itself under a stationary probe. Probe’s spring constant must be small and the deflection must be measurable along with high resonance frequency. The most commonly associated force with AFM is called Vander Waals force. Three modes of working are contact mode, non contact mode and tapping mode. In contact zone, the probe tip attached with cantilever is held less than a few A˚ from the sample surface and the inter-atomic force between the atoms of probe tip and sample surface is repulsive. In non-contact zone, the probe tip is held at a distance of 100s of A˚ from the sample surface and the inter-atomic force here is long range Vander Waals interaction and is attractive in nature. AFM is also called Scanning Force Microscope because the force of interaction between probe tip atoms and surface atoms is amplified to generate a signal voltage which modulates video

  16. Microscopic Lensing by a Dense, Cold Atomic Sample

    CERN Document Server

    Roof, Stetson; Havey, Mark; Sokolov, I M; Kupriyanov, D V

    2014-01-01

    We demonstrate that a cold, dense sample of 87Rb atoms can exhibit a micron-scale lensing effect, much like that associated with a macroscopically-sized lens. The experiment is carried out in the fashion of traditional z-scan measurements but in much weaker fields and where close attention is paid to the detuning dependence of the transmitted light. The results are interpreted using numerical simulations and by modeling the sample as a thin lens with a spherical focal length.

  17. Introduction to Atomic Force Microscopy (AFM) in Biology.

    Science.gov (United States)

    Kreplak, Laurent

    2016-08-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution over a wide range of time scales from milliseconds to hours. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nano-scale to the micro-scale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described. © 2016 by John Wiley & Sons, Inc.

  18. The Atomic Force Microscopic (AFM) Characterization of Nanomaterials

    Science.gov (United States)

    2009-06-01

    solvents for SWNTs dispersion. In his report, SWNTs were prepared with the pulsed laser vaporization ( laser ablation ) method and purified by HNO3. The...Minutes; c) 90 Minutes; d) 120 Minutes, Respectively 4.2 Ball Milling and Dispersion of XD Carbon Nanotubes (XDCNTs) and Tungsten Carbide (WC...1,1,1-Trichloroethane TEM Transition Electron Microscopy TPa Terapascal V Volt W Watt w/w Weight by Weight WC Tungsten Carbide XDCNT XD Carbon

  19. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals

    Science.gov (United States)

    Harrison, A. J.; Bilgili, E. A.; Beaudoin, S. P.

    2013-01-01

    The goal of this work was to evaluate the ability of photothermal induced resonance (PTIR) to measure the local infrared absorption spectra of crystalline organic drug nanoparticles embedded within solid matrices. Herein, the first reports of the chemical characterization of sub-100 nm organic crystals are described; infrared spectra of 90 nm griseofulvin particles were obtained, confirming the chemical resolution of PTIR beyond the diffraction limit. Additionally, particle size distributions via dynamic light scattering and PTIR image analysis were found to be similar, suggesting that the PTIR measurements are not significantly affected by inhomogeneous infrared absorptivity of this system. Thus as medical applications increasingly emphasize localized drug delivery via micro/nano-engineered structures, PTIR can be used to unambiguously chemically characterize drug formulations at these length scales. PMID:24171582

  20. Development and Applications for the Remote Controllable Atomic Force Microscope

    Science.gov (United States)

    Fornaro, P.; Guggisberg, M.; Gyalog, T.; Wattinger, Ch.; Meyer, E.; Güntherodt, H.-J.

    2003-12-01

    We present a fully remote controllable AFM, featuring a motorized four-axis sample stage. The low cost robotics allows a fast and accurate change of pre-defined positions. Due to the software interface the instrument can be programmed to perform sequences of measurements. This allows the automated acquisition of large scale high resolution images. The instrument can be controlled and monitored from various locations using a standard network interface.

  1. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth

    2001-01-01

    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two......-component DMPC-DSPC bilayers and a remarkable enhanced hydrolytic activity of the PLA/sub 2/-enzyme for the DMPC-rich phase is seen. Furthermore, in a supported double bilayer system a characteristic ripple structure, most likely related to the formation of the P/sub beta /-ripple phase is observed....

  2. Large dynamic range Atomic Force Microscope for overlay improvements

    NARCIS (Netherlands)

    Kuiper, S.; Fritz, E.C.; Crowcombe, W.E.; Liebig, T.; Kramer, G.F.I.; Witvoet, G.; Duivenvoorde, T.; Overtoom, A.J.; Rijnbeek, R.A.; Zwet, E.J. van; Dijsseldonk, A. van; Boef, A. den; Beems, M.; Levasier, L.

    2016-01-01

    Nowadays most overlay metrology tools assess the overlay performance based on marker features which are deposited next to the functional device features within each layer of the semiconductor device. However, correct overlay of the relatively coarse marker features does not directly guarantee correc

  3. Atomic Force Microscope 2: Digital Instruments/Veeco Dimension 3000

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: AFM 2A tool used to study the material surface characteristics, check the surface patterns generated by nanofabrication. It can take samples...

  4. [Application of atomic force microscopy (AFM) in ophthalmology].

    Science.gov (United States)

    Milka, Michał; Mróz, Iwona; Jastrzebska, Maria; Wrzalik, Roman; Dobrowolski, Dariusz; Roszkowska, Anna M; Moćko, Lucyna; Wylegała, Edward

    2012-01-01

    Atomic force microscopy (AFM) allows to examine surface of different biological objects in the nearly physiological conditions at the nanoscale. The purpose of this work is to present the history of introduction and the potential applications of the AFM in ophthalmology research and clinical practice. In 1986 Binnig built the AFM as a next generation of the scanning tunnelling microscope (STM). The functional principle of AFM is based on the measurement of the forces between atoms on the sample surface and the probe. As a result, the three-dimensional image of the surface with the resolution on the order of nanometres can be obtained. Yamamoto used as the first the AFM on a wide scale in ophthalmology. The first investigations used the AFM method to study structure of collagen fibres of the cornea and of the sclera. Our research involves the analysis of artificial intraocular lenses (IOLs). According to earlier investigations, e.g. Lombardo et al., the AFM was used to study only native IOLs. Contrary to the earlier investigations, we focused our measurements on lenses explanted from human eyes. The surface of such lenses is exposed to the influence of the intraocular aqueous environment, and to the related impacts of biochemical processes. We hereby present the preliminary results of our work in the form of AFM images depicting IOL surface at the nanoscale. The images allowed us to observe early stages of the dye deposit formation as well as local calcinosis. We believe that AFM is a very promising tool for studying the structure of IOL surface and that further observations will make it possible to explain the pathomechanism of artificial intraocular lens opacity formation.

  5. Submolecular Resolution Imaging of molecules by Atomic Force Microscopy:The influence of the Electrostatic Force

    NARCIS (Netherlands)

    van der Lit, J.; Cicco, F.; Hapala, P.; Jelinek, P.; Swart, Ingmar

    2016-01-01

    The forces governing the contrast in submolecular resolution imaging of molecules with atomic force microscopy (AFM) have recently become a topic of intense debate. Here, we show that the electrostatic force is essential to understand the contrast in atomically resolved AFM images of polar molecules

  6. In-trap fluorescence detection of atoms in a microscopic dipole trap

    CERN Document Server

    Hilliard, A J; Sompet, P; Carpentier, A V; Andersen, M F

    2015-01-01

    We investigate fluorescence detection using a standing wave of blue-detuned light of one or more atoms held in a deep, microscopic dipole trap. The blue-detuned standing wave realizes a Sisyphus laser cooling mechanism so that an atom can scatter many photons while remaining trapped. When imaging more than one atom, the blue detuning limits loss due to inelastic light-assisted collisions. Using this standing wave probe beam, we demonstrate that we can count from one to the order of 100 atoms in the microtrap with sub-poissonian precision.

  7. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Celotta, Robert J., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov; Hess, Frank M.; Rutter, Gregory M.; Stroscio, Joseph A., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Balakirsky, Stephen B. [Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Fein, Aaron P. [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-12-15

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  8. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope.

    Science.gov (United States)

    Celotta, Robert J; Balakirsky, Stephen B; Fein, Aaron P; Hess, Frank M; Rutter, Gregory M; Stroscio, Joseph A

    2014-12-01

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  9. Dark forces and atomic electric dipole moments

    Science.gov (United States)

    Gharibnejad, Heman; Derevianko, Andrei

    2015-02-01

    Postulating the existence of a finite-mass mediator of T,P-odd coupling between atomic electrons and nucleons, we consider its effect on the permanent electric dipole moment (EDM) of diamagnetic atoms. We present both numerical and analytical analysis for such mediator-induced EDMs and compare it with EDM results for the conventional contact interaction. Based on this analysis, we derive limits on coupling strengths and carrier masses from experimental limits on EDM of the 199Hg atom.

  10. A combined near field optical and force microscope

    NARCIS (Netherlands)

    Moers, M.H.P.; Tack, R.G.; Hulst, van N.F.; Bölger, B.

    1993-01-01

    Scanning near field optical microscopy (SNOM) is the optical alternative of the scanning probe microscopical techniques which enables a lateral resolution down to about 10 nm, unlimited by diffraction. Moreover, the potential of non- destructive imaging of chemical and biological samples with nanome

  11. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  12. Atomic Force Microscopy as a Tool for Applied Virology and Microbiology

    Science.gov (United States)

    Zaitsev, Boris

    2003-12-01

    Atomic force microscope (AFM) can be successfully used for simple and fast solution of many applied biological problems. In this paper the survey of the results of the application of atomic force microscope SolverP47BIO (NT-MDT, Russia) in State Research Center of Virology and Biotechnology "Vector" is presented. The AFM has been used: - in applied virology for the counting of viral particles and examination of virus-cell interaction; - in microbiology for measurements and indication of bacterial spores and cells; - in biotechnology for control of biotechnological processes and evaluation of the distribution of particle dimension for viral and bacterial diagnostic assays. The main advantages of AFM in applied researches are simplicity of the processing of sample preparation and short time of the examination.

  13. Nanoscale Thermal Response in ZnO Varistors by Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Kun-Yu; ZENG Hua-Rong; LI Guo-Rong; SONG Hong-Zhang; CHENG Li-Hong; HUI Sen-Xing; YIN Qing-Rui

    2009-01-01

    We report the application of customer-built scanning thermal microscopy (SThM) based on a commercial atomic force microscope to investigate local thermal inhomogeneity of ZnO varistors.The so-called 3ω method, generally used for measuring macroscale thermal conductivity, is set up and integrated with an atomic force microscope to probe the nanoseale therma J property.Remarkably, thermal contrasts of ZnO varistors are firstly imaged by the SThM, indicating the uniform distribution of spinel phases at triple points.The frequency-dependent thermal signal of ZnO varistors is also studied to present quantitative evaluation of local thermal conductivity of the sample.

  14. Atomic force microscopy images of T4 bacteriophages on silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, W.F.; Ogletree, D.F.; Salmeron, M.B.

    1991-08-01

    A new atomic force microscope incorporating microfabricated cantilevers and employing laser beam deflection for force detection has been constructed and is being applied to studied of biological material. In this study, T4 bacteriophage virus particles were deposited from solution onto electronic grade flat silicon wafers and imaged in air with the microscope. Microliter droplets of the solution were deposited and either allowed to dry or removed with blotting paper. The images show both isolated viruses and aggregates of various sizes. The external structure as well as strands believed to be DNA streaming out of the virus could be observed. The construction of the microscope and its performance are also described. 19 refs., 4 figs.

  15. Atomic force microscopy characterization of kinase-mediated phosphorylation of a peptide monolayer

    Science.gov (United States)

    Zhuravel, Roman; Amit, Einav; Elbaz, Shir; Rotem, Dvir; Chen, Yu-Ju; Friedler, Assaf; Yitzchaik, Shlomo; Porath, Danny

    2016-11-01

    We describe the detailed microscopic changes in a peptide monolayer following kinase-mediated phosphorylation. A reversible electrochemical transformation was observed using square wave voltammetry (SWV) in the reversible cycle of peptide phosphorylation by ERK2 followed by dephosphorylation by alkaline phosphatase. A newly developed method for analyzing local roughness, measured by atomic force microscope (AFM), showed a bimodal distribution. This may indicate either a hole-formation mechanism and/or regions on the surface in which the peptide changed its conformation upon phosphorylation, resulting in increased roughness and current. Our results provide the mechanistic basis for developing biosensors for detecting kinase-mediated phosphorylation in disease.

  16. Nanoplough-constrictions on thin YBCO films made with atomic force microscopy.

    Science.gov (United States)

    Elkaseh, A A O; Büttner, U; Meincken, M; Hardie, G L; Srinivasu, V V; Perold, W J

    2007-09-01

    Utilizing atomic force microscope (AFM) with a diamond tip, we were able to successfully plough nano-constrictions on epitaxially grown YBa2Cu3O(7-x) thin films deposited on MgO substrates. The thickness, width, and length of the obtained constrictions were in the range of a few 100 nm. Furthermore, we managed to produce a new S-type constriction, of which the dimensions are easier to control than for conventional constrictions.

  17. Microscopic Many-Body Theory of Atomic Bose Gases near a Feshbach Resonance

    NARCIS (Netherlands)

    Duine, R.A.; Stoof, H.T.C.

    2003-01-01

    A Feshbach resonance in the s-wave scattering length occurs if the energy of the two atoms in the incoming open channel is close to the energy of a bound state in a coupled closed channel. Starting from the microscopic Hamiltonian that describes this situation, we derive the effective atom–molecule

  18. Surface forces studied with colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Giesbers, M.

    2001-01-01

    Forces between surfaces are a determining factor for the performance of natural as well as synthetic colloidal systems, and play a crucial role in industrial production processes. Measuring these forces is a scientific and experimental challenge and over the years several techniques have been develo

  19. Spontaneous decay of an atom excited in a dense and disordered atomic ensemble: quantum microscopic approach

    CERN Document Server

    Kuraptsev, A S

    2016-01-01

    On the basis of general theoretical results developed previously in [I. M. Sokolov et al., J. Exp. Theor. Phys. 112, 246 (2011)], we analyze spontaneous decay of a single atom inside cold atomic clouds under conditions when the averaged interatomic separation is less or comparable with the wavelength of quasi resonant radiation. Beyond the decay dynamics we analyze shifts of resonance as well as distortion of the spectral shape of the atomic transition.

  20. Quantitative Atomic Force Microscopy with Carbon Monoxide Terminated Tips

    NARCIS (Netherlands)

    Sun, Zhixiang; Boneschanscher, Mark P.; Swart, Ingmar; Vanmaekelbergh, Daniel; Liljeroth, Peter

    2011-01-01

    Noncontact atomic force microscopy (AFM) has recently progressed tremendously in achieving atomic resolution imaging through the use of small oscillation amplitudes and well-defined modification of the tip apex. In particular, it has been shown that picking up simple inorganic molecules (such as CO)

  1. Revealing subsurface vibrational modes by atom-resolved damping force spectroscopy.

    Science.gov (United States)

    Ashino, Makoto; Wiesendanger, Roland; Khlobystov, Andrei N; Berber, Savas; Tománek, David

    2009-05-15

    We propose to use the damping signal of an oscillating cantilever in dynamic atomic force microscopy as a noninvasive tool to study the vibrational structure of the substrate. We present atomically resolved maps of damping in carbon nanotube peapods, capable of identifying the location and packing of enclosed Dy@C_{82} molecules as well as local excitations of vibrational modes inside nanotubes of different diameter. We elucidate the physical origin of damping in a microscopic model and provide quantitative interpretation of the observations by calculating the vibrational spectrum and damping of Dy@C_{82} inside nanotubes with different diameters using ab initio total energy and molecular dynamics calculations.

  2. Efficient loading of a single neutral atom into an optical microscopic tweezer

    Institute of Scientific and Technical Information of China (English)

    何军; 刘贝; 刁文婷; 王杰英; 靳刚; 王军民

    2015-01-01

    A single atom in a magneto–optical trap (MOT) with trap size (hundreds of micrometers) can be transferred into an optical microscopic tweezer with a probability of∼100%. The ability to transfer a single atom into two traps back and forth allows us to study the loading process. The loading probability is found to be insensitive to the geometric overlap of the MOT and the tweezer. It is therefore possible to perform simultaneously loading of a single atom into all sites of the tweezer array for many qubits. In particular, we present a simulation of the one-dimensional and two-dimensional arrays of an optical microscopic tweezer. We find the same qualitative behavior for all of the trap parameters.

  3. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Muhunthan, N.; Singh, Om Pal [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India); Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N., E-mail: singhvn@nplindia.org [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India)

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  4. Probing characteristics of collagen molecules on various surfaces via atomic force microscopy

    Science.gov (United States)

    Su, Hao-Wei; Ho, Mon-Shu; Cheng, Chao-Min

    2012-06-01

    We examine, herein, specific dynamic responses of collagen molecules (i.e., observations of self-assembly and nanometric adhesion force measurements of type-I collagen molecules) as they interact with either a hydrophobic or a hydrophilic surface at two distinct temperatures, using a liquid-type atomic force microscope. We conclude that, regardless of surface hydrophobicity/hydrophilicity, assembled microfibrils eventually distribute homogeneously in accordance with changes in surface-related mechanical properties of collagen molecules at different self-assembly stages.

  5. The unfolding of native laminin investigated by atomic force microscopy

    Science.gov (United States)

    Nemes, Cs.; Ramsden, J. J.; Rozlosnik, N.

    2002-10-01

    Atomic force microscopy has been used to directly measure the forces required to unfold individual domains of the extracellular matrix protein laminin. The approach-retraction cycles display a characteristic saw-tooth motif. Tooth heights and separations were used to establish a statistical relation between domain unfolding force and domain extension. The extensible domains of laminin require an unfolding force intermediate between previously established values for α-helical and β-sheet domains in other proteins. The relationship between unfolding force and extension for a given domain is not smooth; discrete steps are observed, interpreted as originating from the modularity of the protein structure.

  6. Measurement methods in atomic force microscopy.

    Science.gov (United States)

    Torre, Bruno; Canale, Claudio; Ricci, Davide; Braga, Pier Carlo

    2011-01-01

    This chapter is introductory to the measurements: it explains different measurement techniques both for imaging and for force spectroscopy, on which most of the AFM experiments rely. It gives a general overview of the different techniques and of the output expected from the instrument; therefore it is, at a basic level, a good tool to properly start a new experiment. Concepts introduced in this chapter give the base for understanding the applications shown in the following chapters. Subheading 1 introduces the distinction between spectroscopy and imaging experiments and, within the last ones, between DC and AC mode. Subheading 2 is focused on DC mode (contact), explaining the topography and the lateral force channel. Subheading 3 introduces AC mode, both in noncontact and intermittent contact case. Phase imaging and force modulation are also discussed. Subheading 4 explains how the AFM can be used to measure local mechanical and adhesive properties of specimens by means of force spectroscopy technique. An overview on the state of the art and future trends in this field is also given.

  7. Submolecular Resolution Imaging of Molecules by Atomic Force Microscopy: The Influence of the Electrostatic Force

    Science.gov (United States)

    van der Lit, Joost; Di Cicco, Francesca; Hapala, Prokop; Jelinek, Pavel; Swart, Ingmar

    2016-03-01

    The forces governing the contrast in submolecular resolution imaging of molecules with atomic force microscopy (AFM) have recently become a topic of intense debate. Here, we show that the electrostatic force is essential to understand the contrast in atomically resolved AFM images of polar molecules. Specifically, we image strongly polarized molecules with negatively and positively charged tips. A contrast inversion is observed above the polar groups. By taking into account the electrostatic forces between tip and molecule, the observed contrast differences can be reproduced using a molecular mechanics model. In addition, we analyze the height dependence of the various force components contributing to the high-resolution AFM contrast.

  8. Force-feedback joystick as a low-cost haptic interface for an atomic-force-microscopy nanomanipulator

    Science.gov (United States)

    Rubio-Sierra, F. J.; Stark, R. W.; Thalhammer, S.; Heckl, W. M.

    In order to manipulate materials at the nanometer scale, new methods and devices have to be developed. A nanomanipulator interface was designed and implemented in a commercial atomic-force-microscope (AFM) system. With the aid of a positioning joystick, direct positioning of the AFM probe with nanometer precision was possible. A commercial force-feedback joystick served as a haptic interface and provided the user with real-time feeling of the tip-sample interactions. Due to the open design, the manipulator interface could be used with other microscopes of the SPM family. In addition, the nanomanipulator and an UV-laser microbeam for photoablation were combined on an inverted optical microscope. To test the nanomanipulator, human metaphase chromosomes were dissected using both photoablation and mechanical AFM manipulation. The experimental results show that by combining both methods, biological material can be manipulated on different size scales in one integrated instrument. The effects of manipulation on the chromosome were studied in detail by AFM. Sub-400 nm cuts were achieved by photonic ablation. Chromosomal fragments of a size less than of 500 nm could be isolated. By means of mechanical microdissection, different cut sizes ranging from 80 nm to 500 nm could be easily obtained by applying different load forces.

  9. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    CERN Document Server

    Hoof, Sebastian; Hoogenboom, Bart W

    2012-01-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here we show that a high-quality resonance (Q>20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity --- as expressed via the minimum detectable force gradient --- is hardly affected, because of the enhanced quality factor. Via the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up which includes magnetic actuation of the cantilevers and which can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  10. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    Science.gov (United States)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under

  11. Influence of tip indentation depth on the adhesive behavior of viscoelastic polydimethylsiloxane networks studied by atomic force microscopy

    NARCIS (Netherlands)

    Pickering, J.P.; Vancso, G.J.

    2001-01-01

    A commercial atomic force microscope (AFM) outfitted with a custom control and data acquisition system was used to investigate the adhesive nature of a viscoelastic polydimethylsiloxane (PDMS) network. Due to the complex dependence of the adhesion of this sample on factors such as indentation, surfa

  12. Morfología Superficial de Almidones Termoplásticos Agrio de Yuca y Nativo de Papa por Microscopía Óptica y de Fuerza Atómica Surface Morphology of Sour Cassava and Native Potato Thermoplastic Starches by Optical and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Harold A Acosta

    2006-01-01

    Full Text Available Se ha evaluado la morfología superficial de almidones termoplásticos (TPS obtenidos de almidones agrio de yuca y nativo de papa, extruidos con tornillo simple, usando microscopía óptica de alta resolución (OM y de fuerza atómica (AFM. Muestras de almidones agrio de yuca y nativo de papa más glicerina, se procesaron a 120 ºC y 50 rpm, dando extruidos que se cortaron en láminas delgadas, que se observaron por OM y AFM (modo contacto intermitente. El almidón nativo de papa mostró grandes gránulos ovoides y el almidón agrio de yuca reveló el ataque enzimático debido a la fermentación natural. Los TPS mostraron superficies lisas y rugosas dependiendo de la forma y el tamaño del gránulo, de la fermentación natural y del contenido de plastificante. Los TPS nativo de papa exhibieron pocas superficies lisas por OM y alta rugosidad por AFM; lo contrario se presentó con el TPS agrio de yuca, debido a su fermentación natural previa. Estos resultados contribuyen a predecir y entender las propiedades microestructurales, mecánicas y texturales de los almidones termoplásticos.An evaluation was made of the surface morphology of thermoplastic starches (TPS from sour cassava and native potato, extruded with a single-screw extruder, using high-resolution optical microscopy (OM and atomic force microscopy (AFM. Samples of sour cassava starch and native potato starch and glycerine, were processed at 120(0C and 50 rpm, producing extrudates which were cut into thin films for observation by OM and AFM (intermittent contact mode. Native potato starch showed large ovoid granules, while sour cassava starch revealed enzyme attack due to natural fermentation. The TPS had smooth and rough surfaces, depending upon granule size and shape, starch fermentation, and plasticizer content. Native potato TPS presented few smooth surfaces by OM and high roughness by AFM. The opposite was observed with sour cassava TPS, which had experienced some previous natural

  13. Imaging and modification of polymers by scanning tunneling and atomic force microscopy

    Science.gov (United States)

    Albrecht, T. R.; Dovek, M. M.; Lang, C. A.; Grütter, P.; Quate, C. F.; Kuan, S. W. J.; Frank, C. W.; Pease, R. F. W.

    1988-08-01

    Direct imaging of ultrathin organic films on solid surfaces is important for a variety of reasons; in particular, the use of such films as ultrathin resists for nanometer scale fabrication and information recording requires that we understand their microstrucure. We have used the Langmuir-Blodgett technique to prepare monolayer and submonolayer films of poly(octadecylacrylate) (PODA) and poly(methylmethacrylate) (PMMA) on graphite substrates. Atomic scale images obtained with the scanning tunneling microscope (STM) and the atomic force microscope of the PODA films showed a variety of structures, including isolated narrow fibrils, parallel groups of fibrils, and an ordered structure consistent with the side chain crystallization expected with that material. The fibrils observed are interpreted as individual polymer chains or small bundles of parallel chains. Images of the PMMA samples show no ordered regions. By applying voltage pulses on the STM tip, we were able to locally modify and apparently cut through the PODA fibrils.

  14. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    Science.gov (United States)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  15. Design and construction of a heat stage for investigations of samples by atomic force microscopy above ambient temperatures

    DEFF Research Database (Denmark)

    Bækmark, Thomas Rosleff; Bjørnholm, Thomas; Mouritsen, Ole G.

    1997-01-01

    The construction from simple and cheap commercially available parts of a miniature heat stage for the direct heating of samples studied with a commercially available optical-lever-detection atomic force microscope is reported. We demonstrate that by using this heat stage, atomic resolution can be...... be obtained on highly oriented pyrolytic graphite at 52 °C. The heat stage is of potential use for the investigation of biological material at physiological temperatures. ©1997 American Institute of Physics....

  16. Autopilot for frequency-modulation atomic force microscopy

    Science.gov (United States)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  17. Autopilot for frequency-modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il [Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2015-10-15

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  18. The Development of the High-Resolution Transmission Electron Microscope (HRTEM) Combined with AFM for Simultaneous Observation of Structure and Force of the Nanocontact

    Science.gov (United States)

    Shibata, Sakiko; Tanishiro, Yasumasa; Kondo, Yukihito; Minoda, Hiroki; Takayanagi, Kunio

    2004-03-01

    A high-resolution transmission electron microscope combined with an atomic force microscope (HRTEM-AFM) has been developed. It enables us to observe mechanical force and atomic structure of nanowires formed at the nanocontact simultaneously. And the self-sensing piezoresistive cantilever is used as an AFM probe in the HRTEM-AFM. It has high spatial resolution of 0.2nm and high force sensitivity of sub-nN. The HRTEM has also ability to work on ultra high vacuum(UHV) which is necessary to keep the nanocontact clean. The present system could never be developed without total redesigning of the goniometer stage of UHV-TEM which operates at 10-8 Pa.

  19. Properties of Atoms in Molecules:  Caged Atoms and the Ehrenfest Force.

    Science.gov (United States)

    Bader, Richard F W; Fang, De-Cai

    2005-05-01

    This paper uses the properties of atom X enclosed within an adamantane cage, denoted by X@C10H16, as a vehicle to introduce the Ehrenfest force into the discussion of bonding, the properties being determined by the physics of an open system. This is the force acting on an atom in a molecule and determining the potential energy appearing in Slater's molecular virial theorem. The Ehrenfest force acting across the interatomic surface of a bonded pair atoms [Formula: see text] atoms linked by a bond path [Formula: see text] is attractive, each atom being drawn toward the other, and the associated surface virial that measures the contribution to the energy arising from the formation of the surface is stabilizing. It is the Ehrenfest force that determines the adhesive properties of surfaces. The endothermicity of formation for X = He or Ne is not a result of instabilities incurred in the interaction of X with the four methine carbons to which it is bonded, interactions that are stabilizing both in terms of the changes in the atomic energies and in the surface virials. The exothermicity for X = Be(2+), B(3+), and Al(3+) is a consequence of the transfer of electron density from the hydrogen atoms to the carbon and X atoms, the exothermicity increasing with charge transfer despite an increase in the contained volume of X.

  20. The Tip-Sample Interaction in Atomic Force Microscopy and its Implications for Biological Applications.

    Science.gov (United States)

    Baselt, David Randall

    This thesis describes the construction of an atomic force microscope and its application to the study of tip -sample interactions, primarily through the use of friction and hardness (elasticity) imaging. Part one describes the atomic force microscope, which consists of a scanned-cantilever stage (chapter 2); a versatile digital signal processor-based control system with self-optimizing feedback, lock-in amplifier emulation (for hardness imaging), and macro programmability (chapter 3); and image processing software (chapter 4). Part two describes a number of results that have helped to characterize the tip-sample interaction and the contact imaging modes used for its study. Meniscus forces act laterally as well as normally, and that they vary with position (chapter 5). Friction measurements couple with scanner position and feedback, and the meniscus effects friction images (chapter 6). Sliding of the tip over the sample surface introduces slope-dependence into hardness measurements (chapter 7). Dull tips can create prominent topography artifacts even on very flat surfaces (chapter 8). In an investigation of collagen fibrils, AFM has revealed the characteristic 65 nm banding pattern, a second, minor banding pattern, and microfibrils that run along the fibril axis. The distribution of proteoglycans along the fibrils creates a characteristic pattern in friction images. Although imaging in water reduces interaction forces, water can also make biological samples more sensitive to force. However, for robust biological samples imaged in air, tip shape presents a greater obstacle than tip -sample interaction forces to obtaining high-resolution images. Tip contamination increases tip-sample friction and can occasionally improve resolution (chapter 9). For a separate project I have designed a general -purpose nearfield scanning optical microscope (chapter 10).

  1. Mapping nanomechanical properties of live cells using multi-harmonic atomic force microscopy

    Science.gov (United States)

    Raman, A.; Trigueros, S.; Cartagena, A.; Stevenson, A. P. Z.; Susilo, M.; Nauman, E.; Contera, S. Antoranz

    2011-12-01

    The nanomechanical properties of living cells, such as their surface elastic response and adhesion, have important roles in cellular processes such as morphogenesis, mechano-transduction, focal adhesion, motility, metastasis and drug delivery. Techniques based on quasi-static atomic force microscopy techniques can map these properties, but they lack the spatial and temporal resolution that is needed to observe many of the relevant details. Here, we present a dynamic atomic force microscopy method to map quantitatively the nanomechanical properties of live cells with a throughput (measured in pixels/minute) that is ~10-1,000 times higher than that achieved with quasi-static atomic force microscopy techniques. The local properties of a cell are derived from the 0th, 1st and 2nd harmonic components of the Fourier spectrum of the AFM cantilevers interacting with the cell surface. Local stiffness, stiffness gradient and the viscoelastic dissipation of live Escherichia coli bacteria, rat fibroblasts and human red blood cells were all mapped in buffer solutions. Our method is compatible with commercial atomic force microscopes and could be used to analyse mechanical changes in tumours, cells and biofilm formation with sub-10 nm detail.

  2. Interactions between synaptic vesicle fusion proteins explored by atomic force microscopy.

    Science.gov (United States)

    Yersin, A; Hirling, H; Steiner, P; Magnin, S; Regazzi, R; Hüni, B; Huguenot, P; De los Rios, P; Dietler, G; Catsicas, S; Kasas, S

    2003-07-22

    Measuring the biophysical properties of macromolecular complexes at work is a major challenge of modern biology. The protein complex composed of vesicle-associated membrane protein 2, synaptosomal-associated protein of 25 kDa, and syntaxin 1 [soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) complex] is essential for docking and fusion of neurotransmitter-filled synaptic vesicles with the presynaptic membrane. To better understand the fusion mechanisms, we reconstituted the synaptic SNARE complex in the imaging chamber of an atomic force microscope and measured the interaction forces between its components. Each protein was tested against the two others, taken either individually or as binary complexes. This approach allowed us to determine specific interaction forces and dissociation kinetics of the SNAREs and led us to propose a sequence of interactions. A theoretical model based on our measurements suggests that a minimum of four complexes is probably necessary for fusion to occur. We also showed that the regulatory protein neuronal Sec1 injected into the atomic force microscope chamber prevented the complex formation. Finally, we measured the effect of tetanus toxin protease on the SNARE complex and its activity by on-line registration during tetanus toxin injection. These experiments provide a basis for the functional study of protein microdomains and also suggest opportunities for sensitive screening of drugs that can modulate protein-protein interactions.

  3. Intermittent contact atomic force microscopy in electrochemical environment

    Energy Technology Data Exchange (ETDEWEB)

    Haering, P.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H. [Bern Univ., Bern (Switzerland)

    1997-06-01

    In situ measurements with Atomic Force Microscopy may cause surface modifications due to the tip-surface interactions. As an alternative and less destructive method, Intermittent Contact Atomic Force Microscopy (ICAFM) has been tested in an electrolytic environment. In the ICAFM mode the tip is not constantly in contact with the surface under investigation but is tapping onto the surface with a certain frequency. A commercial Park Scientific Instruments Microscopy has been modified to enable in situ experiment with ICAFM. It was possible to image iridium oxide films with ICAFM in the electrolytic environment without any noticeable surface modifications. (author) 3 figs., 4 refs.

  4. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Osvaldo N. Oliveira

    2012-10-01

    Full Text Available The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS, it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  5. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    Science.gov (United States)

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  6. Learning scheme to predict atomic forces and accelerate materials simulations

    Science.gov (United States)

    Botu, V.; Ramprasad, R.

    2015-09-01

    The behavior of an atom in a molecule, liquid, or solid is governed by the force it experiences. If the dependence of this vectorial force on the atomic chemical environment can be learned efficiently with high fidelity from benchmark reference results—using "big-data" techniques, i.e., without resorting to actual functional forms—then this capability can be harnessed to enormously speed up in silico materials simulations. The present contribution provides several examples of how such a force field for Al can be used to go far beyond the length-scale and time-scale regimes presently accessible using quantum-mechanical methods. It is argued that pathways are available to systematically and continuously improve the predictive capability of such a learned force field in an adaptive manner, and that this concept can be generalized to include multiple elements.

  7. Will a Decaying Atom Feel a Friction Force?

    Science.gov (United States)

    Sonnleitner, Matthias; Trautmann, Nils; Barnett, Stephen M.

    2017-02-01

    We show how a simple calculation leads to the surprising result that an excited two-level atom moving through a vacuum sees a tiny friction force of first order in v /c . At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is even more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.

  8. Will a decaying atom feel a friction force?

    CERN Document Server

    Sonnleitner, Matthias; Barnett, Stephen M

    2016-01-01

    We show how a simple calculation leads to the surprising result that an excited two-level atom moving through vacuum sees a tiny friction force of first order in v/c. At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is yet more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.

  9. Cooperative scattering and radiation pressure force in dense atomic clouds

    CERN Document Server

    Bachelard, Romain; Courteille, Philippe

    2011-01-01

    We consider the collective scattering by a cloud of $N$ two-level atoms driven by an uniform radiation field. Dense atomic clouds can be described by a continuous density and the problem reduces to deriving the spectrum of the atom-atom coupling operator. For clouds much larger than the optical wavelength, the spectrum is treated as a continuum, and analytical expressions for several macroscopic quantities, such as scattered radiation intensity and radiation pressure force, are derived. The analytical results are then compared to the exact $N$-body solution and with those obtained assuming a symmetric timed Dicke state. In contrast with the symmetric timed Dicke state, our calculations takes account of the back action of the atoms on the driving field leading to phase shifts due to the finite refraction of the cloud.

  10. Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology.

    Science.gov (United States)

    Yang, Dingzheng; Xie, Lei; Bobicki, Erin; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2014-09-16

    Understanding the surface properties and interactions of nonspherical particles is of both fundamental and practical importance in the rheology of complex fluids in various engineering applications. In this work, natural chrysotile, a phyllosilicate composed of 1:1 stacked silica and brucite layers which coil into cylindrical structure, was chosen as a model rod-shaped particle. The interactions of chrysotile brucite-like basal or bilayered edge planes and a silicon nitride tip were measured using an atomic force microscope (AFM). The force-distance profiles were fitted using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which demonstrates anisotropic and pH-dependent surface charge properties of brucite-like basal plane and bilayered edge surface. The points of zero charge (PZC) of the basal and edge planes were estimated to be around pH 10-11 and 6-7, respectively. Rheology measurements of 7 vol % chrysotile (with an aspect ratio of 14.5) in 10 mM NaCl solution showed pH-dependent yield stress with a local maximum around pH 7-9, which falls between the two PZC values of the edge and basal planes of the rod particles. On the basis of the surface potentials of the edge and basal planes obtained from AFM measurements, theoretical analysis of the surface interactions of edge-edge, basal-edge, and basal-basal planes of the chrysotile rods suggests the yield stress maximum observed could be mainly attributed to the basal-edge attractions. Our results indicate that the anisotropic surface properties (e.g., charges) of chrysotile rods play an important role in the particle-particle interaction and rheological behavior, which also provides insight into the basic understanding of the colloidal interactions and rheology of nonspherical particles.

  11. Looking at cell mechanics with atomic force microscopy: experiment and theory.

    Science.gov (United States)

    Benitez, Rafael; Toca-Herrera, José L

    2014-11-01

    This review reports on the use of the atomic force microscopy in the investigation of the mechanical properties of cells. It is shown that the technique is able to deliver information about the cell surface properties (e.g., topography), the Young modulus, the viscosity, and the cell the relaxation times. Another aspect that this short review points out is the utilization of the atomic force microscope to investigate basic questions related to materials physics, biology, and medicine. The review is written in a chronological way to offer an overview of phenomenological facts and quantitative results to the reader. The final section discusses in detail the advantages and disadvantages of the Hertz and JKR models. A new implementation of the JKR model derived by Dufresne is presented.

  12. Microscopic Three-Body Force Effect on Nucleon-Nucleon Cross Sections in Symmetric Nuclear Matter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-Fei; ZUO Wei; Lombardo Umberto; LI Zeng-Hua; LI Jun-Qing

    2008-01-01

    We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the Argonne V14 potential including the contribution of microscopic three-body force. We investigate separately the effects of three-body force on the effective mass and on the scattering amplitude. In the present calculation, the rearrangement contribution of three-body force is considered, which will reduce the neutron and proton effective mass, and depress the amplitude of cross section. The effect of three body force is shown to be repulsive, especially in high densities and large momenta, which will suppress the cross section markedly.

  13. Nuclear forces and ab initio calculations of atomic nuclei

    OpenAIRE

    Meißner, Ulf-G.

    2014-01-01

    Nuclear forces and the nuclear many-body problem have been some of Gerry Brown's main topics in his so productive life as a theoretical physicist. In this talk, I outline how Gerry's work laid the foundations of the modern theory of nuclear forces and ab initio calculations of atomic nuclei. I also present some recent developments obtained in the framework of nuclear lattice simulations.

  14. Using Atom Interferometry to Search for New Forces

    Energy Technology Data Exchange (ETDEWEB)

    Wacker, Jay G.; /SLAC

    2009-12-11

    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10{sup 2} and near-future advances will be able to rewrite the limits for forces with ranges from 100 {micro}m to 1km.

  15. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    Science.gov (United States)

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  16. Polar Metal Oxide Surfaces of MgAl2O4 and ZnO Studied with Non-Contact Atomic Force Microscopy

    DEFF Research Database (Denmark)

    Rasmussen, Morten Karstoft

    2011-01-01

    large and complicated surface reconstructions. However, by utilizing the non-contact atomic force microscope together with complimentary experimental techniques and theoretical calculations, the work presented in this thesis introduces a new general route for resolving the atomic structure of a polar...

  17. Atomic Force Microscopy of dynamic protein DNA interactions

    NARCIS (Netherlands)

    Noort, van Simon Johannes Theodorus

    1999-01-01

    In this thesis a dedicated Atomic Force Microscopy (AFM) setup is used for imaging biochemical reactions with molecular resolution. The basis for the high resolution of AFM is the combination of a small probe, close proximity to the sample and a short-range interaction between the probe and the samp

  18. Imaging and manipulation of single viruses by atomic force microscopy

    NARCIS (Netherlands)

    Baclayon, M.; Wuite, G. J. L.; Roos, W. H.

    2010-01-01

    The recent developments in virus research and the application of functional viral particles in nanotechnology and medicine rely on sophisticated imaging and manipulation techniques at nanometre resolution in liquid, air and vacuum. Atomic force microscopy (AFM) is a tool that combines these requirem

  19. Intermolecular Contrast in Atomic Force Microscopy Images without Intermolecular Bonds

    NARCIS (Netherlands)

    Hämäläinen, Sampsa K.; van der Heijden, N.J. (Nadine); van der Lit, Joost; den Hartog, Stephan; Liljeroth, Peter; Swart, Ingmar

    2014-01-01

    Intermolecular features in atomic force microscopy images of organic molecules have been ascribed to intermolecular bonds. A recent theoretical study [P. Hapala et al., Phys. Rev. B 90, 085421 (2014)] showed that these features can also be explained by the flexibility of molecule-terminated tips. We

  20. Microbially influenced corrosion visualized by atomic force microscopy

    Science.gov (United States)

    Telegdi, J.; Keresztes, Z.; Pálinkás, G.; Kálmán, E.; Sand, W.

    Corrosion, biofilm formation and the adsorption of different, corrosion-enhancing microbes (such as Desulfovibrio desulfuricans, Thiobacillus ferrooxidans, Thiobacillus intermedius, Leptospirillum ferrooxidans, and mixed cultures) to different surfaces (iron, copper, pyrite) have been studied in aqueous environment by atomic force microscopy (AFM). It is one of the most effective on-line techniques for imaging surfaces (bacterial, metallic, etc.) with high resolution.

  1. Application of dynamic impedance spectroscopy to atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Kazimierz Darowicki, Artur Zieliński and Krzysztof J Kurzydłowski

    2008-01-01

    Full Text Available Atomic force microscopy (AFM is a universal imaging technique, while impedance spectroscopy is a fundamental method of determining the electrical properties of materials. It is useful to combine those techniques to obtain the spatial distribution of an impedance vector. This paper proposes a new combining approach utilizing multifrequency scanning and simultaneous AFM scanning of an investigated surface.

  2. Modeling noncontact atomic force microscopy resolution on corrugated surfaces

    Directory of Open Access Journals (Sweden)

    Kristen M. Burson

    2012-03-01

    Full Text Available Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO2 as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid. The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  3. Force-Mediated Kinetics of Single P-Selectin/Ligand Complexes Observed by Atomic Force Microscopy

    Science.gov (United States)

    Fritz, Jurgen; Katopodis, Andreas G.; Kolbinger, Frank; Anselmetti, Dario

    1998-10-01

    Leukocytes roll along the endothelium of postcapillary venules in response to inflammatory signals. Rolling under the hydrodynamic drag forces of blood flow is mediated by the interaction between selectins and their ligands across the leukocyte and endothelial cell surfaces. Here we present force-spectroscopy experiments on single complexes of P-selectin and P-selectin glycoprotein ligand-1 by atomic force microscopy to determine the intrinsic molecular properties of this dynamic adhesion process. By modeling intermolecular and intramolecular forces as well as the adhesion probability in atomic force microscopy experiments we gain information on rupture forces, elasticity, and kinetics of the P-selectin/P-selectin glycoprotein ligand-1 interaction. The complexes are able to withstand forces up to 165 pN and show a chain-like elasticity with a molecular spring constant of 5.3 pN nm-1 and a persistence length of 0.35 nm. The dissociation constant (off-rate) varies over three orders of magnitude from 0.02 s-1 under zero force up to 15 s-1 under external applied forces. Rupture force and lifetime of the complexes are not constant, but directly depend on the applied force per unit time, which is a product of the intrinsic molecular elasticity and the external pulling velocity. The high strength of binding combined with force-dependent rate constants and high molecular elasticity are tailored to support physiological leukocyte rolling.

  4. Connection of Magnetic Antisense Probe with SK-Br-3 Oncocyte mRNA Nucleotide Detected by High Resolution Atomic Force Microscope%高精度原子力显微镜显示磁性反义探针与SK-Br-3肿瘤细胞mRNA核苷酸连接

    Institute of Scientific and Technical Information of China (English)

    谭书德; 欧阳羽; 李信友; 文明; 李少林

    2011-01-01

    为了将高精度原子力显微镜(AFM)用于显示超顺磁性氧化铁标记的c-erbB2癌基因反义寡脱氧核苷酸探针(磁性反义探针)与SK-Br-3肿瘤细胞mRNA核苷酸的连接,我们在磁性反义探针转染SK-Br-3肿瘤细胞基础上,用AFM对转染后的肿瘤细胞进行观察,并同时对转染后的肿瘤细胞进行蛋白表达检测及MRI成像,以进一步证实AFM的观察结果.从AFM显示的磁性反义探针转染SK-Br-3肿瘤细胞后单个细胞的全貌图及局部放大图发现,探针中反义寡脱氧核苷酸中的脱氧胞嘧啶核苷酸闭环与肿瘤细胞mRNA嘌呤核苷酸环相连接;此外,磁性反义探针能特异性抑制SK-Br3细胞c-erbB2的蛋白表达,MRI显示磁性反义探针转染SK-Br-3肿瘤细胞的信号强度最低(P<0.05).实验表明,AFM可以清楚显示磁性反义探针与SK-Br-3肿瘤细胞核mRNA核苷酸的连接.%The present paper is aimed to detect superparamagnetic iron oxide labeled c-erbB2 oncogene antisense oli-gonucleotide probe (magnetic antisense probe) connected with SK-Br-3 oncocyte mRNA nucleotide by high resolution atomic force microscope (AFM). We transfected SK-Br-3 oncocyte with magnetic antisense probe, then observed the cells by AFM with high resolution and detected protein expression and magnetic resonance imagine ( MRI). The high resolution AFM clearly showed the connection of the oligonucleotide remote end of magnetic antisense probe with the mRNA nucleotide of oncocyte. The expression of c-erbB2 protein in SK-Br3 cells were highly inhibited by using magnetic antisense probe. We then obtained the lowest signal to noise ratio (SNR) of SK-Br-3 oncocyte transfected with magnetic antisense probe by MRI (P<0. 05). These experiments demonstrated that the high resolution AFM could be used to show the binding of magnetic antisense probe and SK-Br-3 mRNA of tumor cell nuclear.

  5. Atomic force microscopy and thermodynamics on taro, a self-cleaning plant leaf

    Science.gov (United States)

    Hüger, E.; Rothe, H.; Frant, M.; Grohmann, S.; Hildebrand, G.; Liefeith, K.

    2009-07-01

    The evolution-optimized leaves of Colocasia esculenta (taro) and Nelumbo nucifera (lotus) are the best optimized self-cleaning surfaces known to date. Using an atomic force microscope device equipped with a piezodriven sample stage which enables a z-range of 100 μm we measured the surface morphology of dried and undried leaves of Colocasia esculenta. Thermodynamic calculations were done to investigate the interaction strength of a water droplet with the surfaces of the morphology shown in the images. The results show that the hierarchical structure produces a stable superhydrophobic state with optimal self-cleaning properties.

  6. Molecular positional order in Langmuir-Blodgett films by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bourdieu, L.; Ronsin, O.; Chatenay, D. (Inst. Curie, Paris (France))

    1993-02-05

    Langmuir-Blodgett films of barium arachidate have been studied on both macroscopic and microscopic scales by atomic force microscopy. As prepared, the films exhibit a disordered hexagonal structure; molecularly resolved images in direct space establish a connection between the extent of the positional order and the presence of defects such as dislocations. Upon heating, the films reorganize into a more condensed state with a centered rectangular crystallographic arrangement; in this new state the films exhibit long-range positional order and unusual structural features, such as a height modulation of the arachidic acid molecules. 22 refs., 4 figs.

  7. Molecular Positional Order in Langmuir-Blodgett Films by Atomic Force Microscopy

    Science.gov (United States)

    Bourdieu, L.; Ronsin, O.; Chatenay, D.

    1993-02-01

    Langmuir-Blodgett films of barium arachidate have been studied on both macroscopic and microscopic scales by atomic force microscopy. As prepared, the films exhibit a disordered hexagonal structure; molecularly resolved images in direct space establish a connection between the extent of the positional order and the presence of defects such as dislocations. Upon heating, the films reorganize into a more condensed state with a centered rectangular crystallographic arrangement; in this new state the films exhibit long-range positional order and unusual structural features, such as a height modulation of the arachidic acid molecules.

  8. Atomic Force Microscopy Imaging of Filamentous Aggregates from an N-Terminal Peptide Fragment of Barnase

    Science.gov (United States)

    Shibata-Seki, Teiko; Masai, Junji; Yoshida, Kenji; Sato, Kazuki; Yanagawa, Hiroshi

    1993-06-01

    This paper reports the atomic force microscopy (AFM) imaging of filamentous aggregates derived from an N-terminal peptide fragment of barnase, a ribonuclease from Bacillus amyloliquefaciens. The sample was deposited on a freshly cleaved mica surface and observed in ambient conditions. The overall shapes of the filamentous structures imaged with two different kinds of AFMs were similar to those obtained with a transmission electron microscope (TEM), except that the filaments in AFM images were broader than those in TEM images. This broadening phenomenon characteristic of AFM images was explained in terms of the convolution-type distortion of the specimen diameter by the scanning-tip apex.

  9. The study of 3-dimensional structures of IgG with atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    YU Yi-gang; XU Ru-xiang; JIANG Xiao-dan; KE Yi-quan

    2005-01-01

    Objective: To detect 3-dimensional images of anti-N-methyl-D-aspartate receptor Nr1 (NMDAr1) polycolonal IgG affixed on mica in physiological environment. Methods: The images and data were obtained from a contact mode and commercial Si3N4 probed tip by using atomic force microscope (AFM). Conclusions: Using AFM to investigate biomacromolecule can make us deeply understand the structure of IgG, which will instruct us to detect the membrane receptor protein as a labelling agent.

  10. Atomic Force Microscopy Based Nanorobotics Modelling, Simulation, Setup Building and Experiments

    CERN Document Server

    Xie, Hui; Régnier, Stéphane; Sitti, Metin

    2012-01-01

    The atomic force microscope (AFM) has been successfully used to perform nanorobotic manipulation operations on nanoscale entities such as particles, nanotubes, nanowires, nanocrystals, and DNA since 1990s. There have been many progress on modeling, imaging, teleoperated or automated control, human-machine interfacing, instrumentation, and applications of AFM based nanorobotic manipulation systems in literature. This book aims to include all of such state-of-the-art progress in an organized, structured, and detailed manner as a reference book and also potentially a textbook in nanorobotics and any other nanoscale dynamics, systems and controls related research and education. Clearly written and well-organized, this text introduces designs and prototypes of the nanorobotic systems in detail with innovative principles of three-dimensional manipulation force microscopy and parallel imaging/manipulation force microscopy.

  11. Nanoprocessing of layered crystalline materials by atomic force microscopy.

    Science.gov (United States)

    Miyake, Shojiro; Wang, Mei

    2015-01-01

    By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

  12. Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Esteban, A. [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Horcas, I. [Nanotec Electronica S.L., Centro Empresarial Euronova 3, Ronda de Poniente 12, 28760 Tres Cantos, Madrid (Spain); Hernando-Perez, M. [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Ares, P. [Nanotec Electronica S.L., Centro Empresarial Euronova 3, Ronda de Poniente 12, 28760 Tres Cantos, Madrid (Spain); Perez-Berna, A.J.; San Martin, C.; Carrascosa, J.L. [Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, 28049 Madrid (Spain); Pablo, P.J. de [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Gomez-Herrero, J., E-mail: julio.gomez@uam.es [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-03-15

    Control and minimization of tip-sample interaction forces are imperative tasks to maximize the performance of atomic force microscopy. In particular, when imaging soft biological matter in liquids, the cantilever dragging force prevents identification of the tip-sample mechanical contact, resulting in deleterious interaction with the specimen. In this work we present an improved jumping mode procedure that allows detecting the tip-sample contact with high accuracy, thus minimizing the scanning forces ({approx}100 pN) during the approach cycles. To illustrate this method we report images of human adenovirus and T7 bacteriophage particles which are prone to uncontrolled modifications when using conventional jumping mode. -- Highlights: Black-Right-Pointing-Pointer Improvement in atomic force microscopy in buffer solution. Black-Right-Pointing-Pointer Peak force detection. Black-Right-Pointing-Pointer Subtracting the cantilever dragging force. Black-Right-Pointing-Pointer Forces in the 100 pN range. Black-Right-Pointing-Pointer Imaging of delicate viruses with atomic force microscopy.

  13. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  14. Geometric derivation of the microscopic stress: A covariant central force decomposition

    Science.gov (United States)

    Torres-Sánchez, Alejandro; Vanegas, Juan M.; Arroyo, Marino

    2016-08-01

    We revisit the derivation of the microscopic stress, linking the statistical mechanics of particle systems and continuum mechanics. The starting point in our geometric derivation is the Doyle-Ericksen formula, which states that the Cauchy stress tensor is the derivative of the free-energy with respect to the ambient metric tensor and which follows from a covariance argument. Thus, our approach to define the microscopic stress tensor does not rely on the statement of balance of linear momentum as in the classical Irving-Kirkwood-Noll approach. Nevertheless, the resulting stress tensor satisfies balance of linear and angular momentum. Furthermore, our approach removes the ambiguity in the definition of the microscopic stress in the presence of multibody interactions by naturally suggesting a canonical and physically motivated force decomposition into pairwise terms, a key ingredient in this theory. As a result, our approach provides objective expressions to compute a microscopic stress for a system in equilibrium and for force-fields expanded into multibody interactions of arbitrarily high order. We illustrate the proposed methodology with molecular dynamics simulations of a fibrous protein using a force-field involving up to 5-body interactions.

  15. Advances in Bichromatic Force Slowing of Atoms and Molecules

    Science.gov (United States)

    Chieda, M. A.; Eyler, E. E.

    2012-06-01

    The optical bichromatic force (BCF) holds promise as an efficient, simple, and compact means to slow atoms and molecules to MOT capture velocities.ootnotetextM. Cashen and H. Metcalf, JOSA B 20, 915 (2003).^,ootnotetextM. A. Chieda and E. E. Eyler, PRA 84, 063401 (2011). Metastable helium beams, with v˜1000 m/s, are especially worthwhile atomic candidates since they presently require Zeeman slowers with lengths of 2--3 m. We present a novel BCF decelerator in which the Doppler shifts are chirped to keep the force centered on the atoms as they slow. This is made possible by recent advances in high-power diode lasers and electronics, and avoids many of the problems of alternative designs using large detunings. Initial tests on He* atoms show encouraging results. Unlike atoms, direct laser slowing of molecules remains exceedingly difficult, although success with SrF has very recently been reported.ootnotetextJ. F. Barry, E. S. Shuman, E. B. Norrgard, and D. DeMille, to be published. We calculate that for molecules with near-cycling transitions, rapid laser BCF slowing should be possible.ootnotetextChieda, op. sit. For the CaF molecule, we predict slowing by δv = 150 m/s, enough to bring a buffer-gas cooled beam to rest. An experimental demonstration is in progress.

  16. Influence of the Coriolis force in atom interferometry.

    Science.gov (United States)

    Lan, Shau-Yu; Kuan, Pei-Chen; Estey, Brian; Haslinger, Philipp; Müller, Holger

    2012-03-01

    In a light-pulse atom interferometer, we use a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation and to characterize configuration space wave packets. For interferometers with a large momentum transfer and large pulse separation time, we improve the contrast by up to 350% and suppress systematic effects. We also reach what is to our knowledge the largest space-time area enclosed in any atom interferometer to date. We discuss implications for future high-performance instruments.

  17. Improved atomic force microscopy cantilever performance by partial reflective coating

    Directory of Open Access Journals (Sweden)

    Zeno Schumacher

    2015-07-01

    Full Text Available Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM. Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor. In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m and stiff (≈28 N/m rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds.

  18. Hydrogen-related contrast in atomic force microscopy

    Science.gov (United States)

    Schmidt, René; Schwarz, Alexander; Wiesendanger, Roland

    2009-07-01

    We study the effect of hydrogen adsorption on gadolinium islands epitaxially grown on W(110) utilizing atomic force microscopy operated in the non-contact regime. In constant force images, gadolinium islands exhibit two height levels, corresponding to hydrogen covered and clean gadolinium areas, respectively. The experimentally measured height differences are strongly bias dependent, showing that the contrast pattern is dominated by electrostatic tip-sample forces. We interpret our experimental findings in terms of a local reduction of the work function and the presence of localized charges on hydrogen covered areas. Both effects lead to a variation of the contact potential difference between tip and surface areas, which are clean or hydrogen covered gadolinium. After clarifying the electrostatic contrast formation, we can unambiguously identify regions of clean gadolinium on the islands. These results are important for further magnetic exchange force microscopy based studies, because hydrogen also alters the magnetic properties locally.

  19. Interaction between polystyrene spheres by atomic force microscopy

    CERN Document Server

    Looi, L

    2002-01-01

    The interaction between a single polystyrene particle and a polystyrene substrate has been previously reported by a number of investigators. However, the effects of relative humidity, applied load and contact time on the adhesion of polystyrene surfaces have not been investigated and these effects are poorly understood. It is the primary aim of the current work to characterise the effect of the aforementioned parameters on the adhesion of polystyrene surfaces using atomic force microscopy. The polystyrene used in this study contained 1% of di-vinyl benzene as a cross-linking agent. From the work conducted using the custom-built instrument, the dependency of adhesion forces on the relative humidity is greatest at relative humidities above 60% where capillary forces cause a sharp increase in adhesion with increasing relative humidity. Hysteresis was observed in the solid-solid contact gradient of the accompanying force curves, suggesting non-elastic behaviour at the contact area of the surfaces

  20. Atomic force microscopy in biomedical research - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Pier Carlo Braga and Davide Ricci are old friends not only for those researchers familiar with Atomic force microscopy (AFM but also for those beginners (like the undersigned that already enthusiastically welcomed their 2004 edition (for the same Humana press printing types of Atomic force microscopy: Biomedical methods and applications, eventhough I never had used the AFM. That book was much intended to overview the possible AFM applications for a wide range of readers so that they can be in some way stimulated toward the AFM use. In fact, the great majority of scientists is afraid both of the technology behind AFM (that is naturally thought highly demanding in term of concepts not so familiar to biologists and physicians and of the financial costs: both these two factors are conceived unapproachable by the medium range granted scientist usually not educated in terms of biophysics and electronic background....

  1. Atomic-force microscopy investigations of semiconductor nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Teichert, C. [Institute of Physics, University of Leoben (Austria); Brauer, G. [Institut f. Ionenstrahlphysik und Materialforschung, Forschungszentrum Rossendorf (Germany); Djurisic, A. [Department of Physics, University of Hong Kong (China); Sivakov, V.; Scholz, R. [Max Planck Institute of Microstructure Physics, Halle (Germany); Andrae, G. [Institute of Physical High Technology (IPHT), Jena (Germany); Christiansen, S.H. [Physics Department, Martin-Luther-University Halle-Wittenberg (Germany)

    2007-07-01

    One-dimensional nanostructures, such as nanorods or nanotubes, exhibit technological potential for many device applications like electronic, photonic or sensing devices. However, achieving control on the growth of such nanostructures leading to proper dimensional confinement (nanorods diameter, length, density and orientation) is still a challenging task. So far, scanning electron microscopy and transmission electron microscopy are the methods of choice to characterize arrays of free standing semiconductor nanowires. Atomic force microscopy - at a first glance - might not be suited for such a task. Analyzing arrays of vertical ZnO nanorods grown on Si and ITO substrates and individual Si nanowhiskers grown by electron beam evaporation on Si(111), we demonstrate the capabilities of atomic-force microscopy to yield integral information for example on the height variation of the nanorod arrays as well as detailed information on the facet structure of the nanowhiskers.

  2. Probing stem cell differentiation using atomic force microscopy

    Science.gov (United States)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  3. Bacterial biofilms investigated by atomic force microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Hu, Yifan

    thesis, Atomic Force Microscopy (AFM) and electrochemistry have been applied to investigate three pathogenic medically important bacterial biofilms, i.e. Pseudomonas aeruginosa (cystic fibrosis pneumonia), Staphylococcus epidermidis (contamination of surgical catheters and indwelling equipment...... attachment on the surface. High-resolution AFM imaging showed no detectable differences among the four strains. Adhesion maps using hydrophobically modified tips compared with bare hydrophilic silicon nitride tips also showed small differences only. This indicates that hydrophobic effects are not the primary...

  4. Nanomechanical Characterization of Bacillus anthracis Spores by Atomic Force Microscopy

    OpenAIRE

    2016-01-01

    The study of structures and properties of bacterial spores is important to understanding spore formation and biological responses to environmental stresses. While significant progress has been made over the years in elucidating the multilayer architecture of spores, the mechanical properties of the spore interior are not known. Here, we present a thermal atomic force microscopy (AFM) study of the nanomechanical properties of internal structures of Bacillus anthracis spores. We developed a nan...

  5. Cooperative scattering and radiation pressure force in dense atomic clouds

    Energy Technology Data Exchange (ETDEWEB)

    Bachelard, R. [University of Nova Gorica, School of Applied Sciences, Vipavska 11c SI-5270 Ajdovscina (Slovenia); Piovella, N. [Dipartimento di Fisica, Universita Degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Courteille, Ph. W. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13560-970 Sao Carlos, SP (Brazil)

    2011-07-15

    Atomic clouds prepared in ''timed Dicke'' states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully et al., Phys. Rev. Lett. 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.

  6. Atomic Steps with tuning-fork-based noncontact atomic force microscopy

    NARCIS (Netherlands)

    Rensen, W.H.J.; Hulst, van N.F.; Ruiter, A.G.T.; West, P.E.

    1999-01-01

    Tuning forks as tip-sample distance detectors are a promising and versatile alternative to conventional cantilevers with optical beam deflection in noncontact atomic force microscopy (AFM). Both theory and experiments are presented to make a comparison between conventional and tuning-fork-based AFM.

  7. Mapping Atomic Orbitals with the Transmission Electron Microscope: Images of Defective Graphene Predicted from First-Principles Theory.

    Science.gov (United States)

    Pardini, Lorenzo; Löffler, Stefan; Biddau, Giulio; Hambach, Ralf; Kaiser, Ute; Draxl, Claudia; Schattschneider, Peter

    2016-07-15

    Transmission electron microscopy has been a promising candidate for mapping atomic orbitals for a long time. Here, we explore its capabilities by a first-principles approach. For the example of defected graphene, exhibiting either an isolated vacancy or a substitutional nitrogen atom, we show that three different kinds of images are to be expected, depending on the orbital character. To judge the feasibility of visualizing orbitals in a real microscope, the effect of the optics' aberrations is simulated. We demonstrate that, by making use of energy filtering, it should indeed be possible to map atomic orbitals in a state-of-the-art transmission electron microscope.

  8. Nanoscale Subsurface Imaging of Nanocomposites via Resonant Difference-Frequency Atomic Force Ultrasonic Microscopy

    Science.gov (United States)

    Cantrell, Sean A.; Cantrell, John H.; Lillehei, Peter T.

    2007-01-01

    A scanning probe microscope methodology, called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), has been developed. The method employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope engages the sample top surface. The cantilever is driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave at the sample surface generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create amplitude and phase-generated images of nanoscale near-surface and subsurface features. RDF-AFUM phase images of LaRC-CP2 polyimide polymer containing embedded nanostructures are presented. A RDF-AFUM micrograph of a 12.7 micrometer thick film of LaRC-CP2 containing a monolayer of gold nanoparticles embedded 7 micrometers below the specimen surface reveals the occurrence of contiguous amorphous and crystalline phases within the bulk of the polymer and a preferential growth of the crystalline phase in the vicinity of the gold nanoparticles. A RDF-AFUM micrograph of LaRC-CP2 film containing randomly dispersed carbon nanotubes reveals the growth of an interphase region at certain nanotube-polymer interfaces.

  9. Hierarchical atom type definitions and extensible all-atom force fields.

    Science.gov (United States)

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc.

  10. Surface-charge differentiation of streptavidin and avidin by atomic force microscopy-force spectroscopy.

    Science.gov (United States)

    Almonte, Lisa; Lopez-Elvira, Elena; Baró, Arturo M

    2014-09-15

    Chemical information can be obtained by using atomic force microscopy (AFM) and force spectroscopy (FS) with atomic or molecular resolution, even in liquid media. The aim of this paper is to demonstrate that single molecules of avidin and streptavidin anchored to a biotinylated bilayer can be differentiated by using AFM, even though AFM topographical images of the two proteins are remarkably alike. At physiological pH, the basic glycoprotein avidin is positively charged, whereas streptavidin is a neutral protein. This charge difference can be determined with AFM, which can probe electrostatic double-layer forces by using FS. The force curves, owing to the electrostatic interaction, show major differences when measured on top of each protein as well as on the lipid substrate. FS data show that the two proteins are negatively charged. Nevertheless, avidin and streptavidin can be clearly distinguished, thus demonstrating the sensitivity of AFM to detect small changes in the charge state of macromolecules.

  11. Imaging stability in force-feedback high-speed atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung I., E-mail: ByungKim@boisestate.edu [Department of Physics, Boise State University, 1910 University Drive Boise, ID 83725-1570, United States of America (United States); Boehm, Ryan D. [Department of Physics, Boise State University, 1910 University Drive Boise, ID 83725-1570, United States of America (United States)

    2013-02-15

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force–distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2 s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. - Highlights: ► We investigated the imaging stability of force-feedback HSAFM. ► Stable–unstable imaging transitions rely on applied force and sample hydrophilicity. ► The stable–unstable transitions are found to be independent of imaging rate.

  12. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    Science.gov (United States)

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  13. Sub-cellular structure studied by combined atomic force-fluorescence microscopy

    Science.gov (United States)

    Trache, Andreea

    2009-03-01

    A novel experimental technique that integrates atomic force microscopy (AFM) with fluorescence imaging was used to study the role of extracellular matrix proteins in cellular organization. To understand the mechanism by which living cells sense mechanical forces, and how they respond and adapt to their environment, we developed a new technology able to investigate cellular behavior at sub-cellular level that integrates an AFM with total internal reflection fluorescence (TIRF) microscopy and fast-spinning disk (FSD) confocal microscopy. Live smooth muscle cells exhibited differences in focal adhesions and actin pattern depending on the extracellular matrix used for substrate coating. Data obtained by using the AFM-optical imaging integrated technique offer novel quantitative information that allows understanding the fundamental processes of cellular reorganization in response to extracellular matrix modulation. The integrated microscope presented here is broadly applicable across a wide range of molecular dynamic studies in any adherent live cells.

  14. An Atomic Force Microscopy based investigation of specific biomechanical properties for various types of neuronal cells

    Science.gov (United States)

    Spedden, Elise; White, James; Kaplan, David; Staii, Cristian

    2012-02-01

    Here we describe the use of Atomic Force Microscope (AFM) based techniques to characterize and explore the influence of biochemical and biomechanical cues on the growth and interaction of neuronal cells with surrounding guidance factors. Specifically, we use AFM topography and AFM force spectroscopy measurements to systematically investigate the morphology, elasticity, and real time growth of neuronal processes in the presence of different types of extracellular matrix proteins and growth factors. We therefore create a series of systems containing specified neuron densities where the type of the underlying growth promoting protein is different from sample to sample. For each system we measure key biomechanical parameters related to neuronal growth such as height and elastic modulus at multiple growth points on several types of neurons. We show that systematic measurements of these parameters yield fundamental information about the role played by substrate-plated guidance factors in determining elastic and morphological properties of neurons during growth.

  15. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  16. Effects of nonlinear forces on dynamic mode atomic force microscopy and spectroscopy.

    Science.gov (United States)

    Das, Soma; Sreeram, P A; Raychaudhuri, A K

    2007-06-01

    In this paper, we describe the effects of nonlinear tip-sample forces on dynamic mode atomic force microscopy and spectroscopy. The jumps and hysteresis observed in the vibration amplitude (A) versus tip-sample distance (h) curves have been traced to bistability in the resonance curve. A numerical analysis of the basic dynamic equation was used to explain the hysteresis in the experimental curve. It has been found that the location of the hysteresis in the A-h curve depends on the frequency of the forced oscillation relative to the natural frequency of the cantilever.

  17. Non-contact quantification of laser micro-impulse in water by atomic force microscopy and its application for biomechanics

    Science.gov (United States)

    Hosokawa, Yoichiroh

    2011-12-01

    We developed a local force measurement system of a femtosecond laser-induced impulsive force, which is due to shock and stress waves generated by focusing an intense femtosecond laser into water with a highly numerical aperture objective lens. In this system, the force localized in micron-sized region was detected by bending movement of a cantilever of atomic force microscope (AFM). Here we calculated the bending movement of the AFM cantilever when the femtosecond laser is focused in water at the vicinity of the cantilever and the impulsive force is loaded on the cantilever. From the result, a method to estimate the total of the impulsive force at the laser focal point was suggested and applied to estimate intercellular adhesion strength.

  18. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    Science.gov (United States)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  19. Characterization of new drug delivery nanosystems using atomic force microscopy

    Science.gov (United States)

    Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.

    2015-01-01

    Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.

  20. Investigation of SNARE-Mediated Membrane Fusion Mechanism Using Atomic Force Microscopy

    Science.gov (United States)

    Abdulreda, Midhat H.; Moy, Vincent T.

    2009-01-01

    Membrane fusion is driven by specialized proteins that reduce the free energy penalty for the fusion process. In neurons and secretory cells, soluble N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptors (SNAREs) mediate vesicle fusion with the plasma membrane during vesicular content release. Although, SNAREs have been widely accepted as the minimal machinery for membrane fusion, the specific mechanism for SNARE-mediated membrane fusion remains an active area of research. Here, we summarize recent findings based on force measurements acquired in a novel experimental system that uses atomic force microscope (AFM) force spectroscopy to investigate the mechanism(s) of membrane fusion and the role of SNAREs in facilitating membrane hemifusion during SNARE-mediated fusion. In this system, protein-free and SNARE-reconstituted lipid bilayers are formed on opposite (trans) substrates and the forces required to induce membrane hemifusion and fusion or to unbind single v-/t-SNARE complexes are measured. The obtained results provide evidence for a mechanism by which the pulling force generated by interacting trans-SNAREs provides critical proximity between the membranes and destabilizes the bilayers at fusion sites by broadening the hemifusion energy barrier and consequently making the membranes more prone to fusion. PMID:20228892

  1. Improved social force model based on exit selection for microscopic pedestrian simulation in subway station

    Institute of Scientific and Technical Information of China (English)

    郑勋; 李海鹰; 孟令云; 许心越; 陈旭

    2015-01-01

    An improved social force model based on exit selection is proposed to simulate pedestrians’ microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.

  2. Microscopic analysis of sharp force trauma in bone and cartilage: a validation study.

    Science.gov (United States)

    Crowder, Christian; Rainwater, Christopher W; Fridie, Jeannette S

    2013-09-01

    Sharp force trauma research lacks agreement on reported error rates for correctly identifying toolmark characteristics on bone and cartilage. This study provides error rates for determining blade class (serrated, partially serrated, nonserrated) and type of edge bevel (left, right, even). Three analysts examined cuts to a wax medium, cartilage, and bone using two types of microscopes. Additionally, the observers examined impressions taken from the wax medium and the cartilage. Overall, a total of 504 observations were performed. Serrated blades were distinguishable from nonserrated blades due to their patterned striations. Some difficulties were encountered in distinguishing serrated and partially serrated blades; however, when these groups were considered together as one classification type (serrated), classification accuracy improved from 79% to 96%. Classification accuracy for edge bevel was 65%. Error rates were similar when comparing direct observation of the cut marks versus indirect observation (impressions). Additionally, the type of microscope used did not affect error rates.

  3. The relation between a microscopic threshold-force model and macroscopic models of adhesion

    Science.gov (United States)

    Hulikal, Srivatsan; Bhattacharya, Kaushik; Lapusta, Nadia

    2017-01-01

    This paper continues our recent work on the relationship between discrete contact interactions at the microscopic scale and continuum contact interactions at the macroscopic scale (Hulikal et al., J. Mech. Phys. Solids 76, 144-161, 2015). The focus of this work is on adhesion. We show that a collection of a large number of discrete elements governed by a threshold-force based model at the microscopic scale collectively gives rise to continuum fracture mechanics at the macroscopic scale. A key step is the introduction of an efficient numerical method that enables the computation of a large number of discrete contacts. Finally, while this work focuses on scaling laws, the methodology introduced in this paper can also be used to study rough-surface adhesion.

  4. Microscopic phase-field simulation of atomic site occupation in ordering process of NiAl9Fe6 alloy

    Institute of Scientific and Technical Information of China (English)

    LIANG Min-jie; CHEN Zheng; ZHANG Ji-xiang; WANG Yong-xin

    2008-01-01

    The process of γ(fcc)→γ(fcc)+γ'(L12) phase transformation was simulated by using microscopic phase-field method for the low supersaturation NiAl9Fe6 alloy. It is found that in the γ' phase, the ordering degree of Al atoms is obviously higher than that of Fe atoms, and the ordering of Al atoms precedes their clustering, while the case of Fe atoms is opposite. The α site is mainly occupied by Ni atoms, while the β site is occupied in common by Al, Fe and Ni atoms. At order-disorder interphase boundary, the ordering degree of Al atoms is higher than that of Fe atoms, and at the β site, the Fe atomic site occupation probabilities vary from high to low during ordering; the Al atomic site occupation probabilities are similar to those of Fe atoms, but their values are much higher than those of Fe atoms; Ni atoms are opposite to both of them. Meanwhile, during the ordering transformation, γ' phase is always a complex Ni3(AlFeNi) single-phase, and it is precipitated by the non-classical nucleation and growth style. Finally, in the alloy system, the volume of γ' ordered phase is less than that of γ phase, and the volume ratio of order to disorder is about 77%.

  5. OBSERVATION OF DNA PARTIAL DENATURATION BY ATOMIC FORCE MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Xin-hua Dai; Zhi-gang Wang; Bo Xiao; Yong-jun Zhang; Chen Wang; Chun-li Bai; Xiao-li Zhang; Jian Xu

    2004-01-01

    Atomic force microscopy was used to investigate the DNA-cetyltrimethylammonium bromide (CTAB) complexes adsorbed on highly ordered pyrolytic graphite (HOPG). These complexes, at low concentrations, can automatically spread out on the surface of HOPG. The DNA-CTAB complexes display a typically extended structure rather than a globular structure. Partially denaturated DNA produced by binding CTAB to DNA is directly observed by AFM with high resolution.The three-dimensional resolution of partially denaturated DNA obtained by AFM is not available by any other technique at present.

  6. Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation.

    Science.gov (United States)

    Welzel, Petra B; Friedrichs, Jens; Grimmer, Milauscha; Vogler, Steffen; Freudenberg, Uwe; Werner, Carsten

    2014-11-01

    Cell-instructive physical characteristics of macroporous scaffolds, developed for tissue engineering applications, often remain difficult to assess. Here, an atomic force microscopy-based nanoindentation approach is adapted to quantify the local mechanical properties of biohybrid glycosaminoglycan-poly(ethylene glycol) cryogels. Resulting from cryoconcentration effects upon gel formation, cryogel struts are observed to feature a higher stiffness compared to the corresponding bulk hydrogel materials. Local Young's moduli, porosity, and integral moduli of the cryogel scaffolds are compared in dependence on gel formation parameters. The results provide valuable insights into the cryogelation process and a base for adjusting physical characteristics of the obtained cryogel scaffolds, which can critically influence the cellular response.

  7. CO tip functionalization in subatomic resolution atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minjung [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Chelikowsky, James R. [Center for Computational Materials, Institute for Computational Engineering and Sciences, and Departments of Physics and Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-10-19

    Noncontact atomic force microscopy (nc-AFM) employing a CO-functionalized tip displays dramatically enhanced resolution wherein covalent bonds of polycyclic aromatic hydrocarbon can be imaged. Employing real-space pseudopotential first-principles calculations, we examine the role of CO in functionalizing the nc-AFM tip. Our calculations allow us to simulate full AFM images and ascertain the enhancement mechanism of the CO molecule. We consider two approaches: one with an explicit inclusion of the CO molecule and one without. By comparing our simulations to existing experimental images, we ascribe the enhanced resolution of the CO functionalized tip to the special orbital characteristics of the CO molecule.

  8. Understanding the Plasmonics of Nanostructured Atomic Force Microscopy Tips

    CERN Document Server

    Sanders, Alan; Zhang, Liwu; Turek, Vladimir; Sigle, Daniel O; Lombardi, Anna; Weller, Lee; Baumberg, Jeremy J

    2016-01-01

    Structured metallic tips are increasingly important for optical spectroscopies such as tip-enhanced Raman spectroscopy (TERS), with plasmonic resonances frequently cited as a mechanism for electric field enhancement. We probe the local optical response of sharp and spherical-tipped atomic force microscopy (AFM) tips using a scanning hyperspectral imaging technique to identify plasmonic behaviour. Localised surface plasmon resonances which radiatively couple with far-field light are found only for spherical AFM tips, with little response for sharp AFM tips, in agreement with numerical simulations of the near-field response. The precise tip geometry is thus crucial for plasmon-enhanced spectroscopies, and the typical sharp cones are not preferred.

  9. Near-grain-boundary characterization by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanick, A.K., E-mail: pramanick@nmlindia.org [MST Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Sinha, A. [MST Division, National Metallurgical Laboratory, Jamshedpur 831007 (India); Sastry, G.V.S. [Centre of Advanced Study, Department of Metallurgical Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221005 (India); Ghosh, R.N. [MST Division, National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2009-05-15

    Characterization of near-grain boundary is carried out by atomic force microscopy (AFM). It has been observed to be the most suitable technique owing to its capability to investigate the surface at high resolution. Commercial purity-grade nickel processed under different conditions, viz., (i) cold-rolled and annealed and (ii) thermally etched condition without cold rolling, is considered in the present study. AFM crystallographic data match well with the standard data. Hence, it establishes two grain-boundary relations viz., plane matching and coincidence site lattice (CSL {Sigma}=9) relation for the two different sample conditions.

  10. Atomic force microscopy of lead iodide crystal surfaces

    Science.gov (United States)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-03-01

    Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.

  11. Atomic-Scale Study Of Complex Cobalt Oxide Using Scanning Transmission Electron Microscope

    Science.gov (United States)

    Gulec, Ahmet

    Cobalt oxides offer a rich ?eld for the formation of novel phases, including superconductors and exotic magnetic phases, involving a mixed valence state for cobalt and/or the presence of oxygen vacancies. Having spin states, such as, low spin (LS), high spin (HS), and intermediate spin (IS), cobalt oxides differ from other 3d metal oxides The presence of such spin states make the physics of the cobalt oxides so complicated that it has not yet been completely understood. In order to improve our understanding of the various phase transitions observed in Cobalt oxides and to comprehend the relationship between crystal and electronic structure, both high energy resolution and high spatial resolution are essential. Fortunately, transmission electron microscopy (TEM) is a technique which is capable of ful?lling both of these requirements. In this thesis, I have utilized unique techniques in a scanning transmission electron microscope (STEM) to analyze the atomic-scale structure-property relationship, both at room temperature and through insitu cooling to liquid nitrogen (LN2) temperature. In particular, by using correlated Z-contrast imaging, electron energy loss spectrum (EELS) and electron energy loss magnetic circular dichroism (EMCD), the structure, composition, bonding and magnetic behavior are characterized directly on the atomic scale.

  12. Atom probe field ion microscope study of the range and diffusivity of helium in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, A.

    1978-08-01

    A time-of-flight (TOF) atom-probe field-ion microscope (FIM) specifically designed for the study of defects in metals is described. With this automated system 600 TOF min/sup -1/ can be recorded and analyzed. Performance tests of the instrument demonstrated that (1) the seven isotopes of molybdenum and the five isotopes of tungsten can be clearly resolved; and (2) the concentration and spatial distribution of all constitutents present at levels greater than 0.05 at. % in a W--25 at. % Re, Mo--1.0 at. % Ti, Mo--1.0 at. % Ti--0.08 at. % Zr (TZM), a low swelling stainless steel (LS1A) and a metallic glass (Metglas 2826) can be measured. The effect of the rate of field evaporation on the quantitative atom probe analysis of a Mo--1.0 at. % Ti alloy and a Mo--1.0 at. % Ti--0.08 at. % Zr alloy was investigated. As the field evaporation rate increased the measured Ti concentration was found to also increase. A simple qualitative model was proposed to explain the observation. The spatial distribution of titanium in a fast neutron irradiated Mo--1.0 at. % Ti alloy has been investigated. No evidence of Ti segregation to the voids was detected nor has any evidence of significant resolution of Ti from the TiC precipitates been detected. A small amount of segregation of carbon to a void was detected.

  13. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  14. Force-gradient-induced mechanical dissipation of quartz tuning fork force sensors used in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Castellanos-Gomez, A. [Departamento de Fisica de la Materia Condensada (C-III), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Agrait, N. [Departamento de Fisica de la Materia Condensada (C-III), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Instituto Universitario de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Instituto Madrileno de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, 28049 Madrid (Spain); Rubio-Bollinger, G., E-mail: gabino.rubio@uam.es [Departamento de Fisica de la Materia Condensada (C-III), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Instituto Universitario de Ciencia de Materiales ' Nicolas Cabrera' , Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain)

    2011-02-15

    We have studied the dynamics of quartz tuning fork resonators used in atomic force microscopy taking into account the mechanical energy dissipation through the attachment of the tuning fork base. We find that the tuning fork resonator quality factor changes even in the case of a purely elastic sensor-sample interaction. This is due to the effective mechanical imbalance of the tuning fork prongs induced by the sensor-sample force gradient, which in turn has an impact on dissipation through the attachment of the resonator base. This effect may yield a measured dissipation signal that can be different from the one exclusively related to the dissipation between the sensor and the sample. We also find that there is a second-order term in addition to the linear relationship between the sensor-sample force gradient and the resonance frequency shift of the tuning fork that is significant even for force gradients usually present in atomic force microscopy, which are in the range of tens of N/m. -- Research Highlights: {yields} Dynamics of miniature tuning fork force sensors: a mechanical model. {yields} Non-linear relationship between resonance frequency shift and applied force gradient. {yields} An apparent mechanical dissipation channel opens even for purely conservative tip-sample interactions. {yields} qPlus tuning forks configuration has lower Q factor but straightforward dynamics.

  15. Determination of hydration film thickness using atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    PENG Changsheng; SONG Shaoxian; GU Qingbao

    2005-01-01

    Dispersion of a solid particle in water may lead to the formation of hydration film on the particle surface, which can strongly increase the repulsive force between the particles and thus strongly affect the stability of dispersions. The hydration film thickness, which varies with the variation of property of suspension particles, is one of the most important parameters of hydration film, and is also one of the most difficult parameters that can be measured accurately. In this paper, a method, based on force-distance curve of atomic force microscopy, for determining the hydration film thickness of particles is developed. The method utilizes the difference of cantilever deflection before, between and after penetrating the hydration films between tip and sample, which reflect the difference of slope on the force-distance curve. 3 samples, mica, glass and stainless steel, were used for hydration thickness determination, and the results show that the hydration film thickness between silicon tip and mica, glass and stainless steel are 30.0(2.0, 29.0(1.0 and 32.5(2.5 nm, respectively.

  16. Potential contributions of noncontact atomic force microscopy for the future Casimir force measurements

    CERN Document Server

    Kim, W J

    2010-01-01

    Surface electric noise, i.e., the non-uniform distribution of charges and potentials on a surface, poses a great experimental challenge in modern precision force measurements. Such a challenge is encountered in a number of different experimental circumstances. The scientists employing atomic force microscopy (AFM) have long focused their efforts to understand the surface-related noise issues via variants of AFM techniques, such as Kelvin probe force microscopy or electric force microscopy. Recently, the physicists investigating quantum vacuum fluctuation phenomena between two closely-spaced objects have also begun to collect experimental evidence indicating a presence of surface effects neglected in their previous analyses. It now appears that the two seemingly disparate science communities are encountering effects rooted in the same surface phenomena. In this report, we suggest specific experimental tasks to be performed in the near future that are crucial not only for fostering needed collaborations between...

  17. Atomic force microscopy to study intermolecular forces and bonds associated with bacteria.

    Science.gov (United States)

    Lower, Steven K

    2011-01-01

    Atomic force microscopy (AFM) operates on a very different principle than other forms of microscopy, such as optical microscopy or electron microscopy. The key component of an AFM is a cantilever that bends in response to forces that it experiences as it touches another surface. Forces as small as a few picoNewtons can be detected and probed with AFM. AFM has become very useful in biological sciences because it can be used on living cells that are immersed in water. AFM is particularly useful when the cantilever is modified with chemical groups (e.g. amine or carboxylic groups), small beads (e.g. glass or latex), or even a bacterium. This chapter describes how AFM can be used to measure forces and bonds between a bacterium and another surface. This paper also provides an example of the use of AFM on Staphylococcus aureus, a Gram-positive bacterium that is often associated with biofilms in humans.

  18. Three-dimensional atomic force microscopy mapping at the solid-liquid interface with fast and flexible data acquisition.

    Science.gov (United States)

    Söngen, Hagen; Nalbach, Martin; Adam, Holger; Kühnle, Angelika

    2016-06-01

    We present the implementation of a three-dimensional mapping routine for probing solid-liquid interfaces using frequency modulation atomic force microscopy. Our implementation enables fast and flexible data acquisition of up to 20 channels simultaneously. The acquired data can be directly synchronized with commercial atomic force microscope controllers, making our routine easily extendable for related techniques that require additional data channels, e.g., Kelvin probe force microscopy. Moreover, the closest approach of the tip to the sample is limited by a user-defined threshold, providing the possibility to prevent potential damage to the tip. The performance of our setup is demonstrated by visualizing the hydration structure above the calcite (10.4) surface in water.

  19. High resolution atomic force microscopy of double-stranded RNA

    Science.gov (United States)

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M.; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-01

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to

  20. The chemical structure of a molecule resolved by atomic force microscopy

    NARCIS (Netherlands)

    Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.|info:eu-repo/dai/nl/314007423; Meyer, G.

    2009-01-01

    Resolving individual atoms has always been the ultimate goal of surface microscopy. The scanning tunneling microscope images atomic-scale features on surfaces, but resolving single atoms within an adsorbed molecule remains a great challenge because the tunneling current is primarily sensitive to the

  1. Gold-decorated highly ordered self-organized grating-like nanostructures on Ge surface: Kelvin probe force microscopy and conductive atomic force microscopy studies

    Science.gov (United States)

    Alam Mollick, Safiul; Kumar, Mohit; Singh, Ranveer; Satpati, Biswarup; Ghose, Debabrata; Som, Tapobrata

    2016-10-01

    Nanoarchitecture by atomic manipulation is considered to be one of the emerging trends in advanced functional materials. It has a gamut of applications to offer in nanoelectronics, chemical sensing, and nanobiological science. In particular, highly ordered one-dimensional semiconductor nanostructures fabricated by self-organization methods are in high demand for their high aspect ratios and large number of applications. An efficient way of fabricating semiconductor nanostructures is by molecular beam epitaxy, where atoms are added to a crystalline surface at an elevated temperature during growth, yielding the desired structures in a self-assembled manner. In this article, we offer a room temperature process, in which atoms are sputtered away by ion impacts. Using gold ion implantation, the present study reports on the formation of highly ordered self-organized long grating-like nanostructures, with grooves between them, on a germanium surface. The ridges of the patterns are shown to have flower-like protruding nanostructures, which are mostly decorated by gold atoms. By employing local probe microscopic techniques like Kelvin probe force microscopy and conductive atomic force microscopy, we observe a spatial variation in the work function and different nanoscale electrical conductivity on the ridges of the patterns and the grooves between them, which can be attributed to gold atom decorated ridges. Thus, the architecture presented offers the advantage of using the patterned germanium substrates as periodic arrays of conducting ridges and poorly conducting grooves between them.

  2. A Student-Built Scanning Tunneling Microscope

    Science.gov (United States)

    Ekkens, Tom

    2015-01-01

    Many introductory and nanotechnology textbooks discuss the operation of various microscopes including atomic force (AFM), scanning tunneling (STM), and scanning electron microscopes (SEM). In a nanotechnology laboratory class, students frequently utilize microscopes to obtain data without a thought about the detailed operation of the tool itself.…

  3. Intermolecular forces between acetylcholine and acetylcholinesterases studied with atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    张英鸽; 白春礼; 王琛; 赵德禄; 苏明; 林璋; 田芳

    1999-01-01

    With the aid of atomic force microscopy, the intermolecular forces between acetyleholinesterases (AChE) and its natural substrate acetylcholine (ACh) have been studied. Through force spectrum measurement based on imaging of AChE molecules it was found that the attraction force between individual molecule pairs of ACh and AChE was (10±1) pN just before the quaternary ammonium head of ACh got into contact with the negative end of AChE and the decaying distance of attraction was (4±1) nm from the surface of ACHE. The adhesion force between individual ACh and AChE molecule pairs was (25±2) pN, which had a decaying feature of fast-slow-fast (FSF). The attraction forces between AChE and choline (Ch), the quaternary ammonium moiety and hydrolysate of ACh molecule, were similar to those between AChE and ACh. The adhesion forces between AChE and Ch were (20±2) pN, a little weaker than that between ACh and ACHE. These results indicated that AChE had a steering role for the diffusion of ACh toward it and had r

  4. Joint strength measurements of individual fiber-fiber bonds: An atomic force microscopy based method

    Science.gov (United States)

    Schmied, Franz J.; Teichert, Christian; Kappel, Lisbeth; Hirn, Ulrich; Schennach, Robert

    2012-07-01

    We are introducing a method to measure tensile strength of individual fiber-fiber bonds within a breaking force range of 0.01 mN-1 mN as well as the energy consumed during breaking. Until now, such a method was not available. Using a conventional atomic force microscope and a specifically designed sample holder, the desired force and the breaking behavior can be analyzed by two different approaches. First, dynamic loading can be applied, where force-versus-distance curves are employed to determine the proportions of elastic energy and energy dissipated in the bond. Second, static loading is utilized to study viscoelastic behavior and calculate viscoelastic energy contributions. To demonstrate the capability of the proposed method, we are presenting results for breaking strength of kraft pulp fiber-fiber bonds in tensile opening mode. The procedure is by no means restricted to cellulose fibers, it has the potential to quantify joint strength of micrometer-sized fibers in general.

  5. Resonance frequency-retuned quartz tuning fork as a force sensor for noncontact atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ooe, Hiroaki; Sakuishi, Tatsuya; Arai, Toyoko, E-mail: arai@staff.kanazawa-u.ac.jp [Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Nogami, Makoto; Tomitori, Masahiko [Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292 (Japan)

    2014-07-28

    Based on a two-prong type quartz tuning fork, a force sensor with a high Q factor, which we call a retuned fork sensor, was developed for non-contact atomic force microscopy (nc-AFM) with atomic resolution. By cutting a small notch and attaching an AFM tip to one prong, its resonance frequency can be retuned to that of the other intact prong. In balancing the two prongs in this manner, a high Q factor (>50 000 in ultrahigh vacuum) is obtained for the sensor. An atomic resolution image of the Si(111)-7 × 7 surface was demonstrated using an nc-AFM with the sensor. The dependence of the Q factor on resonance frequency of the sensor and the long-range force between tip and sample were measured and analyzed in view of the various dissipation channels. Dissipation in the signal detection circuit turned out to be mainly limited by the total Q factor of the nc-AFM system.

  6. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  7. Atomic Force Microscopy of Asymmetric Membranes from Turtle Erythrocytes

    Science.gov (United States)

    Tian, Yongmei; Cai, Mingjun; Xu, Haijiao; Ding, Bohua; Hao, Xian; Jiang, Junguang; Sun, Yingchun; Wang, Hongda

    2014-01-01

    The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model. PMID:25134535

  8. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  9. Analysis of Adhesive Characteristics of Asphalt Based on Atomic Force Microscopy and Molecular Dynamics Simulation.

    Science.gov (United States)

    Xu, Meng; Yi, Junyan; Feng, Decheng; Huang, Yudong; Wang, Dongsheng

    2016-05-18

    Asphalt binder is a very important building material in infrastructure construction; it is commonly mixed with mineral aggregate and used to produce asphalt concrete. Owing to the large differences in physical and chemical properties between asphalt and aggregate, adhesive bonds play an important role in determining the performance of asphalt concrete. Although many types of adhesive bonding mechanisms have been proposed to explain the interaction forces between asphalt binder and mineral aggregate, few have been confirmed and characterized. In comparison with chemical interactions, physical adsorption has been considered to play a more important role in adhesive bonding between asphalt and mineral aggregate. In this study, the silicon tip of an atomic force microscope was used to represent silicate minerals in aggregate, and a nanoscale analysis of the characteristics of adhesive bonding between asphalt binder and the silicon tip was conducted via an atomic force microscopy (AFM) test and molecular dynamics (MD) simulations. The results of the measurements and simulations could help in better understanding of the bonding and debonding procedures in asphalt-aggregate mixtures during hot mixing and under traffic loading. MD simulations on a single molecule of a component of asphalt and monocrystalline silicon demonstrate that molecules with a higher atomic density and planar structure, such as three types of asphaltene molecules, can provide greater adhesive strength. However, regarding the real components of asphalt binder, both the MD simulations and AFM test indicate that the colloidal structural behavior of asphalt also has a large influence on the adhesion behavior between asphalt and silicon. A schematic model of the interaction between asphalt and silicon is presented, which can explain the effect of aging on the adhesion behavior of asphalt.

  10. Nonlinear dynamic analysis of atomic force microscopy under deterministic and random excitation

    Energy Technology Data Exchange (ETDEWEB)

    Pishkenari, Hossein Nejat [Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Behzad, Mehdi [Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: m_behzad@sharif.edu; Meghdari, Ali [Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2008-08-15

    The atomic force microscope (AFM) system has evolved into a useful tool for direct measurements of intermolecular forces with atomic-resolution characterization that can be employed in a broad spectrum of applications. This paper is devoted to the analysis of nonlinear behavior of amplitude modulation (AM) and frequency modulation (FM) modes of atomic force microscopy. For this, the microcantilever (which forms the basis for the operation of AFM) is modeled as a single mode approximation and the interaction between the sample and cantilever is derived from a van der Waals potential. Using perturbation methods such as averaging, and Fourier transform nonlinear equations of motion are analytically solved and the advantageous results are extracted from this nonlinear analysis. The results of the proposed techniques for AM-AFM, clearly depict the existence of two stable and one unstable (saddle) solutions for some of exciting parameters under deterministic vibration. The basin of attraction of two stable solutions is different and dependent on the exciting frequency. From this analysis the range of the frequency which will result in a unique periodic response can be obtained and used in practical experiments. Furthermore the analytical responses determined by perturbation techniques can be used to detect the parameter region where the chaotic motion is avoided. On the other hand for FM-AFM, the relation between frequency shift and the system parameters can be extracted and used for investigation of the system nonlinear behavior. The nonlinear behavior of the oscillating tip can easily explain the observed shift of frequency as a function of tip sample distance. Also in this paper we have investigated the AM-AFM system response under a random excitation. Using two different methods we have obtained the statistical properties of the tip motion. The results show that we can use the mean square value of tip motion to image the sample when the excitation signal is random.

  11. Development of carbon electrodes for electrochemistry, solid-state electronics and multimodal atomic force microscopy imaging

    Science.gov (United States)

    Morton, Kirstin Claire

    Carbon is one of the most remarkable elements due to its wide abundance on Earth and its many allotropes, which include diamond and graphite. Many carbon allotropes are conductive and in recent decades scientists have discovered and synthesized many new forms of carbon, including graphene and carbon nanotubes. The work in this thesis specifically focuses on the fabrication and characterization of pyrolyzed parylene C (PPC), a conductive pyrocarbon, as an electrode material for diodes, as a conductive coating for atomic force microscopy (AFM) probes and as an ultramicroelectrode (UME) for the electrochemical interrogation of cellular systems in vitro. Herein, planar and three-dimensional (3D) PPC electrodes were microscopically, spectroscopically and electrochemically characterized. First, planar PPC films and PPC-coated nanopipettes were utilized to detect a model redox species, Ru(NH3) 6Cl3. Then, free-standing PPC thin films were chemically doped, with hydrazine and concentrated nitric acid, to yield p- and n-type carbon films. Doped PPC thin films were positioned in conjunction with doped silicon to create Schottky and p-n junction diodes for use in an alternating current half-wave rectifier circuit. Pyrolyzed parylene C has found particular merit as a 3D electrode coating of AFM probes. Current sensing-atomic force microscopy imaging in air of nanoscale metallic features was undertaken to demonstrate the electronic imaging applicability of PPC AFM probes. Upon further insulation with parylene C and modification with a focused ion beam, a PPC UME was microfabricated near the AFM probe apex and utilized for electrochemical imaging. Subsequently, scanning electrochemical microscopy-atomic force microscopy imaging was undertaken to electrochemically quantify and image the spatial location of dopamine exocytotic release, elicited mechanically via the AFM probe itself, from differentiated pheochromocytoma 12 cells in vitro.

  12. Atomic force microscopy of surface topography of nitrogen plasma treated steel

    CERN Document Server

    Mahboubi, F

    2002-01-01

    Nitriding of steels, using plasma environments has been practiced for many years. A lot of efforts have been put on developing new methods, such as plasma immersion ion implantation (Pl sup 3) and radio frequency (RF) plasma nitriding, for mass transfer of nitrogen into the surface of the work piece. This article presents the results obtained from an in depth investigation of the surface morphology of the treated samples, carried out using an atomic force microscope. Samples from a microalloyed steel, were treated by both methods for 5 hours at different temperatures ranging from 350 to 550 sup d eg sup C in 75% N sub 2 -25% H sub 2 atmosphere. It has been found that the surface of the samples treated by PI sup 3 technique, although having more favorable properties, were rougher than the surfaces treated by RF plasma nitriding.

  13. Observations and morphological analysis of supermolecular structure of natural bitumens by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yevgeny A. Golubev; Olga V. Kovaleva; Nikolay P. Yushkin [Institute of Geology of RAS, Syktyvkar (Russian Federation)

    2008-01-15

    The supermolecular structures of natural bitumens of the thermal consequent row asphaltites lower kerites (albertites), higher kerites (impsonites), anthraxolites from the Timan-Pechora petroleum province and Karelian shungite rocks, Russia, were studied in details. The experimental technique used was atomic force microscopy (AFM), following fracture preparation. The element distribution of the sample surfaces was analyzed by an X-ray microanalyser 'Link ISIS', combined with a scanning electron microscope (SEM). In this work, we characterized the supermolecular evolution of natural solid bitumens in the carbonization sequence by quantitative parameters. We showed that supermolecular structure can be important in defining to which classification group solid bitumens belong. 29 refs., 7 figs., 2 tabs.

  14. Magnetically-modulated atomic force microscopy for analysis of soft matter systems.

    Science.gov (United States)

    Kageshima, Masami

    2012-11-01

    Experimental method of studying viscoelasticity, a common idea to understand properties of microscopic biological soft matter systems, especially single biopolymer chains, using atomic force microscopy (AFM) with magnetically- driven cantilever is surveyed. The experimental setup of applying well-characterized excitation to the cantilever and the analysis method to derive the viscoelasticity of the system under study are briefly introduced. Examples of measuring viscoelasticity of single peptide molecule and single titin molecule are shown. Considering the close relation of viscoelasticity and the time-scale for nonequilibrium dynamics in soft matter, extension of the method to a frequency-resolved analysis is attempted. A result of measuring viscoelasticity spectrum of a single dextran chain is shown. Challenges in further progress of the method are also described.

  15. Atomic force microscopy study of the rabbit skeletal muscle ryanodine receptors in different functional states

    Institute of Scientific and Technical Information of China (English)

    魏青青; 程晓阳; 陈克樱; 胡钧; 李民乾; 朱培闳

    2002-01-01

    Atomic force microscope was applied to investigate the effect of extrinsic phospholipid on the structure of rabbit skeletal muscle ryanodine receptor/calcium release channel (RyR1). In addition, in the presence of extrinsic phospholipid, the height and elasticity of the RyR1s in different functional states were also measured. The results indicate: (i) most of the RyR1s showed a normal structure only in the presence of extrinsic phospholipid; (ii) treatment of the RyR1s with AMP and Ca2+ together could increase their Young's Modulus but not change their apparent height; (iii) no detectable change in either height or Young's Modulus of the RyR1s appeared, if the RyR1s were treated with other activators or inhibitors.

  16. Study of atomic force microscopy nanoindentation for the development of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Sirena, M., E-mail: sirena@cab.cnea.gov.a [Unite Mixte de Physique CNRS/Thales, Campus de Polytechnique. 1 Avenue A. Fresnel, 91767 Palaiseau (France); Fusil, S. [Universite d' Evry, Batiment des Sciences, rue du pere Jarlan, 91205 Every (France); Bouzehouane, K.; George, J.-M.; Cros, V. [Unite Mixte de Physique CNRS/Thales, Campus de Polytechnique. 1 Avenue A. Fresnel, 91767 Palaiseau (France)

    2009-10-01

    We have studied the fabrication of atomic force microscope (AFM) based nanotemplates using electrically controlled indentation (ECI) and a composite barrier (photoresist/alumina) that is resistant to the lithography process and presents good mechanical properties for indentation. The indentation process is affected by several factors such as the indentation speed, the trigger voltage and the barrier type. We have used the nanotemplate technique to fabricate small gold-gold nanocontacts (1-10 nm). In this limit, the size of the contacts that is obtained through the indentation process seems to be stochastic. However, low dimension, clean metallic contacts were achieved with high temporal stability and compatible with low temperature measurements. The fabricated nanotemplates are versatile and can be used in a wide range of applications, from nanojunctions to connecting a single nano-object. Small area metallic contacts can be used to study spin injection or ballistic transport.

  17. Atomic force microscopy observation on nuclear reassembly in a cell-free system

    Institute of Scientific and Technical Information of China (English)

    YANG Ning; CHEN Zhongcai; ZHANG Zhaohui; ZHU Xing; ZHAI Zhonghe; TANG Xiaowei

    2003-01-01

    Cell-free system is interesting and useful for studying nuclear assembly in mitosis. Atomic force micro- scopy (AFM), which is a simple way for imaging fixed reassemble nuclei with high resolution, has not been used in the cell-free system. In this paper, we put forward an air-drying sample preparation for AFM. Using AFM, we observed nuclear reassembly process within 100 nm resolution ina cell-free system. As a result, we found that the images were artifact-free, and with higher resolution compared with fluorescent optical microscope images. Furthermore, the morphology of membrane vesicles was obtained clearly, and a dynamic change of morphology during the vesicles' approaching to nuclear envelope was also observed, which is enlightened to understand the mechanism of nuclear envelope assembly.

  18. Effect of cold plasma on glial cell morphology studied by atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Nina Recek

    Full Text Available The atomic force microscope (AFM is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment.

  19. Label-free quantification of Tacrolimus in biological samples by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Menotta, Michele, E-mail: michele.menotta@uniurb.it [Department of Biomolecular Sciences, University of Urbino “Carlo Bo” via Saffi 2, Urbino (Italy); Biagiotti, Sara [Department of Biomolecular Sciences, University of Urbino “Carlo Bo” via Saffi 2, Urbino (Italy); Streppa, Laura [Physics Laboratory, CNRS-ENS, UMR 5672, Lyon (France); Cell and Molecular Biology Laboratory, CNRS-ENS Lyon, UMR 5239, IFR128, Lyon (France); Rossi, Luigia; Magnani, Mauro [Department of Biomolecular Sciences, University of Urbino “Carlo Bo” via Saffi 2, Urbino (Italy)

    2015-07-16

    Highlights: • Tacrolimus is a potent immunosuppressant drug that has to be continually monitored. • We present an atomic force microscope approach for quantification of Tacrolimus in blood samples. • Detection and quantification have been successfully achieved. - Abstract: In the present paper we describe an atomic force microscopy (AFM)-based method for the quantitative analysis of FK506 (Tacrolimus) in whole blood (WB) samples. Current reference methods used to quantify this immunosuppressive drug are based on mass spectrometry. In addition, an immunoenzymatic assay (ELISA) has been developed and is widely used in clinic, even though it shows a small but consistent overestimation of the actual drug concentration when compared with the mass spectrometry method. The AFM biosensor presented herein utilises the endogen drug receptor, FKBP12, to quantify Tacrolimus levels. The biosensor was first assayed to detect the free drug in solution, and subsequently used for the detection of Tacrolimus in blood samples. The sensor was suitable to generate a dose–response curve in the full range of clinical drug monitoring. A comparison with the clinically tested ELISA assay is also reported.

  20. Brown algal morphogenesis: Atomic Force Microscopy as a tool to study the role of mechanical forces

    Directory of Open Access Journals (Sweden)

    Benoit eTesson

    2014-09-01

    Full Text Available Over the last few years, a growing interest has been directed toward the use of macroalgae as a source of energy, food and molecules for the cosmetic and pharmaceutical industries. Besides this, macroalgal development remains poorly understood compared to other multicellular organisms. Brown algae (Phaeophyceae form a monophyletic lineage of usually large multicellular algae which evolved independently from land plants. In their environment, they are subjected to strong mechanical forces (current, waves and tide, in response to which they modify rapidly and reversibly their morphology. Because of their specific cellular features (cell wall composition, cytoskeleton organization, deciphering how they cope with these forces might help discover new control mechanisms of cell wall softening and cellulose synthesis. Despite the current scarcity in knowledge on brown algal cell wall dynamics and protein composition, we will illustrate, in the light of methods adapted to Ectocarpus siliculosus, to what extent atomic force microscopy can contribute to advance this field of investigation.

  1. Wettability and surface forces measured by atomic force microscopy: the role of roughness

    Science.gov (United States)

    Gavoille, J.; Takadoum, J.; Martin, N.; Durand, D.

    2009-10-01

    Thin films of titanium, copper and silver with various roughnesses were prepared by physical vapour deposition technique: dc magnetron sputtering. By varying the deposition time from few minutes to one hour it was possible to obtain metallic films with surface roughness average ranging from 1 to 20 nm. The wettability of these films was studied by measuring the contact angle using the sessile drop method and surface forces were investigated using the atomic force microscopy (AFM) by measuring the pull-off force between the AFM tip and the surfaces. Experimental results have been mainly discussed in terms of metal surface reactivity, Young modulus of the materials and real surface of contact between the AFM tip and the film surfaces.

  2. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality.

    Science.gov (United States)

    Carvalho, Filomena A; Martins, Ivo C; Santos, Nuno C

    2013-03-01

    Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies.

  3. Atomic force microscopy and spectroscopy of native membrane proteins.

    Science.gov (United States)

    Müller, Daniel J; Engel, Andreas

    2007-01-01

    Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.

  4. Some issues on atomic force microscopy based surface characterization

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-hang; HUANG Wen-hao

    2007-01-01

    Influences of tip radius and sampling interval on applying atomic force microscopy(AFM)in quantitative surface evaluations are investigated by numerical simulations and experiments. Several evaluation parameters of surfaces ranging from amplitude to functional parameters are studied. Numerical and experimental results are in good agreements. The accuracy of estimating tip radius on random rough surface with Gaussian distribution of heights using a blind reconstruction method is also discussed theoretically. It is found that the accuracy is greatly depending on the ratio of actual tip radius to rootmean-square (rms) radius of curvature. To obtain an accurate estimation of tip radius under Gaussian rough surface, the ratio has to be larger than 3/2.

  5. Inverstigation of chromatin folding patterns by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANGYi; OUYANGZhenqian; 等

    1999-01-01

    The chromatin folding patterns in air and liquid were studied by atomic force microscopy(AFM),A gentle water-air interface method was adopted to spread chromatin from interphase nucleus of chicken erythrocyte.The chromatin was absorbed on APS-mica surface and studied with AFM,Beads-on a-string were observed and many higher-order structrues such as superbeads with dimensions 40-60nm in diameter and 4-7nm in height were found to string together to make chromation fibers.When sample spreading and absorbing time were shortened.higher-order chromatin fibers with 60-120nm in width were observed in air as well as under water environment.These chromatin structures may reflect chromatin folding patterns in the living cells.

  6. Photocatalytic degradation of bacteriophages evidenced by atomic force microscopy.

    Directory of Open Access Journals (Sweden)

    Emrecan Soylemez

    Full Text Available Methods to supply fresh water are becoming increasingly critical as the world population continues to grow. Small-diameter hazardous microbes such as viruses (20-100 nm diameter can be filtered by size exclusion, but in this approach the filters are fouled. Thus, in our research, we are investigating an approach in which filters will be reusable. When exposed to ultraviolet (UV illumination, titanate materials photocatalytically evolve (•OH and O2(•- radicals, which attack biological materials. In the proposed approach, titanate nanosheets are deposited on a substrate. Viruses adsorb on these nanosheets and degrade when exposed to UV light. Using atomic force microscopy (AFM, we image adsorbed viruses and demonstrate that they are removed by UV illumination in the presence of the nanosheets, but not in their absence.

  7. Atomic force microscopy for the examination of single cell rheology.

    Science.gov (United States)

    Okajima, Takaharu

    2012-11-01

    Rheological properties of living cells play important roles in regulating their various biological functions. Therefore, measuring cell rheology is crucial for not only elucidating the relationship between the cell mechanics and functions, but also mechanical diagnosis of single cells. Atomic force microscopy (AFM) is becoming a useful technique for single cell diagnosis because it allows us to measure the rheological properties of adherent cells at any region on the surface without any modifications. In this review, we summarize AFM techniques for examining single cell rheology in frequency and time domains. Recent applications of AFM for investigating the statistical analysis of single cell rheology in comparison to other micro-rheological techniques are reviewed, and we discuss what specificity and universality of cell rheology are extracted using AFM.

  8. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz

    Science.gov (United States)

    Gratz, A. J.; Manne, S.; Hansma, P. K.

    1991-01-01

    The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.

  9. Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy

    Science.gov (United States)

    George, Michael; Mussone, Paolo G.; Abboud, Zeinab; Bressler, David C.

    2014-09-01

    The mechanical and moisture resistance properties of natural fibre reinforced composites are dependent on the adhesion between the matrix of choice and the fibre. The main goal of this study was to investigate the effect of NaOH swelling of hemp fibres prior to enzymatic treatment and a novel chemical sulfonic acid method on the physical properties of hemp fibres. The colloidal properties of treated hemp fibres were studied exclusively using an atomic force microscope. AFM imaging in tapping mode revealed that each treatment rendered the surface topography of the hemp fibres clean and exposed the individual fibre bundles. Hemp fibres treated with laccase had no effect on the surface adhesion forces measured. Interestingly, mercerization prior to xylanase + cellulase and laccase treatments resulted in greater enzyme access evident in the increased adhesion force measurements. Hemp fibres treated with sulfonic acid showed an increase in surface de-fibrillation and smoothness. A decrease in adhesion forces for 4-aminotoulene-3-sulfonic acid (AT3S) treated fibres suggested a reduction in surface polarity. This work demonstrated that AFM can be used as a tool to estimate the surface forces and roughness for modified fibres and that enzymatic coupled with chemical methods can be used to improve the surface properties of natural fibres for composite applications. Further, this work is one of the first that offers some insight into the effect of mercerization prior to enzymes and the effect on the surface topography. AFM will be used to selectively screen treated fibres for composite applications based on the adhesion forces associated with the colloidal interface between the AFM tip and the fibre surfaces.

  10. Characterization of chemically and enzymatically treated hemp fibres using atomic force microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    George, Michael; Mussone, Paolo G. [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada); Abboud, Zeinab [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada); Department of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1 (Canada); Bressler, David C., E-mail: david.bressler@ualberta.ca [Biorefining Conversions and Fermentations Laboratory, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6E 2P5 (Canada)

    2014-09-30

    The mechanical and moisture resistance properties of natural fibre reinforced composites are dependent on the adhesion between the matrix of choice and the fibre. The main goal of this study was to investigate the effect of NaOH swelling of hemp fibres prior to enzymatic treatment and a novel chemical sulfonic acid method on the physical properties of hemp fibres. The colloidal properties of treated hemp fibres were studied exclusively using an atomic force microscope. AFM imaging in tapping mode revealed that each treatment rendered the surface topography of the hemp fibres clean and exposed the individual fibre bundles. Hemp fibres treated with laccase had no effect on the surface adhesion forces measured. Interestingly, mercerization prior to xylanase + cellulase and laccase treatments resulted in greater enzyme access evident in the increased adhesion force measurements. Hemp fibres treated with sulfonic acid showed an increase in surface de-fibrillation and smoothness. A decrease in adhesion forces for 4-aminotoulene-3-sulfonic acid (AT3S) treated fibres suggested a reduction in surface polarity. This work demonstrated that AFM can be used as a tool to estimate the surface forces and roughness for modified fibres and that enzymatic coupled with chemical methods can be used to improve the surface properties of natural fibres for composite applications. Further, this work is one of the first that offers some insight into the effect of mercerization prior to enzymes and the effect on the surface topography. AFM will be used to selectively screen treated fibres for composite applications based on the adhesion forces associated with the colloidal interface between the AFM tip and the fibre surfaces.

  11. Localization and force analysis at the single virus particle level using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chih-Hao [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Horng, Jim-Tong [Department of Biochemistry, Chang Gung University, 259 Wen-Hwa First Road, Kweishan, Taoyuan 333, Taiwan (China); Chang, Jeng-Shian [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Hsieh, Chung-Fan [Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China); Tseng, You-Chen [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Lin, Shiming, E-mail: til@ntu.edu.tw [Institute of Applied Mechanics, Nation Taiwan University, Roosevelt Road, Taipei 10617, Taiwan (China); Center for Optoelectronic Biomedicine, College of Medicine, Nation Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan (China)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Localization of single virus particle. Black-Right-Pointing-Pointer Force measurements. Black-Right-Pointing-Pointer Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  12. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy.

    Science.gov (United States)

    Kilpatrick, Jason I; Revenko, Irène; Rodriguez, Brian J

    2015-11-18

    The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications.

  13. Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy

    Science.gov (United States)

    Balke, Nina; Jesse, Stephen; Carmichael, Ben; Baris Okatan, M.; Kravchenko, Ivan I.; Kalinin, Sergei V.; Tselev, Alexander

    2017-02-01

    Atomic force microscopy (AFM) methods utilizing resonant mechanical vibrations of cantilevers in contact with a sample surface have shown sensitivities as high as few picometers for detecting surface displacements. Such a high sensitivity is harnessed in several AFM imaging modes. Here, we demonstrate a cantilever-resonance-based method to quantify electrostatic forces on a probe in the probe-sample junction in the presence of a surface potential or when a bias voltage is applied to the AFM probe. We find that the electrostatic forces acting on the probe tip apex can produce signals equivalent to a few pm of surface displacement. In combination with modeling, the measurements of the force were used to access the strength of the electrical field at the probe tip apex in contact with a sample. We find an evidence that the electric field strength in the junction can reach ca. 1 V nm-1 at a bias voltage of a few volts and is limited by non-ideality of the tip-sample contact. This field is sufficiently strong to significantly influence material states and kinetic processes through charge injection, Maxwell stress, shifts of phase equilibria, and reduction of energy barriers for activated processes. Besides, the results provide a baseline for accounting for the effects of local electrostatic forces in electromechanical AFM measurements as well as offer additional means to probe ionic mobility and field-induced phenomena in solids.

  14. Comparison of immature and mature bone marrow-derived dendritic cells by atomic force microscopy

    Science.gov (United States)

    Xing, Feiyue; Wang, Jiongkun; Hu, Mingqian; Yu, Yu; Chen, Guoliang; Liu, Jing

    2011-07-01

    A comparative study of immature and mature bone marrow-derived dendritic cells (BMDCs) was first performed through an atomic force microscope (AFM) to clarify differences of their nanostructure and adhesion force. AFM images revealed that the immature BMDCs treated by granulocyte macrophage-colony stimulating factor plus IL-4 mainly appeared round with smooth surface, whereas the mature BMDCs induced by lipopolysaccharide displayed an irregular shape with numerous pseudopodia or lamellapodia and ruffles on the cell membrane besides becoming larger, flatter, and longer. AFM quantitative analysis further showed that the surface roughness of the mature BMDCs greatly increased and that the adhesion force of them was fourfold more than that of the immature BMDCs. The nano-features of the mature BMDCs were supported by a high level of IL-12 produced from the mature BMDCs and high expression of MHC-II on the surface of them. These findings provide a new insight into the nanostructure of the immature and mature BMDCs.

  15. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy

    Science.gov (United States)

    Rosenberger, Matthew R.; Chen, Sihan; Prater, Craig B.; King, William P.

    2017-01-01

    This paper reports the design, fabrication, and characterization of micromechanical devices that can present an engineered contact stiffness to an atomic force microscope (AFM) cantilever tip. These devices allow the contact stiffness between the AFM tip and a substrate to be easily and accurately measured, and can be used to calibrate the cantilever for subsequent mechanical property measurements. The contact stiffness devices are rigid copper disks of diameters 2-18 μm integrated onto a soft silicone substrate. Analytical modeling and finite element simulations predict the elastic response of the devices. Measurements of tip-sample interactions during quasi-static force measurements compare well with modeling simulation, confirming the expected elastic response of the devices, which are shown to have contact stiffness 32-156 N m-1. To demonstrate one application, we use the disk sample to calibrate three resonant modes of a U-shaped AFM cantilever actuated via Lorentz force, at approximately 220, 450, and 1200 kHz. We then use the calibrated cantilever to determine the contact stiffness and elastic modulus of three polymer samples at these modes. The overall approach allows cantilever calibration without prior knowledge of the cantilever geometry or its resonance modes, and could be broadly applied to both static and dynamic measurements that require AFM calibration against a known contact stiffness.

  16. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhesion and nanoelectrical imaging

    Science.gov (United States)

    Nellist, Michael R.; Chen, Yikai; Mark, Andreas; Gödrich, Sebastian; Stelling, Christian; Jiang, Jingjing; Poddar, Rakesh; Li, Chunzeng; Kumar, Ravi; Papastavrou, Georg; Retsch, Markus; Brunschwig, Bruce S.; Huang, Zhuangqun; Xiang, Chengxiang; Boettcher, Shannon W.

    2017-03-01

    Multimodal nano-imaging in electrochemical environments is important across many areas of science and technology. Here, scanning electrochemical microscopy (SECM) using an atomic force microscope (AFM) platform with a nanoelectrode probe is reported. In combination with PeakForce tapping AFM mode, the simultaneous characterization of surface topography, quantitative nanomechanics, nanoelectronic properties, and electrochemical activity is demonstrated. The nanoelectrode probe is coated with dielectric materials and has an exposed conical Pt tip apex of ∼200 nm in height and of ∼25 nm in end-tip radius. These characteristic dimensions permit sub-100 nm spatial resolution for electrochemical imaging. With this nanoelectrode probe we have extended AFM-based nanoelectrical measurements to liquid environments. Experimental data and numerical simulations are used to understand the response of the nanoelectrode probe. With PeakForce SECM, we successfully characterized a surface defect on a highly-oriented pyrolytic graphite electrode showing correlated topographical, electrochemical and nanomechanical information at the highest AFM-SECM resolution. The SECM nanoelectrode also enabled the measurement of heterogeneous electrical conductivity of electrode surfaces in liquid. These studies extend the basic understanding of heterogeneity on graphite/graphene surfaces for electrochemical applications.

  17. Thermochemical nanolithography fabrication and atomic force microscopy characterization of functional nanostructures

    Science.gov (United States)

    Wang, Debin

    This thesis presents the development of a novel atomic force microscope (AFM) based nanofabrication technique termed as thermochemical nanolithography (TCNL). TCNL uses a resistively heated AFM cantilever to thermally activate chemical reactions on a surface with nanometer resolution. This technique can be used for fabrication of functional nanostructures that are appealing for various applications in nanofluidics, nanoelectronics, nanophotonics, and biosensing devices. This thesis research is focused on three main objectives. The first objective is to study the fundamentals of TCNL writing aspects. We have conducted a systematic study of the heat transfer mechanism using finite element analysis modeling, Raman spectroscopy, and local glass transition measurement. In addition, based on thermal kinetics analysis, we have identified several key factors to achieve high resolution fabrication of nanostructures during the TCNL writing process. The second objective is to demonstrate the use of TCNL on a variety of systems and thermochemical reactions. We show that TCNL can be employed to (1) modify the wettability of a polymer surface at the nanoscale, (2) fabricate nanoscale templates on polymer films for assembling nano-objects, such as proteins and DNA, (3) fabricate conjugated polymer semiconducting nanowires, and (4) reduce graphene oxide with nanometer resolution. The last objective is to characterize the TCNL nanostructures using AFM based methods, such as friction force microscopy, phase imaging, electric force microscopy, and conductive AFM. We show that they are useful for in situ characterization of nanostructures, which is particularly challenging for conventional macroscopic analytical tools, such as Raman spectroscopy, IR spectroscopy, and fluorescence microscopy.

  18. Construction of a $^3$He magnetic force microscope with a vector magnet

    CERN Document Server

    Yang, Jinho; Kim, Yun Won; Shin, Dongwoo; Jeong, Juyoung; Wulferding, Dirk; Yeom, Han Woong; Kim, Jeehoon

    2016-01-01

    We constructed a $^3$He magnetic force microscope operating at the base temperature of 300 mK under a vector magnetic field of 2-2-9 T in the $x-y-z$ direction. Fiber optic interferometry as a detection scheme is employed in which two home-built fiber walkers are used for the alignment between the cantilever and the optical fiber. The noise level of the laser interferometer is close to its thermodynamic limit. The capabilities of the sub-Kelvin and vector field are demonstrated by imaging the coexistence of magnetism and superconductivity in a ferromagnetic superconductor (ErNi$_2$B$_2$C) at $T$=500 mK and by probing a dipole shape of a single Abrikosov vortex with an in-plane tip magnetization.

  19. Toolkit for the Automated Characterization of Optical Trapping Forces on Microscopic Particles

    Science.gov (United States)

    Glaser, Joseph; Hoeprich, David; Resnick, Andrew

    2014-03-01

    Optical traps have been in use in microbiological studies for the past 40 years to obtain noninvasive control of microscopic particles. However, the magnitude of the applied forces is often unknown. Therefore, we have developed an automated data acquisition and processing system which characterizes trap properties for known particle geometries. Extensive experiments and measurements utilizing well-characterized objects were performed and compared to literature to confirm the system's performance. This system will enable the future analysis of a trapped primary cilium, a slender rod-shaped organelle with aspect ratio L/R >30, where `L' is the cilium length and `R' the cilium diameter. The trapping of cilia is of primary importance, as it will lead to the precise measurements of mechanical properties of the organelle and its significance to the epithelial cell. Support from the National Institutes of Health, 1R15DK092716 is gratefully acknowledged.

  20. Probing the interaction of individual amino acids with inorganic surfaces using atomic force spectroscopy.

    Science.gov (United States)

    Razvag, Yair; Gutkin, Vitaly; Reches, Meital

    2013-08-13

    This article describes single-molecule force spectroscopy measurements of the interaction between individual amino acid residues and inorganic surfaces in an aqueous solution. In each measurement, there is an amino acid residue, lysine, glutamate, phenylalanine, leucine, or glutamine, and each represents a class of amino acids (positively or negatively charged, aromatic, nonpolar, and polar). Force-distance curves measured the interaction of the individual amino acid bound to a silicon atomic force microscope (AFM) tip with a silcon substrate, cut from a single-crystal wafer, or mica. Using this method, we were able to measure low adhesion forces (below 300 pN) and could clearly determine the strength of interactions between the individual amino acid residues and the inorganic substrate. In addition, we observed how changes in the pH and ionic strength of the solution affected the adsorption of the residues to the substrates. Our results pinpoint the important role of hydrophobic interactions among the amino acids and the substrate, where hydrophobic phenylalanine exhibited the strongest adhesion to a silicon substrate. Additionally, electrostatic interactions also contributed to the adsorption of amino acid residues to inorganic substrates. A change in the pH or ionic strength values of the buffer altered the strength of interactions among the amino acids and the substrate. We concluded that the interplay between the hydrophobic forces and electrostatic interactions will determine the strength of adsorption among the amino acids and the surface. Overall, these results contribute to our understanding of the interaction at the organic-inorganic interface. These results may have implications for our perception of the specificity of peptide binding to inorganic surfaces. Consequently, it would possibly lead to a better design of composite materials and devices.

  1. Direct force measurement of single DNA-peptide interactions using atomic force microscopy.

    Science.gov (United States)

    Chung, Ji W; Shin, Dongjin; Kwak, June M; Seog, Joonil

    2013-06-01

    The selective interactions between DNA and miniature (39 residues) engineered peptide were directly measured at the single-molecule level by using atomic force microscopy. This peptide (p007) contains an α-helical recognition site similar to leucine zipper GCN4 and specifically recognizes the ATGAC sequence in the DNA with nanomolar affinity. The average rupture force was 42.1 pN, which is similar to the unbinding forces of the digoxigenin-antidigoxigenin complex, one of the strongest interactions in biological systems. The single linear fit of the rupture forces versus the logarithm of pulling rates showed a single energy barrier with a transition state located at 0.74 nm from the bound state. The smaller koff compared with that of other similar systems was presumably due to the increased stability of the helical structure by putative folding residues in p007. This strong sequence-specific DNA-peptide interaction has a potential to be utilized to prepare well-defined mechanically stable DNA-protein hybrid nanostructures.

  2. Quantitative assessment of contact and non-contact lateral force calibration methods for atomic force microscopy.

    Science.gov (United States)

    Tran Khac, Bien Cuong; Chung, Koo-Hyun

    2016-02-01

    Atomic Force Microscopy (AFM) has been widely used for measuring friction force at the nano-scale. However, one of the key challenges faced by AFM researchers is to calibrate an AFM system to interpret a lateral force signal as a quantifiable force. In this study, five rectangular cantilevers were used to quantitatively compare three different lateral force calibration methods to demonstrate the legitimacy and to establish confidence in the quantitative integrity of the proposed methods. The Flat-Wedge method is based on a variation of the lateral output on a surface with flat and changing slopes, the Multi-Load Pivot method is based on taking pivot measurements at several locations along the cantilever length, and the Lateral AFM Thermal-Sader method is based on determining the optical lever sensitivity from the thermal noise spectrum of the first torsional mode with a known torsional spring constant from the Sader method. The results of the calibration using the Flat-Wedge and Multi-Load Pivot methods were found to be consistent within experimental uncertainties, and the experimental uncertainties of the two methods were found to be less than 15%. However, the lateral force sensitivity determined by the Lateral AFM Thermal-Sader method was found to be 8-29% smaller than those obtained from the other two methods. This discrepancy decreased to 3-19% when the torsional mode correction factor for an ideal cantilever was used, which suggests that the torsional mode correction should be taken into account to establish confidence in Lateral AFM Thermal-Sader method.

  3. Calibration of an interfacial force microscope for MEMS metrology : FY08-09 activities.

    Energy Technology Data Exchange (ETDEWEB)

    Houston, Jack E.; Baker, Michael Sean; Crowson, Douglas A.; Mitchell, John Anthony; Moore, Nathan W.

    2009-10-01

    Progress in MEMS fabrication has enabled a wide variety of force and displacement sensing devices to be constructed. One device under intense development at Sandia is a passive shock switch, described elsewhere (Mitchell 2008). A goal of all MEMS devices, including the shock switch, is to achieve a high degree of reliability. This, in turn, requires systematic methods for validating device performance during each iteration of design. Once a design is finalized, suitable tools are needed to provide quality assurance for manufactured devices. To ensure device performance, measurements on these devices must be traceable to NIST standards. In addition, accurate metrology of MEMS components is needed to validate mechanical models that are used to design devices to accelerate development and meet emerging needs. Progress towards a NIST-traceable calibration method is described for a next-generation, 2D Interfacial Force Microscope (IFM) for applications in MEMS metrology and qualification. Discussed are the results of screening several suitable calibration methods and the known sources of uncertainty in each method.

  4. 人类染色体的原子力显微术研究%Atomic force microscopy of human chromosomes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The atomic force microscope(AFM),invented by Binnig et al.in 1986,can obtain topographic images at high spatial resolution in various(vacuum,air and liquid)environments,and has been applied to studies for imaging various biological samples from DNA to living cells [1,2].We have been especially interested in AFM imaging of human chromosomes for analyzing their three-dimensional structure.In this paper,we briefly reviewed our AFM studies of human metaphase chromosomes,and introduced our results on the high-order structure of the chromosomes.

  5. An Atomic Force Microscopy Investigation of the Tracks Made by C+1-C+4 Bombardment on CR-39 Detectors

    Institute of Scientific and Technical Information of China (English)

    赵葵; 吴秀坤; 郭继宇; 隋丽; 梅俊平; 倪嵋楠; 包轶文

    2003-01-01

    Carbon micro-clusters are accelerated by an HI-13 tandem accelerator.The plastic nuclear track detectors CR-39are irradiated by C1-C4 beams from the HI-13 tandem accelerator and the tracks in CR-39 are studied using an atomic force microscope(AFM).The depths and diameters of C1-C4 tracks are measured for the first time in a nanometre scale.An enhancement of the energy loss is obtained for carbon clusters related to single carbon ions with the same velocity.The results show that the AFM observation is very useful in the quantitative analysis of clusters in the track detector CR-39.

  6. Nanopatterning on silicon surface using atomic force microscopy with diamond-like carbon (DLC-coated Si probe

    Directory of Open Access Journals (Sweden)

    Zhou Jingfang

    2011-01-01

    Full Text Available Abstract Atomic force microscope (AFM equipped with diamond-like carbon (DLC-coated Si probe has been used for scratch nanolithography on Si surfaces. The effect of scratch direction, applied tip force, scratch speed, and number of scratches on the size of the scratched geometry has been investigated. The size of the groove differs with scratch direction, which increases with the applied tip force and number of scratches but decreases slightly with scratch speed. Complex nanostructures of arrays of parallel lines and square arrays are further fabricated uniformly and precisely on Si substrates at relatively high scratch speed. DLC-coated Si probe has the potential to be an alternative in AFM-based scratch nanofabrication on hard surfaces.

  7. Atomic force microscopy study of biaxially oriented polypropylene films

    Science.gov (United States)

    Nie, H.-Y.; Walzak, M. J.; McIntyre, N. S.

    2004-08-01

    Atomic force microscopy (AFM) uses a very sharp pointed mechanical probe to collect real-space morphological information of solid surfaces. AFM was used in this study to image the surface morphology of a biaxially oriented polypropylene film. The polymer film is characterized by a nanometer-scale, fiberlike network structure, which reflects the drawing process used during the fabrication of the film. AFM was used to study polymer-surface treatment to improve wettability by exposing the polymer to ozone with or without ultraviolet (UV) irradiation. Surface-morphology changes observed by AFM are the result of the surface oxidation induced by the treatment. Due to the topographic features of the polymer film, the fiberlike structure has been used to check the performance of the AFM tip. An AFM image is a mixture of the surface morphology and the shape of the AFM tip. Therefore, it is important to check the performance of a tip to ensure that the AFM image collected reflects the true surface features of the sample, rather than contamination on the AFM tip.

  8. Poroelasticity of cell nuclei revealed through atomic force microscopy characterization

    Science.gov (United States)

    Wei, Fanan; Lan, Fei; Liu, Bin; Liu, Lianqing; Li, Guangyong

    2016-11-01

    With great potential in precision medical application, cell biomechanics is rising as a hot topic in biology. Cell nucleus, as the largest component within cell, not only contributes greatly to the cell's mechanical behavior, but also serves as the most vital component within cell. However, cell nucleus' mechanics is still far from unambiguous up to now. In this paper, we attempted to characterize and evaluate the mechanical property of isolated cell nuclei using Atomic Force Microscopy with a tipless probe. As indicated from typical indentation, changing loading rate and stress relaxation experiment results, cell nuclei showed significant dynamically mechanical property, i.e., time-dependent mechanics. Furthermore, through theoretical analysis, finite element simulation and stress relaxation experiment, the nature of nucleus' mechanics was better described by poroelasticity, rather than viscoelasticity. Therefore, the essence of nucleus' mechanics was clarified to be poroelastic through a sophisticated analysis. Finally, we estimated the poroelastic parameters for nuclei of two types of cells through a combination of experimental data and finite element simulation.

  9. Advances in the atomic force microscopy for critical dimension metrology

    Science.gov (United States)

    Hussain, Danish; Ahmad, Khurshid; Song, Jianmin; Xie, Hui

    2017-01-01

    Downscaling, miniaturization and 3D staking of the micro/nano devices are burgeoning phenomena in the semiconductor industry which have posed sophisticated challenges in the critical dimension (CD) metrology. Over the past few years, atomic force microscopy (AFM) has emerged as an important CD metrology technique in meeting these challenges because of its high accuracy, 3D imaging capability, high spatial resolution and non-destructive nature. In this article, advances in the AFM based critical dimension (CD) metrology are systematically reviewed and discussed. CD metrology AFM techniques, strengths, limitations and scanning algorithms are described. Developments towards accurate measurements such as creep and hysteresis compensation of the piezoelectric scanners, their calibration and tip characterization are discussed. In addition, image reconstruction and measures for achieving high accuracy CD measurements with hybrid metrology technique are also discussed. CD metrology challenges offered by the next generation lithography (NGL) techniques such as those associated with the 3D nanodevices of 10 nm node and beyond have been highlighted.

  10. Wide Stiffness Range Cavity Optomechanical Sensors for Atomic Force Microscopy

    CERN Document Server

    Liu, Yuxiang; Aksyuk, Vladimir; Srinivasan, Kartik

    2012-01-01

    We report on progress in developing compact sensors for atomic force microscopy (AFM), in which the mechanical transducer is integrated with near-field optical readout on a single chip. The motion of a nanoscale, doubly-clamped cantilever was transduced by an adjacent high quality factor silicon microdisk cavity. In particular, we show that displacement sensitivity on the order of 1 fm/(Hz)^(1/2) can be achieved while the cantilever stiffness is varied over four orders of magnitude (\\approx 0.01 N/m to \\approx 290 N/m). The ability to transduce both very soft and very stiff cantilevers extends the domain of applicability of this technique, potentially ranging from interrogation of microbiological samples (soft cantilevers) to imaging with high resolution (stiff cantilevers). Along with mechanical frequencies (> 250 kHz) that are much higher than those used in conventional AFM probes of similar stiffness, these results suggest that our cavity optomechanical sensors may have application in a wide variety of hig...

  11. An atomic force microscopy investigation of cyanophage structure.

    Science.gov (United States)

    Kuznetsov, Yurii G; Chang, Sheng-Chieh; Credaroli, Arielle; Martiny, Jennifer; McPherson, Alexander

    2012-12-01

    Marine viruses have only relatively recently come to the attention of molecular biologists, and the extraordinary diversity of potential host organisms suggests a new wealth of genetic and structural forms. A promising technology for characterizing and describing the viruses structurally is atomic force microscopy (AFM). We provide examples here of some of the different architectures and novel structural features that emerge from even a very limited investigation, one focused on cyanophages, viruses that infect cyanobacteria (blue-green algae). These were isolated by phage selection of viruses collected from California coastal waters. We present AFM images of tailed, spherical, filamentous, rod shaped viruses, and others of eccentric form. Among the tailed phages numerous myoviruses were observed, some having long tail fibers, some other none, and some having no visible baseplate. Syphoviruses and a podovirus were also seen. We also describe a unique structural features found on some tailed marine phages that appear to have no terrestrial homolog. These are long, 450 nm, complex helical tail fibers terminating in a unique pattern of 3+1 globular units made up of about 20 small proteins.

  12. Actuation of atomic force microscopy microcantilevers using contact acoustic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Torello, D.; Degertekin, F. Levent, E-mail: levent.degertekin@me.gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2013-11-15

    A new method of actuating atomic force microscopy (AFM) cantilevers is proposed in which a high frequency (>5 MHz) wave modulated by a lower frequency (∼300 kHz) wave passes through a contact acoustic nonlinearity at the contact interface between the actuator and the cantilever chip. The nonlinearity converts the high frequency, modulated signal to a low frequency drive signal suitable for actuation of tapping-mode AFM probes. The higher harmonic content of this signal is filtered out mechanically by the cantilever transfer function, providing for clean output. A custom probe holder was designed and constructed using rapid prototyping technologies and off-the-shelf components and was interfaced with an Asylum Research MFP-3D AFM, which was then used to evaluate the performance characteristics with respect to standard hardware and linear actuation techniques. Using a carrier frequency of 14.19 MHz, it was observed that the cantilever output was cleaner with this actuation technique and added no significant noise to the system. This setup, without any optimization, was determined to have an actuation bandwidth on the order of 10 MHz, suitable for high speed imaging applications. Using this method, an image was taken that demonstrates the viability of the technique and is compared favorably to images taken with a standard AFM setup.

  13. Application of atomic force microscopy in blood research

    Institute of Scientific and Technical Information of China (English)

    Xiao-Long Ji; Ya-Min Ma; Tong Yin; Ming-Shi Shen; Xin Xu; Wei Guan

    2005-01-01

    AIM: To find suitable solutions having lesser granules and keeping erythrocytes in normal shapes under atomic force microscopy (AFM).METHODS: Eight kinds of solutions, 1% formaldehyde,PBS buffer (pH7.2), citrate buffer (pH6,0), 0.9% NaCl,5% dextrose, TAE, 1640 medium and 5% EDTA-K2, were selected from commonly used laboratory solutions, and venous blood from a healthy human volunteer was drawn and anticoagulated with EDTA-K2. Before scanned by AFM (NanoScopeⅢa SPM, Digital Instruments, Santa Barbara,CA), a kind of intermixture was deposited on freshly cleaved mica and then dried in the constant temperature cabinet (37 ℃).RESULTS: One percent formaldehyde, citrate buffer, 5%dextrose, TAE, were found to keep human erythrocytes in normal shape with few particles. Processed by these solutions, fine structures of human erythrocyte membrane were obtained.CONCLUSION: One percent formaldehyde, citrate buffer,5% dextrose and TAE may be applied to disposeerythrocytes in AFM. The results may offer meaningful data for clinical diagnosis of blood by AFM.

  14. Medical applications of atomic force microscopy and Raman spectroscopy.

    Science.gov (United States)

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  15. Constant tip-surface distance with atomic force microscopy via quality factor feedback.

    Science.gov (United States)

    Fan, Lin; Potter, Daniel; Sulchek, Todd

    2012-02-01

    The atomic force microscope (AFM) is a powerful and widely used instrument to image topography and measure forces at the micrometer and nanometer length scale. Because of the high degree of operating accuracy required of the instrument, small thermal and mechanical drifts of the cantilever and piezoactuator systems hamper measurements as the AFM tip drifts spatially relative to the sample surface. To compensate for the drift, we control the tip-surface distance by monitoring the cantilever quality factor (Q) in a closed loop. Brownian thermal fluctuations provide sufficient actuation to accurately determine cantilever Q by fitting the thermal noise spectrum to a Lorentzian function. We show that the cantilever damping is sufficiently affected by the tip-surface distance so that the tip position of soft cantilevers can be maintained within 40 nm of a setpoint in air and within 3 nm in water with 95% reliability. Utilizing this method to hover the tip above a sample surface, we have the capability to study sensitive interactions at the nanometer length scale over long periods of time.

  16. IMPROVED FABRICATION METHOD FOR CARBON NANOTUBE PROBE OF ATOMIC FORCE MICROSCOPY(AFM)

    Institute of Scientific and Technical Information of China (English)

    XU Zongwei; DONG Shen; GUO Liqiu; ZHAO Qingliang

    2006-01-01

    An improved arc discharge method is developed to fabricate carbon nanotube probe of atomic force microscopy (AFM) here. First, silicon probe and carbon nanotube are manipulated under an optical microscope by two high precision microtranslators. When silicon probe and carbon nanotube are very close, several tens voltage is applied between them. And carbon nanotube is divided and attached to the end of silicon probe, which mainly due to the arc welding function.Comparing with the arc discharge method before, the new method here needs no coat silicon probe with metal film in advance, which can greatly reduce the fabrication's difficulty. The fabricated carbon nanotube probe shows good property of higher aspect ratio and can more accurately reflect the true topography of silicon grating than silicon probe. Under the same image drive force, carbon nanotube probe had less indentation depth on soft triblock copolymer sample than silicon probe. This showed that carbon nanotube probe has lower spring constant and less damage to the scan sample than silicon probe.

  17. The investigation of nanotribology of UHMWPE in fluid using atomic force microscopy.

    Science.gov (United States)

    Wu, Jingping; Peng, Zhongxiao

    2015-05-01

    The fundamental understanding of the nanowear behavior of ultrahigh molecular weight polyethylene (UHMWPE) at a nanometer scale needs to be achieved to provide a better understanding of the initiating wear process and the potential causes of the wear particles generation of joint replacement. A nanotribology study was performed using atomic force microscope (AFM) tips sliding against UHMWPE surfaces in both water and bovine serum lubricants. Frictional properties of the nanocontact, and the geometry and mechanical features of the resulting scratches have been quantitatively characterized using AFM lateral force and PeakForce QNM modes. The results in this work indicated that the friction force and friction coefficient were smaller in serum lubricant than that in water. A normal load of 120 nN was the transition point for the plastic deformation of the material. The plastic deformation and material accumulation evolute with the increase of applied normal loads. Material pileup formed at the edges of the scratch, but they were not symmetrical due to the asymmetrical geometry of the silicon AFM tip. The height of the material pileup on the right side was approximately 40-70% of the pileup on the left side. The information may be useful for developing strategies for surface finishing techniques, which can control and minimize the production of asymmetric asperity and the resulting pileup with particular features. Furthermore, the moduli of the pileups were much larger than that of the fresh UHMWPE, which had the moduli greater than those of the inner scratch area. This suggested that stress concentration at these points could cause the pileup to be more susceptible to further wear processes, and eventually result in detaching from the bulk material.

  18. Observation of three-level rectified dipole forces acting on trapped atoms

    Science.gov (United States)

    Grove, T. T.; Duncan, B. C.; Sanchez-Villicana, V.; Gould, P. L.

    1995-06-01

    We have observed rectified dipole forces acting on three-level atoms in the cascade configuration. Laser cooled and trapped rubidium atoms are illuminated with an intense bichromatic standing wave (780 and 776 nm) tuned near resonance with the 5S1/2-->5P3/2-->5D5/2 transitions. The resulting rectified forces produce periodic potential wells (71-μm period), which localize the cold atoms. Experimental results are in reasonable agreement with theoretical predictions. These forces may be useful in atom optics and laser traps.

  19. Simultaneous Nanomechanical and Electrochemical Mapping: Combining Peak Force Tapping Atomic Force Microscopy with Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Knittel, Peter; Mizaikoff, Boris; Kranz, Christine

    2016-06-21

    Soft electronic devices play a crucial role in, e.g., neural implants as stimulating electrodes, transducers for biosensors, or selective drug-delivery. Because of their elasticity, they can easily adapt to their environment and prevent immunoreactions leading to an overall improved long-term performance. In addition, flexible electronic devices such as stretchable displays will be increasingly used in everyday life, e.g., for so-called electronic wearables. Atomic force microscopy (AFM) is a versatile tool to characterize these micro- and nanostructured devices in terms of their topography. Using advanced imaging techniques such as peak force tapping (PFT), nanomechanical properties including adhesion, deformation, and Young's modulus can be simultaneously mapped along with surface features. However, conventional AFM provides limited laterally resolved information on electrical or electrochemical properties such as the activity of an electrode array. In this study, we present the first combination of AFM with scanning electrochemical microscopy (SECM) in PFT mode, thereby offering spatially correlated electrochemical and nanomechanical information paired with high-resolution topographical data under force control (QNM-AFM-SECM). The versatility of this combined scanning probe approach is demonstrated by mapping topographical, electrochemical, and nanomechanical properties of gold microelectrodes and of gold electrodes patterned onto polydimethylsiloxane.

  20. Diamagnetic Levitation Cantilever System for the Calibration of Normal Force Atomic Force Microscopy Measurements

    Science.gov (United States)

    Torres, Jahn; Yi, Jin-Woo; Murphy, Colin; Kim, Kyung-Suk

    2011-03-01

    In this presentation we report a novel technique for normal force calibration for Atomic Force Microcopy (AFM) adhesion measurements known as the diamagnetic normal force calibration (D-NFC) system. The levitation produced by the repulsion between a diamagnetic graphite sheet and a set of rare-earth magnets is used in order to produce an oscillation due to an unstable mechanical moment produced by a silicon cantilever supported on the graphite. The measurement of the natural frequency of this oscillation allows for the calculation of the stiffness of the system to three-digit accuracy. The D-NFC response was proven to have a high sensitivity for the structure of water molecules collected on its surface. This in turns allows for the study of the effects of coatings on the structure of surface water. This work was supported by the Coatings/Biofouling Program and the Maritime Sensing Program of the Office of Naval Research as well as the ILIR Program of the Naval Undersea Warfare Center DIVNPT.