WorldWideScience

Sample records for atomic force microscopic

  1. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  2. Coaxial Atomic Force Microscope Tweezers

    CERN Document Server

    Brown, K A; Westervelt, R M

    2010-01-01

    We demonstrate coaxial atomic force microscope (AFM) tweezers that can trap and place small objects using dielectrophoresis (DEP). An attractive force is generated at the tip of a coaxial AFM probe by applying a radio frequency voltage between the center conductor and a grounded shield; the origin of the force is found to be DEP by measuring the pull-off force vs. applied voltage. We show that the coaxial AFM tweezers (CAT) can perform three dimensional assembly by picking up a specified silica microsphere, imaging with the microsphere at the end of the tip, and placing it at a target destination.

  3. Coaxial atomic force microscope tweezers

    Science.gov (United States)

    Brown, K. A.; Aguilar, J. A.; Westervelt, R. M.

    2010-03-01

    We demonstrate coaxial atomic force microscope (AFM) tweezers that can trap and place small objects using dielectrophoresis (DEP). An attractive force is generated at the tip of a coaxial AFM probe by applying a radio frequency voltage between the center conductor and a grounded shield; the origin of the force is found to be DEP by measuring the pull-off force versus applied voltage. We show that the coaxial AFM tweezers can perform three-dimensional assembly by picking up a specified silica microsphere, imaging with the microsphere at the end of the tip, and placing it at a target destination.

  4. Single atom measurement and atomic manipulation using atomic force microscope

    International Nuclear Information System (INIS)

    This paper explains studies to measure atomic force as the force linking an atom and atom, using an atomic force microscope (AFM). First, it describes the principle and device configuration of AFM, and as an example of the atomic force measurement of Si atoms on the surface of Si(111)-(7x7), it describes the technique to measure atomic force using AFM, as well as the uncertainty of probe tip against atomic force. In addition, it describes the following items on the measurement results of chemical bonding force: (1) chemical bonding force vs physical force and chemical bonding force vs current on the surface of Si(111)-(7x7), (2) chemical bonding force and element dependence on the surface of Si/Sn(111)-(√3x√3), (3) atomic manipulation based on AMF, and (4) relationship between atomic manipulation and the size of chemical bonding force with a probe. (A.O.)

  5. Atomic Force Microscope Mediated Chromatography

    Science.gov (United States)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  6. Imaging spectroscopy with the atomic force microscope

    OpenAIRE

    Baselt, David R.; Baldeschwieler, John D.

    1994-01-01

    Force curve imaging spectroscopy involves acquiring a force-distance curve at each pixel of an atomic force microscope image. Processing of the resulting data yields images of sample hardness and tip-sample adhesion. These images resemble Z modulation images and the sum of forward and reverse friction images, respectively, and like them exhibit a number of potentially misleading contrast mechanisms. In particular, XY tip motion has a pronounced effect on hardness images and the meniscus force...

  7. Sharp Tips on the Atomic Force Microscope

    Science.gov (United States)

    2008-01-01

    This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA. The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007. The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland

    1996-01-01

    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  9. Polymerized LB films imaged with a combined atomic force microscope-fluorescence microscope

    OpenAIRE

    Putman, Constant A.J.; Hansma, Helen G.; Gaub, Hermann E.; Hansma, Paul K.

    1992-01-01

    The first results obtained with a new stand-alone atomic force microscope (AFM) integrated with a standard Zeiss optical fluorescence microscope are presented. The optical microscope allows location and selection of objects to be imaged with the high-resolution AFM. Furthermore, the combined microscope enables a direct comparison between features observed in the fluorescence microscope and those observed in the images obtained with the AFM, in air or under liquid. The cracks in polymerized La...

  10. Atomic force microscopic study on lipid bilayer nanoscale phase separation

    OpenAIRE

    Liu, Rui

    2014-01-01

    Phase separation of copolymers or lipid membranes in nanoscale has attracted increasing interests for their applications in the synthesis of inorganic nanomaterial. The nanoscale phase separation of liquid bilayer as a supported membrane is systematically investigated by atomic force microscope (AFM). Moreover, the position of the fluorescence indicator, which is commonly used in the phase separation study in optical microscope, is also probed in this study to complete the knowledge of tradit...

  11. Polymerized LB films imaged with a combined atomic force microscope-fluorescence microscope

    NARCIS (Netherlands)

    Putman, Constant A.J.; Hansma, Helen G.; Gaub, Hermann E.; Hansma, Paul K.

    1992-01-01

    The first results obtained with a new stand-alone atomic force microscope (AFM) integrated with a standard Zeiss optical fluorescence microscope are presented. The optical microscope allows location and selection of objects to be imaged with the high-resolution AFM. Furthermore, the combined microsc

  12. Fabrication of an all-metal atomic force microscope probe

    DEFF Research Database (Denmark)

    Rasmussen, Jan Pihl; Tang, Peter Torben; Hansen, Ole;

    1997-01-01

    This paper presents a method for fabrication of an all-metal atomic force microscope probe (tip, cantilever and support) for optical read-out, using a combination of silicon micro-machining and electroforming. The paper describes the entire fabrication process for a nickel AFM-probe. In addition...

  13. Coaxial atomic force microscope probes for imaging with dielectrophoresis

    OpenAIRE

    Brown, Keith; Berezovsky, Jesse; Westervelt, Robert M.

    2011-01-01

    We demonstrate atomic force microscope (AFM) imaging using dielectrophoresis (DEP) with coaxial probes. DEP provides force contrast allowing coaxial probes to image with enhanced spatial resolution. We model a coaxial probe as an electric dipole to provide analytic formulas for DEP between a dipole, dielectric spheres, and a dielectric substrate. AFM images taken of dielectric spheres with and without an applied electric field show the disappearance of artifacts when imaging with DEP. Quantit...

  14. Manipulation of cadmium selenide nanorods with an atomic force microscope

    International Nuclear Information System (INIS)

    We have used an atomic force microscope (AFM) to manipulate and study ligand-capped cadmium selenide nanorods deposited on highly oriented pyrolitic graphite (HOPG). The AFM tip was used to manipulate (i.e., translate and rotate) the nanorods by applying a force perpendicular to the nanorod axis. The manipulation result was shown to depend on the point of impact of the AFM tip with the nanorod and whether the nanorod had been manipulated previously. Forces applied parallel to the nanorod axis, however, did not give rise to manipulation. These results are interpreted by considering the atomic-scale interactions of the HOPG substrate with the organic ligands surrounding the nanorods. The vertical deflection of the cantilever was recorded during manipulation and was combined with a model in order to estimate the value of the horizontal force between the tip and nanorod during manipulation. This horizontal force is estimated to be on the order of a few tens of nN.

  15. Edge Effects and Coupling Effects in Atomic Force Microscope Images

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang-jun; MENGYong-gang; WENShi-zhu

    2004-01-01

    The AFM images were obtained by an atomic force microscope (AFM) and transformed from the deformation of AFM micro cantilever probe. However, due to the surface topography and surface forces applied on the AFM tip of sample, the deformation of AFM probe results in obvious edge effects and coupling effects in the AFM images. The deformation of AFM probe was analyzed,the mechanism of the edge effects and the coupling effects was investigated, and their results in the AFM images were studied. It is demanstrated by the theoretical analysis and AFM experiments that the edge effects make lateral force images more clear than the topography images, also make extraction of frictional force force from lateral force images mare complex and difficult. While the coupling effects make the comparison between topography images and lateral force images mare advantage to acquire precise topography information by AFM.

  16. Controlled manipulation of atoms in insulating surfaces with the virtual atomic force microscope

    OpenAIRE

    Trevethan, T.; Watkins, M; Kantorovich, L. N.; Shluger, A. L.

    2007-01-01

    We predict how single oxygen ions can be manipulated on the MgO (100) surface and demonstrate the possibility of detecting a single-atom event using a noncontact atomic force microscope. The manipulation process is simulated explicitly in real time with a virtual dynamic atomic force microscope including the full response of the instrumentation and demonstrates a strong dependence on temperature. The proposed new atomistic mechanism and protocols for the controlled manipulation of single atom...

  17. Atomic force microscope probe-based nanometric scribing

    International Nuclear Information System (INIS)

    Miniaturization of machine components is recognized by many as a significant technological development for a vast spectrum of products. An atomic force microscope (AFM) probe that can exert forces onto a variety of engineering materials is used to perform mechanical scribing at the nanoscale. The success of nanomechanical machining at such fine scales is based on the understanding of microstructural machining mechanics. This paper investigates the cutting behaviour in the nanoscale of a chromium workpiece by using a retrofitted commercial AFM with an acoustic emission sensor, in order to scratch the surface and measure forces. The calibration procedure for acquiring the forces is discussed. The cutting force model, which incorporates the flow stress and friction coefficient in the nano-scale machining, is also presented

  18. Diagonal control design for atomic force microscope piezoelectric tube nanopositioners.

    Science.gov (United States)

    Bhikkaji, B; Yong, Y K; Mahmood, I A; Moheimani, S O R

    2013-02-01

    Atomic Force Microscopes (AFM) are used for generating surface topography of samples at micro to atomic resolutions. Many commercial AFMs use piezoelectric tube nanopositioners for scanning. Scanning rates of these microscopes are hampered by the presence of low frequency resonant modes. When inadvertently excited, these modes lead to high amplitude mechanical vibrations causing the loss of accuracy, while scanning, and eventually to break down of the tube. Feedback control has been used to damp these resonant modes. Thereby, enabling higher scanning rates. Here, a multivariable controller is designed to damp the first resonant mode along both the x and y axis. Exploiting the inherent symmetry in the piezoelectric tube, the multivariable control design problem is recast as independent single-input single-output (SISO) designs. This in conjunction with integral resonant control is used for damping the first resonant mode. PMID:23464216

  19. Nanoindentation of gold nanorods with an atomic force microscope

    Science.gov (United States)

    Reischl, B.; Kuronen, A.; Nordlund, K.

    2014-12-01

    The atomic force microscope (AFM) can be used to measure mechanical properties of nanoscale objects, which are too small to be studied using a conventional nanoindenter. The contact mechanics at such small scales, in proximity of free surfaces, deviate substantially from simple continuum models. We present results from atomistic computer simulations of the indentation of gold nanorods using a diamond AFM tip and give insight in the atomic scale processes, involving creation and migration of dislocations, leading to the plastic deformation of the sample under load, and explain the force-distance curves observed for different tip apex radii of curvature, as well as different crystallographic structure and orientation of the gold nanorod samples.

  20. MIDAS: Lessons learned from the first spaceborne atomic force microscope

    CERN Document Server

    Bentley, Mark S; Butler, Bart; Gavira, Jose; Jeszenszky, Harald; Mannel, Thurid; Romstedt, Jens; Schmied, Roland; Torkar, Klaus

    2016-01-01

    The Micro-Imaging Dust Analysis System (MIDAS) atomic force microscope (AFM) onboard the Rosetta orbiter was the first such instrument launched into space in 2004. Designed only a few years after the technique was invented, MIDAS is currently orbiting comet 67P Churyumov-Gerasimenko and producing the highest resolution 3D images of cometary dust ever made in situ. After more than a year of continuous operation much experience has been gained with this novel instrument. Coupled with operations of the Flight Spare and advances in terrestrial AFM a set of "lessons learned" has been produced, cumulating in recommendations for future spaceborne atomic force microscopes. The majority of the design could be reused as-is, or with incremental upgrades to include more modern components (e.g. the processor). Key additional recommendations are to incorporate an optical microscope to aid the search for particles and image registration, to include a variety of cantilevers (with different spring constants) and a variety of ...

  1. MIDAS: Lessons learned from the first spaceborne atomic force microscope

    Science.gov (United States)

    Bentley, Mark Stephen; Arends, Herman; Butler, Bart; Gavira, Jose; Jeszenszky, Harald; Mannel, Thurid; Romstedt, Jens; Schmied, Roland; Torkar, Klaus

    2016-08-01

    The Micro-Imaging Dust Analysis System (MIDAS) atomic force microscope (AFM) onboard the Rosetta orbiter was the first such instrument launched into space in 2004. Designed only a few years after the technique was invented, MIDAS is currently orbiting comet 67P Churyumov-Gerasimenko and producing the highest resolution 3D images of cometary dust ever made in situ. After more than a year of continuous operation much experience has been gained with this novel instrument. Coupled with operations of the Flight Spare and advances in terrestrial AFM a set of "lessons learned" has been produced, cumulating in recommendations for future spaceborne atomic force microscopes. The majority of the design could be reused as-is, or with incremental upgrades to include more modern components (e.g. the processor). Key additional recommendations are to incorporate an optical microscope to aid the search for particles and image registration, to include a variety of cantilevers (with different spring constants) and a variety of tip geometries.

  2. Atomic force microscope characterization of a resonating nanocantilever

    DEFF Research Database (Denmark)

    Abadal, G.; Davis, Zachary James; Borrise, X.; Hansen, Ole; Boisen, Anja; Barniol, N.; Perez-Murano, F.; Serra, F.

    An atomic force microscope (AFM) is used as a nanometer-scale resolution tool for the characterization of the electromechanical behaviour of a resonant cantilever-based mass sensor. The cantilever is actuated electrostatically by applying DC and AC voltages from a driver electrode placed closely...... and of the oscillation amplitude on the frequency of the AC voltage is measured by this technique and the results are fitted by a simple non-linear electromechanical model. (C) 2003 Elsevier Science B.V. All rights reserved....

  3. Thermal writing using a heated atomic force microscope tip

    Science.gov (United States)

    Mamin, H. J.

    1996-07-01

    Resistive heating of an atomic force microscope tip was used to perform thermally induced surface modifications. Heating was achieved by dissipating power in the legs of an electrically conducting silicon cantilever. Temperatures of up to 170 °C were obtained using 40 mW of input power. Electrical measurements used to monitor the temperature showed thermal time constants of 0.35-0.45 ms, depending on whether the tip was in contact with a substrate. The heated tip was used to demonstrate thermomechanical writing on a polycarbonate substrate, as well as thermal writing of an optical phase change material.

  4. Scanned-cantilever atomic force microscope with large scanning range

    Institute of Scientific and Technical Information of China (English)

    Jintao Yang; Wendong Xu

    2006-01-01

    A scanned-cantilever atomic force microscope (AFM) with large scanning range is proposed, which adopts a new design named laser spot tracking. The scanned-cantilever AFM uses the separate flexure x-y scanner and z scanner instead of the conventional piezoelectric tube scanner. The closed-loop control and integrated capacitive sensors of these scanners can insure that the images of samples have excellent linearity and stability. According to the experimental results, the scanned-cantilever AFM can realize maximal 100 × 100 (μm) scanning range, and 1-nm resolution in z direction, which can meet the requirements of large scale sample testing.

  5. Nonlinear control techniques for an atomic force microscope system

    Institute of Scientific and Technical Information of China (English)

    Yongchun FANG; Matthew FEEMSTER; Darren DAWSON; Nader M.JALILI

    2005-01-01

    Two nonlinear control techniques are proposed for an atomic force microscope system.Initially,a learning-based control algorithm is developed for the microcantilever-sample system that achieves asymptotic cantilever tip tracking for periodic trajectories.Specifically,the control approach utilizes a learning-based feedforward term to compensate for periodic dynamics and high-gain terms to account for non-periodic dynamics.An adaptive control algorithm is then developed to achieve asymptotic cantilever tip tracking for bounded tip trajectories despite uncertainty throughout the system parameters.Simulation results are provided to illustrate the efficacy and performance of the control strategies.

  6. An atomic force microscope tip as a light source

    OpenAIRE

    Lulevich, V.; Honig, Christopher D. F.; Ducker, William A.

    2005-01-01

    We present a simple method for causing the end of a silicon nitride atomic force microscope (AFM) tip to emit light, and we use this emitted light to perform scanning near-field optical microscopy. Illumination of a silicon nitride AFM tip by blue (488 nm) or green (532 nm) laser light causes the sharp part of the tip to emit orange light. Orange light is emitted when the tip is immersed in either air or water; and while under illumination, emission continues for a period of many hours withou...

  7. Lorentz force actuation of a heated atomic force microscope cantilever

    International Nuclear Information System (INIS)

    We report Lorentz force-induced actuation of a silicon microcantilever having an integrated resistive heater. Oscillating current through the cantilever interacts with the magnetic field around a NdFeB permanent magnet and induces a Lorentz force that deflects the cantilever. The same current induces cantilever heating. With AC currents as low as 0.2 mA, the cantilever can be oscillated as much as 80 nm at resonance with a DC temperature rise of less than 5 °C. By comparison, the AC temperature variation leads to a thermomechanical oscillation that is about 1000 times smaller than the Lorentz deflection at the cantilever resonance. The cantilever position in the nonuniform magnetic field affects the Lorentz force-induced deflection, with the magnetic field parallel to the cantilever having the largest effect on cantilever actuation. We demonstrate how the cantilever actuation can be used for imaging, and for measuring the local material softening temperature by sensing the contact resonance shift. (paper)

  8. Study of adhesive forces on a silicon nanotip by atomic force microscope in contact mode

    Science.gov (United States)

    Agache, Vincent; Legrand, Bernard; Collard, Dominique; Buchaillot, Lionel

    2002-04-01

    Atomic Force Microscope operating in contact mode is used in this paper for probing the spatial distribution of adhesive forces versus the topography of a silicon nanotip. This nanotip consists in an ultra sha4rp silicon tip with radius less than 15 nm fabricated using a combination of high- resolution electron beam lithography and plasma dry etching. The amplitude of the forces is determined from force versus distance curve measurements. Hence, by determining the contact point and the pull-off force from the force curves, the surface topography and the adhesive forces are simultaneously obtained at various locations on the surface. This paper reports both measurements and the modeling of adhesive forces versus the contact point on the nanotip. As the nanotip is sharper and has got a smaller aperture angle than the employed Atomic Force Microscope tip, the measurements are focused on the nanotip apex.

  9. Adhesive forces investigation on a silicon tip by contact-mode atomic force microscope

    Science.gov (United States)

    Agache, Vincent; Legrand, Bernard; Collard, Dominique; Buchaillot, Lionel

    2002-09-01

    An atomic force microscope operating in contact mode is used in this letter for probing the adhesive forces at the apex of a silicon nanotip with typical radius smaller than 15 nm, fabricated using a combination of high-resolution electron beam lithography and plasma dry etching. The amplitude of the forces is deduced from force versus distance curve measurements. By determining the contact point and the pull-off force from the force curves, the surface topography and the adhesive forces are simultaneously obtained at various locations on the surface. This letter reports both measurements and modeling of adhesive forces versus the contact point on the nanotip. As the nanotip is sharper and has a smaller aperture angle than the employed atomic force microscope tip, the measurements are focused on the nanotip apex.

  10. Gating mechanosensitive channels in bacteria with an atomic force microscope

    Science.gov (United States)

    Garces, Renata; Miller, Samantha; Schmidt, Christoph F.; Third Institute of Physics Team; School of Medical Sciences Collaboration

    The regulation of growth and integrity of bacteria is critically linked to mechanical stress. Bacteria typically maintain a high difference of osmotic pressure (turgor pressure) with respect to the environment. This pressure difference (on the order of 1 atm) is supported by the cell envelope, a composite of lipid membranes and a rigid cell wall. Turgor pressure is controlled by the ratio of osmolytes inside and outside bacteria and thus, can abruptly increase upon osmotic downshock. For structural integrity bacteria rely on the mechanical stability of the cell wall and on the action of mechanosensitive (MS) channels: membrane proteins that release solutes in response to stress in the cell envelope. We here present experimental data on MS channels gating. We activate channels by indenting living bacteria with the cantilever of an atomic force microscope (AFM). We compare responses of wild-type and mutant bacteria in which some or all MS channels have been eliminated.

  11. New approaches to atomic force microscope lithography on silicon

    DEFF Research Database (Denmark)

    Birkelund, Karen; Thomsen, Erik Vilain; Rasmussen, Jan Pihl;

    1997-01-01

    is used to add the finer nanostructures. Both methods are based on selective oxidation of hydrogen-passivated silicon and subsequent etching to define conducting regions on the surface. This combined technique has previously been implemented on amorphous Si on oxide. To extend the technique to form......We have investigated new approaches to the formation of conducting nanowires on crystalline silicon surfaces using atomic force microscope (AFM) lithography. To increase processing speed and reduce wear of the AFM tip, large-scale structures are formed with a direct laser write setup, while the AFM...... crystalline silicon nanowires, we have used an arsenic implanted crystalline silicon layer on p-type Si, where the nanostructures are isolated from the substrate electrically due to p-n junction formation. Improvements in the reliability of the AFM lithography technique were achieved by using all-metal tips...

  12. Mathematical modeling of nanomachining with atomic force microscope cantilevers

    International Nuclear Information System (INIS)

    This article theoretically analyzes the cutting depth and material removal rate of an atomic force microscope (AFM) cantilever during nanomachining. An analytical expression for the vibration frequency and displacement of the cantilever has been obtained by using the modified couple stress theory. The theory includes one additional material length scale parameter revealing the micro-scale effect. According to the analysis, the results show that the effect of size-dependent on the vibration behavior of the AFM cantilever is obvious. The maximum displacement of nanomachining with the AFM cantilever represents the cutting depth. The area under the displacement-time curve is related to the material removal rate. When the excitation frequency is closer to the nature frequency of the cantilever, a larger material removal rate is obtained

  13. Nanodot deposition and its application with atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zenglei, E-mail: liuzenglei@sia.cn; Jiao Niandong, E-mail: ndjiao@sia.cn [Chinese Academy of Sciences, State Key Laboratory of Robotics, Shenyang Institute of Automation (China); Xu Ke [Shenyang Jianzhu University (China); Wang, Zhidong [Chiba Institute of Technology (Japan); Dong Zaili; Liu Lianqing [Chinese Academy of Sciences, State Key Laboratory of Robotics, Shenyang Institute of Automation (China)

    2013-06-15

    Nanodot deposition using atomic force microscope (AFM) is investigated. To realize repeatable and precise deposition of nanodots, the detailed control method is discussed. The electric field between AFM tip and substrate is analyzed, and a convenient method to control tip-substrate separation is proposed. In experiments, two nanodot matrixes are fabricated and the heights of the nanodots are analyzed. Experimental results testify that the control method can lead to repeatable and precise fabrication of deposited nanodots. As an application of deposited nanodots, a carbon nanotube (CNT) is soldered on gold electrodes with deposited Au nanodots. After soldering, the contact resistances between the CNT and the electrodes decrease greatly. AFM-based nanodot deposition can be used to fabricate special nanopatterns; also it can be used to solder nanomaterials on substrates to improve the electrical connection, which has a promising future for nanodevice fabrication.

  14. The long range voice coil atomic force microscope

    International Nuclear Information System (INIS)

    Most current atomic force microscopes (AFMs) use piezoelectric ceramics for scan actuation. Piezoelectric ceramics provide precision motion with fast response to applied voltage potential. A drawback to piezoelectric ceramics is their inherently limited ranges. For many samples this is a nonissue, as imaging the nanoscale details is the goal. However, a key advantage of AFM over other microscopy techniques is its ability to image biological samples in aqueous buffer. Many biological specimens have topography for which the range of piezoactuated stages is limiting, a notable example of which is bone. In this article, we present the use of voice coils in scan actuation for an actuation range in the Z-axis an order of magnitude larger than any AFM commercially available today. The increased scan size will allow for imaging an important new variety of samples, including bone fractures.

  15. A Conceptual Atomic Force Microscope using LEGO for Nanoscience Education

    Directory of Open Access Journals (Sweden)

    Tsung-Han Hsieh

    2014-05-01

    Full Text Available A lack of effective educational materials is limited general public awareness of, and interest in, nanoscience. This paper presents a conceptual atomic force microscope (AFM model built by using the LEGO® MINDSTORMS series. AFMs are perhaps one of the most fundamental and widely-used instruments in nanoscience and nanotechnology, thus the introduction of this LEGO® AFM should be beneficial to nanoscience education. Programmed in LabVIEW, this LEGO® model has the ability to scan the samples and construct a three-dimensional (3D surface graphs of the sample, based on the mechanism used for AFM. With this LEGO® AFM, the students can directly access nanoscience concepts through hands-on experience constructing an AFM model. This interaction will lead to a better understanding of nanoscience principles, and motivate learners to further explore both the theoretical and experimental aspects of the domain.

  16. Precision measurements of the Casimir force using an atomic force microscope

    International Nuclear Information System (INIS)

    The Casimir force results from the alteration by boundaries of the zero point electromagnetic energy. We have used the atomic force microscope to make precision measurements of the Casimir force between a large gold coated sphere and a flat plate. The complete dielectric spectrum of the metal is used in the comparison of theory to the experiment. The average statistical precision is around 1% of the forces measured at the closest separation

  17. A new ion sensing deep atomic force microscope

    Science.gov (United States)

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K.

    2014-08-01

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.

  18. A new ion sensing deep atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2014-08-15

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.

  19. Research on three dimensional machining effects using atomic force microscope.

    Science.gov (United States)

    Mao, Yao-Ting; Kuo, Kai-Chen; Tseng, Ching-En; Huang, Jian-Yin; Lai, Yi-Chih; Yen, Jia-Yush; Lee, Chih-Kung; Chuang, Wei-Li

    2009-06-01

    This research studies the use of scanning probe microscope as the tool to manufacture three dimensional nanoscale objects. We modified a commercial atomic force microscope (AFM) and replaced the original probe control system with a personal computer (PC) based controller. The modified system used the scanning probe in the AFM for the cutting tool and used the PC controller to control work piece. With the new controller, one could implement multiaxes motion control to perform trajectory planning and to test various cutting strategies. The experiments discovered that the debris can coalesce with the sample material and cause tremendous problem in the nanomachining process. This research thus proposed to make use of this material and developed a piling algorithm to not only cut but also pile up the debris in a favorable way for steric shaping. The experimental results showed that the proposed cutting and shaping algorithm can produce nano-objects as high as a few hundred nanometers. The probe tip typically wears down to around 500 microm diameter after the machining process, putting a limit on the machining resolution. The vertical resolution can achieve less than 10 nm without controlled environment. PMID:19566224

  20. The atomic force microscope as a mechano–electrochemical pen

    Directory of Open Access Journals (Sweden)

    Christian Obermair

    2011-10-01

    Full Text Available We demonstrate a method that allows the controlled writing of metallic patterns on the nanometer scale using the tip of an atomic force microscope (AFM as a “mechano–electrochemical pen”. In contrast to previous experiments, no voltage is applied between the AFM tip and the sample surface. Instead, a passivated sample surface is activated locally due to lateral forces between the AFM tip and the sample surface. In this way, the area of tip–sample interaction is narrowly limited by the mechanical contact between tip and sample, and well-defined metallic patterns can be written reproducibly. Nanoscale structures and lines of copper were deposited, and the line widths ranged between 5 nm and 80 nm, depending on the deposition parameters. A procedure for the sequential writing of metallic nanostructures is introduced, based on the understanding of the passivation process. The mechanism of this mechano–electrochemical writing technique is investigated, and the processes of site-selective surface depassivation, deposition, dissolution and repassivation of electrochemically deposited nanoscale metallic islands are studied in detail.

  1. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling

    OpenAIRE

    Torun, H.; Finkler, O.; Degertekin, F. L.

    2009-01-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a ...

  2. Manipulation and Graphene local oxidation lithography using an Atomic Force Microscope

    International Nuclear Information System (INIS)

    in this work, SPM nano lithography in Atomic Force Microscope mode was used to etching and manipulate graphene films on a nanoscopic length scale in order to produce electronic nano structures. By means of local anodic oxidation with an Atomic Force Microscope which is an electrochemical process applying voltage between Atomic Force Microscope probe and graphene surface, we are able to structure isolating trenches into single-layer and few-layer graphene flakes. Trench sizes of less than 30 nm in width are attainable with this technique. Besides oxidation, the influence of mechanical peeling and scratching with an Atomic Force Microscope of few layer graphene sheets was investigated.

  3. Casimir force experiments with quartz tuning forks and an atomic force microscope (AFM)

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, T [Binnotec, Bouchestr. 12, 12435 Berlin (Germany)], E-mail: DrLudwig@thorstenludwig.de

    2008-04-25

    The aim of the measurement series is to study the Casimir force, specifically the effects of different materials and geometries. The art of measuring sub-nano Newton forces has been engineered to a great extent in the material sciences, especially for the atomic force microscope. In today's scanning microscope technologies there are several common methods used to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with soft silicon cantilevers, there are a large number of reports from university groups on the use of quartz tuning forks to get high resolution AFM pictures, to measure shear forces or to create new force sensors. The quartz tuning fork based force sensor has a number of advantages over the silicon cantilever, but also has some disadvantages. In this report the method based on quartz tuning forks is described with respect to their usability for Casimir force measurements and compared with other successful techniques. Furthermore, a design for Casimir force measurements that was set up in Berlin will be described and practical experimental aspects will be discussed. A status report on the Casimir experiments in Berlin will be given, including the experimental setup. In order to study the details of the Casimir effect the apparatus and active surfaces have to be improved further. The surfaces have to be flatter and cleaner. For better resolution, cantilevers and tuning forks with a low spring constant have to be employed.

  4. Casimir force experiments with quartz tuning forks and an atomic force microscope (AFM)

    International Nuclear Information System (INIS)

    The aim of the measurement series is to study the Casimir force, specifically the effects of different materials and geometries. The art of measuring sub-nano Newton forces has been engineered to a great extent in the material sciences, especially for the atomic force microscope. In today's scanning microscope technologies there are several common methods used to measure sub-nano Newton forces. While the commercial atomic force microscopes (AFM) mostly work with soft silicon cantilevers, there are a large number of reports from university groups on the use of quartz tuning forks to get high resolution AFM pictures, to measure shear forces or to create new force sensors. The quartz tuning fork based force sensor has a number of advantages over the silicon cantilever, but also has some disadvantages. In this report the method based on quartz tuning forks is described with respect to their usability for Casimir force measurements and compared with other successful techniques. Furthermore, a design for Casimir force measurements that was set up in Berlin will be described and practical experimental aspects will be discussed. A status report on the Casimir experiments in Berlin will be given, including the experimental setup. In order to study the details of the Casimir effect the apparatus and active surfaces have to be improved further. The surfaces have to be flatter and cleaner. For better resolution, cantilevers and tuning forks with a low spring constant have to be employed

  5. Experimental Investigation of the Velocity Effect on Adhesion Forces with an Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    魏征; 赵亚溥

    2004-01-01

    Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM)in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity.It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.

  6. High-speed force mapping on living cells with a small cantilever atomic force microscope

    International Nuclear Information System (INIS)

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed

  7. Contact resonances of U-shaped atomic force microscope probes

    International Nuclear Information System (INIS)

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFM research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes

  8. Contact resonances of U-shaped atomic force microscope probes

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei, E.; Turner, J. A., E-mail: jaturner@unl.edu [Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, Nebraska 68588 (United States)

    2016-01-21

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFM research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.

  9. A metrological large range atomic force microscope with improved performance

    International Nuclear Information System (INIS)

    A metrological large range atomic force microscope (Met. LR-AFM) has been set up and improved over the past years at Physikalisch-Technische Bundesanstalt (PTB). Being designed as a scanning sample type instrument, the sample is moved in three dimensions by a mechanical ball bearing stage in combination with a compact z-piezostage. Its topography is detected by a position-stationary AFM head. The sample displacement is measured by three embedded miniature homodyne interferometers in the x, y, and z directions. The AFM head is aligned in such a way that its cantilever tip is positioned on the sample surface at the intersection point of the three interferometer measurement beams for satisfying the Abbe measurement principle. In this paper, further improvements of the Met. LR-AFM are reported. A new AFM head using the beam deflection principle has been developed to reduce the influence of parasitic optical interference phenomena. Furthermore, an off-line Heydemann correction method has been applied to reduce the inherent interferometer nonlinearities to less than 0.3 nm (p-v). Versatile scanning functions, for example, radial scanning or local AFM measurement functions, have been implemented to optimize the measurement process. The measurement software is also improved and allows comfortable operations of the instrument via graphical user interface or script-based command sets. The improved Met. LR-AFM is capable of measuring, for instance, the step height, lateral pitch, line width, nanoroughness, and other geometrical parameters of nanostructures. Calibration results of a one-dimensional grating and a set of film thickness standards are demonstrated, showing the excellent metrological performance of the instrument.

  10. Contact resonances of U-shaped atomic force microscope probes

    Science.gov (United States)

    Rezaei, E.; Turner, J. A.

    2016-01-01

    Recent approaches used to characterize the elastic or viscoelastic properties of materials with nanoscale resolution have focused on the contact resonances of atomic force microscope (CR-AFM) probes. The experiments for these CR-AFM methods involve measurement of several contact resonances from which the resonant frequency and peak width are found. The contact resonance values are then compared with the noncontact values in order for the sample properties to be evaluated. The data analysis requires vibration models associated with the probe during contact in order for the beam response to be deconvolved from the measured spectra. To date, the majority of CR-AFM research has used rectangular probes that have a relatively simple vibration response. Recently, U-shaped AFM probes have created much interest because they allow local sample heating. However, the vibration response of these probes is much more complex such that CR-AFM is still in its infancy. In this article, a simplified analytical model of U-shaped probes is evaluated for contact resonance applications relative to a more complex finite element (FE) computational model. The tip-sample contact is modeled using three orthogonal Kelvin-Voigt elements such that the resonant frequency and peak width of each mode are functions of the contact conditions. For the purely elastic case, the frequency results of the simple model are within 8% of the FE model for the lowest six modes over a wide range of contact stiffness values. Results for the viscoelastic contact problem for which the quality factor of the lowest six modes is compared show agreement to within 13%. These results suggest that this simple model can be used effectively to evaluate CR-AFM experimental results during AFM scanning such that quantitative mapping of viscoelastic properties may be possible using U-shaped probes.

  11. Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment

    Institute of Scientific and Technical Information of China (English)

    阳丽; 涂育松; 谭惠丽

    2014-01-01

    In micro-manipulation, the adhesion force has very important influence on behaviors of micro-objects. Here, a theoretical study on the effects of humidity on the adhesion force is presented between atomic force microscope (AFM) tips and substrate. The analysis shows that the precise tip geometry plays a critical role on humidity depen-dence of the adhesion force, which is the dominant factor in manipulating micro-objects in AFM experiments. For a blunt (paraboloid) tip, the adhesion force versus humidity curves tends to the apparent contrast (peak-to-valley corrugation) with a broad range. This paper demonstrates that the abrupt change of the adhesion force has high correla-tion with probe curvatures, which is mediated by coordinates of solid-liquid-vapor contact lines (triple point) on the probe profiles. The study provides insights for further under-standing nanoscale adhesion forces and the way to choose probe shapes in manipulating micro-objects in AFM experiments.

  12. Theoretical Study on the Capillary Force between an Atomic Force Microscope Tip and a Nanoparticle

    Institute of Scientific and Technical Information of China (English)

    LI Zhao-Xia; ZHANG Li-Juan; YI Hou-Hui; FANG Hai-Ping

    2007-01-01

    @@ Considering that capillary force is one of the most important forces between nanoparticles and atomic force microscope (AFM) tips in ambient atmosphere, we develop an analytic approach on the capillary force between an AFM tip and a nanoparticle. The results show that the capillary forces are considerably affected by the geometry of the AFM tip, the humidity of the environment, the vertical distance between the AFM tip and the nanoparticle, as well as the contact angles of the meniscus with an AFM tip and a nanoparticle. It is found that the sharper the AFM tip, the smaller the capillary force. The analyses and results are expected to be helpful for the quantitative imaging and manipulating of nanoparticles by AFMs.

  13. Investigation of penetration force of living cell using an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Eun Young; Kim, Young Tae; Kim, Dae Eun [Yonsei University, Seoul (Korea, Republic of)

    2009-07-15

    Recently, the manipulation of a single cell has been receiving much attention in transgenesis, in-vitro fertilization, individual cell based diagnosis, and pharmaceutical applications. As these techniques require precise injection and manipulation of cells, issues related to penetration force arise. In this work the penetration force of living cell was studied using an atomic force microscope (AFM). L929, HeLa, 4T1, and TA3 HA II cells were used for the experiments. The results showed that the penetration force was in the range of 2{approx}22 nN. It was also found that location of cell penetration and stiffness of the AFM cantilever affected the penetration force significantly. Furthermore, double penetration events could be detected, due to the multi-membrane layers of the cell. The findings of this work are expected to aid in the development of precision micro-medical instruments for cell manipulation and treatment

  14. Friction force measurements relevant to de-inking by means of atomic force microscope.

    Science.gov (United States)

    Theander, Katarina; Pugh, Robert J; Rutland, Mark W

    2005-11-15

    In the pulping step of the de-inking process, the ink detaches from the fibers due to shear and physical chemical interaction. In order to get a better understanding of the forces involved between cellulose and ink, the atomic force microscope and the colloidal probe technique have been used in the presence of a model chemical dispersant (hexa-ethyleneglycol mono n-dodecyl ether, C12E6). A cellulose bead was used as the colloidal probe and three different lower surfaces have been used, an alkyd resin, mica and a cellulose sphere. The normal and lateral forces have been measured at a range of nonionic concentrations. It was found that the lateral sliding friction forces deceased with increasing surfactant concentration for both the alkyd resin and mica while no differences were observed for the cellulose surface. In addition, only a very small change in normal force could be detected for the alkyd surface as the concentration changed. PMID:15961095

  15. Model based control of dynamic atomic force microscope

    International Nuclear Information System (INIS)

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H∞ control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments

  16. A comparison of dynamic atomic force microscope set-ups for performing atomic scale manipulation experiments

    International Nuclear Information System (INIS)

    We present the results of calculations performed to investigate the process of single-atom manipulation with the non-contact atomic force microscope comparing the two most common experimental set-ups: a conventional large amplitude silicon cantilever and a small amplitude quartz tuning fork. The manipulation of a model system-an oxygen vacancy in the MgO(001) surface by a single vertical approach at a fixed lateral position-is simulated for each set-up using a detailed and realistic atomistic model that accounts for temperature and the tip trajectory, and it is found that both approaches produce the manipulation event in approximately the same way. The behaviour of the tip dynamics and the resulting response of the instrumentation to the manipulation event is studied using a virtual dynamic atomic force microscope that includes a realistic description of noise for each type of set-up. The results of these calculations indicate how a single-atom manipulation can be performed and recognized by each type of experiment

  17. Visualization of Cytoskeletal Elements by the Atomic Force Microscope

    CERN Document Server

    Berdyyeva, T; Sokolov, I

    2004-01-01

    We describe a novel application of atomic force microscopy (AFM) to directly visualize cytoskeletal fibers in human foreskin epithelial cells. The nonionic detergent Triton X-100 in a low concentration was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized in either liquid or air-dried ambient conditions. These two types of scanning provide complimentary information. Scanning in liquid visualizes the surface filaments of the cytoskeleton, whereas scanning in air shows both the surface filaments and the total "volume" of the cytoskeletal fibers. The smallest fibers observed were ca. 50 nm in diameter. The lateral resolution of this technique was ca.20 nm, which can be increased to a single nanometer level by choosing sharper AFM tips. Because the AFM is a true three dimensional technique, we are able to quantify the observed cytoskeleton by its density and volume. The types of fibers can be identified by their size, similar to...

  18. Quantification of the lateral detachment force for bacterial cells using atomic force microscope and centrifugation

    International Nuclear Information System (INIS)

    To determine the lateral detachment force for individual bacterial cells, a quantitative method using the contact mode of an atomic force microscope (AFM) was developed in this study. Three key factors for the proposed method, i.e. scan size, scan rate and cantilever choice, were evaluated and optimized. The scan size of 40x40 μm2 was optimal for capturing sufficient number of adhered cells in a microscopic field and provide adequate information for cell identification and detachment force measurement. The scan rate affected the measurement results significantly, and was optimized at 40 μm/s considering both force measurement accuracy and experimental efficiency. The hardness of applied cantilevers also influenced force determination. The proposed protocol for cantilever selection is to use those with the lowest spring constant first and then step up to a harder cantilever until all cells are detached. The lateral detachment force of Escherichia coli cells on polished stainless steel and a glass-slide coated with poly-L-lysine were measured as 0.763±0.167 and 0.639±0.136 nN, respectively. The results showed that the established method had good repeatability and sensitivity to various bacteria/substrata combinations. The detachment force quantified by AFM (0.639±0.136 nN) was comparable to that measured by the centrifugation method (1.12 nN). -- Research highlights: → A quantitative method via AFM is developed to measure the lateral detachment force of an attached cell. → The parameters of AFM operation for this method are optimized. → The tests using E. coli on different substrata show that the method has good repeatability and sensitivity. → The method could obtain reliable results that are comparable to those using the centrifugation approach.

  19. Scratch direction and threshold force in nanoscale scratching using atomic force microscopes

    Science.gov (United States)

    Tseng, Ampere A.; Kuo, Chung-Feng Jeffrey; Jou, Shyankay; Nishimura, Shinya; Shirakashi, Jun-ichi

    2011-09-01

    The nanoscaled tip in an AFM (atomic force microscope) has become an effective scratching tool for material removing in nanofabrication. In this article, the characteristics of using a diamond-coated pyramidal tip to scratch Ni-Fe thin film surfaces was experimentally investigated with the focus on the evaluation of the influence of the scratch or scan direction on the final shape of the scratched geometry as well as the applied scratch force. Results indicated that both the scratched profile and the scratch force were greatly affected by the scratch direction. It has been found that, to minimize the formation of protuberances along the groove sides and to have a better control of the scratched geometry, the tip face should be perpendicular to the scratching direction, which is also known as orthogonal cutting condition. To demonstrate the present findings, three groove patterns have been scratched with the tip face perpendicular to the scratching direction and very little amount of protuberances was observed. The threshold scratch force was also predicted based on the Hertz contact theory. Without considering the surface friction and adhesive forces between the tip and substrate, the threshold force predicted was twice smaller than the measurement value. Finally, recommendations for technical improvement and research focuses are provided.

  20. Scratch direction and threshold force in nanoscale scratching using atomic force microscopes

    International Nuclear Information System (INIS)

    The nanoscaled tip in an AFM (atomic force microscope) has become an effective scratching tool for material removing in nanofabrication. In this article, the characteristics of using a diamond-coated pyramidal tip to scratch Ni-Fe thin film surfaces was experimentally investigated with the focus on the evaluation of the influence of the scratch or scan direction on the final shape of the scratched geometry as well as the applied scratch force. Results indicated that both the scratched profile and the scratch force were greatly affected by the scratch direction. It has been found that, to minimize the formation of protuberances along the groove sides and to have a better control of the scratched geometry, the tip face should be perpendicular to the scratching direction, which is also known as orthogonal cutting condition. To demonstrate the present findings, three groove patterns have been scratched with the tip face perpendicular to the scratching direction and very little amount of protuberances was observed. The threshold scratch force was also predicted based on the Hertz contact theory. Without considering the surface friction and adhesive forces between the tip and substrate, the threshold force predicted was twice smaller than the measurement value. Finally, recommendations for technical improvement and research focuses are provided.

  1. Investigation of structural change of purple membrane in storage by transmission electron microscope and atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The structural change of purple membrane during storage has been investigated by means of transmission electron microscope and atomic force microscope. It is found that many liposomes have spontaneously evolved from the purple membrane sheets isolated three years ago. The membrane proteins on the liposomes, bacteriorhodopsin, are still presented as trimers in 2-D hexagonal structure, which is the same as that in natural cell membrane. However, the cytoplasmic surface of purple membrane faced outside on the liposomes.

  2. Novel parallel plate condenser for single particle electrostatic force measurements in atomic force microscope

    KAUST Repository

    Kwek, Jin Wang

    2011-07-01

    A combination of small parallel plate condenser with Indium Tin Oxide (ITO) glass slides as electrodes and an atomic force microscope (AFM) is used to characterize the electrostatic behavior of single glass bead microparticles (105-150 μm) glued to the AFM cantilever. This novel setup allows measurements of the electrostatic forces acting on a particle in an applied electrical field to be performed in ambient air conditions. By varying the position of the microparticle between the electrodes and the strength of the applied electric field, the relative contributions of the particle net charge, induced and image charges were investigated. When the microparticle is positioned in the middle of the electrodes, the force acting on the microparticle was linear with the applied electric field and proportional to the microparticle net charge. At distances close to the bottom electrode, the force follows a parabolic relationship with the applied electric field reflecting the contributions of induced and image charges. The method can be used for the rapid evaluation of the charging and polarizability properties of the microparticle as well as an alternative to the conventional Faraday\\'s pail technique. © 2011 Elsevier B.V.

  3. Quantitative comparison of two independent lateral force calibration techniques for the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Barkley, Sarice S.; Cannara, Rachel J. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Deng Zhao [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland NanoCenter, University of Maryland, College Park, Maryland 20742 (United States); Gates, Richard S.; Reitsma, Mark G. [Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2012-02-15

    Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5% or less, but with precision limited to about 15%, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an {approx_equal} 4 % systematic error per {mu}N of applied load for loads {<=} 1 {mu}N. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.

  4. Modelling atomic scale manipulation with the non-contact atomic force microscope

    International Nuclear Information System (INIS)

    We present the results of calculations performed to model the process of lateral manipulation of an oxygen vacancy in the MgO(001) surface using the non-contact atomic force microscope (NC-AFM). The potential energy surfaces for the manipulation as a function of tip position are determined from atomistic modelling of the MgO(001) surface interacting with a Mg terminated MgO tip. These energies are then used to model the dynamical evolution of the system as the tip oscillates and at a finite temperature using a kinetic Monte Carlo method. The manipulation process is strongly dependent on the lateral position of the tip and the system temperature. It is also found that the expectation value of the point at which the vacancy jumps depends on the trajectory of the oscillating cantilever as the surface is approached. The effect of the manipulation on the operation of the NC-AFM is modelled with a virtual dynamic AFM, which explicitly simulates the entire experimental instrumentation and control loops. We show how measurable experimental signals can result from a single controlled atomic scale event and suggest the most favourable conditions for achieving successful atomic scale manipulation experimentally

  5. Massively Parallel Atomic Force Microscope with Digital Holographic Readout

    International Nuclear Information System (INIS)

    Massively Parallel Scanning Probe Microscopy is an obvious path for data storage (E Grochowski, R F Hoyt, Future Trends in Hard disc Drives, IEEE Trans. Magn. 1996, 32, 1850- 1854; J L Griffin, S W Schlosser, G R Ganger and D F Nagle, Modeling and Performance of MEMS-Based Storage Devices, Proc. ACM SIGMETRICS, 2000). Current experimental systems still lay far behind Hard Disc Drive (HDD) or Digital Video Disk (DVD), be it in access speed, data throughput, storage density or cost per bit. This paper presents an entirely new approach with the promise to break several of these barriers. The key idea is readout of a Scanning Probes Microscope (SPM) array by Digital Holographic Microscopy (DHM). This technology directly gives phase information at each pixel of a CCD array. This means that no contact line to each individual SPM probes is needed. The data is directly available in parallel form. Moreover, the optical setup needs in principle no expensive components, optical (or, to a large extent, mechanical) imperfections being compensated in the signal processing, i.e. in electronics. This gives the system the potential for a low cost device with fast Terabit readout capability

  6. Torsional spring constant obtained for an atomic force microscope cantilever

    Science.gov (United States)

    Jeon, Sangmin; Braiman, Yehuda; Thundat, Thomas

    2004-03-01

    In this letter, a method to measure the torsional spring constant of a microcantilever is described. The cantilever was twisted laterally without any normal load by inducing the Lorentz force. An electrical current was applied to the cantilever in a magnetic field, and the torsional resonance frequency of the cantilever was obtained. Based on the observation that the torsional resonance frequency is the same as the second resonance peak of the thermally vibrating cantilever, the ratio of deflection spring constant to torsional spring constant is easily obtained from a simple relationship. For the cantilever used here, the torsional spring constant is 11.24 N/m, 28 times greater than the deflection spring constant.

  7. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    Science.gov (United States)

    Fink, Samuel D.; Fondeur, Fernando F.

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  8. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    Science.gov (United States)

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-01-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale--reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use…

  9. Nano Goes to School: A Teaching Model of the Atomic Force Microscope

    Science.gov (United States)

    Planinsic, Gorazd; Kovac, Janez

    2008-01-01

    The paper describes a teaching model of the atomic force microscope (AFM), which proved to be successful in the role of an introduction to nanoscience in high school. The model can demonstrate the two modes of operation of the AFM (contact mode and oscillating mode) as well as some basic principles that limit the resolution of the method. It can…

  10. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning o...

  11. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Steurer, Wolfram, E-mail: wst@zurich.ibm.com; Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard [IBM Research-Zurich, 8803 Rüschlikon (Switzerland)

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  12. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    International Nuclear Information System (INIS)

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K

  13. Biophysical measurements of cells, microtubules, and DNA with an atomic force microscope

    Science.gov (United States)

    Devenica, Luka M.; Contee, Clay; Cabrejo, Raysa; Kurek, Matthew; Deveney, Edward F.; Carter, Ashley R.

    2016-04-01

    Atomic force microscopes (AFMs) are ubiquitous in research laboratories and have recently been priced for use in teaching laboratories. Here, we review several AFM platforms and describe various biophysical experiments that could be done in the teaching laboratory using these instruments. In particular, we focus on experiments that image biological materials (cells, microtubules, and DNA) and quantify biophysical parameters including membrane tension, persistence length, contour length, and the drag force.

  14. A low‐temperature atomic force/scanning tunneling microscope for ultrahigh vacuum

    OpenAIRE

    Giessibl, Franz J.; Gerber, Christoph; Binnig, Gerd

    1991-01-01

    We have built an ultrahigh vacuum atomic force/scanning tunneling microscope that works at 4.2 K. The microscope is incorporated into a very small chamber (100 ml) which can be evacuated and baked to UHV within a few hours by a specially designed valve. The instrument is about 20×20×70 mm3 in size and sturdy enough to operate without vibration isolation. The deflection of a microfabricated cantilever is detected by electron tunneling. Preliminary results show atomic resolution of HOPG in the ...

  15. Development of novel and sensitive sensors based on microcantilever of atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    JIN Yan; WANG Kemin; JIN Rong

    2006-01-01

    Recently, the development of sensors based on microfabricated cantilevers of atomic force microscope (AFM) has attracted considerable attention from the designers of novel physical, chemical, and biological sensors. Many kinds of sensors have been developed taking the advantages of its high-resolution imaging, force measurement and force sensitivity, such as immunosensor and DNA biosensor and the sensors for detection of intermolecular interaction. This paper reviews the progress made in this field and discusses the signal transfer principles by which the design of the sensors is achieved.

  16. Atomic Force Microscope Studies of the Fusion of Floating Lipid Bilayers

    OpenAIRE

    Abdulreda, Midhat H.; Moy, Vincent T.

    2007-01-01

    This study investigated the fusion of apposing floating bilayers of egg L-α-phosphatidylcholine (egg PC) or 1,2-dimyristoyl-sn-glycero-3-phosphocholine. Atomic force microscope measurements of fusion forces under different compression rates were acquired to reveal the energy landscape of the fusion process under varied lipid composition and temperature. Between compression rates of ∼1000 and ∼100,000 pN/s, applied forces in the range from ∼100 to ∼500 pN resulted in fusion of floating bilayer...

  17. Surface Electromechanical Coupling on DLC Film with Conductive Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    朱守星; 丁建宁; 范真; 李长生; 蔡兰; 杨继昌

    2004-01-01

    Diamond-like carbon (DLC) film composed of microscopically insulation but microscopically a mixture of conducting (sp2) and insulating (spa) phases was discussed on the local modification with a conductive atomic force microscope (C-AFM). Especially, a topographic change was observed when a direct current (DC) bias-voltage was applied to the DLC film. Experimental results show that a nanoscale pit on DLC surface was formed when applying a positive 25 V on DLC film. According to the interacting force between CoCr-coated microelectronic scanning probe (MESP) tip and DLC surface, as well as the Sondheimer oscillation theory, the "scalewing effect" of the pit was explained. Electromechanical coupling on DLC film suggested that the depth of pits increased with an increase of load applied to surface when the cantilever-deflected signal was less than a certain threshold voltage.

  18. A Study on HA Titanium Surface with Atomic Force Microscope (AFM)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Three kinds of titanium surface especially the HA surface are analyzed. Titanium was treated by 3 kinds of methods that were acid & alkali, calcic solution and apatite solution. Samples were observed by optic microscope and atomic force microscope ( AFM). The typical surface morphology of the acid and alkali group is little holes, and on the two HA surface the tiny protuberances is typical. The surface treated by apatite solution was smoother than the two formers. The rough surface treated with acid and alkali was propitious to Ca + , Pand proteins' adhesion, and the relatively smooth HA surface was of benefit to the cell adhesion.

  19. A direct micropipette-based calibration method for atomic force microscope cantilevers

    OpenAIRE

    Liu, Baoyu; Yu, Yan; Yao, Da-Kang; Shao, Jin-Yu

    2009-01-01

    In this report, we describe a direct method for calibrating atomic force microscope (AFM) cantilevers with the micropipette aspiration technique (MAT). A closely fitting polystyrene bead inside a micropipette is driven by precisely controlled hydrostatic pressures to apply known loads on the sharp tip of AFM cantilevers, thus providing a calibration at the most functionally relevant position. The new method is capable of calibrating cantilevers with spring constants ranging from 0.01 to hundr...

  20. Visualization of Cellulose Microfibrils of Phyllostachys pubescens Fibers with Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Atomic force microscope(AFM) was used to investigate the arrangement of cellulose microfibrils (CMF) in Moso bamboo (Phyllostachys pubescens) fibers. Two methods of sample preparation were used here for different purposes. The first method was chemical maceration with a mixture of hydrogen peroxide and glacial acetic acid, through which the obtained fibers were suitable for observing the orientation of CMF in the primary wal1. The other method was to prepare tangential microtomed sections with a thickness o...

  1. Surface topography characterization using an atomic force microscope mounted on a coordinate measuring machine

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Hansen, H.N; Kofod, N

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning of...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....

  2. Atomic force microscope based Kelvin probe measurements : application to an electrochemical reaction

    OpenAIRE

    Böhmisch, Mathias; Burmeister, Frank; Rettenberger, Armin; Zimmermann, Jörg; Boneberg, Johannes; Leiderer, Paul

    1997-01-01

    An atomic force microscope (AFM) was utilized as a Kelvin probe to determine work functions of several metals and semiconductors quantitarively. Most of the experimental data show excellent agreement with published values measured by photoemission. Variations in work functions as low as 5 mV could be detected with a typical lateral resolution of 20 nm. This method allowed us to analyze and explain the energetics of an electrochemical reaction on the surface of WSe2, which could be in situ ind...

  3. On the adhesion between fine particles and nanocontacts : an atomic force microscope study

    OpenAIRE

    Farshchi Tabrizi, Mahdi

    2007-01-01

    Um die Handhabung von feinen Pulvern in industriellen Anwendungen zu optimieren, ist ein Verständnis der Wechselwirkungen zwischen einzelnen Pulverteilchen eine fundamentale Voraussetzung. Die Kräfte zwischen kolloidalen Teilchen bestimmen das Verhalten einer Reihe von Materialien wie Farben, Papier, Erdreich und eine Vielzahl industrieller Prozesse. Mit der Erfindung des Rasterkraftmikroskops (Atomic force microscope, AFM) wurde die direkte Messung der Wechselwirkung zwischen mikrometer-groß...

  4. Effect of hydration film on scanning images of atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A standard calibration grating was used for image scanning to investigate the effect of hydration films on imaging resolution by Atomic Force Microscope (AFM). The results showed that the hydration films greatly affect the imaging resolution for the tapping mode, but no evident effect on the contact mode. The possible reasons for the effect of hydration films on scanning images of AFM are also brought forward here.

  5. Intermittent contact interaction between an atomic force microscope cantilever and a nanowire

    Science.gov (United States)

    Knittel, I.; Ungewitter, L.; Hartmann, U.

    2012-05-01

    We investigate in theory and experiment the intermittent contact interaction between an atomic force microscope (AFM) cantilever and a nanowire under ambient conditions. The nanowire is modeled as a spring reacting instantaneously to any change of the force between the wire and the cantilever. This implies that the cantilever is subject to an "effective" force-distance relation, containing not only the surface forces but also the deflection of the nanowire. Experimentally, CVD-grown tin oxide nanowires and lithographically structured silicon nanowire arrays were investigated by intermittent contact AFM. By comparison of experimental and simulated distance-dependent resonance curves it is found that the nanowires behave like "fast nanosprings" and that the adhesion force is one of the key factors determining distance-dependent resonance curves. The results are fully applicable to a scenario in which a cantilever equipped by a nanowire interacts with a surface.

  6. The mapping of yeast's G-protein coupled receptor with an atomic force microscope

    Science.gov (United States)

    Takenaka, Musashi; Miyachi, Yusuke; Ishii, Jun; Ogino, Chiaki; Kondo, Akihiko

    2015-03-01

    An atomic force microscope (AFM) can measure the adhesion force between a sample and a cantilever while simultaneously applying a rupture force during the imaging of a sample. An AFM should be useful in targeting specific proteins on a cell surface. The present study proposes the use of an AFM to measure the adhesion force between targeting receptors and their ligands, and to map the targeting receptors. In this study, Ste2p, one of the G protein-coupled receptors (GPCRs), was chosen as the target receptor. The specific force between Ste2p on a yeast cell surface and a cantilever modified with its ligand, α-factor, was measured and found to be approximately 250 pN. In addition, through continuous measuring of the cell surface, a mapping of the receptors on the cell surface could be performed, which indicated the differences in the Ste2p expression levels. Therefore, the proposed AFM system is accurate for cell diagnosis.

  7. Probing molecular interaction between transferrin and anti-transferrin by atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The interaction between transferrin (Tf) and its antibody was investigated by atomic force microscope. Tf-antibody was immobilized on the Au-coated glass slide, and the specific combination between antibody and antigen was also characterized by AFM. The results showed that holo-transferrin was jogged with anti-transferrin, and binded anti-tran- sferrin more tightly than apo-transferrin. The force- distance curves revealed that the affinity of anti-trans- ferrin and holo-transferrin was much stronger than that of apo-transferrin.

  8. Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezer

    Science.gov (United States)

    Shivashankar, G. V.; Libchaber, A.

    1997-12-01

    In this letter, we report on spatially selecting and grafting a DNA-tethered bead to an atomic force microscope (AFM) cantilever, using an optical tweezer. To quantify this technique, we measure force versus extension of a single DNA molecule using AFM. For such studies, we have developed a micromanipulation approach by combining an AFM, an optical tweezer, and visualization setup. The ability to select a single DNA polymer and specifically graft it to a localized position on a substrate opens up new possibilities in biosensors and bioelectronic devices.

  9. Imaging elastic property of surfaces at nanoscale using atomic force microscope

    International Nuclear Information System (INIS)

    We present a simple technique to characterize and image the distribution of local elastic property using ultrasonic atomic force microscope (UAFM). We interpret the UAFM images using simple arguments. We have demonstrated the capability of the UAFM technique to image the distribution of the local elastic property of the sample surface and semi-quantitatively map the local stiffness of the sample surface using a few selected samples. The local stiffness of the sample surface was obtained by measuring the changes in the frequency of contact resonance peak values and could verify the same using force-distance measurement at the same regions on the sample surface.

  10. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2008-10-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  11. Surface features on Sahara soil dust particles made visible by atomic force microscope (AFM phase images

    Directory of Open Access Journals (Sweden)

    G. Helas

    2008-08-01

    Full Text Available We show that atomic force microscopy (AFM phase images can reveal surface features of soil dust particles, which are not evident using other microscopic methods. The non-contact AFM method is able to resolve topographical structures in the nanometer range as well as to uncover repulsive atomic forces and attractive van der Waals' forces, and thus gives insight to surface properties. Though the method does not allow quantitative assignment in terms of chemical compound description, it clearly shows deposits of distinguishable material on the surface. We apply this technique to dust aerosol particles from the Sahara collected over the Atlantic Ocean and describe micro-features on the surfaces of such particles.

  12. Nanostethoscopy: A new mode of operation of the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, A.; Holzrichter, J.F.; Balhorn, R.; Siekaus, W.J.

    1994-02-01

    The authors introduce a new mode of operation of the atomic force microscope (AFM). This detection scheme, a {open_quotes}Nano-Stethoscope{close_quotes}. Involves using the atomic force microscope in a novel acoustic mode not generally recognized. The Nano-Stethoscope uses the conventional scanning feature to locate a desired site, positions the AFM microscope tip over the site, holds the cantilever stationary (in x and v) and records the tip`s z-motion as a function of time. The tip/cantilever system thus functions as a micro-motion detector to respond to characteristic {open_quotes}pulsations{close_quotes}, nano-configurational chances, or any other event that influences the position of the tip as a function of time. The authors have demonstrated the feasibility of using the tip of an AFM in this manner in a biological system with a measurement of the vibrations of an emerging shrimp egg nauplius ({approximately}3 {mu}m. -10 Hz) and on the Angstrom scale in a non-biological system i.e.. the thermal expansion of metal interconnect lines on a microelectronic circuit.

  13. Surface potential investigation on single wall carbon nanotubes by Kelvin probe force microscopy and atomic force microscope potentiometry

    International Nuclear Information System (INIS)

    Surface potentials of single wall carbon nanotubes (SWNTs) connecting two metallic electrodes have been investigated by both Kelvin probe force microscopy (KFM) and atomic force microscope potentiometry (AFMP). By comparing the surface potential measurements obtained by both methods, we also studied the major factors affecting the potential measurements of the SWNTs, such as the surroundings, stray electric fields, and the effect of the AFM tip size, which can be larger than the SWNT diameter. In this study, we used KFM based on non-contact AFM and AFMP using the point-by-point contact mode in which the AFM tip worked as a voltage probe

  14. Conductive transparent fiber probes for shear-force atomic force microscopes

    International Nuclear Information System (INIS)

    New conductive transparent (CT) probes that can inject currents into nanometer-sized regions and collect light from them have been developed for shear-force atomic force microscopy (SF-AFM) of partially isolative regions. The CT probe consists of a straight elastic silica fiber with one end tapered to a point. The taper is coated with an indium-tin-oxide film as a transparent electrode, and the probe apex has a nanometer-scale radius. The essential feature of the CT probes is coaxial nickel plating on the shaft of the isolative silica fiber, which is adjusted to obtain suitable elasticity for smooth shear-force feedback as well as for supplying currents to the transparent electrode. Experimental results clarified that nickel thickness between 0.5 and 15 μm on 20 mm-long fibers makes resistance low enough for supplying current to the probe apex and also makes the Q curves smooth enough for shear-force feedback. Clear SF-AFM and current images were successfully obtained for a sample containing both conductive and isolative regions. The CT probes for SF-AFM can expand applications of probe-current-induced luminescence measurements to samples that contain highly resistive and isolative regions, for which scanning tunneling microscopy cannot be applied

  15. Development of nanomanipulator using a high-speed atomic force microscope coupled with a haptic device

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, F., E-mail: tmfiwat@ipc.shizuoka.ac.jp [Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Ohashi, Y.; Ishisaki, I. [Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Picco, L.M. [H Will Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ushiki, T. [Graduate School of Medical and Dental Sciences, Niigata University, Asahimachidori, Niigata, 951-8122 (Japan)

    2013-10-15

    The atomic force microscope (AFM) has been widely used for surface fabrication and manipulation. However, nanomanipulation using a conventional AFM is inefficient because of the sequential nature of the scan-manipulation scan cycle, which makes it difficult for the operator to observe the region of interest and perform the manipulation simultaneously. In this paper, a nanomanipulation technique using a high-speed atomic force microscope (HS-AFM) is described. During manipulation using the AFM probe, the operation is periodically interrupted for a fraction of a second for high-speed imaging that allows the topographical image of the manipulated surface to be periodically updated. With the use of high-speed imaging, the interrupting time for imaging can be greatly reduced, and as a result, the operator almost does not notice the blink time of the interruption for imaging during the manipulation. This creates a more intuitive interface with greater feedback and finesse to the operator. Nanofabrication under real-time monitoring was performed to demonstrate the utility of this arrangement for real-time nanomanipulation of sample surfaces under ambient conditions. Furthermore, the HS-AFM is coupled with a haptic device for the human interface, enabling the operator to move the HS-AFM probe to any position on the surface while feeling the response from the surface during the manipulation. - Highlights: • A nanomanipulater based on a high-speed atomic force microscope was developped. • High-speed imaging provides a valuable feedback during the manipulation operation. • Operator can feel the response from the surface via a haptic device during manipulation. • Nanofabrications under real-time monitoring were successfully performed.

  16. Tribological characteristics of ZnO nanowires investigated by atomic force microscope

    Science.gov (United States)

    Chung, Koo-Hyun; Kim, Hyun-Joon; Lin, Li-Yu; Kim, Dae-Eun

    2008-08-01

    Zinc oxide (ZnO) nanowires have attracted great interest in nanodevices. In this work, the tribological characteristics of vertically grown ZnO nanowires obtained by metalorganic chemical vapor deposition were investigated by using an atomic force microscope (AFM). The ZnO nanowires were slid against flattened silicon and diamond-coated AFM probes under 50 150 nN normal force while monitoring the frictional force. The wear of the ZnO nanowires was observed by a scanning electron microscope and quantified based on Archard’s wear law. Also, the wear debris accumulated on the silicon probe was analyzed by using a transmission electron microscope (TEM). The results showed that the wear of ZnO nanowires slid against the silicon probe was extremely small. However, when the ZnO nanowires were slid against the diamond-coated probe, the wear coefficients ranged from 0.006 to 0.162, which correspond to the range of severe wear at the macroscale. It was also shown that the friction coefficient decreased from 0.30 to 0.25 as the sliding cycles increased. From TEM observation, it was found that the ZnO wear debris was mainly amorphous in structure. Also, crystalline ZnO nanoparticles were observed among the wear debris.

  17. A virtual instrument to standardise the calibration of atomic force microscope cantilevers

    CERN Document Server

    Sader, John E; Gibson, Christopher T; Haviland, David B; Higgins, Michael J; Kilpatrick, Jason I; Lu, Jianing; Mulvaney, Paul; Shearer, Cameron J; Slattery, Ashley D; Thorén, Per-Anders; Tran, Jim; Zhang, Heyou; Zhang, Hongrui; Zheng, Tian

    2016-01-01

    Atomic force microscope (AFM) users often calibrate the spring constants of cantilevers using functionality built into individual instruments. This is performed without reference to a global standard, which hinders robust comparison of force measurements reported by different laboratories. In this article, we describe a virtual instrument (an internet-based initiative) whereby users from all laboratories can instantly and quantitatively compare their calibration measurements to those of others - standardising AFM force measurements - and simultaneously enabling non-invasive calibration of AFM cantilevers of any geometry. This global calibration initiative requires no additional instrumentation or data processing on the part of the user. It utilises a single website where users upload currently available data. A proof-of-principle demonstration of this initiative is presented using measured data from five independent laboratories across three countries, which also allows for an assessment of current calibratio...

  18. Stronger constraints on axion from measuring the Casimir interaction by means of dynamic atomic force microscope

    CERN Document Server

    Bezerra, V B; Mostepanenko, V M; Romero, C

    2014-01-01

    We calculate the additional force due to two-axion exchange acting in a sphere-disc geometry, used in experiments on measuring the gradient of the Casimir force. With this result, stronger constraints on the pseudoscalar coupling constants of an axion and axion-like particles to a proton and a neutron are obtained over the wide range of axion masses from 0.03mV to 1eV. Among the three experiments with Au-Au, Au-Ni and Ni-Ni boundary surfaces performed by means of dynamic atomic force microscope, major improving is achieved for the experiment with Au-Au test bodies. Here, the constraints obtained are stronger up to a factor of 170, as compared to the previously known ones. The largest strengthening holds for the axion mass 0.3eV.

  19. Selective nano-patterning of graphene using a heated atomic force microscope tip

    International Nuclear Information System (INIS)

    In this study, we introduce a selective thermochemical nano-patterning method of graphene on insulating substrates. A tiny heater formed at the end of an atomic force microscope (AFM) cantilever is optimized by a finite element method. The cantilever device is fabricated using conventional micromachining processes. After preliminary tests of the cantilever device, nano-patterning experiments are conducted with various conducting and insulating samples. The results indicate that faster scanning speed and higher contact force are desirable to reduce the sizes of nano-patterns. With the experimental condition of 1 μm/s and 24 mW, the heated AFM tip generates a graphene oxide layer of 3.6 nm height and 363 nm width, on a 300 nm thick SiO2 layer, with a tip contact force of 100 nN

  20. Selective nano-patterning of graphene using a heated atomic force microscope tip

    Science.gov (United States)

    Choi, Young-Soo; Wu, Xuan; Lee, Dong-Weon

    2014-04-01

    In this study, we introduce a selective thermochemical nano-patterning method of graphene on insulating substrates. A tiny heater formed at the end of an atomic force microscope (AFM) cantilever is optimized by a finite element method. The cantilever device is fabricated using conventional micromachining processes. After preliminary tests of the cantilever device, nano-patterning experiments are conducted with various conducting and insulating samples. The results indicate that faster scanning speed and higher contact force are desirable to reduce the sizes of nano-patterns. With the experimental condition of 1 μm/s and 24 mW, the heated AFM tip generates a graphene oxide layer of 3.6 nm height and 363 nm width, on a 300 nm thick SiO2 layer, with a tip contact force of 100 nN.

  1. Observation on Surface and Cross Section of Thin Film Solar Cells Using Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    FENG Liang-huan; WU Li-li; CAI Wei; CAI Ya-ping; ZHENG Jia-gui; ZHANG Jing-quan; LI Bing; LI Wei

    2005-01-01

    Atomic force microscope (AFM) is able to produce three-dimensional digital data in both forcemode and height-mode and its applications are not limited to map the surfaces of conducting materials. It can use the force-mode to image the repulsive and attractive force patterns. The cross sections of polycrystalline CdS/CdTe and amorphous silicon heterojunction solar cells are observed with AFM. In case of short circuit,the microstructures of different layers in the samples are clearly displayed. When the cells are open circuit, the topographical images are altered, the potential outline due to the space charge in junction region is observed.Obviously, AFM can be employed to investigate experimentally built-in potential in junction of semiconductor devices, such as solar cells.

  2. Aligning DNA on Si surface and cutting off by tips of atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    DNA is a kind of promising molecule as nano-lead to build or connect nano-devices due to its stable linear structure and certain conductivity. Many methods have been applied to constructing nano-patterns by using DNA molecule. In this report it is presented that (-DNA was aligned on Si substrate by using the free-flowing method and then imaged by an atomic force microscope (AFM). After the second liquid flow, a catenary-like pattern and a crossed network of -DNA were formed. In addition, the aligned (-DNA was successfully cut off by tips of AFM.

  3. Track sensitivity and the surface roughness measurements of CR-39 with atomic force microscope

    CERN Document Server

    Yasuda, N; Amemiya, K; Takahashi, H; Kyan, A; Ogura, K

    1999-01-01

    Atomic Force Microscope (AFM) has been applied to evaluate the surface roughness and the track sensitivity of CR-39 track detector. We experimentally confirmed the inverse correlation between the track sensitivity and the roughness of the detector surface after etching. The surface of CR-39 (CR-39 doped with antioxidant (HARZLAS (TD-1)) and copolymer of CR-39/NIPAAm (TNF-1)) with high sensitivity becomes rough by the etching, while the pure CR-39 (BARYOTRAK) with low sensitivity keeps its original surface clarity even for the long etching.

  4. Serum induced degradation of 3D DNA box origami observed by high speed atomic force microscope

    DEFF Research Database (Denmark)

    Jiang, Zaixing; Zhang, Shuai; Yang, Chuanxu;

    2015-01-01

    3D DNA origami holds tremendous potential to encapsulate and selectively release therapeutic drugs. Observations of real-time performance of 3D DNA origami structures in physiological environment will contribute much to its further applications. Here, we investigate the degradation kinetics of 3D...... DNA box origami in serum using high-speed atomic force microscope optimized for imaging 3D DNA origami in real time. The time resolution allows characterizing the stages of serum effects on individual 3D DNA box origami with nanometer resolution. Our results indicate that the whole digest process is a...

  5. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  6. 3D mechanical measurements with an atomic force microscope on 1D structures

    DEFF Research Database (Denmark)

    Kallesøe, Christian; Larsen, Martin Benjamin Barbour Spanget; Bøggild, Peter; Mølhave, Kristian

    2012-01-01

    We have developed a simple method to characterize the mechanical properties of three dimensional nanostructures, such as nanorods standing up from a substrate. With an atomic force microscope the cantilever probe is used to deflect a horizontally aligned nanorod at different positions along the...... nanorod, using the apex of the cantilever itself rather than the tip normally used for probing surfaces. This enables accurate determination of nanostructures' spring constant. From these measurements, Young's modulus is found on many individual nanorods with different geometrical and material structures...

  7. Combined laser and atomic force microscope lithography on aluminum: Mask fabrication for nanoelectromechanical systems

    DEFF Research Database (Denmark)

    Berini, Abadal Gabriel; Boisen, Anja; Davis, Zachary James;

    1999-01-01

    A direct-write laser system and an atomic force microscope (AFM) are combined to modify thin layers of aluminum on an oxidized silicon substrate, in order to fabricate conducting and robust etch masks with submicron features. These masks are very well suited for the production of nanoelectromecha...... writing, and to perform submicron modifications by AFM oxidation. The mask fabrication for a nanoscale suspended resonator bridge is used to illustrate the advantages of this combined technique for NEMS. (C) 1999 American Institute of Physics. [S0003-6951(99)00221-1]....

  8. MIDAS - an atomic force microscope for in-situ imaging of cometary dust particles

    International Nuclear Information System (INIS)

    Comets are interesting bodies, since they are considered to consist of matter remaining in essentially unchanged chemistry from the presolar nebula. Investigation of cometary matter therefore permits to draw conclusion s with respect to the composition of presolar matter. The atomic force microscope MIDAS will be the first instrument to analyze, within ESA's ROSETTA-mission priestine cometary matter in the form of dust particles emitted by comet WIRTANEN during its perihelion in 2013. Within this project, a dust model has been developed, permitting estimation of dust collection times required for statistically significant imaging of cometary particles. The dynamics of dust collection has been developed and experimental dust collection surfaces have been produced making use of modem nanostructuring techniques. Mechanical properties of 3-dimensional piezo-control elements, which are an essential part of the MIDAS microscope, have been determined. (author)

  9. Modular apparatus for electrostatic actuation of common atomic force microscope cantilevers

    International Nuclear Information System (INIS)

    Piezoelectric actuation of atomic force microscope (AFM) cantilevers often suffers from spurious mechanical resonances in the loop between the signal driving the cantilever and the actual tip motion. These spurious resonances can reduce the accuracy of AFM measurements and in some cases completely obscure the cantilever response. To address these limitations, we developed a specialized AFM cantilever holder for electrostatic actuation of AFM cantilevers. The holder contains electrical contacts for the AFM cantilever chip, as well as an electrode (or electrodes) that may be precisely positioned with respect to the back of the cantilever. By controlling the voltages on the AFM cantilever and the actuation electrode(s), an electrostatic force is applied directly to the cantilever, providing a near-ideal transfer function from drive signal to tip motion. We demonstrate both static and dynamic actuations, achieved through the application of direct current and alternating current voltage schemes, respectively. As an example application, we explore contact resonance atomic force microscopy, which is a technique for measuring the mechanical properties of surfaces on the sub-micron length scale. Using multiple electrodes, we also show that the torsional resonances of the AFM cantilever may be excited electrostatically, opening the door for advanced dynamic lateral force measurements with improved accuracy and precision

  10. Determination of adhesion between single Aspergillus niger spores in aqueous solutions using an atomic force microscope.

    Science.gov (United States)

    Wargenau, Andreas; Kwade, Arno

    2010-07-01

    The interaction force between single cells in contact is of high interest in various interdisciplinary fields of biotechnology, for instance, in cultivation or biofilm formation. A method for the determination of adhesion forces between two single Aspergillus niger spores in different aqueous solutions was established in this study. Adhesion force distributions were determined at three different sodium chloride concentrations and two different pH values using an atomic force microscope (AFM). It was pointed out that adhesion data can be described by log-normal density functions, of which corresponding parameters have been estimated. Using the knowledge of distribution shape, the influence of the environmental condition on the mean values of adhesion force could be studied quantitatively. The highest value of 0.95 nN was observed at pH 2.5 and an ionic strength of 0.5 mol L(-1). Decreasing the ionic strength to 0.05 mol L(-1) decreases the adhesion force mean for about 25%. Increasing the pH value to pH 5 at a sodium chloride concentration of 0.154 mol L(-1) entails a decrease of adhesion from 0.88 to 0.56 nN. These results qualitatively agree with the absolute value of the expected surface potential of Aspergillus niger spores, which is much higher at pH 5 and should take more effect at lower concentrations of counterions. PMID:20387816

  11. Calibration of the lateral spring constant of atomic force microscope cantilevers

    Science.gov (United States)

    Song, Yunpeng; Wu, Sen; Xu, Linyan; Fu, Xing

    2015-10-01

    Atomic force microscope (AFM) is very useful in nano-scale force measurement. Lateral force is typically used in nanoscratch and surface friction measurement based on AFM. As one of the most important parameters to obtain lateral force, the lateral spring constant of AFM cantilever probe is of great significance and needs to be quantitative calibrated. Lateral torsion and lateral force of the cantilever are two parameters need to be measured in lateral spring constant calibration. In this article, we develop a calibration system and introduce a calibration method using an AFM head and an electromagnetic balance. An aluminium column with a known angel on top is placed on the weighing pan of the balance. The cantilever is precisely positioned in the AFM head, then approaches and bends on the aluminium column. During this procedure, the bending force and the lateral torsion of the cantilever are synchronously measured by the balance and an optical lever system, respectively. Then the lateral spring constant is calculated with a formula. By using this method, three kinds of rectangular cantilever are calibrated. The relative standard deviations of the calibration results are smaller than 2%.

  12. Rotational positioning system adapted to atomic force microscope for measuring anisotropic surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.-S.; Juang, B.-J. [Department of Mechanical Engineering, National Taiwan University, 10617, Taipei, Taiwan (China); Institute of Physics, Academia Sinica, 11529, Taipei, Taiwan (China); Chang, W.-C.; Lai, W.-C.; Chang, C.-S. [Institute of Physics, Academia Sinica, 11529, Taipei, Taiwan (China); Huang, K.-Y. [Department of Mechanical Engineering, National Taiwan University, 10617, Taipei, Taiwan (China)

    2011-11-15

    The diverse atomic configurations induce the anisotropic surface properties. For investigating anisotropic phenomena, we developed a rotational positioning system adapted to atomic force microscope (AFM). This rotational positioning system is applied to revolve the measured sample to defined angular direction, and it composed of an inertial rotational stepper and a visual angular measurement. The inertial rotational stepper with diameter 30 mm and height 7.6 mm can be easily attached to the AFM-system built in any general optical microscope. Based on a clearance less bearing and the inertial driving method, its bidirectional angular resolution reaches 0.005 deg. per step. For realizing a close-loop controlled angular positioning function, the visual measurement method is utilized. Through the feedback control, the angular positioning error is less than 0.01 deg. For verifying the system performance, we used it to investigate the anisotropic surface properties of graphite. Through a modified cantilever tip, the atomic-scale stick-slip, and the anisotropic friction phenomena can be distinctly detected.

  13. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Labuda, Aleksander; Proksch, Roger [Asylum Research an Oxford Instruments Company, Santa Barbara, California 93117 (United States)

    2015-06-22

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community.

  14. Biophysical Measurements of Cells, Microtubules, and DNA with an Atomic Force Microscope

    CERN Document Server

    Devenica, Luka M; Cabrejo, Raysa; Kurek, Matthew; Deveney, Edward F; Carter, Ashley R

    2015-01-01

    Atomic force microscopes (AFMs) are ubiquitous in research laboratories and have recently been priced for use in teaching laboratories. Here we review several AFM platforms (Dimension 3000 by Digital Instruments, EasyScan2 by Nanosurf, ezAFM by Nanomagnetics, and TKAFM by Thorlabs) and describe various biophysical experiments that could be done in the teaching laboratory using these instruments. In particular, we focus on experiments that image biological materials and quantify biophysical parameters: 1) imaging cells to determine membrane tension, 2) imaging microtubules to determine their persistence length, 3) imaging the random walk of DNA molecules to determine their contour length, and 4) imaging stretched DNA molecules to measure the tensional force.

  15. Imaging and Manipulating Molecules on a Zeolite Surface with an Atomic Force Microscope

    Science.gov (United States)

    Weisenhorn, A. L.; Mac Dougall, J. E.; Gould, S. A. C.; Cox, S. D.; Wise, W. S.; Massie, J.; Maivald, P.; Elings, V. B.; Stucky, G. D.; Hansma, P. K.

    1990-03-01

    The adsorption of neutral molecules and ions on the surfaces of zeolites was observed in real time with an atomic force microscope (AFM). Direct imaging of the surface of the zeolite clinoptilolite was possible by using a diluted tert-butyl ammonium chloride solution as a medium. Images of the crystal in different liquids revealed that molecules could be bound to the surface in different ways; neutral molecules of tert-butanol formed an ordered array, whereas tert-butyl ammonium ions formed clusters. These absorbed molecules were not rearranged by the AFM tip when used in an imaging mode. However, when a sufficiently large force was applied, the tip of the AFM could rearrange the tert-butyl ammonium ions on the zeolite surface. This demonstration of molecular manipulation suggests new applications, including biosensors and lithography.

  16. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope

    International Nuclear Information System (INIS)

    An ongoing challenge in atomic force microscope (AFM) experiments is the quantitative measurement of cantilever motion. The vast majority of AFMs use the optical beam deflection (OBD) method to infer the deflection of the cantilever. The OBD method is easy to implement, has impressive noise performance, and tends to be mechanically robust. However, it represents an indirect measurement of the cantilever displacement, since it is fundamentally an angular rather than a displacement measurement. Here, we demonstrate a metrological AFM that combines an OBD sensor with a laser Doppler vibrometer (LDV) to enable accurate measurements of the cantilever velocity and displacement. The OBD/LDV AFM allows a host of quantitative measurements to be performed, including in-situ measurements of cantilever oscillation modes in piezoresponse force microscopy. As an example application, we demonstrate how this instrument can be used for accurate quantification of piezoelectric sensitivity—a longstanding goal in the electromechanical community

  17. The influence of line tension on the formation of liquid bridges in atomic force microscope-like geometry

    OpenAIRE

    Dutka, Filip; Napiorkowski, Marek

    2007-01-01

    The phase diagram of a fluid confined between a planar and a conical walls modelling the atomic force microscope geometry displays transition between two phases, one with a liquid bridge connecting the two walls of the microscope, and the other without bridge. The structure of the corresponding coexistence line is determined and its dependence on the value of the line tension coefficient is discussed.

  18. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly

    International Nuclear Information System (INIS)

    A conventional atomic force microscope (AFM) has been successfully applied to manipulating nanoparticles (zero-dimensional), nanowires (one-dimensional) or nanotubes (one- or two-dimensional) by widely used pushing or pulling operations on a single surface. However, pick-and-place nanomanipulation in air is still a challenge. In this research, a modified AFM, called a three-dimensional (3D) manipulation force microscope (3DMFM), was developed to realize 3D nanomanipulation in air. This system consists of two individually actuated cantilevers with protruding tips that are facing each other, constructing a nanotweezer for the pick-and-place nanomanipulation. Before manipulation, one of the cantilevers is employed to position nano-objects and locate the tip of the other cantilever by image scanning. During the manipulation, these two cantilevers work collaboratively as a nanotweezer to grasp, transport and place the nano-objects with real-time force sensing. The manipulation capabilities of the nanotweezer were demonstrated by grabbing and manipulating silicon nanowires to build 3D nanowire crosses. 3D nanomanipulation and nanoassembly performed in air could become feasible through this newly developed 3DMFM.

  19. ezAFM: A low cost Atomic Force Microscope(AFM)

    Science.gov (United States)

    Celik, Umit; Celik, Kubra; Aslan, Husnu; Kehribar, Ihsan; Dede, Munir; Ozgur Ozer, H.; Oral, Ahmet

    2012-02-01

    A low cost AFM, ezAFM is developed for educational purposes as well as research. Optical beam deflection method is used to measure the deflection of cantilever. ezAFM scanner is built using voice coil motors (VCM) with ˜50x50x6 μm scan area. The microscope uses alignment free cantilevers, which minimizes setup times. FPGA based AFM feedback Control electronics is developed. FPGA technology allows us to drive all peripherals in parallel. ezAFM Controller is connected to PC by USB 2.0 interface as well as Wi-Fi. We have achieved <5nm lateral and ˜0.01nm vertical resolution. ezAFM can image single atomic steps in HOPG and mica. An optical microscope with <3 μm resolution is also integrated into the system. ezAFM supports different AFM operation modes such as dynamic mode, contact mode, lateral force microscopy. Advanced modes like magnetic force microscopy and electric force microscopy will be implemented later on. The new ezAFM system provides, short learning times for student labs, quick setup and easy to transport for portable applications with the best price/performance ratio. The cost of the system starts from 15,000, with system performance comparable with the traditional AFM systems.

  20. A versatile atomic force microscope for three-dimensional nanomanipulation and nanoassembly

    Energy Technology Data Exchange (ETDEWEB)

    Xie Hui; Haliyo, Dogan Sinan; Regnier, Stephane [Institut des Systemes Intelligents et de Robotique, Universite Pierre et Marie Curie/CNRS UMR7222, BC 173, 4 Place Jussieu, F-75005 Paris (France)], E-mail: xie@robot.jussieu.fr

    2009-05-27

    A conventional atomic force microscope (AFM) has been successfully applied to manipulating nanoparticles (zero-dimensional), nanowires (one-dimensional) or nanotubes (one- or two-dimensional) by widely used pushing or pulling operations on a single surface. However, pick-and-place nanomanipulation in air is still a challenge. In this research, a modified AFM, called a three-dimensional (3D) manipulation force microscope (3DMFM), was developed to realize 3D nanomanipulation in air. This system consists of two individually actuated cantilevers with protruding tips that are facing each other, constructing a nanotweezer for the pick-and-place nanomanipulation. Before manipulation, one of the cantilevers is employed to position nano-objects and locate the tip of the other cantilever by image scanning. During the manipulation, these two cantilevers work collaboratively as a nanotweezer to grasp, transport and place the nano-objects with real-time force sensing. The manipulation capabilities of the nanotweezer were demonstrated by grabbing and manipulating silicon nanowires to build 3D nanowire crosses. 3D nanomanipulation and nanoassembly performed in air could become feasible through this newly developed 3DMFM.

  1. Intercomparison of lateral scales of scanning electron microscopes and atomic force microscopes in research institutes in Northern Europe

    International Nuclear Information System (INIS)

    An intercomparison of lateral scales of scanning electron microscopes (SEM) and atomic force microscopes (AFM) in various research laboratories in Northern Europe was organized by the local national metrology institutes. In this paper are presented the results of the comparison, with also an example uncertainty budget for AFM grating pitch measurement. Grating samples (1D) were circulated among the participating laboratories. The participating laboratories were also asked about the calibration of their instruments. The accuracy of the uncertainty estimates seemed to vary largely between the laboratories, and for some laboratories the appropriateness of the calibration procedures could be considered. Several institutes (60% of all results in terms of En value) also had good comprehension of their measurement capability. The average difference from reference value was 6.7 and 10.0 nm for calibrated instruments and 20.6 and 39.9 nm for uncalibrated instruments for 300 nm and 700 nm gratings, respectively. The correlation of the results for both nominally 300 and 700 nm gratings shows that a simple scale factor calibration would have corrected a large part of the deviations from the reference values. (paper)

  2. Tip Effect of the Tapping Mode of Atomic Force Microscope in Viscous Fluid Environments

    Directory of Open Access Journals (Sweden)

    Hua-Ju Shih

    2015-07-01

    Full Text Available Atomic force microscope with applicable types of operation in a liquid environment is widely used to scan the contours of biological specimens. The contact mode of operation allows a tip to touch a specimen directly but sometimes it damages the specimen; thus, a tapping mode of operation may replace the contact mode. The tapping mode triggers the cantilever of the microscope approximately at resonance frequencies, and so the tip periodically knocks the specimen. It is well known that the cantilever induces extra liquid pressure that leads to drift in the resonance frequency. Studies have noted that the heights of protein surfaces measured via the tapping mode of an atomic force microscope are ~25% smaller than those measured by other methods. This discrepancy may be attributable to the induced superficial hydrodynamic pressure, which is worth investigating. In this paper, we introduce a semi-analytical method to analyze the pressure distribution of various tip geometries. According to our analysis, the maximum hydrodynamic pressure on the specimen caused by a cone-shaped tip is ~0.5 Pa, which can, for example, pre-deform a cell by several nanometers in compression before the tip taps it. Moreover, the pressure calculated on the surface of the specimen is 20 times larger than the pressure without considering the tip effect; these results have not been motioned in other papers. Dominating factors, such as surface heights of protein surface, mechanical stiffness of protein increasing with loading velocity, and radius of tip affecting the local pressure of specimen, are also addressed in this study.

  3. High-speed atomic force microscope based on an astigmatic detection system

    International Nuclear Information System (INIS)

    High-speed atomic force microscopy (HS-AFM) enables visualizing dynamic behaviors of biological molecules under physiological conditions at a temporal resolution of 1s or shorter. A small cantilever with a high resonance frequency is crucial in increasing the scan speed. However, detecting mechanical resonances of small cantilevers is technically challenging. In this study, we constructed an atomic force microscope using a digital versatile disc (DVD) pickup head to detect cantilever deflections. In addition, a flexure-guided scanner and a sinusoidal scan method were implemented. In this work, we imaged a grating sample in air by using a regular cantilever and a small cantilever with a resonance frequency of 5.5 MHz. Poor tracking was seen at the scan rate of 50 line/s when a cantilever for regular AFM imaging was used. Using a small cantilever at the scan rate of 100 line/s revealed no significant degradation in the topographic images. The results indicate that a smaller cantilever can achieve a higher scan rate and superior force sensitivity. This work shows the potential for using a DVD pickup head in future HS-AFM technology

  4. Tip localization of an atomic force microscope in transmission microscopy with nanoscale precision

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Fabian; Pippig, Diana A., E-mail: diana.pippig@physik.uni-muenchen.de; Gaub, Hermann E. [Center for Nanoscience and Department of Physics, University of Munich, Amalienstraße 54, 80799 Munich (Germany); Heucke, Stephan F. [Center for Integrated Protein Science Munich (CIPSM), University of Munich, Butenandtstraße 5-13, 81377 Munich (Germany)

    2015-03-15

    Since the atomic force microscope (AFM) has evolved into a general purpose platform for mechanical experiments at the nanoscale, the need for a simple and generally applicable localization of the AFM cantilever in the reference frame of an optical microscope has grown. Molecular manipulations like in single molecule cut and paste or force spectroscopy as well as tip mediated nanolithography are prominent examples for the broad variety of applications implemented to date. In contrast to the different kinds of superresolution microscopy where fluorescence is used to localize the emitter, we, here, employ the absorbance of the tip to localize its position in transmission microscopy. We show that in a low aperture illumination, the tip causes a significant reduction of the intensity in the image plane of the microscope objective when it is closer than a few hundred nm. By independently varying the z-position of the sample slide, we could verify that this diffraction limited image of the tip is not caused by a near field effect but is rather caused by the absorbance of the transmitted light in the low apex needle-like tip. We localized the centroid position of this tip image with a precision of better than 6 nm and used it in a feedback loop to position the tip into nano-apertures of 110 nm radius. Single-molecule force spectroscopy traces on the unfolding of individual green fluorescent proteins within the nano-apertures showed that their center positions were repeatedly approached with very high fidelity leaving the specific handle chemistry on the tip’s surface unimpaired.

  5. An Atomic Force Microscope with Dual Actuation Capability for Biomolecular Experiments

    Science.gov (United States)

    Sevim, Semih; Shamsudhin, Naveen; Ozer, Sevil; Feng, Luying; Fakhraee, Arielle; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J.; Torun, Hamdi

    2016-06-01

    We report a modular atomic force microscope (AFM) design for biomolecular experiments. The AFM head uses readily available components and incorporates deflection-based optics and a piezotube-based cantilever actuator. Jetted-polymers have been used in the mechanical assembly, which allows rapid manufacturing. In addition, a FeCo-tipped electromagnet provides high-force cantilever actuation with vertical magnetic fields up to 0.55 T. Magnetic field calibration has been performed with a micro-hall sensor, which corresponds well with results from finite element magnetostatics simulations. An integrated force resolution of 1.82 and 2.98 pN, in air and in DI water, respectively was achieved in 1 kHz bandwidth with commercially available cantilevers made of Silicon Nitride. The controller and user interface are implemented on modular hardware to ensure scalability. The AFM can be operated in different modes, such as molecular pulling or force-clamp, by actuating the cantilever with the available actuators. The electromagnetic and piezoelectric actuation capabilities have been demonstrated in unbinding experiments of the biotin-streptavidin complex.

  6. A direct micropipette-based calibration method for atomic force microscope cantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baoyu; Yu Yan; Yao Dakang; Shao Jinyu [Department of Biomedical Engineering, Washington University, Saint Louis, Missouri 63130 (United States)

    2009-06-15

    In this report, we describe a direct method for calibrating atomic force microscope (AFM) cantilevers with the micropipette aspiration technique (MAT). A closely fitting polystyrene bead inside a micropipette is driven by precisely controlled hydrostatic pressures to apply known loads on the sharp tip of AFM cantilevers, thus providing a calibration at the most functionally relevant position. The new method is capable of calibrating cantilevers with spring constants ranging from 0.01 to hundreds of newtons per meter. Under appropriate loading conditions, this new method yields measurement accuracy and precision both within 10%, with higher performance for softer cantilevers. Furthermore, this method may greatly enhance the accuracy and precision of calibration for colloidal probes.

  7. Characterization of a thermoset-thermoplastic interphase using the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, N.D.; Lesko, J.J.; Harris, L.A. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)] [and others

    1996-12-31

    Recent investigators have shown that the performance of polymer matrix composites can be significantly enhanced by using fibers sized with a thermoplastic polymer. This increase in performance is a result of the sizing material interacting with the matrix resin to form an interphase: a region possessing a gradient in properties different from the sizing material and the matrix resin. Although the influence of the sizing (interphase) on laminate properties has been well documented, quantitative information regarding interphase properties is absent. In this study, {open_quotes}model{close_quotes} composites consisting of polyurethane sized carbon fibers embedded in a vinyl ester matrix were fabricated to characterize the interphase. The atomic force microscope was used to identify the interphase region in these {open_quotes}model{close_quotes} composites.

  8. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope.

    Science.gov (United States)

    Cybulska, Justyna; Zdunek, Artur; Psonka-Antonczyk, Katarzyna M; Stokke, Bjørn T

    2013-01-30

    In this study, the relation of the nanostructure of cell walls with their texture was investigated for six different apple cultivars. Cell wall material (CWM) and cellulose microfibrils were imaged by atomic force microscope (AFM). The mean diameter of cellulose microfibrils for each cultivar was estimated based on the AFM height topographs obtained using the tapping mode of dried specimens. Additionally, crystallinity of cellulose microfibrils and pectin content was determined. Texture of apple cultivars was evaluated by sensory and instrumental analysis. Differences in cellulose diameter as determined from the AFM height topographs of the nanostructure of cell walls of the apple cultivars are found to relate to the degree of crystallinity and pectin content. Cultivars with thicker cellulose microfibrils also revealed crisper, harder and juicier texture, and greater acoustic emission. The data suggest that microfibril thickness affects the mechanical strength of cell walls which has consequences for sensory and instrumental texture. PMID:23218275

  9. Three-dimensional design and replication of silicon oxide nanostructures using an atomic force microscope

    International Nuclear Information System (INIS)

    Atomic force microscope (AFM) based local anodic oxidation of metallic and semiconducting layers has emerged as a powerful tool for nanoscale fabrication. A unique nanoscale patterning technique has been created that couples computer aided design (CAD) with the lithographic capabilities of the AFM. Target nanostructures to be deposited on a silicon substrate are rendered as a three-dimensional model. Using AFM based local anodic oxidation on a silicon substrate, the features are duplicated at the nanoscale using voltage bias, probe speed, and humidity modulation, as prescribed by the model. The work presented herein highlights the advantages when three-dimensional modeling is linked with nanolithography; nanoscale features can be precisely replicated from a design plan

  10. Nanometer-scale lithography of ultrathin films with atomic force microscope

    CERN Document Server

    Kim, J C; Shin, Y W; Park, S W

    1998-01-01

    Ultrathin resist films have been prepared by both Langmuir-Blodgett (LB) and self-assembly (SA) techniques. Nanometer-scale patterning of these thin films has been performed by using the atomic force microscope (AFM) as the exposing tool. The poly (methylphenylmethacrylate) (PMPMA) LB films were prepared and fabricated by AFM lithography. When the exposure was carried out at the bias voltage of -25V, the protruding lines appeared in the exposed regions. The preoptimized LB films at various conditions exhibited 120 nm line resolution. An organosilane monolayer composed of octadecyldimethylsilyl groups was prepared on a Si substrate. It was then patterned through the localized degradation of the monolayer due to anodic reaction induced by an AFM tip. When the bias voltage was -30 V, the protruding lines appeared in the exposed regions.

  11. Site-controlled quantum dots fabricated using an atomic-force microscope assisted technique

    Directory of Open Access Journals (Sweden)

    Sakuma Y

    2006-01-01

    Full Text Available AbstractAn atomic-force microscope assisted technique is developed to control the position and size of self-assembled semiconductor quantum dots (QDs. Presently, the site precision is as good as ± 1.5 nm and the size fluctuation is within ± 5% with the minimum controllable lateral diameter of 20 nm. With the ability of producing tightly packed and differently sized QDs, sophisticated QD arrays can be controllably fabricated for the application in quantum computing. The optical quality of such site-controlled QDs is found comparable to some conventionally self-assembled semiconductor QDs. The single dot photoluminescence of site-controlled InAs/InP QDs is studied in detail, presenting the prospect to utilize them in quantum communication as precisely controlled single photon emitters working at telecommunication bands.

  12. Immobilization method of yeast cells for intermittent contact mode imaging using the atomic force microscope

    International Nuclear Information System (INIS)

    The atomic force microscope (AFM) is widely used for studying the surface morphology and growth of live cells. There are relatively fewer reports on the AFM imaging of yeast cells (Kasas and Ikai, 1995), (Gad and Ikai, 1995). Yeasts have thick and mechanically strong cell walls and are therefore difficult to attach to a solid substrate. In this report, a new immobilization technique for the height mode imaging of living yeast cells in solid media using AFM is presented. The proposed technique allows the cell surface to be almost completely exposed to the environment and studied using AFM. Apart from the new immobilization protocol, for the first time, height mode imaging of live yeast cell surface in intermittent contact mode is presented in this report. Stable and reproducible imaging over a 10-h time span is observed. A significant improvement in operational stability will facilitate the investigation of growth patterns and surface patterns of yeast cells.

  13. Surface topography of La-Ti composite oxide nanocrystallines examined with atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    谷俐; 王远亮; 杨华; 唐丽灵; 吴浚瀚; 夏烈文; 罗琦

    2003-01-01

    By means of atomic force microscope, the surface pattern, particle size distribution, and specific surface area of La-Ti composite oxide were studied. The compound particle surface appears as a smooth sheet, the even size of the compound ranges from 19.85nm to 25.38nm. The particle seems smooth, which erects at a height from 4.69nm to 5.88nm.The surface area ranges from 58.90nm2 to 1238.04nm2. The La-Ti composite oxide nanocrystallines enjoy a narrow and even particle size distribution and accumulate closely.

  14. Uncertainty compensation methods for quantitative hardness measurement of materials using atomic force microscope nanoindentation technique

    International Nuclear Information System (INIS)

    We suggest uncertainty compensation methods for the quantification of nanoscale indentation using atomic force microscopy (AFM). The main error factors in the force–distance curves originated from the difference between theoretical and real shape of AFM tip during nanoscale indentation measurements. For the uncertainty compensations of tip shapes and misalignment of loading axis, we applied the enhanced tip geometry function and Y-scanner moving to the AFM measurements. Three different materials such as Si wafer, glass, and Au film were characterized with these compensation methods. By applying compensation methods, our results show the decreased values from 167% to 39% below 100 nm indenting depth compared with the literature values. These compensation methods applied to thin films will show the advanced quantitative analysis of hardness measurements using nanoscale indenting AFM. - Highlights: • We suggest uncertainty compensation methods for quantitative hardness measurement. • The main errors during indentation are tip geometry and non-uniform loading. • 3D tip characterization is obtained by using atomic force microscope scan. • The compensation methods perform well in thin films below thickness of 100 nm

  15. Direct observation of phase transition of GeSbTe thin films by Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yang Fei [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang Rui; Geng Lei; Tong Liang; Xu Jun [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Su Weining; Yu Yao [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ma Zhongyuan; Chen Kunji [National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2012-10-01

    Graphical abstract: Nano-sized marks on GST thin film were fabricated using Conductive-AFM (Atomic Force Microscope). The AFM morphology images show that the marks are ablated at the center and a raised ring surrounding it. Highlights: Black-Right-Pointing-Pointer Microstructure of GeSbTe thin films was characterized by XRD and AFM. Black-Right-Pointing-Pointer Annealing and applying electrical field can induce crystallization on thin film. Black-Right-Pointing-Pointer Conductive-AFM was used to modify the surface of GeSbTe thin film. - Abstract: GeSbTe (GST) thin films were deposited on quartz substrates using electron beam evaporation system and then annealed in nitrogen atmosphere at different temperatures, ranging from 20 Degree-Sign C to 300 Degree-Sign C. X-ray diffraction (XRD) and Atomic Force microscope (AFM) measurements were used to characterize the as-deposited and post-annealed thin films. Annealing treatment was found to induce changes on microstructure, surface roughness and grain size, indicating that with the increase of annealing temperature, the amorphous GST films first changed to face-centered-cubic (fcc) phase and then the stable hexagonal (hex) phase. Meanwhile, conductive-AFM (C-AFM) was used to produce crystallized GST dots on thin films. I-V spectroscopy results show that GST films can switch from amorphous state to crystalline state at threshold voltage. After switching, I-V curve exhibits ohmic characteristic, which is usually observed in crystallized GST films. By applying repeated I-V spectroscopies on the thin films, crystallized nuclei were observed. As the times of I-V spectroscopies increases, the area of written dots increases, and the center of the mark begin to ablate. The AFM images show that the shape of marks is an ablated center with a raised ring surrounding it.

  16. Recent experimental advances in precision Casimir force measurements with the atomic force microscope

    International Nuclear Information System (INIS)

    Advances in experimental methodology and analysis implemented in the precision measurement of the Casimir force with semiconductor surfaces are discussed. An experiment for the alteration of the Casimir force through a modification of the free carrier density in semiconductors is presented

  17. Recent experimental advances in precision Casimir force measurements with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chen, F; Mohideen, U [Department of Physics, University of California, Riverside, CA 92521 (United States)

    2006-05-26

    Advances in experimental methodology and analysis implemented in the precision measurement of the Casimir force with semiconductor surfaces are discussed. An experiment for the alteration of the Casimir force through a modification of the free carrier density in semiconductors is presented.

  18. Lipid memberane:inelastic deformation of surface structure by an atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The stability of the 1,2-Dioleoyl-sn-Glycero-3-[phospho-rac-1-Glycerol-Na] liposome in the liquid crystalline state have been investigated using an atomic force microscope(AFM),We have observed the inelastic deformation of the sample surface,The AFM tip causes persistent deformation of the surface of the lipid membrane,in which some of the lipid molecules are eventually pushed or dragged by the AFM tip.The experiment shows how the surface structure of the lipid membrane can be created by the interaction between the AFM tip and lipid membrane.When the operating force exceeds 10-8N,it leads to large deformations of the surface.A squareregion of about 1×1um2 is created by the scanning probe on the surface,When the operating force is between 10-11N and 10-8N,it can image the topography of the surface of the lipid membrane.The stability of the sample is related to the concentration of the medium in which the sample is prepared.

  19. A concept for automated nanoscale atomic force microscope (AFM) measurements using a priori knowledge

    International Nuclear Information System (INIS)

    The nanometer coordinate measuring machine (NCMM) is developed for comparatively fast large area scans with high resolution. The system combines a metrological atomic force microscope (AFM) with a precise positioning system. The sample is moved under the probe system via the positioning system achieving a scan range of 25 × 25 × 5 mm3 with a resolution of 0.1 nm. A concept for AFM measurements using a priori knowledge is implemented. The a priori knowledge is generated through measurements with a white light interferometer and the use of CAD data. Dimensional markup language is used as a transfer and target format for a priori knowledge and measurement data. Using the a priori knowledge and template matching algorithms combined with the optical microscope of the NCMM, the region of interest can automatically be identified. In the next step the automatic measurement of the part coordinate system and the measurement elements with the AFM sensor of the NCMM is done. The automatic measurement involves intelligent measurement strategies, which are adapted to specific geometries of the measurement feature to reduce measurement time and drift effects

  20. Development of a Hybrid Atomic Force Microscopic Measurement System Combined with White Light Scanning Interferometry

    Directory of Open Access Journals (Sweden)

    Xiaotang Hu

    2011-12-01

    Full Text Available A hybrid atomic force microscopic (AFM measurement system combined with white light scanning interferometry for micro/nanometer dimensional measurement is developed. The system is based on a high precision large-range positioning platform with nanometer accuracy on which a white light scanning interferometric module and an AFM head are built. A compact AFM head is developed using a self-sensing tuning fork probe. The head need no external optical sensors to detect the deflection of the cantilever, which saves room on the head, and it can be directly fixed under an optical microscopic interferometric system. To enhance the system’s dynamic response, the frequency modulation (FM mode is adopted for the AFM head. The measuring data can be traceable through three laser interferometers in the system. The lateral scanning range can reach 25 mm × 25 mm by using a large-range positioning platform. A hybrid method combining AFM and white light scanning interferometry is proposed to improve the AFM measurement efficiency. In this method, the sample is measured firstly by white light scanning interferometry to get an overall coarse morphology, and then, further measured with higher resolution by AFM. Several measuring experiments on standard samples demonstrate the system’s good measurement performance and feasibility of the hybrid measurement method.

  1. Experimental procedures for precision measurements of the Casimir force with an atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, H.-C.; Chang, C.-C.; Castillo-Garza, R; Chen, F; Mohideen, U [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States)], E-mail: umar.mohideen@ucr.edu

    2008-04-25

    Experimental methods and procedures required for precision measurements of the Casimir force are presented. In particular, the best practices for obtaining stable cantilevers, calibration of the cantilever, correction of thermal and mechanical drift, measuring the contact separation, sphere radius and the roughness are discussed.

  2. Experimental procedures for precision measurements of the Casimir force with an atomic force microscope

    International Nuclear Information System (INIS)

    Experimental methods and procedures required for precision measurements of the Casimir force are presented. In particular, the best practices for obtaining stable cantilevers, calibration of the cantilever, correction of thermal and mechanical drift, measuring the contact separation, sphere radius and the roughness are discussed

  3. Multifunctional atomic force microscope cantilevers with Lorentz force actuation and self-heating capability

    International Nuclear Information System (INIS)

    This paper reports the development of microcantilevers capable of self-heating and Lorentz-force actuation, and demonstrates applications to thermal topography imaging. Electrical current passing through a U-shaped cantilever in the presence of a magnetic field induces a Lorentz force on the cantilever free end, resulting in cantilever actuation. This same current flowing through a resistive heater induces a controllable temperature increase. We present cantilevers designed for large actuation forces for a given cantilever temperature increase. We analyze the designs of two new cantilevers, along with a legacy cantilever design. The cantilevers are designed to have a spring constant of about 1.5 N m−1, a resonant frequency near 100 kHz, and self-heating capability with temperature controllable over the range 25–600 °C. Compared to previous reports on self-heating cantilevers, the Lorentz–thermal cantilevers generate up to seven times as much Lorentz force and two times as much oscillation amplitude. When used for thermal topography imaging, the Lorentz–thermal cantilevers can measure topography with a vertical resolution of 0.2 nm. (paper)

  4. Lipid membrane: inelastic deformation of surface structure by an atomic force microscope

    Institute of Scientific and Technical Information of China (English)

    张静; 孙润广

    2002-01-01

    The stability of the 1,2-Dioleoyl-sn-Glycero-3-[phospho-rac-1-Glycerol-Na] liposome in the liquid crystalline statehave been investigated using an atomic force microscope (AFM). We have observed the inelastic deformation of thesample surface. The AFM tip causes persistent deformation of the surface of the lipid membrane, in which some of thelipid molecules are eventually pushed or dragged by the AFM tip. The experiment shows how the surface structure ofthe lipid membrane can be created by the interaction between the AFM tip and lipid membrane. When the operatingforce exceeds 10-8 N, it leads to large deformations of the surface. A square region of about 1×1μm2 is created by thescanning probe on the surface. When the operating force is between 10-11N and 10-8N, it can image the topographyof the surface of the lipid membrane. The stability of the sample is related to the concentration of the medium in whichthe sample is prepared.

  5. Proposed triaxial atomic force microscope contact-free tweezers for nanoassembly

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Keith A; Westervelt, Robert M, E-mail: westervelt@seas.harvard.ed [School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138 (United States)

    2009-09-23

    We propose a triaxial atomic force microscope contact-free tweezer (TACT) for the controlled assembly of nanoparticles suspended in a liquid. The TACT overcomes four major challenges faced in nanoassembly, as follows. (1) The TACT can hold and position a single nanoparticle with spatial accuracy smaller than the nanoparticle size ({approx}5 nm). (2) The nanoparticle is held away from the surface of the TACT by negative dielectrophoresis to prevent van der Waals forces from making it stick to the TACT. (3) The TACT holds nanoparticles in a trap that is size-matched to the particle and surrounded by a repulsive region so that it will only trap a single particle at a time. (4) The trap can hold a semiconductor nanoparticle in water with a trapping energy greater than the thermal energy. For example, a 5 nm radius silicon nanoparticle is held with 10 k{sub B}T at room temperature. We propose methods for using the TACT as a nanoscale pick-and-place tool to assemble semiconductor quantum dots, biological molecules, semiconductor nanowires, and carbon nanotubes.

  6. Frictional Behavior of Micro/nanotextured Surfaces Investigated by Atomic Force Microscope: a Review

    Science.gov (United States)

    Zhang, Xiaoliang; Jia, Junhong

    2015-08-01

    Tribological issues between friction pair are fundamental problems for minimized devices because of their higher surface-to-volume ratio. Micro/nanotexturing is an effective technique to reduce actual contact area between contact pair at the nanoscale. Micro/nanotexture made a great impact on the frictional behavior of textured surfaces. This paper summarizes the recent advancements in the field of frictional behavior of micro/nanotextured surfaces, which are based on solid surface contact in atmosphere environment, especially focusing on the factors influencing the frictional behavior: Surface property, texturing density, texturing height, texturing structure and size of contact pair (atomic force microscope (AFM) tip) and texturing structures. Summarizing the effects of these factors on the frictional behavior is helpful for the understanding and designing of the surfaces in sliding micro/nanoelectromechanical systems (MEMS/NEMS). Controlling and reducing the friction force in moving mechanical systems is very important for the performance and reliability of nanosystems, which contribute to a sustainable future.

  7. Determination of the elastic properties of tomato fruit cells with an atomic force microscope.

    Science.gov (United States)

    Zdunek, Artur; Kurenda, Andrzej

    2013-01-01

    Since the mechanical properties of single cells together with the intercellular adhesive properties determine the macro-mechanical properties of plants, a method for evaluation of the cell elastic properties is needed to help explanation of the behavior of fruits and vegetables in handling and food processing. For this purpose, indentation of tomato mesocarp cells with an atomic force microscope was used. The Young's modulus of a cell using the Hertz and Sneddon models, and stiffness were calculated from force-indentation curves. Use of two probes of distinct radius of curvature (20 nm and 10,000 nm) showed that the measured elastic properties were significantly affected by tip geometry. The Young's modulus was about 100 kPa ± 35 kPa and 20 kPa ± 14 kPa for the sharper tip and a bead tip, respectively. Moreover, large variability regarding elastic properties (>100%) among cells sampled from the same region in the fruit was observed. We showed that AFM provides the possibility of combining nano-mechanical properties with topography imaging, which could be very useful for the study of structure-related properties of fruits and vegetables at the cellular and sub-cellular scale. PMID:24030683

  8. Determination of the Elastic Properties of Tomato Fruit Cells with an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Andrzej Kurenda

    2013-09-01

    Full Text Available Since the mechanical properties of single cells together with the intercellular adhesive properties determine the macro-mechanical properties of plants, a method for evaluation of the cell elastic properties is needed to help explanation of the behavior of fruits and vegetables in handling and food processing. For this purpose, indentation of tomato mesocarp cells with an atomic force microscope was used. The Young’s modulus of a cell using the Hertz and Sneddon models, and stiffness were calculated from force-indentation curves. Use of two probes of distinct radius of curvature (20 nm and 10,000 nm showed that the measured elastic properties were significantly affected by tip geometry. The Young’s modulus was about 100 kPa ± 35 kPa and 20 kPa ± 14 kPa for the sharper tip and a bead tip, respectively. Moreover, large variability regarding elastic properties (>100% among cells sampled from the same region in the fruit was observed. We showed that AFM provides the possibility of combining nano-mechanical properties with topography imaging, which could be very useful for the study of structure-related properties of fruits and vegetables at the cellular and sub-cellular scale.

  9. Radiation pressure excitation of Low Temperature Atomic Force & Magnetic Force Microscope (LT-AFM/MFM) for Imaging

    Science.gov (United States)

    Karci, Ozgur; Celik, Umit; Oral, Ahmet; NanoMagnetics Instruments Ltd. Team; Middle East Tech Univ Team

    2015-03-01

    We describe a novel method for excitation of Atomic Force Microscope (AFM) cantilevers by means of radiation pressure for imaging in an AFM for the first time. Piezo excitation is the most common method for cantilever excitation, but it may cause spurious resonance peaks. A fiber optic interferometer with 1310 nm laser was used both to measure the deflection of cantilever and apply a force to the cantilever in a LT-AFM/MFM from NanoMagnetics Instruments. The laser power was modulated at the cantilever`s resonance frequency by a digital Phase Lock Loop (PLL). The force exerted by the radiation pressure on a perfectly reflecting surface by a laser beam of power P is F = 2P/c. We typically modulate the laser beam by ~ 800 μW and obtain 10nm oscillation amplitude with Q ~ 8,000 at 2.5x10-4 mbar. The cantilever's stiffness can be accurately calibrated by using the radiation pressure. We have demonstrated performance of the radiation pressure excitation in AFM/MFM by imaging a hard disk sample between 4-300K and Abrikosov vortex lattice in BSCCO single crystal at 4K to for the first time.

  10. Reconstruction of the Tip-Surface Interaction Potential by Analysis of the Brownian Motion of an Atomic Force Microscope Tip

    NARCIS (Netherlands)

    Willemsen, Oscar H.; Kuipers, Laurens; Werf, van der Kees O.; Grooth, de Bart G.; Greve, Jan

    2000-01-01

    The thermal movement of an atomic force microscope (AFM) tip is used to reconstruct the tip-surface interaction potential. If a tip is brought into the vicinity of a surface, its movement is governed by the sum of the harmonic cantilever potential and the tip-surface interaction potential. By simula

  11. Cometary dust at the smallest scale - latest results of the MIDAS Atomic Force Microscope onboard Rosetta

    Science.gov (United States)

    Bentley, Mark; Torkar, Klaus; Jeszenszky, Harald; Romstedt, Jens; Schmied, Roland; Mannel, Thurid

    2015-04-01

    The MIDAS instrument onboard the Rosetta orbit is a unique combination of a dust collection and handling system and a high resolution Atomic Force Microscope (AFM). By building three-dimensional images of the dust particle topography, MIDAS addresses a range of fundamental questions in Solar System and cometary science. The first few months of dust collection and scanning revealed a deficit of smaller (micron and below) particles but eventually several 10 µm-class grains were discovered. In fact these were unexpectedly large and close to the limit of what is observable with MIDAS. As a result the sharp tip used by the AFM struck the particles from the side, causing particle breakage and distortion. Analyses so far suggest that the collected particles are fluffy aggregates of smaller sub-units, although determination of the size of these sub-units and high resolution re-imaging remains to be done. The latest findings will be presented here, including a description of the particles collected and the implications of these observations for cometary science and the Rosetta mission at comet 67P.

  12. In Situ Roughness Measurements for the Solar Cell Industry Using an Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    Higinio González-Jorge

    2010-04-01

    Full Text Available Areal roughness parameters always need to be under control in the thin film solar cell industry because of their close relationship with the electrical efficiency of the cells. In this work, these parameters are evaluated for measurements carried out in a typical fabrication area for this industry. Measurements are made using a portable atomic force microscope on the CNC diamond cutting machine where an initial sample of transparent conductive oxide is cut into four pieces. The method is validated by making a comparison between the parameters obtained in this process and in the laboratory under optimal conditions. Areal roughness parameters and Fourier Spectral Analysis of the data show good compatibility and open the possibility to use this type of measurement instrument to perform in situ quality control. This procedure gives a sample for evaluation without destroying any of the transparent conductive oxide; in this way 100% of the production can be tested, so improving the measurement time and rate of production.

  13. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hua; Xing, Xiaobo [Chemistry Department, Jinan University, Guangzhou 510632 (China); Zhao, Hongxia [Chemistry Department, Jinan University, Guangzhou 510632 (China); Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510090 (China); Chen, Yong [Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Xun [Chemistry Department, Jinan University, Guangzhou 510632 (China); Ma, Shuyuan [Chemistry Department, Jinan University, Guangzhou 510632 (China); The First Affiliated Hospital, Jinan University, Guangzhou 510632 (China); Ye, Hongyan [Chemistry Department, Jinan University, Guangzhou 510632 (China); Cai, Jiye, E-mail: tjycai@jnu.edu.cn [Chemistry Department, Jinan University, Guangzhou 510632 (China)

    2010-01-22

    The pathophysiological changes of erythrocytes are detected at the molecular scale, which is important to reveal the onset of diseases. Type 2 diabetes is an age-related metabolic disorder with high prevalence in elderly (or old) people. Up to now, there are no treatments to cure diabetes. Therefore, early detection and the ability to monitor the progression of type 2 diabetes are very important for developing effective therapies. Type 2 diabetes is associated with high blood glucose in the context of insulin resistance and relative insulin deficiency. These abnormalities may disturb the architecture and functions of erythrocytes at molecular scale. In this study, the aging- and diabetes-induced changes in morphological and biomechanical properties of erythrocytes are clearly characterized at nanometer scale using atomic force microscope (AFM). The structural information and mechanical properties of the cell surface membranes of erythrocytes are very important indicators for determining the healthy, diseased or aging status. So, AFM may potentially be developed into a powerful tool in diagnosing diseases.

  14. Atomic force microscopic observation on substructure of pollen exine in Cedrus deodara and Metasequoia glyptostroboides

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The substructure of pollen exine in Cedrus deodara (Roxb.) Loud. and Metasequoia glyptostroboides Hu et Cheng has been examined with an atomic force microscope (AFM). The results indicate that the exine substructure units containing sporopollenin in two species are similar in shape, which are granular, but slightly different in size. In Cedrus the substructure unit of pollen exine appears to be 56-99 nm long and 42-74 nm wide, while in Metasequoia it appears to be 81-118 nm long and 43-98 nm wide. It has been observed that the subunits of pollen exine in Cedrus arranged tightly to form short-rod-like or spheroidal pollen exine units, several or more than ten of which formed an island-like structure. There are various spaces among these island-like structures which are interconnected to occupy the entire pollen exine. In Metasequoia, the subunits of pollen exine also arranged tightly with a distribution tendency of cluster of 3-10, however, no obvious boundary exists among these clusters. From our results, it is concluded that there is no tendency of helical arrangement for the subunits of pollen exine in Cedrus and Metasequoia, and the results support Southworth' view that subunits of pollen exine are granular shape in lattice structure.

  15. Atomic Force Microscope Imaging of the Aggregation of Mouse Immunoglobulin G Molecules

    Directory of Open Access Journals (Sweden)

    Ke Xia

    2003-01-01

    Full Text Available Mouse immunoglobulin G (Ig G1 and the mixture of Ig G1 and Ig G2 deposited on mica were imaged with an atomic force microscope at room temperature and ambient pressure. At a concentration around 1.0mg/L, the molecules were well dispersed. 2~3 days after sample preparation, both Ig G1 and the mixture could self- assemble into different shapes and further form some types of local-ordered toroidal aggregations (monotoroidal, intercrossed toroidal, concentric toroidal, etc.. The number of monomers was not identical in the different toroidal aggregations but in a same circle, the shapes of polymer self-assembled by several monomolecules were found to be almost the same. There was difference between the aggregation behavior of Ig G1 and the mixture. The mechanism of Ig G molecule aggregation was ascribed to the “Y” shape and loops structure of Ig G molecule.

  16. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope

    International Nuclear Information System (INIS)

    The pathophysiological changes of erythrocytes are detected at the molecular scale, which is important to reveal the onset of diseases. Type 2 diabetes is an age-related metabolic disorder with high prevalence in elderly (or old) people. Up to now, there are no treatments to cure diabetes. Therefore, early detection and the ability to monitor the progression of type 2 diabetes are very important for developing effective therapies. Type 2 diabetes is associated with high blood glucose in the context of insulin resistance and relative insulin deficiency. These abnormalities may disturb the architecture and functions of erythrocytes at molecular scale. In this study, the aging- and diabetes-induced changes in morphological and biomechanical properties of erythrocytes are clearly characterized at nanometer scale using atomic force microscope (AFM). The structural information and mechanical properties of the cell surface membranes of erythrocytes are very important indicators for determining the healthy, diseased or aging status. So, AFM may potentially be developed into a powerful tool in diagnosing diseases.

  17. The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope.

    Directory of Open Access Journals (Sweden)

    Haijiao Xu

    Full Text Available The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.

  18. Reversible mechano-electrochemical writing of metallic nanostructures with the tip of an atomic force microscope

    Directory of Open Access Journals (Sweden)

    Christian Obermair

    2012-12-01

    Full Text Available We recently introduced a method that allows the controlled deposition of nanoscale metallic patterns at defined locations using the tip of an atomic force microscope (AFM as a “mechano-electrochemical pen”, locally activating a passivated substrate surface for site-selective electrochemical deposition. Here, we demonstrate the reversibility of this process and study the long-term stability of the resulting metallic structures. The remarkable stability for more than 1.5 years under ambient air without any observable changes can be attributed to self-passivation. After AFM-activated electrochemical deposition of copper nanostructures on a polycrystalline gold film and subsequent AFM imaging, the copper nanostructures could be dissolved by reversing the electrochemical potential. Subsequent AFM-tip-activated deposition of different copper nanostructures at the same location where the previous structures were deleted, shows that there is no observable memory effect, i.e., no effect of the previous writing process on the subsequent writing process. Thus, the four processes required for reversible information storage, “write”, “read”, “delete” and “re-write”, were successfully demonstrated on the nanometer scale.

  19. Nanoimaging and ultra structure of Entamoeba histolytica and its pseudopods by using atomic force microscope

    Science.gov (United States)

    Joshi, Narahari V.; Medina, Honorio; Urdaneta, H.; Barboza, J.

    2000-04-01

    Nan-imaging of Entamoeba histolytica was carried out by using Atomic Force Microscope (AFM). The structure of the nucleus, endoplasm and ectoplasm were studied separately. The diameter of the nucleus in living E. histolytica was found to be of the order of 10 micrometers which is slightly higher than the earlier reported value. The presence of karysome was detected in the nucleus. Well-organized patterns of chromatoid bodies located within the endoplasm, were detected and their repetitive patterns were examined. The organized structure was also extended within the ectoplasm. The dimensions and form of the organization suggest that chromatic bodies are constituted with ribosomes ordered in the form of folded sheet. Such structures were found to be absent in non-living E. histolytica. AFM images were also captured just in the act when ameba was extending its pseudopods. Alteration in the ultrastructure caused during the process of extension was viewed. Well marked canals of width 694.05 nm. And height 211.05 nm are clearly perceptible towards the direction of the pseudopods. 3D images are presented to appreciate the height variation, which can not be achieved by conventional well-established techniques such as electron microscopy.

  20. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    OpenAIRE

    Manfred Lange; Dennis van Vörden; Rolf Möller

    2012-01-01

    Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between...

  1. Fabrication of large scale nanostructures based on a modified atomic force microscope nanomechanical machining system.

    Science.gov (United States)

    Hu, Z J; Yan, Y D; Zhao, X S; Gao, D W; Wei, Y Y; Wang, J H

    2011-12-01

    The atomic force microscope (AFM) tip-based nanomechanical machining has been demonstrated to be a powerful tool for fabricating complex 2D∕3D nanostructures. But the machining scale is very small, which holds back this technique severely. How to enlarge the machining scale is always a major concern for the researches. In the present study, a modified AFM tip-based nanomechanical machining system is established through combination of a high precision X-Y stage with the moving range of 100 mm × 100 mm and a commercial AFM in order to enlarge the machining scale. It is found that the tracing property of the AFM system is feasible for large scale machining by controlling the constant normal load. Effects of the machining parameters including the machining direction and the tip geometry on the uniform machined depth with a large scale are evaluated. Consequently, a new tip trace and an increasing load scheme are presented to achieve a uniform machined depth. Finally, a polymer nanoline array with the dimensions of 1 mm × 0.7 mm, the line density of 1000 lines/mm and the average machined depth of 150 nm, and a 20 × 20 polymer square holes array with the scale of 380 μm × 380 μm and the average machined depth of 250 nm are machined successfully. The uniform of the machined depths for all the nanostructures is acceptable. Therefore, it is verified that the AFM tip-based nanomechanical machining method can be used to machine millimeter scale nanostructures. PMID:22225244

  2. X-ray holographic microscopy using the atomic-force microscope

    International Nuclear Information System (INIS)

    The present authors have been seeking for some time to improve the resolution of holographic microscopy and have engaged in a continuing series of experiments using the X1A soft x-ray undulator beam line at Brookhaven. The principle strategy for pushing the resolution lower in these experiments has been the use of polymer resists as x-ray detectors and the primary goal has been to develop the technique to become useful for examining wet biological material. In the present paper the authors report on progress in the use of resist for high-spatial-resolution x-ray detection. This is the key step in in-line holography and the one which sets the ultimate limit to the image resolution. The actual recording has always been quite easy, given a high-brightness undulator source, but the difficult step was the readout of the recorded pattern. The authors describe in what follows how they have built a special instrument: an atomic force microscope (AFM) to read holograms recorded in resist. They report the technical reasons for building, rather than buying, such an instrument and they give details of the design and performance of the device. The authors also describe the first attempts to use the system for real holography and the authors show results of both recorded holograms and the corresponding reconstructed images. Finally, the authors try to analyze the effect that these advances are likely to have on the future prospects for success in applications of x-ray holography and the degree to which the other technical systems that are needed for such success are available or within reach

  3. Atomic force microscopic neutron-induced alpha-autoradiography for boron imaging in detailed cellular histology

    International Nuclear Information System (INIS)

    The information on subcellular microdistribution of 10B compounds a cell is significant to evaluate the efficacy of boron neutron capture therapy (BNCT) because the damage brought by the released alpha/lithium particles is highly localized along their path, and radiation sensitivity is quite different among each cell organelles. In neutron-induced alpha-autoradiography (NIAR) technique, 10B can be measured as tracks for the energetic charged particles from 10B(n, alpha)7Li reactions in solid state track detectors. To perform the NIAR at intracellular structure level for research of 10B uptake and/or microdosimetry in BNCT, we have developed high-resolution NIAR method with an atomic force microscope (AFM). AFM has been used for analyses of biological specimens such as proteins, DNAs and surface of living cells have, however, intracellular detailed histology of cells has been hardly resolved with AFM since flat surface of sectioned tissue has quite less topographical contrast among each organelle. In our new sample preparation method using UV processing, materials that absorb UV in a semi-thin section are selectively eroded and vaporized by UV exposure, and then fine relief for cellular organelles such as mitochondria, endoplasmic reticulum, filament structure and so on reveals on flat surface of the section, which can be observed with an AFM. The imaging resolution was comparable to TEM imaging of cells. This new method provides fast and cost-effective observation of histological sections with an AFM. Combining this method with NIAR technique, intracellular boron mapping would be possible. (author)

  4. 'Sub-atomic' resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Campbellova, Anna; Klapetek, Petr [Czech Metrology Institute, OkruznI 31, 638 00, Brno (Czech Republic); Ondracek, Martin; JelInek, Pavel [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 00 Prague (Czech Republic); Pou, Pablo; Perez, Ruben, E-mail: jelinekp@fzu.cz [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2011-07-22

    A Si adatom on a Si(111)-(7 x 7) reconstructed surface is a typical atomic feature that can rather easily be imaged by a non-contact atomic force microscope (nc-AFM) and can be thus used to test the atomic resolution of the microscope. Based on our first principles density functional theory (DFT) calculations, we demonstrate that the structure of the termination of the AFM tip plays a decisive role in determining the appearance of the adatom image. We show how the AFM image changes depending on the tip-surface distance and the composition of the atomic apex at the end of the tip. We also demonstrate that contaminated tips may give rise to image patterns displaying so-called 'sub-atomic' features even in the attractive force regime.

  5. MM99.50 - Surface Topography Characterization Using an Atomic Force Microscope Mounted on a Coordinate Measuring Machine

    DEFF Research Database (Denmark)

    Chiffre, Leonardo De; Hansen, Hans Nørgaard; Kofod, Niels

    1999-01-01

    The paper describes the construction, testing and use of an integrated system for topographic characterization of fine surfaces on parts having relatively big dimensions. An atomic force microscope (AFM) was mounted on a manual three-coordinate measuring machine (CMM) achieving free positioning of...... areas traced in single scans of 40 mu m x 40 mu m. The results show that surface mapping on industrial surfaces is possible using the Least Mean Square alignment provided by the AFM software....

  6. Optimizing the driving scheme of a self-actuated atomic force microscope probe for high-speed applications

    International Nuclear Information System (INIS)

    We investigate the optimum driving scheme of a dynamic atomic force microscope with a self-actuated probe for high-speed applications by performing numerical simulations. We compare the recently developed methods such as Q-control, dynamic PID control, and modified Q-control methods to the standard tapping mode by considering scan speed and peak transient forces. In addition, the effects of driving frequency and set-point amplitude on the maximum achievable scan speed for the same probe-sample system are discussed. We find that the scan speed can be increased significantly at the expense of increased peak transient forces. -- Highlights: → Driving schemes of a dynamic AFM are examined to achieve the highest scan speed. → Q-control provides the highest scan speed with increased transient forces. → Off-resonance tapping is preferable unless transient forces can be ignored. → False error signal generation methods provide a slight improvement.

  7. Atomic force microscope elastography reveals phenotypic differences in alveolar cell stiffness

    OpenAIRE

    Azeloglu, Evren U.; Bhattacharya, Jahar; COSTA, KEVIN D.

    2008-01-01

    To understand the connection between alveolar mechanics and key biochemical events such as surfactant secretion, one first needs to characterize the underlying mechanical properties of the lung parenchyma and its cellular constituents. In this study, the mechanics of three major cell types from the neonatal rat lung were studied; primary alveolar type I (AT1) and type II (AT2) epithelial cells and lung fibroblasts were isolated using enzymatic digestion. Atomic force microscopy indentation wa...

  8. Photon scanning tunneling microscope in combination with a force microscope

    OpenAIRE

    Moers, M.H.P.; Tack, R.G.; Hulst, van, N.F.; Bölger, B.

    1994-01-01

    The simultaneous operation of a photon scanning tunneling microscope with an atomic force microscope is presented. The use of standard atomic force silicon nitride cantilevers as near-field optical probes offers the possibility to combine the two methods. Vertical forces and torsion are detected simultaneously with the optical near field, which allows a comparison between topography and the optical signal. Images of an optical thin film (indium tin oxide) and a Langmuir-Blodgett layer (pentac...

  9. Micropore Structure Representation of Sandstone in Petroleum Reservoirs Using an Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    BAI Yong-Qiang; ZHU Xing; WU Jun-Zheng; BAI Wen-Guang

    2011-01-01

    @@ The pore structure of sandstone in an oil reservoir is investigated using atomic force microscopy(AFM).At nanoscale resolution,AFM images of sandstone show us the fine structure.The real height data of images display the three-dimensional space structure of sandstone effectively.The three-dimensional analysis results show that the AFM images of sandstone have unique characteristics that,like fingerprints,can identify different structural properties of sandstones.The results demonstrate that AFM is an effective method used to represent original sandstone in petroleum reservoirs,and may help geologists to appreciate the sandstone in oil reservoirs fully.

  10. Role of current profiles and atomic force microscope tips on local electric crystallization of amorphous silicon

    Czech Academy of Sciences Publication Activity Database

    Verveniotis, Elisseos; Rezek, Bohuslav; Šípek, Emil; Stuchlík, Jiří; Kočka, Jan

    2010-01-01

    Roč. 518, č. 21 (2010), s. 5965-5970. ISSN 0040-6090 R&D Projects: GA ČR GD202/09/H041; GA MŠk(CZ) LC06040; GA AV ČR KAN400100701; GA MŠk LC510 Institutional research plan: CEZ:AV0Z10100521 Keywords : amorphous materials * atomic force microscopy (AFM) * conductivity * crystallization * nanostructures * silicon * nickel Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.909, year: 2010

  11. Atomic force microscope studies of fullerene films - Highly stable C60 fcc (311) free surfaces

    Science.gov (United States)

    Snyder, Eric J.; Tong, William M.; Williams, R. S.; Anz, Samir J.; Anderson, Mark S.

    1991-01-01

    Atomic force microscopy and X-ray diffractometry were used to study 1500 A-thick films of pure C60 grown by sublimation in ultrahigh vacuum onto a CaF2 (111) substrte. Topographs of the films did not reveal the expected close-packed structures, but they showed instead large regions that correspond to a face-centered cubic (311) surface and distortions of this surface. The open (311) structure may have a relatively low free energy because the low packing density contributes to a high entropy of the exposed surface.

  12. Influence of measuring parameters on the accuracy of atomic force microscope in industrial applications

    DEFF Research Database (Denmark)

    Tosello, Guido; Antico, Andrea; Hansen, Hans Nørgaard;

    2009-01-01

    Atomic Force Microscopy (AFM) is a powerful technique providing 3D surface topographies with very high resolution in both lateral and vertical direction. Thanks to its relatively easy use, AFM can be well introduced in process control, gaining great advantage in research as well as in the...... evaluation of final product characteristics. The paper considers quantitative application of AFM measurements for industrial applications. In particular the influence and subsequent optimization of scanning parameters on the precision of AFM maps is discussed, with particular attention to scan speed and...... interaction force when measuring a one-dimensional grating with triangular profile. The aim is then maximization of information from collected data and minimization of measurement variability and scan time. Optimized scan setting is then applied to measure surface defects of micro injection moulded components...

  13. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope.

    Science.gov (United States)

    Lange, Manfred; van Vörden, Dennis; Möller, Rolf

    2012-01-01

    Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM) allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements). When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip-sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111) √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force-distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle. PMID:22496993

  14. Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Van Der Hofstadt, M. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Hüttener, M.; Juárez, A. [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament de Microbiologia, Universitat de Barcelona, Avinguda Diagonal 645, 08028 Barcelona (Spain); Gomila, G., E-mail: ggomila@ibecbarcelona.eu [Institut de Bioenginyeria de Catalunya (IBEC), C/ Baldiri i Reixac 11-15, 08028 Barcelona (Spain); Departament d' Electronica, Universitat de Barcelona, C/ Marti i Franqués 1, 08028 Barcelona (Spain)

    2015-07-15

    With the use of the atomic force microscope (AFM), the Nanomicrobiology field has advanced drastically. Due to the complexity of imaging living bacterial processes in their natural growing environments, improvements have come to a standstill. Here we show the in situ nanoscale imaging of the growth and division of single bacterial cells on planar substrates with the atomic force microscope. To achieve this, we minimized the lateral shear forces responsible for the detachment of weakly adsorbed bacteria on planar substrates with the use of the so called dynamic jumping mode with very soft cantilever probes. With this approach, gentle imaging conditions can be maintained for long periods of time, enabling the continuous imaging of the bacterial cell growth and division, even on planar substrates. Present results offer the possibility to observe living processes of untrapped bacteria weakly attached to planar substrates. - Highlights: • Gelatine coatings used to weakly attach bacterial cells onto planar substrates. • Use of the dynamic jumping mode as a non-perturbing bacterial imaging mode. • Nanoscale resolution imaging of unperturbed single living bacterial cells. • Growth and division of single bacteria cells on planar substrates observed.

  15. The influence of line tension on the formation of liquid bridges in atomic force microscope-like geometry

    Energy Technology Data Exchange (ETDEWEB)

    Dutka, F; Napiorkowski, M [Instytut Fizyki Teoretycznej, Uniwersytet Warszawski, 00-681 Warsaw, Hoza 69 (Poland)

    2007-11-21

    We investigate thermodynamic and geometrical conditions for the formation of a liquid bridge between a planar and conical walls modeling atomic force microscope (AFM). Our macroscopic analysis is based on the grand canonical functional of the shape of the liquid-vapor interface which contains the relevant bulk, surface and line free energies. The phase diagram of such a confined fluid displays the existence of two phases: one with a liquid bridge connecting the walls, and the other without a bridge. The structure of the corresponding coexistence line is determined and its dependence on the value of the line tension coefficient is discussed.

  16. The influence of line tension on the formation of liquid bridges in atomic force microscope-like geometry

    International Nuclear Information System (INIS)

    We investigate thermodynamic and geometrical conditions for the formation of a liquid bridge between a planar and conical walls modeling atomic force microscope (AFM). Our macroscopic analysis is based on the grand canonical functional of the shape of the liquid-vapor interface which contains the relevant bulk, surface and line free energies. The phase diagram of such a confined fluid displays the existence of two phases: one with a liquid bridge connecting the walls, and the other without a bridge. The structure of the corresponding coexistence line is determined and its dependence on the value of the line tension coefficient is discussed

  17. Ageing effects on polymeric track detectors: studies of etched tracks at nano size scale using atomic force microscope

    International Nuclear Information System (INIS)

    Among several different techniques to analyze material surface, the use of Atomic Force Microscope is one of the finest method. As we know, the sensitivity to detect energetic ions is extremely affected during the storage time and conditions of the polymeric material used as a nuclear track detector. On the basis of the surface analysis of several track detector materials, we examined the detection sensitivity of these detectors exposed to alpha particles. The preliminary results revealed that the ageing effect on its sensitivity is very strong, that need to be considered on the routine applications or research experiments. The results are consistent with the experimental data in the literature. (Author)

  18. Direct characterization of spin-transfer switching of nano-scale magnetic tunnel junctions using a conductive atomic force microscope

    International Nuclear Information System (INIS)

    We present an alternative method of spin-transfer-induced magnetization switching for magnetic tunnel junctions (MTJs) using a conductive atomic force microscope (CAFM) with pulsed current. The nominal MTJ cells' dimensions were 200 × 400 nm2. The AFM probes were coated with a Pt layer via sputtering to withstand up to several milliamperes. The pulsed current measurements, with pulse duration varying from 5 to 300 ms, revealed a magnetoresistance ratio of up to 120%, and an estimated intrinsic switching current density, based on the thermal activation model, of 3.94 MA cm−2. This method demonstrates the potential skill to characterize nanometre-scale magnetic devices. (paper)

  19. Preparation of La-Ti Composite Oxide Nanocrystal and Examination of Their Surface Topography with Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    With sol-gel method, nanometer La-Ti composite oxide was successfully prepared at a low temperature (750~800℃) using polyethylene glycol as dispersant. By means of atomic force microscope, the surface pattern, particle size distribution, and specific surface area were studied. The compound particle surface appears as a smooth sheet, the mean size of the compound is 25.38 nm. On the specific surface, the particle erects at a height of 4.69 nm. The surface area is 58.90 nm2. The La-Ti composite oxide nanocrystal prefers to narrow and even particle size distribution and the homogeneity of surface topography.

  20. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

    Directory of Open Access Journals (Sweden)

    Manfred Lange

    2012-03-01

    Full Text Available Measurements of the frequency shift versus distance in noncontact atomic force microscopy (NC-AFM allow measurements of the force gradient between the oscillating tip and a surface (force-spectroscopy measurements. When nonconservative forces act between the tip apex and the surface the oscillation amplitude is damped. The dissipation is caused by bistabilities in the potential energy surface of the tip–sample system, and the process can be understood as a hysteresis of forces between approach and retraction of the tip. In this paper, we present the direct measurement of the whole hysteresis loop in force-spectroscopy curves at 77 K on the PTCDA/Ag/Si(111 √3 × √3 surface by means of a tuning-fork-based NC-AFM with an oscillation amplitude smaller than the distance range of the hysteresis loop. The hysteresis effect is caused by the making and breaking of a bond between PTCDA molecules on the surface and a PTCDA molecule at the tip. The corresponding energy loss was determined to be 0.57 eV by evaluation of the force–distance curves upon approach and retraction. Furthermore, a second dissipation process was identified through the damping of the oscillation while the molecule on the tip is in contact with the surface. This dissipation process occurs mainly during the retraction of the tip. It reaches a maximum value of about 0.22 eV/cycle.

  1. Indentation of poroviscoelastic vocal fold tissue using an atomic force microscope.

    Science.gov (United States)

    Heris, Hossein K; Miri, Amir K; Tripathy, Umakanta; Barthelat, Francois; Mongeau, Luc

    2013-12-01

    The elastic properties of the vocal folds (VFs) vary as a function of depth relative to the epithelial surface. The poroelastic anisotropic properties of porcine VFs, at various depths, were measured using atomic force microscopy (AFM)-based indentation. The minimum tip diameter to effectively capture the local properties was found to be 25µm, based on nonlinear laser scanning microscopy data and image analysis. The effects of AFM tip dimensions and AFM cantilever stiffness were systematically investigated. The indentation tests were performed along the sagittal and coronal planes for an evaluation of the VF anisotropy. Hertzian contact theory was used along with the governing equations of linear poroelasticity to calculate the diffusivity coefficient of the tissue from AFM indentation creep testing. The permeability coefficient of the porcine VF was found to be 1.80±0.32×10(-15)m(4)/Ns. PMID:23829979

  2. System design and new applications for atomic force microscope based on tunneling

    Science.gov (United States)

    Wang, X.; Liu, A. P.; Yang, X. H.

    2015-09-01

    The design of atomic force microscopy (AFM) with high resolution is introduced in this paper. Mainly, we have developed the system design of the apparatus based on tunneling. AFM.IPC-208B, this kind of apparatus combines scanning tunnel microscopy (STM) and AFM availability, and its lens body with original frame enhances the capability of the machine. In order to analyze the performance of AFM.IPC-208B, as a new tool in the field of Life Science, we make use of the system to study natural mica and molecular protein structures of Cattle-insulin and human antibody immunoglobulin G (IgG) coupled with staphylococcus protein A (SPA). As the results of new applications, the resolution of AFM.IPC-208B is proved to be 0.1 nm, and these nanometer measurement results provide much valuable information for the study of small molecular proteins and HIV experiments.

  3. Competitive Adsorption between Bovine Serum Albumin and Collagen Observed by Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    Yong YU; Pei Qing YING; Gang JIN

    2004-01-01

    Atomic force microscopy (AFM) was used to study the competitive adsorption between bovine serum albumin (BSA) and type Ⅰ collagen on hydrophilic and hydrophobic silicon wafers.BSA showed a grain shape and the type I collagen displayed fibril-like molecules with relatively homogeneous height and width, characterized with clear twisting (helical formation). These AFM images illustrated that quite a lot of type I collagen appeared in the adsorption layer on hydrophilic surface in a competitive adsorption state, but the adsorption of BSA was more preponderant than that of type I collagen on hydrophobic silicon wafer surface. The experiments showed that the influence of BSA on type I collagen adsorption on hydrophilic surface was less than that on hydrophobic surface.

  4. ´Sub-atomic´ resolution of non-contact atomic force microscope images induced by a heterogeneous tip structure: a density functional theory study

    Czech Academy of Sciences Publication Activity Database

    Campbellová, A.; Ondráček, Martin; Pou, P.; Pérez, R.; Klapetek, P.; Jelínek, Pavel

    2011-01-01

    Roč. 22, č. 29 (2011), 295710/1-295710/7. ISSN 0957-4484 R&D Projects: GA AV ČR IAA100100905; GA ČR GAP204/10/0952; GA ČR(CZ) GPP204/11/P578 Grant ostatní: AVČR(CZ) M100100904 Institutional research plan: CEZ:AV0Z10100521 Keywords : density functional theory * atomic force microscope * semiconductor surface * sub- atomic resolution Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.979, year: 2011 http://iopscience.iop.org/0957-4484/22/29/295710

  5. Temperature and non-linear response of cantilever-type mechanical oscillators used in atomic force microscopes with interferometric detection

    International Nuclear Information System (INIS)

    The sensitivity of atomic force microscopes is fundamentally limited by the cantilever temperature, which can be, in principle, determined by measuring its thermal spectrum and applying the equipartition theorem. However, the mechanical response can be affected by the light field inside the cavity of a Fabry-Perot interferometer due to light absorption, radiation pressure, photothermal forces, and laser noise. By evaluating the optomechanical Hamiltonian, we are able to explain the peculiar distance dependence of the mechanical quality factor as well as the appearance of thermal spectra with symmetrical Lorentzian as well as asymmetrical Fano line shapes. Our results can be applied to any type of mechanical oscillator in an interferometer-based detection system

  6. Acoustic Imaging of Ferroelectric Domains in BaTiO3 Single Crystals Using Atomic Force Microscope

    Science.gov (United States)

    Zeng, Huarong; Shimamura, Kiyoshi; Kannan, Chinna Venkadasamy; Villora, Encarnacion G.; Takekawa, Shunji; Kitamura, Kenji; Yin, Qingrui

    2007-01-01

    An “alternating-force-modulated” atomic force microscope (AFM) operating in the acoustic mode, generated by launching acoustic waves on the piezoelectric transducer that is attached to the cantilever, was used to visualize the ferroelectric domains in barium titanate (BaTiO3) single crystals by detecting acoustic vibrations generated by the tip and transmitted through the sample placed beneath it to the transducer. The acoustic signal was found to reflect locally elastic microstructures at low frequencies, while high-frequency acoustic images revealed strip like domain configurations of internal substructures in BaTiO3 single crystals. The underlying acoustic imaging mechanism using the AFM was discussed in terms of the interaction between the excited acoustic wave and ferroelectric domains.

  7. Observation of irreversible current path in polymer dielectric using conductive atomic force microscope

    Science.gov (United States)

    Jung, Ji-Hoon; Kim, Woo Young; Kim, Do-Kyung; Kwon, Jin-Hyuk; Lee, Hee Chul; Bae, Jin-Hyuk

    2015-03-01

    During the measurement of the electrical properties of a metal-polymer-metal capacitor, it was found that the capacitor exhibited write-once-read-many-times (WORM) memory behavior, even though it was made of the dielectric polymer, polystyrene. The initial low conductance state changed to a high conductance state when a threshold voltage was applied, but this final state never reverted to the initial state. This phenomenon only appeared in sub-100-nm-thick films. To understand this phenomenon, conductive atomic force microscopy (CAFM) was used. The current distribution measured with CAFM showed an irreversible current path had formed near particles in the polymer film. For reproducibility, particles were intentionally inserted into the polymer film during the fabrication of metal-polymer-metal capacitors, and the same current mechanism was found. From these results, it is concluded that the purification and cleaning process of organic devices severely affects the device characteristics. In addition, particle-insertion appears to be a promising method for fabrication low-cost and air-stable WORM type memory for various applications. [Figure not available: see fulltext.

  8. Set-up of a High-Resolution 300 mK Atomic Force Microscope in an Ultra-High Vacuum Compatible 3He/10T Cryostat

    CERN Document Server

    von Allwörden, Henning; Köhler, Arne; Eelbo, Thomas; Schwarz, Alexander; Wiesendanger, Roland

    2016-01-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where tip and sample can be exchanged in-situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  9. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    Science.gov (United States)

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001). PMID:27475560

  10. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible 3He/10 T cryostat

    Science.gov (United States)

    von Allwörden, H.; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A.; Wiesendanger, R.

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  11. A new type of horizontal atomic force microscope%卧式原子力显微镜的研制

    Institute of Scientific and Technical Information of China (English)

    张冬仙; 黄峰

    2001-01-01

    提出原子力显微镜(AFM)的新设计,讨论卧式AFM的工作原理及其性能特点,简要介绍AFM的控制电路系统及其图像扫描和图像处理软件系统,给出AFM扫描获得的部分样品的图像结果。%A new design of horizontal atomic force microscope(AFM)was developed.The principle and characteristics of the new horizontal AFM were discussed.The control circuits and software systems for image scanning and processing were introduced.Some experimental results of image acquisition by using the horizontal AFM were also presented

  12. A novel atomic force microscope operating in liquid with open probe unit and optimized laser tracking system

    Institute of Scientific and Technical Information of China (English)

    Xia Fu; Dongxian Zhang; Haijun Zhang

    2009-01-01

    A novel atomic force microscope (AFM) for large samples to be measured in liquid is developed.An innovative laser beam tracking system is proposed to eliminate the tracking and feedback errors.The open probe design of the AFM makes the operation in liquid convenient and easy.A standard 1200-lines/mm grating and a sheet of filter paper are imaged respectively in air and liquid to confirm its performance.The corrosion behavior of aluminum surface in 1-mol/L NaOH solution is further investigated by the AFM.Experimental results show that the system can realize wide range (20 × 20 (μm)) scanning for large samples both in air and liquid,while keeping nanometer order resolution in liquid by eliminating the tracking and feedback error.

  13. Fabrication of ionic liquid thin film by nano-inkjet printing method using atomic force microscope cantilever tip

    International Nuclear Information System (INIS)

    We demonstrate the fabrication of thin films of ionic liquid (IL), 1-butyl-3-methyl-imidazolium tetrafluoborate, by nano-inkjet printing method using an atomic force microscope (AFM) cantilever. The IL filled in a pyramidal hollow of the AFM cantilever tip was extracted from an aperture at the bottom of the hollow and deposited onto a Pt substrate when the bias voltage was applied between the cantilever and the substrate. We succeeded in fabricating IL thin films with a thickness of 4 nm. The areas and thicknesses of IL thin films were controlled by the fabrication conditions in this method, which is also useful for the investigations of nanometer-scale properties of ionic liquid.

  14. Track core size estimation in CR-39 track detector using atomic force microscope and UV-visible spectrophotometer

    International Nuclear Information System (INIS)

    The radial size of track cores in CR-39 plastics for several types of ions has been determined by two different methods. First, atomic force microscope observations were performed on the irradiated CR-39 subsequent to the slight chemical etchings. The track core radii for C, O, Ne and Xe ions evaluated from the intersections of the extrapolated lines, fitted to each growth curve of etch pit radius, were found to be in the range between 2.8 and 4.1 nm, independent of the ion species. Second, UV-visible spectra of the irradiated CR-39 were obtained at various fluences. Based on a track overlapping model, the track core radii are evaluated for H, He, C and O ions. Their core radii were almost proportional to the cube root of the stopping power. The results from the two different measurements are in good agreement with each other

  15. Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: experimental investigation

    International Nuclear Information System (INIS)

    We have developed a method for fabricating a carbon nanotube (CNT) tip for an atomic force microscope (AFM). To attach a CNT to the tip apex, we used dielectrophoresis (DEP) with a non-uniform electric field. After inserting a drop of CNT solution and applying an AC electric field between a metal-coated AFM tip and an electrode plate, CNTs were deposited directly on the tip so that they protruded from the tip. We fabricated tips with individual multi-walled carbon nanotubes and found the experimental conditions that gave high fabrication yields. From AFM measurements of the nanoscale anodized aluminium oxide (AAO) structure, we have shown that a CNT tip assembled using DEP can produce high-resolution images and have a good wear resistance

  16. The multi-position calibration of the stiffness for atomic-force microscope cantilevers based on vibration

    International Nuclear Information System (INIS)

    Calibration of the stiffness of atomic force microscope (AFM) cantilevers is critical for industry and academic research. The multi-position calibration method for AFM cantilevers based on vibration is investigated. The position providing minimum uncertainty is deduced. The validity of the multi-position approach is shown via theoretical and experimental means. We applied it to the recently developed vibration method using an AFM cantilever with a normal stiffness of 0.1 N m−1. The standard deviation of the measured stiffness is 0.002 N m−1 with a mean value of 0.189 N m−1 and the relative combined uncertainty is approximately 7%, which is better than the approach using the single position at the tip of the cantilever. (paper)

  17. Note: Fabrication of a fast-response and user-friendly environmental chamber for atomic force microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Yanfeng; Hui, Fei; Shi, Yuanyuan; Han, Tingting; Song, Xiaoxue; Pan, Chengbin; Lanza, Mario, E-mail: mlanza@suda.edu.cn [Institute of Functional Nano & Soft Materials, Soochow University, Collaborative Innovation Center of Suzhou Nano Science & Technology, 199 Ren-Ai Road, Suzhou 215123 (China)

    2015-10-15

    The atomic force microscope is one of the most widespread tools in science, but many suppliers do not provide a competitive solution to make experiments in controlled atmospheres. Here, we provide a solution to this problem by fabricating a fast-response and user-friendly environmental chamber. We corroborate the correct functioning of the chamber by studying the formation of local anodic oxidation on a silicon sample (biased under opposite polarities), an effect that can be suppressed by measuring in a dry nitrogen atmosphere. The usefulness of this chamber goes beyond the example here presented, and it could be used in many other fields of science, including physics, mechanics, microelectronics, nanotechnology, medicine, and biology.

  18. Note: Fabrication of a fast-response and user-friendly environmental chamber for atomic force microscopes

    International Nuclear Information System (INIS)

    The atomic force microscope is one of the most widespread tools in science, but many suppliers do not provide a competitive solution to make experiments in controlled atmospheres. Here, we provide a solution to this problem by fabricating a fast-response and user-friendly environmental chamber. We corroborate the correct functioning of the chamber by studying the formation of local anodic oxidation on a silicon sample (biased under opposite polarities), an effect that can be suppressed by measuring in a dry nitrogen atmosphere. The usefulness of this chamber goes beyond the example here presented, and it could be used in many other fields of science, including physics, mechanics, microelectronics, nanotechnology, medicine, and biology

  19. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate

    Science.gov (United States)

    Iwata, Futoshi; Adachi, Makoto; Hashimoto, Shigetaka

    2015-10-01

    We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells was evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.

  20. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, Futoshi, E-mail: iwata.futoshi@shizuoka.ac.jp [Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011 (Japan); Adachi, Makoto; Hashimoto, Shigetaka [Department of Mechanical Engineering, Faculty of Engineering, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8561 (Japan)

    2015-10-07

    We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells was evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.

  1. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate

    International Nuclear Information System (INIS)

    We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells was evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system

  2. Set-up of a High-Resolution 300 mK Atomic Force Microscope in an Ultra-High Vacuum Compatible 3He/10T Cryostat

    OpenAIRE

    von Allwörden, Henning; Ruschmeier, Kai; Köhler, Arne; Eelbo, Thomas; Schwarz, Alexander; Wiesendanger, Roland

    2016-01-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where tip and sample can be exchanged in-situ. Moreover, single atoms ...

  3. Development of a large-range atomic force microscope measuring system for optical free form surface characterization

    International Nuclear Information System (INIS)

    In this paper, a large-range atomic force microscope (AFM) measuring system is developed for optical free form surface characterization. Based on the self-sensing tuning fork probe, a compact AFM head is developed, which is easy to combine with a scanning stage. Depending on the probe's unique structure and the usage of dynamic working mode, the tip–sample interaction force is reduced, improving the system's dynamic response performance. A two-platform structure is applied in the system, which combines a PZT stage with a motor driving platform. A dual feedback strategy is applied to ensure a measuring range up to 25 mm × 25 mm × 5 mm. The system includes three laser interferometers to make the measuring data traced to the ‘meter’ definition. A standard one-dimensional grating is tested to show the performance of the system. A millimeter scale optical free form surface with a sinusoidal structure array is measured relying on the two-platform structure implemented. The high frequency information and low frequency information of the sample are separated automatically, which represent the profile and roughness, respectively. (paper)

  4. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope

    International Nuclear Information System (INIS)

    Calibration of the optical lever sensitivities of atomic force microscope (AFM) cantilevers is especially important for determining the force in AFM measurements. These sensitivities depend critically on the cantilever mode used and are known to differ for static and dynamic measurements. Here, we calculate the ratio of the dynamic and static sensitivities for several common AFM cantilevers, whose shapes vary considerably, and experimentally verify these results. The dynamic-to-static optical lever sensitivity ratio is found to range from 1.09 to 1.41 for the cantilevers studied – in stark contrast to the constant value of 1.09 used widely in current calibration studies. This analysis shows that accuracy of the thermal noise method for the static spring constant is strongly dependent on cantilever geometry – neglect of these dynamic-to-static factors can induce errors exceeding 100%. We also discuss a simple experimental approach to non-invasively and simultaneously determine the dynamic and static spring constants and optical lever sensitivities of cantilevers of arbitrary shape, which is applicable to all AFM platforms that have the thermal noise method for spring constant calibration

  5. Novel thin membrane probe and a new twisting modulation force detection method of an atomic force microscope

    Science.gov (United States)

    Nakano, Katsushi; Suzuki, Yoshihiko

    1999-04-01

    For inspection of high aspect ratio structures like narrow semiconductor trenches, a thin membrane probe and a new force detection method have been proposed. Instead of conventional conical and pyramidal tips, a thin silicon nitride cantilever was set up vertically, and its edge was used as a tip. The membrane probe named as twist-probe (TP) was oscillated in the twisting resonance to detect a force from both vertical and lateral directions. About 100 μm long, 0.7 μm thick TP was fabricated as a trial. Amplitude versus distance curve measurements showed that the TP has a high spacing change sensitivity between the tip and a sample in both vertical and lateral directions. A trench cross-section imaging was demonstrated successfully with a TP and the twist resonant force detection method.

  6. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

    Energy Technology Data Exchange (ETDEWEB)

    Herfst, Rodolf; Dekker, Bert; Witvoet, Gert; Crowcombe, Will; Lange, Dorus de [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Sadeghian, Hamed, E-mail: hamed.sadeghianmarnani@tno.nl, E-mail: h.sadeghianmarnani@tudelft.nl [Department of Optomechatronics, Netherlands Organization for Applied Scientific Research, TNO, Delft (Netherlands); Department of Precision and Microsystems Engineering, Delft University of Technology, Delft (Netherlands)

    2015-11-15

    One of the major limitations in the speed of the atomic force microscope (AFM) is the bandwidth of the mechanical scanning stage, especially in the vertical (z) direction. According to the design principles of “light and stiff” and “static determinacy,” the bandwidth of the mechanical scanner is limited by the first eigenfrequency of the AFM head in case of tip scanning and by the sample stage in terms of sample scanning. Due to stringent requirements of the system, simply pushing the first eigenfrequency to an ever higher value has reached its limitation. We have developed a miniaturized, high speed AFM scanner in which the dynamics of the z-scanning stage are made insensitive to its surrounding dynamics via suspension of it on specific dynamically determined points. This resulted in a mechanical bandwidth as high as that of the z-actuator (50 kHz) while remaining insensitive to the dynamics of its base and surroundings. The scanner allows a practical z scan range of 2.1 μm. We have demonstrated the applicability of the scanner to the high speed scanning of nanostructures.

  7. Efficient field emission from α-Fe2O3 nanoflakes on an atomic force microscope tip

    Science.gov (United States)

    Zhu, Y. W.; Yu, T.; Sow, C. H.; Liu, Y. J.; Wee, A. T. S.; Xu, X. J.; Lim, C. T.; Thong, J. T. L.

    2005-07-01

    Aligned arrays of flake-shaped hematite (α-Fe2O3) nanostructure have been fabricated on an atomic force microscope (AFM) tip. They are created by simply heating an iron-coated AFM tip in ambience on a hot plate. These nanoflakes are characterized as α-Fe2O3 single crystalline structures with tip radii as small as several nanometers and are highly effective as electron field emitters. With a vacuum gap of about 150μm, field emission measurements of α-Fe2O3 nanoflakes on AFM tips show a low turn-on voltage of about 400-600V and a high current density of 1.6Acm-2 under 900V. Such high emission current density is attributed to the nanoscale sharp tips of the as-grown nanoflakes. Based on the Fowler-Nordheim theory, it is demonstrated the enhancement factor of α-Fe2O3 nanoflakes on AFM tips is comparable to that of carbon nanotubes. Our findings suggest that α-Fe2O3 nanoflakes are potentially useful as candidates for future electron field emission devices.

  8. Experimental Investigation on Mechanical and Surface Properties of Cr3-C2 Composite coating Using Atomic Force Microscope

    Directory of Open Access Journals (Sweden)

    P.S. HANUMANTA RAO

    2011-08-01

    Full Text Available Chromium Carbide composite coating has been the subject of interest in the area of nano material due to the improvement in mechanical properties when grain sizes reduce to nanometer scale.. Composite coating of chromium carbide has used in integrated printed circuit boards (PCBs, pins for dot-printers, corrosion resistance and other wear resistant parts. The present work to determine the mechanical properties Young’s modulus and hardness, surface properties surface roughness, surface topology. An Atomic Force Microscope (AFM equipped with a SiN cantilever is used to scratch the surface of Cr3-C2 (75-25% coating deposited on an Aluminium substrate by a process called Nano scratching. During nanoscratching the sample is scratched and indented through few nanometers depth. The sample has been prepared by the detonation gun spray process. The property of the coated sample is measured in contact mode by AFM. The investigation revealed that the addition of Carbide to Cr is not only changing the topology but also the mechanical properties. The averagemeasured values of Young’s modulus and hardness of Cr3-C2 (75-25% coated sample is in the range of 583.27k Pa and 123.81k Pa.

  9. Nanometer-scale manipulator and ultrasonic cutter using an atomic force microscope controlled by a haptic device

    Science.gov (United States)

    Iwata, F.; Kawanishi, S.; Sasaki, A.; Aoyama, H.; Ushiki, T.

    2008-10-01

    We describe a nanometer-scale manipulatoion and cutting method using ultrasonic oscillation scratching. The system is based on a modified atomic force microscope (AFM) coupled with a haptic device as a human interface. By handling the haptic device, the operator can directly move the AFM probe to manipulate nanometer scale objects and cut a surface while feeling the reaction from the surface in his or her fingers. As for manipulation using the system, nanometer-scale spheres were controllably moved by feeling the sensation of the AFM probe touching the spheres. As for cutting performance, the samples were prepared on an AT-cut quartz crystal resonator (QCR) set on an AFM sample holder. The QCR oscillates at its resonance frequency (9 MHz) with an amplitude of a few nanometers. Thus it is possible to cut the sample surface smoothly by the interaction between the AFM probe and the oscillating surface, even when the samples are viscoelastics such as polymers and biological samples. The ultrasonic nano-manipulation and cutting system would be a very useful and effective tool in the fields of nanometer-scale engineering and biological sciences.

  10. Atomic Force Microscope Spectroscopy Reveals a Hemifusion Intermediate during Soluble N-Ethylmaleimide-Sensitive Factor-Attachment Protein Receptors-Mediated Membrane Fusion

    OpenAIRE

    Abdulreda, Midhat H.; Bhalla, Akhil; Chapman, Edwin R.; Moy, Vincent T.

    2007-01-01

    This study investigated the effect of soluble N-ethylmaleimide-sensitive factor-attachment protein (SNAP) receptors (SNAREs) on the fusion of egg L-α-phosphatidylcholine bilayers using atomic force microscope (AFM) spectroscopy. AFM measurements of the fusion force under compression were acquired to reveal the energy landscape of the fusion process. A single main energy barrier governing the fusion process was identified in the absence and presence of SNAREs in the bilayers. Under compression...

  11. Advanced atomic force microscopy techniques

    OpenAIRE

    Thilo Glatzel; Hendrik Hölscher; Thomas Schimmel; Baykara, Mehmet Z; Schwarz, Udo D.; Ricardo Garcia

    2012-01-01

    Although its conceptual approach is as simple as the technique used in record players already introduced in the 19th century, the invention of the atomic force microscope (AFM) in 1986 by Binnig, Quate, and Gerber was a milestone for nanotechnology. The scanning tunneling microscope (STM), introduced some years earlier, had already achieved atomic resolution, but is limited to conductive surfaces. Since its operational principle is based on the detection of the forces acting between tip and s...

  12. Development of High-Speed Copper Chemical Mechanical Polishing Slurry for Through Silicon Via Application Based on Friction Analysis Using Atomic Force Microscope

    Science.gov (United States)

    Amanokura, Jin; Ono, Hiroshi; Hombo, Kyoko

    2011-05-01

    In order to obtain a high-speed copper chemical mechanical polishing (CMP) process for through silicon vias (TSV) application, we developed a new Cu CMP slurry through friction analysis of Cu reaction layer by an atomic force microscope (AFM) technique. A lateral modulation friction force microscope (LM-FFM) is able to measure the friction value properly giving a vibration to the layer. We evaluated the torsional displacement between the probe of the LM-FFM and the Cu reaction layer under a 5 nm vibration to cancel the shape effect of the Cu reaction layer. The developed Cu CMP slurry forms a frictionally easy-removable Cu reaction layer.

  13. Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules.

    OpenAIRE

    Vesenka, J; Manne, S; Giberson, R; Marsh, T.; Henderson, E

    1993-01-01

    Colloidal gold particles have multiple uses as three-dimensional atomic force microscopy imaging standards because they are incompressible, monodisperse, and spherical. The spherical nature of the particles can be exploited to characterize scanning tip geometry. As uniform spheres, colloidal gold particles may be used to calibrate the vertical dimensions of atomic force microscopy at the nanometer level. The monodisperse and incompressible nature of the gold can be used to characterize the ve...

  14. High-speed broadband nanomechanical property quantification and imaging of life science materials using atomic force microscope

    Science.gov (United States)

    Ren, Juan

    Nanoscale morphological characterization and mechanical properties quantification of soft and biological materials play an important role in areas ranging from nano-composite material synthesis and characterization, cellular mechanics to drug design. Frontier studies in these areas demand the coordination between nanoscale morphological evolution and mechanical behavior variations through simultaneous measurement of these two aspects of properties. Atomic force microscope (AFM) is very promising in achieving such simultaneous measurements at high-speed and broadband owing to its unique capability in applying force stimuli and then, measuring the response at specific locations in a physiologically friendly environment with pico-newton force and nanometer spatial resolution. Challenges, however, arise as current AFM systems are unable to account for the complex and coupled dynamics of the measurement system and probe-sample interaction during high-speed imaging and broadband measurements. In this dissertation, the creation of a set of dynamics and control tools to probe-based high-speed imaging and rapid broadband nanomechanical spectroscopy of soft and biological materials are presented. Firstly, advanced control-based approaches are presented to improve the imaging performance of AFM imaging both in air and in liquid. An adaptive contact mode (ACM) imaging scheme is proposed to replace the traditional contact mode (CM) imaging by addressing the major concerns in both the speed and the force exerted to the sample. In this work, the image distortion caused by the topography tracking error is accounted for in the topography quantification and the quantified sample topography is utilized in a gradient-based optimization method to adjust the cantilever deflection set-point for each scanline closely around the minimal level needed for maintaining a stable probe-sample contact, and a data-driven iterative feedforward control that utilizes a prediction of the next

  15. High-speed spiral imaging technique for an atomic force microscope using a linear quadratic Gaussian controller

    International Nuclear Information System (INIS)

    This paper demonstrates a high-speed spiral imaging technique for an atomic force microscope (AFM). As an alternative to traditional raster scanning, an approach of gradient pulsing using a spiral line is implemented and spirals are generated by applying single-frequency cosine and sine waves of slowly varying amplitudes to the X and Y-axes of the AFM’s piezoelectric tube scanner (PTS). Due to these single-frequency sinusoidal input signals, the scanning process can be faster than that of conventional raster scanning. A linear quadratic Gaussian controller is designed to track the reference sinusoid and a vibration compensator is combined to damp the resonant mode of the PTS. An internal model of the reference sinusoidal signal is included in the plant model and an integrator for the system error is introduced in the proposed control scheme. As a result, the phase error between the input and output sinusoids from the X and Y-PTSs is reduced. The spirals produced have particularly narrow-band frequency measures which change slowly over time, thereby making it possible for the scanner to achieve improved tracking and continuous high-speed scanning rather than being restricted to the back and forth motion of raster scanning. As part of the post-processing of the experimental data, a fifth-order Butterworth filter is used to filter noises in the signals emanating from the position sensors and a Gaussian image filter is used to filter the images. A comparison of images scanned using the proposed controller (spiral) and the AFM PI controller (raster) shows improvement in the scanning rate using the proposed method

  16. Electrical conductivity in Langmuir-Blodgett films of n-alkyl cyanobiphenyls using current sensing atomic force microscope

    International Nuclear Information System (INIS)

    We report our studies on the nanoscale electrical conductivity in monolayers of n-alkyl cyanobiphenyl materials deposited on solid surface. Initially, the 8CB, 9CB, and 10CB monolayer films were prepared by the Langmuir technique at air-water interface and characterized by surface manometry and Brewster angle microscopy. The monolayer films were transferred on to solid substrates by the Langmuir-Blodgett (L-B) technique. The 8CB, 9CB, and 10CB monolayer L-B films were deposited on freshly cleaved mica and studied by atomic force microscope (AFM), thereby measuring the film thickness as ∼1.5 nm. The electrical conductivity measurements were carried out on 9CB and 10CB monolayer L-B films deposited onto highly ordered pyrolytic graphite using current sensing AFM. The nanoscale current-voltage (I-V) measurements show a non-linear variation. The nature of the curve indicates electron tunneling to be the mechanism for electrical conduction. Furthermore, analysis of the I-V curve reveals a transition in the electron conduction mechanism from direct tunneling to injection tunneling. From the transition voltage, we have estimated the values of barrier height for 9CB and 10CB to be 0.71 eV and 0.37 eV, respectively. For both 9CB and 10CB, the effective mass of electron was calculated to be 0.021 me and 0.065 me, respectively. These parameters are important in the design of molecular electronic devices

  17. Electrical conductivity in Langmuir-Blodgett films of n-alkyl cyanobiphenyls using current sensing atomic force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, H. N.; Suresh, K. A., E-mail: suresh@cnsms.res.in [Centre for Nano and Soft Matter Sciences, P. B. No. 1329, Jalahalli, Bangalore 560013 (India)

    2015-06-28

    We report our studies on the nanoscale electrical conductivity in monolayers of n-alkyl cyanobiphenyl materials deposited on solid surface. Initially, the 8CB, 9CB, and 10CB monolayer films were prepared by the Langmuir technique at air-water interface and characterized by surface manometry and Brewster angle microscopy. The monolayer films were transferred on to solid substrates by the Langmuir-Blodgett (L-B) technique. The 8CB, 9CB, and 10CB monolayer L-B films were deposited on freshly cleaved mica and studied by atomic force microscope (AFM), thereby measuring the film thickness as ∼1.5 nm. The electrical conductivity measurements were carried out on 9CB and 10CB monolayer L-B films deposited onto highly ordered pyrolytic graphite using current sensing AFM. The nanoscale current-voltage (I-V) measurements show a non-linear variation. The nature of the curve indicates electron tunneling to be the mechanism for electrical conduction. Furthermore, analysis of the I-V curve reveals a transition in the electron conduction mechanism from direct tunneling to injection tunneling. From the transition voltage, we have estimated the values of barrier height for 9CB and 10CB to be 0.71 eV and 0.37 eV, respectively. For both 9CB and 10CB, the effective mass of electron was calculated to be 0.021 m{sub e} and 0.065 m{sub e}, respectively. These parameters are important in the design of molecular electronic devices.

  18. Analysis of beam interference reflected from atomic force microscope tip and periodic silicon surface under various humidity conditions

    Science.gov (United States)

    Banerjee, Hans P.; Weerasinghe, Asanka T.; Lyuksyutov, Sergei F.

    2012-10-01

    Dynamical sensing based on combination of classical optical effects and atomic force microscopy (AFM) presents challenge for analysis of the forces at the nanoscale and beyond. An interference effect between light reflected from an AFM cantilever and highly reflective silicon surface of the calibration grating was studied for relative humidity (RH) varied between 9 and 60%. Force-distance analysis indicates on separation of capillary, van der Waals, adhesion, and electrostatic forces. The measurements performed in contact AFM mode suggest that the period of interference pattern observed in displacement curves is a function of humidity and varies between 293 nm at RH = 9% and 335 nm at RH > 50% with standard deviation less than 8 nm. Clear change of the interference period suggests that other than hardwarerelated factors may be involved in the formation of the interference in force-distance curves.

  19. Fabrication of amorphous silicon nanoribbons by atomic force microscope tip induced local oxidation for thin film device applications

    OpenAIRE

    Pichon, Laurent; Rogel, Regis; Demami, Fouad

    2010-01-01

    WOS International audience We demonstrate the feasibility of induced local oxidation of amorphous silicon by atomic force microscopy. The resulting local oxide is used as mask for the elaboration of thin film silicon resistor. A thin amorphous silicon layer deposited on a glass substrate is locally oxidized following narrow continuous lines. The corresponding oxide line is then used as mask during plasma etching of the amorphous layer leading to the formation of nanoribbon. Such amorpho...

  20. Bringing light into the nano-world: What can you do with an atomic force microscope on top of your synchrotron radiation sample holder?

    International Nuclear Information System (INIS)

    This thesis had as a major objective to combine scanning probe microscopy in particular, atomic force microscopy with synchrotron light spectroscopies. The combination of these two types of spectroscopies is meant to be in-situ and in real time. Thus this thesis aimed at introducing new types of experimental techniques suitable for the investigation of nano-sized materials. The proposed new instrumentation, would provide chemical-specific contrast at unprecedented lateral resolution of up to 10-40 nanometers, thus overcoming existing limitations of the two families of spectroscopy methods and opening a wide range of research opportunities and challenges. For the purpose of combining these techniques an atomic force microscope was developed. The atomic force microscope (AFM) was developed around a quartz tuning fork crystal which was used as the sensor with which atomic forces are detected. The developed AFM was then used in several beam lines with essentially two different purposes. A first goal was to do spectroscopy, such as the measurement of an absorption edge, locally with the tip of the AFM. Such measurements were indeed done, but the lateral resolution is still dominated by the X-ray beam size rather than by the tip apex shape. The AFM tip was also used to measure Bragg peaks from crystals with sizes on the nanometer scale. A second goal was to use the AFM as an instrument to mechanical interact with nano-sized systems while the X-ray beam was used to probe changes in the lattice parameter of the studied systems. Thus the AFM tip was used to elastically indent a SiGe crystal while diffraction was simultaneously measured. It was possible to observe shifts of the Bragg peak as a consequence of the applied pressure. The in-situ combination of AFM with synchrotron light permitted, in this way, to measure the Young modulus of a crystal at the nano-scale without any kind of adjustable parameter. (author)

  1. 原子力显微镜在生命科学中的应用%The application of atomic force microscope in life science

    Institute of Scientific and Technical Information of China (English)

    曾洁铭; 曾耀英; 蔡继业; 肇静娴

    2001-01-01

    During the past few years, atomic force microscope (AFM) isbecoming a powerful tool in life science research. With their high-resolution and capability to image under aqueous solution, AFM is applied to investigate the structure of biomolecules and biological process in real time. From visualization of DNA and IgG to DNA transcription, the advances in sample preparation methods have made these events come true. In addition, AFM can be used in molecular recognition. This article illustrates these major achievements of AFM in biological studies.

  2. Coffee Cup Atomic Force Microscopy

    Science.gov (United States)

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  3. Research on a Diamond Tip Wear Mechanism in Atomic Force Microscope-based Micro/nano-machining

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The object is to investigate the wear of an atomic forcemicroscope (AFM) diamond tip when conducting micro/nano-machining on single crystal silicon surface. The experimental research and theoretical analysis were carried out on the worn tip in terms of wear rate, wear mechanism and the effect of the tip wear on micro-machining process. The wear rate was calculated as 1.7(10~10mm3/(N*m) by using a theoretical model combined with the experimental results. Through an integration of an AFM observation on the worn tip features with the FEM simulation of the stress distribution, in addition to the unit cutting force calculation on the AFM diamond tip, the wear mechanism of the AFM diamond tip was concluded as mainly chemical wear, and the wear process was also elaborated as well.

  4. Formation and characterization of thin films from phthalocyanine complexes: An electrosynthesis study using the atomic-force microscope

    International Nuclear Information System (INIS)

    (μ-Cyano)(phthalocyaninato)metal(III) [PcMCN]n species with a central transition metal ion, such as Fe(III) and Co(III), were used to prepare molecular films on a highly oriented pyrolytic graphite electrode substrate by using the cyclic voltammetry technique. In order to investigate the influence of the ligand on the film properties, 1,8-dihydroxyanthraquinone and 2,6-dihydroxyanthraquinone as bivalent ligands were employed. The structure of the molecular materials was analyzed by infrared spectroscopy. The in situ film formation, texture, composition and conductivity of each film were further investigated using atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and the four-probe technique, respectively. The [PcMCN]n complexes provided conductive films with an electrical conductivity of 1 x 10-6 Ω-1 cm-1 at 298 K

  5. Direct method for magnetostriction coefficient measurement based on atomic force microscope, illustrated by the example of Tb–Co film

    Energy Technology Data Exchange (ETDEWEB)

    Lima, B.L.S. [Laboratório de Sensores Óticos, Escola Politécnica, Universidade de São Paulo, SP (Brazil); Maximino, F.L. [Laboratório de Materiais Magnéticos, Instituto de Física, Universidade de São Paulo, CEP:05314-970 São Paulo, SP (Brazil); Santos, J.C. [Laboratório de Sensores Óticos, Escola Politécnica, Universidade de São Paulo, SP (Brazil); Santos, A.D., E-mail: adsantos@if.usp.br [Laboratório de Materiais Magnéticos, Instituto de Física, Universidade de São Paulo, CEP:05314-970 São Paulo, SP (Brazil)

    2015-12-01

    This paper presents a method based on the Atomic Force Microscopy technique for direct measurement of magnetostriction coefficient of amorphous Tb–Co films deposited on Si(100) substrate. The magnetostriction coefficient of the film is determined by AFM measuring the deflection of the sample when applying a magnetic field. In order to maximize the deflection of the sample, in-plane magnetic anisotropy was induced by heat treatment under a magnetic field of 5 kOe. The value obtained for the saturation magnetostriction is 204×10{sup −6} for the Tb{sub 23}Co{sub 77} film. - Highlights: • Measurement of magnetostriction coefficient using AFM. • Tb–Co thin films produced by magnetron sputtering. • Magnetostriction characterization of magnetic thin films on nonmagnetic substrates.

  6. Direct method for magnetostriction coefficient measurement based on atomic force microscope, illustrated by the example of Tb–Co film

    International Nuclear Information System (INIS)

    This paper presents a method based on the Atomic Force Microscopy technique for direct measurement of magnetostriction coefficient of amorphous Tb–Co films deposited on Si(100) substrate. The magnetostriction coefficient of the film is determined by AFM measuring the deflection of the sample when applying a magnetic field. In order to maximize the deflection of the sample, in-plane magnetic anisotropy was induced by heat treatment under a magnetic field of 5 kOe. The value obtained for the saturation magnetostriction is 204×10−6 for the Tb23Co77 film. - Highlights: • Measurement of magnetostriction coefficient using AFM. • Tb–Co thin films produced by magnetron sputtering. • Magnetostriction characterization of magnetic thin films on nonmagnetic substrates

  7. Si2Sb2Te5 phase change material studied by an atomic force microscope nano-tip

    Institute of Scientific and Technical Information of China (English)

    Liu Yanbo; Zhang Ting; Niu Xiaoming; Song Zhitang; Min Guoquan; Zhang Jing; Zhou Weimin; Wan Yongzhong; Zhang Jianping; Li Xiaoli; Feng Songlin

    2009-01-01

    The Si2Sb2Te5 phase change material has been studied by applying a nano-tip (30 nm in diameter) on an atomic force microscopy system. Memory switching from a high resistance state to a low resistance state has been achieved, with a resistance change of about 1000 times. In a typical Ⅰ-Ⅴ curve, the current increases significantly after the voltage exceeds~4.3 V. The phase transformation of a Si2Sb2Te5 film was studied in situ by means of in situ X-ray diffraction and temperature dependent resistance measurements. The thermal stability of Si2Sb2Te5 and Ge2Sb2Te5 was characterized and compared as well.

  8. Atomic force microscopic study of directional SrSO 4(001) surface and its etching property

    Science.gov (United States)

    Seo, Akihiro; Shindo, Hitoshi

    1994-12-01

    Different step structures were observed with atomic force microscopy (AFM) on SrSO 4(001) cleaved in air in two ways. Monolayer steps were observed when the crystal was cleaved by wedging open a crack. On the other hand, bilayer steps were observed when it was cleaved by giving a blow on a knife edge placed along the a-axis on a crystal face. In the latter case, the cleavage proceeded under slightly misoriented tensile stress, favoring formation of bilayer cleavage steps due to alternating directions of the bonds connecting (001) ionic layers. Directionality in the arrangement of the ions at the (001) surface was reflected on the shape of etch pits formed by dissolving the surface in electrolyte solutions. Relative stabilities of the steps surrounding the bow-shaped pits are discussed. The directionality of the surface has potential application in constructing two-dimensional assemblies of functional molecules.

  9. Formation and characterization of thin films from phthalocyanine complexes: An electrosynthesis study using the atomic-force microscope

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, M.E. [Departamento de Ingenieria Mecatronica, Escuela de Ingenieria, Universidad Anahuac del Norte, Avenida Lomas de la Anahuac s/n, Col. Lomas Anahuac, 52786, Huixquilucan (Mexico)]. E-mail: elena.sanchez@anahuac.mx; Islas Bernal, I.F. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510, Mexico D.F. (Mexico); Rivera, M. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, 04510, Mexico D.F. (Mexico); Ortiz Rebollo, A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, Coyoacan, 04510, Mexico, D.F. (Mexico); Alvarez Bada, J.R. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Ciudad de Mexico, Calle del Puente 222, Col. Ejidos de Huipulco, 14380, Mexico D.F. (Mexico)

    2007-05-07

    ({mu}-Cyano)(phthalocyaninato)metal(III) [PcMCN]{sub n} species with a central transition metal ion, such as Fe(III) and Co(III), were used to prepare molecular films on a highly oriented pyrolytic graphite electrode substrate by using the cyclic voltammetry technique. In order to investigate the influence of the ligand on the film properties, 1,8-dihydroxyanthraquinone and 2,6-dihydroxyanthraquinone as bivalent ligands were employed. The structure of the molecular materials was analyzed by infrared spectroscopy. The in situ film formation, texture, composition and conductivity of each film were further investigated using atomic force microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and the four-probe technique, respectively. The [PcMCN]{sub n} complexes provided conductive films with an electrical conductivity of 1 x 10{sup -6} {omega}{sup -1} cm{sup -1} at 298 K.

  10. The relationship between local liquid density and force applied on a tip of atomic force microscope: A theoretical analysis for simple liquids

    International Nuclear Information System (INIS)

    The density of a liquid is not uniform when placed on a solid. The structured liquid pushes or pulls a probe employed in atomic force microscopy, as demonstrated in a number of experimental studies. In the present study, the relation between the force on a probe and the local density of a liquid is derived based on the statistical mechanics of simple liquids. When the probe is identical to a solvent molecule, the strength of the force is shown to be proportional to the vertical gradient of ln(ρDS) with the local liquid's density on a solid surface being ρDS. The intrinsic liquid's density on a solid is numerically calculated and compared with the density reconstructed from the force on a probe that is identical or not identical to the solvent molecule

  11. Effect of the interaction conditions of the probe of an atomic-force microscope with the n-GaAs surface on the triboelectrization phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Baklanov, A. V., E-mail: baklanov@mail.ioffe.ru [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation); Gutkin, A. A.; Kalyuzhnyy, N. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Brunkov, P. N. [St. Petersburg State Polytechnical University, Institute of Physics, Nanotechnology, and Telecommunications (Russian Federation)

    2015-08-15

    Triboelectrization as a result of the scanning of an atomic-force-microscope probe over an n-GaAs surface in the contact mode is investigated. The dependences of the local potential variation on the scanning rate and the pressing force of the probe are obtained. The results are explained by point-defect formation in the surface layers of samples under the effect of deformation of these layers during probe scanning. The charge localized at these defects in the case of equilibrium changes the potential of surface, which is subject to triboelectrization. It is shown that, for qualitative explanation of the observed dependences, it is necessary to take into account both the generation and annihilation of defects in the region experiencing deformation.

  12. Atomic force microscopic view of the fine topography on the tobacco stigma surface during its response to pollination

    Institute of Scientific and Technical Information of China (English)

    WU Hui; LI Meng; SUN MengXiang

    2008-01-01

    During compatible pollination in tobacco, an extracellular matrix (ECM) is secreted from the stigma surface; however, it is unknown whether the pattern of secretion across the stigma depends on the pollen source. In fact, technical limitations have prevented clear observation of ECM secretion. Here, we report the detailed topographic changes on the stigma surface that accompanies intraspecies and interspecies pollination in tobacco using contact mode atomic force microscopy (AFM). Our results, which show the dynamics and time course of ECM secretion after pollination, indicate that a certain pattern of secretion already exists on the stigma prior to pollination. Intraspecies induced a two-step response, characterized by topograPhical changes on the stigma surface several hours after pollina-tion, which was distinct from the pattern of ECM secretion induced by interspecies pollination. This difference was confirmed by root-mean-square analysis, which assessed the roughness of the stigma surface. Our findings indicate that compatible pollination not only induces ECM secretion from the stigma, but also results in a specific distribution of the ECM. Thus, this study demonstrates the pow-erful potential of AFM in studying the pollen-stigma interaction.

  13. Method of mechanical holding of cantilever chip for tip-scan high-speed atomic force microscope

    International Nuclear Information System (INIS)

    In tip-scan atomic force microscopy (AFM) that scans a cantilever chip in the three dimensions, the chip body is held on the Z-scanner with a holder. However, this holding is not easy for high-speed (HS) AFM because the holder that should have a small mass has to be able to clamp the cantilever chip firmly without deteriorating the Z-scanner’s fast performance, and because repeated exchange of cantilever chips should not damage the Z-scanner. This is one of the reasons that tip-scan HS-AFM has not been established, despite its advantages over sample stage-scan HS-AFM. Here, we present a novel method of cantilever chip holding which meets all conditions required for tip-scan HS-AFM. The superior performance of this novel chip holding mechanism is demonstrated by imaging of the α3β3 subcomplex of F1-ATPase in dynamic action at ∼7 frames/s

  14. Current-Sensing Atomic Force Microscopic Study of Doping Level Distribution in Doped Poly[2,2’-Bithiophene

    International Nuclear Information System (INIS)

    Current-sensing atomic force microscopy (CS-AFM) was used to study the doping level distribution in electrochemically doped poly[2,2’-bithiophene] under a controlled atmosphere (glove box) to preserve the doping level during the measurements. The resulting nanoscale conductivity distribution patterns were compared with those obtained with undoped polymer. The results were analyzed using the model developed by us earlier that the nanoscale morphology of such materials involves polymer grains with more crystalline cores and more disordered periphery. It turned out that while for the undoped polymer the crystalline cores were more conducting, the doped polymer featured more conducting periphery as compared to the grain cores. The results demonstrate that doping ions and solvent penetrate the polymer material non-uniformly and can more easily enter more disordered portions of the materials located at the periphery of the polymer grains. These results demonstrate the importance of structural factors for applications that require different levels of the material conductivity. In particular, more ordered materials look more suitable for such applications as molecular electronics and solar cells, which require low conducting/semiconducting materials with high carrier mobility. At the same time, for applications that require high levels of electronic conductivity, such as charge storage and various conducting coatings, less ordered polymer films would be preferred

  15. The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

    Science.gov (United States)

    Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.; van Spronsen, M. A.; Onderwaater, W. G.; van der Tuijn, P. C.; Koehler, R.; Ofitserov, A.; van Baarle, G. J. C.; Frenken, J. W. M.

    2015-03-01

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  16. The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.; Spronsen, M. A. van; Onderwaater, W. G.; Tuijn, P. C. van der; Koehler, R.; Frenken, J. W. M., E-mail: frenken@arcnl.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, RA Leiden 2300 (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2015-03-15

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  17. Reverse electrochemical etching method for fabricating ultra-sharp platinum/iridium tips for combined scanning tunneling microscope/ atomic force microscope based on a quartz tuning fork

    OpenAIRE

    Morán-Meza, José A.; Polesel-Maris, Jérôme; Lubin, Christophe; Thoyer, François; Makky, Ali; Ouerghi, Abdelkarim; Cousty, Jacques

    2015-01-01

    International audience Sharp Pt/Ir tips have been reproducibly etched by an electrochemical process using an inverse geometry of an electrochemical cell and a dedicated electronic device which allows us to control the applied voltages waveform and the intensity of the etching current. Conductive tips with a radius smaller than 10 nm were routinely produced as shown by field emission measurements through FowlereNordheim plots. These etched tips were then fixed on a quartz tuning fork force ...

  18. Observation of linear I-V curves on vertical GaAs nanowires with atomic force microscope

    Science.gov (United States)

    Geydt, P.; Alekseev, P. A.; Dunaevskiy, M.; Lähderanta, E.; Haggrén, T.; Kakko, J.-P.; Lipsanen, H.

    2015-12-01

    In this work we demonstrate the possibility of studying the current-voltage characteristics for single vertically standing semiconductor nanowires on standard AFM equipped by current measuring module in PeakForce Tapping mode. On the basis of research of eight different samples of p-doped GaAs nanowires grown on different GaAs substrates, peculiar electrical effects were revealed. It was found how covering of substrate surface by SiOx layer increases the current, as well as phosphorous passivation of the grown nanowires. Elimination of the Schottky barrier between golden cap and the top parts of nanowires was observed. It was additionally studied that charge accumulation on the shell of single nanowires affects its resistivity and causes the hysteresis loops on I-V curves.

  19. Combined Atomic Force Microscope-Based Topographical Imaging and Nanometer Scale Resolved Proximal Probe Thermal Desorption/Electrospray Ionization-Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, Olga S [ORNL; Nikiforov, Maxim [ORNL; Bradshaw, James A [ORNL; Jesse, Stephen [ORNL; Van Berkel, Gary J [ORNL

    2011-01-01

    Nanometer scale proximal probe thermal desorption/electrospray ionization mass spectrometry (TD/ESI-MS) was demonstrated for molecular surface sampling of caffeine from a thin film using a 30 nm diameter nano-thermal analysis (nano-TA) probe tip in an atomic force microscope (AFM) coupled via a vapor transfer line and ESI interface to a MS detection platform. Using a probe temperature of 350 C and a spot sampling time of 30 s, conical desorption craters 250 nm in diameter and 100 nm deep were created as shown through subsequent topographical imaging of the surface within the same system. Automated sampling of a 5 x 2 array of spots, with 2 m spacing between spots, and real time selective detection of the desorbed caffeine using tandem mass spectrometry was also demonstrated. Estimated from the crater volume (~2x106 nm3), only about 10 amol (2 fg) of caffeine was liberated from each thermal desorption crater in the thin film. These results illustrate a relatively simple experimental setup and means to acquire in automated fashion sub-micrometer scale spatial sampling resolution and mass spectral detection of materials amenable to TD. The ability to achieve MS-based chemical imaging with 250 nm scale spatial resolution with this system is anticipated.

  20. Nanometer-Scale Manipulation and Ultrasonic Cutting Using an Atomic Force Microscope Controlled by a Haptic Device as a Human Interface

    Science.gov (United States)

    Iwata, Futoshi; Ohara, Kouhei; Ishizu, Yuichi; Sasaki, Akira; Aoyama, Hisayuki; Ushiki, Tatsuo

    2008-07-01

    We describe a nanometer-scale manipulation and cutting method using ultrasonic oscillation scratching. The system is based on a modified atomic force microscope (AFM) coupled with a haptic device as a human interface. By handling the haptic device, the operator can directly move the AFM probe to manipulate nanometer scale objects and cut a surface while feeling the reaction from the surface in his or her fingers. As for manipulation using the system, nanometer-scale spheres were controllably moved by feeling the sensation of the AFM probe touching the spheres. As for cutting performance, the samples were prepared on an AT-cut quartz crystal resonator (QCR) set on an AFM sample holder. The QCR oscillates at its resonance frequency (9 MHz) with an amplitude of a few nanometers. Thus it is possible to cut the sample surface smoothly by the interaction between the AFM probe and the oscillating surface, even when the samples are viscoelastics such as polymers and biological samples. The ultrasonic nano-manipulation and cutting system would be a very useful and effective tool in the fields of nanometer-scale engineering and biological sciences.

  1. Stress relaxation and creep on living cells with the atomic force microscope: a means to calculate elastic moduli and viscosities of cell components

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Flores, Susana; Toca-Herrera, Jose Luis [Biosurfaces Unit, CIC BiomaGUNE, Paseo Miramon 182, E-20009 San Sebastian-Donostia (Spain); Benitez, Rafael [Departamento Matematicas, Centro Universitario de Plasencia, Universidad de Extremadura, Avenida Virgen del Puerto 2, E-10600 Plasencia (Spain); Vivanco, Maria dM, E-mail: jltocaherrera@cicbiomagune.es, E-mail: jose.toca-herrera@boku.ac.at [Cell Biology and Stem Cells Unit, CIC BioGUNE, Parque tecnologico de Bizkaia, Ed. 801A, E-48160 Derio (Spain)

    2010-11-05

    In this work we present a unified method to study the mechanical properties of cells using the atomic force microscope. Stress relaxation and creep compliance measurements permitted us to determine, the relaxation times, the Young moduli and the viscosity of breast cancer cells (MCF-7). The results show that the mechanical behaviour of MCF-7 cells responds to a two-layered model of similar elasticity but differing viscosity. Treatment of MCF-7 cells with an actin-depolymerising agent results in an overall decrease in both cell elasticity and viscosity, however to a different extent for each layer. The layer that undergoes the smaller decrease (36-38%) is assigned to the cell membrane/cortex while the layer that experiences the larger decrease (70-80%) is attributed to the cell cytoplasm. The combination of the method presented in this work, together with the approach based on stress relaxation microscopy (Moreno-Flores et al 2010 J. Biomech. 43 349-54), constitutes a unique AFM-based experimental framework to study cell mechanics. This methodology can also be extended to study the mechanical properties of biomaterials in general.

  2. Atomic force microscopy and direct surface force measurements

    NARCIS (Netherlands)

    Ralston, J.; Larson, I.; Rutland, M.; Feiler, A.; Kleijn, J.M.

    2005-01-01

    The atomic force microscope (AFM) is designed to provide high-resolution (in the ideal case, atomic) topographical analysis, applicable to both conducting and nonconducting surfaces. The basic imaging principle is very simple: a sample attached to a piezoelectric positioner is rastered beneath a sha

  3. A Quantum Gas Microscope for Fermionic Atoms

    OpenAIRE

    Cheuk, Lawrence W.; Nichols, Matthew A.; Okan, Melih; Gersdorf, Thomas; Ramasesh, Vinay V.; Bakr, Waseem S.; Lompe, Thomas; Zwierlein, Martin W.

    2015-01-01

    Strongly interacting fermions define the properties of complex matter at all densities, from atomic nuclei to modern solid state materials and neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. Here we realize a quantum gas microscope for fermionic $^{40}$K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high-resolu...

  4. Modeling of contact theories for the manipulation of biological micro/nanoparticles in the form of circular crowned rollers based on the atomic force microscope

    International Nuclear Information System (INIS)

    This article has dealt with the development and modeling of various contact theories for biological nanoparticles shaped as cylinders and circular crowned rollers for application in the manipulation of different biological micro/nanoparticles based on Atomic Force Microscope. First, the effective contact forces were simulated, and their impact on contact mechanics simulation was investigated. In the next step, the Hertz contact model was simulated and compared for gold and DNA nanoparticles with the three types of spherical, cylindrical, and circular crowned roller type contact geometries. Then by reducing the length of the cylindrical section in the circular crowned roller geometry, the geometry of the body was made to approach that of a sphere, and the results were compared for DNA nanoparticles. To anticipatory validate the developed theories, the results of the cylindrical and the circular crowned roller contacts were compared with the results of the existing spherical contact simulations. Following the development of these contact models for the manipulation of various biological micro/nanoparticles, the cylindrical and the circular crowned roller type contact theories were modeled based on the theories of Lundberg, Dowson, Nikpur, Heoprich, and Hertz for the manipulation of biological micro/nanoparticles. Then, for a more accurate validation, the results obtained from the simulations were compared with those obtained by the finite element method and with the experimental results available in previous articles. The previous research works on the simulation of nanomanipulation have mainly investigated the contact theories used in the manipulation of spherical micro/nanoparticles. However since in real biomanipulation situations, biological micro/nanoparticles of more complex shapes need to be displaced in biological environments, this article therefore has modeled and compared, for the first time, different contact theories for use in the biomanipulation of

  5. Modeling of contact theories for the manipulation of biological micro/nanoparticles in the form of circular crowned rollers based on the atomic force microscope

    Science.gov (United States)

    Korayem, M. H.; Khaksar, H.; Taheri, M.

    2013-11-01

    This article has dealt with the development and modeling of various contact theories for biological nanoparticles shaped as cylinders and circular crowned rollers for application in the manipulation of different biological micro/nanoparticles based on Atomic Force Microscope. First, the effective contact forces were simulated, and their impact on contact mechanics simulation was investigated. In the next step, the Hertz contact model was simulated and compared for gold and DNA nanoparticles with the three types of spherical, cylindrical, and circular crowned roller type contact geometries. Then by reducing the length of the cylindrical section in the circular crowned roller geometry, the geometry of the body was made to approach that of a sphere, and the results were compared for DNA nanoparticles. To anticipatory validate the developed theories, the results of the cylindrical and the circular crowned roller contacts were compared with the results of the existing spherical contact simulations. Following the development of these contact models for the manipulation of various biological micro/nanoparticles, the cylindrical and the circular crowned roller type contact theories were modeled based on the theories of Lundberg, Dowson, Nikpur, Heoprich, and Hertz for the manipulation of biological micro/nanoparticles. Then, for a more accurate validation, the results obtained from the simulations were compared with those obtained by the finite element method and with the experimental results available in previous articles. The previous research works on the simulation of nanomanipulation have mainly investigated the contact theories used in the manipulation of spherical micro/nanoparticles. However since in real biomanipulation situations, biological micro/nanoparticles of more complex shapes need to be displaced in biological environments, this article therefore has modeled and compared, for the first time, different contact theories for use in the biomanipulation of

  6. Capillary forces in tapping mode atomic force microscopy

    NARCIS (Netherlands)

    Zitzler, L.; Herminghaus, S.; Mugele, F.

    2002-01-01

    We investigated the influence of the relative humidity on amplitude and phase of the cantilever oscillation while operating an atomic force microscope (AFM) in the tapping mode. If the free oscillation amplitude A0 exceeds a certain critical amplitude Ac, the amplitude- and phase-distance curves sho

  7. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

    OpenAIRE

    Matthias Wasem; Joachim Köser; Sylvia Hess; Enrico Gnecco; Ernst Meyer

    2014-01-01

    Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care ...

  8. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

    OpenAIRE

    Wasem, Matthias; Köser, Joachim; Hess, Sylvia; Gnecco, Enrico; Meyer, Ernst

    2014-01-01

    Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care ...

  9. Effect of 16% Carbamide Peroxide Bleaching Gel on Enamel and Dentin Surface Micromorphology and Roughness of Uremic Patients: An Atomic Force Microscopic Study

    OpenAIRE

    Mahmoud, Salah Hasab; Elembaby, Abeer El Sayed; Zaher, Ahmed Ragheb; Grawish, Mohammed El-Awady; Elsabaa, Heba M; El-Negoly, Salwa Abd El-Raof; Sobh, Mohamed Abdel Kader

    2010-01-01

    Objectives: To investigate the effect of 16% carbamide peroxide bleaching gel on surface micromorphology and roughness of enamel and root dentin of uremic patients receiving hemodialysis using atomic force microscopy (AFM). Methods: A total of 20 sound molars were collected from healthy individuals (n=10) and uremic patients (n=10). The roots were separated from their crowns at the cemento-enamel junction. Dental slabs (3 mm x 2 mm x 2 mm) were obtained from the buccal surface for enamel slab...

  10. Mechanism of Origin and Neutralization of Residual Triboelectricity at Scanning of Dielectric Surfaces by a Silicon Probe of the Atomic-force Microscope

    Directory of Open Access Journals (Sweden)

    М.А. Bondarenko

    2014-06-01

    Full Text Available The reasons and mechanism of the destructive effect of the electrostatic interaction forces of silicon probe and dielectric surfaces are established in the paper at the investigation of the surface microgeometry and mechanical characteristics by the atomic-force microscopy method. Calculation of the electrostatic interaction forces of two silicon surfaces is carried out and the destructive effect of electrostatic discharge appearing as a result of triboelectric effect is determined. The module of removal of electrostatic charge is proposed. Its principle of operation consists in the formation of the conduction band in the place of contact of two dielectrics by the multiphoton ionization. It is shown that application of such method of neutralization of residual triboelectricity improves accuracy, reliability, and reproducibility of the scanning results.

  11. A quantum gas microscope for ytterbium atoms

    Science.gov (United States)

    Takahashi, Yoshiro

    2016-05-01

    In this talk, I report on the development of a quantum gas microscope for ytterbium (Yb) atoms. By using a dual molasses technique in which 399 nm molasses beams of the broad singlet transition are applied for fluorescence imaging and 556 nm molasses beams of the narrow intercombination transition are applied for cooling during the imaging, we successfully demonstrate site-resolved imaging of individual bosonic 174 Yb atoms in a two-dimensional optical lattice with a lattice constant of 266 nm.We also apply a high resolution laser spectroscopy using the ultranarrow intercombination transition between the 1 S0 and 3 P2 states to manipulate an atom distribution in an optical lattice. We expect the demonstrated technique will similarly work for other isotopes of Yb atoms. We are also developing a different mode of an Yb quantum gas microscope.

  12. A Scanning Quantum Cryogenic Atom Microscope

    CERN Document Server

    Yang, Fan; Taylor, Stephen F; Turner, Richard W; Lev, Benjamin L

    2016-01-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a noise floor of 300 pT and provides a 100x improvement in magnetic flux sensitivity over previous atomic scanning probe magnetometers. These capabilities are carefully benchmarked by imaging magnet...

  13. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

    Directory of Open Access Journals (Sweden)

    Matthias Wasem

    2014-01-01

    Full Text Available Amplitude-modulation atomic force microscopy (AM-AFM is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles.

  14. Dynamic atomic force microscopy methods

    Science.gov (United States)

    García, Ricardo; Pérez, Rubén

    2002-09-01

    In this report we review the fundamentals, applications and future tendencies of dynamic atomic force microscopy (AFM) methods. Our focus is on understanding why the changes observed in the dynamic properties of a vibrating tip that interacts with a surface make possible to obtain molecular resolution images of membrane proteins in aqueous solutions or to resolve atomic-scale surface defects in ultra high vacuum (UHV). Our description of the two major dynamic AFM modes, amplitude modulation atomic force microscopy (AM-AFM) and frequency modulation atomic force microscopy (FM-AFM) emphasises their common points without ignoring the differences in experimental set-ups and operating conditions. Those differences are introduced by the different feedback parameters, oscillation amplitude in AM-AFM and frequency shift and excitation amplitude in FM-AFM, used to track the topography and composition of a surface. The theoretical analysis of AM-AFM (also known as tapping-mode) emphasises the coexistence, in many situations of interests, of two stable oscillation states, a low and high amplitude solution. The coexistence of those oscillation states is a consequence of the presence of attractive and repulsive components in the interaction force and their non-linear dependence on the tip-surface separation. We show that key relevant experimental properties such as the lateral resolution, image contrast and sample deformation are highly dependent on the oscillation state chosen to operate the instrument. AM-AFM allows to obtain simultaneous topographic and compositional contrast in heterogeneous samples by recording the phase angle difference between the external excitation and the tip motion (phase imaging). Significant applications of AM-AFM such as high-resolution imaging of biomolecules and polymers, large-scale patterning of silicon surfaces, manipulation of single nanoparticles or the fabrication of single electron devices are also reviewed. FM-AFM (also called non

  15. The poor man's scanning force microscope

    International Nuclear Information System (INIS)

    The Macroscope (Zypman F R and Guerra-Vela C 2001 Eur. J. Phys. 22 17-30), an educational large-scale version of a scanning force microscope's cantilever-tip system, is used in the presence of nonlinear forces. This paper presents quantitative experimental evidence confirming the validity of the beam model (BM) (Eppel S J, Todd B A and Zypman F R 2000 Materials Issues and Modeling for Device Nanofabrication ed L Merhari et al (Pittsburgh, PA: Materials Research Society) pp 584, 189) as a proper reconstruction algorithm. As a teaching laboratory experiment, the force measurements are first done directly with a variety of dynamometer-like setups. Subsequently, the measurements are performed indirectly with the Macroscope from the cantilever resonant frequency shifts and the BM algorithm. Two central results of this work lie in its ability to compare forces obtained by traditional algorithms with known forces, and to illustrate in a hands-on fashion the principles behind the working of a scanning force microscope. (author)

  16. Design and simulation of state-oscillated tapping mode atomic force microscope%状态激励轻敲模式原子力显微镜的设计与仿真

    Institute of Scientific and Technical Information of China (English)

    华宝成; 钱建强; 姚骏恩

    2011-01-01

    A novel driving method referred to as state-oscillated is designed for tapping mode atomic force microscope, which gets rid of external drive signal of state-feedback tapping mode atomic force microscope. An automatic gain controller is added to keep the statefeedback signal amplitude constant. This signal is used as the driving signal of the cantilever. Numerical simulation method is applied to study the work principle of the system using the Matlab/Simulink software. Classic simulation experiments in tapping mode atomic force microscope such as amplitude vs. distance curve and line scan curve are achieved. The results show that state-oscillated tapping mode atomic force microscope can be operated successfully.%为轻敲模式原子力显微镜设计了一种激励方式,在带有状态反馈的轻敲模式原子力显微镜基础上,除去原有的外加激励信号而引入一个自动增益控制环节,用于维持状态反馈信号的幅度恒定,并将此信号作为悬臂振动的漱励信号.读激励方式即为状态激励,用于轻跛模式时可称为状态激励轻敲模式原子力显微镜.采用Matlab/Simulink工兵实现了对状态激励轻敲模式原子力显微镜系统的建模和数值仿真,起振曲线证明了状态激励信号能够驱动悬臂振动并调整其工作频率;逼近曲线、线扫描曲线等典型功能仿真实验证明了状态激励方式能够成功地应用于轻敲模式成像.

  17. The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope.

    Science.gov (United States)

    Wagner, Christian; Fournier, Norman; Tautz, F Stefan; Temirov, Ruslan

    2014-01-01

    Scanning probe microscopy (SPM) plays an important role in the investigation of molecular adsorption. The possibility to probe the molecule-surface interaction while tuning its strength through SPM tip-induced single-molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the good agreement between the experiment and those simulations, systematic inconsistencies remained that we attribute to effects omitted from the initial model. Here we develop a more realistic simulation of single-molecule manipulation by non-contact AFM that includes the atomic surface corrugation, the tip elasticity, and the tip oscillation amplitude. In short, we simulate a full tip oscillation cycle at each step of the manipulation process and calculate the frequency shift by solving the equation of motion of the tip. The new model correctly reproduces previously unexplained key features of the experiment, and facilitates a better understanding of the mechanics of single-molecular junctions. Our simulations reveal that the surface corrugation adds a positive frequency shift to the measurement that generates an apparent repulsive force. Furthermore, we demonstrate that the scatter observed in the experimental data points is related to the sliding of the molecule across the surface. PMID:24605287

  18. The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

    Directory of Open Access Journals (Sweden)

    Christian Wagner

    2014-02-01

    Full Text Available Scanning probe microscopy (SPM plays an important role in the investigation of molecular adsorption. The possibility to probe the molecule–surface interaction while tuning its strength through SPM tip-induced single-molecule manipulation has particularly promising potential to yield new insights. We recently reported experiments, in which 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA molecules were lifted with a qPlus-sensor and analyzed these experiments by using force-field simulations. Irrespective of the good agreement between the experiment and those simulations, systematic inconsistencies remained that we attribute to effects omitted from the initial model. Here we develop a more realistic simulation of single-molecule manipulation by non-contact AFM that includes the atomic surface corrugation, the tip elasticity, and the tip oscillation amplitude. In short, we simulate a full tip oscillation cycle at each step of the manipulation process and calculate the frequency shift by solving the equation of motion of the tip. The new model correctly reproduces previously unexplained key features of the experiment, and facilitates a better understanding of the mechanics of single-molecular junctions. Our simulations reveal that the surface corrugation adds a positive frequency shift to the measurement that generates an apparent repulsive force. Furthermore, we demonstrate that the scatter observed in the experimental data points is related to the sliding of the molecule across the surface.

  19. System modelling of a lateral force microscope

    International Nuclear Information System (INIS)

    To quantitatively analyse lateral force microscope measurements one needs to develop a model able to relate the photodiode signal to the force acting on the tip apex. In this paper we focus on the modelling of the interaction between the cantilever and the optical chain. The laser beam is discretized by a set of rays which propagates in the system. The analytical equation of a single ray's position on the optical sensor is presented as a function of the reflection's state on top of the cantilever. We use a finite element analysis on the cantilever to connect the optical model with the force acting on the tip apex. A first-order approximation of the constitutive equations are derived along with a definition of the system's crosstalk. Finally, the model is used to analytically simulate the 'wedge method' in the presence of crosstalk in 2D. The analysis shows how the torsion loop and torsion offset signals are affected by the crosstalk.

  20. Immunogold labels: cell-surface markers in atomic force microscopy

    NARCIS (Netherlands)

    Putman, Constant A.J.; Grooth, de Bart G.; Hansma, Paul K.; Hulst, van Niek F.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect imm

  1. Quantum Gas Microscope for Fermionic Atoms

    Science.gov (United States)

    Okan, Melih; Cheuk, Lawrence; Nichols, Matthew; Lawrence, Katherine; Zhang, Hao; Zwierlein, Martin

    2016-05-01

    Strongly interacting fermions define the properties of complex matter throughout nature, from atomic nuclei and modern solid state materials to neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. In this poster we demonstrate the realization of a quantum gas microscope for fermionic 40 K atoms trapped in an optical lattice and the recent experiments which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high- resolution optics to simultaneously cool and image individual atoms with single lattice site resolution at a detection fidelity above 95%. The imaging process leaves the atoms predominantly in the 3D motional ground state of their respective lattice sites, inviting the implementation of a Maxwell's demon to assemble low-entropy many-body states. Single-site resolved imaging of fermions enables the direct observation of magnetic order, time resolved measurements of the spread of particle correlations, and the detection of many-fermion entanglement. NSF, AFOSR-PECASE, AFOSR-MURI on Exotic Phases of Matter, ARO-MURI on Atomtronics, ONR, a Grant from the Army Research Office with funding from the DARPA OLE program, and the David and Lucile Packard Foundation.

  2. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.

    Science.gov (United States)

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2015-09-01

    The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. PMID:26010162

  3. Observation of Switchable Photoresponse of a Monolayer WSe2-MoS2 Lateral Heterostructure via Photocurrent Spectral Atomic Force Microscopic Imaging.

    Science.gov (United States)

    Son, Youngwoo; Li, Ming-Yang; Cheng, Chia-Chin; Wei, Kung-Hwa; Liu, Pingwei; Wang, Qing Hua; Li, Lain-Jong; Strano, Michael S

    2016-06-01

    In the pursuit of two-dimensional (2D) materials beyond graphene, enormous advances have been made in exploring the exciting and useful properties of transition metal dichalcogenides (TMDCs), such as a permanent band gap in the visible range and the transition from indirect to direct band gap due to 2D quantum confinement, and their potential for a wide range of device applications. In particular, recent success in the synthesis of seamless monolayer lateral heterostructures of different TMDCs via chemical vapor deposition methods has provided an effective solution to producing an in-plane p-n junction, which is a critical component in electronic and optoelectronic device applications. However, spatial variation of the electronic and optoelectonic properties of the synthesized heterojunction crystals throughout the homogeneous as well as the lateral junction region and the charge carrier transport behavior at their nanoscale junctions with metals remain unaddressed. In this work, we use photocurrent spectral atomic force microscopy to image the current and photocurrent generated between a biased PtIr tip and a monolayer WSe2-MoS2 lateral heterostructure. Current measurements in the dark in both forward and reverse bias reveal an opposite characteristic diode behavior for WSe2 and MoS2, owing to the formation of a Schottky barrier of dissimilar properties. Notably, by changing the polarity and magnitude of the tip voltage applied, pixels that show the photoresponse of the heterostructure are observed to be selectively switched on and off, allowing for the realization of a hyper-resolution array of the switchable photodiode pixels. This experimental approach has significant implications toward the development of novel optoelectronic technologies for regioselective photodetection and imaging at nanoscale resolutions. Comparative 2D Fourier analysis of physical height and current images shows high spatial frequency variations in substrate/MoS2 (or WSe2) contact that

  4. Combined scanning electrochemical-atomic force microscopy.

    Science.gov (United States)

    Macpherson, J V; Unwin, P R

    2000-01-15

    A combined scanning electrochemical microscope (SECM)-atomic force microscope (AFM) is described. The instrument permits the first simultaneous topographical and electrochemical measurements at surfaces, under fluid, with high spatial resolution. Simple probe tips suitable for SECM-AFM, have been fabricated by coating flattened and etched Pt microwires with insulating, electrophoretically deposited paint. The flattened portion of the probe provides a flexible cantilever (force sensor), while the coating insulates the probe such that only the tip end (electrode) is exposed to the solution. The SECM-AFM technique is illustrated with simultaneous electrochemical-probe deflection approach curves, simultaneous topographical and electrochemical imaging studies of track-etched polycarbonate ultrafiltration membranes, and etching studies of crystal surfaces. PMID:10658320

  5. Atomic Force Microscopy on Its Way to Adolescence

    Science.gov (United States)

    Giessibl, Franz J.

    2003-12-01

    When the atomic force microscope (AFM) was introduced in 1986, its potential to resolve surfaces with true atomic resolution was already proposed. However, substantial problems had to be overcome before atomic resolution became possible by AFM. Today, true atomic resolution by AFM is standard practice. This article discusses the influence of the cantilever stiffness and — amplitude on noise and short-range force sensitivity and introduces a sensor operating at near optimal conditions (qPlus sensor). The data achieved with this optimized sensing technology show substructures within single atom images, attributed to atomic orbitals.

  6. Microfluidics, Chromatography, and Atomic-Force Microscopy

    Science.gov (United States)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  7. Atomic force microscopy of biological samples.

    Science.gov (United States)

    Allison, David P; Mortensen, Ninell P; Sullivan, Claretta J; Doktycz, Mitchel J

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH). PMID:20672388

  8. Atomic force microscopy of biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).

  9. Piezoresistive cantilevers utilized for scanning tunneling and scanning force microscope in ultrahigh vacuum

    OpenAIRE

    Giessibl, Franz J.; Trafas, B. M.

    1994-01-01

    Piezoresistive cantilevers have been utilized in a novel ultrahigh vacuum scanning probe microscope which allows in situscanning tunneling microscopy(STM), contact atomic force microscopy(AFM), and noncontact atomic force microscopy. The instrument uses interchangeable tungsten tips (for STM imaging) and piezoresistive cantilevers (for AFM or STM imaging) and is capable of atomic resolution in both STM and AFM modes of operation. In situ tip exchange under vacuum conditions is performed quick...

  10. Immunogold labels: cell-surface markers in atomic force microscopy

    OpenAIRE

    Putman, Constant A.J.; Grooth, de, B.G.; Hansma, Paul K.; Hulst, van der, R.W.M.; Greve, Jan

    1993-01-01

    The feasibility of using immunogold labels as cell-surface markers in atomic force microscopy is shown in this paper. The atomic force microscope (AFM) was used to image the surface of immunogold-labeled human lymphocytes. The lymphocytes were isolated from whole blood and labeled by an indirect immunolabeling method using the monoclonal antibody anti-CD3 and a secondary antibody (Goat-anti-Mouse) linked to 30 nm colloidal gold particles. Some of the samples were enhanced by silver deposition...

  11. Calibration of lateral force measurements in atomic force microscopy with a piezoresistive force sensor

    International Nuclear Information System (INIS)

    We present here a method to calibrate the lateral force in the atomic force microscope. This method makes use of an accurately calibrated force sensor composed of a tipless piezoresistive cantilever and corresponding signal amplifying and processing electronics. Two ways of force loading with different loading points were compared by scanning the top and side edges of the piezoresistive cantilever. Conversion factors between the lateral force and photodiode signal using three types of atomic force microscope cantilevers with rectangular geometries (normal spring constants from 0.092 to 1.24 N/m and lateral stiffness from 10.34 to 101.06 N/m) were measured in experiments using the proposed method. When used properly, this method calibrates the conversion factors that are accurate to ±12.4% or better. This standard has less error than the commonly used method based on the cantilever's beam mechanics. Methods such of this allow accurate and direct conversion between lateral forces and photodiode signals without any knowledge of the cantilevers and the laser measuring system

  12. Physical microscopic model of proteins under force.

    Science.gov (United States)

    Dokholyan, Nikolay V

    2012-06-14

    Nature has evolved proteins to counteract forces applied on living cells, and has designed proteins that can sense forces. One can appreciate Nature's ingenuity in evolving these proteins to be highly sensitive to force and to have a high dynamic force range at which they operate. To achieve this level of sensitivity, many of these proteins are composed of multiple domains and linking peptides connecting these domains, each of them having their own force response regimes. Here, using a simple model of a protein, we address the question of how each individual domain responds to force. We also ask how multidomain proteins respond to forces. We find that the end-to-end distance of individual domains under force scales linearly with force. In multidomain proteins, we find that the force response has a rich range: at low force, extension is predominantly governed by "weaker" linking peptides or domain intermediates, while at higher force, the extension is governed by unfolding of individual domains. Overall, the force extension curve comprises multiple sigmoidal transitions governed by unfolding of linking peptides and domains. Our study provides a basic framework for the understanding of protein response to force, and allows for interpretation experiments in which force is used to study the mechanical properties of multidomain proteins. PMID:22375559

  13. Study of surface forces dependence on pH by atomic force microscopy.

    Science.gov (United States)

    Gavoille, J; Takadoum, J

    2002-06-01

    We used an atomic force microscope to investigate silicon nitride tip interactions with various materials (copper, nickel, silicon carbide) as a function of pH. The electrolyte used was 10(-3) M NaCl and the interactions observed through force versus distance curves (attraction or repulsion) depended on the pH value. Interaction forces calculation was derived from force versus distance curve data and the results are discussed in terms of electrostatic interactions using Zeta potential theory. PMID:16290640

  14. Mapping Electrostatic Forces Using Higher Harmonics Tapping Mode Atomic Force Microscopy in Liquid

    NARCIS (Netherlands)

    Noort, van S. John T.; Willemsen, Oscar H.; Werf, van der Kees O.; Grooth, de Bart G.; Greve, Jan

    1999-01-01

    A simple model of a damped, harmonic oscillator is used to describe the motion of an atomic force microscope cantilever tapping in fluid. By use of experimentally obtained parameters, excellent agreement is found between theory and experimental results. From the model we estimate that the force appl

  15. Diagnosis of cervical cancer cell taken from scanning electron and atomic force microscope images of the same patients using discrete wavelet entropy energy and Jensen Shannon, Hellinger, Triangle Measure classifier

    Science.gov (United States)

    Aytac Korkmaz, Sevcan

    2016-05-01

    The aim of this article is to provide early detection of cervical cancer by using both Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM) images of same patient. When the studies in the literature are examined, it is seen that the AFM and SEM images of the same patient are not used together for early diagnosis of cervical cancer. AFM and SEM images can be limited when using only one of them for the early detection of cervical cancer. Therefore, multi-modality solutions which give more accuracy results than single solutions have been realized in this paper. Optimum feature space has been obtained by Discrete Wavelet Entropy Energy (DWEE) applying to the 3 × 180 AFM and SEM images. Then, optimum features of these images are classified with Jensen Shannon, Hellinger, and Triangle Measure (JHT) Classifier for early diagnosis of cervical cancer. However, between classifiers which are Jensen Shannon, Hellinger, and triangle distance have been validated the measures via relationships. Afterwards, accuracy diagnosis of normal, benign, and malign cervical cancer cell was found by combining mean success rates of Jensen Shannon, Hellinger, and Triangle Measure which are connected with each other. Averages of accuracy diagnosis for AFM and SEM images by averaging the results obtained from these 3 classifiers are found as 98.29% and 97.10%, respectively. It has been observed that AFM images for early diagnosis of cervical cancer have higher performance than SEM images. Also in this article, surface roughness of malign AFM images in the result of the analysis made for the AFM images, according to the normal and benign AFM images is observed as larger, If the volume of particles has found as smaller. She has been a Faculty Member at Fırat University in the Electrical- Electronic Engineering Department since 2007. Her research interests include image processing, computer vision systems, pattern recognition, data fusion, wavelet theory, artificial neural

  16. Theory of Atomic-Force Microscopy(STM Theory)

    OpenAIRE

    Sasaki, Naruo; Tsukada, Masaru

    1997-01-01

    The mechanism of force detection of Atomic-Force Microscopy (AFM) is theoretically investigated. First, a theoretical simulation of contact AFM images is performed, and a tip apex structure is studied. It is clarified how the AFM images and the force distributions change as the load varies. It is also revealed that the characteristics of the AFM images such as their detailed microscopic pattern, the symmetry, and the corrugation amplitude, depend strongly on the tip apex structure. Secondly, ...

  17. Sub-Angstrom oscillation amplitude non-contact atomic force microscopy for lateral force gradient measurement

    International Nuclear Information System (INIS)

    We report the first results from novel sub-Angstrom oscillation amplitude non-contact atomic force microscopy developed for lateral force gradient measurements. Quantitative lateral force gradients between a tungsten tip and Si(1 1 1)-(7 x 7) surface can be measured using this microscope. Simultaneous lateral force gradient and scanning tunnelling microscope images of single and multi atomic steps are obtained. In our measurement, tunnel current is used as feedback. The lateral stiffness contrast has been observed to be 2.5 N/m at single atomic step, in contrast to 13 N/m at multi atomic step on Si(1 1 1) surface. We also carried out a series of lateral stiffness-distance spectroscopy. We observed lateral stiffness-distance curves exhibit sharp increase in the stiffness as the sample is approached towards the surface. We usually observed positive stiffness and sometimes going into slightly negative region.

  18. Physical Microscopic Model of Proteins Under Force

    OpenAIRE

    Dokholyan, Nikolay V.

    2012-01-01

    Nature has evolved proteins to counter-act forces applied on living cells, and designed proteins that can sense forces. One can appreciate Nature’s ingenuity in evolving these proteins to be highly sensitive to force and to have a high dynamic force range at which they operate. To achieve this level of sensitivity, many of these proteins are comprised of multiple domains and linking peptides connecting these domain, each of them have their own force response regimes. Here, using a simple mode...

  19. Noncontact atomic force microscopy v.3

    CERN Document Server

    Morita, Seizo; Meyer, Ernst

    2015-01-01

    This book presents the latest developments in noncontact atomic force microscopy. It deals with the following outstanding functions and applications that have been obtained with atomic resolution after the publication of volume 2: (1) Pauli repulsive force imaging of molecular structure, (2) Applications of force spectroscopy and force mapping with atomic resolution, (3) Applications of tuning forks, (4) Applications of atomic/molecular manipulation, (5) Applications of magnetic exchange force microscopy, (6) Applications of atomic and molecular imaging in liquids, (7) Applications of combine

  20. Atomic Force Microscope 1: Veeco Dimension 3100

    Data.gov (United States)

    Federal Laboratory Consortium — Description: CORAL Name: AFM 1 A tool used to characterize the material surface, nanostructures generated by nanofabrication, nanomanipulation, and nanolithography....

  1. Emissivity measurements with an Atomic Force Microscope

    OpenAIRE

    van Zwol, Pieter Jan; Ranno, Laurent; Chevrier, Joel

    2011-01-01

    We show that functionalized micromechanical bilayer levers can be used as sensitive probes to accurately measure radiative heat flux in vacuum between two materials at the micro scale. By means of calibration to one material these measurements can be made quantitative for radiative heat flux or for either temperature or material emissivity. We discuss issues and opportunities for our method and provide ample technical details regarding its implementation and demonstrate good correspondence wi...

  2. The magnetic resonance force microscope: A new microscopic probe of magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Zhang, Z. [Los Alamos National Lab., NM (United States); Midzor, M.; Roukes, M.L. [California Inst. of Tech., Pasadena, CA (United States); Wigen, P.E. [Ohio State Univ., Columbus, OH (United States); Childress, J.R. [Univ. of Florida, Gainesville, FL (United States)

    1997-08-06

    The magnetic resonance force microscope (MRFM) marries the techniques of magnetic resonance imaging (MRI) and atomic force microscopy (AFM), to produce a three-dimensional imaging instrument with high, potentially atomic-scale, resolution. The principle of the MRFM has been successfully demonstrated in numerous experiments. By virtue of its unique capabilities the MRFM shows promise to make important contributions in fields ranging from three-dimensional materials characterization to bio-molecular structure determination. Here the authors focus on its application to the characterization and study of layered magnetic materials; the ability to illuminate the properties of buried interfaces in such materials is a particularly important goal. While sensitivity and spatial resolution are currently still far from their theoretical limits, they are nonetheless comparable to or superior to that achievable in conventional MRI. Further improvement of the MRFM will involve operation at lower temperature, application of larger field gradients, introduction of advanced mechanical resonators and improved reduction of the spurious coupling when the magnet is on the resonator.

  3. Cantilever based optical interfacial force microscope

    Science.gov (United States)

    Bonander, Jeremy R.; Kim, Byung I.

    2008-03-01

    We developed a cantilever based optical interfacial force microscopy (COIFM) that employs a microactuated silicon cantilever and optical detection method to establish the measurement of the single molecular interactions using the force feedback technique. Through the direct measurement of the COIFM force-distance curves, we have demonstrated that the COIFM is capable of unveiling structural and mechanical information on interfacial water at the single molecular level over all distances between two hydrophilic surfaces.

  4. Nanorheology by atomic force microscopy.

    Science.gov (United States)

    Li, Tai-De; Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2014-12-01

    We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution. A new calibration method is applied to compensate for the linear drift of the piezo transducer and substrate system, leading to a more precise determination of the tip-substrate distance. By monitoring the phase lag between the driving signal and the cantilever response in liquid, the frequency dependent viscoelastic properties of the confined liquid can also be derived. Finally, we discuss the results obtained with this technique from different liquid-solid interfaces. Namely, octamethylcyclotetrasiloxane and water on mica and highly oriented pyrolytic graphite. PMID:25554301

  5. Design of cantilever probes for Atomic Force Microscopy (AFM)

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2000-01-01

    A cantilever beam used in an Atomic Force Microscope is optimized with respect to two different objectives. The first goal is to maximize the first eigenfrequency while keeping the stiffness of the probe constant. The second goal is to maximize the tip angle of the first eigenmode while again kee...

  6. Probing The Atomic Higgs Force

    CERN Document Server

    Delaunay, Cédric; Perez, Gilad; Soreq, Yotam

    2016-01-01

    We propose an approach to probe Higgs boson couplings to the building blocks of matter: the electron and the up and down quarks, with precision measurement of isotope shifts in atomic clock transitions. We show that the attractive Higgs force between nuclei and their bound electrons induces measurable non-linearities in a King plot of two isotope shifts. We present an experimental method which, given state-of-the-art accuracy in frequency comparison, competes with and potentially surpasses the Large Hadron Collider in bounding the Higgs-to-light-fermion couplings. Better knowledge of the latter is an important test of the Standard Model which could lead, besides the establishment of new physics above the weak scale, to an alternative understanding of the flavor puzzle.

  7. Microscopic optical potential from chiral nuclear forces

    CERN Document Server

    Holt, J W; Miller, G A; Weise, W

    2013-01-01

    The energy- and density-dependent single-particle potential for nucleons is constructed in a medium of infinite isospin-symmetric nuclear matter starting from realistic nuclear interactions derived within the framework of chiral effective field theory. The leading-order terms from both two- and three-nucleon forces give rise to real, energy-independent contributions to the nucleon self-energy. The Hartree-Fock contribution from the two-nucleon force is attractive and strongly momentum dependent, in contrast to the contribution from the three-nucleon force which provides a nearly constant repulsive mean field that grows approximately linearly with the nuclear density. Together, the leading-order perturbative contributions yield an attractive single-particle potential that is however too weak compared to phenomenology. Second-order contributions from two- and three-body forces then provide the additional attraction required to reach the phenomenological depth. The imaginary part of the optical potential, which ...

  8. A comparative evaluation of the effect of 5.25% sodium hypochlorite and 2% chlorhexidine on the surface texture of Gutta-percha and resilon cones using atomic force microscope

    Directory of Open Access Journals (Sweden)

    Mahima Tilakchand

    2014-01-01

    Full Text Available Aims & Objectives: The purpose of this study was to investigate the effects of 5.25% sodium hypochlorite (NaOCl and 2% chlorhexidine (CHX on Gutta-percha and Resilon cones using an atomic force microscope (AFM. Materials and Methods: Gutta-percha cones (n = 15 and Resilon cones (n = 15 were cut 3 mm from their tip, attached to a glass slide with cyanoacrylate glue and immersed in 5.25% NaOCl and CHX for 1, 5, 10, 20 and 30 min. Five each of Gutta-percha and Resilon cones not treated with any disinfectant were used as control. The analysis of the surface topography was performed on the region between 1 and 2 mm from the tip using the AFM. The root mean square (RMS parameters for contact mode imaging were measured. The differences between RMS values were tested by SPSS-16.0 version statistical software [IBM SPSS (Statistical Product and Service Solutions Data Software, Chicago, US] using Kruskal-Wallis ANOVA, Mann-Whitney U-test and Wilcoxon matched pairs test. Results: There was no deterioration in the surfac e topography of Gutta-percha and Resilon when treated with 2% CHX in comparison to baseline (P < 0.05. Resilon exhibited no deterioration in topography when immersed in 5.25% NaOCl. There was a significant decrease in the mean RMS values of Gutta-percha treated with NaOCl from the control at time intervals of 1, 5, 10, 20 and 30 min.

  9. PC-based digital feedback control for scanning force microscope

    International Nuclear Information System (INIS)

    In the past, most digital feedback implementation for scanned-probe microscope were based on a digital signal processor (DSP). At present DSP plug-in card with the input-output interface module is still expensive compared to a fast pentium PC motherboard. For a magnetic force microscope (MFM) digital feedback has an advantage where the magnetic signal can be easily separated from the topographic signal. In this paper, a simple low-cost PC-based digital feedback and imaging system for Scanning Force Microscope (SFM) is presented. (Author)

  10. Magnetic moment measurement of magnetic nanoparticles using atomic force microscopy

    International Nuclear Information System (INIS)

    Magnetic moment per unit mass of magnetic nanoparticles was found by using the atomic force microscope (AFM). The mass of the nanoparticles was acquired from the resonance frequency shift of the particle-attached AFM probe and magnetic force measurement was also carried out with the AFM. Combining with magnetic field strength, the magnetic moment per unit mass of the nanoparticles was determined as a function of magnetic field strength. (technical design note)

  11. Polynomial force approximations and multifrequency atomic force microscopy

    OpenAIRE

    Daniel Platz; Daniel Forchheimer; Tholén, Erik A; David B. Haviland

    2013-01-01

    We present polynomial force reconstruction from experimental intermodulation atomic force microscopy (ImAFM) data. We study the tip–surface force during a slow surface approach and compare the results with amplitude-dependence force spectroscopy (ADFS). Based on polynomial force reconstruction we generate high-resolution surface-property maps of polymer blend samples. The polynomial method is described as a special example of a more general approximative force reconstruction, where the aim is...

  12. Casimir-Polder forces on moving atoms

    International Nuclear Information System (INIS)

    Polarizable atoms and molecules experience the Casimir-Polder force near magnetoelectric bodies, a force that is induced by quantum fluctuations of the electromagnetic field and the matter. Atoms and molecules in relative motion to a magnetoelectric surface experience an additional velocity-dependent force. We present a full quantum-mechanical treatment of this force and identify a generalized Doppler effect, the time delay between photon emission and reabsorption, and the Roentgen interaction as its three sources. For ground-state atoms, the force is very small and always decelerating, hence commonly known as quantum friction. For atoms and molecules in electronically excited states, on the contrary, both decelerating and accelerating forces can occur depending on the magnitude of the atomic transition frequency relative to the surface-plasmon frequency.

  13. Introduction to light forces, atom cooling, and atom trapping

    OpenAIRE

    Savage, Craig

    1995-01-01

    This paper introduces and reviews light forces, atom cooling and atom trapping. The emphasis is on the physics of the basic processes. In discussing conservative forces the semi-classical dressed states are used rather than the usual quantized field dressed states.

  14. Envejecimiento de Almidones Termoplásticos Agrios de Yuca y Nativos de Papa por Microscopía de Fuerza Atómica Ageing of Sour Cassava and Native Potato Thermoplastic Starches by Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Harold A Acosta

    2006-01-01

    Full Text Available En este trabajo, se determinó la topografía de almidones termoplásticos (TPS agrio de yuca y nativo de papa, mediante microscopía de fuerza atómica (AFM, durante un periodo de 120 días de almacenamiento. Mezclas de almidones agrios (fermentados de yuca y nativo de papa, y glicerina, se procesaron en un extrusor de husillo sencillo. Láminas de TPS agrio de yuca (SCTPS y nativo de papa (NPTPS, se observaron y midieron por AFM (en modo contacto. Sus superficies mostraron incremento en rugosidad y partes lisas solo a altos contenidos de plastificante, pero SCTPS siempre tuvo menor rugosidad que NPTPS, debido a la fermentación natural del almidón agrio. Estos cambios se relacionaron con el tamaño, la forma del gránulo y particularmente con el contenido de plastificante. Los NPTPS de mayor rugosidad presentaron separación de fases a los 120 días, dada la retrogradación de las moléculas del almidón, que tienden a formar cristalitos. Estos resultados indican que el almidón agrio de yuca puede retardar la retrogradación de almidones termoplásticos, lo cual es importante durante el desarrollo de nuevos empaques biodegradables.This study reports on the topography of thermoplastic starches (TPS from sour cassava and native potato using atomic force microscopy (AFM, over a 120 day-storage period. Mixtures of sour cassava (fermented and native potato starches plus glycerine, were processed using a single-screw extruder. Sour cassava thermoplastic starch (SCTPS and native potato thermoplastic starch (NPTPS films were observed and measured by AFM (in contact mode. Their surfaces showed increased rugosity, and smooth parts only at high plasticizer content. However, SCTPS always had lower rugosity than NPTPS, due to the natural fermentation of sour cassava starch. These changes were related to starch granule size and shape, and particularly to plasticizer content. NPTPS with higher rugosity presented phase separation at 120 days, due to

  15. Long range intermolecular forces in triatomic systems: connecting the atom-diatom and atom-atom-atom representations

    OpenAIRE

    Cvitas, Marko T.; Soldan, Pavel; Hutson, Jeremy M.

    2005-01-01

    The long-range forces that act between three atoms are analysed in both atom-diatom and atom-atom-atom representations. Expressions for atom-diatom dispersion coefficients are obtained in terms of 3-body nonadditive coefficients. The anisotropy of atom-diatom C_6 dispersion coefficients arises primarily from nonadditive triple-dipole and quadruple-dipole forces, while pairwise-additive forces and nonadditive triple-dipole and dipole-dipole-quadrupole forces contribute significantly to atom-di...

  16. Atomic and molecular manipulation with the scanning tunneling microscope.

    Science.gov (United States)

    Stroscio, J A; Eigler, D M

    1991-11-29

    The prospect of manipulating matter on the atomic scale has fascinated scientists for decades. This fascination may be motivated by scientific and technological opportunities, or from a curiosity about the consequences of being able to place atoms in a particular location. Advances in scanning tunneling microscopy have made this prospect a reality; single atoms can be placed at selected positions and structures can be built to a particular design atom-by-atom. Atoms and molecules may be manipulated in a variety of ways by using the interactions present in the tunnel junction of a scanning tunneling microscope. Some of these recent developments and some of the possible uses of atomic and molecular manipulation as a tool for science are discussed. PMID:17773601

  17. Atomic force microscopic comparison of remineralization with casein-phosphopeptide amorphous calcium phosphate paste, acidulated phosphate fluoride gel and iron supplement in primary and permanent teeth: An in-vitro study

    OpenAIRE

    Nikita Agrawal; N D Shashikiran; Shilpy Singla; Ravi, K.S.; Vinaya Kumar Kulkarni

    2014-01-01

    Context: Demineralization of tooth by erosion is caused by frequent contact between the tooth surface and acids present in soft drinks. Aim: The present study objective was to evaluate the remineralization potential of casein-phosphopeptide-amorphous calcium phosphate (CPP-ACP) paste, 1.23% acidulated phosphate fluoride (APF) gel and iron supplement on dental erosion by soft drinks in human primary and permanent enamel using atomic force microscopy (AFM). Materials and Methods: Specimens were...

  18. Carbon nanotube atomic force microscopy probes

    Science.gov (United States)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  19. Nonlinear Dynamics of Tapping Mode Atomic Force Microscopy

    OpenAIRE

    Bahrami, Arash

    2012-01-01

    A mathematical model is developed to investigate the grazing dynamics of tapping mode atomic force microscopes (AFM) subjected to a base harmonic excitation. The nonlinear dynamics of the AFM microcantilever are studied in both of the monostable and bistable phases with the microcantilever tip being, respectively, located in the monostable and bistable regions of the static bifurcation diagram in the reference configuration. Free-vibration responses of the AFM probes, including the microcanti...

  20. Atomic force microscopy investigations of peptide self-assembly

    OpenAIRE

    Sedman, Victoria L.

    2006-01-01

    The ability of short peptide fragments to self-assemble in isolation as amyloid and amyloid-like structures has prompted their use as model systems for the study of amyloid formation and recently also for their utilisation as novel nanofibrillar material. The atomic force microscope (AFM) is used here to investigate the self-assembly of two peptide systems and the development of strategies to directly manipulate and control the structures they form. The studies presented in Chapter 2 addr...

  1. Understanding the Atomic-Scale Contrast in Kelvin Probe Force Microscopy

    OpenAIRE

    Nony, Laurent; Foster, Adam S.; Bocquet, Franck; Loppacher, Christian

    2009-01-01

    A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a noncontact atomic force microscope simulator including a Kelvin module. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and contact potential difference contrasts were reported. The local...

  2. Understanding the atomic-scale contrast in Kelvin Probe Force Microscopy

    OpenAIRE

    Nony, Laurent; Foster, Adam; Bocquet, Franck; Loppacher, Christian

    2009-01-01

    A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy (KPFM) is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a non-contact Atomic Force Microscope/KPFM simulator. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and Contact Potential Difference (CPD) contrasts were reported. The local CPD do...

  3. Electrostatic interaction in atomic force microscopy

    OpenAIRE

    Butt, Hans-Jüurgen

    1991-01-01

    In atomic force microscopy, the stylus experiences an electrostatic force when imaging in aqueous medium above a charged surface. This force has been calculated numerically with continuum theory for a silicon nitrite or silicon oxide stylus. For comparison, the Van der Waals force was also calculated. In contrast to the Van der Waals attraction, the electrostatic force is repulsive. At a distance of 0.5 nm the electrostatic force is typically 10-12-10-10 N and thus comparable in strength to t...

  4. Development of an X-band magnetic resonance force microscope

    International Nuclear Information System (INIS)

    We have developed an X-band magnetic resonance force microscope (MRFM), and demonstrated the first measurements on a few nanogram 1,1-diphenyl-2-picrylhydrazyl (DPPH) sample. We have successfully observed the MRFM signal with some structure at 9.88 GHz at room temperature. The force detection sensitivity of our MRFM system is ∼10-15 N, which corresponds to the magnetic force of ∼106 resonant electron spins under the magnetic field gradient of 100 T/m. The ESR signal sensitivity of our MRFM system is 103-104 times higher than the commercial X-band ESR instrument

  5. Analysis of Immunolabeled Cells by Atomic Force Microscopy, Optical Microscopy, and Flow Cytometry

    OpenAIRE

    Neagu, C.; Werf, van der, W.; Putman, C.A.J.; Kraan, Y.M.; Grooth, de, B.G.; Hulst, van der, R.W.M.; Greve, J de

    1994-01-01

    In this study we investigated the applicability of the (silver- enhanced) immunogold labeling method for atomic force microscopy. Human lymphocytes were labeled with anti-CD3 conjugated to fluorescein isothiocyanate and a secondary antibody (goat anti-mouse) linked with 1- or 30-nm colloidal gold particles. Silver enhancement was applied o­n these labeled cells to increase the size of the labels. In a setup combining an inverted optical microscope and a stand-alone atomic force microscope, a ...

  6. Atom inlays performed at room temperature using atomic force microscopy

    Science.gov (United States)

    Sugimoto, Yoshiaki; Abe, Masayuki; Hirayama, Shinji; Oyabu, Noriaki; Custance, Óscar; Morita, Seizo

    2005-02-01

    The ability to manipulate single atoms and molecules laterally for creating artificial structures on surfaces is driving us closer to the ultimate limit of two-dimensional nanoengineering. However, experiments involving this level of manipulation have been performed only at cryogenic temperatures. Scanning tunnelling microscopy has proved, so far, to be a unique tool with all the necessary capabilities for laterally pushing, pulling or sliding single atoms and molecules, and arranging them on a surface at will. Here we demonstrate, for the first time, that it is possible to perform well-controlled lateral manipulations of single atoms using near-contact atomic force microscopy even at room temperature. We report the creation of 'atom inlays', that is, artificial atomic patterns formed from a few embedded atoms in the plane of a surface. At room temperature, such atomic structures remain stable on the surface for relatively long periods of time.

  7. Surface forces studied with colloidal probe atomic force microscopy

    OpenAIRE

    Giesbers, M.

    2001-01-01

    Forces between surfaces are a determining factor for the performance of natural as well as synthetic colloidal systems, and play a crucial role in industrial production processes. Measuring these forces is a scientific and experimental challenge and over the years several techniques have been developed to measure the interaction between surfaces directly as a function of their separation distance. Colloidal probe atomic force microscopy (colloidal probe AFM) offers the possibility to study su...

  8. Atomic force microscopy in cell biology

    Institute of Scientific and Technical Information of China (English)

    LU Zhexue; ZHANG Zhiling; PANG Daiwen

    2005-01-01

    The history, characteristic, operation modes and coupling techniques of atomic force microscopy (AFM) are introduced. Then the application in cell biology is reviewed in four aspects: cell immobilization methods, cell imaging, force spectrum study and cell manipulation. And the prospect of AFM application in cell biology is discussed.

  9. Microscopic derivation of electromagnetic force density in magnetic dielectric media

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, A [Department of Applied Physics, Aalto University, PO Box 13500, FI-00076 AALTO (Finland); Hoenders, B J, E-mail: andriy.shevchenko@tkk.f [Centre for Theoretical Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen (Netherlands)

    2010-05-15

    Macroscopic force density imposed on a linear isotropic magnetic dielectric medium by an arbitrary electromagnetic field is derived by spatially averaging the microscopic Lorentz force density. The obtained expression differs from the commonly used expressions, but the energy-momentum tensor derived from it corresponds to a so-called Helmholtz tensor written for a medium that obeys the Clausius-Mossotti law. Thus, our microscopic derivation unambiguously proves the correctness of the Helmholtz tensor for such media. Also, the expression for the momentum density of the field obtained in our theory is different from the expressions obtained by Minkowski, Abraham, Einstein and Laub, and others. We apply the theory to particular examples of static electric, magnetic and stationary electromagnetic phenomena, and show its agreement with experimental observations. We emphasize that in contrast to a widespread belief the Abraham-Minkowski controversy cannot be resolved experimentally because of incompleteness of the theories introduced by Abraham and Minkowski.

  10. Optimization of adhesion mode atomic force microscopy resolves individual molecules in topography and adhesion

    NARCIS (Netherlands)

    Willemsen, O.H.; Snel, M.M.E.; Noort, van S.J.T.; Werf, van der K.O.; Grooth, de B.G.; Figdor, C.G.; Greve, J.

    1999-01-01

    The force sensor of an atomic force microscope (AFM) is sensitive enough to measure single molecular binding strengths by means of a force–distance curve. In order to combine high-force sensitivity with the spatial resolution of an AFM in topography mode, adhesion mode has been developed. Since this

  11. Glue-free tuning fork shear-force microscope

    Science.gov (United States)

    Mühlschlegel, P.; Toquant, J.; Pohl, D. W.; Hecht, B.

    2006-01-01

    A scanning near-field optical microscope without any glued parts is described. Key elements are the optical fiber probe/tuning fork junction and the piezotube scanner assembly. In both cases, fixation is achieved by means of controlled pressure and elastic deformation. The avoidance of glued connections was found to improve the Q factor of the shear-force sensor as well as to facilitate the replacement of the fiber probe and other parts of the scanner head. We present approach curves and shear-force images that demonstrate the performance and stability of the system.

  12. Probe-Sample Coupling in the Magnetic Resonance Force Microscope

    Science.gov (United States)

    Suter, A.; Pelekhov, D. V.; Roukes, M. L.; Hammel, P. C.

    2002-02-01

    The magnetic resonance force microscope (MRFM) provides a route to achieving scanned probe magnetic resonance imaging with extremely high spatial resolution. Achieving this capability will require understanding the force exerted on a microscopic magnetic probe by a spatially extended sample over which the probe is scanned. Here we present a detailed analysis of this interaction between probe and sample. We focus on understanding the situation where the micromagnet mounted on the mechanical resonator generates a very inhomogeneous magnetic field and is scanned over a sample with at least one spatial dimension much larger than that of the micromagnet. This situation differs quite significantly from the conditions under which most MRFM experiments have been carried out where the sample is mounted on the mechanical resonator and placed in a rather weak magnetic field gradient. In addition to the concept of a sensitive slice (the spatial region where the magnetic resonance condition is met) it is valuable to map the forces exerted on the probe by spins at various locations; this leads to the concept of the force slice (the region in which spins exert force on the resonator). Results of this analysis, obtained both analytically and numerically, will be qualitatively compared with an initial experimental finding from an EPR-MRFM experiment carried out on DPPH at 4 K.

  13. Probe--sample coupling in the magnetic resonance force microscope.

    Science.gov (United States)

    Suter, A; Pelekhov, D V; Roukes, M L; Hammel, P C

    2002-02-01

    The magnetic resonance force microscope (MRFM) provides a route to achieving scanned probe magnetic resonance imaging with extremely high spatial resolution. Achieving this capability will require understanding the force exerted on a microscopic magnetic probe by a spatially extended sample over which the probe is scanned. Here we present a detailed analysis of this interaction between probe and sample. We focus on understanding the situation where the micromagnet mounted on the mechanical resonator generates a very inhomogeneous magnetic field and is scanned over a sample with at least one spatial dimension much larger than that of the micromagnet. This situation differs quite significantly from the conditions under which most MRFM experiments have been carried out where the sample is mounted on the mechanical resonator and placed in a rather weak magnetic field gradient. In addition to the concept of a sensitive slice (the spatial region where the magnetic resonance condition is met) it is valuable to map the forces exerted on the probe by spins at various locations; this leads to the concept of the force slice (the region in which spins exert force on the resonator). Results of this analysis, obtained both analytically and numerically, will be qualitatively compared with an initial experimental finding from an EPR-MRFM experiment carried out on DPPH at 4 K. PMID:11846579

  14. Interfacial forces between silica surfaces measured by atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    DUAN Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  15. Determination of radiation exposure history of common materials and computer hardware by using atomic (and magnetic force) microscopy

    International Nuclear Information System (INIS)

    Defects produced by ionizing radiation are smaller than a micrometer and are unobservable in an optical microscope. An atomic force microscope was utilized to reveal their counts and structure in common materials like mica, silicon, organic solids, polymers, sugar, quartz, and calcite. A magnetic force microscope has shown the damage of radiation on computer hard disks. The present work shows that exposure to radioactive material leaves a permanent record, which can be read for dosimetric or forensic purposes by using atomic force microcopy on common objects or a magnetic force microscope on magnetic media

  16. Simultaneous measurement of normal and friction forces using a cantilever-based optical interfacial force microscope

    Science.gov (United States)

    Kim, Byung I.; Bonander, Jeremy R.; Rasmussen, Jared A.

    2011-05-01

    We measured normal and friction forces simultaneously using a recently developed cantilever-based optical interfacial force microscope technique for studies of interfacial structures and mechanical properties of nanoscale materials. We derived how the forces can be incorporated into the detection signal using the classical Euler equation for beams. A lateral modulation with the amplitude of nanometers was applied to create the friction forces between tip and sample. We demonstrated its capability by measuring normal and friction forces of interfacial water at the molecular scale over all distance ranges.

  17. Bifurcation, chaos, and scan instability in dynamic atomic force microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2016-03-01

    The dynamical motion at any point on the cantilever of an atomic force microscope can be expressed quite generally as a superposition of simple harmonic oscillators corresponding to the vibrational modes allowed by the cantilever shape. Central to the dynamical equations is the representation of the cantilever-sample interaction force as a polynomial expansion with coefficients that account for the interaction force "stiffness," the cantilever-to-sample energy transfer, and the displacement amplitude of cantilever oscillation. Renormalization of the cantilever beam model shows that for a given cantilever drive frequency cantilever dynamics can be accurately represented by a single nonlinear mass-spring model with frequency-dependent stiffness and damping coefficients [S. A. Cantrell and J. H. Cantrell, J. Appl. Phys. 110, 094314 (2011)]. Application of the Melnikov method to the renormalized dynamical equation is shown to predict a cascade of period doubling bifurcations with increasing cantilever drive force that terminates in chaos. The threshold value of the drive force necessary to initiate bifurcation is shown to depend strongly on the cantilever setpoint and drive frequency, effective damping coefficient, nonlinearity of the cantilever-sample interaction force, and the displacement amplitude of cantilever oscillation. The model predicts the experimentally observed interruptions of the bifurcation cascade for cantilevers of sufficiently large stiffness. Operational factors leading to the loss of image quality in dynamic atomic force microscopy are addressed, and guidelines for optimizing scan stability are proposed using a quantitative analysis based on system dynamical parameters and choice of feedback loop parameter.

  18. Casimir force between atomically thin gold films

    OpenAIRE

    Boström, Mathias; Persson, Clas; Sernelius, Bo E.

    2013-01-01

    We have used density functional theory to calculate the anisotropic dielectric functions for ultrathin gold sheets (composed of 1, 3, 6, and 15 atomic layers). Such films are important components in nano-electromechanical systems. When using correct dielectric functions rather than bulk gold dielectric functions we predict an enhanced attractive Casimir-Lifshitz force (at most around 20%) between two atomically thin gold sheets. For thicker sheets the dielectric properties and the correspondi...

  19. Demonstration of atomic scale stick-slip events stimulated by the force versus distance mode using atomic force microscopy

    Science.gov (United States)

    Watson, Gregory S.; Dinte, Bradley P.; Blach, Jolanta A.; Myhra, Sverre

    2002-08-01

    It has been shown that longitudinal deformation of the force-sensing/imposing lever can be stimulated by the conventional force versus distance (F-d), analytical mode of a scanning force microscope. Accordingly it is possible to measure simultaneously both in-plane and out-of-plane force components acting between a tip and a surface. Discrete atomic scale stick-slip events have been observed by F-d generated friction loop analysis of cleaved WTe2, Mica and HOPG single crystals, and of a Langmuir-Blodgett film. Due to the lever geometry, the lateral resolution arising from z-stage movement is better by an order of magnitude than that obtained from translation of the x-y-stage.

  20. Independent analysis of mechanical data from atomic force microscopy

    International Nuclear Information System (INIS)

    Present atomic force microscopes are capable of acquiring large data volumes by point using point force–distance spectroscopic measurements. Even if different trade names and different technical implementations are used, for most of these techniques a force–distance curve in every image pixel is measured, this curve is immediately fitted by some theoretical dependence and results are displayed as a mechanical properties channel (Young modulus, adhesion, etc). Results are processed during the measurement directly in the scanning probe microscopy controller or, after it, by manufacturer provided software. In this paper, we present a software tool for independent numerical processing of such data, including more numerical models for the force–distance curve evaluation and including a simple estimate of uncertainties related to the fitting procedure. This can improve the reliability and the analytical possibilities of mechanical properties mapping methods in an atomic force microscopy. (paper)

  1. Arrays of microscopic magnetic traps for cold atoms and their applications in atom optics

    Institute of Scientific and Technical Information of China (English)

    印建平; 高伟建; 胡建军

    2002-01-01

    A single microscopic magnetic trap for neutral atoms using planar current-carrying wires was proposed and studiedtheoretically by Weinstein et al. In this paper, we propose three structures of composite current-carrying wires to provide1D, 2D and 3D arrays of microscopic magnetic traps for cold alkali atoms. The spatial distributions of magnetic fieldsgenerated by these structures are calculated and the field gradient and curvature in each single microtrap are analysed.Our study shows that arrays of microscopic magnetic traps can be used to provide 1D, 2D or 3D atomic magneticlattices, and even to realize 1D, 2D and 3D arrays of magneto-optical traps, and so on.

  2. Is atomic-scale dissipation in NC-AFM real? Investigation using virtual atomic force microscopy

    International Nuclear Information System (INIS)

    Using a virtual dynamic atomic force microscope, that explicitly simulates the operation of a non-contact AFM experiment, we have performed calculations to investigate the formation of atomic-scale contrast in dissipation images. A non-conservative tip-surface interaction was implemented using the theory of dynamical response in scanning probe microscopy with energies and barriers derived from realistic atomistic modelling. It is shown how contrast in the damping signal is due to the hysteresis in the tip-surface force and not an artefact of the finite response of the complicated instrumentation. Topography and dissipation images of the CaO(001) surface are produced which show atomic-scale contrast in the dissipation with a corrugation of approximately 0.1 eV, which is typical of that observed in images of similar binary ionic surfaces. The effect of the fast-direction scanning speed on the image formation is also investigated and discussed

  3. Construction of a dilution refrigerator cooled scanning force microscope.

    Science.gov (United States)

    Gildemeister, A E; Ihn, T; Barengo, C; Studerus, P; Ensslin, K

    2007-01-01

    We present a scanning force microscope that operates in a dilution refrigerator at temperatures of about 100 mK. We use tuning fork sensors for scanning gate experiments on mesoscopic semiconductor nanostructures. Slip-stick motors allow sample coarse-positioning at base temperature. The construction, thermal anchoring, and a procedure to optimize the settings of the phase-locked loop that we use for sensor control are discussed in detail. We present low-temperature topographic and scanning gate images as examples of successful operation. PMID:17503925

  4. Reconstruction of Undersampled Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Arildsen, Thomas; Østergaard, Jan;

    2013-01-01

    Atomic force microscopy (AFM) is one of the most advanced tools for high-resolution imaging and manipulation of nanoscale matter. Unfortunately, standard AFM imaging requires a timescale on the order of seconds to minutes to acquire an image which makes it complicated to observe dynamic processes...

  5. PLASMID DNA IMAGED BY ATOMIC FORCE MICROSCOPY

    Czech Academy of Sciences Publication Activity Database

    Pachnerová Brabcová, Kateřina; Sihver, L.; Štěpán, Václav; Davídková, Marie

    Vol. 34. Bratislava : SMU - Faculty of Public Health, 2014. s. 125-125. ISBN 978-80-89384-08-2. [XXXVI.Dny radiační ochrany. 10.11.2014-14.11.2014, Poprad] Institutional support: RVO:61389005 Keywords : DNA damage * radiation * atomic force microscopy Subject RIV: BO - Biophysics

  6. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    Science.gov (United States)

    van der Heijden, Nadine J.; Smith, Daniël; Calogero, Gaetano; Koster, Rik S.; Vanmaekelbergh, Daniel; van Huis, Marijn A.; Swart, Ingmar

    2016-06-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Δ f (z ) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene on Cu(111) and Ir(111). The results are corroborated by density functional theory calculations employing a van der Waals functional.

  7. Advances in Atomic Force Microscopy and Scanning Tunneling Microscopy

    Science.gov (United States)

    Albrecht, Thomas Robert

    The scanning tunneling microscope (STM) and the more recently developed atomic force microscope (AFM) are high resolution scanning probe microscopes capable of three dimensional atomic-scale surface profiling. In the AFM, minute forces acting between the tip of a flexible cantilever stylus and the surface of the sample cause deflections of the cantilever which are detected by a tunneling or optical sensor with subangstrom sensitivity. The AFM work presented here involves surface profiling via repulsive contact forces between 10^{-6} and 10^{-9} N in magnitude. In this contact profiling (repulsive) mode the AFM is capable of atomic resolution on both electrically conducting and insulating surfaces (unlike the STM). AFM instrumentation for room temperature and low temperature operation is discussed. The critical component of the AFM is the cantilever stylus assembly, which should have a small mass. Several microfabrication processes have been developed to produce thin film SiO_2 and Si_3N_4 microcantilevers with integrated sharp tips. Atomic resolution has been achieved with the AFM in air on a number of samples, including graphite, MoS _2, TaSe_2, WTe_2, TaS_2, and BN (the first insulator imaged with atomic resolution by any means). Various organic and molecular samples have been imaged with nanometer resolution. The difference between STM and AFM response is shown in images of TaS _2 (a charge density wave material), and in simultaneous STM/AFM images of lattice defects and adsorbates on graphite and MoS_2. A number of artifacts make STM and AFM image interpretation subtle, such as tip shape effects, frictional effects, and tracking in atomic grooves. STM images of moire patterns near grain boundaries confirm the importance of tip shape effects. Various surface modification and lithography techniques have been demonstrated with the STM and AFM, including an STM voltage pulse technique which reproducibly creates 40 A diameter holes on the surface of graphite, and a

  8. Measurement of inter-particle forces by an interfacial force microscope

    Institute of Scientific and Technical Information of China (English)

    Qing Huang; Asghar Mesbah-Nejad; Seyed M. Tadayyon; Peter Norton; Hui Zhang; Jesse Zhu

    2010-01-01

    An inteffacial force microscope (IFM) was employed to measure the inter-particle forces between two individual glass beads with diameters varying from 8 to 20 μm. With the feedback function of IFM turned off, attractive forces were obtained. The forces varied in the range of 0.1-0.34 μN, and their validity was confirmed by a theoretical analysis of the van der Waals force between the same glass beads. With the feedback function switched on, no attractive forces between particles were detected by the IFM when the probe approached the sample substrate. This may be attributed to the dramatic change of the attractive forces within a very short separation distance and/or the relatively poor signal-to-noise ratio of the IFM.

  9. Accurate measurement of microscopic forces and torques using optical tweezers

    Directory of Open Access Journals (Sweden)

    Andrew Forbes

    2011-09-01

    Full Text Available It is now well known that matter may be trapped by optical fields with high intensity gradients. Once trapped, it is then possible to manipulate microscopic particles using such optical fields, in so-called optical tweezers. Such optical trapping and tweezing systems have found widespread application across diverse fields in science, from applied biology to fundamental physics. In this article we outline the design and construction of an optical trapping and tweezing system, and show how the resulting interaction of the laser light with microscopic particles may be understood in terms of the transfer of linear and angular momentum of light. We demonstrate experimentally the use of our optical tweezing configuration for the measurement of microscopic forces and torques. In particular, we make use of digital holography to create so-called vortex laser beams, capable of transferring orbital angular momentum to particles. The use of such novel laser beams in an optical trapping and tweezing set-up allows for the control of biological species at the single-cell level.

  10. Design of cantilever probes for Atomic Force Microscopy (AFM)

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2000-01-01

    A cantilever beam used in an Atomic Force Microscope is optimized with respect to two different objectives. The first goal is to maximize the first eigenfrequency while keeping the stiffness of the probe constant. The second goal is to maximize the tip angle of the first eigenmode while again...... keeping the stiffness constant. The resulting design of the beam from the latter optimization gives almost the same result as when maximizing the first eigenfrequency. Adding a restriction on the second eigenfrequency result in a significant change of the optimal design. The beam is modelled with 12 DOF...

  11. Manipulation of single magnetic protein particles using atomic force microscopy

    International Nuclear Information System (INIS)

    Horse-spleen ferritin has recently gained much attention as a nanoscale magnet that demonstrates macroscopic quantum tunneling of its magnetization through the anisotropy barrier. The size of the protein is ideal for the identification and manipulation of single particles using scanned-probe techniques. We demonstrate that accurate positioning of individual, surface-trapped horse-spleen particles can be achieved by mechanical pushing with the tip of an atomic force microscope. This technique offers a route to the incorporation of single ferritin particles as components in future nanoscale devices

  12. AtomicJ: An open source software for analysis of force curves

    International Nuclear Information System (INIS)

    We present an open source Java application for analysis of force curves and images recorded with the Atomic Force Microscope. AtomicJ supports a wide range of contact mechanics models and implements procedures that reduce the influence of deviations from the contact model. It generates maps of mechanical properties, including maps of Young's modulus, adhesion force, and sample height. It can also calculate stacks, which reveal how sample's response to deformation changes with indentation depth. AtomicJ analyzes force curves concurrently on multiple threads, which allows for high speed of analysis. It runs on all popular operating systems, including Windows, Linux, and Macintosh

  13. FIELD ION MICROSCOPE AND ATOM-PROBE STUDIES OF SCANNING TUNNELING MICROSCOPE TIPS

    OpenAIRE

    Nishikawa, O.; K. Hattori; Katsuki, F.; Tomitori, M.

    1988-01-01

    Tungsten and platinum-iridium alloy tips were observed by field emission and ion microscopes and were atom-probe mass analyzed to examine the tip surfaces corroded by exposure to air and by immersion into aqueous solutions. Although the A-P analysis indicates that the corroded layer is less than monoatomic thick for both W and Pt-Ir, the FEM and FIM observation indicates that exposure to air and immersion into solutions often result in the formation of a small protrusion at the tip apex. The ...

  14. Origin of current-induced forces in an atomic gold wire: A first-principles study

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Stokbro, Kurt; Taylor, Jeremy Philip;

    2003-01-01

    We address the microscopic origin of the current-induced forces by analyzing results of first principles density functional calculations of atomic gold wires connected to two gold electrodes with different electrochemical potentials. We find that current induced forces are closely related to the ...

  15. Atomic force microscopic comparison of remineralization with casein-phosphopeptide amorphous calcium phosphate paste, acidulated phosphate fluoride gel and iron supplement in primary and permanent teeth: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Nikita Agrawal

    2014-01-01

    Full Text Available Context: Demineralization of tooth by erosion is caused by frequent contact between the tooth surface and acids present in soft drinks. Aim: The present study objective was to evaluate the remineralization potential of casein-phosphopeptide-amorphous calcium phosphate (CPP-ACP paste, 1.23% acidulated phosphate fluoride (APF gel and iron supplement on dental erosion by soft drinks in human primary and permanent enamel using atomic force microscopy (AFM. Materials and Methods: Specimens were made from extracted 15 primary and 15 permanent teeth which were randomly divided into three treatment groups: CPP-ACP paste, APF gel and iron supplement. AFM was used for baseline readings followed by demineralization and remineralization cycle. Results and Statistics: Almost all group of samples showed remineralization that is a reduction in surface roughness which was higher with CPP-ACP paste. Statistical analysis was performed using by one-way ANOVA and Mann-Whitney U-test with P < 0.05. Conclusions: It can be concluded that the application of CPP-ACP paste is effective on preventing dental erosion from soft drinks.

  16. A method based on optical and atomic force microscopes for instant imaging of non-homogeneous electro-mechanical processes and direct estimation of dij coefficients in piezoelectric materials at the local level

    International Nuclear Information System (INIS)

    Highlights: • Non-homogeneous electro-mechanical properties of piezoelectric materials. • Local method for estimation of piezoelectric coefficients. • Spatial variation of piezoelectric coefficients. - Abstract: Ferroelectric materials have attracted much interest due to their wide and important technological applications. Regarding their piezoelectric properties, these materials are evaluated by means of relatively complicate global methods. In this work a comparatively simple and efficient local method for the direct estimation of the dij coefficients is presented. The method is based on conventional optical microscopy (OM) and advanced Atomic Force Microscopy (AFM) employed to image the local deformation of a specimen upon variation of a dc electric field. The feasibility and reliability of the method is demonstrated at room temperature in single crystals of (1−x)Pb(Mg1/3Nb2/3)O3–xPbTiO3. Non-homogeneous electro-mechanical processes are detected. Accordingly, the estimated dij coefficients exhibit a spatial variation over the crystal surface. Except for electro-mechanical systems, the introduced local method could find wide application for the investigation of spatially non-homogeneous properties that possibly exist in relevant magneto-mechanical and thermo-mechanical complex systems

  17. Force Density Balance inside the Hydrogen Atom

    CERN Document Server

    Himpsel, F J

    2015-01-01

    Motivated by the long-debated question about the internal stability of the electron, the force densities acting on the charge density of the 1s electron in the H atom are investigated. The problem is mapped onto the canonical formalism for a classical Dirac field coupled to the electric field of an external point charge. An explicit calculation shows that the attractive Coulomb force density is balanced exactly at every point in space by the repulsive confinement force density. The latter requires evaluating the divergence of the stress tensor for the 1s solution of the Dirac equation. Such a local force balance goes beyond the global stability criteria that are usually given for the H atom. This concept is extended to the internal stability of any charged particle by investigating the force densities acting on its surrounding vacuum polarization. At large distances one has to consider only the charge density of virtual electrons and positrons, induced by a point charge in the vacuum of quantum electrodynamic...

  18. Atomic Force Microscopy Application in Biological Research: A Review Study

    Directory of Open Access Journals (Sweden)

    Surena Vahabi

    2013-06-01

    Full Text Available Atomic force microscopy (AFM is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  19. Comparison of DC and AC Transport in 1.5-7.5 nm Oligophenylene Imine Molecular Wires across Two Junction Platforms: Eutectic Ga-In versus Conducting Probe Atomic Force Microscope Junctions.

    Science.gov (United States)

    Sangeeth, C S Suchand; Demissie, Abel T; Yuan, Li; Wang, Tao; Frisbie, C Daniel; Nijhuis, Christian A

    2016-06-15

    We have utilized DC and AC transport measurements to measure the resistance and capacitance of thin films of conjugated oligophenyleneimine (OPI) molecules ranging from 1.5 to 7.5 nm in length. These films were synthesized on Au surfaces utilizing the imine condensation chemistry between terephthalaldehyde and 1,4-benzenediamine. Near edge X-ray absorption fine structure (NEXAFS) spectroscopy yielded molecular tilt angles of 33-43°. To probe DC and AC transport, we employed Au-S-OPI//GaOx/EGaIn junctions having contact areas of 9.6 × 10(2) μm(2) (10(9) nm(2)) and compared to previously reported DC results on the same OPI system obtained using Au-S-OPI//Au conducting probe atomic force microscopy (CP-AFM) junctions with 50 nm(2) areas. We found that intensive observables agreed very well across the two junction platforms. Specifically, the EGaIn-based junctions showed: (i) a crossover from tunneling to hopping transport at molecular lengths near 4 nm; (ii) activated transport for wires >4 nm in length with an activation energy of 0.245 ± 0.008 eV for OPI-7; (iii) exponential dependence of conductance with molecular length with a decay constant β = 2.84 ± 0.18 nm(-1) (DC) and 2.92 ± 0.13 nm(-1) (AC) in the tunneling regime, and an apparent β = 1.01 ± 0.08 nm(-1) (DC) and 0.99 ± 0.11 nm(-1) (AC) in the hopping regime; (iv) previously unreported dielectric constant of 4.3 ± 0.2 along the OPI wires. However, the absolute resistances of Au-S-OPI//GaOx/EGaIn junctions were approximately 100 times higher than the corresponding CP-AFM junctions due to differences in metal-molecule contact resistances between the two platforms. PMID:27172452

  20. Microtensile Tests Using In Situ Atomic Force Microscopy

    Science.gov (United States)

    Lang, Udo; Dual, Jurg

    In recent years a new field in the micromechanical characterization of materials has emerged. Researchers started to integrate atomic force microscopes (AFM) into microtensile tests. This allowed to investigate surface deformation of layers with thicknesses in the range of micrometers. In the first part of this article experiments on organic samples are presented followed by developments on anorganic specimens. In the second part of the paper latest developments at the Center of Mechanics of ETH Zurich are presented. The setup allows to monitor crack growth with micrometer resolution. At the same time forces can be measured in the millinewton range. Specimens are made from photodefinable polyimide. The stress-crack- length diagrams of two experiments are presented which enables to identify different stages of crack growth and therefore of fracture behaviour. Finally, possible extensions of the setup employing digital image correlation (DIC) are envisioned by analyzing the displacement field around the crack tip.

  1. Contrast artifacts in tapping tip atomic force microscopy

    DEFF Research Database (Denmark)

    Kyhle, Anders; Sørensen, Alexis Hammer; Zandbergen, Julie Bjerring; Bohr, Jakob

    When recording images with an atomic force microscope using the resonant vibrating cantilever mode, surprising strange results are often achieved. Typical artifacts are strange contours, unexpected height shifts, and sudden changes of the apparent resolution in the acquired images. Such artifacts...... can be related to the dynamical properties of the cantilever under the influence of the force between the tip and the sample. The damping of the cantilever oscillation can be either due to attractive interaction between the tip and the sample or due to a combination of attractive and repulsive...... interaction. The oscillating cantilever will be in a specific swing mode according to which type of interaction is dominating, and it is the switching between these modes that is responsible for a range of artifacts observed during image acquisition. This includes the artifact often referred to as "contrast...

  2. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    Science.gov (United States)

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential. PMID:26628660

  3. Heating-Assisted Atom Transfer in the Scanning Tunneling Microscope

    CERN Document Server

    Grigorescu, M

    1998-01-01

    The effects of a voltage pulse on the localization probability for a Xe atom prepared in a pure state localized on the STM surface at 0 temperature is investigated by numerically integrating the time-dependent Schroedinger equation. In these calculations the environmental interactions are neglected, and voltage pulses of 20 and 7 ns with symmetric triangular and trapezoidal shapes are considered. The atom dynamics at an environmental temperature of 4 K is studied in the frame of a stochastic, non-linear Liouville equation for the density operator. It is shown that the irreversible transfer from surface to tip may be explained by thermal decoherence rather than by the driving force acting during the application of the voltage pulse.

  4. Atomic force microscopy-based shape analysis of heart mitochondria.

    Science.gov (United States)

    Lee, Gi-Ja; Park, Hun-Kuk

    2015-01-01

    Atomic force microscopy (AFM) has become an important medical and biological tool for the noninvasive imaging of cells and biomaterials in medical, biological, and biophysical research. The major advantages of AFM over conventional optical and electron microscopes for bio-imaging include the facts that no special coating is required and that imaging can be done in all environments-air, vacuum, or aqueous conditions. In addition, it can also precisely determine pico-nano Newton force interactions between the probe tip and the sample surface from force-distance curve measurements.It is widely known that mitochondrial swelling is one of the most important indicators of the opening of the mitochondrial permeability transition (MPT) pore. As mitochondrial swelling is an ultrastructural change, quantitative analysis of this change requires high-resolution microscopic methods such as AFM. Here, we describe the use of AFM-based shape analysis for the characterization of nanostructural changes in heart mitochondria resulting from myocardial ischemia-reperfusion injury. PMID:25634291

  5. Atomic force microscopy and scanning electron microscopic study on the fluorosis of enamel in rats%氟影响大鼠牙釉质发育的扫描电镜和原子力显微镜观察

    Institute of Scientific and Technical Information of China (English)

    陈黎明; 汤晔; 唐杰

    2015-01-01

    Objective To investigate the ultrastructure of enamel in the mandibular incisor tooth in a rat model of dental fluorosis.Methods Thirty 5-week-old male and female rats of SD strain were divided into three groups of ten.The animals in the control group were maintained for 8 weeks on pure deionized water,in the low-fluoride group deionized water with 22.5 mg/L of fluorine(50 mg/L NaF) was used,and in the high-fluoride group deionized water with 45 mg/L of fluorine(100 mg/L NaF) was used.All specimens examined were obtained from the mandibular incisors.Mid-sagittal ground sections were prepared from the direction of incisal point of each incisor for scanning electron microscopy(SEM) and atomic force microscopy (AFM).Results According to the SEM results,the prisms in the control group had a complete and clear column structure with closely packed enamel rods or enamel prisms.The prisms in the high-fluoride experimental group were collapsed and showed curved and fractured crystallites.The level of prism structural changes in the low-fluoride experimental group was in between that of the control group and the high-fluoride group.AFM for the middle layer enamel showed an average roughness(Ra) of (550.6±32.0) nm in the control group,(415.0±24.2) nm in the low-fluoride group,and (194.3± 11.3) nm for the high-fluoride group.There was significant difference between the high-fluoride group and the control group(P<0.05).Conclusions Formation of rat enamel in the high fluoride environment presented obvious structural collapse and no clearance between prisms.Such changes appear to indicate a loss of normal prism structure in rat enamels from exposure to high levels of fluorine during the maturation period.%目的 观察大鼠氟斑牙模型下颌切牙釉质的超微结构,探讨过量氟对牙体微观结构的影响.方法 30只5周龄SD大鼠雌雄各半,均分为3组,对照组用不含氟的去离子水喂养,低氟组用含22.5 mg/L F-(50 mg/L NaF)、高氟组用含45 mg

  6. Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions in Atomic Force Microscopy

    OpenAIRE

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The various dynamical implementations of the atomic force microscope have become important nanoscale characterization tools for the development of novel materials and devices. One of the most significant factors affecting all dynamical AFM modalities is the cantilever tip-sample surface interaction force. We have developed a detailed mathematical model of this interaction that includes a quantitative consideration of the nonlinearity of the interaction force as a function of the cantilever ti...

  7. Cell mechanics measured with Atomic force microscopy

    International Nuclear Information System (INIS)

    Full text: In this contribution, I would like to present recent results about cell mechanics obtained with atomic force microscopy and its relation with basic soft matter science. We will present a novel way to obtain viscoelastic properties (Young modulus, relaxation time and viscosity) of breast cancer cells based on stress relaxation and creep measurements. Additionally we will show the influence of applied stress on red blood cell shape. The importance of such type of measurements on soft matter physics, cell biology, and biomedical science. (author)

  8. Periodicity in bimodal atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chia-Yun; Santos, Sergio, E-mail: santos-en@yahoo.com; Chiesa, Matteo [Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), Masdar Institute of Science and Technology, Abu Dhabi (United Arab Emirates); Barcons, Victor [Departament de Disseny i Programació de Sistemes Electrònics, UPC - Universitat Politècnica de Catalunya, Av. Bases, 61, 08242 Manresa (Barcelona) (Spain)

    2015-07-28

    Periodicity is fundamental for quantification and the application of conservation principles of many important systems. Here, we discuss periodicity in the context of bimodal atomic force microscopy (AFM). The relationship between the excited frequencies is shown to affect and control both experimental observables and the main expressions quantified via these observables, i.e., virial and energy transfer expressions, which form the basis of the bimodal AFM theory. The presence of a fundamental frequency further simplifies the theory and leads to close form solutions. Predictions are verified via numerical integration of the equation of motion and experimentally on a mica surface.

  9. Periodicity in bimodal atomic force microscopy

    International Nuclear Information System (INIS)

    Periodicity is fundamental for quantification and the application of conservation principles of many important systems. Here, we discuss periodicity in the context of bimodal atomic force microscopy (AFM). The relationship between the excited frequencies is shown to affect and control both experimental observables and the main expressions quantified via these observables, i.e., virial and energy transfer expressions, which form the basis of the bimodal AFM theory. The presence of a fundamental frequency further simplifies the theory and leads to close form solutions. Predictions are verified via numerical integration of the equation of motion and experimentally on a mica surface

  10. Friction forces on atoms after acceleration

    International Nuclear Information System (INIS)

    The aim of this paper is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contribution to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3. (paper)

  11. Electrical resistivity of polypyrrole nanotube measured by conductive scanning probe microscope: The role of contact force

    Science.gov (United States)

    Park, J. G.; Lee, S. H.; Kim, B.; Park, Y. W.

    2002-12-01

    Polypyrrole (PPy) nanotubes were synthesized using the pores of track-etched polycarbonate membrane as a template. Its size depends on the pore diameter of template, range from 50 to 200 nm. Direct I-V measurements of PPy nanotube (diameter of 120 nm) deposited on Au were done using a metal-coated tapping-mode atomic-force-microscope tip. Linear I-V characteristics are observed, and the resistance is decreased as the contact force is increased. Using the Hertz model, the elastic modulus E and electrical resistivity ρ are estimated to be E˜1 GPa and ρ˜1 Ωcm. These values are consistent with those obtained in bulk PPy film.

  12. Measuring minority-carrier diffusion length using a Kelvin probe force microscope

    International Nuclear Information System (INIS)

    A method based on Kelvin probe force microscopy for measuring minority-carrier diffusion length in semiconductors is described. The method is based on measuring the surface photovoltage between the tip of an atomic force microscope and the surface of an illuminated semiconductor junction. The photogenerated carriers diffuse to the junction and change the contact potential difference between the tip and the sample, as a function of the distance from the junction. The diffusion length L is then obtained by fitting the measured contact potential difference using the minority-carrier continuity equation. The method was applied to measurements of electron diffusion length in GaP pn and Schottky junctions. The measured diffusion length was found to be ∼2 μm, in good agreement with electron beam induced current measurements

  13. Envejecimiento de Almidones Termoplásticos Agrios de Yuca y Nativos de Papa por Microscopía de Fuerza Atómica Ageing of Sour Cassava and Native Potato Thermoplastic Starches by Atomic Force Microscopy

    OpenAIRE

    Harold A Acosta; Héctor S Villada; Pedro A Prieto

    2006-01-01

    En este trabajo, se determinó la topografía de almidones termoplásticos (TPS) agrio de yuca y nativo de papa, mediante microscopía de fuerza atómica (AFM), durante un periodo de 120 días de almacenamiento. Mezclas de almidones agrios (fermentados) de yuca y nativo de papa, y glicerina, se procesaron en un extrusor de husillo sencillo. Láminas de TPS agrio de yuca (SCTPS) y nativo de papa (NPTPS), se observaron y midieron por AFM (en modo contacto). Sus superficies mostraron incremento en rugo...

  14. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    Science.gov (United States)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-08-01

    In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  15. Atomic Force Microscopy for Soil Analysis

    Science.gov (United States)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  16. Investigating cell mechanics with atomic force microscopy.

    Science.gov (United States)

    Haase, Kristina; Pelling, Andrew E

    2015-03-01

    Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells 'feel', we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved. PMID:25589563

  17. Minitips in Frequency-Modulation Atomic Force Microscopy at Liquid-Solid Interfaces

    Science.gov (United States)

    Hiasa, Takumi; Kimura, Kenjiro; Onishi, Hiroshi

    2012-02-01

    A frequency-modulation atomic force microscope was operated in liquid using sharpened and cone-shaped tips. The topography of mica and alkanethiol monolayers was obtained with subnanometer resolution, regardless of nominal tip radius, which was either 10 or 250 nm. Force-distance curves determined over a hexadecane-thiol interface showed force modulations caused by liquid layers structured at the interface. The amplitude of force modulation and the layer-to-layer distance were completely insensitive to the nominal tip radius. These results are evidence that minitips smaller than the nominal radius are present on the tip body and function as a force probe.

  18. Mechanical manifestations of rare atomic jumps in dynamic force microscopy

    Science.gov (United States)

    Hoffmann, R.; Baratoff, A.; Hug, H. J.; Hidber, H. R.; Löhneysen, H. v.; Güntherodt, H.-J.

    2007-10-01

    The resonance frequency and the excitation amplitude of a silicon cantilever have been measured as a function of distance to a cleaved KBr(001) surface with a low-temperature scanning force microscope (SFM) in ultrahigh vacuum. We identify two regimes of tip-sample distances. Above a site-dependent critical tip-sample distance reproducible data with low noise and no interaction-induced energy dissipation are measured. In this regime reproducible SFM images can be recorded. At closer tip-sample distances, above two distinct atomic sites, the frequency values jump between two limiting curves on a timescale of tens of milliseconds. Furthermore, additional energy dissipation occurs wherever jumps are observed. We attribute both phenomena to rarely occurring changes in the tip apex configuration which are affected by short-range interactions with the sample. Their respective magnitudes are related to each other. A specific candidate two-level system is also proposed.

  19. Use of atomic force microscopy to quantify slip irreversibility in a nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Risbet, M.; Feaugas, X.; Guillemer-Neel, C.; Clavel, M

    2003-09-15

    Atomic force microscopy was used to study the evolution of surface deformation during cyclic loading in a nickel-base superalloy. Cyclic slip irreversibility has been investigated using quantitative evaluation of extrusion heights and inter-band spacing. This approach is applied to formulate a microscopic crack initiation law, compared to a classical Manson-Coffin relationship.

  20. Use of atomic force microscopy to quantify slip irreversibility in a nickel-base superalloy

    International Nuclear Information System (INIS)

    Atomic force microscopy was used to study the evolution of surface deformation during cyclic loading in a nickel-base superalloy. Cyclic slip irreversibility has been investigated using quantitative evaluation of extrusion heights and inter-band spacing. This approach is applied to formulate a microscopic crack initiation law, compared to a classical Manson-Coffin relationship

  1. Single molecule binding dynamics measured with atomic force microscopy

    International Nuclear Information System (INIS)

    We present a new method to analyse simultaneous Topography and RECognition Atomic Force Microscopy data such that it becomes possible to measure single molecule binding rates of surface bound proteins. We have validated this method on a model system comprising a S-layer surface modified with Strep-tagII for binding sites and strep-tactin bound to an Atomic Force Microscope tip through a flexible Poly-Ethylene-Glycol linker. At larger distances, the binding rate is limited by the linker, which limits the diffusion of the strep-tactin molecule, but at lateral distances below 3 nm, the binding rate is solely determined by the intrinsic molecular characteristics and the surface geometry and chemistry of the system. In this regime, Kon as determined from single molecule TREC data is in agreement with Kon determined using traditional biochemical methods. - Highlights: • We discuss the importance of studying single molecule binding rates for surface bound proteins. • We show measurements of single molecule binding rates on a model system using AFM. • We discuss the influence of various components on the measured binding rates

  2. High-Speed Atomic Force Microscopy

    Science.gov (United States)

    Ando, Toshio; Uchihashi, Takayuki; Kodera, Noriyuki

    2012-08-01

    The technology of high-speed atomic force microscopy (HS-AFM) has reached maturity. HS-AFM enables us to directly visualize the structure and dynamics of biological molecules in physiological solutions at subsecond to sub-100 ms temporal resolution. By this microscopy, dynamically acting molecules such as myosin V walking on an actin filament and bacteriorhodopsin in response to light are successfully visualized. High-resolution molecular movies reveal the dynamic behavior of molecules in action in great detail. Inferences no longer have to be made from static snapshots of molecular structures and from the dynamic behavior of optical markers attached to biomolecules. In this review, we first describe theoretical considerations for the highest possible imaging rate, then summarize techniques involved in HS-AFM and highlight recent imaging studies. Finally, we briefly discuss future challenges to explore.

  3. High-frequency multimodal atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Adrian P. Nievergelt

    2014-12-01

    Full Text Available Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples.

  4. Tip characterizer for atomic force microscopy

    Science.gov (United States)

    Itoh, Hiroshi; Fujimoto, Toshiyuki; Ichimura, Shingo

    2006-10-01

    A tip characterizer for atomic force microscopy (AFM) was developed based on the fabrication of multilayer thin films. Comb-shaped line and space (LS) and wedge-shaped knife-edge structures were fabricated on a GaAs substrate. GaAs /InGaP superlattices were used to control the width of the structures precisely, and selective chemical etching was used to form sharp edges on the nanostructures. The minimum size of the LS structure was designed to be 10nm, and the radius of the knife edge was less than 5nm. These nanostructures were used as a well-defined tip characterizer to measure the shape of a tip on a cantilever from line profiles of AFM images.

  5. Nanoscale imaging of Bacillus thuringiensis flagella using atomic force microscopy

    Science.gov (United States)

    Gillis, Annika; Dupres, Vincent; Delestrait, Guillaume; Mahillon, Jacques; Dufrêne, Yves F.

    2012-02-01

    Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in cell surface appendages.Because bacterial flagella play essential roles in various processes (motility, adhesion, host interactions, secretion), studying their expression in relation to function is an important challenge. Here, we use atomic force microscopy (AFM) to gain insight into the nanoscale surface properties of two wild-type and four mutant strains of Bacillus thuringiensis exhibiting various levels of flagellation. We show that, unlike AFM in liquid, AFM in air is a simple and reliable approach to observe the morphological details of the bacteria, and to quantify the density and dimensions of their flagella. We found that the amount of flagella expressed by the six strains, as observed at the nanoscale, correlates with their microscopic swarming motility. These observations provide novel information on flagella expression in Gram-positive bacteria and demonstrate the power of AFM in genetic studies for the fast assessment of the phenotypic characteristics of bacterial strains altered in

  6. Measurement adhesion force between fine particle and effect of humidity: An study with Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Adhesion force is interaction between particle- particle and particle surface. First Hertz in 1882 calculated adhesion force between spherical particle and planar surface. Adhesion force in interested for scientist and different industries such as paint, foot, pharmaceutical, etc. In this study we measured adhesion force between fine particle such as silica and silicon and mica surface, with Atomic Force Microscopy. The adhesion force measured between particle-planar surfaces with Atomic Force Microscopy on different humidity and simulated results.

  7. Robust atomic force microscopy using multiple sensors.

    Science.gov (United States)

    Baranwal, Mayank; Gorugantu, Ram S; Salapaka, Srinivasa M

    2016-08-01

    Atomic force microscopy typically relies on high-resolution high-bandwidth cantilever deflection measurements based control for imaging and estimating sample topography and properties. More precisely, in amplitude-modulation atomic force microscopy (AM-AFM), the control effort that regulates deflection amplitude is used as an estimate of sample topography; similarly, contact-mode AFM uses regulation of deflection signal to generate sample topography. In this article, a control design scheme based on an additional feedback mechanism that uses vertical z-piezo motion sensor, which augments the deflection based control scheme, is proposed and evaluated. The proposed scheme exploits the fact that the piezo motion sensor, though inferior to the cantilever deflection signal in terms of resolution and bandwidth, provides information on piezo actuator dynamics that is not easily retrievable from the deflection signal. The augmented design results in significant improvements in imaging bandwidth and robustness, especially in AM-AFM, where the complicated underlying nonlinear dynamics inhibits estimating piezo motions from deflection signals. In AM-AFM experiments, the two-sensor based design demonstrates a substantial improvement in robustness to modeling uncertainties by practically eliminating the peak in the sensitivity plot without affecting the closed-loop bandwidth when compared to a design that does not use the piezo-position sensor based feedback. The contact-mode imaging results, which use proportional-integral controllers for cantilever-deflection regulation, demonstrate improvements in bandwidth and robustness to modeling uncertainties, respectively, by over 30% and 20%. The piezo-sensor based feedback is developed using H∞ control framework. PMID:27587128

  8. Effects of Microscopic Three-body Forces in Asymmetric Nuclear Matter

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The efiects of microscopic three-body forces on the equatioil of state(EOS)and the single particle properties of isospin asymmetric nuclear matter have been studied within Brueckner-Hartree-Fock framework~[1]The microscopic three-body force model constructed from meson exchange current approach in Ref.~[2] has been extended to isospin asymmetric nuclear matter

  9. Interaction forces between silica surfaces in cationic surfactant solutions: an atomic force microscopy study.

    Science.gov (United States)

    Lüderitz, Liset A C; v Klitzing, Regine

    2013-07-15

    The interaction forces between silicon oxide surfaces in the presence of surfactant solutions were studied. Based on the qualitative and quantitative analysis of these interaction forces the correlation with the structure of the aggregates on the surfaces is analyzed. A colloidal probe atomic force microscope (AFM) was used to measure the forces between two colloidal silica particles and between a colloidal particle and a silicon wafer in the presence of hexadecyltrimethylammonium bromide (CTAB) at concentrations between 0.005 mM and 1.2 mM. Different interaction forces were obtained for the silica particle-silica particle system when compared to those for the silica particle-silicon wafer system for the same studied concentration. This indicates that the silica particles and the silicon wafer have different aggregate morphologies on their surfaces. The point of zero charge (pzc) was obtained at 0.05 mM CTAB concentration for the silica particles and at 0.3mM for the silica particle-silicon wafer system. This indicates a higher charge at the silicon wafer than at the silica particles. The observed long range attractions are explained by nanobubbles present at the silicon oxide surfaces and/or by attractive electrostatic interactions between the surfaces, induced by oppositely charged patches at the opposing Si oxide surfaces. PMID:23647691

  10. Surface properties and interaction forces of biopolymer-doped conductive polypyrrole surfaces by atomic force microscopy.

    Science.gov (United States)

    Pelto, Jani M; Haimi, Suvi P; Siljander, Aliisa S; Miettinen, Susanna S; Tappura, Kirsi M; Higgins, Michael J; Wallace, Gordon G

    2013-05-21

    Surface properties and electrical charges are critical factors elucidating cell interactions on biomaterial surfaces. The surface potential distribution and the nanoscopic and microscopic surface elasticity of organic polypyrrole-hyaluronic acid (PPy-HA) were studied by atomic force microscopy (AFM) in a fluid environment in order to explain the observed enhancement in the attachment of human adipose stem cells on positively charged PPy-HA films. The electrostatic force between the AFM tip and a charged PPy-HA surface, the tip-sample adhesion force, and elastic moduli were estimated from the AFM force curves, and the data were fitted to electrostatic double-layer and elastic contact models. The surface potential of the charged and dried PPy-HA films was assessed with Kelvin probe force microscopy (KPFM), and the KPFM data were correlated to the fluid AFM data. The surface charge distribution and elasticity were both found to correlate well with the nodular morphology of PPy-HA and to be sensitive to the electrochemical charging conditions. Furthermore, a significant change in the adhesion was detected when the surface was electrochemically charged positive. The results highlight the potential of positively charged PPy-HA as a coating material to enhance the stem cell response in tissue-engineering scaffolds. PMID:23621360

  11. Atomic force microscopy characterization of cellulose nanocrystals.

    Science.gov (United States)

    Lahiji, Roya R; Xu, Xin; Reifenberger, Ronald; Raman, Arvind; Rudie, Alan; Moon, Robert J

    2010-03-16

    Cellulose nanocrystals (CNCs) are gaining interest as a "green" nanomaterial with superior mechanical and chemical properties for high-performance nanocomposite materials; however, there is a lack of accurate material property characterization of individual CNCs. Here, a detailed study of the topography, elastic and adhesive properties of individual wood-derived CNCs is performed using atomic force microscopy (AFM). AFM experiments involving high-resolution dynamic mode imaging and jump-mode measurements were performed on individual CNCs under ambient conditions with 30% relative humidity (RH) and under a N(2) atmosphere with 0.1% RH. A procedure was also developed to calculate the CNC transverse elastic modulus (E(T)) by comparing the experimental force-distance curves measured on the CNCs with 3D finite element calculations of tip indentation on the CNC. The E(T) of an isolated CNC was estimated to be between 18 and 50 GPa at 0.1% RH; however, the associated crystallographic orientation of the CNC could not be determined. CNC properties were reasonably uniform along the entire CNC length, despite variations along the axis of 3-8 nm in CNC height. The range of RH used in this study was found to have a minimal effect on the CNC geometry, confirming the resistance of the cellulose crystals to water penetration. CNC flexibility was also investigated by using the AFM tip as a nanomanipulator. PMID:20055370

  12. Atomic scale imaging and spectroscopy of individual electron trap states using force detected dynamic tunnelling

    International Nuclear Information System (INIS)

    We report the first atomic scale imaging and spectroscopic measurements of electron trap states in completely non-conducting surfaces by dynamic tunnelling force microscopy/spectroscopy. Single electrons are dynamically shuttled to/from individual states in thick films of hafnium silicate and silicon dioxide. The new method opens up surfaces that are inaccessible to the scanning tunnelling microscope for imaging and spectroscopy on an atomic scale.

  13. Atomic and Molecular Manipulation with a Scanning Tunneling Microscope

    OpenAIRE

    Sperl, Alexander

    2011-01-01

    In this thesis structural, electronic, chemical properties and dynamic processes of adsorbed nanostructures on metal surfaces are investigated with a low-temperature scanning tunneling microscope (STM).

  14. Multifunctional hydrogel nano-probes for atomic force microscopy

    Science.gov (United States)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-01-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165

  15. Multifunctional hydrogel nano-probes for atomic force microscopy

    Science.gov (United States)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  16. Haptics and Graphic Analogies for the Understanding of Atomic Force Microscopy

    OpenAIRE

    Millet, Guillaume; LECUYER, Anatole; BURKHARDT, Jean Marie; Haliyo, Sinan; Regnier, Stéphane

    2013-01-01

    This paper aims to evaluate the benefits of using virtual reality and force-feedback to help teaching nanoscale applications. We propose a teaching aid that combines graphic analogies and haptics intended to improve the grasp of non-intuitive nanoscale phenomena for people without prior knowledge of nanophysics. We look specifically at the most important nanophysical phenomenon, namely, the behavior of the probe of an Atomic Force Microscope (AFM) as it approaches a sample. The results from e...

  17. Measurement of the absolute separation for atomic force microscopy measurements in the presence of adsorbed polymer

    OpenAIRE

    McKee, C. T.; Mosse, W. K. J.; Ducker, W. A.

    2006-01-01

    We demonstrate that the absolute separation between an atomic force microscope (AFM) tip and a solid substrate can be measured in the presence of an irreversibly adsorbed polymer film. The separation is obtained from the analysis of a scattered evanescent wave that is generated at the surface of the solid. By comparing our scattering measurements to conventional AFM measurements, we also show an example where a conventional AFM measurement gives the incorrect force-distance profile. We valida...

  18. Nano-scale mechanical probing of supported lipid bilayers with atomic force microscopy

    OpenAIRE

    Das, Chinmay; Sheik, Khizar H.; Olmsted, Peter D.; Connell, Simon D.

    2010-01-01

    We present theory and experiments for the force-distance curve $F(z_0)$ of an atomic force microscope (AFM) tip (radius $R$) indenting a supported fluid bilayer (thickness $2d$). For realistic conditions the force is dominated by the area compressibility modulus $\\kappa_A$ of the bilayer, and, to an excellent approximation, given by $F= \\pi \\kappa_A R z_0^2/(2d-z_0)^2$. The experimental AFM force curves from coexisting liquid ordered and liquid disordered domains in 3-component lipid bilayers...

  19. Atomic Force Microscopy Based Cell Shape Index

    Science.gov (United States)

    Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia

    2013-03-01

    Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.

  20. Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips

    OpenAIRE

    Gross, Leo; Schuler, Bruno; Mohn, Fabian; Moll, Nikolaj; Pavliček, Niko; Steurer, Wolfram; Scivetti, Ivan; Kotsis, Konstantinos; Persson, Mats; Meyer, Gerhard

    2014-01-01

    Noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM) have become important tools for nanotechnology; however, their contrast mechanisms on the atomic scale are not entirely understood. Here we used chlorine vacancies in NaCl bilayers on Cu(111) as a model system to investigate atomic contrast as a function of applied voltage, tip height, and tip functionalization. We demonstrate that the AFM contrast on the atomic scale decisively depends on both the tip termin...

  1. Sharing my fifteen years experiences in the research field of Atomic Force Microscopy (AFM

    Directory of Open Access Journals (Sweden)

    Guha T

    2014-03-01

    Full Text Available Atomic Force Microscope (AFM was developed by Binnig and his coworkers in the year 1986. He was awarded Nobel Prize in physics for this work in 1986 in sharing with Rohrer and Ruska. Rationale to develop AFM: Scanning Tunneling Microscope (STM, the precursor to AFM is efficient in imaging electrically conducting specimen at atomic resolution. The impetus for development of AFM came to Binnig’s mind because of relatively poor efficiency of STM to image electrically non-conducting biological samples. He wondered why the surfaces be always imaged with a current but not with a force. He thought if small forces of interactions between a probe tip atoms and specimen surface atoms could be detected and amplified then imaging of biological specimen would be possible at a very high resolution. AFM working Principle: AFM is a Scanning Probe Microscopy (SPM by which imaging is realized by interaction of a probe with sample surface without any beam (light, electron and lens system. The probe is attached to a soft and sensitive cantilever and either specimen is scanned by probe or specimen scans itself under a stationary probe. Probe’s spring constant must be small and the deflection must be measurable along with high resonance frequency. The most commonly associated force with AFM is called Vander Waals force. Three modes of working are contact mode, non contact mode and tapping mode. In contact zone, the probe tip attached with cantilever is held less than a few A˚ from the sample surface and the inter-atomic force between the atoms of probe tip and sample surface is repulsive. In non-contact zone, the probe tip is held at a distance of 100s of A˚ from the sample surface and the inter-atomic force here is long range Vander Waals interaction and is attractive in nature. AFM is also called Scanning Force Microscope because the force of interaction between probe tip atoms and surface atoms is amplified to generate a signal voltage which modulates video

  2. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals

    OpenAIRE

    Harrison, A. J.; Bilgili, E. A.; Beaudoin, S. P.; Taylor, L. S.

    2013-01-01

    The goal of this work was to evaluate the ability of photothermal induced resonance (PTIR) to measure the local infrared absorption spectra of crystalline organic drug nanoparticles embedded within solid matrices. Herein, the first reports of the chemical characterization of sub-100 nm organic crystals are described; infrared spectra of 90 nm griseofulvin particles were obtained, confirming the chemical resolution of PTIR beyond the diffraction limit. Additionally, particle size distributions...

  3. Atomic force microscope infrared spectroscopy of griseofulvin nanocrystals.

    Science.gov (United States)

    Harrison, Aaron J; Bilgili, Ecevit A; Beaudoin, Stephen P; Taylor, Lynne S

    2013-12-01

    The goal of this work was to evaluate the ability of photothermal-induced resonance (PTIR) to measure the local infrared absorption spectra of crystalline organic drug nanoparticles embedded within solid matrices. Herein, the first reports of the chemical characterization of sub-100 nm organic crystals are described; infrared spectra of 90 nm griseofulvin particles were obtained, confirming the chemical resolution of PTIR beyond the diffraction limit. Additionally, particle size distributions via dynamic light scattering and PTIR image analysis were found to be similar, suggesting that the PTIR measurements are not significantly affected by inhomogeneous infrared absorptivity of this system. Thus as medical applications increasingly emphasize localized drug delivery via micro/nanoengineered structures, PTIR can be used to unambiguously chemically characterize drug formulations at these length scales. PMID:24171582

  4. A Nanostructual Microwave Probe Used for Atomic Force Microscope

    CERN Document Server

    Ju, Y; Kobayashi, T; Soyama, H

    2008-01-01

    In order to develop a new structure microwave probe, the fabrication of AFM probe on the GaAs wafer was studied. A waveguide was introduced by evaporating Au film on the top and bottom surfaces of the GaAs AFM probe. A tip having 8 micrometers high, and curvature radius about 50 nm was formed. The dimensions of the cantilever are 250x30x15 micrometers. The open structure of the waveguide at the tip of the probe was introduced by using FIB fabrication. AFM topography of a grating sample was measured by using the fabricated GaAs microwave probe. The fabricated probe was found having nanometer scale resolution, and microwave emission was detected successfully at the tip of the probe by approaching Cr-V steel and Au wire samples.

  5. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth;

    2001-01-01

    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two......-component DMPC-DSPC bilayers and a remarkable enhanced hydrolytic activity of the PLA/sub 2/-enzyme for the DMPC-rich phase is seen. Furthermore, in a supported double bilayer system a characteristic ripple structure, most likely related to the formation of the P/sub beta /-ripple phase is observed....

  6. Recurrence Tracking Microscope

    CERN Document Server

    Saif, F

    2006-01-01

    In order to probe nanostructures on a surface we present a microscope based on the quantum recurrence phenomena. A cloud of atoms bounces off an atomic mirror connected to a cantilever and exhibits quantum recurrences. The times at which the recurrences occur depend on the initial height of the bouncing atoms above the atomic mirror, and vary following the structures on the surface under investigation. The microscope has inherent advantages over existing techniques of scanning tunneling microscope and atomic force microscope. Presently available experimental technology makes it possible to develop the device in the laboratory.

  7. Light forces on an indium atomic beam

    International Nuclear Information System (INIS)

    In this thesis it was studied, whether indium is a possible candidate for the nanostructuration respectively atomic lithography. For this known method for the generation and stabilization of the light necessary for the laser cooling had to be fitted to the special properties of indium. The spectroscopy of indium with the 451 nm and the 410 nm light yielded first hints that the formulae for the atom-light interaction for a two-level atom cannot be directly transferred to the indium atom. By means of the obtained parameters of the present experiment predictions for a possible Doppler cooling of the indium atomic beam were calculated. Furthermore the possibility for the direct deposition of indium on a substrate was studied

  8. Understanding the atomic-scale contrast in Kelvin Probe Force Microscopy

    CERN Document Server

    Nony, Laurent; Bocquet, Franck; Loppacher, Christian; 10.1103/PhysRevLett.103.036802

    2009-01-01

    A numerical analysis of the origin of the atomic-scale contrast in Kelvin probe force microscopy (KPFM) is presented. Atomistic simulations of the tip-sample interaction force field have been combined with a non-contact Atomic Force Microscope/KPFM simulator. The implementation mimics recent experimental results on the (001) surface of a bulk alkali halide crystal for which simultaneous atomic-scale topographical and Contact Potential Difference (CPD) contrasts were reported. The local CPD does reflect the periodicity of the ionic crystal, but not the magnitude of its Madelung surface potential. The imaging mechanism relies on the induced polarization of the ions at the tip-surface interface owing to the modulation of the applied bias voltage. Our findings are in excellent agreement with previous theoretical expectations and experimental observations.

  9. Nonlinear Dynamics of Cantilever-Sample Interactions in Atomic Force Microscopy

    Science.gov (United States)

    Cantrell, John H.; Cantrell, Sean A.

    2010-01-01

    The interaction of the cantilever tip of an atomic force microscope (AFM) with the sample surface is obtained by treating the cantilever and sample as independent systems coupled by a nonlinear force acting between the cantilever tip and a volume element of the sample surface. The volume element is subjected to a restoring force from the remainder of the sample that provides dynamical equilibrium for the combined systems. The model accounts for the positions on the cantilever of the cantilever tip, laser probe, and excitation force (if any) via a basis set of set of orthogonal functions that may be generalized to account for arbitrary cantilever shapes. The basis set is extended to include nonlinear cantilever modes. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a matrix iteration procedure. The effects of oscillatory excitation forces applied either to the cantilever or to the sample surface (or to both) are obtained from the solution set and applied to the to the assessment of phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) modalities. The influence of bistable cantilever modes of on AFM signal generation is discussed. The effects on the cantilever-sample surface dynamics of subsurface features embedded in the sample that are perturbed by surface-generated oscillatory excitation forces and carried to the cantilever via wave propagation are accounted by the Bolef-Miller propagating wave model. Expressions pertaining to signal generation and image contrast in A-AFM are obtained and applied to amplitude modulation (intermittent contact) atomic force microscopy and resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM). The influence of phase accumulation in A-AFM on image contrast is discussed, as is the effect of hard contact and maximum nonlinearity regimes of A-AFM operation.

  10. Dispersion forces II. Many-body effects, excited atoms, finite temperature and quantum friction

    Energy Technology Data Exchange (ETDEWEB)

    Buhmann, Stefan Yoshi [Imperial College London (United Kingdom). Quantum Optics and Laser Science

    2012-07-01

    Presents the unified theory of dispersion forces. Gives a thorough overview over recent results of dispersion forces. Deals with applied macroscopic quantum electrodynamics. Gives guidance to simulation of realistic material properties. In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contexts.

  11. Cold atoms in microscopic traps from wires to chips

    CERN Document Server

    Cassettari, D

    2000-01-01

    Ioffe-Pritchard trap. In the latter we have achieved the trapping parameters required in the experiments with Bose-Einstein condensates with much reduced power consumption. In a second time we have replaced the free standing wires with an atom chip, which we have used to compress the atomic cloud in potentials with trap frequencies above 100 kHz and ground state sizes below 100 nm. Such potentials are especially interesting for quantum information proposals of performing quantum gate operations with controlled collisions between trapped atoms. Finally, by combining two wire guides we have experimentally realized an innovative kind of beam splitter for guided atoms. We have investigated the splitting potential generated by a Y-shaped wire which has one input, i.e. the central arm of the Y, and two outputs corresponding to the left and right arms of the Y. By tuning the current ratio in the two outputs we have observed atoms switching from left to right as well as symmetric splitting. This and other similar des...

  12. Atomic Force Microscopy as a Tool for Applied Virology and Microbiology

    Science.gov (United States)

    Zaitsev, Boris

    2003-12-01

    Atomic force microscope (AFM) can be successfully used for simple and fast solution of many applied biological problems. In this paper the survey of the results of the application of atomic force microscope SolverP47BIO (NT-MDT, Russia) in State Research Center of Virology and Biotechnology "Vector" is presented. The AFM has been used: - in applied virology for the counting of viral particles and examination of virus-cell interaction; - in microbiology for measurements and indication of bacterial spores and cells; - in biotechnology for control of biotechnological processes and evaluation of the distribution of particle dimension for viral and bacterial diagnostic assays. The main advantages of AFM in applied researches are simplicity of the processing of sample preparation and short time of the examination.

  13. Minimizing tip–sample forces in jumping mode atomic force microscopy in liquid

    International Nuclear Information System (INIS)

    Control and minimization of tip–sample interaction forces are imperative tasks to maximize the performance of atomic force microscopy. In particular, when imaging soft biological matter in liquids, the cantilever dragging force prevents identification of the tip–sample mechanical contact, resulting in deleterious interaction with the specimen. In this work we present an improved jumping mode procedure that allows detecting the tip–sample contact with high accuracy, thus minimizing the scanning forces (∼100 pN) during the approach cycles. To illustrate this method we report images of human adenovirus and T7 bacteriophage particles which are prone to uncontrolled modifications when using conventional jumping mode. -- Highlights: ► Improvement in atomic force microscopy in buffer solution. ► Peak force detection. ► Subtracting the cantilever dragging force. ► Forces in the 100 pN range. ► Imaging of delicate viruses with atomic force microscopy.

  14. Silicon Carbide Epitaxial Films Studied by Atomic Force Microscopy

    Science.gov (United States)

    1996-01-01

    Silicon carbide (SiC) holds great potential as an electronic material because of its wide band gap energy, high breakdown electric field, thermal stability, and resistance to radiation damage. Possible aerospace applications of high-temperature, high-power, or high-radiation SiC electronic devices include sensors, control electronics, and power electronics that can operate at temperatures up to 600 C and beyond. Commercially available SiC devices now include blue light-emitting diodes (LED's) and high-voltage diodes for operation up to 350 C, with other devices under development. At present, morphological defects in epitaxially grown SiC films limit their use in device applications. Research geared toward reducing the number of structural inhomogeneities can benefit from an understanding of the type and nature of problems that cause defects. The Atomic Force Microscope (AFM) has proven to be a useful tool in characterizing defects present on the surface of SiC epitaxial films. The in-house High-Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center not only extended the dopant concentration range achievable in epitaxial SiC films, but it reduced the concentration of some types of defects. Advanced structural characterization using the AFM was warranted to identify the type and structure of the remaining film defects and morphological inhomogeneities. The AFM can give quantitative information on surface topography down to molecular scales. Acquired, in part, in support of the Advanced High Temperature Engine Materials Technology Program (HITEMP), the AFM had been used previously to detect partial fiber debonding in composite material cross sections. Atomic force microscopy examination of epitaxial SiC film surfaces revealed molecular-scale details of some unwanted surface features. Growth pits propagating from defects in the substrate, and hillocks due, presumably, to existing screw dislocations in the substrates, were

  15. Raman-atomic force microscopy of the ommatidial surfaces of Dipteran compound eyes

    Science.gov (United States)

    Anderson, Mark S.; Gaimari, Stephen D.

    2003-01-01

    The ommatidial lens surfaces of the compound eyes in several species of files (Insecta: Diptera) and a related order (Mecoptera) were analyzed using a recently developed Raman-atomic force microscope. We demonstrate in this work that the atomic force microscope (AFM) is a potentially useful instrument for gathering phylogenetic data and that the newly developed Raman-AFM may extend this application by revealing nanometer-scale surface chemistry. This is the first demonstration of apertureless near-field Raman spectroscopy on an intact biological surface. For Chrysopilus testaceipes Bigot (Rhagionidae), this reveals unique cerebral cortex-like surface ridges with periodic variation in height and surface chemistry. Most other Brachyceran flies, and the "Nematoceran" Sylvicola fenestralis (Scopoli) (Anisopodidae), displayed the same morphology, while other taxa displayed various other characteristics, such as a nodule-like (Tipula (Triplicitipula) sp. (Tipulidae)) or coalescing nodule-like (Tabanus punctifer Osten Sacken (Tabanidae)) morphology, a smooth morphology with distinct pits and grooves (Dilophus orbatus (Say) (Bibionidae)), or an entirely smooth surface (Bittacus chlorostigma MacLachlan (Mecoptera: Bittacidae)). The variation in submicrometer structure and surface chemistry provides a new information source of potential phylogenetic importance, suggesting the Raman-atomic force microscope could provide a new tool useful to systematic and evolutionary inquiry.

  16. Visualization of polymer macromolecules with atomic force microscopy

    International Nuclear Information System (INIS)

    Full text: Visualization of individual macromolecules with atomic force microscopy (AFM) becomes the important issue because of the high expectations of nanoscience and nanotechnology. At present, the practical applications of nanotechnology are quite limited, yet many of them benefit from AFM. Complementing microscopic and diffraction techniques, AFM is established itself as a routine tool for recognition, control and manipulation of surface objects in the sub-micron scale. Important issues of the AFM imaging at this scale are a calibration of the piezoelectric actuators and a preparation of samples. For the precise imaging of objects in the nanometer-scale, a couple of calibration samples with a pitch of 1.23 nm and 7.5 nm will be introduced. Various sample preparation techniques (spin-casting, dipping, Langmuir-Blodgett, vapor deposition, etc) and different substrates are usually applied in AFM of single macromolecules. In addition to the proper calibration and sample preparation, an optimization of imaging conditions helps reveal the nanometer-scale structures in a reliable fashion. Practical results, which were obtained in visualization of polymer macromolecules of spherical and cylindrical shape, will be discussed. A special attention will be paid to the interplay of the adsorbate-substrate epitaxy, intermolecular interactions between the adsorbed macromolecules and tip-sample forces. These factors are governing not only a conformation of isolated single macromolecules on surfaces and their self-assembly in the adsorbed layers and but also the AFM capabilities of visualization and manipulation of these objects. Copyright (2002) Australian Society for Electron Microscopy Inc

  17. Analysis of Atomic Force Curve Data for Mapping of Surface Properties in Water

    Science.gov (United States)

    Sirghi, Lucel; Nakagiri, Nobuyuki; Sugimura, Hiroyuki; Takai, Osamu

    2001-03-01

    This paper presents an analysis of atomic force versus distance curves for a silicon nitride probe and a silicon sample immersed in water. A custom-built atomic force microscope (AFM) was adapted for working in water by building a water cell from a liquid drop caught between a glass lamella fixed on the top of the cantilever base and the sample surface. An algorithm for processing of force curve data for long- and short-range forces is described. The force curve data taken for a sample consisting of a silicon wafer Si(111) patterned with V-shaped grooves and a silicon nitride cantilever in water were digitally acquired and automatically processed for mapping of surface properties. A weak repulsive double layer force with no relevant dependence on sample topography was observed on the force curves taken during approach movement of the cantilever. On the other hand, the attractive hydration force showed a strong dependence on the sample topography. Large hydration force values were noticed on the inclined faces of the V-shaped grooves while small hydration force values were noticed outside the grooves. The result was explained by the dependence of the tip curvature radius at the contact region on the tilt of the sample surface.

  18. Dispersive forces on bodies and atoms: a unified approach

    OpenAIRE

    Raabe, Christian; Welsch, Dirk-Gunnar

    2006-01-01

    A unified approach to the calculation of dispersive forces on ground-state bodies and atoms is given. It is based on the ground-state Lorentz force density acting on the charge and current densities attributed to the polarization and magnetization in linearly, locally, and causally responding media. The theory is applied to dielectric macro- and micro-objects, including single atoms. Existing formulas valid for weakly polarizable matter are generalized to allow also for strongly polarizable m...

  19. Microscopic mean field approximation and beyond with the Gogny force

    International Nuclear Information System (INIS)

    Fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) calculations have been performed with the D1S Gogny force. A brief review on the main results obtained in this approach is presented. After a reminder on the method and on the first results concerning giant resonances in deformed Mg and Si isotopes, the multipole responses up to octupole in the deformed and heavy nucleus 238U are discussed. In order to analyse soft dipole modes in exotic nuclei, the dipole responses have been studied in Ne isotopes and in N=16 isotopes, for which results are presented. In these nuclei, the QRPA results on the low lying 2+ states are compared to the 5-Dimensional Collective Hamiltonian (5DCH) ones. Results on dipole mode are in good agreement with experimental data. For spherical nuclei, the QRPA formalism completes the 5DCH predictions including the same effective interaction

  20. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    OpenAIRE

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges ...

  1. Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid

    CERN Document Server

    Hoof, Sebastian; Hoogenboom, Bart W

    2012-01-01

    Dynamic-mode atomic force microscopy (AFM) in liquid remains complicated due to the strong viscous damping of the cantilever resonance. Here we show that a high-quality resonance (Q>20) can be achieved in aqueous solution by attaching a microgram-bead at the end of the nanogram-cantilever. The resulting increase in cantilever mass causes the resonance frequency to drop significantly. However, the force sensitivity --- as expressed via the minimum detectable force gradient --- is hardly affected, because of the enhanced quality factor. Via the enhancement of the quality factor, the attached bead also reduces the relative importance of noise in the deflection detector. It can thus yield an improved signal-to-noise ratio when this detector noise is significant. We describe and analyze these effects for a set-up which includes magnetic actuation of the cantilevers and which can be easily implemented in any AFM system that is compatible with an inverted optical microscope.

  2. Atomic force microscopy imaging of transition metal layered compounds: A two-dimensional stick–slip system

    OpenAIRE

    Kerssemakers, J.; De Hosson, J.Th.M.

    1995-01-01

    Various layered transition metal dichalcogenides were scanned with an optical-lever atomic force microscope (AFM). The microscopic images indicate the occurrence of strong lateral stick–slip effects. In this letter, two models are presented to describe the observations due to stick–slip, i.e., either as a static or as a dynamic phenomenon. Although both models describe correctly the observed shapes of the unit cell, details in the observed and simulated images point at dynamic nonequilibrium ...

  3. Electrical characterization of grain boundaries of CZTS thin films using conductive atomic force microscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Muhunthan, N.; Singh, Om Pal [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India); Toutam, Vijaykumar, E-mail: toutamvk@nplindia.org [Quantum Phenomena and Applications Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012 (India); Singh, V.N., E-mail: singhvn@nplindia.org [Compound Semiconductor Solar Cell, Physics of Energy Harvesting Division, New Delhi 110012 (India)

    2015-10-15

    Graphical abstract: Experimental setup for conducting AFM (C-AFM). - Highlights: • Cu{sub 2}ZnSnS{sub 4} (CZTS) thin film was grown by reactive co-sputtering. • The electronic properties were probed using conducting atomic force microscope, scanning Kelvin probe microscopy and scanning capacitance microscopy. • C-AFM current flow mainly through grain boundaries rather than grain interiors. • SKPM indicated higher potential along the GBs compared to grain interiors. • The SCM explains that charge separation takes place at the interface of grain and grain boundary. - Abstract: Electrical characterization of grain boundaries (GB) of Cu-deficient CZTS (Copper Zinc Tin Sulfide) thin films was done using atomic force microscopic (AFM) techniques like Conductive atomic force microscopy (CAFM), Kelvin probe force microscopy (KPFM) and scanning capacitance microscopy (SCM). Absorbance spectroscopy was done for optical band gap calculations and Raman, XRD and EDS for structural and compositional characterization. Hall measurements were done for estimation of carrier mobility. CAFM and KPFM measurements showed that the currents flow mainly through grain boundaries (GB) rather than grain interiors. SCM results showed that charge separation mainly occurs at the interface of grain and grain boundaries and not all along the grain boundaries.

  4. Lead zirconate titanate cantilever for noncontact atomic force microscopy

    Science.gov (United States)

    Miyahara, Y.; Fujii, T.; Watanabe, S.; Tonoli, A.; Carabelli, S.; Yamada, H.; Bleuler, H.

    1999-02-01

    Noncontact atomic force microscopy with frequency modulation detection is a promising technique for surface observation with true atomic resolution. The piezoelectric material itself can be an actuator and sensor of the oscillating probe simultaneously, without the need for additional electro-mechanical transducers or other measurement systems. A vertical resolution of 0.01 nm rms has been achieved using a microfabricated cantilever with lead zirconate titanate thin film in noncontact mode frequency modulation detection. The cantilever also has a sharpened pyramidal stylus with a radius of about 10 nm for noncontact atomic force microscopy.

  5. Nano Scale Mechanical Analysis of Biomaterials Using Atomic Force Microscopy

    Science.gov (United States)

    Dutta, Diganta

    The atomic force microscope (AFM) is a probe-based microscope that uses nanoscale and structural imaging where high resolution is desired. AFM has also been used in mechanical, electrical, and thermal engineering applications. This unique technique provides vital local material properties like the modulus of elasticity, hardness, surface potential, Hamaker constant, and the surface charge density from force versus displacement curve. Therefore, AFM was used to measure both the diameter and mechanical properties of the collagen nanostraws in human costal cartilage. Human costal cartilage forms a bridge between the sternum and bony ribs. The chest wall of some humans is deformed due to defective costal cartilage. However, costal cartilage is less studied compared to load bearing cartilage. Results show that there is a difference between chemical fixation and non-chemical fixation treatments. Our findings imply that the patients' chest wall is mechanically weak and protein deposition is abnormal. This may impact the nanostraws' ability to facilitate fluid flow between the ribs and the sternum. At present, AFM is the only tool for imaging cells' ultra-structure at the nanometer scale because cells are not homogeneous. The first layer of the cell is called the cell membrane, and the layer under it is made of the cytoskeleton. Cancerous cells are different from normal cells in term of cell growth, mechanical properties, and ultra-structure. Here, force is measured with very high sensitivity and this is accomplished with highly sensitive probes such as a nano-probe. We performed experiments to determine ultra-structural differences that emerge when such cancerous cells are subject to treatments such as with drugs and electric pulses. Jurkat cells are cancerous cells. These cells were pulsed at different conditions. Pulsed and non-pulsed Jurkat cell ultra-structures were investigated at the nano meter scale using AFM. Jurkat cell mechanical properties were measured under

  6. In-trap fluorescence detection of atoms in a microscopic dipole trap

    CERN Document Server

    Hilliard, A J; Sompet, P; Carpentier, A V; Andersen, M F

    2015-01-01

    We investigate fluorescence detection using a standing wave of blue-detuned light of one or more atoms held in a deep, microscopic dipole trap. The blue-detuned standing wave realizes a Sisyphus laser cooling mechanism so that an atom can scatter many photons while remaining trapped. When imaging more than one atom, the blue detuning limits loss due to inelastic light-assisted collisions. Using this standing wave probe beam, we demonstrate that we can count from one to the order of 100 atoms in the microtrap with sub-poissonian precision.

  7. A reaction microscope for studies positron-atom collisions

    International Nuclear Information System (INIS)

    Complete text of publication follows. Differential investigations, especially in positron physics, are very time consuming. The data collection takes weeks if not months. In order to reduce the data collection time or increase the accuracy of the measured data, new methods are necessary. A recently developed system combines the advantages of the above mentioned methods i.e. simultaneous energy and angular detection, by measuring the energy and angular distribution of the recoil ion. A further benefit is the 4? collection of the recoil ions comparing with the traditional methods where only a small part of the collision events can be detected. This method, called Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS), has been successfully applied for investigating ion, electron and photon collisions (see [1] and reference therein). When the residual ions are recorded in coincidence with the outgoing fragments, a kinematically complete picture can be determined about the correlated motion of the fragments of atomic and molecular breakup processes. Up till now the COLTRIMS have not been used in positron collision physics due to the serious requirement for the quality of the projectile and the target beam. For good time and position resolution timed projectile beam of about 1mm or less diameter is necessary. For the target beam the requirements are similar: the diameter must be small (around 1 mm) and very dense (1011 - 1013atom/cm3) due to the low projectile beam intensity. A further requirement is the small initial momentum distribution of the target atoms due to the small momentum transfer (0.3-4 a.u.) during collision. (The momentum distribution of He is 5.8 a.u. at room temperature.) The solution is using a supersonic gas target which has small diameter, high density and small momentum distribution. It is about 0.05 - 0.2 a.u. in the jet direction. Application of the COLTRIMS method in positron physics has several advantages in spite of the technical difficulties

  8. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    Energy Technology Data Exchange (ETDEWEB)

    Celotta, Robert J., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov; Hess, Frank M.; Rutter, Gregory M.; Stroscio, Joseph A., E-mail: robert.celotta@nist.gov, E-mail: joseph.stroscio@nist.gov [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Balakirsky, Stephen B. [Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Georgia Tech Research Institute, Atlanta, Georgia 30332 (United States); Fein, Aaron P. [Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2014-12-15

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

  9. Coherent Scattering of Near-Resonant Light by a Dense Microscopic Cold Atomic Cloud

    Science.gov (United States)

    Jennewein, S.; Besbes, M.; Schilder, N. J.; Jenkins, S. D.; Sauvan, C.; Ruostekoski, J.; Greffet, J.-J.; Sortais, Y. R. P.; Browaeys, A.

    2016-06-01

    We measure the coherent scattering of light by a cloud of laser-cooled atoms with a size comparable to the wavelength of light. By interfering a laser beam tuned near an atomic resonance with the field scattered by the atoms, we observe a resonance with a redshift, a broadening, and a saturation of the extinction for increasing atom numbers. We attribute these features to enhanced light-induced dipole-dipole interactions in a cold, dense atomic ensemble that result in a failure of standard predictions such as the "cooperative Lamb shift". The description of the atomic cloud by a mean-field model based on the Lorentz-Lorenz formula that ignores scattering events where light is scattered recurrently by the same atom and by a microscopic discrete dipole model that incorporates these effects lead to progressively closer agreement with the observations, despite remaining differences.

  10. Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope

    International Nuclear Information System (INIS)

    A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach

  11. Imaging material properties of biological samples with a Force Feedback Microscope

    CERN Document Server

    Costa, Luca; Newman, Emily; Zubieta, Chloe; Chevrier, Joel; Comin, Fabio

    2013-01-01

    Mechanical properties of biological samples have been imaged with a force feedback microscope. The force, force gradient and the dissipation are simultaneously measured quantitatively from solely the knowledge of the spring constant. The results are preliminary but demonstrate that the method can be used to measure material properties, it is robust and produce quantitative high force resolution measurements of interaction characteristics. The small stiffness and oscillation of the cantilever results in an vibrational energy much smaller than the thermal energy, reducing the interaction to a minimum. Because the lever is over-damped, the excitation frequency can be chosen arbitrarily.

  12. Cooling and trapping neutral atoms with radiative forces

    International Nuclear Information System (INIS)

    Techniques to slow and trap neutral atoms at high densities with radiative forces are discussed in this review articles. Among several methods of laser cooling, it is emphasized Zeeman Tuning of the electronic levels and frequency-sweeping techniques. Trapping of neutral atoms and recent results obtained in light and magnetic traps are discussed. Techniques to further cool atoms inside traps are presented and the future of laser cooling of neutral atoms by means of radiation pressure is discussed. (A.C.A.S.)

  13. Large area scanning probe microscope in ultra-high vacuum demonstrated for electrostatic force measurements on high-voltage devices

    Directory of Open Access Journals (Sweden)

    Urs Gysin

    2015-12-01

    Full Text Available Background: The resolution in electrostatic force microscopy (EFM, a descendant of atomic force microscopy (AFM, has reached nanometre dimensions, necessary to investigate integrated circuits in modern electronic devices. However, the characterization of conducting or semiconducting power devices with EFM methods requires an accurate and reliable technique from the nanometre up to the micrometre scale. For high force sensitivity it is indispensable to operate the microscope under high to ultra-high vacuum (UHV conditions to suppress viscous damping of the sensor. Furthermore, UHV environment allows for the analysis of clean surfaces under controlled environmental conditions. Because of these requirements we built a large area scanning probe microscope operating under UHV conditions at room temperature allowing to perform various electrical measurements, such as Kelvin probe force microscopy, scanning capacitance force microscopy, scanning spreading resistance microscopy, and also electrostatic force microscopy at higher harmonics. The instrument incorporates beside a standard beam deflection detection system a closed loop scanner with a scan range of 100 μm in lateral and 25 μm in vertical direction as well as an additional fibre optics. This enables the illumination of the tip–sample interface for optically excited measurements such as local surface photo voltage detection.Results: We present Kelvin probe force microscopy (KPFM measurements before and after sputtering of a copper alloy with chromium grains used as electrical contact surface in ultra-high power switches. In addition, we discuss KPFM measurements on cross sections of cleaved silicon carbide structures: a calibration layer sample and a power rectifier. To demonstrate the benefit of surface photo voltage measurements, we analysed the contact potential difference of a silicon carbide p/n-junction under illumination.

  14. Immobilization of different biomolecules by atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Hölzel Ralph

    2010-05-01

    Full Text Available Abstract Background Micrometer resolution placement and immobilization of probe molecules is an important step in the preparation of biochips and a wide range of lab-on-chip systems. Most known methods for such a deposition of several different substances are costly and only suitable for a limited number of probes. In this article we present a flexible procedure for simultaneous spatially controlled immobilization of functional biomolecules by molecular ink lithography. Results For the bottom-up fabrication of surface bound nanostructures a universal method is presented that allows the immobilization of different types of biomolecules with micrometer resolution. A supporting surface is biotinylated and streptavidin molecules are deposited with an AFM (atomic force microscope tip at distinct positions. Subsequent incubation with a biotinylated molecule species leads to binding only at these positions. After washing streptavidin is deposited a second time with the same AFM tip and then a second biotinylated molecule species is coupled by incubation. This procedure can be repeated several times. Here we show how to immobilize different types of biomolecules in an arbitrary arrangement whereas most common methods can deposit only one type of molecules. The presented method works on transparent as well as on opaque substrates. The spatial resolution is better than 400 nm and is limited only by the AFM's positional accuracy after repeated z-cycles since all steps are performed in situ without moving the supporting surface. The principle is demonstrated by hybridization to different immobilized DNA oligomers and was validated by fluorescence microscopy. Conclusions The immobilization of different types of biomolecules in high-density microarrays is a challenging task for biotechnology. The method presented here not only allows for the deposition of DNA at submicrometer resolution but also for proteins and other molecules of biological relevance that

  15. Autopilot for frequency-modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri, E-mail: phsivan@tx.technion.ac.il [Department of Physics and the Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2015-10-15

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  16. Autopilot for frequency-modulation atomic force microscopy

    Science.gov (United States)

    Kuchuk, Kfir; Schlesinger, Itai; Sivan, Uri

    2015-10-01

    One of the most challenging aspects of operating an atomic force microscope (AFM) is finding optimal feedback parameters. This statement applies particularly to frequency-modulation AFM (FM-AFM), which utilizes three feedback loops to control the cantilever excitation amplitude, cantilever excitation frequency, and z-piezo extension. These loops are regulated by a set of feedback parameters, tuned by the user to optimize stability, sensitivity, and noise in the imaging process. Optimization of these parameters is difficult due to the coupling between the frequency and z-piezo feedback loops by the non-linear tip-sample interaction. Four proportional-integral (PI) parameters and two lock-in parameters regulating these loops require simultaneous optimization in the presence of a varying unknown tip-sample coupling. Presently, this optimization is done manually in a tedious process of trial and error. Here, we report on the development and implementation of an algorithm that computes the control parameters automatically. The algorithm reads the unperturbed cantilever resonance frequency, its quality factor, and the z-piezo driving signal power spectral density. It analyzes the poles and zeros of the total closed loop transfer function, extracts the unknown tip-sample transfer function, and finds four PI parameters and two lock-in parameters for the frequency and z-piezo control loops that optimize the bandwidth and step response of the total system. Implementation of the algorithm in a home-built AFM shows that the calculated parameters are consistently excellent and rarely require further tweaking by the user. The new algorithm saves the precious time of experienced users, facilitates utilization of FM-AFM by casual users, and removes the main hurdle on the way to fully automated FM-AFM.

  17. Quasi in situ scanning force microscope with an automatic operated reaction chamber.

    Science.gov (United States)

    Hund, Markus; Olszowka, Violetta; Fischer, Franz; Krejtschi, Heinz

    2011-11-01

    We describe the design and performance of a quasi in situ scanning force microscope with an automatic operated reaction chamber. The design provides a repetitive hermetically sealed sample environment for successive processing. The reaction chamber is based on a combination of a flexure-guided cover, a piezo-positioning system and a force applicator system. An axial force seals the cover against the reactor enabling flow-through applications at low pressure, ambient pressure, or elevated pressure. The position stability of the sample relative to the probe is characterized and a full automated operation of the instrument is explored by the alignment of an ABC terblock copolymer thin film undergoing solvent vapor annealing in the presence of a high electric field. Due to the high electric field strength and the sharp scanning force microscope tip it is impossible to perform in situ scanning in the presence of the electric field. PMID:22128986

  18. Microscopic Three-Body Force Effect on Nucleon-Nucleon Cross Sections in Symmetric Nuclear Matter

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-Fei; ZUO Wei; Lombardo Umberto; LI Zeng-Hua; LI Jun-Qing

    2008-01-01

    We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the Argonne V14 potential including the contribution of microscopic three-body force. We investigate separately the effects of three-body force on the effective mass and on the scattering amplitude. In the present calculation, the rearrangement contribution of three-body force is considered, which will reduce the neutron and proton effective mass, and depress the amplitude of cross section. The effect of three body force is shown to be repulsive, especially in high densities and large momenta, which will suppress the cross section markedly.

  19. Morfología Superficial de Almidones Termoplásticos Agrio de Yuca y Nativo de Papa por Microscopía Óptica y de Fuerza Atómica Surface Morphology of Sour Cassava and Native Potato Thermoplastic Starches by Optical and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Harold A Acosta

    2006-01-01

    Full Text Available Se ha evaluado la morfología superficial de almidones termoplásticos (TPS obtenidos de almidones agrio de yuca y nativo de papa, extruidos con tornillo simple, usando microscopía óptica de alta resolución (OM y de fuerza atómica (AFM. Muestras de almidones agrio de yuca y nativo de papa más glicerina, se procesaron a 120 ºC y 50 rpm, dando extruidos que se cortaron en láminas delgadas, que se observaron por OM y AFM (modo contacto intermitente. El almidón nativo de papa mostró grandes gránulos ovoides y el almidón agrio de yuca reveló el ataque enzimático debido a la fermentación natural. Los TPS mostraron superficies lisas y rugosas dependiendo de la forma y el tamaño del gránulo, de la fermentación natural y del contenido de plastificante. Los TPS nativo de papa exhibieron pocas superficies lisas por OM y alta rugosidad por AFM; lo contrario se presentó con el TPS agrio de yuca, debido a su fermentación natural previa. Estos resultados contribuyen a predecir y entender las propiedades microestructurales, mecánicas y texturales de los almidones termoplásticos.An evaluation was made of the surface morphology of thermoplastic starches (TPS from sour cassava and native potato, extruded with a single-screw extruder, using high-resolution optical microscopy (OM and atomic force microscopy (AFM. Samples of sour cassava starch and native potato starch and glycerine, were processed at 120(0C and 50 rpm, producing extrudates which were cut into thin films for observation by OM and AFM (intermittent contact mode. Native potato starch showed large ovoid granules, while sour cassava starch revealed enzyme attack due to natural fermentation. The TPS had smooth and rough surfaces, depending upon granule size and shape, starch fermentation, and plasticizer content. Native potato TPS presented few smooth surfaces by OM and high roughness by AFM. The opposite was observed with sour cassava TPS, which had experienced some previous natural

  20. Real-time atomic force microscopy in lubrication condition

    International Nuclear Information System (INIS)

    We have studied frictional force and wear problem in real-time atomic force microscopy in contact-mode using a resonator type mechanical scanner allegedly reported. The fast scanning may cause wear in the sample surface or the tip, and may deteriorate the image quality. Mineral oil was used to make a lubricious surface on a polycarbonate sample, and it was found that the interfacial frictional force was decreased. A Si tip which was coated with a hydrophobic film by means of chemical modification was confirmed to diminish the frictional force in the fast scanning process. The resultant image quality was improved due to reduced friction and wear.

  1. Analytical Model of the Nonlinear Dynamics of Cantilever Tip-Sample Surface Interactions for Various Acoustic-Atomic Force Microscopies

    Science.gov (United States)

    Cantrell, John H., Jr.; Cantrell, Sean A.

    2008-01-01

    A comprehensive analytical model of the interaction of the cantilever tip of the atomic force microscope (AFM) with the sample surface is developed that accounts for the nonlinearity of the tip-surface interaction force. The interaction is modeled as a nonlinear spring coupled at opposite ends to linear springs representing cantilever and sample surface oscillators. The model leads to a pair of coupled nonlinear differential equations that are solved analytically using a standard iteration procedure. Solutions are obtained for the phase and amplitude signals generated by various acoustic-atomic force microscope (A-AFM) techniques including force modulation microscopy, atomic force acoustic microscopy, ultrasonic force microscopy, heterodyne force microscopy, resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), and the commonly used intermittent contact mode (TappingMode) generally available on AFMs. The solutions are used to obtain a quantitative measure of image contrast resulting from variations in the Young modulus of the sample for the amplitude and phase images generated by the A-AFM techniques. Application of the model to RDF-AFUM and intermittent soft contact phase images of LaRC-cp2 polyimide polymer is discussed. The model predicts variations in the Young modulus of the material of 24 percent from the RDF-AFUM image and 18 percent from the intermittent soft contact image. Both predictions are in good agreement with the literature value of 21 percent obtained from independent, macroscopic measurements of sheet polymer material.

  2. Nanoscale mechanical probing of supported lipid bilayers with atomic force microscopy.

    Science.gov (United States)

    Das, Chinmay; Sheikh, Khizar H; Olmsted, Peter D; Connell, Simon D

    2010-10-01

    We present theory and experiments for the force-distance curve F(z(0)) of an atomic force microscope (AFM) tip (radius R) indenting a supported fluid bilayer (thickness 2d). For realistic conditions the force is dominated by the area compressibility modulus κ(A) of the bilayer and, to an excellent approximation, given by F=πκ(A)Rz(0)(2)/(2d-z(0))(2). The experimental AFM force curves from coexisting liquid ordered and liquid disordered domains in three-component lipid bilayers are well described by our model, which provides κ(A) in agreement with literature values. The liquid ordered phase has a yieldlike response that we model as due to the breaking of hydrogen bonds. PMID:21230326

  3. Nano-scale mechanical probing of supported lipid bilayers with atomic force microscopy

    CERN Document Server

    Das, Chinmay; Olmsted, Peter D; Connell, Simon D

    2010-01-01

    We present theory and experiments for the force-distance curve $F(z_0)$ of an atomic force microscope (AFM) tip (radius $R$) indenting a supported fluid bilayer (thickness $2d$). For realistic conditions the force is dominated by the area compressibility modulus $\\kappa_A$ of the bilayer, and, to an excellent approximation, given by $F= \\pi \\kappa_A R z_0^2/(2d-z_0)^2$. The experimental AFM force curves from coexisting liquid ordered and liquid disordered domains in 3-component lipid bilayers are well-described by our model, and provides $\\kappa_A$ in agreement with literature values. The liquid ordered phase has a yield like response that we model by hydrogen bond breaking.

  4. Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope

    DEFF Research Database (Denmark)

    Thirstrup, C.; Sakurai, M.; Stokbro, Kurt; Aono, M.

    1999-01-01

    Scanning tunneling microscope (STM) induced light emission from artificial atomic scale structures comprising silicon dangling bonds on hydrogen-terminated Si(001) surfaces has been mapped spatially and analyzed spectroscopically in the visible spectral range. The light emission is based on a novel...

  5. Design and construction of a heat stage for investigations of samples by atomic force microscopy above ambient temperatures

    DEFF Research Database (Denmark)

    Bækmark, Thomas Rosleff; Bjørnholm, Thomas; Mouritsen, Ole G.

    1997-01-01

    The construction from simple and cheap commercially available parts of a miniature heat stage for the direct heating of samples studied with a commercially available optical-lever-detection atomic force microscope is reported. We demonstrate that by using this heat stage, atomic resolution can be...... obtained on highly oriented pyrolytic graphite at 52 °C. The heat stage is of potential use for the investigation of biological material at physiological temperatures. ©1997 American Institute of Physics....

  6. Monitoring the osmotic response of single yeast cells through force measurement in the environmental scanning electron microscope

    International Nuclear Information System (INIS)

    We present a measurement system that combines an environmental scanning electron microscope (ESEM) and an atomic force microscope (AFM). This combination enables studies of static and dynamic mechanical properties of hydrated specimens, such as individual living cells. The integrated AFM sensor provides direct and continuous force measurement based on piezoresistive force transduction, allowing the recording of events in the millisecond range. The in situ ESEM-AFM setup was used to study Pichia pastoris wild-type yeast cells. For the first time, a quantified measure of the osmotic response of an individual yeast cell inside an ESEM is presented. With this technique, cell size changes due to humidity variations can be monitored with nanometre accuracy. In addition, mechanical properties were extracted from load–displacement curves. A Young's modulus of 13–15 MPa was obtained for the P. pastoris yeast cells. The developed method is highly interesting as a complementary tool for the screening of drugs directed towards cellular water transport activity and provides new possibilities of studying mechanosensitive regulation of aquaporins. (paper)

  7. Monitoring the osmotic response of single yeast cells through force measurement in the environmental scanning electron microscope

    Science.gov (United States)

    Jansson, Anna; Nafari, Alexandra; Hedfalk, Kristina; Olsson, Eva; Svensson, Krister; Sanz-Velasco, Anke

    2014-02-01

    We present a measurement system that combines an environmental scanning electron microscope (ESEM) and an atomic force microscope (AFM). This combination enables studies of static and dynamic mechanical properties of hydrated specimens, such as individual living cells. The integrated AFM sensor provides direct and continuous force measurement based on piezoresistive force transduction, allowing the recording of events in the millisecond range. The in situ ESEM-AFM setup was used to study Pichia pastoris wild-type yeast cells. For the first time, a quantified measure of the osmotic response of an individual yeast cell inside an ESEM is presented. With this technique, cell size changes due to humidity variations can be monitored with nanometre accuracy. In addition, mechanical properties were extracted from load-displacement curves. A Young's modulus of 13-15 MPa was obtained for the P. pastoris yeast cells. The developed method is highly interesting as a complementary tool for the screening of drugs directed towards cellular water transport activity and provides new possibilities of studying mechanosensitive regulation of aquaporins.

  8. Adsorption Geometry Determination of Single Molecules by Atomic Force Microscopy

    OpenAIRE

    Schuler, Bruno; Liu, Wei; Tkatchenko, Alexandre; Moll, Nikolaj; Meyer, Gerhard; Mistry, Anish; Fox, David; GROSS, Leo

    2013-01-01

    We measured the adsorption geometry of single molecules with intramolecular resolution using noncontact atomic force microscopy with functionalized tips. The lateral adsorption position was determined with atomic resolution, adsorption height differences with a precision of 3 pm, and tilts of the molecular plane within 0.2 degrees. The method was applied to five pi-conjugated molecules, including three molecules from the olympicene family, adsorbed on Cu(111). For the olympicenes, we found th...

  9. Nonequilibrium Atom-Dielectric Forces Mediated by a Quantum Field

    OpenAIRE

    Behunin, Ryan Orson; Hu, Bei-Lok

    2011-01-01

    In this paper we give a first principles microphysics derivation of the nonequilibrium forces between an atom, treated as a three dimensional harmonic oscillator, and a bulk dielectric medium modeled as a continuous lattice of oscillators coupled to a reservoir. We assume no direct interaction between the atom and the medium but there exist mutual influences transmitted via a common electromagnetic field. By employing concepts and techniques of open quantum systems we introduce coarse-grainin...

  10. Intermittent contact atomic force microscopy in electrochemical environment

    Energy Technology Data Exchange (ETDEWEB)

    Haering, P.; Koetz, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Siegenthaler, H. [Bern Univ., Bern (Switzerland)

    1997-06-01

    In situ measurements with Atomic Force Microscopy may cause surface modifications due to the tip-surface interactions. As an alternative and less destructive method, Intermittent Contact Atomic Force Microscopy (ICAFM) has been tested in an electrolytic environment. In the ICAFM mode the tip is not constantly in contact with the surface under investigation but is tapping onto the surface with a certain frequency. A commercial Park Scientific Instruments Microscopy has been modified to enable in situ experiment with ICAFM. It was possible to image iridium oxide films with ICAFM in the electrolytic environment without any noticeable surface modifications. (author) 3 figs., 4 refs.

  11. Transport properties of magnetic atom bridges controlled by a scanning tunneling microscope

    International Nuclear Information System (INIS)

    We have investigated the transport and magnetic properties of the atom bridge made from magnetic materials, which is the atom-scale wire constructed between a scanning tunneling microscope (STM) tip and a solid surface, by the use of ab initio calculations. In the case of the twisted ladder structure atom bridge made of Fe, we have found that the magnetic state of the bridge changes from ferromagnetic to paramagnetic, as we compress the bridge in length. We report the spin dependent quantized conductance of the bridge. And we discuss the origin of a change in transport properties as we compress the bridge in length

  12. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    Science.gov (United States)

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  13. Local Viscoelastic Properties of Live Cells Investigated Using Dynamic and Quasi-Static Atomic Force Microscopy Methods

    OpenAIRE

    Cartagena, Alexander; Raman, Arvind

    2014-01-01

    The measurement of viscoelasticity of cells in physiological environments with high spatio-temporal resolution is a key goal in cell mechanobiology. Traditionally only the elastic properties have been measured from quasi-static force-distance curves using the atomic force microscope (AFM). Recently, dynamic AFM-based methods have been proposed to map the local in vitro viscoelastic properties of living cells with nanoscale resolution. However, the differences in viscoelastic properties estima...

  14. Efficient loading of a single neutral atom into an optical microscopic tweezer

    Institute of Scientific and Technical Information of China (English)

    何军; 刘贝; 刁文婷; 王杰英; 靳刚; 王军民

    2015-01-01

    A single atom in a magneto–optical trap (MOT) with trap size (hundreds of micrometers) can be transferred into an optical microscopic tweezer with a probability of∼100%. The ability to transfer a single atom into two traps back and forth allows us to study the loading process. The loading probability is found to be insensitive to the geometric overlap of the MOT and the tweezer. It is therefore possible to perform simultaneously loading of a single atom into all sites of the tweezer array for many qubits. In particular, we present a simulation of the one-dimensional and two-dimensional arrays of an optical microscopic tweezer. We find the same qualitative behavior for all of the trap parameters.

  15. Properties of Atoms in Molecules:  Caged Atoms and the Ehrenfest Force.

    Science.gov (United States)

    Bader, Richard F W; Fang, De-Cai

    2005-05-01

    This paper uses the properties of atom X enclosed within an adamantane cage, denoted by X@C10H16, as a vehicle to introduce the Ehrenfest force into the discussion of bonding, the properties being determined by the physics of an open system. This is the force acting on an atom in a molecule and determining the potential energy appearing in Slater's molecular virial theorem. The Ehrenfest force acting across the interatomic surface of a bonded pair atoms [Formula: see text] atoms linked by a bond path [Formula: see text] is attractive, each atom being drawn toward the other, and the associated surface virial that measures the contribution to the energy arising from the formation of the surface is stabilizing. It is the Ehrenfest force that determines the adhesive properties of surfaces. The endothermicity of formation for X = He or Ne is not a result of instabilities incurred in the interaction of X with the four methine carbons to which it is bonded, interactions that are stabilizing both in terms of the changes in the atomic energies and in the surface virials. The exothermicity for X = Be(2+), B(3+), and Al(3+) is a consequence of the transfer of electron density from the hydrogen atoms to the carbon and X atoms, the exothermicity increasing with charge transfer despite an increase in the contained volume of X. PMID:26641507

  16. Large momentum transfer atom interferometry with Coriolis force compensation

    Science.gov (United States)

    Kuan, Pei-Chen; Lan, Shau-Yu; Estey, Brian; Haslinger, Philipp; Mueller, Holger

    2012-06-01

    Light-pulse atom interferometers use atom-photon interactions to coherently split, guide, and recombine freely falling matter-waves. Because of Earth's rotation, however, the matter-waves do not recombine precisely, which causes severe loss of contrast in large space-time atom interferometers. I will present our recent progress in using a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation. Therefore, we improve the contrast and suppress systematic effects, also reach what is to our knowledge the largest spacetime area.

  17. Spontaneous decay of an atom excited in a dense and disordered atomic ensemble: quantum microscopic approach

    CERN Document Server

    Kuraptsev, A S

    2016-01-01

    On the basis of general theoretical results developed previously in [I. M. Sokolov et al., J. Exp. Theor. Phys. 112, 246 (2011)], we analyze spontaneous decay of a single atom inside cold atomic clouds under conditions when the averaged interatomic separation is less or comparable with the wavelength of quasi resonant radiation. Beyond the decay dynamics we analyze shifts of resonance as well as distortion of the spectral shape of the atomic transition.

  18. Controlling atom motion through the dipole-dipole force

    International Nuclear Information System (INIS)

    We describe simulations that illustrate the possibility for manipulating the position correlation of atoms in a magneto-optical trap (MOT) using the dipole-dipole interaction. The control scheme utilizes a narrow band laser that is detuned to the high-frequency side of a single-photon Rydberg transition in an isolated atom. As two atoms move near each other, they can be laser excited to repelling diatomic Rydberg-Rydberg potential energy curves which halt their approach. By chirping the laser from large to small detunings, atoms in a MOT can be pushed apart by dipole-dipole forces, thereby controlling nearest-neighbor interactions. Alternatively, by holding the frequency of the Rydberg excitation laser fixed as the MOT is loaded, it should be possible to limit the minimum distance between atoms to a prescribed value

  19. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    International Nuclear Information System (INIS)

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate

  20. Geometric derivation of the microscopic stress: A covariant central force decomposition

    Science.gov (United States)

    Torres-Sánchez, Alejandro; Vanegas, Juan M.; Arroyo, Marino

    2016-08-01

    We revisit the derivation of the microscopic stress, linking the statistical mechanics of particle systems and continuum mechanics. The starting point in our geometric derivation is the Doyle-Ericksen formula, which states that the Cauchy stress tensor is the derivative of the free-energy with respect to the ambient metric tensor and which follows from a covariance argument. Thus, our approach to define the microscopic stress tensor does not rely on the statement of balance of linear momentum as in the classical Irving-Kirkwood-Noll approach. Nevertheless, the resulting stress tensor satisfies balance of linear and angular momentum. Furthermore, our approach removes the ambiguity in the definition of the microscopic stress in the presence of multibody interactions by naturally suggesting a canonical and physically motivated force decomposition into pairwise terms, a key ingredient in this theory. As a result, our approach provides objective expressions to compute a microscopic stress for a system in equilibrium and for force-fields expanded into multibody interactions of arbitrarily high order. We illustrate the proposed methodology with molecular dynamics simulations of a fibrous protein using a force-field involving up to 5-body interactions.

  1. Probing charges on the atomic scale by means of atomic force microscopy

    Czech Academy of Sciences Publication Activity Database

    Albrecht, F.; Repp, J.; Fleischmann, M.; Scheer, M.; Ondráček, Martin; Jelínek, Pavel

    2015-01-01

    Roč. 115, č. 7 (2015), "076101-1"-"076101-5". ISSN 0031-9007 R&D Projects: GA ČR(CZ) GC14-16963J Institutional support: RVO:68378271 Keywords : Kelvin probe force microscopy * atomic force microscopy * bond polarity * surface dipole * adsorbates on surfaces Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.512, year: 2014

  2. Adhesive properties of Staphylococcus epidermidis probed by atomic force microscopy

    DEFF Research Database (Denmark)

    Hu, Yifan; Ulstrup, Jens; Zhang, Jingdong;

    2011-01-01

    (biofilm positive and biofilm negative strains) were analyzed using in situ atomic force microscopy (AFM). Force measurements performed using bare hydrophilic silicon nitride tips disclosed similar adhesive properties for each strain. However, use of hydrophobic tips showed that hydrophobic forces are not......Mapping of the surface properties of Staphylococcus epidermidis and of biofilm forming bacteria in general is a key to understand their functions, particularly their adhesive properties. To gain a comprehensive view of the structural and chemical properties of S. epidermidis, four different strains...

  3. Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Esteban, A. [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Horcas, I. [Nanotec Electronica S.L., Centro Empresarial Euronova 3, Ronda de Poniente 12, 28760 Tres Cantos, Madrid (Spain); Hernando-Perez, M. [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Ares, P. [Nanotec Electronica S.L., Centro Empresarial Euronova 3, Ronda de Poniente 12, 28760 Tres Cantos, Madrid (Spain); Perez-Berna, A.J.; San Martin, C.; Carrascosa, J.L. [Centro Nacional de Biotecnologia (CNB-CSIC), Darwin 3, 28049 Madrid (Spain); Pablo, P.J. de [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Gomez-Herrero, J., E-mail: julio.gomez@uam.es [Departamento de Fisica de la Materia Condensada, C-3, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-03-15

    Control and minimization of tip-sample interaction forces are imperative tasks to maximize the performance of atomic force microscopy. In particular, when imaging soft biological matter in liquids, the cantilever dragging force prevents identification of the tip-sample mechanical contact, resulting in deleterious interaction with the specimen. In this work we present an improved jumping mode procedure that allows detecting the tip-sample contact with high accuracy, thus minimizing the scanning forces ({approx}100 pN) during the approach cycles. To illustrate this method we report images of human adenovirus and T7 bacteriophage particles which are prone to uncontrolled modifications when using conventional jumping mode. -- Highlights: Black-Right-Pointing-Pointer Improvement in atomic force microscopy in buffer solution. Black-Right-Pointing-Pointer Peak force detection. Black-Right-Pointing-Pointer Subtracting the cantilever dragging force. Black-Right-Pointing-Pointer Forces in the 100 pN range. Black-Right-Pointing-Pointer Imaging of delicate viruses with atomic force microscopy.

  4. Microbially influenced corrosion visualized by atomic force microscopy

    Science.gov (United States)

    Telegdi, J.; Keresztes, Z.; Pálinkás, G.; Kálmán, E.; Sand, W.

    Corrosion, biofilm formation and the adsorption of different, corrosion-enhancing microbes (such as Desulfovibrio desulfuricans, Thiobacillus ferrooxidans, Thiobacillus intermedius, Leptospirillum ferrooxidans, and mixed cultures) to different surfaces (iron, copper, pyrite) have been studied in aqueous environment by atomic force microscopy (AFM). It is one of the most effective on-line techniques for imaging surfaces (bacterial, metallic, etc.) with high resolution.

  5. The mechanisms underlying the enhanced resolution of atomic force microscopy with functionalized tips

    International Nuclear Information System (INIS)

    By functionalizing the tip of an atomic force microscope (AFM) with a molecule or an atom that significantly contributes to the tip-sample interaction, the resolution can be dramatically enhanced. The interaction and therefore the resolution crucially depend on the chemical nature of the tip termination. Employing a tip functionalized with a CO molecule, atomic resolution of a pentacene molecule was recently demonstrated. In this work, the interaction between the CO tip and the pentacene imaged are studied with first principles calculations. The calculated frequency shifts compare very well with the experiment. The different energy contributions are analyzed and the Pauli energy is computed. We demonstrate that the source of the high resolution is Pauli repulsion, whereas van der Waals and electrostatic interactions only add a diffuse attractive background.

  6. Survey on result promotion of the atomic force technique

    International Nuclear Information System (INIS)

    By change of environment around research and development of atomic force, investigation has been recently executed not only on a theme directing a specific aim, but also on technical development considering some applications to the other field reflected by social needs. Therefore, an effective procedure and program capable of reflecting and promoting results of the atomic fore development to other industrial field were necessary. In this study, methods of evaluation and industrialization on study results of the atomic force were investigated. As a result, in order to promote the study results to other field, it was found to be important that some free reasons and concept engineering to mediate between developing and applying sides were to be present. In addition, it was suggested by some searches that a new atomic industry has a probability to be created by using potential energies such as heat, radiation, pulse, and so on. In this paper, evaluation on industrialization of the atomic force technical resources, and establishment of the industrialization program were described. (G.K.)

  7. Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy

    International Nuclear Information System (INIS)

    In this paper we correlate the Atomic Force Microscope probe movement with surface location while scanning in the imaging and Force versus distance modes. Static and dynamic stick-slip processes are described on a scale of nanometres to microns on a range of samples. We demonstrate the limits and range of the tip apex being fixed laterally in the force versus distance mode and static friction slope dependence on probe parameters. Micron scale static and dynamic friction can be used to purposefully manipulate soft surfaces to produce well defined frictional gradients

  8. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  9. Nonlinear dynamic response of cantilever beam tip during atomic force microscopy (AFM) nanolithography of copper surface

    International Nuclear Information System (INIS)

    This paper investigates the nonlinear dynamic response of an atomic force microscope (AFM) cantilever beam tip during the nanolithography of a copper (Cu) surface using a high-depth feed. The dynamic motion of the tip is modeled using a combined approach based on Newton's law and empirical observations. The cutting force is determined from experimental observations of the piling height on the Cu surface and the rotation angle of the cantilever beam tip. It is found that the piling height increases linearly with the cantilever beam carrier velocity. Furthermore, the cantilever beam tip is found to execute a saw tooth motion. Both this motion and the shear cutting force are nonlinear. The elastic modulus in the y direction is variable. Finally, the velocity of the cantilever beam tip as it traverses the specimen surface has a discrete characteristic rather than a smooth, continuous profile

  10. Atomic Force Microscopy Based Nanorobotics Modelling, Simulation, Setup Building and Experiments

    CERN Document Server

    Xie, Hui; Régnier, Stéphane; Sitti, Metin

    2012-01-01

    The atomic force microscope (AFM) has been successfully used to perform nanorobotic manipulation operations on nanoscale entities such as particles, nanotubes, nanowires, nanocrystals, and DNA since 1990s. There have been many progress on modeling, imaging, teleoperated or automated control, human-machine interfacing, instrumentation, and applications of AFM based nanorobotic manipulation systems in literature. This book aims to include all of such state-of-the-art progress in an organized, structured, and detailed manner as a reference book and also potentially a textbook in nanorobotics and any other nanoscale dynamics, systems and controls related research and education. Clearly written and well-organized, this text introduces designs and prototypes of the nanorobotic systems in detail with innovative principles of three-dimensional manipulation force microscopy and parallel imaging/manipulation force microscopy.

  11. Finite element modeling of atomic force microscopy cantilever dynamics during video rate imaging

    International Nuclear Information System (INIS)

    A dynamic finite element model has been constructed to simulate the behavior of low spring constant atomic force microscope (AFM) cantilevers used for imaging at high speed without active feedback as in VideoAFM. The model is tested against experimental data collected at 20 frame/s and good agreement is found. The complex dynamics of the cantilever, consisting of traveling waves coming from the tip sample interaction, reflecting off the cantilever-substrate junction, and interfering with new waves created at the tip, are revealed. The construction of the image from this resulting nonequilibrium cantilever deflection is also examined. Transient tip-sample forces are found to reach values up to 260 nN on a calibration grid sample, and the maximum forces do not always correspond to the position of steepest features as a result of energy stored in the cantilever.

  12. Characterization of microfabricated probes for combined atomic force and high-resolution scanning electrochemical microscopy.

    Science.gov (United States)

    Gullo, Maurizio R; Frederix, Patrick L T M; Akiyama, Terunobu; Engel, Andreas; deRooij, Nico F; Staufer, Urs

    2006-08-01

    A combined atomic force and scanning electrochemical microscope probe is presented. The probe is electrically insulated except at the very apex of the tip, which has a radius of curvature in the range of 10-15 nm. Steady-state cyclic voltammetry measurements for the reduction of Ru(NH3)6Cl3 and feedback experiments showed a distinct and reproducible response of the electrode. These experimental results agreed with finite element simulations for the corresponding diffusion process. Sequentially topographical and electrochemical studies of Pt lines deposited onto Si3N4 and spaced 100 nm apart (edge to edge) showed a lateral electrochemical resolution of 10 nm. PMID:16878880

  13. The scattering of atoms by forces of stimulated light pressure

    Science.gov (United States)

    Grinchuk, V. A.; Kazantsev, A. P.; Kuzin, E. F.; Nagaeva, M. L.; Riabenko, G. A.; Surdutovich, G. I.; Iakovlev, V. P.

    1984-01-01

    Stimulated light pressure under conditions where the resonance transition is strongly saturated is investigated theoretically and experimentally for times of interaction between the atom and the field that are less than the time of spontaneous emission. Experimental techniques are described for investigating the scattering of a beam of atoms by the field of a standing light wave. Experimental relations are presented which relate the scattering efficiency to the magnitude of the electric field and the resonance detuning. These experimental relations are then compared with the results obtained from calculations that use the effective potential and are based on a quasi-classical description of the motion of atoms in the field of a light wave. It is shown that the scattering efficiency of atoms by forces of stimulated light pressure is of the order of unity even in comparatively weak (100-1000 V/cm) fields of laser radiation.

  14. Nanoscale spatially resolved simultaneous measurement of in-plane and out-of-plane force components on surfaces: a novel operational mode in atomic force microscopy

    Science.gov (United States)

    Watson, Gregory S.; Dinte, Bradley P.; Blach, Jolanta A.; Myhra, Sverre

    2002-11-01

    The atomic force microscope (AFM) allows investigation of the properties of surfaces and interfaces at atomic scale resolution. However, several different operational modes, (imaging, force versus distance and lateral force modes), need to be deployed in order to gain insight into the structure, tribological and mechanical properties. A new method, based on a variation of the force versus distance mode, has been developed. In essence, a coupling of the deformational modes of the probe is exploited whereby the tip is induced to undergo lateral travel in response to application of an out-of-plane force (and thus normal bending of the force-sensing lever). The lateral travel induces in-plane forces that are then measurable as a consequence of stimulation of the 'buckling' deformational mode of the lever. Due to the lever geometry, the technique offers an increase in resolution of an order of magnitude over existing AFM methods for measurement of atomic scale stick-slip events. In addition, the method allows measurement of the lateral deformation of the sample as well as scanner calibration. Outcomes will be demonstrated for atomically flat surfaces such as WTe2 and highly oriented pyrolytic graphite.

  15. Improved atomic force microscopy cantilever performance by partial reflective coating

    Directory of Open Access Journals (Sweden)

    Zeno Schumacher

    2015-07-01

    Full Text Available Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM. Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor. In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m and stiff (≈28 N/m rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds.

  16. Atomic delocalization as a microscopic origin of two-level defects in Josephson junctions

    International Nuclear Information System (INIS)

    Identifying the microscopic origins of decoherence sources prevalent in Josephson junction (JJ) based circuits is central to their use as functional quantum devices. Focussing on so called ‘strongly coupled’ two-level defects, we construct a theoretical model using the atomic position of the oxygen which is spatially delocalized in the oxide forming the JJ barrier. Using this model, we investigate which atomic configurations give rise to two-level behaviour of the type seen in experiments. We compute experimentally observable parameters for phase qubits and examine defect response under the effects of applied electric field and strain. (paper)

  17. Evaporation based micro pump integrated into a scanning force microscope probe

    OpenAIRE

    Heuck, F.; Hug, T.; Akiyama, Terunobu; Frederix, P. L. T. M.; Engel, A.; Meister, André; Heinzelmann, Harry; de Rooij, Nicolaas F.; Staufer, Urs

    2010-01-01

    A micro pump was integrated into a scanning force microscope probe for circulating liquid through its hollow cantilever and tip. The interior cross section of the cantilever was 2.25 μm × 3.75 μm. All fluidic parts were made of SiO2, while the tip apex was made of Si3N4. The key fabrication techniques were silicon wafer bonding and wet-oxidation. The pumping mechanism was relying on the enhanced evaporation at an enlarged water/air interface at the exit of the microchannel. Capillary forces c...

  18. Microscopic optical potential calculations of finite nuclei with extended skyrme forces

    International Nuclear Information System (INIS)

    Microscopic optical potential calculations in the Hartree-Fock (HF) approximation with Extended Skyrme forces are investigated. The HF equation is derived from the variation principle and the potential formula of spherical nuclei is obtained by two different ways. Then the calculations for symmetrid nuclei 16O, 40Ca and asymmetric nucleus 90Zr with eight sets of Skyrme force parameters are presented. Our results show that the potential form and variating tendency with incident energy are reasonable and there apparently appears a 'wine-bottle-bottom' shape in the intermediate energy region. Furthermore, our calculations reflect shell effects clearly

  19. Interaction forces between a coal surface and a polystyrene sphere in the presence of cationic and anionic surfactants as measured using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Nalaskowski, J.; Paruchuri, V.K.; Miller, J.D. [University of Utah, Salt Lake City, UT (USA). Dept. of Metallurgical Engineering

    2000-07-01

    Interaction forces between hydrophobic coal particles and air bubbles during flotation are of significant academic and practical importance. When ionic surfactants are adsorbed by interacting surfaces, the flotation process can change due to changes in interfacial forces. An atomic force microscope (AFM) colloidal probe technique was used to measure the interaction forces between a coal surface and a polystyrene sphere in the presence of dodecylamine hydrochloride and sodium dodecylsulfate solutions. A significant dependence of these interaction forces on surfactant concentration was observed. In addition, zeta potential, bubble attachment time and contact angle measurements were performed, which together with AFM force measurements, give a more detailed description of this interfacial system involving two hydrophobic surfaces. 35 refs., 8 figs., 1 tab.

  20. Interaction between polystyrene spheres by atomic force microscopy

    CERN Document Server

    Looi, L

    2002-01-01

    The interaction between a single polystyrene particle and a polystyrene substrate has been previously reported by a number of investigators. However, the effects of relative humidity, applied load and contact time on the adhesion of polystyrene surfaces have not been investigated and these effects are poorly understood. It is the primary aim of the current work to characterise the effect of the aforementioned parameters on the adhesion of polystyrene surfaces using atomic force microscopy. The polystyrene used in this study contained 1% of di-vinyl benzene as a cross-linking agent. From the work conducted using the custom-built instrument, the dependency of adhesion forces on the relative humidity is greatest at relative humidities above 60% where capillary forces cause a sharp increase in adhesion with increasing relative humidity. Hysteresis was observed in the solid-solid contact gradient of the accompanying force curves, suggesting non-elastic behaviour at the contact area of the surfaces

  1. High Resolution Imaging by Atomic Force Microscopy: Contribution of short-range force to the imaging

    Science.gov (United States)

    Eguchi, Toyoaki; Kotone, Akiyama; Masanori, Ono; Toshio, Sakurai; Yukio, Hasegawa

    2003-03-01

    Recent developments in force detection technique have made us possible to obtain atomically resolved images of the Si(111)-(7x7) surface by AFM. Compared with STM, however, its spatial resolution remains limited. In this presentation, we demonstrate that with careful pretreatment and appropriate experimental parameters, the structure of the rest-atom layer can be imaged using AFM by detecting the short-range force due to the single chemical bonding. The detection of the short-range force is verified by analysis of the frequency-shift versus distance curve (force curve). This unprecedented high resolution is achieved by reducing background forces due to the long-range interactions with small oscillation amplitude of the cantilever and an atomically sharp tip. The high temperature annealing of the cantilever assists in obtaining a bare silicon tip on the cantilever without unwanted tip-blunting, and improving the Q-factor of the cantilever. This study implies that characterization of the AFM tip in nanometer scale, not only on the apex atoms but also its shape near the apex, is important and critical for AFM high resolution imaging.

  2. Self-oscillating tapping mode atomic force microscopy

    Science.gov (United States)

    Manning, L.; Rogers, B.; Jones, M.; Adams, J. D.; Fuste, J. L.; Minne, S. C.

    2003-09-01

    A piezoelectric microcantilever probe is demonstrated as a self-oscillator used for tapping mode atomic force microscopy. The integrated piezoelectric film on the cantilever serves as the frequency-determining component of an oscillator circuit; oscillation near the cantilever's resonant frequency is maintained by applying positive feedback to the film via this circuit. This new mode, which is a step towards more compact and parallel tapping mode AFM imaging, is demonstrated by imaging an evaporated gold film on a silicon substrate. A self-oscillating frequency spectrum and a force-distance curve are also presented.

  3. Surface modifications with Lissajous trajectories using atomic force microscopy

    International Nuclear Information System (INIS)

    In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication

  4. Shell evolution of atomic nuclei due to the tensor force

    International Nuclear Information System (INIS)

    Magic numbers and shell structure are extremely important for the study of atomic nuclei, as they determine the mass, the shape of surface, and the limit of the existence of nuclei, and have been considered to be universal over all nuclei, since Mayer and Jensen (1949). However, recent studies on exotic nuclei with large variations of proton or neutron numbers indicate that the changes of magic numbers and shell structure, i.e, shell evolution, arise due to nuclear forces, in particular the tensor force, demolishing this universality. We shall present an overview of such a paradigm shift emerging in exotic nuclei. (author)

  5. Imaging stability in force-feedback high-speed atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung I., E-mail: ByungKim@boisestate.edu [Department of Physics, Boise State University, 1910 University Drive Boise, ID 83725-1570, United States of America (United States); Boehm, Ryan D. [Department of Physics, Boise State University, 1910 University Drive Boise, ID 83725-1570, United States of America (United States)

    2013-02-15

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force–distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2 s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. - Highlights: ► We investigated the imaging stability of force-feedback HSAFM. ► Stable–unstable imaging transitions rely on applied force and sample hydrophilicity. ► The stable–unstable transitions are found to be independent of imaging rate.

  6. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    Directory of Open Access Journals (Sweden)

    Adam Sweetman

    2014-04-01

    Full Text Available In principle, non-contact atomic force microscopy (NC-AFM now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  7. Detection of Elliptical Particles in Atomic Force Microscopy Images

    Czech Academy of Sciences Publication Activity Database

    Sedlář, Jiří; Zitová, Barbara; Kopeček, Jaromír; Todorciuc, T.; Kratochvílová, Irena

    Praha : IEEE, 2011, s. 1233-1236. ISBN 978-1-4577-0539-7. [ICASSP 2011: IEEE International Conference on Acoustics, Speech, and Signal Processing. Praha (CZ), 22.05.2011-27.05.2011] R&D Projects: GA MŠk 1M0572; GA ČR GA203/08/1594; GA AV ČR KAN401770651; GA ČR GAP103/11/1552 Institutional research plan: CEZ:AV0Z10750506; CEZ:AV0Z10100520 Keywords : particles detection * atomic force microscopy (AFM) imaging * watershed segmentation * image moments * approximation by ellipses Subject RIV: IN - Informatics, Computer Science http://library.utia.cas.cz/separaty/2011/ZOI/sedlar-detection of elliptical particles in atomic force microscopy image s.pdf

  8. Dissipative binding of atoms by non-conservative forces

    CERN Document Server

    Lemeshko, Mikhail

    2013-01-01

    The formation of molecules and supramolecular structures results from bonding by conservative forces acting among electrons and nuclei and giving rise to equilibrium configurations defined by minima of the interaction potential. Here we show that bonding can also occur by the non-conservative forces responsible for interaction-induced coherent population trapping. The bound state arises in a dissipative process and manifests itself as a stationary state at a preordained interatomic distance. Remarkably, such a dissipative bonding is present even when the interactions among the atoms are purely repulsive. The dissipative bound states can be created and studied spectroscopically in present-day experiments with ultracold atoms or molecules and can potentially serve for cooling strongly interacting quantum gases.

  9. Atomic force microscopy in biomedical research - Methods and protocols

    Directory of Open Access Journals (Sweden)

    CarloAlberto Redi

    2011-11-01

    Full Text Available Pier Carlo Braga and Davide Ricci are old friends not only for those researchers familiar with Atomic force microscopy (AFM but also for those beginners (like the undersigned that already enthusiastically welcomed their 2004 edition (for the same Humana press printing types of Atomic force microscopy: Biomedical methods and applications, eventhough I never had used the AFM. That book was much intended to overview the possible AFM applications for a wide range of readers so that they can be in some way stimulated toward the AFM use. In fact, the great majority of scientists is afraid both of the technology behind AFM (that is naturally thought highly demanding in term of concepts not so familiar to biologists and physicians and of the financial costs: both these two factors are conceived unapproachable by the medium range granted scientist usually not educated in terms of biophysics and electronic background....

  10. Atomic force microscopy study of the early fatigue damage

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Man, Jiří; Obrtlík, Karel

    482 2005, - (2005), s. 45-50. ISSN 0255-5476. [Materials Structure and Micromechanics of Fracture. Brno, 23.06.2004-25.06.2004] R&D Projects: GA AV ČR(CZ) IAA2041201; GA AV ČR(CZ) IBS2041001 Institutional research plan: CEZ:AV0Z20410507 Keywords : Atomic force microscopy (AFM) * Fatigue damage * Extrusion, Intrusion Subject RIV: JG - Metallurgy Impact factor: 0.399, year: 2005

  11. Probing stem cell differentiation using atomic force microscopy

    Science.gov (United States)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  12. Comparative study of clinical pulmonary surfactants using atomic force microscopy

    OpenAIRE

    Zhang, Hong; Fan, Qihui; Wang, Yi E.; Neal, Charles R.; Zuo, Yi Y.

    2011-01-01

    Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinica...

  13. Superhard, conductive coatings for atomic force microscopy cantilevers

    OpenAIRE

    Ronning, Carsten; Wondratschek, Oliver; Büttner, Michael; Hofsäss, Hans Christian; Zimmermann, Jörg; Leiderer, Paul; Boneberg, Johannes

    2001-01-01

    Boron carbide thin films were grown by mass selected ion beam deposition using low energy 11B+ and 12C+ ions at room temperature. The amorphous films exhibit any desired stoichiometry controlled by the ion charge ratio B+/C+. Films with a stoichiometry of B4C showed the optimal combination of a high mechanical strength and a low electrical resistivity for the coating of atomic force microscopy (AFM) silicon cantilevers. The properties of such AFM tips were evaluated and simultaneous topograph...

  14. Investigating self-assembled protein nanotubes using atomic force microscopy

    OpenAIRE

    Niu, Lijiang

    2009-01-01

    Self-assembled protein nanotubular materials are attractive as putative building blocks for a variety of applications. Knowledge of the three-dimensional structures and the physical properties of these protein nanotubes then becomes a prerequisite for their use in rational materials design. The main purpose of the work presented in this thesis is to investigate both the structural and mechanical properties of protein nanotubes utilizing atomic force microscopy (AFM). Several different protein...

  15. Harnessing the damping properties of materials for high-speed atomic force microscopy

    Science.gov (United States)

    Adams, Jonathan D.; Erickson, Blake W.; Grossenbacher, Jonas; Brugger, Juergen; Nievergelt, Adrian; Fantner, Georg E.

    2016-02-01

    The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope. Here, we show that high-speed imaging in air can instead be achieved by changing the cantilever material. We use cantilevers fabricated from polymers, which can mimic the high damping environment of liquids. With this approach, SU-8 polymer cantilevers are developed that have an imaging-in-air detection bandwidth that is 19 times faster than those of conventional cantilevers of similar size, resonance frequency and spring constant.

  16. Cooperative scattering and radiation pressure force in dense atomic clouds

    International Nuclear Information System (INIS)

    Atomic clouds prepared in ''timed Dicke'' states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully et al., Phys. Rev. Lett. 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.

  17. Imaging stability in force-feedback high-speed atomic force microscopy.

    Science.gov (United States)

    Kim, Byung I; Boehm, Ryan D

    2013-02-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force-distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples. PMID:23274682

  18. Paramagnetic and ferromagnetic resonance imaging with a tip-on-cantilever magnetic resonance force microscope

    Science.gov (United States)

    Wago, K.; Botkin, D.; Yannoni, C. S.; Rugar, D.

    1998-05-01

    A magnetic resonance force microscope with a "tip-on-cantilever" configuration was used to compare imaging characteristics of paramagnetic and ferromagnetic samples. Three-dimensional electron paramagnetic resonance (EPR) imaging of diphenylpicrylhydrazil (DPPH) particles was accomplished by scanning the sample in two dimensions while stepping an external field. The EPR force map showed broad response reflecting the size and shape of the sample, allowing a three-dimensional real-space magnetization image to be successfully reconstructed. In contrast to the EPR case, ferromagnetic resonance imaging of a micron-scale yttrium iron garnet sample showed no significant line broadening despite the strong field gradient (˜10 G/μm). Two-dimensional force maps revealed spatial dependence of magnetostatic and magnetoelastic modes.

  19. Comparison of Paramagnetic and Ferromagnetic Resonance Imaging with an Improved Magnetic Resonance Force Microscope

    Science.gov (United States)

    Wago, K.; Botkin, D.; Yannoni, C. S.; Rugar, D.

    1998-03-01

    A magnetic resonance force microscope with an improved ``tip-on-cantilever'' configuration was used to compare imaging characteristics of paramagnetic and ferromagnetic samples. Three-dimensional electron paramagnetic resonance (EPR) imaging of diphenylpicrylhydrazil (DPPH) particles was accomplished by scanning the sample in two dimensions while stepping an external field. The EPR force map showed broad response reflecting the size and shape of the sample, allowing a three-dimensional real-space magnetization image to be successfully reconstructed. In contrast to the EPR case, ferromagnetic resonance (FMR) imaging of a micron-scale yttrium iron garnet (YIG) sample showed no significant line broadening despite the strong field gradient ( ~ 10 G/μm). Two-dimensional force maps revealed spatial dependence of magnetostatic and magnetoelastic modes.

  20. Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications

    International Nuclear Information System (INIS)

    A novel dual tip nanomanipulation atomic force microscope (AFM) platform operating in ambient conditions is presented. The system is equipped with a high frequency quartz piezoelectric self-sensing scanning probe for fast imaging and a passive cantilever for manipulation. The system is validated by imaging and selective pushing/pulling of gold colloid beads (diameters from 80 to 180 nm). This provides a more compact integration compared to an external optical lever and avoids several of its drawbacks such as optical interference and noise, and recalibration in the case of a moving cantilever and a fixed laser source and photodiode sensor. Moreover, as the quartz oscillator exhibits oscillation amplitudes in the sub-picometer range with a resonant frequency in the megahertz range, this dynamic force sensor is ideal for fast AFM imaging. Experiments show an increase by five times in imaging speed compared to a classical AFM system. (paper)

  1. Tunable atomic force microscopy bias lithography on electron beam induced carbonaceous platforms

    Directory of Open Access Journals (Sweden)

    Narendra Kurra

    2013-09-01

    Full Text Available Tunable local electrochemical and physical modifications on the carbonaceous platforms are achieved using Atomic force microscope (AFM bias lithography. These carbonaceous platforms are produced on Si substrate by the technique called electron beam induced carbonaceous deposition (EBICD. EBICD is composed of functionalized carbon species, confirmed through X-ray photoelectron spectroscopy (XPS analysis. AFM bias lithography in tapping mode with a positive tip bias resulted in the nucleation of attoliter water on the EBICD surface under moderate humidity conditions (45%. While the lithography in the contact mode with a negative tip bias caused the electrochemical modifications such as anodic oxidation and etching of the EBICD under moderate (45% and higher (60% humidity conditions respectively. Finally, reversible charge patterns are created on these EBICD surfaces under low (30% humidity conditions and investigated by means of electrostatic force microscopy (EFM.

  2. Hierarchical atom type definitions and extensible all-atom force fields.

    Science.gov (United States)

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. PMID:26537332

  3. Improved social force model based on exit selection for microscopic pedestrian simulation in subway station

    Institute of Scientific and Technical Information of China (English)

    郑勋; 李海鹰; 孟令云; 许心越; 陈旭

    2015-01-01

    An improved social force model based on exit selection is proposed to simulate pedestrians’ microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.

  4. Observation of ferromagnetic resonance in a microscopic sample using magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    We report the observation of a ferromagnetic resonance signal arising from a microscopic (∼20μmx40μm) particle of thin (3μm) yttrium iron garnet film using magnetic resonance force microscopy (MRFM). The large signal intensity in the resonance spectra suggests that MRFM could become a powerful microscopic ferromagnetic resonance technique with a micron or sub-micron resolution. We also observe a very strong nonresonance signal which occurs in the field regime where the sample magnetization readily reorients in response to the modulation of the magnetic field. This signal will be the main noise source in applications where a magnet is mounted on the cantilever. copyright 1996 American Institute of Physics

  5. Microscopic theory of the Casimir force at thermal equilibrium: large-separation asymptotics.

    Science.gov (United States)

    Buenzli, P R; Martin, Ph A

    2008-01-01

    We present an entirely microscopic calculation of the Casimir force f(d) between two metallic plates in the limit of large separation d . The models of metals consist of mobile quantum charges in thermal equilibrium with the photon field at positive temperature T . Fluctuations of all degrees of freedom, matter and field, are treated according to the principles of quantum electrodynamics and statistical physics without recourse to approximations or intermediate assumptions. Our main result is the correctness of the asymptotic universal formula f(d) approximately -zeta(3)kBT/8pid3, d-->infinity. This supports the fact that, in the framework of the Lifshitz theory of electromagnetic fluctuations, transverse electric modes do not contribute in this regime. Moreover, the microscopic origin of universality is seen to rely on perfect screening sum rules that hold in great generality for conducting media. PMID:18351825

  6. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.

    Science.gov (United States)

    Nalam, Prathima C; Gosvami, Nitya N; Caporizzo, Matthew A; Composto, Russell J; Carpick, Robert W

    2015-11-01

    We present a magnetic force-based direct drive modulation method to measure local nano-rheological properties of soft materials across a broad frequency range (10 Hz to 2 kHz) using colloid-attached atomic force microscope (AFM) probes in liquid. The direct drive method enables artefact-free measurements over several decades of excitation frequency, and avoids the need to evaluate medium-induced hydrodynamic drag effects. The method was applied to measure the local mechanical properties of polyacrylamide hydrogels. The frequency-dependent storage stiffness, loss stiffness, and loss tangent (tan δ) were quantified for hydrogels having high and low crosslinking densities by measuring the amplitude and the phase response of the cantilever while the colloid was in contact with the hydrogel. The frequency bandwidth was further expanded to lower effective frequencies (0.1 Hz to 10 Hz) by obtaining force-displacement (FD) curves. Slow FD measurements showed a recoverable but highly hysteretic response, with the contact mechanical behaviour dependent on the loading direction: approach curves showed Hertzian behaviour while retraction curves fit the JKR contact mechanics model well into the adhesive regime, after which multiple detachment instabilities occurred. Using small amplitude dynamic modulation to explore faster rates, the load dependence of the storage stiffness transitioned from Hertzian to a dynamic punch-type (constant contact area) model, indicating significant influence of material dissipation coupled with adhesion. Using the appropriate contact model across the full frequency range measured, the storage moduli were found to remain nearly constant until an increase began near ∼100 Hz. The softer gels' storage modulus increased from 7.9 ± 0.4 to 14.5 ± 2.1 kPa (∼85%), and the stiffer gels' storage modulus increased from 16.3 ± 1.1 to 31.7 ± 5.0 kPa (∼95%). This increase at high frequencies may be attributed to a contribution from solvent

  7. Atomic-force microscopy: a powerful, multipurpose technique for the investigation of materials

    International Nuclear Information System (INIS)

    An atomic-force microscope (AFM) comprises a probe (a tip) mounted at the free extremity of a spring of known stiffness, a control system, and a scanning system, which moves the probe across the sample's surface. The interaction between probe and surface (forces, or force gradient) is kept equal to a set value, by continuously adjusting the separation distance, via a feedback loop. An AFM image thus corresponds to a constant-interaction contour, obtained by moving the tip along the surface. This contour matches, as a rule, the topography of the sample. The image obtained is then the topography of the surface. The contribution made by AFM to materials science is illustrated in 4 examples. The first example concerns the first observations of irradiation damage in an electrical insulator material, thus one not readily observable by means of conventional electron microscopes. The second illustration relates to monitoring the emergence of defects due to plastic deformation observed in metals. The third example serves as an illustration of the capability afforded by AFM, of ensuring the acquisition of two types of information. Using an AFM fitted with a special module, the electrical resistivity of the passive layer that covers the surface of stainless steels was measured, concurrently with the sample's topography. The final illustration concerns the 3-dimensional self-organization of molecules at the interface between a solid and a liquid. (A.C.)

  8. Characterization and analysis of weld lines on micro-injection moulded parts using atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard;

    2009-01-01

    In recent years plastic moulding techniques, such as injection moulding, have been developed to fulfil the needs of micro-components fabrication. Micro-injection moulding (SLIM) is the process which enables the mass production of polymer micro-systems such as micro-mechanical parts, micro-fluidic...... injection moulding parameters on the weld lines' dimensions is presented, using an atomic force microscope (AFM). Depth and width of weld lines were chosen as parameters to be optimized....

  9. Changes in the starch-protein interface depending on common wheat grain hardness revealed using atomic force microscopy

    OpenAIRE

    Chichti, Emna; GEORGE, MATTHIEU; Delenne, Jean-Yves; Lullien-pellerin, Valerie

    2015-01-01

    The Atomic Force Microscope tip was used to progressively abrade the surface of non-cutted starch granules embedded in the endosperm protein matrix in grain sections from wheat near-isogenic lines differing in the puroindoline b gene and thus hardness. In the hard near-isogenic wheat lines, starch granules exhibited two distinct profiles corresponding either to abrasion in the surrounding protein layer or the starch granule. An additional profile, only identified in soft lines, revealed a mar...

  10. Nanometer-scale electrical characterization of stressed ultrathin SiO2 films using conducting atomic force microscopy

    International Nuclear Information System (INIS)

    A conductive atomic force microscope has been used to electrically stress and to investigate the effects of degradation in the conduction properties of ultrathin (2 films on a nanometer scale (areas of ∼100 nm2). Before oxide breakdown, switching between two states of well-defined conductivity and sudden changes of conductivity were observed, which are attributed to the capture/release of single charges in the defects generated during stress. [copyright] 2001 American Institute of Physics

  11. Characterization of new drug delivery nanosystems using atomic force microscopy

    Science.gov (United States)

    Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.

    2015-01-01

    Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.

  12. Localization and force analysis at the single virus particle level using atomic force microscopy

    International Nuclear Information System (INIS)

    Highlights: ► Localization of single virus particle. ► Force measurements. ► Force mapping. -- Abstract: Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions.

  13. Potential contributions of noncontact atomic force microscopy for the future Casimir force measurements

    CERN Document Server

    Kim, W J

    2010-01-01

    Surface electric noise, i.e., the non-uniform distribution of charges and potentials on a surface, poses a great experimental challenge in modern precision force measurements. Such a challenge is encountered in a number of different experimental circumstances. The scientists employing atomic force microscopy (AFM) have long focused their efforts to understand the surface-related noise issues via variants of AFM techniques, such as Kelvin probe force microscopy or electric force microscopy. Recently, the physicists investigating quantum vacuum fluctuation phenomena between two closely-spaced objects have also begun to collect experimental evidence indicating a presence of surface effects neglected in their previous analyses. It now appears that the two seemingly disparate science communities are encountering effects rooted in the same surface phenomena. In this report, we suggest specific experimental tasks to be performed in the near future that are crucial not only for fostering needed collaborations between...

  14. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    Science.gov (United States)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  15. On averaging force curves over heterogeneous surfaces in atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, I., E-mail: sokolov@clarkson.edu [Department of Physics, Clarkson University, Potsdam, NY 13699 (United States); Nanoengineering and Biotechnology Laboratories Center (NABLAB), Clarkson University, NY 13699 (United States); Kalaparthi, V.; Kreshchuk, M.; Dokukin, M.E. [Department of Physics, Clarkson University, Potsdam, NY 13699 (United States)

    2012-10-15

    Atomic force microscopy (AFM) can be used to study mechanics at the nanoscale. Biological surfaces and nanocomposites have typically heterogeneous surfaces, both mechanically and chemically. When studying such surfaces with AFM, one needs to collect a large amount of data to make statistically sound conclusions. It is time- and resource-consuming to process each force curve separately. The analysis of an averaged raw force data is a simple and time saving option, which also averages out the noise and measurement artifacts of the force curves being analyzed. Moreover, some biomedical applications require just an average number per biological cell. Here we investigate such averaging, study the possible artifacts due to the averaging, and demonstrate how to minimize or even to avoid them. We analyze two ways of doing the averaging: over the force data for each particular distance (method 1, the most commonly used way), and over the distances for each particular force (method 2). We derive the errors of the methods in finding to the true average rigidity modulus. We show that both methods are accurate (the error is <2%) when the heterogeneity of the surface rigidity is small (<50%). When the heterogeneity is large (>100 Multiplication-Sign ), method 2 underestimates the average rigidity modulus by a factor of 2, whereas the error of method 1 is only 15%. However, when analyzing the different surface chemistry, which reveals itself in the changing long-range forces, the accuracy of the methods behave oppositely: method 1 can produce a noticeable averaging artifact in the deriving of the long-range forces; whereas method 2 can be successfully used to derive the averaged long-range force parameters without artifacts. We exemplify our conclusions by the study of human cervical cancer and normal epithelial cells, which demonstrate different degrees of heterogeneity. -- Highlights: Black-Right-Pointing-Pointer Long-range force can be measured with atomic force microscopy

  16. Atomic-Scale Characterization and Manipulation of Freestanding Graphene Using Adapted Capabilities of a Scanning Tunneling Microscope

    Science.gov (United States)

    Barber, Steven

    Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample. First, the acquisition of atomic-scale images of freestanding graphene using the STM and the ability to pull the graphene perpendicular to its plane by applying an electrostatic force with the STM tip are demonstrated. The atomic-scale images contained surprisingly large corrugations due to the electrostatic attractive force varying in registry with the local density of states. Meanwhile, a large range of control over the graphene height at a point was obtained by varying the tip bias voltage, and the application to strain engineering of graphene's so-called pseudomagnetic field is examined. Next, the effect of the tunneling current was investigated. With increasing current, the graphene sample moves away from the tip rather than toward it. It was determined that this must be due to local heating by the electric current, causing the graphene to contract because it has a negative coefficient of thermal expansion. Finally, by imaging a very small area, the STM can monitor the height of one location over long time intervals. Results sometimes exhibit periodic behavior, with a frequency and amplitude that depend on the tunneling current. These fluctuations are interpreted as low-frequency flexural phonon modes within elasticity theory. All of these findings set the foundation for employing a STM in the study of freestanding graphene.

  17. Visualisation of xanthan conformation by atomic force microscopy.

    Science.gov (United States)

    Moffat, Jonathan; Morris, Victor J; Al-Assaf, Saphwan; Gunning, A Patrick

    2016-09-01

    Direct visual evidence obtained by atomic force microscopy demonstrates that when xanthan is adsorbed from aqueous solution onto the heterogeneously charged substrate mica, its helical conformation is distorted. Following adsorption it requires annealing for several hours to restore its ordered helical state. Once the helix state reforms, the AFM images obtained showed clear resolution of the periodicity with a value of 4.7nm consistent with the previously predicted models. In addition, the images also reveal evidence that the helix is formed by a double strand, a clarification of an ambiguity of the xanthan ultrastructure that has been outstanding for many years. PMID:27185152

  18. Cryo-atomic force microscopy of smooth muscle myosin.

    OpenAIRE

    Y. Zhang; Shao, Z; Somlyo, A. P.; Somlyo, A V

    1997-01-01

    The motor and regulatory domains of the head and the 14-nm pitch of the alpha-helical coiled-coil of the tail of extended (6S) smooth-muscle myosin molecules were imaged with cryo atomic force microscopy at 80-85 K, and the effects of thiophosphorylation of the regulatory light chain were examined. The tail was 4 nm shorter in thiophosphorylated than in nonphosphorylated myosin. The first major bend was invariant, at approximately 51 nm from the head-tail junction (H-T), coincident with low p...

  19. Microstructural Characterization of Hierarchical Structured Surfaces by Atomic Force Microscopy

    Science.gov (United States)

    Ponomareva, A. A.; Moshnikov, V. A.; Suchaneck, G.

    2013-12-01

    In this work, we evaluate the hierarchical surface topography of reactively sputtered nanocrystalline Pb(Zr,Ti)O3 and TiO2 thin films as well as plasma-treated antireflective PET films by means of determining the fractal dimension and power spectral density (PSD) of surface topography recorded by atomic force microscopy (AFM). Local fractal dimension was obtained using the triangulation method. The PSDs of all samples were fitted to the k-correlation model (also called ABC model) valid for a self-affine surface topography. Fractal analysis of AFM images was shown to be an appropriate and easy to use tool for the characterization of hierarchical nanostructures.

  20. CO tip functionalization in subatomic resolution atomic force microscopy

    International Nuclear Information System (INIS)

    Noncontact atomic force microscopy (nc-AFM) employing a CO-functionalized tip displays dramatically enhanced resolution wherein covalent bonds of polycyclic aromatic hydrocarbon can be imaged. Employing real-space pseudopotential first-principles calculations, we examine the role of CO in functionalizing the nc-AFM tip. Our calculations allow us to simulate full AFM images and ascertain the enhancement mechanism of the CO molecule. We consider two approaches: one with an explicit inclusion of the CO molecule and one without. By comparing our simulations to existing experimental images, we ascribe the enhanced resolution of the CO functionalized tip to the special orbital characteristics of the CO molecule