WorldWideScience

Sample records for atomic fluorescence spectroscopy

  1. Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm

    Science.gov (United States)

    Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.

    1988-01-01

    Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.

  2. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  3. Laser-induced atomic fragment fluorescence spectroscopy: a facile technique for molecular spectroscopy of spin-forbidden states.

    Science.gov (United States)

    Zhang, Qun; Chen, Yang; Keil, Mark

    2009-03-01

    Spectra of spin-forbidden and spin-allowed transitions in the mixed b (3)Pi(u) approximately A (1)Sigma(u)(+) state of Na(2) are measured separately by two-photon excitation using a single tunable dye laser. The two-photon excitation produces Na(*)(3p) by photodissociation, which is easily and sensitively detected by atomic fluorescence. At low laser power, only the A (1)Sigma(u)(+) state is excited, completely free of triplet excitation. At high laser power, photodissociation via the intermediate b (3)Pi(u) triplet state becomes much more likely, effectively "switching" the observations from singlet spectroscopy to triplet spectroscopy with only minor apparatus changes. This technique of perturbation-assisted laser-induced atomic fragment fluorescence may therefore be especially useful as a general vehicle for investigating perturbation-related physics pertinent to the spin-forbidden states, as well as for studying allowed and forbidden states of other molecules.

  4. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  5. Fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Hink, M.A.; Verveer, P.J.

    2015-01-01

    Fluorescence fluctuation spectroscopy techniques allow the quantification of fluorescent molecules present at the nanomolar concentration level. After a brief introduction to the technique, this chapter presents a protocol including background information in order to measure and quantify the molecul

  6. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  7. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1997-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is primarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  8. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1995-01-01

    This series describes selected advances in the area of atomic spectroscopy. It is promarily intended for the reader who has a background in atmoic spectroscopy; suitable to the novice and expert. Although a widely used and accepted method for metal and non-metal analysis in a variety of complex samples, Advances in Atomic Spectroscopy covers a wide range of materials. Each Chapter will completely cover an area of atomic spectroscopy where rapid development has occurred.

  9. Dielectric barrier discharges with steep voltage rise: mapping of atomic nitrogen in single filaments measured by laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Lukas, C.; Spaan, M.; Schulz-von der Gathen, V.; Thomson, M.; Wegst, R.; Döbele, H. F.; Neiger, M.

    2001-08-01

    Space and time resolved relative atomic density distributions of nitrogen have been measured for the first time at a single filament within a dielectric barrier discharge (DBD) reactor with submillimetre radial dimensions. Two-photon-Absorption Laser-Induced Fluorescence (TALIF) spectroscopy of atomic nitrogen using radiation at λ = 206.7 nm is applied to a DBD with fast rising voltage amplitudes. The decay time of the atomic nitrogen density depends strongly on the position within the discharge and the distance from the dielectric where the lifetime is maximum. Admixed oxygen leads to an increase of the N density decay by an order of magnitude even at small fractions.

  10. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    1998-01-01

    This volume continues the series'' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.

  11. Ultra-narrow spectroscopic cells in atomic spectroscopy: reflection, transmission, fluorescence, and nonadiabatic transitions at the walls

    Science.gov (United States)

    Pazgalev, A.; Sarkisyan, D.; Cartaleva, S.; Przhibelskii, S.; Vartanyan, T.

    2014-11-01

    Ultra-narrow cells with the thicknesses in the range from several wavelengths to the small fractions of the wavelength brought a number of new opportunities for atomic spectroscopy. Depending on the cell thickness, spectral lines recorded in ultra-narrow cells are either Doppler-free or Doppler-broadened. With careful selection of the cell thickness hyperfine structure may be easily resolved without resorting on the multibeam nonlinear optical techniques. Moreover, frequent collisions with the walls leads to the important modifications of velocity selective optical pumping resonances. Finally, ultra-narrow cells provide with the unique opportunity to study collisions of the excited atoms with the solid surfaces. In this contribution several examples of the use of the ultra-narrow spectroscopic cells filled with the alkali atomic vapour is presented. First, we discuss general aspects of the transient polarisation that defines all peculiarities of an ultra-narrow cell as a spectroscopic tool. Second, we demonstrate the resolution of the magnetic sublevels in the transition from Zeeman to Paschen-Back regime in the Cs hyperfine structure. Third, new aspects of velocity selective optical pumping resonances in reflection and transmission of resonant radiation by the 6 wavelengths thick cell filled with Cs are discussed. Forth, the experimental evidences of the nonadiabatic transitions between excited states of Rb atoms in the course of collisions with the sapphire surface are presented.

  12. The spectroscopy in the atomic vapour

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jai Hyung; Chang, Joon Sung; Jhe, Won Ho [Seoul National University, Seoul (Korea)

    1998-04-01

    As spectroscopies in the atomic vapor, we perform experiments on fluorescence in dense atomic vapor, single color two-photon resonant three photon ionization, production of high temperature oven and its spectroscopic application, atomic trap and cold atomic beam. We observe lengthening of lifetime as atomic density increase and compare this result with Holstein equation. Dependence on pressure an d polarization reveals the result is due to collisions between Yb atom and Ar buffer gas. At high atomic density, self-focusing and conical emission are observed. In two-photon resonant three photon ionization scheme, ionization rate is dependent on polarization. From selection rule, we determined the energy level. At higher energy, asymmetry and broadening of ionization linewidth due to AC Stark effect are observed. As the result of numerical simulation of time evolution in the two-photon transition, distortion of time evolution of density is obtained. For spectroscopy of high-melting-point elements, we design and produce high temperature oven. We observe absorption spectra of high-melting-point elements, Er and Sm. As high temperature nonlinear spectroscopies, we perform conical emission and self-diffraction in Sm vapor. We produce magneto-optical trap system and measure fluorescence from trapped atoms and temperature. By trapping Rb isotopes simultaneously, we perform collision experiment at low temperature. Using hollow mirror system, we trap atoms and produce cold atomic beam. (author). 160 refs., 66 figs., 5 tabs.

  13. High-resolution multiphoton laser-induced fluorescence spectroscopy of zinc atoms ejected from laser-irradiated ZnS crystals

    Science.gov (United States)

    Arlinghaus, H. F.; Calaway, W. F.; Young, C. E.; Pellin, M. J.; Gruen, D. M.; Chase, L. L.

    1989-01-01

    Time-of-flight (TOF) measurements employing high-resolution multiphoton laser-induced fluorescence spectroscopy (LFS) have been used as a probe to determine the yield and velocity distributions of Zn atoms ejected from a ZnS single crystal under irradiation by 308-nm photons. For fluences between 20 and 80 mJ/cm2 (irradiated area 2 mm2), the velocity distributions could be fitted by Maxwell-Boltzmann distributions where the characteristic temperature increased from 2000 to 9000 K, respectively. The absolute neutral Zn yield also increased from 108 to 1012 atoms per pulse over this same fluence range. Plots of temperature (T) as a function of fluence (F) and yield as a function of 1/T and 1/F suggest thermal evaporation as the mechanism for the Zn emission.The results indicate that with increasing fluence a critical combination of particle density and laser intensity is reached for formation of a plasma which interacts with the surface to cause catastrophic failure. For consecutive laser shots at constant ablation laser fluences, a nearly exponential increase of the Zn particle density was observed, although the measured kinetic temperature remains approximately constant even beyond the onset of visible damage to the ZnS surface. Doppler-shift techniques have been combined with TOF measurements for the first time in order to separate prompt from delayed emission of ablated atoms as well as to probe possible molecular or cluster ejection and fragmentation. Evidence for the latter phenomena was obtained.

  14. Current Trends in Atomic Spectroscopy.

    Science.gov (United States)

    Wynne, James J.

    1983-01-01

    Atomic spectroscopy is the study of atoms/ions through their interaction with electromagnetic radiation, in particular, interactions in which radiation is absorbed or emitted with an internal rearrangement of the atom's electrons. Discusses nature of this field, its status and future, and how it is applied to other areas of physics. (JN)

  15. Symposium on atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Topics covered by the conference include: fast beam spectroscopy; astrophysical and other spectra; highly ionized spectroscopy; complex spectra; rydberg levels; fine structure, hyperfine structure and isotope shift; lineshapes; lifetimes, oscillator strengths and Einstein coefficients; and spectroscopy with lasers. Abstracts of the conference papers are presented. (GHT)

  16. Diagnostics of Carbon Nanotube Formation in a Laser Produced Plume: An Investigation of the Metal Catalyst by Laser Ablation Atomic Fluorescence Spectroscopy

    Science.gov (United States)

    deBoer, Gary; Scott, Carl

    2003-01-01

    Carbon nanotubes, elongated molecular tubes with diameters of nanometers and lengths in microns, hold great promise for material science. Hopes for super strong light-weight material to be used in spacecraft design is the driving force behind nanotube work at JSC. The molecular nature of these materials requires the appropriate tools for investigation of their structure, properties, and formation. The mechanism of nanotube formation is of particular interest because it may hold keys to controlling the formation of different types of nanotubes and allow them to be produced in much greater quantities at less cost than is currently available. This summer's work involved the interpretation of data taken last summer and analyzed over the academic year. The work involved diagnostic studies of carbon nanotube formation processes occurring in a laser-produced plume. Laser ablation of metal doped graphite to produce a plasma plume in which carbon nanotubes self assemble is one method of making carbon nanotube. The laser ablation method is amenable to applying the techniques of laser spectroscopy, a powerful tool for probing the energies and dynamics of atomic and molecular species. The experimental work performed last summer involved probing one of the metal catalysts, nickel, by laser induced fluorescence. The nickel atom was studied as a function of oven temperature, probe laser wavelength, time after ablation, and position in the laser produced plume. This data along with previously obtained data on carbon was analyzed over the academic year. Interpretations of the data were developed this summer along with discussions of future work. The temperature of the oven in which the target is ablated greatly influences the amount of material ablated and the propagation of the plume. The ablation conditions and the time scale of atomic and molecular lifetimes suggest that initial ablation of the metal doped carbon target results in atomic and small molecular species. The metal

  17. Atomic spectroscopy and radiative processes

    CERN Document Server

    Landi Degl'Innocenti, Egidio

    2014-01-01

    This book describes the basic physical principles of atomic spectroscopy and the absorption and emission of radiation in astrophysical and laboratory plasmas. It summarizes the basics of electromagnetism and thermodynamics and then describes in detail the theory of atomic spectra for complex atoms, with emphasis on astrophysical applications. Both equilibrium and non-equilibrium phenomena in plasmas are considered. The interaction between radiation and matter is described, together with various types of radiation (e.g., cyclotron, synchrotron, bremsstrahlung, Compton). The basic theory of polarization is explained, as is the theory of radiative transfer for astrophysical applications. Atomic Spectroscopy and Radiative Processes bridges the gap between basic books on atomic spectroscopy and the very specialized publications for the advanced researcher: it will provide under- and postgraduates with a clear in-depth description of theoretical aspects, supported by practical examples of applications.

  18. Spectroscopy, Understanding the Atom Series.

    Science.gov (United States)

    Hellman, Hal

    This booklet is one of the "Understanding the Atom" Series. The science of spectroscopy is presented by a number of topics dealing with (1) the uses of spectroscopy, (2) its origin and background, (3) the basic optical systems of spectroscopes, spectrometers, and spectrophotometers, (4) the characteristics of wave motion, (5) the…

  19. Imaging an atomic beam using fluorescence

    Institute of Scientific and Technical Information of China (English)

    Ming He(何明); Jin Wang(王谨); Mingsheng Zhan(詹明生)

    2003-01-01

    A fluorescence detection scheme is applied to image an atomic beam. Using two laser diodes as the sources of detection light and pumping light respectively, the fluorescence image of the atomic beam is then observed by a commercial CCD-camera, which is corresponding to the atomic state and velocity distribution. The detection scheme has a great utilization in the experiments of cold atoms and atomic optics.

  20. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg(+)), ethylmercury (EtHg(+)) and inorganic mercury (Hg(2+)) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL(-1) for EtHg(+) and 5-450ngL(-1) for MeHg(+) and Hg(2+). Limits of detection were 3.0ngL(-1) for EtHg(+) and 1.5ngL(-1) for MeHg(+) and Hg(2+). Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%.

  1. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    Science.gov (United States)

    Daye, Mirna; Halwani, Jalal; Hamzeh, Mariam

    2013-01-01

    8-Hydroxyquinoline (8-HQ) was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ) is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II) is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II), which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II). The developed method showed quantitative recoveries of Hg(II) with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS) with a preconcentration factor greater than 250. PMID:24459417

  2. Solid Phase Extraction of Inorganic Mercury Using 5-Phenylazo-8-hydroxyquinoline and Determination by Cold Vapor Atomic Fluorescence Spectroscopy in Natural Water Samples

    Directory of Open Access Journals (Sweden)

    Mirna Daye

    2013-01-01

    Full Text Available 8-Hydroxyquinoline (8-HQ was chosen as a powerful ligand for Hg solid phase extraction. Among several chelating resins based on 8-HQ, 5-phenylazo-8-hydroxyquinoline (5Ph8HQ is used for mercury extraction in which the adsorption dynamics were fully studied. It has been shown that Hg(II is totally absorbed by 5Ph8HQ within the first 30 minutes of contact time with t1/2 5 minutes, following Langmuir adsorption model. At pH 4, the affinity of mercury is unchallenged by other metals except, for Cu(II, which have shown higher Kd value. With these latter characteristics, 5Ph8HQ was examined for the preconcentration of trace levels of Hg(II. The developed method showed quantitative recoveries of Hg(II with LOD = 0.21 pg mL−1 and RSD = 3–6% using cold vapor atomic fluorescence spectroscopy (CV-AFS with a preconcentration factor greater than 250.

  3. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  4. Atomic emission spectroscopy

    Science.gov (United States)

    Andrew, K. H.

    1975-01-01

    The relationship between the Slater-Condon theory and the conditions within the atom as revealed by experimental data was investigated. The first spectrum of Si, Rb, Cl, Br, I, Ne, Ar, and Xe-136 and the second spectrum of As, Cu, and P were determined. Methods for assessing the phase stability of fringe counting interferometers and the design of an autoranging scanning system for digitizing the output of an infrared spectrometer and recording it on magnetic tape are described.

  5. Decoherence Spectroscopy for Atom Interferometry

    Directory of Open Access Journals (Sweden)

    Raisa Trubko

    2016-08-01

    Full Text Available Decoherence due to photon scattering in an atom interferometer was studied as a function of laser frequency near an atomic resonance. The resulting decoherence (contrast-loss spectra will be used to calibrate measurements of tune-out wavelengths that are made with the same apparatus. To support this goal, a theoretical model of decoherence spectroscopy is presented here along with experimental tests of this model.

  6. CANAS '01 - Colloquium analytical atomic spectroscopy; CANAS '01 - Colloquium Analytische Atomspektroskopie. Programm. Kurzfassungen der Vortraege und Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The main topics of the meeting on analytical atom spectroscopy were: optical atom spectrometry, x-ray fluorescence analysis, absorption spectroscopy, icp mass spectroscopy, trace analysis, sampling, sample preparation and quality assurance.

  7. Fluorescence fluctuation spectroscopy (FFS), part A

    CERN Document Server

    Tetin, Sergey

    2013-01-01

    This new volume of Methods in Enzymology continues the legacy of this premier serial by containing quality chapters authored by leaders in the field. This volume covers Fluorescence Fluctuation SpectroscopyContains chapters on such topics as Time-integrated fluorescence cumulant analysis, Pulsed Interleaved Excitation, and raster image correlation spectroscopy and number and brightness analysis.Continues the legacy of this premier serial with quality chapters authored by leaders in the fieldCovers fluorescence fluctuation spectroscopyContains chapte

  8. Lifetime Resolved Fluorescence Fluctuation Spectroscopy

    Science.gov (United States)

    Guo, Peng; Berland, Keith

    2009-11-01

    Fluorescence correlation spectroscopy (FCS) has been widely used investigate molecular dynamics and interactions in biological systems. FCS typically resolves the component species of a sample either through differences in diffusion coefficient or molecular brightness. Diffusion based assays currently have a major limitation which requires that the diffusion coefficients of component species in a sample must be substantially different in order to be resolved. This criterion is not met in many important cases, such as when molecules of similar molecular weight bind to each other. This limitation can be overcome, and resolution of FCS measurements enhanced, by combining FCS measurements with measurements of fluorescence lifetimes. By using of global analysis on simultaneously acquired FCS and lifetime data we show that we can dramatically enhance resolution in FCS measurements, and accurately resolve the concentration and diffusion coefficients of multiple sample components even when their diffusion coefficients are identical provided there is a difference in the lifetime of the component species. We show examples of this technique using both simulations and experiments. It is expected that this method will be of significance for binding assays studying molecular interactions.

  9. Laser spectroscopy of atomic radium

    Energy Technology Data Exchange (ETDEWEB)

    Groot, Alexander; Jungmann, Klaus; Santra, Bodhaditya; Willmann, Lorenz; Wilschut, Hans W. [KVI, University of Groningen (Netherlands)

    2009-07-01

    The heavy alkaline earth elements radium (Ra) offers a unique sensitivity to a parity and time reversal violating permanent electric dipole moments (EDM). In particular, Ra exhibits the largest known atomic enhancements factors for EDMs. The intrinsic sensitivity arises from the specific atomic and nuclear structure of Ra. All Ra isotopes with nuclear spin I are radioactive. The lifetimes are shorter than 15 d. Several Ra isotopes are available at the TRI{mu}P facility at KVI. For the exploitation of the sensitivity Ra atoms have to be collected in a neutral atom trap. The main laser cooling is done on the strong {sup 1}S{sub 0}-{sup 1}P{sub 1} transition at 482.7 nm, similar to the laser cooling and trapping of the chemical homologue barium. Laser spectroscopy of the strong {sup 1}S{sub 0}-{sup 1}P{sub 1} transitions is presented. The light at this wavelength is provided by frequency doubling of a Ti:sapphire laser in a KNbO{sub 3} crystal. Of particular interest is the decay branching of the excited state to the metastable D-states. Such measurements are indispensable input for current atomic structure calculations, which are necessary for the analysis of a EDM measurement using Ra.

  10. Atomic absorption spectroscopy in ion channel screening.

    Science.gov (United States)

    Stankovich, Larisa; Wicks, David; Despotovski, Sasko; Liang, Dong

    2004-10-01

    This article examines the utility of atomic absorption spectroscopy, in conjunction with cold flux assays, to ion channel screening. The multiplicity of ion channels that can be interrogated using cold flux assays and atomic absorption spectroscopy is summarized. The importance of atomic absorption spectroscopy as a screening tool is further elaborated upon by providing examples of the relevance of ion channels to various physiological processes and targeted diseases.

  11. Containerless Atomic-Fluorescence Property Measurements

    Science.gov (United States)

    Nordine, P.; Schiffman, R.; Walker, C.

    1987-01-01

    Report describes studies conducted to establish and verify use of laser-induced fluorescence in monitoring and controlling high-temperature containerless processes. Specimens levitated by gas jets or electromagnetic fields and heated by laser beams or electromagnetic induction while being irradiated and detected by fluorescence technique. Makes quantitative and qualitative comparisons among three new methods of temperature measurement; all rely on laser-induced fluorescence. One method gas-density thermometry with seed gas. Other two methods involve measurements of velocities of evaporating atoms or of population ratios of different electronic states.

  12. Determination of thiomersal by flow injection coupled with microwave-assisted photochemical online oxidative decomposition of organic mercury and cold vapor atomic fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo; Mascherpa, Marco Carlo; D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO–UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2013-12-04

    Graphical abstract: -- Highlights: •Thiomersal was determined on line using FI-MW/UV-CVGAFS. •MW/UV allows a “green” on line oxidation of organic mercury to Hg{sup II}. •Each measure requires less than 5 min with a LOD of 3 ng mL{sup −1} (as mercury). •Hg concentration in commercial ophthalmic solutions ranges between 7.5 and 59.0 μg mL{sup −1}. -- Abstract: We developed a flow injection (FI) method for the determination of thiomersal (sodium ethylmercurithiosalicylate, C{sub 9}H{sub 9}HgNaO{sub 2}S) based on the UV/microwave (MW) photochemical, online oxidation of organic mercury, followed by cold vapor generation atomic fluorescence spectrometry (CVG-AFS) detection. Thiomersal was quantitatively converted in the MW/UV process to Hg(II), with a yield of 97 ± 3%. This reaction was followed by the reduction of Hg(II) to Hg(0) performed in a knotted reaction coil with NaBH{sub 4} solution, and AFS detection in an Ar/H{sub 2} miniaturized flame. The method was linear in the 0.01–2 μg mL{sup −1} range, with a LOD of 0.003 μg mL{sup −1}. This method has been applied to the determination of thiomersal in ophthalmic solutions, with recoveries ranging between 97% and 101%. We found a mercury concentration in commercial ophthalmic solutions ranging between 7.5 and 59.0 μg mL{sup −1}.

  13. Fluorescence correlation spectroscopy in laser gradient field

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fluorescence correlation spectroscopy (FCS) is capable of probing dynamic processes in living biological systems. From photon fluctuation of fluorescing particles which diffuse through a small detection volume, FCS reveals information on the concentration and the structure of the particles, as well as information on microscopic environment.In this note, we study the radiation forces experienced by Rayleigh particles in a laser field in details, and analyze the effects of gradient field on FCS measurements.

  14. Fluorescence spectroscopy for neoplasms control

    Science.gov (United States)

    Bratchenko, I. A.; Kristoforova, Yu. A.; Myakinin, O. O.; Artemyev, D. N.; Kozlov, S. V.; Moryatov, A. A.; Zakharov, V. P.

    2016-04-01

    Investigation of malignant skin tumors diagnosis was performed involving two setups for native tissues fluorescence control in visible and near infrared regions. Combined fluorescence analysis for skin malignant melanomas and basal cell carcinomas was performed. Autofluorescence spectra of normal skin and oncological pathologies stimulated by 457 nm and 785 nm lasers were registered for 74 skin tissue samples. Spectra of 10 melanomas and 27 basal cell carcinomas were registered ex vivo. Skin tumors analysis was made on the basis of autofluorescence spectra intensity and curvature for analysis of porphyrins, lipo-pigments, flavins and melanin. Separation of melanomas and basal cell carcinomas was performed on the basis of discriminant analysis. Overall accuracy of basal cell carcinomas and malignant melanomas separation in current study reached 86.5% with 70% sensitivity and 92.6% specificity.

  15. Angle-Resolved Spectroscopy of Parametric Fluorescence

    CERN Document Server

    Hsu, Feng-kuo

    2013-01-01

    The parametric fluorescence from a nonlinear crystal forms a conical radiation pattern. We measure the angular and spectral distributions of parametric fluorescence in a beta-barium borate crystal pumped by a 405-nm diode laser employing angle-resolved imaging spectroscopy. The experimental angle-resolved spectra and the generation efficiency of parametric down conversion are compared with a plane-wave theoretical analysis. The parametric fluorescence is used as a broadband light source for the calibration of the instrument spectral response function in the wavelength range from 450 to 1000 nm.

  16. Precision spectroscopy of the helium atom

    Institute of Scientific and Technical Information of China (English)

    Shui-ming HU; Zheng-Tian LU; Zong-Chao YAN

    2009-01-01

    Persistent efforts in both theory and experiment have yielded increasingly precise understanding of the helium atom. Because of its simplicity, the helium atom has long been a testing ground for relativistic and quantum electrodynamic effects in few-body atomic systems theoretically and experimentally.Comparison between theory and experiment of the helium spectroscopy in ls2p3pJ can potentially extract a very precise value of the fine structure constant a. The helium atom can also be used to explore exotic nuclear structures. In this paper, we provide a brief review of the recent advances in precision calculations and measurements of the helium atom.

  17. Ultraviolet, Visible, and Fluorescence Spectroscopy

    Science.gov (United States)

    Penner, Michael H.

    Spectroscopy in the ultraviolet-visible (UV-Vis) range is one of the most commonly encountered laboratory techniques in food analysis. Diverse examples, such as the quantification of macrocomponents (total carbohydrate by the phenol-sulfuric acid method), quantification of microcomponents, (thiamin by the thiochrome fluorometric procedure), estimates of rancidity (lipid oxidation status by the thiobarbituric acid test), and surveillance testing (enzyme-linked immunoassays), are presented in this text. In each of these cases, the analytical signal for which the assay is based is either the emission or absorption of radiation in the UV-Vis range. This signal may be inherent in the analyte, such as the absorbance of radiation in the visible range by pigments, or a result of a chemical reaction involving the analyte, such as the colorimetric copper-based Lowry method for the analysis of soluble protein.

  18. Adaptive Optics for Fluorescence Correlation Spectroscopy

    CERN Document Server

    Leroux, Charles Edouard; Derouard, Jacques; Delon, Antoine

    2011-01-01

    Fluorescence Correlation Spectroscopy (FCS) yields measurement parameters (number of molecules, diffusion time) that characterize the concentration and kinetics of fluorescent molecules within a supposedly known observation volume. Absolute derivation of concentrations and diffusion constants therefore requires preliminary calibrations of the confocal Point Spread Function with phantom solutions under perfectly controlled environmental conditions. In this paper, we quantify the influence of optical aberrations on single photon FCS and demonstrate a simple Adaptive Optics system for aberration correction. Optical aberrations are gradually introduced by focussing the excitation laser beam at increasing depths in fluorescent solutions with various refractive indices, which leads to drastic depth-dependent bias in the estimated FCS parameters. Aberration correction with a Deformable Mirror stabilizes these parameters within a range of several tens of \\mum into the solution. We also demonstrate, both theoretically...

  19. Atomic vapor spectroscopy in integrated photonic structures

    CERN Document Server

    Ritter, Ralf; Pernice, Wolfram; Kübler, Harald; Pfau, Tilman; Löw, Robert

    2015-01-01

    We investigate an integrated optical chip immersed in atomic vapor providing several waveguide geometries for spectroscopy applications. The narrow-band transmission through a silicon nitride waveguide and interferometer is altered when the guided light is coupled to a vapor of rubidium atoms via the evanescent tail of the waveguide mode. We use grating couplers to couple between the waveguide mode and the radiating wave, which allow for addressing arbitrary coupling positions on the chip surface. The evanescent atom-light interaction can be numerically simulated and shows excellent agreement with our experimental data. This work demonstrates a next step towards miniaturization and integration of alkali atom spectroscopy and provides a platform for further fundamental studies of complex waveguide structures.

  20. Precision spectroscopy on atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Parthey, Christian Godehard

    2011-12-15

    This Thesis reports on three measurements involving the 1S-2S transition in atomic hydrogen and deuterium conducted on a 5.8 K atomic beam. The transition is excited Doppler-free via two counter-propagating photons near 243 nm. The H/D isotope shift has been determined as {delta}{integral}{sub exp}=670 994 334 606(15) Hz. Comparing with the theoretical value for the isotope shift, excluding the leading nuclear size effect, {delta}{integral}{sub th}=670 999 566.90(66)(60) kHz we confirm, twice more accurate, the rms charge radius difference of the deuteron and the proton as left angle r{sup 2} right angle {sub d}- left angle r{sup 2} right angle {sub p}=3.82007(65) fm{sup 2} and the deuteron structure radius r{sub str}=1.97507(78) fm. The frequency ratio of the 1S-2S transition in atomic hydrogen to the cesium ground state hyperfine transition provided by the mobile cesium fountain clock FOM is measured to be {integral}{sub 1S-2S}=2 466 061 413 187 035 (10) Hz which presents a fractional frequency uncertainty of 4.2 x 10{sup -15}. The second absolute frequency measurement of the 1S-2S transition in atomic hydrogen presents the first application of a 900 km fiber link between MPQ and Physikalisch- Technische Bundesanstalt (PTB) in Braunschweig which we have used to calibrate the MPQ hydrogen maser with the stationary cesium fountain clock CSF1 at PTB. With the result of {integral}{sub 1S-2S}=2 466 061 413 187 017 (11) Hz we can put a constraint on the electron Lorentz boost violating coefficients 0.95c{sub (TX)}-0.29c{sub (TY)}-0.08 c{sub (TZ)}=(2.2{+-}1.8) x 10{sup -11} within the framework of minimal standard model extensions. We limit a possible drift of the strong coupling constant through the ratio of magnetic moments at a competitive level ({partial_derivative})/({partial_derivative}t)ln ({mu}{sub Cs})/({mu}{sub B})=-(3.0{+-}1.2) x 10{sup -15} yr{sup -1}.

  1. Photoelectron spectroscopy of heavy atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target.

  2. Two-dimensional fluorescence spectroscopy of laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2016-08-01

    We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of solid aluminum targets at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous-wave, Ti:Sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the continuous-wave laser at one transition. Time-delayed and gated detection of the emission spectrum is used to isolate the resonantly-excited fluorescence emission from the thermally-excited emission from the plasma. In addition, the tunable continuous-wave laser measures the absorption spectrum of the Al transition with ultra-high resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing continuous-wave laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.

  3. APD detectors for biological fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mazeres, S. [Institut de Pharmacologie et de Biologie Structurale, IPBS-CNRS, 205 route de Narbonne 31077 Toulouse Cedex 4 (France)]. E-mail: serge.mazeres@ipbs.fr; Borrel, V. [GIATHE/CESR, 9 avenue du Colonel Roche BP 4346, 31029 Toulouse Cedex (France); Magenc, C. [GIATHE/CESR, 9 avenue du Colonel Roche BP 4346, 31029 Toulouse Cedex (France); Courrech, J.L. [GIATHE/CESR, 9 avenue du Colonel Roche BP 4346, 31029 Toulouse Cedex (France); Bazer-Bachi, R. [GIATHE/CESR, 9 avenue du Colonel Roche BP 4346, 31029 Toulouse Cedex (France)

    2006-11-01

    Fluorescence spectroscopy is a very convenient and widely used method for studying the molecular background of biological processes [L. Salome, J.L. Cazeil, A. Lopez, J.F. Tocanne, Eur. Biophys. J. 27 (1998) 391-402]. Chromophores are included in the structure under study and a flash of laser light induces fluorescence (Fluorescence Recovery After Photo-bleaching), the decay of which yields information on the polarity, the speed of rotation, and the speed of diffusion as well as on the temporal and spatial evolution of interactions between molecular species. The method can even be used to study living cells [J.F. Tocanne, L. Cezanne, A. Lopez, Prog. Lipid Res. 33 (1994) 203-237, L. Cezanne, A. Lopez, F. Loste, G. Parnaud, O. Saurel, P. Demange, J.F. Tocanne, Biochemistry 38 (1999) 2779-2786]. This is classically performed with a PM-based system. For biological reasons a decrease of the excitation of the cells is highly desirable. Because the fluorescence response then becomes fainter a significant improvement in detector capability would be welcome. We present here results obtained with an Avalanche Photo Diode (APD)-based system. The small sensitive area of detection allows a very significant improvement in signal/noise ratio, improvement in gain, and the opening-up of a new parameter space. With these new detectors we can begin the study of information transmission between cells through morphine receptors. This work involves both electronics engineers and biophysicists, so results and techniques in both fields will be presented here.

  4. Atomic Force Microscope for Imaging and Spectroscopy

    Science.gov (United States)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  5. Determination of arsenic and hydrargyrum in cosmetics by using Hydride atomic fluorescence spectroscopy%氢化物原子荧光光谱法测化妆品中的砷、汞

    Institute of Scientific and Technical Information of China (English)

    李淑娜

    2012-01-01

    目的:建立化妆品中准确测定砷、汞的测定方法.方法:采用HNO3-H2SO4混合酸消化化妆品、氢化物发生原子荧光光谱法测定砷、汞的含量.结果:砷的方法检出限为0.0227 μg/g,测定精密度为0.9%~1.4%,回收率为96.0% ~ 102.7%,汞的方法检出限为0.171 ng/g,测定精密度为1.4% ~2.0%,回收率为90.0% ~ 105.0%.结论:该方法精密度好,回收率及灵敏度高,线性范围宽,可作为化妆品中微量砷、汞的测定方法.%Objective: To establish the method for accurate determination of arsenic and hydrargyrum in cosmetics. Methods: The contents of arsenic and hydrargyrum were determined by using mixed acid H2SO4 - HNO3 digestion cosmetics and hydride generation atomic fluorescence spectroscopy. Results: The detection limit of arsenic was 0.0227 μg/g, the measuring precision was 0.9% ~ 1.4% , and the recovery rate was 96.0% ~ 102. 7% . The detection limit of hydrargyrum was 0. 171 ng/g, the measuring precision was 1.4% ~2.0%, and the recovery rate was 90. 0% ~105.0%. Conclusion; The method could be used to determine the trace arsenic and hydrargyrum in cosmetics, with good precision, high recovery rate and sensitivity and wide linear range.

  6. Atomic fluorescence study of high temperature aerodynamic levitation

    Science.gov (United States)

    Nordine, P. C.; Schiffman, R. A.; Sethi, D. S.

    1982-01-01

    Ultraviolet laser induced atomic fluorescence has been used to characterize supersonic jet aerodynamic levitation experiments. The levitated specimen was a 0.4 cm sapphire sphere that was separately heated at temperatures up to 2327 K by an infrared laser. The supersonic jet expansion and thermal gradients in the specimen wake were studied by measuring spatial variations in the concentration of atomic Hg added to the levitating argon gas stream. Further applications of atomic fluorescence in containerless experiments, such as ideal gas fluorescence thermometry and containerless process control are discussed.

  7. Glucose Recognition in Vitro Using Fluorescent Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Noronha, G; Heiss, A M; Reilly, J R; Vachon, Jr, D J; Cary, D R; Zaitseva, N P; Reibold, R A; Lane, S M; Peyser, T A; Satcher, J H

    2001-04-25

    Diabetes is a disease that affects over 16 million people in the USA at a cost of 100 billion dollars annually. The ability to regulate insulin delivery in people with Type 1 diabetes is imperative as is the need to manage glucose levels in all people with this disease. Our current method for monitoring glucose is a (FDA approved) minimally invasive enzymatic sensor that can measure glucose levels in vivo for three days. We are focused on developing a noninvasive implantable glucose sensor that will be interrogated by an external device. The material must be robust, easy to process, biocompatible and resistant to biofouling. In this Presentation we will discuss the development of a new polymeric matrix that can recognize physiological levels of glucose in vitro using fluorescent spectroscopy.

  8. Atoms, molecules and optical physics 1. Atoms and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter

    2015-09-01

    This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  9. Sensitive spectroscopy of an ytterbium atomic beam

    CERN Document Server

    Guttridge, A; Kemp, S L; Boddy, D; Freytag, R; Tarbutt, M R; Hinds, E A; Cornish, S L

    2015-01-01

    Experimental studies of ultracold ytterbium atoms generally involve the frequency stabilisation (locking) of lasers to two transitions at 399 and 556 nm in order to implement laser cooling. Here we present a simple and robust apparatus for generation of suitable, narrow fluorescence signals with a high signal to noise ratio at both wavelengths. The design utilises easily acquired vacuum parts, optics and electronics and requires very little laser power. We demonstrate the stability and precision of the frequency stabilisation at 556 nm by presenting sensitive measurements of the gravitational sag of an ytterbium MOT as a function of laser power.

  10. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  11. Containerless high temperature property measurements by atomic fluorescence

    Science.gov (United States)

    Nordine, P. C.; Schiffman, R. A.

    1982-01-01

    Laser induced fluorescence techniques were developed for the containerless study of high temperature processes, material properties, levitation, and heating techniques for containerless earth-based experimentation. Experiments were performed in which fluorescence of atomic aluminum, mercury, or tungsten were studied. These experiments include measurements of: (1) Al atom evaporation from CW CO2 laser heated and aerodynamically levitated sapphire and alumina spheres, and self-supported sapphire filaments, (2) Al atom reaction with ambient oxygen in the wake of a levitated specimen, (3) Hg atom concentrations in the wake of levitated alumina and sapphire spheres, relative to the ambient Hg atom concentration, (4) Hg atom concentrations in supersonic levitation jets, and (5) metastable, electronically excited W atom concentrations produced by evaporation of an electrically heated tungsten filament.

  12. Laser Spectroscopy of Muonic Atoms and Ions

    CERN Document Server

    Pohl, Randolf; Fernandes, Luis M P; Ahmed, Marwan Abdou; Amaro, Fernando D; Amaro, Pedro; Biraben, François; Cardoso, João M R; Covita, Daniel S; Dax, Andreas; Dhawan, Satish; Diepold, Marc; Franke, Beatrice; Galtier, Sandrine; Giesen, Adolf; Gouvea, Andrea L; Götzfried, Johannes; Graf, Thomas; Hänsch, Theodor W; Hildebrandt, Malte; Indelicato, Paul; Julien, Lucile; Kirch, Klaus; Knecht, Andreas; Knowles, Paul; Kottmann, Franz; Krauth, Julian J; Bigot, Eric-Olivier Le; Liu, Yi-Wei; Lopes, José A M; Ludhova, Livia; Machado, Jorge; Monteiro, Cristina M B; Mulhauser, Françoise; Nebel, Tobias; Rabinowitz, Paul; Santos, Joaquim M F dos; Santos, José Paulo; Schaller, Lukas A; Schuhmann, Karsten; Schwob, Catherine; Szabo, Csilla I; Taqqu, David; Veloso, João F C A; Voss, Andreas; Weichelt, Birgit; Antognini, Aldo

    2016-01-01

    Laser spectroscopy of the Lamb shift (2S-2P energy difference) in light muonic atoms or ions, in which one negative muon $\\mu^-$ is bound to a nucleus, has been performed. The measurements yield significantly improved values of the root-mean-square charge radii of the nuclei, owing to the large muon mass, which results in a vastly increased muon wave function overlap with the nucleus. The values of the proton and deuteron radii are 10 and 3 times more accurate than the respective CODATA values, but 7 standard deviations smaller. Data on muonic helium-3 and -4 ions is being analyzed and will give new insights. In future, the (magnetic) Zemach radii of the proton and the helium-3 nuclei will be determined from laser spectroscopy of the 1S hyperfine splittings, and the Lamb shifts of muonic Li, Be and B can be used to improve the respective charge radii.

  13. Theory of analytical curves in atomic fluorescence flame spectrometry

    NARCIS (Netherlands)

    Hooymayers, H.P.

    1968-01-01

    An explicit expression for the intensity of atomic resonance fluorescence as a function of atomic concentration in a flame is derived under certain idealized conditions. The expression is generally valid for a pure Doppler absorption line profile as well as for a combined Doppler and collisional bro

  14. Collinear laser spectroscopy of atomic cadmium

    CERN Document Server

    Frömmgen, Nadja; Bissell, Mark L; Bieroń, Jacek; Blaum, Klaus; Cheal, Bradley; Flanagan, Kieran; Fritzsche, Stephan; Geppert, Christopher; Hammen, Michael; Kowalska, Magdalena; Kreim, Kim; Krieger, Andreas; Neugart, Rainer; Neyens, Gerda; Rajabali, Mustafa M; Nörtershäuser, Wilfried; Papuga, Jasna; Yordanov, Deyan T

    2015-01-01

    Hyperfine structure $A$ and $B$ factors of the atomic $5s\\,5p\\,\\; ^3\\rm{P}_2 \\rightarrow 5s\\,6s\\,\\; ^3\\rm{S}_1$ transition are determined from collinear laser spectroscopy data of $^{107-123}$Cd and $^{111m-123m}$Cd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with $s_{1/2}$ and $d_{5/2}$ nuclear ground states and isomeric $h_{11/2}$ states is evaluated and a linear relationship is observed for all nuclear states except $s_{1/2}$. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic $5s\\,5p\\,\\; ^3\\mathrm{P}_2$ level is derived from multi-configuration Dirac-Hartree-Fock calculatio...

  15. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.

  16. Two-focus fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dertinger, T.

    2007-05-15

    Fluorescence Correlation Spectroscopy (FCS) has been invented more than 30 years ago and experienced a renaissance after stable and affordable laser sources and low-noise single-photon detectors have become available. Its ability to measure diffusion coefficients at nanomolar concentrations of analyte made it a widely used tool in biophysics. However, in recent years it has been shown by many authors that aberrational (e.g. astigmatism) and photophysical effects (e.g. optical saturation) may influence the result of an FCS experiment dramatically, so that a precise and reliable estimation of the diffusion coefficient is no longer possible. In this thesis, we report on the development, implementation, and application of a new and robust modification of FCS that we termed two-focus FCS (2fFCS) and which fulfils two requirements: (i) It introduces an external ruler into the measurement by generating two overlapping laser foci of precisely known and fixed distance. (ii) These two foci and corresponding detection regions are generated in such a way that the corresponding molecule detection functions (MDFs) are sufficiently well described by a simple two-parameter model yielding accurate diffusion coefficients when applied to 2fFCS data analysis. Both these properties enable us to measure absolute values of the diffusion coefficient with an accuracy of a few percent. Moreover, it will turn out that the new technique is robust against refractive index mismatch, coverslide thickness deviations, and optical saturation effects, which so often trouble conventional FCS measurements. This thesis deals mainly with the introduction of the new measurement scheme, 2fFCS, but also presents several applications with far-reaching importance. (orig.)

  17. Quantitative Determination of DNA-Ligand Binding Using Fluorescence Spectroscopy

    Science.gov (United States)

    Healy, Eamonn F.

    2007-01-01

    The effective use of fluorescence spectroscopy for determining the binding of the intercalcating agent crhidium bromide to DNA is being described. The analysis used simple measurement techniques and hence can be easily adopted by the students for a better understanding.

  18. Fluorescence spectroscopy and multi-way techniques. PARAFAC

    DEFF Research Database (Denmark)

    Murphy, Kathleen R.; Stedmon, Colin A.; Graeber, Daniel;

    2013-01-01

    PARAllel FACtor analysis (PARAFAC) is increasingly used to decompose fluorescence excitation emission matrices (EEMs) into their underlying chemical components. In the ideal case where fluorescence conforms to Beers Law, this process can lead to the mathematical identification and quantification...... of independently varying fluorophores. However, many practical and analytical hurdles stand between EEM datasets and their chemical interpretation. This article provides a tutorial in the practical application of PARAFAC to fluorescence datasets, demonstrated using a dissolved organic matter (DOM) fluorescence...... dataset. A new toolbox for MATLAB is presented to support improved visualisation and sensitivity analyses of PARAFAC models in fluorescence spectroscopy. © 2013 The Royal Society of Chemistry....

  19. Various applications of Zeeman atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koizumi, H.

    1978-06-01

    The application of the Zeeman effect to atomic absorption spectroscopy has been studied over the past several years. This technique has a larger area of application than conventional AAS because of its high degree of selectivity. The ZAA technique can be used for organometallic species determination by interfacing with a high-pressure liquid chromatograph. Various kinds of eluents can be directly introduced in the ZAA system; even organic solvents or high-concentration salt solutions. For example, the Co atom in the functional center of Vitamin B12 molecule was separately analyzed in the presence of much larger amounts of inorganic Co. In the ZAA technique, interference caused by direct spectral overlap can also be corrected. As a typical example, the Sb line at 217.02 nm overlaps the Pb absorption line at 217.00 nm. However, 1000 ppM of Pb did not cause any interference signal in the Sb analysis by ZAA. This is especially important in the analysis of gun powder residue that is often carried out by chemists working in the forensic field. In the determination of trace elements in matrices of unknown composition, the ZAA technique achieved highly reliable results by employing the standard addition method to correct for chemical interferences, because any nonspecific absorption or emission does not give rise to interference signals with this technique.

  20. Detection of Counterfeit Tequila by Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    José Manuel de la Rosa Vázquez

    2015-01-01

    Full Text Available An ultraviolet (UV light induced fluorescence study to discriminate fake tequila from genuine ones is presented. A portable homemade system based on four light emitting diodes (LEDs from 255 to 405 nm and a miniature spectrometer was used. It has been shown that unlike fake and silver tequila, which produce weak fluorescence signal, genuine mixed, rested, and aged tequilas show high fluorescence emission in the range from 400 to 750 nm. The fluorescence intensity grows with aging in 100% agave tequila. Such fluorescence differences can even be observed with naked eyes. The presented results demonstrate that the fluorescence measurement could be a good method to detect counterfeit tequila.

  1. Study on Atomic Fluorescence Spectrometry Excited by Synchrotron Radiation

    Institute of Scientific and Technical Information of China (English)

    Jia-jia Guo; Wu-er Gan; Guo-bin Zhang; Qing-de Su

    2008-01-01

    A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as flow rate, analyte acidity, concentration of pre-reducing and hydrogenation system are optimized. The proposed method is successfully applied to get an excitation spectrum of arsenic. Seven of ten primary spectral lines, four of which have never been reported by means of atomic fluorescence spectrometry, agree well with the existing reports. The other three are proposed for the first time. Excitation potentials and possible transitions are investigated. Especially for the prominent line at 234.99 nm, the mechanism of generation is discussed and a model of energy transition processes is proposed.

  2. [Fluorescence spectroscopy study of synthetic food colors].

    Science.gov (United States)

    Chen, Guo-qing; Wu, Ya-min; Wang, Jun; Zhu, Tuo; Gao, Shu-mei

    2009-09-01

    According to the characteristic of synthetic food colors molecule and the relationship between fluorescence and molecular structure, and through analyzing, it has been concluded that synthetic food colors is fluorescent material. By using SP-2558 multifunctional spectral measuring system, the three-dimensional fluorescence spectra of ponceau 4R, amaranth, tartrazine, sunset yellow and brilliant blue were measured. The results show that ponceau 4R excited by light at the wavelength of 330-430 nm can generate a strong fluorescence at the 621 nm peak wavelength with its best excitation wavelength being 376 nm, amaranth excited by light at the wavelength of 300-440 nm can generate a strong fluorescence at the 643 nm peak wavelength with its best excitation wavelength being 370 nm, tartrazine excited by light at the wavelength of 280-380 nm can generate a strong fluorescence at the 565 nm peak wavelength with its best excitation wavelength being 315 nm, sunset yellow excited by light with wavelength of 310-410 nm can generate a strong fluorescence at the 592 nm peak wavelength with its best excitation wavelength being 348 nm, and brilliant blue excited by light at the wavelength of 320-390 nm can generate a strong fluorescence at the 456 nm peak wavelength with its best excitation wavelength being 350 nm. Moreover, the fluorescence spectra of the five kinds of synthetic food colors were discussed. These results can provide helps for testing of food colors and food safety.

  3. Detection of Counterfeit Tequila by Fluorescence Spectroscopy

    OpenAIRE

    José Manuel de la Rosa Vázquez; Diego Adrián Fabila-Bustos; Luis Felipe de Jesús Quintanar-Hernández; Alma Valor; Suren Stolik

    2015-01-01

    An ultraviolet (UV) light induced fluorescence study to discriminate fake tequila from genuine ones is presented. A portable homemade system based on four light emitting diodes (LEDs) from 255 to 405 nm and a miniature spectrometer was used. It has been shown that unlike fake and silver tequila, which produce weak fluorescence signal, genuine mixed, rested, and aged tequilas show high fluorescence emission in the range from 400 to 750 nm. The fluorescence intensity grows with aging in 100% ag...

  4. Driving the atom by atomic fluorescence: Analytic results for the power and noise spectra

    OpenAIRE

    2000-01-01

    We study how the spectral properties of resonance fluorescence propagate through a two-atom system. Within the weak-driving-field approximation we find that, as we go from one atom to the next, the power spectrum exhibits both subnatural linewidth narrowing and large asymmetries while the noise spectrum of the squeezed quadrature narrows but remains otherwise unchanged. Analytical results for the observed spectral features of the fluorescence are provided and their origin is thoroughly discus...

  5. Unfolding features of bovine testicular hyaluronidase studied by fluorescence spectroscopy and fourier transformed infrared spectroscopy.

    Science.gov (United States)

    Pan, Nina; Cai, Xiaoqiang; Tang, Kai; Zou, Guolin

    2005-11-01

    Chemical unfolding of bovine testicular hyaluronidase (HAase) has been studied by fluorescence spectroscopy and Fourier transformed infrared spectroscopy (FTIR). Thermodynamic parameters were determined for unfolding HAase from changes in the intrinsic fluorescence emission intensity and the formations of several possible unfolding intermediates have been identified. This was further confirmed by representation of fluorescence data in terms of 'phase diagram'. The secondary structures of HAase have been assigned and semiquantitatively estimated from the FTIR. The occurrence of conformational change during chemical unfolding as judged by fluorescence and FTIR spectroscopy indicated that the unfolding of HAase may not follow the typical two-state model.

  6. Fluorescence spectroscopy and multi-way techniques. PARAFAC

    DEFF Research Database (Denmark)

    Murphy, Kathleen R.; Stedmon, Colin A.; Graeber, Daniel;

    2013-01-01

    of independently varying fluorophores. However, many practical and analytical hurdles stand between EEM datasets and their chemical interpretation. This article provides a tutorial in the practical application of PARAFAC to fluorescence datasets, demonstrated using a dissolved organic matter (DOM) fluorescence...... dataset. A new toolbox for MATLAB is presented to support improved visualisation and sensitivity analyses of PARAFAC models in fluorescence spectroscopy. © 2013 The Royal Society of Chemistry....

  7. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; GENG Tao; YAN Shubin; LI Gang; ZHANG Jing; WANG Junmin; PENG Kunchi; ZHANG Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  8. PHOTODYNAMIC DIAGNOSIS AND FLUORESCENCE SPECTROSCOPY IN SUPERFICIAL BLADDER CANCER

    Directory of Open Access Journals (Sweden)

    I. G. Rusakov

    2009-01-01

    Full Text Available A comprehensive fluorescence technique has been developed to study the urinary bladder mucosa in patients with superficial bladder cancer (BC, by using alasense, white light cystoscopy, fluorescence cytoscopy, and local fluorescence spectroscopy in vivo. Quantification of urothelium fluorescence in the red emission foci of 5-ALA-induced protophorphyrin, with the local autofluorescence intensity being borne in mind, has been shown to increase the specificity of photodynamic diagnosis of superficial BC from 70 to 85% (p ≤ 0.05 and the total accuracy of the technique from 80 to 86%.  

  9. [Digestion-flame atomic absorption spectroscopy].

    Science.gov (United States)

    Xu, Liang; Hu, Jian-Guo; Liu, Rui-Ping; Wang, Zhi-Min; Narenhua

    2008-01-01

    A microwave digestion-flame atomic absorption spectroscopy (FAAS) method was developed for the determination of metal elements Na, Zn, Cu, Fe, Mn, Ca and Mg in Mongolian patents. The instrument parameters for the determination were optimized, and the appropriate digestion solvent was selected. The recovery of the method was between 95.8% and 104.3%, and the RSD was between 1.6% and 4.2%. The accuracy and precision of the method was tested by comparing the values obtained from the determination of the standard sample, bush twigs and leaves (GSV-1) by this method with the reference values of GSV-1. The determination results were found to be basically consistent with the reference values. The microwave digestion technique was applied to process the samples, and the experimental results showed that compared to the traditional wet method, the present method has the merits of simplicity, saving agents, rapidness, and non-polluting. The method was accurate and reliable, and could be used to determine the contents of seven kinds of metal elements in mongolian patents.

  10. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    OpenAIRE

    Marschner, K; Musil, S. (Stanislav); Dědina, J. (Jiří)

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were ...

  11. Colorful Polyelectrolytes: An Atom Transfer Radical Polymerization Route to Fluorescent Polystyrene Sulfonate.

    Science.gov (United States)

    Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui

    2016-03-01

    A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.

  12. Ultimate statistical physics: fluorescence of a single atom

    Science.gov (United States)

    Pomeau, Yves; Le Berre, Martine; Ginibre, Jean

    2016-10-01

    We discuss the statistics of emission of photons by a single atom or ion illuminated by a laser beam at the frequency of quasi-resonance between two energy levels, a situation that corresponds to real experiments. We extend this to the case of two laser beams resonant with the energy differences between two excited levels and the ground state (three level atom in V-configuration). We use a novel approach to this type of problem by considering a Kolmogorov equation for the probability distribution of the atomic state, which takes into account first the deterministic evolution of this state under the effect of the incoming laser beam and second the random emission of photons during the spontaneous decay of the excited state(s) to the ground state. This approach yields solvable equations in the two level atom case. For the three level atom case we set the problem and clearly define its frame. The results obtained are valid in both opposite limits of rare and frequent spontaneous decay, compared to the period of the optical Rabi oscillations due to the interaction between resonant excitation and atomic levels. Our analysis gives access to various statistical properties of the fluorescence light, including one showing that its fluctuations in time are not invariants under time reversal. This result makes evident the fundamentally irreversible character of quantum measurements, represented here by the emission of photons of fluorescence.

  13. Time-resolved spectroscopy of the fluorescence quenching of a donor — acceptor pair by halothane

    Science.gov (United States)

    Sharma, A.; Draxler, S.; Lippitsch, M. E.

    1992-04-01

    Donor (anthracene) sensitized acceptor (perylene) fluorescence is quenched more efficiently by halothane than is intrinsic perylene fluorescence. The underlying process of dynamic fluorescence quenching is investigated by time-resolved fluorescence spectroscopy.

  14. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    Science.gov (United States)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  15. Metastable Magnesium fluorescence spectroscopy using a frequency-stabilized 517 nm laser

    DEFF Research Database (Denmark)

    He, Ming; Jensen, Brian B; Therkildsen, Kasper T;

    2009-01-01

    We present a laser operating at 517 nm for our Magnesium laser-cooling and atomic clock project. A two-stage Yb-doped fiber amplifier (YDFA) system generates more than 1.5 W of 1034 nm light when seeded with a 15 mW diode laser. Using a periodically poled lithium niobate (PPLN) waveguide, we...... obtained more than 40 mW of 517 nm output power by single pass frequency doubling. In addition, fluorescence spectroscopy of metastable magnesium atoms could be used to stabilize the 517 nm laser to an absolute frequency within 1 MHz....

  16. The development of attenuation compensation models of fluorescence spectroscopy signals

    Science.gov (United States)

    Dremin, Victor V.; Zherebtsov, Evgeny A.; Rafailov, Ilya E.; Vinokurov, Andrey Y.; Novikova, Irina N.; Zherebtsova, Angelina I.; Litvinova, Karina S.; Dunaev, Andrey V.

    2016-04-01

    This study examines the effect of blood absorption on the endogenous fluorescence signal intensity of biological tissues. Experimental studies were conducted to identify these effects. To register the fluorescence intensity, the fluorescence spectroscopy method was employed. The intensity of the blood flow was measured by laser Doppler flowmetry. We proposed one possible implementation of the Monte Carlo method for the theoretical analysis of the effect of blood on the fluorescence signals. The simulation is constructed as a four-layer skin optical model based on the known optical parameters of the skin with different levels of blood supply. With the help of the simulation, we demonstrate how the level of blood supply can affect the appearance of the fluorescence spectra. In addition, to describe the properties of biological tissue, which may affect the fluorescence spectra, we turned to the method of diffuse reflectance spectroscopy (DRS). Using the spectral data provided by the DRS, the tissue attenuation effect can be extracted and used to correct the fluorescence spectra.

  17. Theoretical Calculations of Atomic Data for Spectroscopy

    Science.gov (United States)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  18. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  19. Fluorescence Correlation Spectroscopy Applied to Living Plant Cells

    NARCIS (Netherlands)

    Hink, M.A.

    2002-01-01

    Keywords: Fluorescence correlation spectroscopy, photon counting histogram, intracellular, plant, AtSERK1In order to survive organisms have to be capable to adjust theirselves to changes in the environment. Cells, the building blocks of an organism react to these

  20. "FluSpec": A Simulated Experiment in Fluorescence Spectroscopy

    Science.gov (United States)

    Bigger, Stephen W.; Bigger, Andrew S.; Ghiggino, Kenneth P.

    2014-01-01

    The "FluSpec" educational software package is a fully contained tutorial on the technique of fluorescence spectroscopy as well as a simulator on which experiments can be performed. The procedure for each of the experiments is also contained within the package along with example analyses of results that are obtained using the software.

  1. Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy

    Science.gov (United States)

    Dockery, Christopher R.; Blew, Michael J.; Goode, Scott R.

    2008-01-01

    Every day, tens of thousands of chemists use analytical atomic spectroscopy in their work, often without knowledge of possible interferences. We present a unique approach to study these interferences by using modern response surface methods to visualize an interference in which aluminum depresses the calcium atomic absorption signal. Calcium…

  2. Design of a WWW database server for Atomic Spectroscopy Data

    Energy Technology Data Exchange (ETDEWEB)

    Contis, A.

    1995-12-01

    The department of Atomic Spectroscopy at Lund Univ produces large amounts of experimental data on energy levels and emissions for atomic systems. In order to make this data easily available to users outside the institution, a database has been produced and made available on the Internet. This report describes the organization of the data and the Internet interface of the data base. 4 refs.

  3. Resonance fluorescence of a trapped three-level atom

    CERN Document Server

    Bienert, M; Morigi, G; Bienert, Marc; Merkel, Wolfgang; Morigi, Giovanna

    2003-01-01

    We investigate theoretically the spectrum of resonance fluorescence of a harmonically trapped atom, whose internal transitions are $\\Lambda$--shaped and driven at two-photon resonance by a pair of lasers, which cool the center--of--mass motion. For this configuration, photons are scattered only due to the mechanical effects of the quantum interaction between light and atom. We study the spectrum of emission in the final stage of laser--cooling, when the atomic center-of-mass dynamics is quantum mechanical and the size of the wave packet is much smaller than the laser wavelength (Lamb--Dicke limit). We use the spectral decomposition of the Liouville operator of the master equation for the atomic density matrix and apply second order perturbation theory. We find that the spectrum of resonance fluorescence is composed by two narrow sidebands -- the Stokes and anti-Stokes components of the scattered light -- while all other signals are in general orders of magnitude smaller. For very low temperatures, however, th...

  4. Laser techniques for spectroscopy of core-excited atomic levels

    Science.gov (United States)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  5. Fluorescence spectroscopy: a rapid tool for analyzing dairy products.

    Science.gov (United States)

    Andersen, Charlotte Møller; Mortensen, Grith

    2008-02-13

    This paper gives a critical evaluation of the use of fluorescence spectroscopy for measuring chemical and physical changes in dairy products caused by processing and storage. Fluorescence spectroscopy is able to determine various properties of foods without use of chemicals and time-consuming sample preparation. This is shown by examples where the measurement of a given chemical parameter has been appropriately described and validated, as well as situations showing potential applications, but where further research and validation is required. The interpretation of fluorescence spectroscopic data is complex due to absorbance by other molecular groups, changes caused by variation in the sample matrix, etc. It is illustrated how advanced data analytical techniques are required to obtain optimal interpretation of the data. Even though the review focuses on examples from the dairy industry, the principles are broader and can be applied to other fields of food and agricultural research.

  6. Neutrino Spectroscopy with Atoms and Molecules

    CERN Document Server

    Fukumi, Atsushi; Miyamoto, Yuki; Nakajima, Kyo; Nakano, Itsuo; Nanjo, Hajime; Ohae, Chiaki; Sasao, Noboru; Tanaka, Minoru; Taniguchi, Takashi; Uetake, Satoshi; Wakabayashi, Tomonari; Yamaguchi, Takuya; Yoshimi, Akihiro; Yoshimura, Motohiko

    2012-01-01

    We give a comprehensive account of our proposed experimental method of using atoms or molecules in order to measure parameters of neutrinos still undetermined; the absolute mass scale, the mass hierarchy pattern (normal or inverted), the neutrino mass type (Majorana or Dirac), and the CP violating phases including Majorana phases. There are advantages of atomic targets, due to the closeness of available atomic energies to anticipated neutrino masses, over nuclear target experiments. Disadvantage of using atomic targets, the smallness of rates, is overcome by the macro-coherent amplification mechanism. The atomic or molecular process we use is a cooperative deexcitation of a collective body of atoms in a metastable level |e> emitting a neutrino pair and a photon; |e> -> |g> + gamma + nu_i nu_j where nu_i's are neutrino mass eigenstates. The macro-coherence is developed by trigger laser irradiation. We discuss aspects of the macro-coherence development by setting up the master equation for the target quantum st...

  7. Fluorescence fluctuation spectroscopy and its artifacts: simulations and tests

    Institute of Scientific and Technical Information of China (English)

    MENG; Fanbo; CHEN; Bo; LIU; Guang; DING; Jianying

    2005-01-01

    Fluorescence fluctuation spectroscopy (FFS) technique is capable of monitoring changes in concentration, mass, size and structure of fluorescent-labeled bio-molecules in microscopic volume and is suitable for measuring biological interactions in living cells. FFS data may be affected by many experimental factors in complicated biological systems. Using a Monte Carlo approach, we generate fluorescence fluctuation data for different experimental systems. This approach helps to separate the contributions by different experimental factors in a complicated fluorescence fluctuation spectrum. It also helps to validate new theoretical models and new fitting formulations. We describe the algorithm of the simulation program and tests on its statistical performance. The program is then used successfully to study the effects of several experimental factors on FFS detection.

  8. In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania.

    Science.gov (United States)

    Weindorf, David C; Paulette, Laura; Man, Titus

    2013-11-01

    Zlatna, Romania is the site of longtime mining/smelting operations which have resulted in widespread metal pollution of the entire area. Previous studies have documented the contamination using traditional methods involving soil sample collection, digestion, and quantification via inductively coupled plasma atomic emission spectroscopy or atomic absorption. However, field portable X-ray fluorescence spectroscopy (PXRF) can accurately quantify contamination in-situ, in seconds. A PXRF spectrometer was used to scan 69 soil samples in Zlatna across multiple land use types. Each site was georeferenced with data inputted into a geographic information system for high resolution spatial interpolations. These models were laid over contemporary aerial imagery to evaluate the extent of pollution on an individual elemental basis. Pb, As, Co, Cu, and Cd exceeded governmental action limits in >50% of the sites scanned. The use of georeferenced PXRF data offers a powerful new tool for in-situ assessment of contaminated soils.

  9. Fluorescence Quenching of Benzaldehyde in Water by Hydrogen Atom Abstraction.

    Science.gov (United States)

    Fletcher, Katharyn; Bunz, Uwe H F; Dreuw, Andreas

    2016-09-01

    We computed the mechanism of fluorescence quenching of benzaldehyde in water through relaxed potential energy surface scans. Time-dependent density functional theory calculations along the protonation coordinate from water to benzaldehyde reveal that photoexcitation to the bright ππ* (S3 ) state is immediately followed by ultrafast decay to the nπ* (S1 ) state. Evolving along this state, benzaldehyde (BA) abstracts a hydrogen atom, resulting in a BAH(.) and OH(.) radical pair. Benzaldehyde does not act as photobase in water, but abstracts a hydrogen atom from a nearby solvent molecule. The system finally decays back to the ground state by non-radiative decay and an electron transfers back to the OH(.) radical. Proton transfer from BAH(+) to OH(-) restores the initial situation, BA in water.

  10. Spectroscopy and atomic force microscopy of biomass.

    Science.gov (United States)

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  11. Emerging applications of fluorescence spectroscopy in medical microbiology field

    Directory of Open Access Journals (Sweden)

    Gaubitzer Erwin

    2009-11-01

    Full Text Available Abstract There are many diagnostic techniques and methods available for diagnosis of medically important microorganisms like bacteria, viruses, fungi and parasites. But, almost all these techniques and methods have some limitations or inconvenience. Most of these techniques are laborious, time consuming and with chances of false positive or false negative results. It warrants the need of a diagnostic technique which can overcome these limitations and problems. At present, there is emerging trend to use Fluorescence spectroscopy as a diagnostic as well as research tool in many fields of medical sciences. Here, we will critically discuss research studies which propose that Fluorescence spectroscopy may be an excellent diagnostic as well as excellent research tool in medical microbiology field with high sensitivity and specificity.

  12. Emerging applications of fluorescence spectroscopy in medical microbiology field.

    Science.gov (United States)

    Shahzad, Aamir; Köhler, Gottfried; Knapp, Martin; Gaubitzer, Erwin; Puchinger, Martin; Edetsberger, Michael

    2009-11-26

    There are many diagnostic techniques and methods available for diagnosis of medically important microorganisms like bacteria, viruses, fungi and parasites. But, almost all these techniques and methods have some limitations or inconvenience. Most of these techniques are laborious, time consuming and with chances of false positive or false negative results. It warrants the need of a diagnostic technique which can overcome these limitations and problems. At present, there is emerging trend to use Fluorescence spectroscopy as a diagnostic as well as research tool in many fields of medical sciences. Here, we will critically discuss research studies which propose that Fluorescence spectroscopy may be an excellent diagnostic as well as excellent research tool in medical microbiology field with high sensitivity and specificity.

  13. Solving a Mock Arsenic-Poisoning Case Using Atomic Spectroscopy

    Science.gov (United States)

    Tarr, Matthew A.

    2001-01-01

    A new upper-level undergraduate atomic spectroscopy laboratory procedure has been developed that presents a realistic problem to students and asks them to assist in solving it. Students are given arsenic-laced soda samples from a mock crime scene. From these samples, they are to gather evidence to help prosecute a murder suspect. The samples are analyzed by inductively coupled plasma atomic emission spectroscopy or by atomic absorbance spectroscopy to determine the content of specific metal impurities. By statistical comparison of the samples' composition, the students determine if the soda samples can be linked to arsenic found in the suspect's home. As much as possible, the procedures and interpretations are developed by the students. Particular emphasis is placed on evaluating the limitations and capabilities of the analytical method with respect to the demands of the problem.

  14. Single-atom-resolved fluorescence imaging of an atomic Mott insulator

    DEFF Research Database (Denmark)

    Sherson, Jacob; Weitenberg, Christof; Andres, Manuel;

    2010-01-01

    on the lattice and identify individual excitations with high fidelity. A comparison of the radial density and variance distributions with theory provides a precise in situ temperature and entropy measurement from single images. We observe Mott-insulating plateaus with near-zero entropy and clearly resolve...... in situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution...

  15. Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes

    OpenAIRE

    Barcellona, ML; Gammon, S; Hazlett, T.; Digman, MA; Gratton, E

    2004-01-01

    We discuss the use of fluorescence correlation spectroscopy for the measurement of relatively slow rotations of large macromolecules in solution or attached to other macromolecular structures. We present simulations and experimental results to illustrate the range of rotational correlation times and diffusion times that the technique can analyze. In particular, we examine various methods to analyze the polarization fluctuation data. We have found that by first constructing the polarization fu...

  16. Intramolecular fluorescence correlation spectroscopy in a feedback tracking microscope

    CERN Document Server

    McHale, Kevin

    2009-01-01

    We derive the statistics of the signals generated by shape fluctuations of large molecules studied by feedback tracking microscopy. We account for the influence of intramolecular dynamics on the response of the tracking system, and derive a general expression for the fluorescence autocorrelation function that applies when those dynamics are linear. We show that tracking provides enhanced sensitivity to translational diffusion, molecular size, heterogeneity and long time-scale decays in comparison to traditional fluorescence correlation spectroscopy. We demonstrate our approach by using a three-dimensional tracking microscope to study genomic $\\lambda$-phage DNA molecules with various fluorescence label configurations. We conclude with a discussion of related techniques, including computation of the relevant statistics for camera-based intramolecular correlation measurements.

  17. Extreme ultraviolet fluorescence spectroscopy of pure and core-shell rare gas clusters at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Schroedter, Lasse

    2013-08-15

    The interaction of rare gas clusters with short-wavelength radiation of free-electron lasers (FELs) has been studied extensively over the last decade by means of electron and ion time-of-flight spectroscopy. This thesis describes the design and construction of a fluorescence spectrometer for the extreme ultraviolet (XUV) spectral range and discusses the cluster experiments performed at FLASH, the Free-electron LAser in Hamburg. Fluorescence of xenon and of argon clusters was studied, both in dependence on the FEL pulse intensity and on the cluster size. The FEL wavelength was set to the giant 4d-resonance of xenon at 13.5 nm and the FEL pulse intensity reached peak values of 2.7.10{sup 15} W/cm{sup 2}. For xenon clusters, charge states of at least 11+ were identified. For argon, charge states up to 7+ were detected. The cluster-size dependent study revealed a decrease of the fluorescence yield per atom with increasing cluster size. This decrease is explained with the help of a geometric model. It assumes that virtually the entire fluorescence yield stems from shells of ions on the cluster surface, whereas ions in the cluster core predominantly recombine non-radiatively with electrons. However, the detailed analysis of fluorescence spectra from clusters consisting of a core of Xe atoms and a surrounding shell of argon atoms shows that, in fact, a small fraction of the fluorescence signal comes from Xe ions in the cluster core. Interestingly, these ions are as highly charged as the ions in the shells of a pure Xe cluster. This result goes beyond the current understanding of charge and energy transfer processes in these systems and points toward the observation of ultrafast charging dynamics in a time window where mass spectrometry is inherently blind. (orig.)

  18. Polarized fluorescence correlation spectroscopy of DNA-DAPI complexes.

    Science.gov (United States)

    Barcellona, Maria Luisa; Gammon, Seth; Hazlett, Theodore; Digman, Michelle A; Gratton, Enrico

    2004-11-01

    We discuss the use of fluorescence correlation spectroscopy for the measurement of relatively slow rotations of large macromolecules in solution or attached to other macromolecular structures. We present simulations and experimental results to illustrate the range of rotational correlation times and diffusion times that the technique can analyze. In particular, we examine various methods to analyze the polarization fluctuation data. We have found that by first constructing the polarization function and then calculating the autocorrelation function, we can obtain the rotational motion of the molecule with very little interference from the lateral diffusion of the macromolecule, as long as the rotational diffusion is significantly faster than the lateral diffusion. Surprisingly, for common fluorophores the autocorrelation of the polarization function is relatively unaffected by the photon statistics. In our instrument, two-photon excitation is used to define a small volume of illumination where a few molecules are present at any instant of time. The measurements of long DNA molecules labeled with the fluorescent probe DAPI show local rotational motions of the polymers in addition to translation motions of the entire polymer. For smaller molecules such as EGFP, the viscosity of the solution must be increased to bring the relaxation due to rotational motion into the measurable range. Overall, our results show that polarized fluorescence correlation spectroscopy can be used to detect fast and slow rotational motion in the time scale from microsecond to second, a range that cannot be easily reached by conventional fluorescence anisotropy decay methods.

  19. A compact atomic beam based system for Doppler-free laser spectroscopy of Strontium atoms

    OpenAIRE

    Verma, Gunjan; Vishwakarma, Chetan; Dharmadhikari, C. V.; Rapol, Umakant D.

    2016-01-01

    We report the construction of a simple, light weight and compact atomic beam spectroscopy cell for Strontium atoms. The cell is built using glass blowing technique and includes a simple Titanium Sublimation Pump for active pumping of the residual and background gases to maintain ultra-high vacuum. Commercially available and electrically heated dispenser source is used to generate the beam of Sr atoms. We perform spectroscopy on the $5s^2\\ ^1S_0\\longrightarrow 5s\\ 5p\\ ^1P_1$ transition to obta...

  20. Deuteron charge radius from spectroscopy data in atomic deuterium

    CERN Document Server

    Pohl, Randolf; Udem, Thomas; Antognini, Aldo; Beyer, Axel; Fleurbaey, Hélène; Grinin, Alexey; Hänsch, Theodor W; Julien, Lucile; Kottmann, Franz; Krauth, Julian J; Maisenbacher, Lothar; Matveev, Arthur; Biraben, François

    2016-01-01

    We give a pedagogical description of the method to extract the charge radii and Rydberg constant from laser spectroscopy in regular hydrogen (H) and deuterium (D) atoms, that is part of the CODATA least-squares adjustment of the fundamental physical constants. We give a deuteron charge radius from D spectroscopy alone of 2.1415(45) fm. This value is independent of the proton charge radius, and five times more accurate than the value found in the CODATA Adjustment 10.

  1. Synchronous fluorescence spectroscopy for analysis of wine and wine distillates

    Science.gov (United States)

    Andreeva, Ya.; Borisova, E.; Genova, Ts.; Zhelyazkova, Al.; Avramov, L.

    2015-01-01

    Wine and brandies are multicomponent systems and conventional fluorescence techniques, relying on recording of single emission or excitation spectra, are often insufficient. In such cases synchronous fluorescence spectra can be used for revealing the potential of the fluorescence techniques. The technique is based on simultaneously scanning of the excitation and emission wavelength with constant difference (Δλ) maintained between them. In this study the measurements were made using FluoroLog3 spectrofluorimeter (HORIBA Jobin Yvon, France) and collected for excitation and emission in the wavelength region 220 - 700 nm using wavelength interval Δλ from 10 to 100 nm in 10 nm steps. This research includes the results obtained for brandy and red wine samples. Fluorescence analysis takes advantage in the presence of natural fluorophores in wines and brandies, such as gallic, vanillic, p-coumaric, syringic, ferulic acid, umbelliferone, scopoletin and etc. Applying of synchronous fluorescence spectroscopy for analysis of these types of alcohols allows us to estimate the quality of wines and also to detect adulteration of brandies like adding of a caramel to wine distillates for imitating the quality of the original product aged in oak casks.

  2. Method for laser spectroscopy of metastable pionic helium atoms

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M., E-mail: Masaki.Hori@mpq.mpg.de; Sótér, A.; Aghai-Khozani, H. [Max-Planck-Institut für Quantenoptik (Germany); Barna, D. [CERN (Switzerland); Dax, A. [Paul Scherrer Institut (Switzerland); Hayano, R. S.; Murakami, Y.; Yamada, H. [University of Tokyo, Department of Physics (Japan)

    2015-08-15

    The PiHe collaboration is currently attempting to carry out laser spectroscopy of metastable pionic helium atoms using the high-intensity π{sup −} beam of the ring cyclotron facility of the Paul Scherrer Institute. These atoms are heretofore hypothetical three-body Coulomb systems each composed of a helium nucleus, a π{sup −} occupying a Rydberg state, and an electron occupying the 1s ground state. We briefly review the proposed method by which we intend to detect the laser spectroscopic signal. This complements our experiments on metastable antiprotonic helium atoms at CERN.

  3. High-Resolution Spectroscopy of Laser Ablation Plumes Using Laser-Induced Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, Sivanandan S.; LaHaye, Nicole L.; Phillips, Mark C.

    2017-02-06

    We used a CW laser as a narrow-band (~50kHz) tunable LIF excitation source to probe absorption from selected atomic transitions (Al, U etc. ) in a ns laser ablation plume. A comparison of fluorescence signal with respect to emission spectroscopy show significant increase in the magnitude and persistence from selected Al and U transitions in a LIBS plume. The high spectral resolution provided by the LIF measurement allows peaks to be easily separated even if they overlap in the emission spectra.

  4. Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens.

    Science.gov (United States)

    Sohn, Miryeong; Himmelsbach, David S; Barton, Franklin E; Fedorka-Cray, Paula J

    2009-11-01

    This study deals with the rapid detection and differentiation of Escherichia coli, Salmonella, and Campylobacter, which are the most commonly identified commensal and pathogenic bacteria in foods, using fluorescence spectroscopy and multivariate analysis. Each bacterial sample cultured under controlled conditions was diluted in physiologic saline for analysis. Fluorescence spectra were collected over a range of 200-700 nm with 0.5 nm intervals on the PerkinElmer Fluorescence Spectrometer. The synchronous scan technique was employed to find the optimum excitation (lambda(ex)) and emission (lambda(em)) wavelengths for individual bacteria with the wavelength interval (Deltalambda) being varied from 10 to 200 nm. The synchronous spectra and two-dimensional plots showed two maximum lambda(ex) values at 225 nm and 280 nm and one maximum lambda(em) at 335-345 nm (lambda(em) = lambda(ex) + Deltalambda), which correspond to the lambda(ex) = 225 nm, Deltalambda = 110-120 nm, and lambda(ex) = 280 nm, Deltalambda = 60-65 nm. For all three bacterial genera, the same synchronous scan results were obtained. The emission spectra from the three bacteria groups were very similar, creating difficulty in classification. However, the application of principal component analysis (PCA) to the fluorescence spectra resulted in successful classification of the bacteria by their genus as well as determining their concentration. The detection limit was approximately 10(3)-10(4) cells/mL for each bacterial sample. These results demonstrated that fluorescence spectroscopy, when coupled with PCA processing, has the potential to detect and to classify bacterial pathogens in liquids. The methodology is rapid (>10 min), inexpensive, and requires minimal sample preparation compared to standard analytical methods for bacterial detection.

  5. Atomic Absorption Spectroscopy. The Present and the Future.

    Science.gov (United States)

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  6. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    Science.gov (United States)

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  7. [Burner head with high sensitivity in atomic absorption spectroscopy].

    Science.gov (United States)

    Feng, X; Yang, Y

    1998-12-01

    This paper presents a burner head with gas-sample separate entrance and double access, which is used for atomic absorption spectroscopy. According to comparison and detection, the device can improve sensitivity by a factor of 1 to 5. In the meantime it has properties of high stability and resistance to interference.

  8. SPECTRW: A software package for nuclear and atomic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalfas, C.A., E-mail: kalfas@inp.demokritos.gr [National Centre for Scientific Research Demokritos, Institute of Nuclear & Particle Physics, 15310 Agia Paraskevi, Attiki (Greece); Axiotis, M. [National Centre for Scientific Research Demokritos, Institute of Nuclear & Particle Physics, 15310 Agia Paraskevi, Attiki (Greece); Tsabaris, C. [Hellenic Centre for Marine Research, Institute of Oceanography, 46.7 Km Athens-Sounio Ave, P.O. Box 712, Anavyssos 19013 (Greece)

    2016-09-11

    A software package to be used in nuclear and atomic spectroscopy is presented. Apart from analyzing γ and X-ray spectra, it offers many additional features such as de-convolution of multiple photopeaks, sample analysis and activity determination, detection system evaluation and an embedded code for spectra simulation.

  9. Application of dynamic impedance spectroscopy to atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Kazimierz Darowicki, Artur Zieliński and Krzysztof J Kurzydłowski

    2008-01-01

    Full Text Available Atomic force microscopy (AFM is a universal imaging technique, while impedance spectroscopy is a fundamental method of determining the electrical properties of materials. It is useful to combine those techniques to obtain the spatial distribution of an impedance vector. This paper proposes a new combining approach utilizing multifrequency scanning and simultaneous AFM scanning of an investigated surface.

  10. Current Status of Atomic Spectroscopy Databases at NIST

    Science.gov (United States)

    Kramida, Alexander; Ralchenko, Yuri; Reader, Joseph

    2016-05-01

    NIST's Atomic Spectroscopy Data Center maintains several online databases on atomic spectroscopy. These databases can be accessed via the http://physics.nist.gov/PhysRefData web page. Our main database, Atomic Spectra Database (ASD), recently upgraded to v. 5.3, now contains critically evaluated data for about 250,000 spectral lines and 109,000 energy levels of almost all elements in the periodic table. This new version has added several thousand spectral lines and energy levels of Sn II, Mo V, W VIII, and Th I-III. Most of these additions contain critically evaluated transition probabilities important for astrophysics, technology, and fusion research. A new feature of ASD is providing line-ratio data for diagnostics of electron temperature and density in plasmas. Saha-Boltzmann plots have been modified by adding an experimental feature allowing the user to specify a multi-element mixture. We continue regularly updating our bibliography databases, ensuring comprehensive coverage of current literature on atomic spectra for energy levels, spectral lines, transition rates, hyperfine structure, isotope shifts, Zeeman and Stark effects. Our other popular databases, such as the Handbook of Basic Atomic Spectroscopy Data, searchable atlases of spectra of Pt-Ne and Th-Ne lamps, and non-LTE plasma-kinetics code comparisons, continue to be maintained.

  11. Optimized Time-Gated Fluorescence Spectroscopy for the Classification and Recycling of Fluorescently Labeled Plastics.

    Science.gov (United States)

    Fomin, Petr; Zhelondz, Dmitry; Kargel, Christian

    2016-08-29

    For the production of high-quality parts from recycled plastics, a very high purity of the plastic waste to be recycled is mandatory. The incorporation of fluorescent tracers ("markers") into plastics during the manufacturing process helps overcome typical problems of non-tracer based optical classification methods. Despite the unique emission spectra of fluorescent markers, the classification becomes difficult when the host plastics exhibit (strong) autofluorescence that spectrally overlaps the marker fluorescence. Increasing the marker concentration is not an option from an economic perspective and might also adversely affect the properties of the plastics. A measurement approach that suppresses the autofluorescence in the acquired signal is time-gated fluorescence spectroscopy (TGFS). Unfortunately, TGFS is associated with a lower signal-to-noise (S/N) ratio, which results in larger classification errors. In order to optimize the S/N ratio we investigate and validate the best TGFS parameters-derived from a model for the fluorescence signal-for plastics labeled with four specifically designed fluorescent markers. In this study we also demonstrate the implementation of TGFS on a measurement and classification prototype system and determine its performance. Mean values for a sensitivity of [Formula: see text] = 99.93% and precision [Formula: see text] = 99.80% were achieved, proving that a highly reliable classification of plastics can be achieved in practice.

  12. The study of blue LED to induce fluorescence spectroscopy and fluorescence imaging for oral carcinoma detection

    Science.gov (United States)

    Zheng, Longjiang; Hu, Yuanting

    2009-07-01

    Fluorescence spectroscopy and fluorescence imaging diagnosis of malignant lesions provides us with a new method to diagnose diseases in precancerous stage. Early diagnosis of disease has significant importance in cancer treatment, because most cancers can be cured well in precancerous, especially when the diffusion of cancer is limited in a restricted region. In this study, Golden hamster models were applied to 5% 9, 10 dimethyl-1, 2-benzanthracene (DMBA) to induce hamster buccal cheek pouch carcinoma three times a week. Rose Bengal, which has been used in clinican for years and avoids visible side-effect to human was chosen as photosensitizer. 405 nm blue LED was used to induce the fluorescence of photosensitizer. After topical application of photosensitizer, characteristic red emission fluorescence peak was observed around 600nm. Similar, normal oral cavity has special luminescence around 480nm. Fluorescence spectroscopy technology is based on analysing emission peaks of photosensitizer in the areas of oral carcinoma, moreover, red-to-green (IR/IG) intensity ratio is also applied as a diagnostic algorithm. A CCD which is connected with a computer is used to take pictures at carcinoma areas through different filters. Fluorescence images from normal hamster buccal cheek pouch are compared with those from carcinogen-induced models of carcinoma, and morphological differences between normal and lesion tissue can be distinguished. The pictures are analyzed by Matlab and shown on the screen of computer. This paper demonstrates that Rose Bengal could be used as photosensitizer to detect oral carcinoma, and blue LED as excitation source could not only have a good effect to diagnose oral carcinoma, but also decrease cost greatly.

  13. Laser Induced Fluorescence Spectroscopy of IrN

    Institute of Scientific and Technical Information of China (English)

    H. F. Pang; A. S. C. Cheung

    2009-01-01

    High resolution laser induced fluorescence spectra of IrN in the spectral region between 394and 520 nm were recorded using laser vaporization/reaction free jet expansion and laser induced fluorescence spectroscopy. Seven new vibronic transition bands were observed and analyzed. TwoΩ=1 and five Ω=0 new states were identified. Least squares fit of rotationally resolved transition lines yielded accurate molecular constants for the upper states. Spectra of isotopic molecules were observed, which provided confirmation for the vibrational assignment. Comparison of the observed electronic states of IrB, IrC, and IrN provides a good understanding of the chemical bonding of this group of molecules.

  14. Influence of the surface hydrophobicity on fluorescence correlation spectroscopy measurements

    Science.gov (United States)

    Boutin, Céline; Jaffiol, Rodolphe; Plain, Jérome; Royer, Pascal

    2007-02-01

    Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique used to analyze the diffusion at the single molecule level in solution. FCS is based on the temporal autocorrelation of fluorescent signal generated by dye molecules diffusing through a small confocal volume. These measurements are mostly carried out in a chambered coverglass, close to the glass substrate. In this report, we discuss how the chemical nature of the glass-water interface may interact with the free diffusion of molecules. Our results reveal a strong influence, up to a few μm from the interface, of the surface hydrophobicity degree. This influence is assessed through the relative weight of the two dimension diffusion process observed at the vicinity of the surface.

  15. Principles and calibration of collinear photofragmentation and atomic absorption spectroscopy

    Science.gov (United States)

    Sorvajärvi, Tapio; Toivonen, Juha

    2014-06-01

    The kinetics of signal formation in collinear photofragmentation and atomic absorption spectroscopy (CPFAAS) are discussed, and theoretical equations describing the relation between the concentration of the target molecule and the detected atomic absorption in case of pure and impure samples are derived. The validity of the equation for pure samples is studied experimentally by comparing measured target molecule concentrations to concentrations determined using two other independent techniques. Our study shows that CPFAAS is capable of measuring target molecule concentrations from parts per billion (ppb) to hundreds of parts per million (ppm) in microsecond timescale. Moreover, the possibility to extend the dynamic range to cover eight orders of magnitude with a proper selection of fragmentation light source is discussed. The maximum deviation between the CPFAAS technique and a reference measurement technique is found to be less than 5 %. In this study, potassium chloride vapor and atomic potassium are used as a target molecule and a probed atom, respectively.

  16. Fluorescence-excitation and Emission Spectroscopy on Single FMO Complexes.

    Science.gov (United States)

    Löhner, Alexander; Ashraf, Khuram; Cogdell, Richard J; Köhler, Jürgen

    2016-08-22

    In green-sulfur bacteria sunlight is absorbed by antenna structures termed chlorosomes, and transferred to the RC via the Fenna-Matthews-Olson (FMO) complex. FMO consists of three monomers arranged in C3 symmetry where each monomer accommodates eight Bacteriochlorophyll a (BChl a) molecules. It was the first pigment-protein complex for which the structure has been determined with high resolution and since then this complex has been the subject of numerous studies both experimentally and theoretically. Here we report about fluorescence-excitation spectroscopy as well as emission spectroscopy from individual FMO complexes at low temperatures. The individual FMO complexes are subjected to very fast spectral fluctuations smearing out any possible different information from the ensemble data that were recorded under the same experimental conditions. In other words, on the time scales that are experimentally accessible by single-molecule techniques, the FMO complex exhibits ergodic behaviour.

  17. Determination of antioxidant content in biodiesel by fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Keurison F.; Caires, Anderson R.L. [Universidade Federal da Grande Dourados, MS (Brazil). Grupo de Optica Aplicada; Oliveira, Samuel L. [Universidade Federal de Mato Grosso do Sul (UFMS), MS (Brazil). Grupo de Optica e Fotonica

    2011-07-01

    Full text. Biodiesel is an alternative fuel composed by mono-alkyl esters obtained from vegetable oils or animal fats. Due to its chemical structure, biodiesel is highly susceptible to oxidation which leads to formation of insoluble gums and sediments that can block the filter system of fuel injection. Biodiesel made from vegetable oils typically has a small amount of natural antioxidants so that it is necessary to add synthetic antioxidants to enhance its stability and retain their properties for a longer period. The main antioxidants are synthetic phenolic compounds such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) as well as natural antioxidants as tocopherols. The fluorescence spectroscopy has been applied for determination of phenolic compounds in oils. Here, a method based on fluorescence is proposed to quantify the BHA and TBHQ antioxidant concentration in biodiesel produced from sunflower and soybean oils. Soybean and sunflower biodiesel were obtained by transesterification of fatty alcohol in the presence of NaOH as catalyst. The reactions were carried out in the molar ratio of 6:1 methanol/oil. After the production and purification, biodiesel samples were stored. Biodiesel samples with BHA and TBHQ concentrations from 1000 to 8000 ppm (m/m) were pre- pared. These samples were diluted in ethanol (95%) in order to measure the fluorescence spectra. Fluorescence and excitation spectra of the solutions were recorded at room temperature using a spectrofluorimeter. The emission spectra were obtained under excitation at about 310nm and fluorescence in the 320-800nm range was evaluated. Biodiesel samples without BHA and TBHQ showed fluorescence band at about 420nm, which can be attributed to tocopherols inherent to the vegetable oils used in the biodiesel production. The addition of BHA and/or TBHQ is responsible for the appearance of a fluorescence band around 330nm. It was verified that the fluorescence

  18. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  19. Ablation plume structure and dynamics in ambient gas observed by laser-induced fluorescence imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, M.; Oba, M.; Iimura, H.; Akaoka, K.; Khumaeni, A.; Kato, M.; Wakaida, I.

    2015-08-01

    The dynamic behavior of an ablation plume in ambient gas has been investigated by laser-induced fluorescence imaging spectroscopy. The second harmonic beam from an Nd:YAG laser (0.5–6 J/cm{sup 2}) was focused on a sintered oxide pellet or a metal chip of gadolinium. The produced plume was subsequently intersected with a sheet-shaped UV beam from a dye laser so that time-resolved fluorescence images were acquired with an intensified CCD camera at various delay times. The obtained cross-sectional images of the plume indicate that the ablated ground state atoms and ions of gadolinium accumulate in a hemispherical contact layer between the plume and the ambient gas, and a cavity containing a smaller density of ablated species is formed near the center of the plume. At earlier expansion stage, another luminous component also expands in the cavity so that it coalesces into the hemispherical layer. The splitting and coalescence for atomic plume occur later than those for ionic plume. Furthermore, the hemispherical layer of neutral atoms appears later than that of ions; however, the locations of the layers are nearly identical. This coincidence of the appearance locations of the layers strongly suggests that the neutral atoms in the hemispherical layer are produced as a consequence of three-body recombination of ions through collisions with gas atoms. The obtained knowledge regarding plume expansion dynamics and detailed plume structure is useful for optimizing the experimental conditions for ablation-based spectroscopic analysis. - Highlights: • Ablated ground-state species accumulated in a thin hemispherical boundary layer • Inside the layer, a cavity containing a small density of ablated species was formed. • The hemispherical layers of atoms and ions appeared at a nearly identical location. • The measured intensity peak variation was in good agreement with a model prediction. • We ascribed the dominant process for forming the layer to a three

  20. Development of narrowband lasers for spectroscopy of antiprotonic atoms

    Directory of Open Access Journals (Sweden)

    Hori M.

    2014-03-01

    Full Text Available We review some lasers developed by the ASACUSA collaboration of CERN, to carry out spectroscopy of antiprotonic helium atoms. These lasers were based on the technique of continuous-wave injection seeding of pulsed lasers. The laser output covered the wavelength regions 264–1154 nm, with peak powers of ~ 1 MW and spectral resolutions of 6–40 MHz. The devices were recently used to measure the transition frequencies of antiprotonic helium atoms to a fractional precision of several parts in ~ 109.

  1. [Measurement of trace elements in blood serum by atomic absorption spectroscopy with electrothermal atomization].

    Science.gov (United States)

    Rogul'skiĭ, Iu V; Danil'chenko, S N; Lushpa, A P; Sukhodub, L F

    1997-09-01

    Describes a method for measuring trace elements Cr, Mn, Co, Fe, Cu, Zn, and Mo in the blood serum using non-flame atomization (KAC 120.1 complex). Optimal conditions for preparing the samples were defined, temperature regimens for analysis of each element selected, and original software permitting automated assays created. The method permits analysis making use of the minimal samples: 0.1 ml per 10 parallel measurements, which is 100 times less than needed for atomic absorption spectroscopy with flame atomization of liquid samples. Metrological characteristics of the method are assessed.

  2. Classification of plum spirit drinks by synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Sádecká, J; Jakubíková, M; Májek, P; Kleinová, A

    2016-04-01

    Synchronous fluorescence spectroscopy was used in combination with principal component analysis (PCA) and linear discriminant analysis (LDA) for the differentiation of plum spirits according to their geographical origin. A total of 14 Czech, 12 Hungarian and 18 Slovak plum spirit samples were used. The samples were divided in two categories: colorless (22 samples) and colored (22 samples). Synchronous fluorescence spectra (SFS) obtained at a wavelength difference of 60 nm provided the best results. Considering the PCA-LDA applied to the SFS of all samples, Czech, Hungarian and Slovak colorless samples were properly classified in both the calibration and prediction sets. 100% of correct classification was also obtained for Czech and Hungarian colored samples. However, one group of Slovak colored samples was classified as belonging to the Hungarian group in the calibration set. Thus, the total correct classifications obtained were 94% and 100% for the calibration and prediction steps, respectively. The results were compared with those obtained using near-infrared (NIR) spectroscopy. Applying PCA-LDA to NIR spectra (5500-6000 cm(-1)), the total correct classifications were 91% and 92% for the calibration and prediction steps, respectively, which were slightly lower than those obtained using SFS.

  3. The use of fluorescence correlation spectroscopy to probe mitochondrial mobility and intramatrix protein diffusion

    NARCIS (Netherlands)

    P.H.G.M. Willems; H.G. Swarts; M.A. Hink; W.J.H. Koopman

    2009-01-01

    Within cells, functional changes in mitochondrial metabolic state are associated with alterations in organelle mobility, shape, and configuration of the mitochondrial matrix. Fluorescence correlation spectroscopy (FCS) is a technique that measures intensity fluctuations caused by single fluorescent

  4. Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy

    NARCIS (Netherlands)

    Kahya, N; Scherfeld, D; Bacia, K; Poolman, B; Schwille, P

    2003-01-01

    Confocal fluorescence microscopy and fluorescence correlation spectroscopy (FCS) have been employed to investigate the lipid spatial and dynamic organization in giant unilamellar vesicles (GUVs) prepared from ternary mixtures of dioleoyl-phosphatidylcholine/sphingomyelin/ cholesterol. For a certain

  5. Fluorescence Spectroscopy and Chemometric Modeling for Bioprocess Monitoring

    Directory of Open Access Journals (Sweden)

    Saskia M. Faassen

    2015-04-01

    Full Text Available On-line sensors for the detection of crucial process parameters are desirable for the monitoring, control and automation of processes in the biotechnology, food and pharma industry. Fluorescence spectroscopy as a highly developed and non-invasive technique that enables the on-line measurements of substrate and product concentrations or the identification of characteristic process states. During a cultivation process significant changes occur in the fluorescence spectra. By means of chemometric modeling, prediction models can be calculated and applied for process supervision and control to provide increased quality and the productivity of bioprocesses. A range of applications for different microorganisms and analytes has been proposed during the last years. This contribution provides an overview of different analysis methods for the measured fluorescence spectra and the model-building chemometric methods used for various microbial cultivations. Most of these processes are observed using the BioView® Sensor, thanks to its robustness and insensitivity to adverse process conditions. Beyond that, the PLS-method is the most frequently used chemometric method for the calculation of process models and prediction of process variables.

  6. Precision spectroscopy of pionic atoms and chiral symmetry in nuclei

    Directory of Open Access Journals (Sweden)

    Itahashi Kenta

    2016-01-01

    Full Text Available We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported.

  7. Introducing many-body physics using atomic spectroscopy

    CERN Document Server

    Krebs, Dietrich; Santra, Robin

    2013-01-01

    Atoms constitute relatively simple many-body systems, making them suitable objects for developing an understanding of basic aspects of many-body physics. Photoabsorption spectroscopy is a prominent method to study the electronic structure of atoms and the inherent many-body interactions. In this article the impact of many-body effects on well-known spectroscopic features such as Rydberg series, Fano resonances, Cooper minima, and giant resonances is studied, and related many-body phenomena in other fields are outlined. To calculate photoabsorption cross sections the time-dependent configuration interaction singles (TDCIS) model is employed. The conceptual clearness of TDCIS in combination with the compactness of atomic systems allows for a pedagogical introduction to many-body phenomena.

  8. Assessing Raw and Treated Water Quality Using Fluorescence Spectroscopy

    Science.gov (United States)

    Bridgeman, J.; Baker, A.

    2006-12-01

    To date, much fluorescence spectroscopy work has focused on the use of techniques to characterize pollution in river water and to fingerprint pollutants such as, inter alia, treated and raw sewage effluent. In the face of tightening water quality standards associated with disinfection byproducts, there exists the need for a surrogate THM parameter which can be measured accurately and quickly at the water treatment works and which will give a satisfactory indication of the THM concentration leaving the water treatment works. In addition, water treatment works and distribution system managers require tools which are simple and quick, yet robust, to monitor plant and unit process performance. We extend the use of fluorescence techniques from raw water quality monitoring to (1) the monitoring of water treatment works intakes and the assessment of water treatment works performance by (2) assessing the removal of dissolved organic matter (DOM) through the unit process stages of various water treatment works treating different raw waters and (3) examining the prevalence of microbiological activity found at service reservoirs in the downstream distribution system. 16 surface water treatment works were selected in the central region of the UK and samples taken at works' intakes, downstream of each unit process, and in the distribution systems. The intakes selected abstract water from a broad range of upland and lowland water sources with varying natural and anthropogenic pollutant inputs and significantly different flows. The treatment works selected offer a range of different, but relatively standard, unit processes. The results demonstrate that raw waters exhibit more fluorescence than (partially) treated waters. However, noticeable differences between each site are observed. Furthermore, differences in unit process performance between works are also identified and quantified. Across all sites, treatment with Granular Activated Carbon is found to yield a significant

  9. High precision spectroscopy of pionic and antiprotonic atoms; Spectroscopie de precision des atomes pioniques et antiprotoniques

    Energy Technology Data Exchange (ETDEWEB)

    El-Khoury, P

    1998-04-15

    The study of exotic atoms, in which an orbiting electron of a normal atom is replaced by a negatively charged particle ({pi}{sup -}, {mu}{sup -}, p, {kappa}{sup -}, {sigma}{sup -},...) may provide information on the orbiting particle and the atomic nucleus, as well as on their interaction. In this work, we were interested in pionic atoms ({pi}{sup -14} N) on the one hand in order to determine the pion mass with high accuracy (4 ppm), and on the other hand in antiprotonic atoms (pp-bar) in order to study the strong nucleon-antinucleon interaction at threshold. In this respect, a high-resolution crystal spectrometer was coupled to a cyclotron trap which provides a high stop density for particles in gas targets at low pressure. Using curved crystals, an extended X-ray source could be imaged onto the detector. Charge-Coupled Devices were used as position sensitive detectors in order to measure the Bragg angle of the transition to a high precision. The use of gas targets resolved the ambiguity owing to the number of K electrons for the value of the pion mass, and, for the first time, strong interaction shift and broadening of the 2p level in antiprotonic hydrogen were measured directly. (author)

  10. Atomic jet with ionization detection for laser spectroscopy of Rydberg atoms under collisions and fields

    Science.gov (United States)

    Philip, G.

    2008-03-01

    An efficient atomic jet setup offering many unprecedented advantages over a conventional heat pipe setup used in multi-photon spectroscopy, mainly of alkaline-earth metals, has been constructed by a scheme in which the sample material is encapsulated in a disposable cartridge oven located inside a thermally stabilised heat-pipe and is made to effuse in to a row of atomic beams merging to form a jet target. This novel scheme combines the advantages of both high density atomic beam with convenient geometry for orthogonal excitation and high sensitive ionisation detection capabilities of thermionic diodes, besides eliminating several problems inherent in the usual heat-pipe operation. Out of various designs, typical results are presented for a linear heat-pipe with vertical atomic jet used in two-photon spectroscopy of highly excited states of Sr I. Controlled excitations of both Rydberg and non-Rydberg states, which cannot otherwise be accessed from the ground state due to parity and spectroscopic selection rules, have been achieved by employing a weak electric field complimented by collisions. The atomic jet setup is also found very useful for the study of collisional broadening and shift of excited states and time evolution of Rydberg atoms.

  11. Antiprotonic atom formation and spectroscopy-ASACUSA experiment at CERN-AD

    CERN Document Server

    Widmann, E

    1999-01-01

    This talk describes the experiments on atomic spectroscopy and atomic collisions as proposed by the ASACUSA collaboration for the forthcoming AD facility at CERN. They consist of high-precision spectroscopy of antiprotonic atoms, the study of anti-protonic atom formation processes, and stopping power and ionization measurements in low-pressure gases. (18 refs).

  12. Quantitative Fluorescence Studies in Living Cells: Extending Fluorescence Fluctuation Spectroscopy to Peripheral Membrane Proteins

    Science.gov (United States)

    Smith, Elizabeth Myhra

    The interactions of peripheral membrane proteins with both membrane lipids and proteins are vital for many cellular processes including membrane trafficking, cellular signaling, and cell growth/regulation. Building accurate biophysical models of these processes requires quantitative characterization of the behavior of peripheral membrane proteins, yet methods to quantify their interactions inside living cells are very limited. Because peripheral membrane proteins usually exist both in membrane-bound and cytoplasmic forms, the separation of these two populations is a key challenge. This thesis aims at addressing this challenge by extending fluorescence fluctuation spectroscopy (FFS) to simultaneously measure the oligomeric state of peripheral membrane proteins in the cytoplasm and at the plasma membrane. We developed a new method based on z-scan FFS that accounts for the fluorescence contributions from cytoplasmic and membrane layers by incorporating a fluorescence intensity z-scan through the cell. H-Ras-EGFP served as a model system to demonstrate the feasibility of the technique. The resolvability and stability of z-scanning was determined as well as the oligomeric state of H-Ras-EGFP at the plasma membrane and in the cytoplasm. Further, we successfully characterized the binding affinity of a variety of proteins to the plasma membrane by quantitative analysis of the z-scan fluorescence intensity profile. This analysis method, which we refer to as z-scan fluorescence profile deconvoution, was further used in combination with dual-color competition studies to determine the lipid specificity of protein binding. Finally, we applied z-scan FFS to provide insight into the early assembly steps of the HTLV-1 retrovirus.

  13. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  14. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy

    Science.gov (United States)

    He, Hai-Tao; Marguet, Didier

    2011-05-01

    Cell membranes actively participate in numerous cellular functions. Inasmuch as bioactivities of cell membranes are known to depend crucially on their lateral organization, much effort has been focused on deciphering this organization on different length scales. Within this context, the concept of lipid rafts has been intensively discussed over recent years. In line with its ability to measure diffusion parameters with great precision, fluorescence correlation spectroscopy (FCS) measurements have been made in association with innovative experimental strategies to monitor modes of molecular lateral diffusion within the plasma membrane of living cells. These investigations have allowed significant progress in the characterization of the cell membrane lateral organization at the suboptical level and have provided compelling evidence for the in vivo existence of raft nanodomains. We review these FCS-based studies and the characteristic structural features of raft nanodomains. We also discuss the findings in regards to the current view of lipid rafts as a general membrane-organizing principle.

  15. Fluorescence cross-correlation spectroscopy using single wavelength laser

    Institute of Scientific and Technical Information of China (English)

    Chao XIE; Chaoqing DONG; Jicun REN

    2009-01-01

    In this paper, we first introduced the basic principle of fluorescence cross-correlation spectroscopy (FCCS) and then established an FCCS setup using a single wavelength laser. We systematically optimized the setup, and the detection volume reached about 0.7 fL. The home-built setup was successfully applied for the study of the binding reaction of human immunoglobulin G with goat antihuman immunoglobulin G. Using quantum dots (745 nm emission wavelength) and Rhodamine B (580 nm emission wavelength) as labeling probes and 532 nm laser beam as an excitation source, the cross-talk effect was almost completely suppressed. The molecule numbers in a highly focused volume, the concentration, and the diffusion time and hydrodynamic radii of the reaction products can be determined by FCCS system.

  16. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    CERN Document Server

    Del Razo, Mauricio J; Qian, Hong; Lin, Guang

    2014-01-01

    The currently existing theory of fluorescence correlation spectroscopy(FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems here are no closed solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Our results show that current linear FCS theory could be adequate ...

  17. Influence of angle's ranges for recording an X-ray fluorescence hologram on reconstructed atomic images

    Institute of Scientific and Technical Information of China (English)

    XIE Hong-Lan; CHEN Jian-Wen; GAO Hong-Yi; ZHU Hua-Feng; LI Ru-Xin; XU Zhi-Zhan

    2004-01-01

    X-ray fluorescence holography (XFH) is a novel method for three-dimensional (3D) imaging of atomic structure. Theoretically, in an XFH experiment, one has to measure the fluorescence energy on a spherical surface to get well-resolved 3D images of atoms. But in practice, the experimental system arrangement does not allow the measurement of the fluorescent intensity oscillations in the full sphere. The holographic information losses because of the limited sampling range (less than 4π) will directly result in defective reconstructed atomic images. In this work, the atomic image of a Fe single crystal (001) was reconstructed by numerically simulating X-ray fluorescence holograms of the crystal at different recording angle's ranges and step lengths. Influences of the ranges of azimuth angles and polar angles and the step length of polar angles on the reconstructed atomic images were discussed.

  18. Dynamic and unique nucleolar microenvironment revealed by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Park, Hweon; Han, Sung-Sik; Sako, Yasushi; Pack, Chan-Gi

    2015-03-01

    Organization and functions of the nucleolus is maintained by mobilities and interactions of nucleolar factors. Because the nucleolus is a densely packed structure, molecular crowding effects determined by the molecular concentrations and mobilities in the nucleolus should also be important for regulating nucleolar organization and functions. However, such molecular property of nucleolar organization is not fully understood. To understand the biophysical property of nucleolar organization, the diffusional behaviors of inert green fluorescent protein (GFP) oligomers with or without nuclear localization signals (NLSs) were analyzed under various conditions by fluorescence correlation spectroscopy. Our result demonstrates that the mobility of GFPs inside the nucleolus and the nucleoplasm can be represented by single free diffusion under normal conditions, even though the mobility in the nucleolus is considerably slower than that in the chromatin region. Moreover, the free diffusion of GFPs is found to be significantly size- and NLS-dependent only in the nucleolus. Interestingly, the mobility in the nucleolus is highly sensitive to ATP depletion, as well as actinomycin D (ActD) treatment. In contrast, the ultra-structure of the nucleolus was not significantly changed by ATP depletion but was changed by ActD treatment. These results suggest that the nucleolus behaves similarly to an open aqueous-phase medium with an increased molecular crowding effect that depends on both energy and transcription.

  19. Fluorescence correlation spectroscopy in biology, chemistry, and medicine.

    Science.gov (United States)

    Perevoshchikova, I V; Kotova, E A; Antonenko, Y N

    2011-05-01

    This review describes the method of fluorescence correlation spectroscopy (FCS) and its applications. FCS is used for investigating processes associated with changes in the mobility of molecules and complexes and allows researchers to study aggregation of particles, binding of fluorescent molecules with supramolecular complexes, lipid vesicles, etc. The size of objects under study varies from a few angstroms for dye molecules to hundreds of nanometers for nanoparticles. The described applications of FCS comprise various fields from simple chemical systems of solution/micelle to sophisticated regulations on the level of living cells. Both the methodical bases and the theoretical principles of FCS are simple and available. The present review is concentrated preferentially on FCS applications for studies on artificial and natural membranes. At present, in contrast to the related approach of dynamic light scattering, FCS is poorly known in Russia, although it is widely employed in laboratories of other countries. The goal of this review is to promote the development of FCS in Russia so that this technique could occupy the position it deserves in modern Russian science.

  20. Evaluation of actinic cheilitis using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Saito Nogueira, Marcelo; Cosci, Alessandro; Pratavieira, Sebastião.; Takahama, Ademar; Souza Azevedo, Rebeca; Kurachi, Cristina

    2016-03-01

    Actinic cheilitis is a potentially malignant disorder that mostly affects the vermilion border of the lower lip and can lead to squamous cell carcinoma. Because of its heterogeneous clinical aspect, it is difficult to indicate representative biopsy area. Late diagnosis is a limiting factor of therapeutic possibilities available to treat oral cancer. The diagnosis of actinic cheilitis is mainly based on clinical and histopathological analysis and it is a time consuming procedure to get the results. Information about the organization and chemical composition of the tissues can be obtained using fluorescence lifetime spectroscopy techniques without the need for biopsy. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and allow a quick and non-invasive clinical investigation of injuries and to help clinicians with the early diagnosis of actinic cheilitis. This study aims to evaluate the fluorescence lifetime parameters at the discrimination of three degrees of epithelial dysplasia, the most important predictor of malignant development, described in up to 100% of actinic cheilitis cases.

  1. Fluorescence correlation spectroscopy: Statistical analysis and biological applications

    Science.gov (United States)

    Saffarian, Saveez

    2002-01-01

    The experimental design and realization of an apparatus which can be used both for single molecule fluorescence detection and also fluorescence correlation and cross correlation spectroscopy is presented. A thorough statistical analysis of the fluorescence correlation functions including the analysis of bias and errors based on analytical derivations has been carried out. Using the methods developed here, the mechanism of binding and cleavage site recognition of matrix metalloproteinases (MMP) for their substrates has been studied. We demonstrate that two of the MMP family members, Collagenase (MMP-1) and Gelatinase A (MMP-2) exhibit diffusion along their substrates, the importance of this diffusion process and its biological implications are discussed. We show through truncation mutants that the hemopexin domain of the MMP-2 plays and important role in the substrate diffusion of this enzyme. Single molecule diffusion of the collagenase MMP-1 has been observed on collagen fibrils and shown to be biased. The discovered biased diffusion would make the MMP-1 molecule an active motor, thus making it the first active motor that is not coupled to ATP hydrolysis. The possible sources of energy for this enzyme and their implications are discussed. We propose that a possible source of energy for the enzyme can be in the rearrangement of the structure of collagen fibrils. In a separate application, using the methods developed here, we have observed an intermediate in the intestinal fatty acid binding protein folding process through the changes in its hydrodynamic radius also the fluctuations in the structure of the IFABP in solution were measured using FCS.

  2. Correlative atomic force and confocal fluorescence microscopy: single molecule imaging and force induced spectral shifts (Conference Presentation)

    Science.gov (United States)

    Basché, Thomas; Hinze, Gerald; Stöttinger, Sven

    2016-09-01

    A grand challenge in nanoscience is to correlate structure or morphology of individual nano-sized objects with their photo-physical properties. An early example have been measurements of the emission spectra and polarization of single semiconductor quantum dots as well as their crystallographic structure by a combination of confocal fluorescence microscopy and transmission electron microscopy.[1] Recently, the simultaneous use of confocal fluorescence and atomic force microscopy (AFM) has allowed for correlating the morphology/conformation of individual nanoparticle oligomers or molecules with their photo-physics.[2, 3] In particular, we have employed the tip of an AFM cantilever to apply compressive stress to single molecules adsorbed on a surface and follow the effect of the impact on the electronic states of the molecule by fluorescence spectroscopy.[3] Quantum mechanical calculations corroborate that the spectral changes induced by the localized force can be associated to transitions among the different possible conformers of the adsorbed molecule.

  3. Photoacoustic and Fluorescence Spectroscopy of Metallomesogens Containing Lanthanide Ions

    Institute of Scientific and Technical Information of China (English)

    Yue-tao Yang; Jun-jia Li; Xiao-jun Liu; Shu-yi Zhang; Jing Liu

    2008-01-01

    Metallomesogens Ln(bta)3L2 (Ln3+:La3+,Eu3+,and Ho3+;bta:benzoyltrifluoroacetonate;L:Schiff base) were prepared.Photoacoustic (PA) spectroscopy was used to study physicoehemical properties of the liquid crystalline metal complexes.In the region of ligand absorption,PA intensity increases for Eu(bta)3L2, La(bta)3L2,and Ho(bta)3L2,in that order.It is found that the PA intensity of the ligand bears a relation to the intramolecular energy transfer process.For the first time,phase transitions of Eu(bta)3L2 from glass state to smectic A (SmA) phase and SmA phase to isotropic liquid are monitored by PA and fluorescence (FL) spectroscopy from two aspects:nonradiative and radiative transitions.The results show that PA technique may serve as a new tool for investigating the spectral properties and phase transitions of liquid crystals containing metal ions.

  4. Quantitative analysis of immobilized metalloenzymes by atomic absorption spectroscopy.

    Science.gov (United States)

    Opwis, Klaus; Knittel, Dierk; Schollmeyer, Eckhard

    2004-12-01

    A new, sensitive assay for the quantitative determination of immobilized metal containing enzymes has been developed using atomic absorption spectroscopy (AAS). In contrast with conventionally used indirect methods the described quantitative AAS assay for metalloenzymes allows more exact analyses, because the carrier material with the enzyme is investigated directly. As an example, the validity and reliability of the method was examined by fixing the iron-containing enzyme catalase on cotton fabrics using different immobilization techniques. Sample preparation was carried out by dissolving the loaded fabrics in sulfuric acid before oxidising the residues with hydrogen peroxide. The iron concentrations were determined by flame atomic absorption spectrometry after calibration of the spectrometer with solutions of the free enzyme at different concentrations.

  5. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ..nu.. less than or equal to 360 eV and laboratory sources, is divided into three parts.

  6. Atomic and Molecular Data for Optical Stellar Spectroscopy

    CERN Document Server

    Heiter, U; Asplund, M; Barklem, P S; Bergemann, M; Magrini, L; Masseron, T; Mikolaitis, Š; Pickering, J C; Ruffoni, M P

    2015-01-01

    High-precision spectroscopy of large stellar samples plays a crucial role for several topical issues in astrophysics. Examples include studying the chemical structure and evolution of the Milky Way galaxy, tracing the origin of chemical elements, and characterizing planetary host stars. Data are accumulating from instruments that obtain high-quality spectra of stars in the ultraviolet, optical and infrared wavelength regions on a routine basis. These instruments are located at ground-based 2- to 10-m class telescopes around the world, in addition to the spectrographs with unique capabilities available at the Hubble Space Telescope. The interpretation of these spectra requires high-quality transition data for numerous species, in particular neutral and singly ionized atoms, and di- or triatomic molecules. We rely heavily on the continuous efforts of laboratory astrophysics groups that produce and improve the relevant experimental and theoretical atomic and molecular data. The compilation of the best available ...

  7. Laser sources for precision spectroscopy on atomic strontium.

    Science.gov (United States)

    Poli, N; Ferrari, G; Prevedelli, M; Sorrentino, F; Drullinger, R E; Tino, G M

    2006-04-01

    We present a new laser setup designed for high-precision spectroscopy on laser cooled atomic strontium. The system, which is entirely based on semiconductor laser sources, delivers 200 mW at 461 nm for cooling and trapping atomic strontium from a thermal source, 4 mW at 497 nm for optical pumping from the metastable P23 state, 12 mW at 689 nm on linewidth less than 1 kHz for second-stage cooling of the atomic sample down to the recoil limit, 1.2 W at 922 nm for optical trapping close to the "magic wavelength" for the 0-1 intercombination line at 689 nm. The 689 nm laser was already employed to perform a frequency measurement of the 0-1 intercombination line with a relative accuracy of 2.3 x 10(-11), and the ensemble of laser sources allowed the loading in a conservative dipole trap of multi-isotopes strontium mixtures. The simple and compact setup developed represents one of the first steps towards the realization of a transportable optical standards referenced to atomic strontium.

  8. Atomic Spectroscopy and Collisions Using Slow Antiprotons \\\\ ASACUSA Collaboration

    CERN Multimedia

    Matsuda, Y; Lodi-rizzini, E; Kuroda, N; Schettino, G; Hori, M; Pirkl, W; Mascagna, V; Malbrunot, C L S; Yamazaki, Y; Eades, J; Simon, M; Massiczek, O; Sauerzopf, C; Nagata, Y; Uggerhoj, U I; Mc cullough, R W; Toekesi, K M; Venturelli, L; Widmann, E; Zmeskal, J; Kanai, Y; Hayano, R; Knudsen, H; Kristiansen, H; Todoroki, K; Bartel, M A; Moller, S P; Charlton, M; Leali, M; Diermaier, M; Kolbinger, B

    2002-01-01

    ASACUSA (\\underline{A}tomic \\underline{S}pectroscopy \\underline{A}nd \\underline{C}ollisions \\underline{U}sing \\underline{S}low \\underline{A}ntiprotons) is a collaboration between a number of Japanese and European research institutions, with the goal of studying bound and continuum states of antiprotons with simple atoms.\\\\ Three phases of experimentation are planned for ASACUSA. In the first phase, we use the direct $\\overline{p}$ beam from AD at 5.3 MeV and concentrate on the laser and microwave spectroscopy of the metastable antiprotonic helium atom, $\\overline{p}$He$^+$, consisting of an electron and antiproton bound by the Coulomb force to the helium nucleus. Samples of these are readily created by bringing AD antiproton beam bunches to rest in helium gas. With the help of techniques developed at LEAR for resonating high precision laser beams with antiproton transitions in these atoms, ASACUSA achieved several of these first-phase objectives during a few short months of AD operation in 2000. Six atomic tr...

  9. Results from Point Contact Tunnelling Spectroscopy and Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Proslier, Th. [Illinois Institute of Technology; Zasadzinski, J. [Illinois Institute of Technology; Ciovati, Gianluigi [JLAB; Kneisel, Peter K. [JLAB; Elam, J. W. [ANL; Norem, J. [ANL; Pellin, M. J. [ANL

    2009-11-01

    We have shown previously that magnetic niobium oxides can influence the superconducting density of states at the surface of cavity-grade niobium coupons. We will present recent results obtained by Point Contact Tunneling spectroscopy (PCT) on coupons removed from hot and cold spots in a niobium cavity, as well as a comparative study of magnetic oxides on mild baked/unbaked electropolished coupons. We will also describe recent results obtained from coated cavities, ALD films properties and new materials using Atomic Layer Deposition (ALD).

  10. Laser fluorescence spectroscopy of zinc neutrals originating from laser-irradiated and ion-bombarded zinc sulfide and zinc surfaces

    Science.gov (United States)

    Arlinghaus, H. F.; Calaway, W. F.; Young, C. E.; Pellin, M. J.; Gruen, D. M.; Chase, L. L.

    Time-of-flight (TOF) measurements, employing high-resolution laser-induced fluorescence spectroscopy (LFS) as a probe, have been used to measure the yield and velocity distribution of Zn atoms ejected from a ZnS single crystal under irradiation by 308 nm photons. By comparison with the known ion sputtering yield for pure zinc, the absolute yield was determined to be 10 to the 10th power atoms/pulse at a laser fluence of 30 mJ/sq cm. The velocity distribution of the Zn atoms could be fitted by a Maxwell-Boltzmann distribution, having characteristic temperature of approx 2300 K. In addition, Doppler-shift techniques have been combined with TOF measurements in order to separate prompt from delayed emission of ablated atoms, as well as to probe possible molecular or cluster fragmentation. The results obtained suggest the possibility of molecular or cluster emission from ZnS.

  11. Excimer laser fragmentation fluorescence spectroscopy for real-time monitoring of combustion generated pollutants

    Science.gov (United States)

    Damm, Christopher John

    Toxic pollutant emissions from combustion pose a hazard to public and environmental health. Better diagnostic techniques would benefit emissions monitoring programs and aid research aimed at understanding toxic pollutant formation and behavior. Excimer Laser Fragmentation Fluorescence Spectroscopy (ELFFS) provides sensitive, real-time, in situ measurements of several important combustion related pollutants. This thesis demonstrates the capabilities of ELFFS for detecting amines in combustion exhausts and carbonaceous particulate matter from engines. ELFFS photofragments target species using a 193 nm excimer laser to form fluorescent signature species. The NH (A--X) band at 336 nm is used to monitor ammonia, ammonium nitrate and ammonium sulfate. There are no major interferences in this spectral region. The sensitivity is approximately 100 ppb (1 second measurement) for ammonia in post flame gases and 100 ppb (mole fraction) for ammonium nitrate/sulfate in ambient air. Quenching of NH by the major combustion products does not limit the applicability of the detection method. Fluorescence from excited carbon atoms at 248 nm (1P 0 → 1S0) following photofragmentation measures particulate matter in a two-stroke gasoline engine and a four-stroke diesel engine. Fluorescence from CH (A2Delta → X 2pi, 431 nm) C2 (d3pig → a3piu, 468 nm) fragments is also observed. The atomic carbon fluorescence signal is proportional to the mass concentration of particles in the laser interrogation region. The 100-shot (1 second) detection limit for particles in the two-stroke gasoline engine exhaust is 0.5 ppb (volume fraction). The 100-shot detection limit for four-stroke diesel particulate matter is 0.2 ppb. Interferences from carbon monoxide and carbon dioxide are negligible. The ratios of atomic carbon, C2, and CH peaks provide information on the molecular forms of compounds condensed on or contained within the particles measured. The C/C2 signal ratio can be used to distinguish

  12. Double-well atom trap for fluorescence detection at the Heisenberg limit

    Science.gov (United States)

    Stroescu, Ion; Hume, David B.; Oberthaler, Markus K.

    2015-01-01

    We experimentally demonstrate an atom number detector capable of simultaneous detection of two mesoscopic ensembles with single-atom resolution. Such a sensitivity is a prerequisite for quantum metrology at a precision approaching the Heisenberg limit. Our system is based on fluorescence detection of atoms in a hybrid trap in which a dipole barrier divides a magneto-optical trap into two separated wells. We introduce a noise model describing the various sources contributing to the measurement error and report a limit of up to 500 atoms for single-atom resolution in the atom number difference.

  13. Investigation on the Photodissociation of Oxygen from Oxymyoglobin by Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hua-wei; CAO Hong-yu; TANG Qian; MA Jun-yan; ZHANG Ying-ying; ZHENG Xue-fang

    2011-01-01

    Photodissociation of oxygen from oxymyoglobin(oxyMb)was investigated by means of fluorescence spectroscopy.One of the most important findings of the photodissociation of oxyMb was the discovery of two processes which were affected by excitation intensity,temperature,solvent viscosity,and excitation wavelength.Process Ⅰ(PⅠ)corresponded to oxygen escaping from the binding site at ferrous heme iron atom within the porphyrin ring into the heme pocket,whereas process Ⅱ(PⅡ)was ascribed to oxygen escaping from the heme pocket into the solvent.To elucidate this interesting phenomenon,we proposed a model that oxygen encountered two barriers on its way from the binding site at the ferrous heme iron to the solvent.Reversibility and wavelength sensitivity of the photodissociation were also observed.

  14. Fluorescence spectroscopy: a powerful technique for the noninvasive characterization of artwork.

    Science.gov (United States)

    Romani, Aldo; Clementi, Catia; Miliani, Costanza; Favaro, Gianna

    2010-06-15

    After electronic excitation by ultraviolet or visible radiation, atoms and molecules can undergo thermal or radiative deactivation processes before relaxing to the ground state. They can emit photons with longer wavelengths than the incoming exciting radiation, that is, they can fluoresce in the UV-vis-near-infrared (NIR) range. The study of fluorescence relaxation processes is one of the experimental bases on which modern theories of atomic and molecular structure are founded. Over the past few decades, technological improvements in both optics and electronics have greatly expanded fluorimetric applications, particularly in analytical fields, because of the high sensitivity and specificity afforded by the methods. Using fluorimetry in the study and conservation of cultural heritage is a recent innovation. In this Account, we briefly summarize the use of fluorescence-based techniques in examining the constituent materials of a work of art in a noninvasive manner. Many chemical components in artwork, especially those of an organic nature, are fluorescent materials, which can be reliably used for both diagnostic and conservative purposes. We begin by examining fluorimetry in the laboratory setting, considering the organic dyes and inorganic pigments that are commonly studied. For a number of reasons, works of art often cannot be moved into laboratories, so we continue with a discussion of portable instruments and a variety of successful "field applications" of fluorimetry to works of cultural heritage. These examples include studies of mural paintings, canvas paintings, tapestries, and parchments. We conclude by examining recent advances in treating the data that are generated in fluorescence studies. These new perspectives are focused on the spectral shape and lifetime of the emitted radiation. Recent developments have provided the opportunity to use various spectroscopic techniques on an increasing number of objects, as well as the ability to fully characterize

  15. Fluorescence spectroscopy of soil pellets : The use of CP/PARAFAC.

    Science.gov (United States)

    Mounier, Stéphane; Nicolodeli, Gustavo; Redon, Roland; Hacherouf, Kalhed; Milori, Debora M. B. P.

    2014-05-01

    Fluorescence spectroscopy is one of the most sensitive techniques available for analytical purposes. It is relatively easy to implement, phenomenologically straightforward and well investigated. Largely non-invasive and fast, so that it can be useful for environmental applications. Fluorescence phenomenon is highly probable in molecular systems containing atoms with lone pairs of electrons such as C=O, aromatic, phenolic, quinone and more rigid unsaturated conjugated systems. These functional groups are present in humic substances (HS) from soils (Senesi, 1990; N. Senesi et al., 1991) and represent the main fluorophors of Soil Organic Matter (SOM). The extension of the conjugated electronic system, the level of heteroatom substitution and type and number of substituting groups under the aromatic rings strongly affect the intensity and wavelength of molecular fluorescence. However, to analyse the SOM it is generally done a chemical extraction that allows measuring the fluorescence response of the liquid extract. To avoid this fractionation of the SOM, Milori et al. (2006) proposed the application of laser induced fluorescence spectroscopy (LIFS) in whole soil. This work intends to assess the technical feasibility of 3D fluorescence spectroscopy using lamp for excitation to analyse solids opaque samples prepared with different substances. Seventy four (74) solid samples were prepared from different mixtures of boric acid (BA), humic substance acid and tryptophan (TRP) powder. The compounds were mixture and a pellet was done by using pressure (8 ton). The pellets were measured using a spectrofluorimeter HITACHI F4500, and a 3D fluorescence tensor was done from emission spectra (200-600 nm) with excitation range from 200 to 500 nm. The acquisition parameters were: step at 5 nm, scan speed at 2400 nm.min-1, response time at 0.1 s, excitation and emission slits at 5 nm and photomultiplier voltage at 700 V. Furthermore, measures of Laser-induced Fluorescence were

  16. Saturation of Energy Levels in Analytical Atomic Fluorescence Spectrometry. II. Experimental.

    Science.gov (United States)

    1981-01-30

    RESEARCH Contract N14-76-C-0838 Task Ao. NR 051-622 TECHNICAL REPORT NO. 34 SATURATION OF ENERGY LEVELS IN ANALYTICAL ATOMIC FLUORESCENCE SPECTROMETRY II...an assumption which is valid only if the daral o’l of 111, cxcilIatio n pulse is mucl ) longer than the fluorescence life- time of the tjaii!,ition

  17. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin [Univ. of California, Davis, CA (United States). Dept. of Applied Science

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  18. Antimony quantification in Leishmania by electrothermal atomic absorption spectroscopy.

    Science.gov (United States)

    Roberts, W L; Rainey, P M

    1993-05-15

    Tri- and pentavalent antimony were quantified in Leishmania mexicana pifanoi amastigotes and promastigotes by atomic absorption spectroscopy with electrothermal atomization. Leishmania grown in axenic culture were treated with either potassium antimony tartrate [Sb(III)] or sodium stibogluconate [Sb(V)]. The parasites were collected, digested with nitric acid, and subjected to atomic absorption spectroscopy. The method was linear from 0 to 7 ng of antimony. The interassay coefficients of variation were 9.6 and 5.7% (N = 5) for 0.52 and 3.7-ng samples of leishmanial antimony, respectively. The limit of detection was 95 pg of antimony. The assay was used to characterize Sb(III) and Sb(V) influx and efflux kinetics. Influx rates were determined at antimony concentrations that produced a 50% inhibition of growth (IC50). The influx rates of Sb(V) into amastigotes and promastigotes were 4.8 and 12 pg/million cells/h, respectively, at 200 micrograms antimony/ml. The influx rate of Sb(III) into amastigotes was 41 pg/million cells/h at 20 micrograms antimony/ml. Influx of Sb(III) into promastigotes at 1 microgram antimony/ml was rapid and reached a plateau of 175 pg/million cells in 2 h. Efflux of Sb(III) and Sb(V) from amastigotes and promastigotes exhibited biphasic kinetics. The initial (alpha) half-life of Sb(V) efflux was less than 4 min and that of Sb(III) was 1-2 h. The apparent terminal (beta) half-lives ranged from 7 to 14 h.

  19. Medical applications of atomic force microscopy and Raman spectroscopy.

    Science.gov (United States)

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  20. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong; Lin, Guang

    2014-05-30

    The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closed solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.

  1. Fluorescence lifetime spectroscopy for breast cancer margins assessment

    Science.gov (United States)

    Gorpas, Dimitris; Fatakdawala, Hussain; Zhang, Yanhong; Bold, Richard; Marcu, Laura

    2015-03-01

    During breast conserving surgery (BCS), which is the preferred approach to treat most early stage breast cancers, the surgeon attempts to excise the tumor volume, surrounded by thin margin of normal tissue. The intra-operative assessment of cancerous areas is a challenging procedure, with the surgeon usually relying on visual or tactile guidance. This study evaluates whether time-resolved fluorescence spectroscopy (TRFS) presents the potential to address this problem. Point TRFS measurements were obtained from 19 fresh tissue slices (7 patients) and parameters that characterize the transient signals were quantified via constrained least squares deconvolution scheme. Fibrotic tissue (FT, n=69), adipose tissue (AT, n=76), and invasive ductal carcinoma (IDC, n=27) were identified in histology and univariate statistical analysis, followed by multi-comparison test, was applied to the corresponding lifetime data. Significant differentiation between the three tissue types exists at 390 nm and 500 nm bands. The average lifetime is 3.23+/-0.74 ns for AT, 4.21+/-0.83 ns for FT and 4.71+/-0.35 ns (ptissue in real-time and assess tumor margins.

  2. Plasmonic antennas and zero mode waveguides to enhance single molecule fluorescence detection and fluorescence correlation spectroscopy towards physiological concentrations

    CERN Document Server

    Punj, Deep; Moparthi, Satish Babu; de Torres, Juan; Grigoriev, Victor; Rigneault, Hervé; Wenger, Jérôme

    2014-01-01

    Single-molecule approaches to biology offer a powerful new vision to elucidate the mechanisms that underpin the functioning of living cells. However, conventional optical single molecule spectroscopy techniques such as F\\"orster fluorescence resonance energy transfer (FRET) or fluorescence correlation spectroscopy (FCS) are limited by diffraction to the nanomolar concentration range, far below the physiological micromolar concentration range where most biological reaction occur. To breach the diffraction limit, zero mode waveguides and plasmonic antennas exploit the surface plasmon resonances to confine and enhance light down to the nanometre scale. The ability of plasmonics to achieve extreme light concentration unlocks an enormous potential to enhance fluorescence detection, FRET and FCS. Single molecule spectroscopy techniques greatly benefit from zero mode waveguides and plasmonic antennas to enter a new dimension of molecular concentration reaching physiological conditions. The application of nano-optics...

  3. A double-well atom trap for fluorescence detection at the Heisenberg limit

    CERN Document Server

    Stroescu, Ion; Oberthaler, Markus K

    2014-01-01

    We experimentally demonstrate an atom number detector capable of simultaneous detection of two mesoscopic ensembles with single atom resolution. Such a sensitivity is a prerequisite for going beyond quantum metrology with spin-squeezed states. Our system is based on fluorescence detection of atoms in a novel hybrid trap in which a dipole barrier divides a magneto-optical trap into two separated wells. We introduce a noise model describing the various sources contributing to the measurement error and report a limit of up to 500 atoms for the exact determination of the atom number difference.

  4. Fluorescence fluctuation spectroscopy: ushering in a new age of enlightenment for cellular dynamics.

    Science.gov (United States)

    Jameson, David M; Ross, Justin A; Albanesi, Joseph P

    2009-09-01

    Originally developed for applications in physics and physical chemistry, fluorescence fluctuation spectroscopy is becoming widely used in cell biology. This review traces the development of the method and describes some of the more important applications. Specifically, the methods discussed include fluorescence correlation spectroscopy (FCS), scanning FCS, dual color cross-correlation FCS, the photon counting histogram and fluorescence intensity distribution analysis approaches, the raster scanning image correlation spectroscopy method, and the Number and Brightness technique. The physical principles underlying these approaches will be delineated, and each of the methods will be illustrated using examples from the literature.

  5. Resonance fluorescence of a cold atom in a high-finesse resonator

    CERN Document Server

    Bienert, M; Torres, J M; Zippilli, S; Bienert, Marc; Morigi, Giovanna; Zippilli, Stefano

    2007-01-01

    We study the spectra of emission of a system composed by an atom, tightly confined inside a high-finesse resonator, when the atom is driven by a laser and is at steady state of the cooling dynamics induced by laser and cavity field. In general, the spectrum of resonance fluorescence and the spectrum at the cavity output contain complementary information about the dynamics undergone by the system. In certain parameter regimes, quantum interference effects between the scattering processes induced by cavity and laser field lead to the selective suppression of features of the resonance fluorescence spectrum, which are otherwise visible in the spectrum of laser-cooled atoms in free space.

  6. Time-resolved fluorescence spectroscopy of oil spill detected by ocean lidar

    Science.gov (United States)

    Li, Xiao-long; Chen, Yong-hua; Li, Jie; Jiang, Jingbo; Ni, Zuotao; Liu, Zhi-shen

    2016-10-01

    Based on time-resolved fluorescence of oils, an oceanographic fluorescence Lidar was designed to identify oil pollutions. A third harmonic (at 355nm) of Nd:YAG laser is used as the excitation source, and the fluorescence intensities and lifetimes of oil fluorescence at wavelength from 380 nm to 580 nm are measured by an intensified CCD (ICCD). In the experiments, time-resolved fluorescence spectra of 20 oil samples, including crude oils, fuel oils, lubricating oil, diesel oils and gasoline, are analyzed to discuss fluorescence spectral characteristics of samples for oil classification. The spectral characteristics of oil fluorescence obtained by ICCD with delay time of 2 ns, 4 ns, and 6 ns were studied by using the principal component analysis (PCA) method. Moreover, an efficient method is used to improve the recognition rate of the oil spill types, through enlarging spectral differences of oil fluorescence at different delay times. Experimental analysis shows that the optimization method can discriminate between crude oil and fuel oil, and a more accurate classification of oils is obtained by time-resolved fluorescence spectroscopy. As the result, comparing to traditional fluorescence spectroscopy, a higher recognition rate of oil spill types is achieved by time-resolved fluorescence spectroscopy which is also a feasibility technology for Ocean Lidar.

  7. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    Science.gov (United States)

    Du, Yingge; Chambers, Scott A.

    2014-10-01

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  8. Etalon-induced Baseline Drift And Correction In Atom Flux Sensors Based On Atomic Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yingge; Chambers, Scott A.

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific, real-time flux sensing and control. The ultimate sensitivity and performance of the sensors are strongly affected by the long-term and short term baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability which has not been previously considered or corrected by existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5%, which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  9. Etalon-induced baseline drift and correction in atom flux sensors based on atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yingge, E-mail: yingge.du@pnnl.gov [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Chambers, Scott A. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-10-20

    Atom flux sensors based on atomic absorption (AA) spectroscopy are of significant interest in thin film growth as they can provide unobtrusive, element specific real-time flux sensing and control. The ultimate sensitivity and performance of these sensors are strongly affected by baseline drift. Here we demonstrate that an etalon effect resulting from temperature changes in optical viewport housings is a major source of signal instability, which has not been previously considered, and cannot be corrected using existing methods. We show that small temperature variations in the fused silica viewports can introduce intensity modulations of up to 1.5% which in turn significantly deteriorate AA sensor performance. This undesirable effect can be at least partially eliminated by reducing the size of the beam and tilting the incident light beam off the viewport normal.

  10. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  11. On-line laser spectroscopy with thermal atomic beams

    CERN Document Server

    Thibault, C; De Saint-Simon, M; Duong, H T; Guimbal, P; Huber, G; Jacquinot, P; Juncar, P; Klapisch, Robert; Liberman, S; Pesnelle, A; Pillet, P; Pinard, J; Serre, J M; Touchard, F; Vialle, J L

    1981-01-01

    On-line high resolution laser spectroscopy experiments have been performed in which the light from a CW tunable dye laser interacts at right angles with a thermal atomic beam. /sup 76-98/Rb, /sup 118-145 /Cs and /sup 208-213/Fr have been studied using the ionic beam delivered by the ISOLDE on-line mass separator at CERN while /sup 30-31/Na and /sup 38-47/K have been studied by setting the apparatus directly on-line with the PS 20 GeV proton beam. The principle of the method is briefly explained and some results concerning nuclear structure are given. The hyperfine structure, spins and isotope shifts of the alkali isotopes and isomers are measured. (8 refs).

  12. Noninvasive skin fluorescence spectroscopy for detection of abnormal glucose tolerance

    Directory of Open Access Journals (Sweden)

    Edward L. Hull, PhD

    2014-09-01

    Full Text Available The ENGINE study evaluated noninvasive skin fluorescence spectroscopy (SFS for detection of abnormal glucose tolerance (AGT. The AGT detection performance of SFS was compared to fasting plasma glucose (FPG and hemoglobin A1C (A1C. The study was a head-to-head comparison of SFS to FPG and A1C in an at-risk population of 507 subjects, with no prior diagnosis of diabetes, each of whom received a 75 g, two-hour oral glucose tolerance test (OGTT. Subjects were measured by SFS on multiple days in fasting and non-fasting states. SFS data were acquired and analyzed with the SCOUT DS® device (VeraLight, Albuquerque, NM, USA. Disease truth was AGT, defined as OGTT ≥ 7.8 mmol/L. Sensitivity, false positive rate (FPR, ROC area, and equal error rate (EER for detection of AGT were computed. The reproducibility of SFS and FPG was assessed. The AGT sensitivity of SFS at the device's recommended screening threshold of 50 was 75.2%, higher than that of FPG (thresholds of 5.6 mmol/L or 6.1 mmol/L and A1C (thresholds of 5.7% or 6.0%. The SFS FPR was 42.1%, comparable to an A1C threshold of 5.7% (FPR = 43.5%. The EERs of SFS, FPG and A1C were similar, as were the partial ROC areas for FPRs of 20–50%. The reproducibility of SFS was 7.7% versus 8.1% for FPG. SFS had similar AGT detection performance to FPG and A1C and is a viable alternative to screening individuals for AGT.

  13. Cooperative fluorescence from a strongly driven dilute cloud of atoms

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Wubs, Martijn; Lodahl, Peter;

    2013-01-01

    We investigate cooperative fluorescence in a dilute cloud of strongly driven two-level emitters. Starting from the Heisenberg equations of motion, we compute the first-order scattering corrections to the saturation of the excited-state population and to the resonance-fluorescence spectrum, which...... both require going beyond the state-of-the-art linear-optics approach to describe collective phenomena. A dipole blockade is observed due to long-range dipole-dipole coupling that vanishes at stronger driving fields. Furthermore, we compute the inelastic component of the light scattered by a cloud...

  14. Assessing topographic cutaneous autofluorescence variation using fluorescence UV and visible excitation emission matrix (EEM) spectroscopy

    Science.gov (United States)

    Zhao, Jianhua; Zandi, Soodabeh; Feng, Florina; Zeng, Haishan; McLean, David I.; Lui, Harvey

    2011-03-01

    Cutaneous autofluorescence properties were systematically studied using fluorescence excitation emission matrix spectroscopy. Twenty-six healthy subjects with a mean age of 34 (range 21-74) participated in this study. The fluorescence of major skin fluorophores such as tryptophan, collagen, elastin and NADH could be readily identified. On average, facial skin shows strong tryptophan and measurable porphyrin fluorescence; the palm and nail show strong tryptophan and keratin fluorescence. These results demonstrate that regional topographic variations exist not only in the amount of fluorescence but also in the relative distribution of fluorophores in normal skin. Moreover this provides a basis for future interpretation of autofluorescence in diseased skin.

  15. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    Science.gov (United States)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'Skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-06-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0-3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time.

  16. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    CERN Document Server

    Okaba, Shoichi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom-atom and atom-wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturisation. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kKagome-lattice hollow-core photonic crystal fibre (HC-PCF) are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom-atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the $^1 S_0-{}^3P_1$ (m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibresHC-PCFs improve the optical depth while preserving atomic coherence time.

  17. Ultimate Statistical Physics: fluorescence of a single atom

    CERN Document Server

    Pomeau, Yves; Ginibre, Jean

    2016-01-01

    We discuss the statistics of emission of photons by a single atom or ion illuminated by a laser beam at the frequency of quasi-resonance between two energy levels, a situation that corresponds to real experiments. We extend this to the case of two laser beams resonant with the energy differences between two excited levels and the ground state (three level atom in V-configuration). We use a novel approach of this type of problem by considering Kolmogorov equation for the probability distribution of the atomic state which takes into account first the deterministic evolution of this state under the effect of the incoming laser beam and the random emission of photons during the spontaneous decay of the excited state(s) to the ground state. This approach yields solvable equations in the two level atom case. For the three level atom case we set the problem and define clearly its frame. The results obtained are valid both in the opposite limits of rare and of frequent spontaneous decay, compared to the period of the...

  18. Application of fluorescence spectroscopy and chemometrics in the evaluation of processed cheese during storage.

    Science.gov (United States)

    Christensen, J; Povlsen, V T; Sørensen, J

    2003-04-01

    Front face fluorescence spectroscopy is applied for an evaluation of the stability of processed cheese during storage. Fluorescence landscapes with excitation from 240 to 360 nm and emission in the range of 275 to 475 nm were obtained from cheese samples stored in darkness and light in up to 259 d, at 5, 20 and 37 degrees C, respectively. Parallel factor (PARAFAC) analysis of the fluorescence landscapes exhibits four fluorophores present in the cheese, all related to the storage conditions. The chemometric analysis resolves the fluorescence signal into excitation and emission profiles of the pure fluorescent compounds, which are suggested to be tryptophan, vitamin A and a compound derived from oxidation. Thus, it is concluded that fluorescence spectroscopy in combination with chemometrics has a potential as a fast method for monitoring the stability of processed cheese.

  19. Excitation-emission matrices and synchronous fluorescence spectroscopy for the diagnosis of gastrointestinal cancers

    Science.gov (United States)

    Genova, Ts; Borisova, E.; Penkov, N.; Vladimirov, B.; Zhelyazkova, A.; Avramov, L.

    2016-06-01

    We report the development of an improved fluorescence technique for cancer diagnostics in the gastrointestinal tract. We investigate the fluorescence of ex vivo colorectal (cancerous and healthy) tissue samples using excitation-emission matrix (EEM) and synchronous fluorescence spectroscopy (SFS) steady-state approaches. The obtained results are processed for revealing characteristic fluorescence spectral features with a valuable diagnostic meaning. The main tissue fluorophores, contributing to the observed fluorescence, are tyrosine, tryptophan, NADH, FAD, collagen and elastin. Based on the results of the Mann-Whitney test as useful parameters for differentiation of gastrointestinal cancer from normal mucosa, we suggest using excitation wavelengths in the range 300 - 360 nm for fluorescence spectroscopy and wavelengths intervals of 60 nm and 90 nm for SFS.

  20. Tryptophan content for monitoring breast cancer cell aggressiveness by native fluorescence spectroscopy

    Science.gov (United States)

    Zhang, Lin; Pu, Yang; Xue, Jianpeng; Pratavieira, Sebastião.; Xu, Baogang; Achilefu, Samuel; Alfano, R. R.

    2014-03-01

    This study shows tryptophan as the key native marker in cells to determine the level of aggressive cancer in breast cell lines using native fluorescence spectroscopy. An algorithm based on the ratio of tryptophan fluorescence intensity at 340 nm to intensity at 460 nm is associated with aggressiveness of the cancer cells. The higher the ratio is, the more aggressive the tumor towards metastasis.

  1. In-trap fluorescence detection of atoms in a microscopic dipole trap

    CERN Document Server

    Hilliard, A J; Sompet, P; Carpentier, A V; Andersen, M F

    2015-01-01

    We investigate fluorescence detection using a standing wave of blue-detuned light of one or more atoms held in a deep, microscopic dipole trap. The blue-detuned standing wave realizes a Sisyphus laser cooling mechanism so that an atom can scatter many photons while remaining trapped. When imaging more than one atom, the blue detuning limits loss due to inelastic light-assisted collisions. Using this standing wave probe beam, we demonstrate that we can count from one to the order of 100 atoms in the microtrap with sub-poissonian precision.

  2. Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy

    CERN Document Server

    Spedden, Elise; Naumova, Elena N; Kaplan, David L; Staii, Cristian

    2013-01-01

    Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here we combine Atomic Force Microscopy based force spectroscopy with Fluorescence Microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglion, and P-19 (mouse embryonic carcinoma stem cells) neurons. We measure how the stiffness of neurons changes both during neurite outgrowth and upon disruption of microtubules of the cell. We find reversible local stiffening of the cell during growth, and show that the increase in local elastic modulus is primarily due to the formation of microtubules. We also report that cortical and P-19 neurons have similar elasticity maps, with elastic moduli in the range 0.1-2 kPa, with typical average values of 0.4 kPa (P-19) and 0.2 k...

  3. Determination of Aluminum Concentration in Seawater by Colorimetry and Atomic Absorption Spectroscopy.

    Science.gov (United States)

    1972-11-30

    this was also high. 5 . ,Irj ~ - • lri*; llo. TALLE 2 ATOMIC ABSORPTION SPECTROSCOPY DETEPIJINATION OF ALUMINU1 CONCENTRATIO11 OF SEAWATER OCEAN...Concentration in Seawater by Colorimetr-y and Atomic Absorption Spectroscopy Charles A. Greene, Jr. and Everett N. Jones Ocean Science Department T14

  4. Atomic force fluorescence microscopy : combining the best of two worlds

    NARCIS (Netherlands)

    Kassies, Roelf

    2005-01-01

    The complementary strengths and weaknesses of AFM and optical microscopy leads to the desire to integrate both techniques into a single microscope. This thesis describes the development of a com-bined AFM / confocal °uorescence microscope. This atomic force °uorescence microscope (AFFM) combines hig

  5. Single gold nanoparticles to enhance the detection of single fluorescent molecules at micromolar concentration using fluorescence correlation spectroscopy

    Science.gov (United States)

    Punj, Deep; Rigneault, Hervé; Wenger, Jérôme

    2014-05-01

    Single nanoparticles made of noble metals are strongly appealing to develop practical applications to detect fluorescent molecules in solution. Here, we detail the use of a single gold nanoparticle of 100 nm diameter to enhance the detection of single Alex Fluor 647 fluorescent molecules at high concentrations of several micromolar. We discuss the implementation of fluorescence correlation spectroscopy, and provide a new method to reliably extract the enhanced fluorescence signal stemming from the nanoparticle near-field from the background generated in the confocal volume. The applicability of our method is checked by reporting the invariance of the single molecule results as function of the molecular concentration, and the experimental data is found in good agreement with numerical simulations.

  6. [Rapid identification of potato cultivars using NIR-excited fluorescence and Raman spectroscopy].

    Science.gov (United States)

    Dai, Fen; Bergholt, Mads Sylvest; Benjamin, Arnold Julian Vinoj; Hong, Tian-Sheng; Zhiwei, Huang

    2014-03-01

    Potato is one of the most important food in the world. Rapid and noninvasive identification of potato cultivars plays a important role in the better use of varieties. In this study, The identification ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy and NIR fluorescence spectroscopy, for invasive detection of potato cultivars was evaluated. A rapid NIR Raman spectroscopy system was applied to measure the composite Raman and NIR fluorescence spectroscopy of 3 different species of potatoes (98 samples in total) under 785 nm laser light excitation. Then pure Raman and NIR fluorescence spectroscopy were abstracted from the composite spectroscopy, respectively. At last, the partial least squares-discriminant analysis (PLS-DA) was utilized to analyze and classify Raman spectra of 3 different types of potatoes. All the samples were divided into two sets at random: the calibration set (74samples) and prediction set (24 samples), the model was validated using a leave-one-out, cross-validation method. The results showed that both the NIR-excited fluorescence spectra and pure Raman spectra could be used to identify three cultivars of potatoes. The fluorescence spectrum could distinguish the Favorita variety well (sensitivity: 1, specificity: 0.86 and accuracy: 0.92), but the result for Diamant (sensitivity: 0.75, specificity: 0.75 and accuracy: 0. 75) and Granola (sensitivity: 0.16, specificity: 0.89 and accuracy: 0.71) cultivars identification were a bit poorer. We demonstrated that Raman spectroscopy uncovered the main biochemical compositions contained in potato species, and provided a better classification sensitivity, specificity and accuracy (sensitivity: 1, specificity: 1 and accuracy: 1 for all 3 potato cultivars identification) among the three types of potatoes as compared to fluorescence spectroscopy.

  7. Fluorescence spectroscopy of the retina from scrapie-infected mice.

    Science.gov (United States)

    Bose, Sayantan; Schönenbrücher, Holger; Richt, Jürgen A; Casey, Thomas A; Rasmussen, Mark A; Kehrli, Marcus E; Petrich, Jacob W

    2013-01-01

    Recently, we have proposed that the fluorescence spectra of sheep retina can be well correlated with the presence or absence of scrapie. Scrapie is the most widespread TSE (transmissible spongiform encephalopathy) affecting sheep and goats worldwide. Mice eyes have been previously reported as a model system to study age-related accumulation of lipofuscin, which has been investigated by monitoring the increasing fluorescence with age covering its entire life span. The current work aims at developing mice retina as a convenient model system to diagnose scrapie and other fatal TSE diseases in animals such as sheep and cows. The objective of the research reported here was to determine whether the spectral features are conserved between two different species namely mice and sheep, and whether an appropriate small animal model system could be identified for diagnosis of scrapie based on the fluorescence intensity in retina. The results were consistent with the previous reports on fluorescence studies of healthy and scrapie-infected retina of sheep. The fluorescence from the retinas of scrapie-infected sheep was significantly more intense and showed more heterogeneity than that from the retinas of uninfected mice. Although the structural characteristics of fluorescence spectra of scrapie-infected sheep and mice eyes are slightly different, more importantly, murine retinas reflect the enhancement of fluorescence intensity upon infecting the mice with scrapie, which is consistent with the observations in sheep eyes.

  8. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  9. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system

    Science.gov (United States)

    Mounier, S.; Nicolodelli, G.; Redon, R.; Milori, D. M. B. P.

    2017-04-01

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  10. Direct solid surface fluorescence spectroscopy of standard chemicals and humic acid in ternary system.

    Science.gov (United States)

    Mounier, S; Nicolodelli, G; Redon, R; Milori, D M B P

    2017-04-15

    The front face fluorescence spectroscopy is often used to quantify chemicals in well-known matrices as it is a rapid and powerful technique, with no sample preparation. However it was not used to investigate extracted organic matter like humic substances. This work aims to fully investigate for the first time front face fluorescence spectroscopy response of a ternary system including boric acid, tryptophan and humic substances, and two binaries system containing quinine sulfate or humic substance in boric acid. Pure chemicals, boric acid, tryptophan, quinine sulfate and humic acid were mixed together in solid pellet at different contents from 0 to 100% in mass. The measurement of excitation emission matrix of fluorescence (3D fluorescence) and laser induced fluorescence were then done in the front face mode. Fluorescence matrices were decomposed using the CP/PARAFAC tools after scattering treatments. Results show that for 3D fluorescence there is no specific component for tryptophan and quinine sulfate, and that humic substances lead to a strong extinction effect for mixture containing quinine sulfate. Laser induced fluorescence gives a very good but non-specific related response for both quinine sulfate and tryptophan. No humic substances fluorescence response was found, but extinction effect is observed as for 3D fluorescence. This effect is stronger for quinine sulfate than for tryptophan. These responses were modeled using a simple absorbance versus emission model.

  11. Optical spectroscopy of a highly fluorescent aggregate of bacteriochlorophyll c

    Science.gov (United States)

    Causgrove, T. P.; Cheng, P.; Brune, D. C.; Blankenship, R. E.

    1993-01-01

    Bacteriochlorophyll (BChl) c and a similar model compound, Mg-methyl bacteriopheophorbide d, form several types of aggregates in nonpolar solvents. One of these aggregates is highly fluorescent, with a quantum yield higher than that of the monomer. This aggregate is also unusual in that it shows a rise time in its fluorescence emission decay at certain wavelengths, which is ascribed to a change in conformation of the aggregate. An analysis of fluorescence depolarization data is consistent with either a linear aggregate of four or five monomers or preferably a cyclic arrangement of three dimers.

  12. Investigating single molecule adhesion by atomic force spectroscopy.

    Science.gov (United States)

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  13. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    Science.gov (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications.

  14. Laser spectroscopy of atoms in superfluid helium for the measurement of nuclear spins and electromagnetic moments of radioactive atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T., E-mail: tomomi.fujita@riken.jp [Osaka University, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Imamura, K.; Yang, X. F. [RIKEN Nishina Center (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Kobayashi, T. [RIKEN Center for Advanced Photonics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Shimoda, T. [Osaka University, Department of Physics (Japan); Matsuo, Y. [Hosei University, Department of Advanced Sciences (Japan); Collaboration: OROCHI Collaboration

    2015-11-15

    A new laser spectroscopic method named “OROCHI (Optical RI-atom Observation in Condensed Helium as Ion catcher)” has been developed for deriving the nuclear spins and electromagnetic moments of low-yield exotic nuclei. In this method, we observe atomic Zeeman and hyperfine structures using laser-radio-frequency/microwave double-resonance spectroscopy. In our previous works, double-resonance spectroscopy was performed successfully with laser-sputtered stable atoms including non-alkali Au atoms as well as alkali Rb and Cs atoms. Following these works, measurements with {sup 84−87}Rb energetic ion beams were carried out in the RIKEN projectile fragment separator (RIPS). In this paper, we report the present status of OROCHI and discuss its feasibility, especially for low-yield nuclei such as unstable Au isotopes.

  15. Anabaena cell ageing monitored with confocal fluorescence spectroscopy.

    Science.gov (United States)

    Ke, Shan; Bindokas, Vytas; Haselkorn, Robert

    2015-01-01

    Cyanobacteria use a sophisticated system of pigments to collect light energy across the visible spectrum for photosynthesis. The pigments are assembled in structures called phycobilisomes, composed of phycoerythrocyanin, phycocyanin and allophycocyanin, which absorb energy and transfer it to chlorophyll in photosystem II reaction centres. All of the components of this system are fluorescent, allowing sensitive measurements of energy transfer using single cell confocal fluorescence microscopy. The native pigments can be interrogated without the use of reporters. Here, we use confocal fluorescence microscopy to monitor changes in the efficiency of energy transfer as single cells age, between the time they are born at cell division until they are ready to divide again. Alteration of fluorescence was demonstrated to change with the age of the cyanobacterial cell.

  16. Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments.

    Science.gov (United States)

    Nevin, Austin; Echard, Jean-Philippe; Thoury, Mathieu; Comelli, Daniela; Valentini, Gianluca; Cubeddu, Rinaldo

    2009-11-15

    The analysis of various varnishes from different origins, which are commonly found on historical musical instruments was carried out for the first time with both fluorescence excitation emission spectroscopy and laser-induced time-resolved fluorescence spectroscopy. Samples studied include varnishes prepared using shellac, and selected diterpenoid and triterpenoid resins from plants, and mixtures of these materials. Fluorescence excitation emission spectra have been collected from films of naturally aged varnishes. In parallel, time-resolved fluorescence spectroscopy of varnishes provides means for discriminating between short- (less than 2.0 ns) and long-lived (greater than 7.5 ns) fluorescence emissions in each of these complex materials. Results suggest that complementary use of the two non destructive techniques allows a better understanding of the main fluorophores responsible for the emission in shellac, and further provides means for distinguishing the main classes of other varnishes based on differences in fluorescence lifetime behaviour. Spectrofluorimetric data and time resolved spectra presented here may form the basis for the interpretation of results from future in situ fluorescence examination and time resolved fluorescence imaging of varnished musical instruments.

  17. Integrated optical measurement system for fluorescence spectroscopy in microfluidic channels

    DEFF Research Database (Denmark)

    Hübner, Jörg; Mogensen, Klaus Bo; Jørgensen, Anders Michael

    2001-01-01

    A transportable miniaturized fiber-pigtailed measurement system is presented which allows quantitative fluorescence detection in microliquid handling systems. The microliquid handling chips are made in silica on silicon technology and the optical functionality is monolithically integrated...... with the microfluidic channel system. This results in inherent stability and photolithographic alignment precision. Permanently attached optical fibers provide a rugged connection to the light source, detection, and data processing unit, which potentially allows field use of such systems. Fluorescence measurements...

  18. Spatially and Temporally Resolved Atomic Oxygen Measurements in Short Pulse Discharges by Two Photon Laser Induced Fluorescence

    Science.gov (United States)

    Lempert, Walter; Uddi, Mruthunjaya; Mintusov, Eugene; Jiang, Naibo; Adamovich, Igor

    2007-10-01

    Two Photon Laser Induced Fluorescence (TALIF) is used to measure time-dependent absolute oxygen atom concentrations in O2/He, O2/N2, and CH4/air plasmas produced with a 20 nanosecond duration, 20 kV pulsed discharge at 10 Hz repetition rate. Xenon calibrated spectra show that a single discharge pulse creates initial oxygen dissociation fraction of ˜0.0005 for air like mixtures at 40-60 torr total pressure. Peak O atom concentration is a factor of approximately two lower in fuel lean (φ=0.5) methane/air mixtures. In helium buffer, the initially formed atomic oxygen decays monotonically, with decay time consistent with formation of ozone. In all nitrogen containing mixtures, atomic oxygen concentrations are found to initially increase, for time scales on the order of 10-100 microseconds, due presumably to additional O2 dissociation caused by collisions with electronically excited nitrogen. Further evidence of the role of metastable N2 is demonstrated from time-dependent N2 2^nd Positive and NO Gamma band emission spectroscopy. Comparisons with modeling predictions show qualitative, but not quantitative, agreement with the experimental data.

  19. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  20. Intracellular distribution of fluorescent copper and zinc bis(thiosemicarbazonato) complexes measured with fluorescence lifetime spectroscopy.

    Science.gov (United States)

    Hickey, James L; James, Janine L; Henderson, Clare A; Price, Katherine A; Mot, Alexandra I; Buncic, Gojko; Crouch, Peter J; White, Jonathan M; White, Anthony R; Smith, Trevor A; Donnelly, Paul S

    2015-10-05

    The intracellular distribution of fluorescently labeled copper and zinc bis(thiosemicarbazonato) complexes was investigated in M17 neuroblastoma cells and primary cortical neurons with a view to providing insights into the neuroprotective activity of a copper bis(thiosemicarbazonato) complex known as Cu(II)(atsm). Time-resolved fluorescence measurements allowed the identification of the Cu(II) and Zn(II) complexes as well as the free ligand inside the cells by virtue of the distinct fluorescence lifetime of each species. Confocal fluorescent microscopy of cells treated with the fluorescent copper(II)bis(thiosemicarbazonato) complex revealed significant fluorescence associated with cytoplasmic puncta that were identified to be lysosomes in primary cortical neurons and both lipid droplets and lysosomes in M17 neuroblastoma cells. Fluorescence lifetime imaging microscopy confirmed that the fluorescence signal emanating from the lipid droplets could be attributed to the copper(II) complex but also that some degree of loss of the metal ion led to diffuse cytosolic fluorescence that could be attributed to the metal-free ligand. The accumulation of the copper(II) complex in lipid droplets could be relevant to the neuroprotective activity of Cu(II)(atsm) in models of amyotrophic lateral sclerosis and Parkinson's disease.

  1. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  2. Observation of DNA Molecules Using Fluorescence Microscopy and Atomic Force Microscopy

    Science.gov (United States)

    Ito, Takashi

    2008-01-01

    This article describes experiments for an undergraduate instrumental analysis laboratory that aim to observe individual double-stranded DNA (dsDNA) molecules using fluorescence microscopy and atomic force microscopy (AFM). dsDNA molecules are observed under several different conditions to discuss their chemical and physical properties. In…

  3. Polymerized LB films imaged with a combined atomic force microscope-fluorescence microscope

    NARCIS (Netherlands)

    Putman, Constant A.J.; Hansma, Helen G.; Gaub, Hermann E.; Hansma, Paul K.

    1992-01-01

    The first results obtained with a new stand-alone atomic force microscope (AFM) integrated with a standard Zeiss optical fluorescence microscope are presented. The optical microscope allows location and selection of objects to be imaged with the high-resolution AFM. Furthermore, the combined microsc

  4. Simultaneous Determination of Magnolol and Honokiol by Synchronous Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Min ZHANG; Li Ming DU

    2006-01-01

    A simple sensitive and quick assay for simultaneously determining magnolol (MOL)and honokiol (HOL) has been described based on their natural fluorescence. This method is based on the fact that synchronous fluorometry could resolve the overlapping of fluorescence spectra, which was aroused by their similar molecular structures. In this work, the synchronous spectrum, maintaining a constant difference of Δλ =10 nm between the emission and excitation wavelengths, has been selected for the determination of HOL and MOL. Under the optimum conditions, the fluorescence intensity is proportional to the concentration of MOL and HOL in solution over the range 0.075-0.7 μg/mL and 0.05-0.9 μg/mL with the detection limit of 0.029 μg/mL and 0.019 μg/mL, respectively. The method was applied to the simultaneous determination of MOL and HOL in pharmaceutical dosage with satisfactory results.

  5. Symposium on atomic spectroscopy (SAS-83): abstracts and program

    Energy Technology Data Exchange (ETDEWEB)

    1983-09-01

    Abstracts of papers given at the symposium are presented. Session topics include: Rydbergs, optical radiators, and planetary atoms; highly ionized atoms; ultraviolet radiation; theory, ion traps, and laser cooling; beam foil; and astronomy. (GHT)

  6. Lamb-Dicke spectroscopy of atoms in a hollow-core photonic crystal fibre

    Science.gov (United States)

    Okaba, Shoichi; Takano, Tetsushi; Benabid, Fetah; Bradley, Tom; Vincetti, Luca; Maizelis, Zakhar; Yampol'skii, Valery; Nori, Franco; Katori, Hidetoshi

    2014-01-01

    Unlike photons, which are conveniently handled by mirrors and optical fibres without loss of coherence, atoms lose their coherence via atom–atom and atom–wall interactions. This decoherence of atoms deteriorates the performance of atomic clocks and magnetometers, and also hinders their miniaturization. Here we report a novel platform for precision spectroscopy. Ultracold strontium atoms inside a kagome-lattice hollow-core photonic crystal fibre are transversely confined by an optical lattice to prevent atoms from interacting with the fibre wall. By confining at most one atom in each lattice site, to avoid atom–atom interactions and Doppler effect, a 7.8-kHz-wide spectrum is observed for the 1S0−3P1(m=0) transition. Atoms singly trapped in a magic lattice in hollow-core photonic crystal fibres improve the optical depth while preserving atomic coherence time. PMID:24934478

  7. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  8. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  9. Far-field resonance fluorescence from a dipole-interacting laser-driven cold atomic gas

    Science.gov (United States)

    Jones, Ryan; Saint, Reece; Olmos, Beatriz

    2017-01-01

    We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is comparable to the wavelength of the photons scattered by the atoms, the system exhibits strong dipolar interactions and collective dissipation. We solve the exact dynamics of small systems with different geometries and show how these collective features are manifest in the scattered light properties such as the photon emission rate, the power spectrum and the second-order correlation function. By calculating these quantities beyond the weak (linear) driving limit, we make progress in understanding the signatures of collective behavior in these many-body systems. Furthermore, we shed light on the role of disorder and averaging on the resonance fluorescence, of direct relevance for recent experimental efforts that aim at the exploration of many-body effects in dipole-dipole interacting gases of atoms.

  10. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine

    Directory of Open Access Journals (Sweden)

    Alexander Boreham

    2016-12-01

    Full Text Available The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.

  11. Spatial fluorescence cross correlation spectroscopy by means of a spatial light modulator

    CERN Document Server

    Blancquaert, Yoann; Derouard, Jacques; Delon, Antoine

    2008-01-01

    Spatial Fluorescence Cross Correlation Spectroscopy is a rarely investigated version of Fluorescence Correlation Spectroscopy, in which the fluorescence signals from differ-ent observation volumes are cross-correlated. In the reported experiments, two observation volumes, typically shifted by a few $\\mu$m, are produced, with a Spatial Light Modulator and two adjustable pinholes. We illustrated the feasibility and potentiality of this technique by: i) measuring molecular flows, in the range 0.2 - 1.5 $\\mu$m/ms, of solutions seeded with fluorescent nanobeads or rhodamine molecules (simulating active transport phenomenons); ii) investigating the perme-ability of phospholipidic membrane of Giant Unilamellar Vesicles versus hydrophilic or hydrophobic molecules (in that case the laser spots were set on both sides of the mem-brane). Theoretical descriptions are proposed together with a discussion about FCS based, alternative methods.

  12. Time-resolved fluorescence spectroscopy for chemical sensors

    Science.gov (United States)

    Draxler, Sonja; Lippitsch, Max E.

    1996-07-01

    A family of sensors is presented with fluorescence decay-time measurements used as the sensing technique. The concept is to take a single fluorophore with a suitably long fluorescence decay time as the basic building block for numerous different sensors. Analyte recognition can be performed by different functional groups that are necessary for selective interaction with the analyte. To achieve this, the principle of excited-state electron transfer is applied with pyrene as the fluorophore. Therefore the same instrumentation based on a small, ambient air-nitrogen laser and solid-state electronics can be used to measure different analytes, for example, oxygen, pH, carbon dioxide, potassium, ammonium, lead, cadmium, zinc, and phosphate.

  13. A scanning fluorescence spectroscopy of decorin under high pressure

    Science.gov (United States)

    Komoda, Takahito; Kim, Yun-Jung; Suzuki, Atsushi; Nishiumi, Tadayuki

    2013-06-01

    High pressure processing is able to tenderize not only meat but also intramuscular connective tissue, which is mainly composed of collagen. Decorin, one of the proteoglycans, binds to and stabilizes collagen fibrils. It has been suggested that structural weakening of intramuscular connective tissue may result from the disappearance of the decorin-collagen interaction. In this study, the fluorescence spectra and the surface hydrophobicity of decorin molecules were measured under high pressure in order to examine the resulting change in the tertiary structure. The fluorescence intensity and the surface hydrophobicity of decorin molecules both decreased with increasing applied pressure and with applied time at the constant applied pressure, respectively. The observations indicate that the native structure of decorin is maintained during 200 MPa pressurization for less than 30 min.

  14. Signals for Lorentz and CPT Violation in Atomic Spectroscopy Experiments and Other Systems

    CERN Document Server

    Vargas, Arnaldo J

    2016-01-01

    The prospects of studying nonminimal operators for Lorentz violation using spectroscopy experiments with light atoms and muon spin-precession experiments are presented. Possible improvements on bounds on minimal and nonminimal operators for Lorentz violation are discussed.

  15. Multiparametric characterisation of metal-chalcogen atomic multilayer assembly by potentiodynamic electrochemical impedance spectroscopy

    NARCIS (Netherlands)

    Ragoisha, G.A.; Bondarenko, A.S.; Osipovich, N.P.; Rabchynski, S.M.; Streltsov, E.A.

    2008-01-01

    An approach to multiparametric characterisation of variable electroactive interfaces based on potentiodynamic electrochemical impedance spectroscopy (PDEIS) [G.A. Ragoisha, A.S. Bondarenko, Electrochim. Acta 50 (2005) 1553] has been extended to atomic multilayer assembly monitoring. The multilayers

  16. Precise atomic radiative lifetime via photoassociative spectroscopy of ultracold lithium

    NARCIS (Netherlands)

    McAlexander, W.I.; Abraham, E.R.I.; Ritchie, N.W.M.; Williams, C.J.; Stoof, H.T.C.; Hulet, R.G.

    1995-01-01

    We have obtained spectra of the high-lying vibrational levels of the 13Σg+ state of 6Li2 via photoassociation of ultracold 6Li atoms confined in a magneto-optical trap. The 13Σg+ state of the diatomic molecule correlates to a 2S1/2 state atom plus a 2P1/2 state atom. The long-range part of the molec

  17. [Investigation of enhancing effect for hydride generation-atomic fluorescence of transition metal elements].

    Science.gov (United States)

    Sun, Han-Wen; Suo, Ran

    2008-11-01

    A mechanism of hydride generation based on disassembly reaction of hydrogen-transferred interim state [M(BH4)m]* was developed by investigating the effect of reaction medium acidity on hydride generation. The effects of Co2+ and Ni2+, phenanthroline and 8-hydroxyquinoline on hydride generation-atomic fluorescence signals of Zn, Cd, Cu and Ni were studied, respectively, and their enhancing mechnism was discussed. The enhancing effect Co2+ and Ni2+ on the fluorescence signals of Zn and Cd was due to the increase in transmission efficiency of hydride of Zn and Cd. There was a synergic enhancing effect between phenanthroline or 8-hydroxyquinoline and Co2+ on the fluorescence signals of Zn and Cd, however no synergic enhancing effect between phenanthroline and 8-hydroxyquinoline on the fluorescence signals of Zn and Cd. The simulative action of cationic surfactant, anion surfactant and non-ionic surfactant surfactant to hydride generation was investigated. It is shown that both cationic surfactant and non-ionic surfactant have obvious enhancing effect on the fluorescence signals of analytes because of the decrease in surface tension of reaction solution. The release characteristics of hydride from the absorption solution containing surfactant was ulteriorly examined by using graphite furnace atomic absorption spectrometry, and the mechanism of enhancing effect of surfactant on hydride generation and transmission was proposed.

  18. Spectroscopy and Photochemistry of Europium atoms in low temperature solids - an experimental and theoretical study

    OpenAIRE

    Byrne, Owen

    2010-01-01

    This thesis presents an experimental and theoretical study of the luminescence, reactivity and ionisation of atomic europium isolated in cryogenic thin films of rare gases argon, krypton and xenon. Many studies are available concerning the spectroscopy of matrix-isolated main group metal atoms, however, the lanthanide series remains relatively undocumented. A thorough investigation of matrix-isolated europium is performed in this thesis in an effort to develop the spectroscopy ...

  19. Investigation of the Interaction between Adenosine and Human Serum Albumin by Fluorescent Spectroscopy and Molecular Modeling

    Institute of Scientific and Technical Information of China (English)

    CUI Feng-Ling; WANG Jun-Li; LI Fang; FAN Jing; QU Gui-Rong; YAO Xiao-Jun; LEI Bei-Lei

    2008-01-01

    The binding interaction of adenosine with human serum albumin (HSA) was investigated under simulative physiological conditions by fluorescence spectroscopy in combination with a molecular modeling method. A strong fluorescence quenching reaction of adenosine to HSA was observed and the quenching mechanism was suggested as static quenching according to the Stern-Volmer equation. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated according to relevant fluorescent data and Vant'Hoff equation. The hydrophobic interaction was a predominant intermolecular force in order to stabilize the complex, which was in agreement with the results of molecular modeling study.

  20. Two-Pulse Atomic Coherent Control (2PACC) Spectroscopy of Eley-Rideal Reactions. An Application of an Atom Laser

    CERN Document Server

    Jorgensen, S F; Jorgensen, Solvejg; Kosloff, Ronnie

    2003-01-01

    A spectroscopic application of the atom laser is suggested. The spectroscopy termed 2PACC employs the coherent properties of matter-waves from a two pulse atom laser. These waves are employed to control a gas-surface chemical recombination reaction. The method is demonstrated for an Eley-Rideal reaction of a hydrogen or alkali atom-laser pulse where the surface target is an adsorbed hydrogen atom. The reaction yields either a hydrogen or alkali hydride molecule. The desorbed gas phase molecular yield and its internal state is shown to be controlled by the time and phase delay between two atom-laser pulses. The calculation is based on solving the time-dependent Schrodinger equation in a diabatic framework. The probability of desorption which is the predicted 2PACC signal has been calculated as a function of the pulse parameters.

  1. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works

    Directory of Open Access Journals (Sweden)

    M. Z. Bieroza

    2009-12-01

    Full Text Available Organic matter (OM in drinking water treatment is a common impediment responsible for increased coagulant and disinfectant dosages, formation of carcinogenic disinfection-by products, and microbial re-growth in distribution system. The inherent heterogeneity of OM implies the utilization of advanced analytical techniques for its characterization and assessment of removal efficiency. Here, the application of simple fluorescence excitation-emission technique to OM characterization in drinking water treatment is presented. The fluorescence data of raw and clarified water was obtained from 16 drinking water treatment works. The reduction in fulvic-like fluorescence was found to significantly correlate with OM removal measured with total organic carbon (TOC. Fluorescence properties, fulvic- and tryptophan-like regions, were found to discriminate OM fractions of different removal efficiencies.

    The results obtained in the study show that fluorescence spectroscopy provides a rapid and accurate characterization and quantification of OM fractions and indication of their treatability in conventional water treatment.

  2. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works

    Directory of Open Access Journals (Sweden)

    M. Z. Bieroza

    2010-04-01

    Full Text Available Organic matter (OM in drinking water treatment is a common impediment responsible for increased coagulant and disinfectant dosages, formation of carcinogenic disinfection-by products, and microbial re-growth in distribution system. The inherent heterogeneity of OM implies the utilization of advanced analytical techniques for its characterization and assessment of removal efficiency. Here, the application of simple fluorescence excitation-emission technique to OM characterization in drinking water treatment is presented. The fluorescence data of raw and clarified water was obtained from 16 drinking water treatment works. The reduction in fulvic-like fluorescence was found to significantly correlate with OM removal measured with total organic carbon (TOC. Fluorescence properties, fulvic- and tryptophan-like regions, were found to discriminate OM fractions of different removal efficiencies. The results obtained in the study show that fluorescence spectroscopy provides a rapid and accurate characterization and quantification of OM fractions and indication of their treatability in conventional water treatment.

  3. Phase Dependence of Fluorescence Spectrum of a Two-Level Atom in a Trichromatic Field

    Institute of Scientific and Technical Information of China (English)

    LI Jing-Yan; HU Xiang-Ming; LI Xiao-Xia; SHI Wen-Xing; XU Qing; GUO Hong-Ju

    2005-01-01

    @@ We examine the phase-dependent effects in resonance fluorescence of a two-level atom driven by a trichromatic modulated field. It is shown that the fluorescence spectrum depends crucially on the sum of relative phases of the sideband components compared to the central component, not simply on the respective phases. The appearance or disappearance of the central peak and the selective elimination of the sideband peaks are achieved simply by varying the sum phase. Once the sum phase is fixed, the spectrum keeps its features unchanged regardless of the respective relative phases.

  4. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  5. A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy

    CERN Document Server

    Bennun, Leonardo

    2016-01-01

    A new smoothing method for the improvement on the identification and quantification of spectral functions based on the previous knowledge of the signals that are expected to be quantified, is presented. These signals are used as weighted coefficients in the smoothing algorithm. This smoothing method was conceived to be applied in atomic and nuclear spectroscopies preferably to these techniques where net counts are proportional to acquisition time, such as particle induced X-ray emission (PIXE) and other X-ray fluorescence spectroscopic methods, etc. This algorithm, when properly applied, does not distort the form nor the intensity of the signal, so it is well suited for all kind of spectroscopic techniques. This method is extremely effective at reducing high-frequency noise in the signal much more efficient than a single rectangular smooth of the same width. As all of smoothing techniques, the proposed method improves the precision of the results, but in this case we found also a systematic improvement on the...

  6. Characterization of Anabaena cylindrica Solution System Using Synchronous- Scan Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-li; DENG Nan-sheng; TAO Shu

    2005-01-01

    The characterization of the algae Anabaena cylindrica solu tion with Fe (Ⅲ) was investigated using fluorescence emission and syn chronous-scan spectroscopy. The ranges of concentrations of algae and Fe (Ⅲ) in aqueous solutions were 5. 0 × 107-2. 5 × 108 cell/L and 10-60μmol/L, respectively. The effective characterization method used was synchronous-scan fluorescence spectroscopy (SFS). The wavelength difference (△λ) of 90 nm was maintained between excitation wavelength (λex) and emission wavelength(λem ). The peak was observed at about λex 236 nm/λem 326 nm for synchronous-scan fluorescence spectroscopy. The fluorescence quenching in system of algae-Fe( Ⅲ)-HA was studied using synchronous-scan spectroscopy for the first time. Fe(Ⅲ) was clearly the effective quencher. The relationship between I0 / I (quenching efficiency)and c (concentration of Fe (Ⅲ) added) was a linear correlation for the al gae solution with Fe(Ⅲ). Also, Aldrich humic acid (HA) was found to be an effective quencher.

  7. Monitoring receptor oligomerization by line-scan fluorescence cross-correlation spectroscopy

    NARCIS (Netherlands)

    Hink, M.A.; Postma, M.; Conn, P.M.

    2013-01-01

    Membrane-localized receptor proteins are involved in many signaling cascades, and diffusion and oligomerization are key processes controlling their activity. In order to study these processes in living cells, fluorescence fluctuation spectroscopy techniques have been developed that allow the quantif

  8. Method for rapid multidiameter single-fiber reflectance and fluorescence spectroscopy through a fiber bundle

    NARCIS (Netherlands)

    Amelink, A.; Hoy, C.L.; Gamm, U.A.; Sterenborg, H.J.C.M.; Robinson, D.J.

    2014-01-01

    We have recently demonstrated a means for quantifying the absorption and scattering properties of biological tissue through multidiameter single-fiber reflectance (MDSFR) spectroscopy. These measurements can be used to correct single-fiber fluorescence (SFF) spectra for the influence of optical prop

  9. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.

    Science.gov (United States)

    Jia, Menghui; Yi, Hua; Chang, Mengfang; Cao, Xiaodan; Li, Lei; Zhou, Zhongneng; Pan, Haifeng; Chen, Yan; Zhang, Sanjun; Xu, Jianhua

    2015-08-01

    Ultrafast fluorescence dynamics of Tryptophan-Tryptophan (Trp-Trp/Trp2) dipeptide and its derivatives in water have been investigated using a picosecond resolved time correlated single photon counting (TCSPC) apparatus together with a femtosecond resolved upconversion spectrophotofluorometer. The fluorescence decay profiles at multiple wavelengths were fitted by a global analysis technique. Nanosecond fluorescence kinetics of Trp2, N-tert-butyl carbonyl oxygen-N'-aldehyde group-l-tryptophan-l-tryptophan (NBTrp2), l-tryptophan-l-tryptophan methyl ester (Trp2Me), and N-acetyl-l-tryptophan-l-tryptophan methyl ester (NATrp2Me) exhibit multi-exponential decays with the average lifetimes of 1.99, 3.04, 0.72 and 1.22ns, respectively. Due to the intramolecular interaction between two Trp residues, the "water relaxation" lifetime was observed around 4ps, and it is noticed that Trp2 and its derivatives also exhibit a new decay with a lifetime of ∼100ps, while single-Trp fluorescence decay in dipeptides/proteins shows 20-30ps. The intramolecular interaction lifetime constants of Trp2, NBTrp2, Trp2Me and NATrp2Me were then calculated to be 3.64, 0.93, 11.52 and 2.40ns, respectively. Candidate mechanisms (including heterogeneity, solvent relaxation, quasi static self-quenching or ET/PT quenching) have been discussed.

  10. New insights into heat induced structural changes of pectin methylesterase on fluorescence spectroscopy and molecular modeling basis

    Science.gov (United States)

    Nistor, Oana Viorela; Stănciuc, Nicoleta; Aprodu, Iuliana; Botez, Elisabeta

    2014-07-01

    Heat-induced structural changes of Aspergillus oryzae pectin methylesterase (PME) were studied by means of fluorescence spectroscopy and molecular modeling, whereas the functional enzyme stability was monitored by inactivation studies. The fluorescence spectroscopy experiments were performed at two pH value (4.5 and 7.0). At both pH values, the phase diagrams were linear, indicating the presence of two molecular species induced by thermal treatment. A red shift of 7 nm was observed at neutral pH by increasing temperature up to 60 °C, followed by a blue shift of 4 nm at 70 °C, suggesting significant conformational rearrangements. The quenching experiments using acrylamide and iodide demonstrate a more flexible conformation of enzyme with increasing temperature, especially at neutral pH. The experimental results were complemented with atomic level observations on PME model behavior after performing molecular dynamics simulations at different temperatures. The inactivation kinetics of PME in buffer solutions was fitted using a first-order kinetics model, resulting in activation energy of 241.4 ± 7.51 kJ mol-1.

  11. Ultrathin atomic vapor film transmission spectroscopy: analysis of Dicke narrowing structure

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Li; Yanpeng Zhang; Chenli Gan

    2005-01-01

    Transmission sub-Doppler spectroscopy with confined atomic vapor film between two dielectric walls is theoretically studied. Because of atoms flying from wall to wall, where they get de-excited, the atomfield interaction time is anisotropic so that the contribution of slow atoms is enhanced, a sub-Doppler transmission spectroscopy (Dicke narrowing effect) can be obtained when the thickness of the film is much small or comparable with the wavelength even at small angle oblique incidence. It is feasible to get a sub-Doppler structure in a new region (L <λ/4) in experiments.

  12. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review

    Science.gov (United States)

    Morrissey, Michael J.; Deasy, Kieran; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic

    2013-01-01

    The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications. PMID:23945738

  13. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles using Optical Nanofibers: A Review

    CERN Document Server

    Morrissey, Michael J; Frawley, Mary; Kumar, Ravi; Prel, Eugen; Russell, Laura; Truong, Viet Giang; Chormaic, Síle Nic

    2013-01-01

    The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining ground in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization and optical trapping schemes. Next, a natural extension on this work to molecules will be introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for particular applications.

  14. Spectroscopy, Manipulation and Trapping of Neutral Atoms, Molecules, and Other Particles Using Optical Nanofibers: A Review

    Directory of Open Access Journals (Sweden)

    Síle Nic Chormaic

    2013-08-01

    Full Text Available The use of tapered optical fibers, i.e., optical nanofibers, for spectroscopy and the detection of small numbers of particles, such as neutral atoms or molecules, has been gaining interest in recent years. In this review, we briefly introduce the optical nanofiber, its fabrication, and optical mode propagation within. We discuss recent progress on the integration of optical nanofibers into laser-cooled atom and vapor systems, paying particular attention to spectroscopy, cold atom cloud characterization, and optical trapping schemes. Next, a natural extension of this work to molecules is introduced. Finally, we consider several alternatives to optical nanofibers that display some advantages for specific applications.

  15. Noise spectroscopy with large clouds of cold atoms

    CERN Document Server

    Kashanian, Samir Vartabi; Guerin, William; Lintz, Michel; Fouché, Mathilde; Kaiser, Robin

    2016-01-01

    Noise measurement is a powerful tool to investigate many phenomena from laser characterization to quantum behavior of light. In this paper, we report on intensity noise measurements obtained when a laser beam is transmitted through a large cloud of cold atoms. While this measurement could possibly investigate complex processes such as the influence of atomic motion, one is first limited by the conversion of the intrinsic laser frequency noise to intensity noise via the atomic resonance. We show that a simple model, based on a mean-field approach, which corresponds to describing the atomic cloud by a dielectric susceptibility, is sufficient to understand the main features of this conversion observed in the experimental intensity noise spectrum.

  16. Nonlinear Theory of Anomalous Diffusion and Application to Fluorescence Correlation Spectroscopy

    Science.gov (United States)

    Boon, Jean Pierre; Lutsko, James F.

    2015-12-01

    The nonlinear theory of anomalous diffusion is based on particle interactions giving an explicit microscopic description of diffusive processes leading to sub-, normal, or super-diffusion as a result of competitive effects between attractive and repulsive interactions. We present the explicit analytical solution to the nonlinear diffusion equation which we then use to compute the correlation function which is experimentally measured by correlation spectroscopy. The theoretical results are applicable in particular to the analysis of fluorescence correlation spectroscopy of marked molecules in biological systems. More specifically we consider the cases of fluorescently labeled lipids in the plasma membrane and of fluorescent apoferritin (a spherically shaped oligomer) in a crowded dextran solution and we find that the nonlinear correlation spectra reproduce very well the experimental data indicating sub-diffusive molecular motion.

  17. Observation and optimization of 4He atomic polarization spectroscopy.

    Science.gov (United States)

    Wu, Teng; Peng, Xiang; Gong, Wei; Zhan, Yuanzhi; Lin, Zaisheng; Luo, Bin; Guo, Hong

    2013-03-15

    Polarization spectroscopy in (4)He around 1083 nm is observed and optimized with a distributed feedback fiber laser and is applied for frequency stabilization. In order to improve the accuracy and long-term stability of the frequency-locking performance, a power stabilization module is added, and the dependences of the peak-to-peak amplitude and frequency difference (width) of the polarization spectroscopy signal on various pump and probe powers are investigated.

  18. Fluorescence spectroscopy and birefringence of molecular changes in maturing rat tail tendon.

    Science.gov (United States)

    Korol, Renee M; Finlay, Helen M; Josseau, Melanie J; Lucas, Alexandra R; Canham, Peter B

    2007-01-01

    Tissue remodeling during maturation, wound healing, and response to vascular stress involves molecular changes of collagen and elastin in the extracellular matrix (ECM). Two optical techniques are effective for investigating these changes--laser-induced fluorescence (LIF) spectroscopy and polarizing microscopy. LIF spectroscopy integrates the signal from both elastin and collagen cross-linked structure, whereas birefringence is a measure of only collagen. Our purpose is (1) to evaluate the rat tail tendon (RTT) spectroscopy against data from purified extracted protein standards and (2) to correlate the two optical techniques in the study of RTT and skin. Spectra from tissue samples from 27 male rats and from extracted elastin and collagen were obtained using LIF spectroscopy (357 nm). Birefringence was measured on 5-mum histological sections of the same tissue. Morphometric analysis reveals that elastin represents approximately 10% of tendon volume and contributes to RTT fluorescence. RTT maximum fluorescence emission intensity (FEI(max)), which includes collagen and elastin, increases with animal weight (R(2)=0.64). Birefringence, when plotted against weight, increases to a plateau (nonlinear correlation: R(2)=0.90), tendon having greater birefringence than skin. LIF spectroscopy and collagen fiber birefringence are shown to provide complementary measurements of molecular structure (tendon birefringence versus FEI(max) at R(2)=0.60).

  19. On-Line Monitoring of Fermentation Processes by Near Infrared and Fluorescence Spectroscopy

    DEFF Research Database (Denmark)

    Svendsen, Carina

    Monitoring and control of fermentation processes is important to ensure high product yield, product quality and product consistency. More knowledge on on-line analytical techniques such as near infrared and fluorescence spectroscopy is desired in the fermentation industry to increase the efficiency...... of on-line monitoring systems. The primary aim of this thesis is to elucidate and explore the dynamics in fermentation processes by spectroscopy. Though a number of successful on-line lab-scale monitoring systems have been reported, it seems that several challenges are still met, which limits the number...... of full-scale systems implemented in industrial fermentation processes. This thesis seeks to achieve a better understanding of the techniques near infrared and fluorescence spectroscopy and thereby to solve some of the challenges that are encountered. The thesis shows the advantages of applying real...

  20. A dark-field scanning spectroscopy platform for localized scatter and fluorescence imaging of tissue

    Science.gov (United States)

    Krishnaswamy, Venkataramanan; Laughney, Ashley M.; Paulsen, Keith D.; Pogue, Brian W.

    2011-03-01

    Tissue ultra-structure and molecular composition provide native contrast mechanisms for discriminating across pathologically distinct tissue-types. Multi-modality optical probe designs combined with spatially confined sampling techniques have been shown to be sensitive to this type of contrast but their extension to imaging has only been realized recently. A modular scanning spectroscopy platform has been developed to allow imaging localized morphology and molecular contrast measures in breast cancer surgical specimens. A custom designed dark-field telecentric scanning spectroscopy system forms the core of this imaging platform. The system allows imaging localized elastic scatter and fluorescence measures over fields of up to 15 mm x 15 mm at 100 microns resolution in tissue. Results from intralipid and blood phantom measurements demonstrate the ability of the system to quantify localized scatter parameters despite significant changes in local absorption. A co-registered fluorescence spectroscopy mode is also demonstrated in a protophorphyrin-IX phantom.

  1. Investigation of the atomic emission spectroscopy of F atoms and CF2 molecules in CF4 plasma processing

    Science.gov (United States)

    Jin, Huiliang; Li, Jie; Tang, Caixue; Deng, Wenhui; Chen, Xianhua

    2016-10-01

    The surface chemistry reaction involved in the processing of Atmospheric Pressure Plasma Jet (APPJ) produced from CF4 precursor has been explored. The atomic emission spectroscopy of F atoms and CF2 molecules was investigated as they contribute to substrate etching and FC film formation during APPJ processing. Optical emission spectroscopy (OES) spectra were acquired for CF4 plasma, relative concentrations of excited state species of F atoms and CF2 molecules were also dependent upon plasma parameters. The densities of F atoms increased dramatically with increasing applied RF power, whereas CF2 molecules decreased monotonically over the same power range, the subsequent electron impacted decomposition of plasma species after CF4 precursor fragmentation. The spectrum of the F atoms and CF2 molecules fallowed the same tendency with the increasing concentration of gas CF4, reaching the maximum at the 20sccm and 15sccm respectively, and then the emission intensity of reactive atoms decreased with more CF4 molecules participating. Addition certain amount O2 into CF4 plasma resulted in promoting CF4 dissociation, O2 can easily react with the dissociation product of CF2 molecules, which inhibit the compound of the F atoms, so with the increasing concentration of O2, the concentration of the CF2 molecules decreased and the emission intensities of F atoms showed the maximum at the O2/CF4 ratio of 20%. These results have led to the development of a scheme that illustrates the mechanisms of surface chemistry reaction and the affection of plasma parameters in CF4 plasma systems with respect to F and CF2 gas-phase species.

  2. Noise spectroscopy with large clouds of cold atoms

    Science.gov (United States)

    Kashanian, Samir Vartabi; Eloy, Aurélien; Guerin, William; Lintz, Michel; Fouché, Mathilde; Kaiser, Robin

    2016-10-01

    Noise measurement is a powerful tool to investigate many phenomena from laser characterization to quantum behavior of light. In this paper, we report on intensity noise measurements obtained when a laser beam is transmitted through a large cloud of cold atoms. While this measurement could possibly be used to investigate complex processes such as the influence of atomic motion, one is first limited by the conversion of the intrinsic laser frequency noise to intensity noise via the atomic resonance. This conversion is studied here in detail. We show that, while experimental intensity noise spectra collapse onto the same curve at low Fourier frequencies, some differences appear at higher frequencies when the probe beam is detuned from the center of the resonance line. A simple model, based on a mean-field approach, which corresponds to describing the atomic cloud by a dielectric susceptibility, is sufficient to understand the main features. Using this model, the noise spectra allow extracting some quantitative information on the laser noise as well as on the atomic sample.

  3. Rapid screening test for porphyria diagnosis using fluorescence spectroscopy

    Science.gov (United States)

    Lang, A.; Stepp, H.; Homann, C.; Hennig, G.; Brittenham, G. M.; Vogeser, M.

    2015-07-01

    Porphyrias are rare genetic metabolic disorders, which result from deficiencies of enzymes in the heme biosynthesis pathway. Depending on the enzyme defect, different types of porphyrins and heme precursors accumulate for the different porphyria diseases in erythrocytes, liver, blood plasma, urine and stool. Patients with acute hepatic porphyrias can suffer from acute neuropathic attacks, which can lead to death when undiagnosed, but show only unspecific clinical symptoms such as abdominal pain. Therefore, in addition to chromatographic methods, a rapid screening test is required to allow for immediate identification and treatment of these patients. In this study, fluorescence spectroscopic measurements were conducted on blood plasma and phantom material, mimicking the composition of blood plasma of porphyria patients. Hydrochloric acid was used to differentiate the occurring porphyrins (uroporphyrin-III and coproporphyrin-III) spectroscopically despite their initially overlapping excitation spectra. Plasma phantom mixtures were measured using dual wavelength excitation and the corresponding concentrations of uroporphyrin-III and coproporphyrin-III were determined. Additionally, three plasma samples of porphyria patients were examined and traces of coproporphyrin-III and uroporphyrin-III were identified. This study may therefore help to establish a rapid screening test method with spectroscopic differentiation of the occurring porphyrins, which consequently allows for the distinction of different porphyrias. This may be a valuable tool for clinical porphyria diagnosis and rapid or immediate treatment.

  4. Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information

    CERN Document Server

    Ryabtsev, I I; Tretyakov, D B; Entin, V M; Yakshina, E A

    2016-01-01

    Atoms in highly excited (Rydberg) states have a number of unique properties which make them attractive for applications in quantum information. These are large dipole moments, lifetimes and polarizabilities, as well as strong long-range interactions between Rydberg atoms. Experimental methods of laser cooling and precision spectroscopy enable the trapping and manipulation of single Rydberg atoms and applying them for practical implementation of quantum gates over qubits of a quantum computer based on single neutral atoms in optical traps. In this paper, we give a review of the experimental and theoretical work performed by the authors at the Rzhanov Institute of Semiconductor Physics SB RAS and Novosibirsk State University on laser and microwave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap and on their possible applications in quantum information. We also give a brief review of studies done by other groups in this area.

  5. Fluorescence (TALIF) measurement of atomic hydrogen concentration in a coplanar surface dielectric barrier discharge

    Science.gov (United States)

    Mrkvičková, M.; Ráheľ, J.; Dvořák, P.; Trunec, D.; Morávek, T.

    2016-10-01

    Spatially and temporally resolved measurements of atomic hydrogen concentration above the dielectric of coplanar barrier discharge are presented for atmospheric pressure in 2.2% H2/Ar. The measurements were carried out in the afterglow phase by means of two-photon absorption laser-induced fluorescence (TALIF). The difficulties of employing the TALIF technique in close proximity to the dielectric surface wall were successfully addressed by taking measurements on a suitable convexly curved dielectric barrier, and by proper mathematical treatment of parasitic signals from laser-surface interactions. It was found that the maximum atomic hydrogen concentration is situated closest to the dielectric wall from which it gradually decays. The maximum absolute concentration was more than 1022 m-3. In the afterglow phase, the concentration of atomic hydrogen above the dielectric surface stays constant for a considerable time (10 μs-1 ms), with longer times for areas situated farther from the dielectric surface. The existence of such a temporal plateau was explained by the presented 1D model: the recombination losses of atomic hydrogen farther from the dielectric surface are compensated by the diffusion of atomic hydrogen from regions close to the dielectric surface. The fact that a temporal plateau exists even closest to the dielectric surface suggests that the dielectric surface acts as a source of atomic hydrogen in the afterglow phase.

  6. Investigation of hydrogen atom addition to vinyl monomers by time resolved ESR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Beckert, D.; Mehler, K.

    1983-07-01

    By means of time resolved ESR spectroscopy in the microsecond time scale the H atom addition to different vinyl monomers was investigated. The H atoms produced by pulse radiolysis of aqueous solutions show a strong recombination CIDEP effect which also allows the recombination rate constant of H atoms to be determined. By analysis of ESR time profiles with the modified Bloch equations the relaxation times T/sub 1/, T/sub 2/, the polarization factors and the chemical rate constants with scavengers were obtained. Besides the H atom addition rate constants to different vinyl monomers the structure of the monomer radical was determined for acrylic acid.

  7. Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and Micropollutants Using Fluorescence Spectroscopy.

    Science.gov (United States)

    Shimabuku, Kyle K; Kennedy, Anthony M; Mulhern, Riley E; Summers, R Scott

    2017-02-14

    Dissolved organic matter (DOM) negatively impacts granular activated carbon (GAC) adsorption of micropollutants and is a disinfection byproduct precursor. DOM from surface waters, wastewater effluent, and 1 kDa size fractions were adsorbed by GAC and characterized using fluorescence spectroscopy, UV-absorption, and size exclusion chromatography (SEC). Fluorescing DOM was preferentially adsorbed relative to UV-absorbing DOM. Humic-like fluorescence (peaks A and C) was selectively adsorbed relative to polyphenol-like fluorescence (peaks T and B) potentially due to size exclusion effects. In the surface waters and size fractions, peak C was preferentially removed relative to peak A, whereas the reverse was found in wastewater effluent, indicating that humic-like fluorescence is associated with different compounds depending on DOM source. Based on specific UV-absorption (SUVA), aromatic DOM was preferentially adsorbed. The fluorescence index (FI), if interpreted as an indicator of aromaticity, indicated the opposite but exhibited a strong relationship with average molecular weight, suggesting that FI might be a better indicator of DOM size than aromaticity. The influence of DOM intermolecular interactions on adsorption were minimal based on SEC analysis. Fluorescence parameters captured the impact of DOM size on the fouling of 2-methylisoborneol and warfarin adsorption and correlated with direct competition and pore blockage indicators.

  8. Real time optical Biopsy: Time-resolved Fluorescence Spectroscopy instrumentation and validation

    Science.gov (United States)

    Kittle, David S.; Vasefi, Fartash; Patil, Chirag G.; Mamelak, Adam; Black, Keith L.; Butte, Pramod V.

    2016-12-01

    The Time-resolved fluorescence spectroscopy (TR-FS) has the potential to differentiate tumor and normal tissue in real time during surgical excision. In this manuscript, we describe the design of a novel TR-FS device, along with preliminary data on detection accuracy for fluorophores in a mixture. The instrument is capable of near real-time fluorescence lifetime acquisition in multiple spectral bands and analysis. It is also able to recover fluorescence lifetime with sub-20ps accuracy as validated with individual organic fluorescence dyes and dye mixtures yielding lifetime values for standard fluorescence dyes that closely match with published data. We also show that TR-FS is able to quantify the relative concentration of fluorescence dyes in a mixture by the unmixing of lifetime decays. We show that the TR-FS prototype is able to identify in near-real time the concentrations of dyes in a complex mixture based on previously trained data. As a result, we demonstrate that in complex mixtures of fluorophores, the relative concentration information is encoded in the fluorescence lifetime across multiple spectral bands. We show for the first time the temporal and spectral measurements of a mixture of fluorochromes and the ability to differentiate relative concentrations of each fluorochrome mixture in real time.

  9. Transmission and fluorescence X-ray absorption spectroscopy cell/flow reactor for powder samples under vacuum or in reactive atmospheres

    KAUST Repository

    Hoffman, A. S.

    2016-07-26

    X-ray absorption spectroscopy is an element-specific technique for probing the local atomic-scale environment around an absorber atom. It is widely used to investigate the structures of liquids and solids, being especially valuable for characterization of solid-supported catalysts. Reported cell designs are limited in capabilities—to fluorescence or transmission and to static or flowing atmospheres, or to vacuum. Our goal was to design a robust and widely applicable cell for catalyst characterizations under all these conditions—to allow tracking of changes during genesis and during operation, both under vacuum and in reactive atmospheres. Herein, we report the design of such a cell and a demonstration of its operation both with a sample under dynamic vacuum and in the presence of gases flowing at temperatures up to 300 °C, showing data obtained with both fluorescence and transmission detection. The cell allows more flexibility in catalyst characterization than any reported.

  10. Doppler-free two-photon spectroscopy on atomic hydrogen

    CERN Document Server

    Niering, M

    1999-01-01

    In the framework of the present thesis the internal structure of the hydrogen atom is studied by means of optical spectroscopic methods. The main interest is thereby devoted to the transition of the 1S ground-state into the metastable 2S-state.

  11. In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy

    Directory of Open Access Journals (Sweden)

    Soo Khee

    2009-01-01

    Full Text Available Abstract Background Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6 formulated in polyvinylpyrrolidone (PVP as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient. Methods Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions. Results Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient. Conclusion Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer.

  12. Silver atom and strand numbers in fluorescent and dark Ag:DNAs.

    Science.gov (United States)

    Schultz, Danielle; Gwinn, Elisabeth G

    2012-06-11

    We use tandem HPLC-mass spectrometry with in-line spectroscopy to identify silver atom numbers, N(Ag), of 10 to 21 in visible- to infrared-emitting Ag:DNA complexes stabilized by oligonucleotide monomers and dimers. Qualitatively different absorbance spectra from bare, same-N(Ag) silver clusters point to silver-base interactions as the origin for the color of Ag:DNAs.

  13. Assessing the photoaging process at sun exposed and non-exposed skin using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Saito Nogueira, Marcelo; Kurachi, Cristina

    2016-03-01

    Photoaging is the skin premature aging due to exposure to ultraviolet light, which damage the collagen, elastin and can induce alterations on the skin cells DNA, and, then, it may evolve to precancerous lesions, which are widely investigated by fluorescence spectroscopy and lifetime. The fluorescence spectra and fluorescence lifetime analysis has been presented as a technique of great potential for biological tissue characterization at optical diagnostics. The main targeted fluorophores are NADH (nicotinamide adenine dinucleotide) and FAD (flavin adenine dinucleotide), which have free and bound states, each one with different average lifetimes. The average lifetimes for free and bound NADH and FAD change according to tissue metabolic alterations and may contribute to a non-invasive clinical investigation of injuries such as skin lesions. These lesions and the possible areas where they may develop can be interrogated using fluorescence lifetime spectroscopy taking into account the variability of skin phototypes and the changes related to melanin, collagen and elastin, endogenous fluorophores which have emissions that spectrally overlap to the NADH and FAD emission. The objective of this study is to assess the variation on fluorescence lifetimes of normal skin at sun exposed and non-exposed areas and associate this variation to the photoaging process.

  14. Optical fluorescence spectroscopy to detect hepatic necrosis after normothermic ischemia: animal model

    Science.gov (United States)

    Romano, Renan A.; Vollet-Filho, Jose D.; Pratavieira, Sebastião.; Fernandez, Jorge L.; Kurachi, Cristina; Bagnato, Vanderlei S.; Castro-e-Silva, Orlando; Sankarankutty, Ajith K.

    2015-06-01

    Liver transplantation is a well-established treatment for liver failure. However, the success of the transplantation procedure depends on liver graft conditions. The tissue function evaluation during the several transplantation stages is relevant, in particular during the organ harvesting, when a decision is made concerning the viability of the graft. Optical fluorescence spectroscopy is a good option because it is a noninvasive and fast technique. A partial normothermic hepatic ischemia was performed in rat livers, with a vascular occlusion of both median and left lateral lobes, allowing circulation only for the right lateral lobe and the caudate lobe. Fluorescence spectra under excitation at 532 nm (doubled frequency Nd:YAG laser) were collected using a portable spectrometer (USB2000, Ocean Optics, USA). The fluorescence emission was collected before vascular occlusion, after ischemia, and 24 hours after reperfusion. A morphometric histology analysis was performed as the gold standard evaluation - liver samples were analyzed, and the percentage of necrotic tissue was obtained. The results showed that changes in the fluorescence emission after ischemia can be correlated with the amount of necrosis evaluated by a morphometric analysis, the Pearson correlation coefficient of the generated model was 0.90 and the root mean square error was around 20%. In this context, the laser-induced fluorescence spectroscopy technique after normothermic ischemia showed to be a fast and efficient method to differentiate ischemic injury from viable tissues.

  15. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging.

    Science.gov (United States)

    Yankelevich, Diego R; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S; Marcu, Laura

    2014-03-01

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and time-resolved fluorescence lifetime measurements of low quantum efficiency sub-nanosecond fluorophores.

  16. Center for Fluorescence Spectroscopy: advanced studies of fluorescence dynamics, lifetime imaging, clinical sensing, two-photon excitation, and light quenching

    Science.gov (United States)

    Lakowicz, Joseph R.; Malak, Henryk M.; Gryczynski, Ignacy; Szmacinski, Henryk; Kusba, Jozef; Akkaya, Engin; Terpetschnig, Ewald A.; Johnson, Michael L.

    1994-08-01

    The Center for Fluorescence Spectroscopy (CFS) is a multi-user facility providing state of the art time-resolved fluorescence instrumentation and software for scientists, whose research can be enhanced by such experimental data. The CFS is a national center, supported by the National Center for Research Resources Division of the National Institutes of Health, and in part by the National Science Foundation. Both time-domain (TD) and frequency- domain (FD) measurements (10 MHz to 10 Ghz) are available, with a wide range of excitation and emission wavelengths (UV to NIR). The data can be used to recover distances and site-to-site diffusion in protein, interactions between macromolecules, accessibility of fluorophores to quenchers, and the dynamic properties of proteins, membranes and nucleic acids. Current software provides for analysis of multi-exponential intensity and anisotropy decays, lifetime distribution, distance distributions for independent observation of fluorescence donors and acceptors, transient effects in collisional quenching, phase-modulation spectra and time-resolved emission spectra. Most programs provide for global analysis of multiple data sets obtained under similar experimental conditions. Data can be analyzed on-site by connection with the CFS computers through the internet. During six years of operation we have established scientific collaborations with over 30 academic and industrial groups in the United States. These collaborations have resulted in 63 scientific papers.

  17. Ultrafast Energy Transfer in Artificial Antenna Molecule Measured by Transient Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Hai-long Chen; Yu-xiang Weng; Xi-you Li

    2011-01-01

    We have reported previously the ultrafast energy transfer process with a time constant of 0.8 ps from a monomeric to a dimeric subunit within a perylenetetracarboxylic diimide trimer, which was derived indirectly from a model fitting into the transient absorption ex perimental data. Here we present a direct ultrafast fluorescence quenching measurement by employing fs time-resolved transient fluorescence spectroscopy based on noncollinear optical parametric amplification technique. The rapid decay of the monomer's emission due to energy transfer was observed directly with a time constant of about 0.82 ps, in good agreement with the previous result.

  18. Characterization of powellite-based solid solutions by site-selective time resolved laser fluorescence spectroscopy

    OpenAIRE

    Schmidt, Moritz; Heck, Stephanie; Bosbach, Dirk; Ganschow, Steffen; Walther, Clemens; Stumpf, Thorsten

    2013-01-01

    We present a comprehensive study of the solid solution system Ca-2(MoO4)(2)-NaGd(MoO4)(2) on the molecular scale, by means of site-selective time resolved laser fluorescence spectroscopy (TRLFS). Eu3+ is used as a trace fluorescent probe, homogeneously substituting for Gd3+ in the solid solution crystal structure. Site-selective TRLFS of a series of polycrystalline samples covering the whole composition range of the solid solution series from 10% substitution of Ca2+ to the NaGd end-member re...

  19. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: a comparative study.

    Science.gov (United States)

    Li, Bingning; Wang, Haixia; Zhao, Qiaojiao; Ouyang, Jie; Wu, Yanwen

    2015-08-15

    Fourier transform infrared (FTIR) and fluorescence spectroscopy combined with soft independent modeling of class analogies (SIMCA) and partial least square (PLS) were used to detect the authenticity of walnut oil and adulteration amount of soybean oil in walnut oil. A SIMCA model of FTIR spectra could differentiate walnut oil and other oils into separate categories; the classification limit of soybean oil in walnut oil was 10%. Fluorescence spectroscopy could differentiate oil composition by the peak position and intensity of emission spectrum without multivariate analysis. The classification limit of soybean oil adulterated in walnut oil by fluorescence spectroscopy was below 5%. The deviation of the prediction model for fluorescence spectra was lower than that for FTIR spectra. Fluorescence spectroscopy was more applicable than FTIR in the adulteration detection of walnut oil, both from the determination limit and prediction deviation.

  20. The interaction of 2-mercaptobenzimidazole with human serum albumin as determined by spectroscopy, atomic force microscopy and molecular modeling.

    Science.gov (United States)

    Li, Yuqin; Jia, Baoxiu; Wang, Hao; Li, Nana; Chen, Gaopan; Lin, Yuejuan; Gao, Wenhua

    2013-04-01

    The interaction of 2-mercaptobenzimidazole (MBI) with human serum albumin (HSA) was studied in vitro by equilibrium dialysis under normal physiological conditions. This study used fluorescence, ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FT-IR), circular dichroism (CD) and Raman spectroscopy, atomic force microscopy (AFM) and molecular modeling techniques. Association constants, the number of binding sites and basic thermodynamic parameters were used to investigate the quenching mechanism. Based on the fluorescence resonance energy transfer, the distance between the HSA and MBI was 2.495 nm. The ΔG(0), ΔH(0), and ΔS(0) values across temperature indicated that the hydrophobic interaction was the predominant binding Force. The UV, FT-IR, CD and Raman spectra confirmed that the HSA secondary structure was altered in the presence of MBI. In addition, the molecular modeling showed that the MBI-HSA complex was stabilized by hydrophobic forces, which resulted from amino acid residues. The AFM results revealed that the individual HSA molecule dimensions were larger after interaction with MBI. Overall, this study suggested a method for characterizing the weak intermolecular interaction. In addition, this method is potentially useful for elucidating the toxigenicity of MBI when it is combined with the biomolecular function effect, transmembrane transport, toxicological testing and other experiments.

  1. Communication: angular momentum alignment and fluorescence polarization of alkali atoms photodetached from helium nanodroplets.

    Science.gov (United States)

    Hernando, Alberto; Beswick, J Alberto; Halberstadt, Nadine

    2013-12-14

    The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He)200, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe200 studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.

  2. Communication: Angular momentum alignment and fluorescence polarization of alkali atoms photodetached from helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Hernando, Alberto; Beswick, J. Alberto; Halberstadt, Nadine [LCAR-IRSAMC, Université Toulouse 3 - Paul Sabatier and CNRS, 31062 Toulouse (France)

    2013-12-14

    The theory of photofragments angular momentum polarization is applied to the photodetachment of an electronically excited alkali atom from a helium nanocluster (N = 200). The alignment of the electronic angular momentum of the bare excited alkali atoms produced is calculated quantum mechanically by solving the excited states coupled equations with potentials determined by density functional theory (DFT). Pronounced oscillations as a function of excitation energy are predicted for the case of Na@(He){sub 200}, in marked contrast with the absorption cross-section and angular distribution of the ejected atoms which are smooth functions of the energy. These oscillations are due to quantum interference between different coherently excited photodetachment pathways. Experimentally, these oscillations should be reflected in the fluorescence polarization and polarization-resolved photoelectron yield of the ejected atoms, which are proportional to the electronic angular momentum alignment. In addition, this result is much more general than the test case of NaHe{sub 200} studied here. It should be observable for larger droplets, for higher excited electronic states, and for other alkali as well as for alkali-earth atoms. Detection of these oscillations would show that the widely used pseudo-diatomic model can be valid beyond the prediction of absorption spectra and could help in interpreting parts of the dynamics, as already hinted by some experimental results on angular anisotropy of bare alkali fragments.

  3. X-ray spectroscopy of kaonic atoms at SIDDHARTA

    Directory of Open Access Journals (Sweden)

    Cargnelli M.

    2014-06-01

    Full Text Available The X-ray measurements of kaonic atoms play an important role for understanding the low-energy QCD in the strangeness sector. The SIDDHARTA experiment studied the X-ray transitions of 4 light kaonic atoms (H, D, 3He, and 4He using the DAFNE electron-positron collider at LNF (Italy. Most precise values of the shift and width of the kaonic hydrogen 1s state were determined, which have been now used as fundamental information for the low-energy K−p interaction in theoretical studies. An upper limit of the X-ray yield of kaonic deuterium was derived, important for future K−d experiments. The shifts and widths of the kaonic 3He and 4He 2p states were obtained, confirming the end of the “kaonic helium puzzle”. In this contribution also the plans for new experiments of kaonic deuterium are being presented.

  4. Precision Spectroscopy of Kaonic Atoms at DAΦNE

    Directory of Open Access Journals (Sweden)

    Scordo A.

    2010-04-01

    Full Text Available The SIDDHARTA experiment aims at a precise measurement of K -series kaonic hydrogen x-rays and the first-ever measurement of the kaonic deuterium x-rays to determine the strong-interaction energy-level shift and width of the lowest lying atomic states. These measurements offer a unique possibility to precisely determine the isospin-dependent $ar{K}$-nucleon scattering lengths.

  5. Flameless Atomic Absorption Spectroscopy: Effects of Nitrates and Sulfates.

    Science.gov (United States)

    1980-05-01

    oxide by graphite followed by sublimation of the metal. Frech and Cedergren investigated high temperature equilibria in graphite furnace atomizers. 1 4...Acta, 72, 49 (1974). 13. R.E. Sturgeon, C.L. Chakrabarti, and C.H. Langford, Anal. Chem., 48, 1792 (1976). 14. W. Frech and A. Cedergren , Anal. Chim...Acta, 82, 83 (1976). 15. W. Frech, Anal. Chim. Acta, 77, 43 (1975). 16. W. Frech and A. Cedergren , Anal. Chim. Acta, 88, 57 (1977). CHAPTER III

  6. The Application of Atomic Absorption Spectroscopy and Optical Microscopy to the Characterization of Sized Airborne Particulate in Dayton, Ohio.

    Science.gov (United States)

    1978-01-01

    PERIOD COVERED " AneT Appication of Atomic Absorption Spectroscopy ’ and Optical Microscopy to the Characterization of THESIS/DISSERTATION 4 Sized...1978 U I HEREBY REC04MEND THAT THE THESIS PREPARED ’NDER MY SUPERVISION BY Lorelei Ann Krebs ENTITLED The Application of Atomic Absorption Spectroscopy and...acid and diluted with distilled water in a 25 milliliter volumetric flask. Atomic absorption . spectroscopy was used to analyze the solutions for

  7. Fluorescence excitation-emission matrix spectroscopy of vitiligo skin in vivo (Conference Presentation)

    Science.gov (United States)

    Zhao, Jianhua; Richer, Vincent; Al Jasser, Mohammed; Zandi, Soodabeh; Kollias, Nikiforos; Kalia, Sunil; Zeng, Haishan; Lui, Harvey

    2016-02-01

    Fluorescence signals depend on the intensity of the exciting light, the absorption properties of the constituent molecules, and the efficiency with which the absorbed photons are converted to fluorescence emission. The optical features and appearance of vitiligo have been explained primarily on the basis of reduced epidermal pigmentation, which results in abnormal white patches on the skin. The objective of this study is to explore the fluorescence properties of vitiligo and its adjacent normal skin using fluorescence excitation-emission matrix (EEM) spectroscopy. Thirty five (35) volunteers with vitiligo were acquired using a double-grating spectrofluorometer with excitation and emission wavelengths of 260-450 nm and 300-700 nm respectively. As expected, the most pronounced difference between the spectra obtained from vitiligo lesions compared to normally pigmented skin was that the overall fluorescence was much higher in vitiligo; these differences increased at shorter wavelengths, thus matching the characteristic spectral absorption of epidermal melanin. When comparing the fluorescence spectra from vitiligo to normal skin we detected three distinct spectral bands centered at 280nm, 310nm, and 335nm. The 280nm band may possibly be related to inflammation, whereas the 335 nm band may arise from collagen or keratin cross links. The source of the 310 nm band is uncertain; it is interesting to note its proximity to the 311 nm UV lamps used for vitiligo phototherapy. These differences are accounted for not only by changes in epidermal pigment content, but also by other optically active cutaneous biomolecules.

  8. Arsenic species analysis in porewaters and sediments using hydride generation atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    LIAO Meng-xia; DENG Tian-long

    2006-01-01

    It was observed that the atomic fluorescence emission due to As(Ⅴ) could has a 10% to 40% of fluorescence emission signal during the determination of As(Ⅲ) in the mixture of As(Ⅲ) and As(Ⅴ). Besides, interferes from heavy metals such as Pb(Ⅱ),Cu(Ⅱ) can cause severe increase of the signals as compared to the insignificant effects caused by Cd(Ⅱ), Zn(Ⅱ), Mn(Ⅱ) and Fe(Ⅲ). On the basis of further studies, the masking agent of 8-hydroxyquinoline was used as an efficient agent to eliminate interference of As(Ⅴ)emission and the heavy metal of Cu2+ and Pb2+ in the measurements of arsenic species. After a series standard additions and CRM researches, a sensitive and interference-free analytical procedure was developed for the speciation of arsenic in samples ofporewaters and sediments in Poyang Lake, China.

  9. Sub-cellular structure studied by combined atomic force-fluorescence microscopy

    Science.gov (United States)

    Trache, Andreea

    2009-03-01

    A novel experimental technique that integrates atomic force microscopy (AFM) with fluorescence imaging was used to study the role of extracellular matrix proteins in cellular organization. To understand the mechanism by which living cells sense mechanical forces, and how they respond and adapt to their environment, we developed a new technology able to investigate cellular behavior at sub-cellular level that integrates an AFM with total internal reflection fluorescence (TIRF) microscopy and fast-spinning disk (FSD) confocal microscopy. Live smooth muscle cells exhibited differences in focal adhesions and actin pattern depending on the extracellular matrix used for substrate coating. Data obtained by using the AFM-optical imaging integrated technique offer novel quantitative information that allows understanding the fundamental processes of cellular reorganization in response to extracellular matrix modulation. The integrated microscope presented here is broadly applicable across a wide range of molecular dynamic studies in any adherent live cells.

  10. Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-Li; XU Xin-Ye

    2011-01-01

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp.The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition.

  11. Determination of vanadium in food and traditional Chinese medicine by graphite furnace atomic absorption spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Various experimental conditions were described for the vanadium determination by graphite furnace atomic ab-sorption spectroscopy (GFAAS). The experiments showed that when atomization took place under the conditions where thecombination of a pyrolytic coating graphite tube and fast raising temperature were used and the temperature was stable, thesignal peak shapes could be improved, the sensitivity was enhanced, and the memory effect was removed. The vanadium infood and traditional Chinese medicinal herbs can be accurately determined using the standard curve method.

  12. Magnetic field modulation spectroscopy of rubidium atoms

    Indian Academy of Sciences (India)

    S Pradhan; R Behera; A K Das

    2012-04-01

    The magnetically modulated saturation absorption profile is studied for a wide range of external DC magnetic field. The salient features of Doppler-free signal generated by laser frequency modulation and atomic energy level modulation are compared. The DC offset of the signal profile is found to be unstable as the external DC magnetic field is changed. The technical difficulty of tuning laser frequency under locked condition over a large frequency span is discussed along with possible solutions.

  13. Stiffness, resilience, compressibility. Atomic scale force spectroscopy of biomolecules

    Science.gov (United States)

    Leu, Bogdan M.; Sage, J. Timothy

    2016-12-01

    The flexibility of a protein is an important component of its functionality. We use nuclear resonance vibrational spectroscopy (NRVS) to quantify the flexibility of the heme iron environment in the electron-carrying protein cytochrome c by measuring the stiffness and the resilience. These quantities are sensitive to structural differences between the active sites of different proteins, as illustrated by a comparative analysis with myoglobin. The elasticity of the entire protein, on the other hand, can be probed quantitatively from NRVS and high energy-resolution inelastic X-ray scattering (IXS) measurements, an approach that we used to extract the bulk modulus of cytochrome c.

  14. In vivo detection of epileptic brain tissue using static fluorescence and diffuse reflectance spectroscopy.

    Science.gov (United States)

    Yadav, Nitin; Bhatia, Sanjiv; Ragheb, John; Mehta, Rupal; Jayakar, Prasanna; Yong, William; Lin, Wei-Chiang

    2013-02-01

    Diffuse reflectance and fluorescence spectroscopy are used to detect histopathological abnormalities of an epileptic brain in a human subject study. Static diffuse reflectance and fluorescence spectra are acquired from normal and epileptic brain areas, defined by electrocorticography (ECoG), from pediatric patients undergoing epilepsy surgery. Biopsy specimens are taken from the investigated sites within an abnormal brain. Spectral analysis reveals significant differences in diffuse reflectance spectra and the ratio of fluorescence and diffuse reflectance spectra from normal and epileptic brain areas defined by ECoG and histology. Using these spectral differences, tissue classification models with accuracy above 80% are developed based on linear discriminant analysis. The differences between the diffuse reflectance spectra from the normal and epileptic brain areas observed in this study are attributed to alterations in the static hemodynamic characteristics of an epileptic brain, suggesting a unique association between the histopathological and the hemodynamic abnormalities in an epileptic brain.

  15. Fluorescence spectroscopy for assessment of liver transplantation grafts concerning graft viability and patient survival

    Science.gov (United States)

    Vollet Filho, José D.; da Silveira, Marina R.; Castro-e-Silva, Orlando; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Evaluating transplantation grafts at harvest is essential for its success. Laser-induced fluorescence spectroscopy (LIFS) can help monitoring changes in metabolic/structural conditions of tissue during transplantation. The aim of the present study is to correlate LIFSobtained spectra of human hepatic grafts during liver transplantation with post-operative patients' mortality rate and biochemical parameters, establishing a method to exclude nonviable grafts before implantation. Orthotopic liver transplantation, piggyback technique was performed in 15 patients. LIFS was performed under 408nm excitation. Collection was performed immediately after opening donor's abdominal cavity, after cold perfusion, end of back-table period, and 5 min and 1 h after warm perfusion at recipient. Fluorescence information was compared to lactate, creatinine, bilirubin and INR levels and to survival status. LIFS was sensitive to liver changes during transplantation stages. Study-in-progress; initial results indicate correlation between fluorescence and life/death status of patients.

  16. O2(1△) Yield Measurement by Raman Spectroscopy With Elimination of Chlorine Fluorescence Interference

    Institute of Scientific and Technical Information of China (English)

    Rong-rong Cui; Wen-bo Shi; Lie-zheng Deng; He-ping Yang; Guo-he Sha; Cun-hao Zhang

    2012-01-01

    Deleterious chlorine fluorescence was found to occur at the same frequency as the Raman scattering of O2(1△) and O2(3∑),seriously affecting the O2(1△) yield measurement in the reaction of chlorine with basic hydrogen peroxide by use of the Raman spectroscopy technique.To solve this problem we have taken advantage of the fact that Raman radiation is always strongly polarized while fluorescence is essentially non-polarized in a gaseous medium.When chlorine utilization of a singlet oxygen generator is 88%,O2(1△) yield reaches (42.4±7.4)%with the effect of chlorine fluorescence completely eliminated.

  17. Real-time near-field terahertz imaging with atomic optical fluorescence

    Science.gov (United States)

    Wade, C. G.; Šibalić, N.; de Melo, N. R.; Kondo, J. M.; Adams, C. S.; Weatherill, K. J.

    2017-01-01

    Terahertz (THz) near-field imaging is a flourishing discipline, with applications from fundamental studies of beam propagation to the characterization of metamaterials and waveguides. Beating the diffraction limit typically involves rastering structures or detectors with length scale shorter than the radiation wavelength; in the THz domain this has been achieved using a number of techniques including scattering tips and apertures. Alternatively, mapping THz fields onto an optical wavelength and imaging the visible light removes the requirement for scanning a local probe, speeding up image collection times. Here, we report THz-to-optical conversion using a gas of highly excited Rydberg atoms. By collecting THz-induced optical fluorescence we demonstrate a real-time image of a THz standing wave and use well-known atomic properties to calibrate the THz field strength.

  18. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode.

    Science.gov (United States)

    Jiang, Xianjuan; Gan, Wuer; Wan, Lingzhong; Deng, Yun; Yang, Qinghua; He, Youzhao

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH(4) and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL(-1) (3σ) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL(-1) Sn(IV) standard solution.

  19. Spoilage of foods monitored by native fluorescence spectroscopy with selective excitation wavelength

    Science.gov (United States)

    Pu, Yang; Wang, Wubao; Alfano, Robert R.

    2015-03-01

    The modern food processing and storage environments require the real-time monitoring and rapid microbiological testing. Optical spectroscopy with selective excitation wavelengths can be the basis of a novel, rapid, reagent less, noncontact and non-destructive technique for monitoring the food spoilage. The native fluorescence spectra of muscle foods stored at 2-4°C (in refrigerator) and 20-24°C (in room temperature) were measured as a function of time with a selective excitation wavelength of 340nm. The contributions of the principal molecular components to the native fluorescence spectra of meat were measured spectra of each fluorophore: collagen, reduced nicotinamide adenine dinucleotide (NADH), and flavin. The responsible components were extracted using a method namely Multivariate Curve Resolution with Alternating Least-Squares (MCR-ALS). The native fluorescence combined with MCR-ALS can be used directly on the surface of meat to produce biochemically interpretable "fingerprints", which reflects the microbial spoilage of foods involved with the metabolic processes. The results show that with time elapse, the emission from NADH in meat stored at 24°C increases much faster than that at 4°C. This is because multiplying of microorganisms and catabolism are accompanied by the generation of NADH. This study presents changes of relative content of NADH may be used as criterion for detection of spoilage degree of meat using native fluorescence spectroscopy.

  20. Laser cooling of dense atomic gases by collisional redistribution of radiation and spectroscopy of molecular dimers in a dense buffer gas environment

    CERN Document Server

    Saß, Anne; Christopoulos, Stavros; Knicker, Katharina; Moroshkin, Peter; Weitz, Martin

    2014-01-01

    We study laser cooling of atomic gases by collisional redistribution of fluorescence. In a high pressure buffer gas regime, frequent collisions perturb the energy levels of alkali atoms, which allows for the absorption of a far red detuned irradiated laser beam. Subsequent spontaneous decay occurs close to the unperturbed resonance frequency, leading to a cooling of the dense gas mixture by redistribution of fluorescence. Thermal deflection spectroscopy indicates large relative temperature changes down to and even below room temperature starting from an initial cell temperature near 700 K. We are currently performing a detailed analysis of the temperature distribution in the cell. As we expect this cooling technique to work also for molecular-noble gas mixtures, we also present initial spectroscopic experiments on alkali-dimers in a dense buffer gas surrounding.

  1. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    Science.gov (United States)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0

  2. Interaction of antihypertensive drug amiloride with metal ions in micellar medium using fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gujar, Varsha; Pundge, Vijaykumar; Ottoor, Divya, E-mail: divya@chem.unipune.ac.in

    2015-05-15

    Steady state and life time fluorescence spectroscopy have been employed to study the interaction of antihypertensive drug amiloride with biologically important metal ions i.e. Cu{sup 2+}, Fe{sup 2+}, Ni{sup 2+} and Zn{sup 2+} in various micellar media (anionic SDS (sodium dodecyl sulfate), nonionic TX-100 (triton X-100) and cationic CTAB (cetyl trimethyl ammonium bromide)). It was observed that fluorescence properties of drug remain unaltered in the absence of micellar media with increasing concentration of metal ions. However, addition of Cu{sup 2+}, Fe{sup 2+} and Ni{sup 2+} caused fluorescence quenching of amiloride in the presence of anionic micelle, SDS. Binding of drug with metal ions at the charged micellar interface could be the possible reason for this pH-dependent metal-mediated fluorescence quenching. There were no remarkable changes observed due to metal ions addition when drug was present in cationic and nonionic micellar medium. The binding constant and bimolecular quenching constant were evaluated and compared for the drug–metal complexes using Stern–Volmer equation and fluorescence lifetime values. - Highlights: • Interaction of amiloride with biologically important metal ions, Fe{sup 2+}, Cu{sup 2+}, Ni{sup 2+} and Zn{sup 2+}. • Monitoring the interaction in various micelle at different pH by fluorescence spectroscopy. • Micelles acts as receptor, amiloride as transducer and metal ions as analyte in the present system. • Interaction study provides pH dependent quenching and binding mechanism of drug with metal ions.

  3. Atomic force microscopy and spectroscopy of native membrane proteins.

    Science.gov (United States)

    Müller, Daniel J; Engel, Andreas

    2007-01-01

    Membrane proteins comprise 30% of the proteome of higher organisms. They mediate energy conversion, signal transduction, solute transport and secretion. Their native environment is a bilayer in a physiological buffer solution, hence their structure and function are preferably assessed in this environment. The surface structure of single membrane proteins can be determined in buffer solutions by atomic force microscopy (AFM) at a lateral resolution of less than 1 nm and a vertical resolution of 0.1-0.2 nm. Moreover, single proteins can be directly addressed, stuck to the AFM stylus and subsequently unfolded, revealing the molecular interactions of the protein studied. The examples discussed here illustrate the power of AFM in the structural analysis of membrane proteins in a native environment.

  4. Field-emission spectroscopy of beryllium atoms adsorbed on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Czyzewski, J.J.; Grzesiak, W.; Krajniak, J. (Politechnika Wroclawska (Poland))

    1981-01-01

    Field emission energy distributions (FEED) have been measured for the beryllium-tungsten (023) adsorption system over the 78-450 K temperature range. A temperature dependence of the normalized half-width, ..delta../d, of FEED peaks changed significantly due to beryllium adsorption; and the curve, ..delta../d vs p, for the Be/W adsorption system was identical in character to the calculated curve based on the free electron model in contrast to the curve for the clean tungsten surface. In the last part of this paper Gadzuk's theory of the resonance-tunneling effect is applied to the beryllium atom on tungsten. Experimental and theoretical curves of the enhancement factor as a function of energy have been discussed.

  5. Photon emission spectroscopy of ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Nystroem, B.

    1995-10-01

    Emission cross sections for the 1snp{sup 1}P{sub 1}-levels have been measured by photon emission spectroscopy for the collision systems He{sup +} + He at 10 keV and He{sup 2+} + He at 10-35 keV. Photon spectra of Krypton (Kr VIII) and Xenon (Xe V - IX) have also been obtained using 10q keV beams of Kr{sup q+} (q=7-9) and Xe{sup q+} (q=5-9) colliding with Helium and Argon. The Lifetimes of 3p{sup 2}P-levels in Na-like Nb are reported together with lifetime for the 3s3p{sup 3}P{sub 1}-level in Mg-like Ni, Kr, Y, Zr and Nb where this level has an intercombination transition to the ground state. 45 refs, 20 figs.

  6. Disassembly of structurally modified viral nanoparticles: characterization by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Toivola, Jouni; Gilbert, Leona; Michel, Patrik; White, Daniel; Vuento, Matti; Oker-Blom, Christian

    2005-12-01

    Analysis of the breakdown products of engineered viral particles can give useful information on the particle structure. We used various methods to breakdown both a recombinant enveloped virus and virus-like particles (VLPs) from two non-enveloped viruses and analysed the resulting subunits by fluorescence correlation spectroscopy (FCS). Analysis of the enveloped baculovirus, Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV), displaying the green fluorescent protein (GFP) fused to its envelope protein gp64 was performed in the presence and absence of 5 mM SDS and 25 mM DTT. Without treatment, the viral particle showed a diffusion time of 3.3 ms. In the presence of SDS, fluorescent subunits with diffusion times of 0.2 ms were observed. Additional treatment with DTT caused a drop in the diffusion time to 0.1 ms. Changes in the amplitude of the autocorrelation function suggested a 3-fold increase in fluorescent particle number when viral particles were treated with SDS, and a further 1.5-fold increase with additional treatment with DTT. Thus, the data showed that an average of 4.5 molecules of gp64-GFP was incorporated in the membrane of the modified baculovirus. Further, this suggests that each fluorescent gp64 trimer carries on average 1.5 fluorescent units. Similar experiments were carried out with two non-enveloped fluorescent virus-like particles (fVLPs) that displayed enhanced green fluorescent protein (EGFP). These, fVLPs of canine and human B19 parvoviruses were treated with 6 M urea and 5 mM SDS, respectively. Correspondingly, the original hydrodynamic radii of 17 and 14 nm were reduced to 9 and 5 nm after treatment. Here, the change in the amplitude of the autocorrelation curve suggested a 10-fold increase in particle number when viral particles of CPV were treated with 6 M urea at 50 degrees C for 10 min. For EGFP-B19, there was a decrease in the amplitude, accompanied by a 9-fold increase in the number of fluorescent units with SDS treatment

  7. Analyzing pH-induced changes in a myofibril model system with vibrational and fluorescence spectroscopy.

    Science.gov (United States)

    Andersen, Petter Vejle; Veiseth-Kent, Eva; Wold, Jens Petter

    2017-03-01

    The decline of pH and ultimate pH in meat postmortem greatly influences meat quality (e.g. water holding capacity). Four spectroscopic techniques, Raman, Fourier transform infrared (FT-IR), near infrared (NIR) and fluorescence spectroscopy, were used to study protein and amino acid modifications to determine pH-related changes in pork myofibril extracts at three different pH-levels, 5.3, 5.8 and 6.3. Protonation of side-chain carboxylic acids of aspartic and glutamic acid and changes in secondary structure, mainly the amide I-III peaks, were the most important features identified by Raman and FT-IR spectroscopy linked to changes in pH. Fluorescence spectroscopy identified tryptophan interaction with the molecular environment as the most important contributor to changes in the spectra. NIR spectroscopy gave no significant contributions to interpreting protein structure related to pH. Results from our study are useful for interpreting spectroscopic data from meat where pH is an important variable.

  8. Enhanced energy transfer in respiratory-deficient endothelial cells probed by microscopic fluorescence excitation spectroscopy

    Science.gov (United States)

    Schneckenburger, Herbert; Gschwend, Michael H.; Bauer, Manfred; Strauss, Wolfgang S. L.; Steiner, Rudolf W.

    1996-12-01

    Mitochondrial malfunction may be concomitant with changes of the redox states of the coenzymes nicotinamide adenine dinucleotide (NAD+/NADH), as well as flavin.mononucleotide or dinucleotide. The intrinsic fluorescence of these coenzymes was therefore proposed to be a measure of malfunction. Since mitochondrial fluorescence is strongly superposed by autofluorescence from various cytoplasmatic fluorophores, cultivated endothelial cells were incubated with the mitochondrial marker rhodamine 123 (R123), and after excitation of flavin molecules, energy transfer to R123 was investigated. Due to spectral overlap of flavin and R123 fluorescence, energy transfer flavin yields R123 could not be detected from their emission spectra. Therefore, the method of microscopic fluorescence excitation spectroscopy was established. When detecting R123 fluorescence, excitation maxima at 370 - 390 nm and 420-460 nm were assigned to flavins, whereas a pronounced excitation band at 465 - 490 nm was attributed to R123. Therefore, excitation at 475 nm reflected the intracellular concentration of R123, whereas excitation at 385 nm reflected flavin excitation with a subsequent energy transfer to R123 molecules. An enhanced energy transfer after inhibition of specific enzyme complexes of the respiratory chain is discussed in the present article.

  9. Applications of fluorescence spectroscopy for predicting percent wastewater in an urban stream

    Science.gov (United States)

    Goldman, Jami H.; Rounds, Stewart A.; Needoba, Joseph A.

    2012-01-01

    Dissolved organic carbon (DOC) is a significant organic carbon reservoir in many ecosystems, and its characteristics and sources determine many aspects of ecosystem health and water quality. Fluorescence spectroscopy methods can quantify and characterize the subset of the DOC pool that can absorb and re-emit electromagnetic energy as fluorescence and thus provide a rapid technique for environmental monitoring of DOC in lakes and rivers. Using high resolution fluorescence techniques, we characterized DOC in the Tualatin River watershed near Portland, Oregon, and identified fluorescence parameters associated with effluent from two wastewater treatment plants and samples from sites within and outside the urban region. Using a variety of statistical approaches, we developed and validated a multivariate linear regression model to predict the amount of wastewater in the river as a function of the relative abundance of specific fluorescence excitation/emission pairs. The model was tested with independent data and predicts the percentage of wastewater in a sample within 80% confidence. Model results can be used to develop in situ instrumentation, inform monitoring programs, and develop additional water quality indicators for aquatic systems.

  10. On the performance of bioanalytical fluorescence correlation spectroscopy measurements in a multiparameter photon-counting microscope

    Energy Technology Data Exchange (ETDEWEB)

    Mazouchi, Amir; Liu Baoxu; Bahram, Abdullah [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada); Gradinaru, Claudiu C., E-mail: claudiu.gradinaru@utoronto.ca [Department of Physics, Institute for Optical Sciences, University of Toronto, Toronto (Canada); Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. N., Mississauga, ON, L5L 1C6 (Canada)

    2011-02-28

    Fluorescence correlation spectroscopy (FCS) data acquisition and analysis routines were developed and implemented in a home-built, multiparameter photon-counting microscope. Laser excitation conditions were investigated for two representative fluorescent probes, Rhodamine110 and enhanced green fluorescent protein (EGFP). Reliable local concentrations and diffusion constants were obtained by fitting measured FCS curves, provided that the excitation intensity did not exceed 20% of the saturation level for each fluorophore. Accurate results were obtained from FCS measurements for sample concentrations varying from pM to {mu}M range, as well as for conditions of high background signals. These experimental constraints were found to be determined by characteristics of the detection system and by the saturation behavior of the fluorescent probes. These factors actually limit the average number of photons that can be collected from a single fluorophore passing through the detection volume. The versatility of our setup and the data analysis capabilities were tested by measuring the mobility of EGFP in the nucleus of Drosophila cells under conditions of high concentration and molecular crowding. As a bioanalytical application, we studied by FCS the binding affinity of a novel peptide-based drug to the cancer-regulating STAT3 protein and corroborated the results with fluorescence polarization analysis derived from the same photon data.

  11. DETERMINING BERYLLIUM IN DRINKING WATER BY GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    A direct graphite furnace atomic absorption spectroscopy method for the analysis of beryllium in drinking water has been derived from a method for determining beryllium in urine. Ammonium phosphomolybdate and ascorbic acid were employed as matrix modifiers. The matrix modifiers s...

  12. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    Science.gov (United States)

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  13. Sulfonated polyetherketone (SPEK-C) films investigated by positron annihilation lifetime spectroscopy and atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    Htwe Htwe Yin; YIN Ze-Jie; TANG Shi-Biao; HUANG Huan; ZHU Da-Ming

    2005-01-01

    The characterization of sulfonated polyetherketone (SPEK-C) films was investigated by using positron annihilation lifetime spectroscopy (PALS) and atomic force microscopy (AFM). It was found that free volume radius and intensity depend on the variation of sulfonation degree and solvent evaporation time of the films. Pore size and distribution determined from PALS and AFM measurements showed reasonable agreement.

  14. Atomic resolution imaging and spectroscopy of barium atoms and functional groups on graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Boothroyd, C.B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Moreno, M.S. [Centro Atómico Bariloche, 8400 – San Carlos de Bariloche (Argentina); Duchamp, M.; Kovács, A. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Monge, N.; Morales, G.M.; Barbero, C.A. [Department of Chemistry, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto (Argentina); Dunin-Borkowski, R.E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2014-10-15

    We present an atomic resolution transmission electron microscopy (TEM) and scanning TEM (STEM) study of the local structure and composition of graphene oxide modified with Ba{sup 2+}. In our experiments, which are carried out at 80 kV, the acquisition of contamination-free high-resolution STEM images is only possible while heating the sample above 400 °C using a highly stable heating holder. Ba atoms are identified spectroscopically in electron energy-loss spectrum images taken at 800 °C and are associated with bright contrast in high-angle annular dark-field STEM images. The spectrum images also show that Ca and O occur together and that Ba is not associated with a significant concentration of O. The electron dose used for spectrum imaging results in beam damage to the specimen, even at elevated temperature. It is also possible to identify Ba atoms in high-resolution TEM images acquired using shorter exposure times at room temperature, thereby allowing the structure of graphene oxide to be studied using complementary TEM and STEM techniques over a wide range of temperatures. - Highlights: • Graphene oxide modified with Ba{sup 2+} was imaged using TEM and STEM at 80 kV. • High-resolution images and spectra were obtained only by heating above 400 °C. • Elemental maps show the distribution of C, Ba, O and Ca on the graphene oxide. • Single Ba atoms were identified in STEM HAADF and HRTEM images.

  15. A comparative evaluation of Raman and fluorescence spectroscopy for optical diagnosis of oral neoplasia

    Science.gov (United States)

    Majumder, S. K.; Krishna, H.; Sidramesh, M.; Chaturvedi, P.; Gupta, P. K.

    2011-08-01

    We report the results of a comparative evaluation of in vivo fluorescence and Raman spectroscopy for diagnosis of oral neoplasia. The study carried out at Tata Memorial Hospital, Mumbai, involved 26 healthy volunteers and 138 patients being screened for neoplasm of oral cavity. Spectral measurements were taken from multiple sites of abnormal as well as apparently uninvolved contra-lateral regions of the oral cavity in each patient. The different tissue sites investigated belonged to one of the four histopathology categories: 1) squamous cell carcinoma (SCC), 2) oral sub-mucous fibrosis (OSMF), 3) leukoplakia (LP) and 4) normal squamous tissue. A probability based multivariate statistical algorithm utilizing nonlinear Maximum Representation and Discrimination Feature for feature extraction and Sparse Multinomial Logistic Regression for classification was developed for direct multi-class classification in a leave-one-patient-out cross validation mode. The results reveal that the performance of Raman spectroscopy is considerably superior to that of fluorescence in stratifying the oral tissues into respective histopathologic categories. The best classification accuracy was observed to be 90%, 93%, 94%, and 89% for SCC, SMF, leukoplakia, and normal oral tissues, respectively, on the basis of leave-one-patient-out cross-validation, with an overall accuracy of 91%. However, when a binary classification was employed to distinguish spectra from all the SCC, SMF and leukoplakik tissue sites together from normal, fluorescence and Raman spectroscopy were seen to have almost comparable performances with Raman yielding marginally better classification accuracy of 98.5% as compared to 94% of fluorescence.

  16. Continuation of Atomic Spectroscopy on Alkali Isotopes at ISOLDE

    CERN Multimedia

    2002-01-01

    Laser optical measurements on Rb, Cs and Fr have already been performed at ISOLDE in 1978-79. The hyperfine structure and isotope shift of |7|6|-|9|8Rb, |1|1|8|-|1|4|5Cs, |2|0|8|-|2|1|3Fr and 14 of their isomers have been studied. Among the wealth of information which has been obtained, the most important are the first observation of an optical transition of the element Fr, the evidence of the onset of nuclear deformation at N~=~60 for Rb isotopes and the shape isomerism isotopes. \\\\ \\\\ From both the atomic and nuclear physics point of view, new studies seem very promising: \\item - the search for new optical transitions in Fr; the shell effect in the rms charge radius at N~=~126 for Fr isotopes \\item - the study of a possible onset of deformation for Cs isotopes beyond |1|4|5Cs \\item - the study of a region of static deformation in neutron-deficient Rb isotopes. \\\\ \\\\ \\end{enumerate} A new apparatus has been built. The principle remains the same as used in our earlier experiments. The improvements concern ess...

  17. Development of a 2D temperature measurement technique for combustion diagnostics using 2-line atomic fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Johan

    2001-01-01

    The present thesis is concerned with the development and application of a novel planar laser-induced fluorescence (PLIF) technique for temperature measurements in a variety of combusting flows. Accurate measurement of temperature is an essential task in combustion diagnostics, since temperature is one of the most fundamental quantities for the characterization of combustion processes. The technique is based on two-line atomic fluorescence (TLAF) from small quantities of atomic indium (In) seeded into the fuel. It has been developed from small-scale experiments in laboratory flames to the point where practical combustion systems can be studied. The technique is conceptually simple and reveals temperature information in the post-flame regions. The viability of the technique has been tested in three extreme measurement situations: in spark ignition engine combustion, in ultra-lean combustion situations such as lean burning aero-engine concepts and, finally, in fuel-rich combustion. TLAF was successfully applied in an optical Sl engine using isooctane as fuel. The wide temperature sensitivity, 700 - 3000 K, of the technique using indium atoms allowed measurements over the entire combustion cycle in the engine to be performed. In applications in lean combustion a potential problem caused by the strong oxidation processes of indium atoms was encountered. This limits measurement times due to deposits of absorbing indium oxide on measurement windows. The seeding requirement is a disadvantage of the technique and can be a limitation in some applications. The results from experiments performed in sooting flames are very promising for thermometry measurements in such environments. Absorption by hydrocarbons and other native species was found to be negligible. Since low laser energies and low seeding concentrations could be used, the technique did not, unlike most other incoherent optical thermometry techniques, suffer interferences from LII of soot particles or LIF from PAH

  18. Multiphoton microscopy, fluorescence lifetime imaging and optical spectroscopy for the diagnosis of neoplasia

    Science.gov (United States)

    Skala, Melissa Caroline

    2007-12-01

    the ultraviolet to visible wavelength range indicated that the most diagnostic optical signals originate from sub-surface tissue layers. Optical properties extracted from these spectroscopy measurements showed a significant decrease in the hemoglobin saturation, absorption coefficient, reduced scattering coefficient and fluorescence intensity (at 400 nm excitation) in neoplastic compared to normal tissues. The results from these studies indicate that multiphoton microscopy and optical spectroscopy can non-invasively provide information on tissue structure and function in vivo that is related to tissue pathology.

  19. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Leiterer, Christian; Deckert-Gaudig, Tanja; Singh, Prabha; Wirth, Janina; Deckert, Volker; Fritzsche, Wolfgang

    2015-05-01

    Tip-enhanced Raman spectroscopy, a combination of Raman spectroscopy and scanning probe microscopy, is a powerful technique to detect the vibrational fingerprint of molecules at the nanometer scale. A metal nanoparticle at the apex of an atomic force microscope tip leads to a large enhancement of the electromagnetic field when illuminated with an appropriate wavelength, resulting in an increased Raman signal. A controlled positioning of individual nanoparticles at the tip would improve the reproducibility of the probes and is quite demanding due to usually serial and labor-intensive approaches. In contrast to commonly used submicron manipulation techniques, dielectrophoresis allows a parallel and scalable production, and provides a novel approach toward reproducible and at the same time affordable tip-enhanced Raman spectroscopy tips. We demonstrate the successful positioning of an individual plasmonic nanoparticle on a commercial atomic force microscope tip by dielectrophoresis followed by experimental proof of the Raman signal enhancing capabilities of such tips.

  20. Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants

    CERN Document Server

    Hayano, R S

    2010-01-01

    Proceedings of the Japan Academy, Series B Vol. 86 (2010) No. 1 P 1-10 Language: Next Article http://dx.doi.org/10.2183/pjab.86.1 JST.JSTAGE/pjab/86.1 Reviews Spectroscopy of antiprotonic helium atoms and its contribution to the fundamental physical constants Ryugo S. HAYANO1) 1) Department of Physics, The University of Tokyo Released 2010/01/14 Keywords: antiproton, CERN, fundamental physical constants, laser spectroscopy Full Text PDF [1604K] Abstracts References(25) Antiprotonic helium atom, a metastable neutral system consisting of an antiproton, an electron and a helium nucleus, was serendipitously discovered, and has been studied at CERN’s antiproton decelerator facility. Its transition frequencies have recently been measured to nine digits of precision by laser spectroscopy. By comparing these experimental results with three-body QED calculations, the antiproton-to-electron massratio was determined as 1836.152674(5). This result contributed to the CODATA recommended val...

  1. Determination of Calcium in Cereal with Flame Atomic Absorption Spectroscopy: An Experiment for a Quantitative Methods of Analysis Course

    Science.gov (United States)

    Bazzi, Ali; Kreuz, Bette; Fischer, Jeffrey

    2004-01-01

    An experiment for determination of calcium in cereal using two-increment standard addition method in conjunction with flame atomic absorption spectroscopy (FAAS) is demonstrated. The experiment is intended to introduce students to the principles of atomic absorption spectroscopy giving them hands on experience using quantitative methods of…

  2. European Group for Atomic Spectroscopy. Summaries of contributions, eleventh annual conference, Paris-Orsay, July 10-13, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Summaries are presented of talks given at the eleventh conference of the European group for atomic spectroscopy. Topics covered include: lifetimes; collisions; line shape; hyperfine structure; isotope shifts; saturation spectroscopy; Hanle effect; Rydberg levels; quantum beats; helium and helium-like atoms; metrology; and molecules. (GHT)

  3. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yankelevich, Diego R. [Department of Electrical and Computer Engineering, University of California, 3101 Kemper Hall, Davis, California 95616 (United States); Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616 (United States); Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Marcu, Laura, E-mail: lmarcu@ucdavis.edu [Department of Biomedical Engineering, University of California, 451 Health Sciences Drive, Davis, California 95616 (United States); Elson, Daniel S. [Hamlyn Centre for Robotic Surgery, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom)

    2014-03-15

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8–7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence

  4. Pressure broadening of atomic oxygen two-photon absorption laser induced fluorescence

    Science.gov (United States)

    Marinov, Daniil; Drag, Cyril; Blondel, Christophe; Guaitella, Olivier; Golda, Judith; Klarenaar, Bart; Engeln, Richard; Schulz-von der Gathen, Volker; Booth, Jean-Paul

    2016-12-01

    Atomic oxygen, considered to be a determining reactant in plasma applications at ambient pressure, is routinely detected by two-photon absorption laser induced fluorescence (TALIF). Here, pressure broadening of the (2p 4 3 P 2  →  3p 3 P J=0,1,2) two-photon transition in oxygen atoms was investigated using a high-resolution TALIF technique in normal and Doppler-free configurations. The pressure broadening coefficients determined were {γ{{\\text{O}2}}}   =  0.40  ±  0.08  cm-1/bar for oxygen molecules and {γ\\text{He}}   =  0.46  ±  0.03 cm-1/bar for helium atoms. These correspond to pressure broadening rate constants k\\text{PB}{{\\text{O}2}}   =  9 · 10-9 cm3 s-1 and k\\text{PB}\\text{He}   =  4 · 10-9 cm3 s-1, respectively. The well-known quenching rate constants of O(3p 3 P J ) by O2 and He are at least one order of magnitude smaller, which signifies that non-quenching collisions constitute the main line-broadening mechanism. In addition to providing new insights into collisional processes of oxygen atoms in electronically excited 3p 3 P J state, reported pressure broadening parameters are important for quantification of oxygen TALIF line profiles when both collisional and Doppler broadening mechanisms are important. Thus, the Doppler component (and hence the temperature of oxygen atoms) can be accurately determined from high resolution TALIF measurements in a broad range of conditions.

  5. In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy

    OpenAIRE

    Soo Khee; Bhuvaneswari Ramaswamy; Thong Patricia SP; Chin William WL; Heng Paul WS; Olivo Malini

    2009-01-01

    Abstract Background Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient. Methods Fluorescence imaging was performed on MGH human...

  6. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y., E-mail: yingge.du@pnnl.gov, E-mail: scott.chambers@pnnl.gov; Liyu, A. V. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Droubay, T. C.; Chambers, S. A., E-mail: yingge.du@pnnl.gov, E-mail: scott.chambers@pnnl.gov [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Li, G. [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-04-21

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  7. Self-corrected Sensors Based On Atomic Absorption Spectroscopy For Atom Flux Measurements In Molecular Beam Epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yingge; Droubay, Timothy C.; Liyu, Andrey V.; Li, Guosheng; Chambers, Scott A.

    2014-04-24

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device (CCD) detector in a double-beam configuration, we employ a non-resonant line or a resonant line with lower absorbance from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  8. Self-corrected sensors based on atomic absorption spectroscopy for atom flux measurements in molecular beam epitaxy

    Science.gov (United States)

    Du, Y.; Droubay, T. C.; Liyu, A. V.; Li, G.; Chambers, S. A.

    2014-04-01

    A high sensitivity atom flux sensor based on atomic absorption spectroscopy has been designed and implemented to control electron beam evaporators and effusion cells in a molecular beam epitaxy system. Using a high-resolution spectrometer and a two-dimensional charge coupled device detector in a double-beam configuration, we employ either a non-resonant line or a resonant line with low cross section from the same hollow cathode lamp as the reference for nearly perfect background correction and baseline drift removal. This setup also significantly shortens the warm-up time needed compared to other sensor technologies and drastically reduces the noise coming from the surrounding environment. In addition, the high-resolution spectrometer allows the most sensitive resonant line to be isolated and used to provide excellent signal-to-noise ratio.

  9. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  10. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    Science.gov (United States)

    Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-03-01

    We present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1pm could successfully be resolved. In addition, lateral drifts rates of below 15pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  11. Development of atomic spectroscopy technologies - Hyperfine structure of 2 period atoms using optogalvanic effects

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Nam Ic [Hankuk University of foreign studies, Seoul (Korea)

    2000-03-01

    The source of anomalous broad linewidth of 3{sup 3}P{sub 1},{sub 2},{sub 3}-3{sup 3}D{sub 2},{sub 3},4(3s') transition was explained. The broad optogalvanic spectrum was consisted of two gaussian peaks of different linewidths, and they are separated by 250 MHz. The Narrow peak, which has linewidth of room temperature, is from oxygen atoms already separated, and the shifted broad peak, which has linewidth corresponding to a temperature of 9000 K, is from weakly bound molecular ions. Obtained hyperfine spectrum of fluorine atom at the expected frequency, was too weak to analyze hyperfine structure constants. Microwave discharge might be necessary for higher density of excited state. 16 refs., 11 figs. (Author)

  12. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  13. Fourier transform infrared and fluorescence spectroscopy for analysis of vegetable oils

    Directory of Open Access Journals (Sweden)

    Nigri S.

    2013-09-01

    Full Text Available Fourier transform infrared (FTIR and fluorescence spectroscopy, combined with chemometric approaches have been developed to analysis of extra virgin olive oil adulterated with pomace olive oil. The measurements were made on pure vegetable oils: extra virgin oil, pomace olive oil and that adulterated with varying concentration of pomace olive oil. Today, the application of FTIR spectroscopy has increased in food studied, and particularly has become a powerful analytical tool in the study of edible oils and fats. The spectral regions where the variations were observed chosen for developing models and cross validation was used. The synchronous fluorescence spectrometry takes advantage of the hardware capability to vary both the excitation and emission wavelengths during the analysis with constant wavelength difference is maintained between the two. The region between 300 and 400 nm is attributed to the tocopherols and phenols, the derivatives of vitamin E are associated with the region 400–600 nm and the bands in the region of 600–700 nm are attributed to the chlorophyll and peophytin pigments. The results presented in this study suggest that FTIR and fluorescence may be a useful tool for analysis and detecting adulteration of extra virgin olive oil with pomace oil.

  14. Interaction Between Baicalein and Amyloid-β Fibrils Studied by Fluorescence Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    SONG Sheng-mei; WANG Yong-xiang; XIONG Li-min; QU Ling-bo; XU Mao-tian

    2013-01-01

    The interaction between baicalein and amyloid-β(Aβ) polypeptide was investigated by fluorescence and UV-Vis absorbance spectroscopy.The absence of the characteristic peak of tyrosinate(Tyr) in the absorption spectra of Aβ-baicalein complexes provided evidence that the sole Tyr residue in Aβ is not bound to baicalein,but remains close to it.The intrinsic fluorescence of Tyr residues in Aβ1-42 aggregates was quenched strongly by the excited-state ionization of baicalein.In this complex the hydroxyl group was not ionized,but to ionize immediately upon excitation.Absorbance,fluorescence and synchronous spectroscopies show that the formation of Schiff base between the quinone of baicalein and the lysine(Lys) side chains of Aβ1-42 is another major reason in the depolymerization of Aβ1-42 aggregates by baicalein.It is desirable that our research would offer some valuable reference for the application of flavonoid derivants in Alzheimer's disease(AD) treatment.

  15. Study of the interaction between N-confused porphyrin and bovine serum albumin by fluorescence spectroscopy.

    Science.gov (United States)

    Yu, Xianyong; Liu, Ronghua; Yi, Rongqiong; Yang, Fengxian; Huang, Haowen; Chen, Jian; Ji, Danhong; Yang, Ying; Li, Xiaofang; Yi, Pinggui

    2011-04-01

    The fluorescence and ultraviolet spectroscopy were explored to study the interaction between N-confused porphyrins (NCP) and bovine serum albumin (BSA) under imitated physiological condition. The experimental results indicated that the fluorescence quenching mechanism between BSA and NCP was static quenching procedure at low NCP concentration at 293 and 305 K or a combined quenching (static and dynamic) procedure at higher NCP concentration at 305 K. The binding constants, binding sites and the corresponding thermodynamic parameters ΔH, ΔS, and ΔG were calculated at different temperatures. The comparison of binding potency of the three NCP to BSA showed that the substituting groups in benzene ring could enhance the binding affinity. From the thermodynamic parameters, we concluded that the action force was mainly hydrophobic interaction. The binding distances between NCP and BSA were calculated using Förster non-radiation energy transfer theory. In addition, the effect of NCP on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy.

  16. [Commercial orange juice beverages detection by fluorescence spectroscopy combined with PCA-ED and PLSR methods].

    Science.gov (United States)

    Hu, Yang-jun; Zhu, Chun; Chen, Guo-qing; Zhang, Yong; Kong, Fan-biao; Li, Run; Zhu, Zhuo-wei; Wang, Xu; Gao, Shu-mei

    2014-08-01

    In order to classify the orange juiice beverages effectively, the fluorescence character differences of two kinds of orange juice beverages including 100% orange juice and orange drink were analyzed and compared, principal component analysis combined with Euclidean distance was adopted to classify two kinds of orange juice beverages, and ideal classification results were obtained. Meanwhile, the orange juice content estimation model was established by using fluorescence spectroscopy combined with partial least squares regression method, and the correlation coefficient R, root mean square error of calibration RMSEC and root mean square error of prediction RMSEP were 0.997, 0.87% and 2.05%, respectively. The experimental results indicate that the calibration model offers comparatively accurate content estimation, which reflect the actual orange juice content in the commercial orange juice beverages. The exploration to classify orange juice beverages was carried out from two aspects of qualitative and quantitative analysis by employing fluorescence spectroscopy combined with chemometrics method, which can provide a new idea for the classification and adulteration detection of commercial orange juice beverages, and also can give certain reference basis for the quality control of orange juice raw material.

  17. Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy.

    Science.gov (United States)

    Korlann, You; Dertinger, Thomas; Michalet, Xavier; Weiss, Shimon; Enderlein, Jörg

    2008-09-15

    We present a new technique, polarization-modulation dual-focus fluorescence correlation spectroscopy (pmFCS), based on the recently intro-duced dual-focus fluorescence correlation spectroscopy (2fFCS) to measure the absolute value of diffusion coefficients of fluorescent molecules at pico- to nanomolar concentrations. Analogous to 2fFCS, the new technique is robust against optical saturation in yielding correct values of the diffusion coefficient. This is in stark contrast to conventional FCS where optical saturation leads to an apparent decrease in the determined diffusion coefficient with increasing excitation power. However, compared to 2fFCS, the new technique is simpler to implement into a conventional confocal microscope setup and is compatible with cw-excitation, only needing as add-ons an electro-optical modulator and a differential interference contrast prism. With pmFCS, the measured diffusion coefficient (D) for Atto655 maleimide in water at 25?C is determined to be equal to (4.09 +/- 0.07) x 10(-6)cm(2)/s, in good agreement with the value of 4.04 x 10-6cm2/s as measured by 2fFCS.

  18. Real-Time Near-Field Terahertz Imaging with Atomic Optical Fluorescence

    CERN Document Server

    Wade, Christopher G; de Melo, Natalia R; Kondo, Jorge M; Adams, Charles S; Weatherill, Kevin J

    2016-01-01

    Terahertz (THz) near-field imaging is a flourishing discipline [1], with applications from fundamental studies of beam propagation [2,3] to the characterisation of metameterials [4,5] and waveguides [6,7]. Beating the diffraction limit typically involves rastering structures or detectors with length scale shorter than the radiation wavelength; in the THz domain this has been achieved using a number of techniques including scattering tips [8,9] and apertures [10]. Alternatively, mapping THz fields onto an optical wavelength and imaging the visible light removes the requirement for scanning a local probe, speeding up image collection times [11,12]. Here we report THz to optical conversion using a gas of highly excited `Rydberg' atoms. By collecting THz-induced optical fluorescence we demonstrate a real-time image of a THz standing wave and we use well-known atomic properties to calibrate the THz field strength. The mono-atomic gas does not distort the THz field and offers the potential to immerse structures wit...

  19. Histologic differences between orthotopic xenograft pancreas models affect Verteporfin uptake measured by fluorescence microscopy and spectroscopy

    Science.gov (United States)

    O'Hara, Julia A.; Samkoe, Kimberley S.; Chen, Alina; Isabelle, Martin; Hoopes, P. J.; Hasan, Tayyaba; Pogue, Brian W.

    2012-02-01

    Photodynamic therapy (PDT) that uses the second generation photosensitizer, verteporfin (VP), is a developing therapy for pancreatic cancer. The optimal timing of light delivery related to VP uptake and distribution in pancreatic tumors will be important information to obtain to improve treatment for this intractable disease. In this work we examined uptake and distribution of VP in two orthotopic pancreatic tumors with different histological structure. ASPC-1 (fast-growing) and Panc-1 (slower growing) tumors were implanted in SCID mice and studied when tumors were approximately 100mm3. In a pilot study, these tumors had been shown to differ in uptake of VP using lightinduced fluorescence spectroscopy (LIFS) in vivo and fluorescence imaging ex vivo and that work is extended here. In vivo fluorescence mean readings of tumor and liver increased rapidly up to 15 minutes after photosensitizer injection for both tumor types, and then continued to increase up to 60 minutes post injection to a higher level in ASPC-1 than in Panc-1. There was variability among animals with the same tumor type, in both liver and tumor uptake and no selectivity of tumor over liver. In this work we further examined VP uptake at multiple time points in relation to microvascular density and perfusion, using DiOC7 (to mark blood vessels) and VP fluorescence in the same tissue slices. Analysis of DiOC7 fluorescence indicates that AsPC-1 and Panc-1 have different vascular densities but AsPC-1 vasculature is more perfusive. Analysis of colocalized DiOC7 and VP fluorescence showed ASPC-1 with higher accumulation of VP 3 hrs after injection and more VP at a distance from blood vessels compared to Panc-1. This work shows the need for techniques to analyze photosensitizer distribution in order to optimize photodynamic therapy as an effective treatment for pancreatic tumors.

  20. Laser spectroscopy of the antiprotonic helium atom – its energy levels and state lifetimes

    CERN Document Server

    Hidetoshi, Yamaguchi

    2003-01-01

    The antiprotonic atom is a three-body exotic system consisting of an antiproton, an electron and a helium nucleus. Its surprising longevity was found and has been studied for more than 10 years. In this work, transition energies and lifetimes of this exotic atom were systematically studied by using the antiproton beam of AD(Antiproton Decelerator) facility at CERN, with an RFQ antiproton decelerator, a narrow-bandwidth laser, Cerenkov counters with fast-response photomultiplier tubes, and cryogenic helium target systems. Thirteen transition energies were determined with precisions of better than 200 ppb by a laser spectroscopy method, together with the elimination of the shift effect caused by collisions with surrounding atoms. Fifteen lifetimes (decay rates) of short-lived states were determined from the time distributions of the antiproton-annihilation signals and the resonance widths of the atomic spectral lines. The relation between the magnitude of the decay rates and the transition multipolarity was inv...

  1. Theoretical Studies on Electronic Structures and Spectroscopy of Fluorescent Arylamino Fumaronitrile

    Institute of Scientific and Technical Information of China (English)

    Xiao-peng Chen; Yu-qi Ding; Qi-wen Teng

    2008-01-01

    A new series of fluorescent arylamino fumarinitrile derivatives was designed and optimized using density function theory at the B3LYP/6-31G* level.Based on the optimized geometries,the electronic,fluorescent and 13C NMR spectra are calculated with INDO/CIS,CIS-ZINDO TD,and B3LYP/6-31G* methods,re-spectively.Starting with the first of the series,the LUMO-HOMO energy gaps of the derivatives become wider and the fluorescent wavelengths and the main peaks in the electronic spectra axe blue-shifted owing to the large steric effect of naphthyl rings.On the contrary,the energy gaps of the derivatives turn narrow,and the fluorescent wavelengths and the main peaks in the electronic spectra are red-shifted since hydroxyl groups improve the symmetry and extend the conjugation system.The chemical shifts of sp2-C on the phenyl rings are moved upfield,while chemical shifts of carbon atoms on the cyano groups and those connected with the cyano groups are changed downfield in the presence of hydroxyl groups.

  2. Structure and dynamics of fluorescently labeled complex fluids by fourier imaging correlation spectroscopy

    Science.gov (United States)

    Grassman; Knowles; Marcus

    2000-12-01

    We present a method of Fourier imaging correlation spectroscopy (FICS) that performs phase-sensitive measurements of modulated optical signals from fluorescently labeled complex fluids. FICS experiments probe the time-dependent trajectory of a spatial Fourier component of the fluid particle density at a specified wave number k, and provide a direct route to the intermediate scattering function. The FICS approach overcomes signal sensitivity problems associated with dynamic light scattering, while offering a means to acquire time-dependent information about spatial distributions of fluorescent particles, superior in efficiency to direct imaging methods. We describe the instrumental setup necessary to perform FICS experiments, and outline the theory that establishes the connection between FICS observables and statistical mechanical quantities describing liquid state dynamics. Test measurements on monolayer suspensions of rhodamine labeled polystyrene spheres are detailed.

  3. What information is contained in the fluorescence correlation spectroscopy curves, and where

    Science.gov (United States)

    Khadem, S. M. J.; Hille, C.; Löhmannsröben, H.-G.; Sokolov, I. M.

    2016-08-01

    We discuss the application of fluorescence correlation spectroscopy (FCS) for characterization of anomalous diffusion of tracer particles in crowded environments. While the fact of anomaly may be detected by the standard fitting procedure, the value of the exponent α of anomalous diffusion may be not reproduced correctly for non-Gaussian anomalous diffusion processes. The important information is however contained in the asymptotic behavior of the fluorescence autocorrelation function at long and at short times. Thus, analysis of the short-time behavior gives reliable values of α and of lower moments of the distribution of particles' displacement, which allows us to confirm or reject its Gaussian nature. The method proposed was tested on the FCS data obtained in artificial crowded fluids and in living cells.

  4. Measurement of the temperature-dependent diffusion properties of nanoparticles by using fluorescence correlation spectroscopy

    Science.gov (United States)

    Jung, Chanbae; Lee, Jaeran; Kang, Manil; Kim, Sok Won

    2014-10-01

    Changes in the diffusion properties of three kinds of fluorescent particles, Alexa Fluor 647, Q-dots (quantum dots), and beads, with temperature were investigated with a home-built fluorescence correlation spectroscopy (FCS) system based on a confocal microscope. In all samples, as the temperature was increased, the diffusion times were reduced, indicating an increase in the diffusion coefficient. In particular, of all the particles, Alexa Fluor 647 having the smallest size of ˜1 nm, showed a hydrodynamic radius that increased with increasing temperature of the solvent. However, for the Q-dots and beads with larger sizes, the hydrodynamic radius of the particles was inversely proportional to the temperature. These results show that diffusion coefficient obtained by changing the temperature has an influence on the hydrodynamic radius of the particles.

  5. Measurement of the temperature-dependent diffusion properties of nanoparticles by using fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chanbae; Lee, Jaeran; Kang, Manil; Kim, Sokwon [University of Ulsan, Ulsan (Korea, Republic of)

    2014-10-15

    Changes in the diffusion properties of three kinds of fluorescent particles, Alexa Fluor 647, Q-dots (quantum dots), and beads, with temperature were investigated with a home-built fluorescence correlation spectroscopy (FCS) system based on a confocal microscope. In all samples, as the temperature was increased, the diffusion times were reduced, indicating an increase in the diffusion coefficient. In particular, of all the particles, Alexa Fluor 647 having the smallest size of ∼1 nm, showed a hydrodynamic radius that increased with increasing temperature of the solvent. However, for the Q-dots and beads with larger sizes, the hydrodynamic radius of the particles was inversely proportional to the temperature. These results show that diffusion coefficient obtained by changing the temperature has an influence on the hydrodynamic radius of the particles.

  6. Investigation of polymer electrolyte membrane chemical degradation and degradation mitigation using in situ fluorescence spectroscopy.

    Science.gov (United States)

    Prabhakaran, Venkateshkumar; Arges, Christopher G; Ramani, Vijay

    2012-01-24

    A fluorescent molecular probe, 6-carboxy fluorescein, was used in conjunction with in situ fluorescence spectroscopy to facilitate real-time monitoring of degradation inducing reactive oxygen species within the polymer electrolyte membrane (PEM) of an operating PEM fuel cell. The key requirements of suitable molecular probes for in situ monitoring of ROS are presented. The utility of using free radical scavengers such as CeO(2) nanoparticles to mitigate reactive oxygen species induced PEM degradation was demonstrated. The addition of CeO(2) to uncatalyzed membranes resulted in close to 100% capture of ROS generated in situ within the PEM for a period of about 7 h and the incorporation of CeO(2) into the catalyzed membrane provided an eightfold reduction in ROS generation rate.

  7. Fluorescence Spectroscopy of the Retina for the Screening of Bovine Spongiform Encephalopathy.

    Science.gov (United States)

    Bhattacharjee, Ujjal; Graham, Catherine; Czub, Stefanie; Dudas, Sandor; Rasmussen, Mark A; Casey, Thomas A; Petrich, Jacob W

    2016-01-13

    Transmissible spongiform encephalopathies (TSE) are progressive, neurodegenerative disorders, of which bovine spongiform encephalopathy (BSE) is of special concern because it is infectious and debilitating to humans. The possibility of using fluorescence spectroscopy to screen for BSE in cattle was explored. Fluorescence spectra from the retinas of experimentally infected BSE-positive cattle with clinical disease were compared with those from both sham-inoculated and non-inoculated BSE-negative cattle. The distinct intensity difference of about 4-10-fold between the spectra of the BSE-positive and the BSE-negative (sham-inoculated and non-inoculated) eyes suggests the basis for a means of developing a rapid, noninvasive examination of BSE in particular and TSEs in general.

  8. Characterization of metabolites in different kiwifruit varieties by NMR and fluorescence spectroscopy.

    Science.gov (United States)

    Abdul Hamid, Nur Ashikin; Mediani, Ahmed; Maulidiani, M; Abas, Faridah; Park, Yong Seo; Leontowicz, Hanna; Leontowicz, Maria; Namiesnik, Jacek; Gorinstein, S

    2017-05-10

    It is known from our previous studies that kiwifruits, which are used in common human diet, have preventive properties of coronary artery disease. This study describes a combination of (1)H NMR spectroscopy, multivariate data analyses and fluorescence measurements in differentiating of some kiwifruit varieties, their quenching and antioxidant properties. A total of 41 metabolites were identified by comparing with literature data Chenomx database and 2D NMR. The binding properties of the extracted polyphenols against HSA showed higher reactivity of studied two cultivars in comparison with the common Hayward. The results showed that the fluorescence of HSA was quenched by Bidan as much as twice than by other fruits. The correlation between the binding properties of polyphenols in the investigated fruits, their relative quantification and suggested metabolic pathway was established. These results can provide possible application of fruit extracts in pharmaceutical industry.

  9. Fluorescence spectroscopy as a tool for quality assessment of humic substances

    Science.gov (United States)

    Boguta, Patrycja

    2016-04-01

    *The studies were partly carried out within the framework of a research project. The project was financed from funds of National Science Center on the base of decision number DEC-2013/11/D/NZ9/02545. Fluorescence spectroscopy belongs to modern, non-destructive, rapid and relatively cheap methods, as well as for many years it was successfully used in studies of organic compounds in the fields of medicine, biology and chemistry. On the other hand, soil organic matter is a group of compounds with a complex spatial structure showing a large number of groups with different kinds of fluorophores. This could suggest the possibility of application of fluorescence spectroscopy in assessing the quality of humic substances as well as in monitoring of their chemical transformations. The aim of study was chemical description of humic and fulvic acids based on fluorescence spectra, as well as an attempt of evaluation of changes occurring under the influence of different pH and during interactions with various concentrations of metal. The humic and fulvic acids were isolated from chemically different soils. The measurements were carried out on Hitachi fluorescence spectrometer in solutions with a concentration of humic acids 40mg dm-3, at pH from 3 to 7, and for the evaluation of the metal impact: with increasing Zn concentrations (0-50mg dm-3). The fluorescence spectra were recorded in the form of synchronous and emission-excitation matrices (EEM). Studies have shown the presence of different groups of fluorophores. Synchronous spectra were characterized by a well-separated bands showing fluorescence in the area of low, medium and high wavelengths, suggesting the presence of structures, both weakly and strongly humified. EEM spectra revealed map of fluorophores within wide ranges of emission and excitation. Fluorophores differed in both position and intensity. The highest intensity was observed for compounds with the lowest humification degree which might be due to high amount

  10. Direct Vpr-Vpr Interaction in Cells monitored by two Photon Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging

    Directory of Open Access Journals (Sweden)

    Mély Yves

    2008-09-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 encodes several regulatory proteins, notably Vpr which influences the survival of the infected cells by causing a G2/M arrest and apoptosis. Such an important role of Vpr in HIV-1 disease progression has fuelled a large number of studies, from its 3D structure to the characterization of specific cellular partners. However, no direct imaging and quantification of Vpr-Vpr interaction in living cells has yet been reported. To address this issue, eGFP- and mCherry proteins were tagged by Vpr, expressed in HeLa cells and their interaction was studied by two photon fluorescence lifetime imaging microscopy and fluorescence correlation spectroscopy. Results Results show that Vpr forms homo-oligomers at or close to the nuclear envelope. Moreover, Vpr dimers and trimers were found in the cytoplasm and in the nucleus. Point mutations in the three α helices of Vpr drastically impaired Vpr oligomerization and localization at the nuclear envelope while point mutations outside the helical regions had no effect. Theoretical structures of Vpr mutants reveal that mutations within the α-helices could perturb the leucine zipper like motifs. The ΔQ44 mutation has the most drastic effect since it likely disrupts the second helix. Finally, all Vpr point mutants caused cell apoptosis suggesting that Vpr-mediated apoptosis functions independently from Vpr oligomerization. Conclusion We report that Vpr oligomerization in HeLa cells relies on the hydrophobic core formed by the three α helices. This oligomerization is required for Vpr localization at the nuclear envelope but not for Vpr-mediated apoptosis.

  11. A novel fluorescence "on-off-on" chemosensor for Hg(2+)via a water-assistant blocking heavy atom effect.

    Science.gov (United States)

    Wu, Chong; Zhao, Jiang-Lin; Jiang, Xue-Kai; Wang, Chuan-Zeng; Ni, Xin-Long; Zeng, Xi; Redshaw, Carl; Yamato, Takehiko

    2016-10-14

    Upper rim pyrene-functionalized hexahomotrioxacalix[3]arene L was synthesized via Click chemistry, and its fluorescence behaviors toward several common metal cations were investigated. L exhibited a significant fluorescence quenching response to Hg(2+) in CH3CN solution, which was unaffected by the coexistence of other competitive metal cations. Thus, L can be utilized as a highly selective and sensitive fluorescent chemosensor for Hg(2+) with a detection limit in the nM level. Interestingly, the quenched fluorescence emission can be successfully revived upon the addition of water. In this process, the heavy atom effect of Hg(2+) can be blocked by further coordination of a water molecule and resulted in the revival of the fluorescence emission of L/Hg(2+) complex. Particularly, other polar solvents such as CH3OH and CH3CH2OH also have the ability to revive the fluorescence emission of the L/Hg(2+) complex, but on a much smaller scale than observed for H2O. The heavy atom effect and blocking thereof were demonstrated within the same system by the use of a C3-symmetric homooxacalix[3]arene scaffold. The present studies provided further evidence for the blocking heavy atom effect.

  12. Analysis of the Peiting Woman Using Portable X-Ray Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Bauerochse, Andreas

    2013-04-01

    Full Text Available Portable X-ray Fluorescence Spectroscopy was applied to the skeletal remains of 13 bog bodies and their bog burial environments. The objective was to create a better understanding of Northern European bog environmental chemistry and its diagenetic effects on interred bog bodies, determine bog body geographic disparity and/or origin, and identify if post-discovery preservation procedures were applied to the bog body remains. This paper summarizes the findings for one of those 13 bog bodies: the Peiting Woman from Bavaria, Germany. The elements analyzed include Antimony, Cobalt, Copper, Iron, Manganese, Molybdenum, Lead, Strontium, Titanium, Zinc, and Zirconium.

  13. Study on the interaction of anticancer drug mitoxantrone with DNA by fluorescence and Raman spectroscopies

    Institute of Scientific and Technical Information of China (English)

    Lingjuan Tang; Zhenrong Sun; Jianyu Guo; Zugeng Wang

    2006-01-01

    @@ Mitoxantrone, a clinically useful antitumour antibiotic for leukaemia and breast cancer, has received more attentions. In this paper, the interaction between mitoxantrone and calf thymus DNA is investigated by Raman and fluorescence spectroscopies, and the binding site of mitoxantrone to calf thymus DNA is explored. The results showed that mitoxantrone interacts with calf thymus DNA bases by the intercalation of anthracycline into the base pair plane of adenine (A) and thymine (T), and it results in the disruption of the hydrogen bonds between calf thymus DNA bases, and thus the calf thymus DNA double-strand can be disrupted into the B-form DNA double-strand segments.

  14. Detection of orange juice frauds using front-face fluorescence spectroscopy and Independent Components Analysis.

    Science.gov (United States)

    Ammari, Faten; Redjdal, Lamia; Rutledge, Douglas N

    2015-02-01

    The aim of this study was to find simple objective analytical methods to assess the adulteration of orange juice by grapefruit juice. The adulterations by addition of grapefruit juice were studied by 3D-front-face fluorescence spectroscopy followed by Independent Components Analysis (ICA) and by classical methods such as free radical scavenging activity and total flavonoid content. The results of this study clearly indicate that frauds by adding grapefruit juice to orange juice can be detected at percentages as low as 1%.

  15. Interactions of hypericin with a model mutagen - Acridine orange analyzed by light absorption and fluorescence spectroscopy

    Science.gov (United States)

    Pietrzak, Monika; Szabelski, Mariusz; Kasparek, Adam; Wieczorek, Zbigniew

    2017-02-01

    The present study was designed to estimate the ability of hypericin to interact with a model mutagen - acridine orange. The hetero-association of hypericin and acridine orange was investigated with absorption and fluorescence spectroscopy methods in aqueous solution of DMSO. The data indicate that hypericin forms complexes with acridine orange and that the association constants are relatively high and depend on DMSO concentration. The absorption spectra of the hypericin - acridine orange complexes were examined as well. Owing to its ability to interact with flat aromatic compounds, hypericin may potentially be used as an interceptor molecule.

  16. Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes

    Directory of Open Access Journals (Sweden)

    Martin Hof

    2010-01-01

    Full Text Available Fluorescence correlation spectroscopy (FCS is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support.

  17. [Discussion on diagenesis of Xilingang pluton-constrained by X-ray Fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy].

    Science.gov (United States)

    Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua

    2013-05-01

    The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system.

  18. Determination of zinc in serum, blood, and ultrafiltrate fluid from patients on hemofiltration by graphite furnace/atomic absorption spectroscopy or flow injection analysis/atomic absorption spectroscopy.

    Science.gov (United States)

    de Blas, O J; Rodriguez, R S; Mendez, J H; Tomero, J A; Gomez, B de L; Gonzalez, S V

    1994-01-01

    Two methods were optimized for the determination of zinc in samples of blood, serum, and ultrafiltrate fluid from patients with chronic renal impairment undergoing hemofiltration. In the first procedure, after acid digestion of the samples, Zn in blood and serum is determined by a system coupled to flow injection analysis and atomic absorption spectroscopy. The method is rapid, automated, simple, needs small amounts of sample, and has acceptable analytical characteristics. The analytical characteristics obtained were as follows: determination range of method, 0.05-2.0 ppm of Zn; precision as coefficient of variation (CV), 5.3%; recovery, 95-105%; and detection limit (DL), 0.02 ppm. The second method is optimized for ultrafiltrate fluid because the sensitivity of the first procedure is not suitable for the levels of Zn (ppb or ng/mL) in these samples. The technique chosen was atomic absorption spectroscopy with electrothermal atomization in a graphite furnace. The analytical characteristics obtained were as follows: determination range of method, 0.3-2.0 ppb Zn; CV, 5.7%; recovery, 93-107%; and DL, 0.12 ppb. The methods were used to determine zinc in samples of blood, serum, and ultrafiltrate fluid from 5 patients with chronic renal impairment undergoing hemofiltration to discover whether there were significant differences in the zinc contents of blood, serum, and ultrafiltrate fluid after the hemofiltration process. An analysis of variance of the experimental data obtained from a randomly selected group of 5 patients showed that zinc concentrations in the ultrafiltrate fluid, venous blood, and venous serum do not vary during hemofiltration (p < 0.05), whereas in arterial blood and serum, the time factor has a significant effect.

  19. Pentavalent antimony uptake pathway through erythrocyte membranes: molecular and atomic fluorescence approaches.

    Science.gov (United States)

    Barrera, Camila; López, Silvana; Aguilar, Luis; Mercado, Luis; Bravo, Manuel; Quiroz, Waldo

    2016-04-01

    Previous studies by our group have shown that Sb(V) is able to enter red blood cells in a dynamic process and is reduced to Sb(III) by glutathione. The present study aims to investigate a possible entry pathway for Sb(V) through the erythrocyte membrane. Applying fluorescence spectroscopy studies with Laurdan and diphenylhexatriene (DPH) probes, it was found that there was no interaction between Sb(V) and membrane lipids. By comparing the Sb(V) entry percentages through lipid vesicles and sealed erythrocyte membranes, it was found that Sb(V) required protein channels to pass through the membrane. The competitive inhibition results using HCO3 (-) and Cl(-) showed that the Sb(V) uptake rate through the membrane fell approximately 50-70 % until full inhibition was reached, which was possibly due to the inhibition of the anion exchanger 1 (AE1) channel. Finally, the fluorescence measurements with the 5-iodoacetamidofluorescein (5-IAF) probe showed that Sb(V) interacted with membrane protein SH groups during this process.

  20. Determination of copper, zinc and iron in broncho-alveolar lavages by atomic absorption spectroscopy.

    Science.gov (United States)

    Harlyk, C; Mccourt, J; Bordin, G; Rodriguez, A R; van der Eeckhout, A

    1997-11-01

    Concentrations of Zn, Cu and Fe were measured in 157 broncho-alveolar lavages (BAL), before and after centrifugation, collected at the Leuven University Hospital (Belgium). Zn was measured by flame-atomic absorption spectroscopy, using direct calibration, while Cu and Fe were determined by electrothermal atomic absorption spectroscopy, using the method of standard additions. For Fe only 56 samples were measured. Most of the studied elements are present in the liquid phase (supernatant). About 90% of Cu concentrations lie between 0 and 15 micrograms/kg, while 90% of Zn concentrations are lower than 230 micrograms/kg, with 30% between 30 and 70 micrograms/kg, and 50% between 100 and 200 micrograms/kg. There seems to be a reverse relationship between Cu and Zn levels with high Cu going along with low Zn and vice versa.

  1. [Constant scaled-energy spectroscopy of Rydberg atoms in a static electric field].

    Science.gov (United States)

    Cao, Jun-wen; Liu, Xiao-jun; Zhao, Zhi; Zhan, Ming-sheng

    2002-02-01

    In the past years, scaled energy spectroscopy is under active investigation because this method can simplify the analysis of atomic spectra in the external field based on classic mechanics. A fully computer-controlled experimental system to study the constant scaled-energy spectroscopy was established and described in this paper. The excitation energy E and the strength of the external electric field F were controlled synchronously to keep the scaled-energy epsilon = E/square root of F constant. With this system, constant scaled-energy spectra of Strontium Rydberg atoms at epsilon = -3.0 in a static electric field were successfully recorded for the first time, and the recurrence spectra were obtained by a Fourier transform.

  2. Exploring the binding of 4-thiothymidine with human serum albumin by spectroscopy, atomic force microscopy, and molecular modeling methods.

    Science.gov (United States)

    Zhang, Juling; Gu, Huaimin; Zhang, Xiaohui

    2014-01-30

    The interaction of 4-thiothymidine (S(4)TdR) with human serum albumin (HSA) was studied by equilibrium dialysis under normal physiological conditions. In this work, the mechanism of the interaction between S(4)TdR and human serum albumin (HSA) was exploited by fluorescence, UV, CD circular, and SERS spectroscopic. Fluorescence and UV spectroscopy suggest that HSA intensities are significantly decreased when adding S(4)TdR to HAS, and the quenching mechanism of the fluorescence is static. Also, the ΔG, ΔH, and ΔS values across temperature indicated that hydrophobic interaction was the predominant binding force. The CD circular results show that there is little change in the secondary structure of HSA except the environment of amino acid changes when adding S(4)TdR to HSA. The surface-enhanced Raman scattering (SERS) shows that the interaction between S(4)TdR and HSA can be achieved through different binding sites which are probably located in the II A and III A hydrophobic pockets of HSA which correspond to Sudlow's I and II binding sites. In addition, the molecular modeling displays that S(4)TdR-HSA complex is stabilized by hydrophobic forces, which result from amino acid residues. The atomic force microscopy results revealed that the single HSA molecular dimensions were larger after interaction of 4-thiothymidine. This work would be useful to understand the state of the transportation, distribution, and metabolism of the anticancer drugs in the human body, and it could provide a useful biochemistry parameter for the development of new anti-cancer drugs and research of pharmacology mechanisms.

  3. Dynamic fluorescence spectroscopy on single tryptophan mutants of EIImtl in detergent micelles : Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay

    NARCIS (Netherlands)

    Swaving Dijkstra, Dolf; Broos, J.; Visser, Antonie J.W.G.; van Hoek, A.; Robillard, George

    1997-01-01

    The effects of substrate and substrate analogue binding and phosphorylation on the conformational dynamics of the mannitol permease of Escherichia coli were investigated, using time-resolved fluorescence spectroscopy on mutants containing five single tryptophans situated in the membrane-embedded C d

  4. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy.

    Science.gov (United States)

    Ridgeway, William K; Millar, David P; Williamson, James R

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantitate reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes.

  5. Potential application of synchronous fluorescence spectroscopy to determine benzo[a]pyrene in soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Hua Guoxiong [School of Biology, Institute for Research on the Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, NE1 7RU (United Kingdom); Killham, Ken [Department of Plant and Soil Science, Cruickshank Building, University of Aberdeen, AB24 3UU (United Kingdom); Singleton, Ian [School of Biology, Institute for Research on the Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, NE1 7RU (United Kingdom)]. E-mail: ian.singleton@ncl.ac.uk

    2006-01-15

    Benzo[a]pyrene (BaP) is a significant environmental pollutant and rapid, accurate methods to quantify this compound in soil for both research and environmental investigation purposes are required. In this work, solvent extracts from five contrasting soils spiked with four different polycyclic aromatic hydrocarbons (PAHs) were rapidly analysed by using a synchronous fluorescence spectroscopy (SFS) method. The SFS method was validated using HPLC with ultraviolet detection. A good correlation for the quantification of BaP in soil extracts by the two methods was observed. The detection limit of the SFS method was 1.6 x 10{sup -9} g/ml in CTAB micellar medium (7.8 mmol/l). The work demonstrates that SFS has potential as a sensitive, accurate, rapid, simple and economic methodology and an efficient alternative to HPLC for fast confirmation and quantification of BaP in complex soil extracts. - Synchronous fluorescence spectroscopy has potential as a method for confirmation of benzo[a]pyrene in soil extracts.

  6. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    Science.gov (United States)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  7. New Atomic Data for Doubly Ionized Iron Group Atoms by High Resolution UV Fourier Transform Spectroscopy

    Science.gov (United States)

    Smith, Peter L.; Pickering, Juliet C.; Thorne, A. P.

    2002-01-01

    Currently available laboratory spectroscopic data of doubly ionized iron-group element were obtained about 50 years ago using spectrographs of modest dispersion, photographic plates, and eye estimates of intensities. The accuracy of the older wavelength data is about 10 mAngstroms at best, whereas wavelengths are now needed to an accuracy of 1 part in 10(exp 6) to 10(exp 7) (0.2 to 2 mAngstroms at 2000 Angstroms). The Fourier transform (FT) spectroscopy group at Imperial College, London, and collaborators at the Harvard College Observatory have used a unique VUV FT spectrometer in a program focussed on improving knowledge of spectra of many neutral and singly and doubly ionized, astrophysically important, iron group elements. Spectra of Fe II and Fe III have been recorded at UV and VUV wavelengths with signal-to-noise ratios of several hundred for the stronger lines. Wavelengths and energy levels for Fe III are an order of magnitude more accurate than previous work; analysis is close to completion. f-values for Fe II have been published.

  8. Laser-induced Fluorescence and Optical Emission Spectroscopy for the Determination of Reactive Species in the Effluent of Atmospheric Pressure Low Temperature Plasma Jets

    Science.gov (United States)

    Pei, Xuekai; Razavi, Hamid; Lu, Xinpei; Laroussi, Mounir

    2014-10-01

    OH radicals and O atoms are important active species in various applications of room temperature atmospheric pressure plasma jet (RT-APPJ). So the determination of absolute density of OH radicals and O atoms in RT-APPJs is necessary. In this work, the time and spatially resolved OH radicals density of a RT-APPJ are measured using the laser-induced fluorescence (LIF) technology. In addition, the spatial distribution of the emitting species along the axial direction of the jet is of interest and is measured using optical emission spectroscopy. The absolute OH density of the RT-APPJ is about 2.0 × 1013 cm-3 at 5 mm away from the plasma jet nozzle and 1 μs after the discharge. The OH density reaches a maximum when H2O concentration in helium gas flow is about 130ppm. In order to control the OH density, the effect of voltage polarity, applied voltage magnitude, pulse frequency, pulse width on the OH density are also investigated and discussed. O atoms are investigated by TA-LIF. It is demonstrated that the O atoms density reaches a maximum when O2 percent is about 0.3% in pure He and the lifetime of O atoms in RT-APPJ is much longer (up to dozens of ms) than OH radicals.

  9. Study of high density polyethylene under UV irradiation or mechanical stress by fluorescence spectroscopy; Etude du comportement du polyethylene haute densite sous irradiation ultraviolette ou sollicitation mecanique par spectroscopie de fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Douminge, L.

    2010-05-15

    Due to their diversity and their wide range of applications, polymers have emerged in our environment. For technical applications, these materials can be exposed to aggressive environment leading to an alteration of their properties. The effects of this degradation are linked to the concept of life duration, corresponding to the time required for a property to reach a threshold below which the material becomes unusable. Monitoring the ageing of polymer materials constitute a major challenge. Fluorescence spectroscopy is a technique able to provide accurate information concerning this issue. In this study, emphasis was placed on the use of fluorescence spectroscopy to study the phenomena involved in either the UV radiation or mechanical stresses of a polymer. In the case of high density polyethylene, the lack of intrinsic fluorescent signal leads to the use of a dye. This dye gives a fluorescent response depending on its microenvironment. All modifications in the macromolecular chain generate a shift of the fluorescent peak. This work can be dissociated in two major parts, on one hand the influence of UV aging on the fluorescent response and in another hand the influence of mechanical stresses. In the first part, complementary analyses like FTIR or DSC are used to correlate fluorescent results with known photo degradation mechanisms. The results show the great sensibility of the technique to the microstructural rearrangement in the polymer. In the second part, the dependence between the stress and the fluorescence emission gives opportunity to evaluate internal stresses in the material during cyclic solicitations. (author)

  10. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  11. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface.

    Science.gov (United States)

    Jiang, Zhuoling; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2015-12-21

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4pz atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.

  12. Theoretical analysis of the spectroscopy of atomic Bose-Hubbard systems

    Science.gov (United States)

    Inaba, Kensuke; Yamashita, Makoto

    2016-04-01

    We provide a numerical method to calculate comprehensively the microwave and the laser spectra of ultracold bosonic atoms in optical lattices at finite temperatures. Our formulation is built up with the sum rules, up to the second order, derived from the general principle of spectroscopy. The sum rule approach allows us to discuss the physical origins of a spectral peak shift and also a peak broadening. We find that a spectral broadening of superfluid atoms can be determined from number fluctuations of atoms, while that of normal-state atoms is mainly attributed to quantum fluctuations resulting from hopping of atoms. To calculate spectra at finite temperatures, based on the sum rule approach, we provide a two-mode approximation assuming that spectra of the superfluid and normal state atoms can be calculated separately. Our method can properly deal with multipeak structures of spectra resulting from thermal fluctuations and also coexisting of the superfluid and the normal states. By combining the two-mode approximation with a finite temperature Gutzwiller approximation, we calculate spectra at finite temperatures by considering realistic systems, and the calculated spectra show nice agreements with those in experiments.

  13. Revisiting the inelastic electron tunneling spectroscopy of single hydrogen atom adsorbed on the Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhuoling; Wang, Hao [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Sanvito, Stefano [School of Physics, AMBER and CRANN Institute, Trinity College, Dublin 2 (Ireland); Hou, Shimin, E-mail: smhou@pku.edu.cn [Centre for Nanoscale Science and Technology, Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, Beijing 100871 (China); Beida Information Research (BIR), Tianjin 300457 (China)

    2015-12-21

    Inelastic electron tunneling spectroscopy (IETS) of a single hydrogen atom on the Cu(100) surface in a scanning tunneling microscopy (STM) configuration has been investigated by employing the non-equilibrium Green’s function formalism combined with density functional theory. The electron-vibration interaction is treated at the level of lowest order expansion. Our calculations show that the single peak observed in the previous STM-IETS experiments is dominated by the perpendicular mode of the adsorbed H atom, while the parallel one only makes a negligible contribution even when the STM tip is laterally displaced from the top position of the H atom. This propensity of the IETS is deeply rooted in the symmetry of the vibrational modes and the characteristics of the conduction channel of the Cu-H-Cu tunneling junction, which is mainly composed of the 4s and 4p{sub z} atomic orbitals of the Cu apex atom and the 1s orbital of the adsorbed H atom. These findings are helpful for deepening our understanding of the propensity rules for IETS and promoting IETS as a more popular spectroscopic tool for molecular devices.

  14. Two-Dimensional Fluorescence Difference Spectroscopy to Characterize Nanoparticles and their Interactions

    Science.gov (United States)

    Hurst, Miranda N.; Delong, Robert K.

    2016-09-01

    Two dimensional fluorescence difference spectroscopy (2D FDS) detects nanoparticle interactions following surface functionalization and biomolecule loading by generating a spectral signature of the fluorescent intensity per excitation and emission wavelengths. Comparing metal oxide nanoparticles revealed a unique spectral signature per material composition. 2D FDS showed to be sensitive to changes in surface properties between ZnO NPs synthesized by different methods. ZnO NP loaded with glycol chitosan, polyacrylic acid (PAA), or methoxy polyethylene glycol (mPEG) exhibited a distinct spectral signature shift. ZnO NP loaded with Torula Yeast RNA (TYRNA)(640 nm), polyinosinic: polycytidylic acid (pIC)(680 nm), or splice switching oligonucleotide (SSO)(650 nm) each revealed a shift in emission. Ras-Binding domain (RBD) at three concentrations (25, 37.5, 50 μg/mL) showed that fluorescent intensity was inversely related to the concentration of protein loaded. These data support 2D FDS as a novel technique in identifying nanoparticles and their surface interactions as a quality assurance tool.

  15. Use of time-resolved fluorescence spectroscopy to evaluate diagnostic value of collagen degradation products.

    Science.gov (United States)

    Sikora, Joanna; Cyrankiewicz, Michał; Wybranowski, Tomasz; Ziomkowska, Blanka; Ośmiałowski, Borys; Obońska, Ewa; Augustyńska, Beata; Kruszewski, Stefan; Kubica, Jacek

    2015-05-01

    The concentration of collagen degradation products (CDPs) may reflect the process of left ventricular remodeling (LVR). The aim of this study was to evaluate the potential diagnostic usefulness of time-resolved fluorescence spectroscopy (TRFS) in assessment of CDPs. The preliminary experiment was designed to establish if CDPs’ characteristics might be visible by mean fluorescence lifetime (FLT) in determined conditions. The in vitro model of CDPs was prepared by conducting the hydrolysis of type III collagen. The FLT of samples was measured by the time-resolved spectrometer Life Spec II with the subnanosecond pulsed 360-nm EPLED diode. The FLTs were obtained by deconvolution analysis of the data using a multiexponential model of fluorescence decay. In order to determine the limit of traceability of CDPs, a comparison of different collagen/plasma ratio in samples was performed. The results of our study showed that the increase of added plasma to hydrolyzed collagen extended the mean FLT. Thus, the diagnosis of LVR based on measurements using TRFS is possible. However, it is important to point out the experiment was preliminary and further investigation in this field of research is crucial.

  16. Properties of baculovirus particles displaying GFP analyzed by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Toivola, Jouni; Ojala, Kirsi; Michel, Patrik O; Vuento, Matti; Oker-Blom, Christian

    2002-12-01

    Recombinant baculovirus particles displaying green fluorescent protein (GFP) fused to the major envelope glycoprotein gp64 of the Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) were characterized by fluorescence correlation spectroscopy (FCS). FCS detected Brownian motion of single, intact recombinant baculovirus display particles with a diffusion coefficient (D) of (2.89 +/- 0.74) x 10(-8) cm2s(-1) and an apparent hydrodynamic radius of 83.35 +/- 21.22 nm. In the presence of sodium dodecyl sulfate (SDS), Triton X-100, and octylglucoside, the diffusion time was reduced to the 0.2 ms range (D = 7.57 x 10(-7) cm2s(-1)), showing that the fusion proteins were anchored in the viral envelope. This allowed for a calculation of the number of single gp64 fusion proteins incorporated in the viral membrane. A mean value of 3.2 fluorescent proteins per virus particle was obtained. Our results show that FCS is the method of choice for studying enveloped viruses such as a display virus with one component being GFP.

  17. Detection of polycyclic aromatic hydrocarbons (PAHs) in raw menhaden fish oil using fluorescence spectroscopy: Method development.

    Science.gov (United States)

    Pena, Edwin A; Ridley, Lauren M; Murphy, Wyatt R; Sowa, John R; Bentivegna, Carolyn S

    2015-09-01

    Raw menhaden fish oil was developed for biomonitoring polycyclic aromatic hydrocarbons (PAHs) using fluorescence spectroscopy. Menhaden (Genus Brevoortia) were collected in 2010 and/or 2011 from Delaware Bay, New Jersey, USA; James River, Virginia, USA; Vermillion Bay, Louisiana, USA (VBLA); and Barataria Bay, Louisiana, USA (BBLA). Barataria Bay, Louisiana received heavy oiling from the Deepwater Horizon oil spill. Method development included determining optimal wavelengths for PAH detection, fish oil matrix interferences, and influence of solvent concentration on extraction. Results showed that some fish oils contained high molecular weight PAH-like compounds in addition to other fluorescent compounds such as albumin and vitamin A and vitamin E. None of these naturally occurring compounds interfered with detection of high molecular weight PAHs. However, data suggested that the lipid component of fish oil was altering fluorescence spectra by supporting the formation of PAH excimers. For example, the most intense excitation wavelength for hydroxypyrene shifted from Ex285/Em430 to Ex340/Em430. Comparison of Deepwater Horizon crude oil and fish oil spectra indicated that some fish oils contained crude oil-like PAHs. Using wavelengths of Ex360/Em430, fish oil concentrations were calculated as 3.92 μg/g, 0.61 μg/g, and 0.14 μg/g for a Delaware Bay sample, BBLA 2011, and VBLA 2011, respectively. Overall, these results supported using menhaden fish oil to track PAH exposures spatially and temporally.

  18. Photoluminescence Enhancement in Nanotextured Fluorescent SiC Passivated by Atomic Layer Deposited Al2O3 Films

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas

    2016-01-01

    The influence of thickness of atomic layer deposited Al2O3 films on nano-textured fluorescent 6H-SiC passivation is investigated. The passivation effect on the light emission has been characterized by photoluminescence and time-resolved photoluminescence at room temperature. The results show that...

  19. Composite pulses in Hyper-Ramsey spectroscopy for the next generation of atomic clocks

    Science.gov (United States)

    Zanon-Willette, T.; Minissale, M.; Yudin, V. I.; Taichenachev, A. V.

    2016-06-01

    The next generation of atomic frequency standards based on an ensemble of neutral atoms or a single-ion will provide very stringent tests in metrology, applied and fundamental physics requiring a new step in very precise control of external systematic corrections. In the proceedings of the 8th Symposium on Frequency Standards and Metrology, we present a generalization of the recent Hyper-Ramsey spectroscopy with separated oscillating fields using composites pulses in order to suppress field frequency shifts induced by the interrogation laser itself. Sequences of laser pulses including specific selection of phases, frequency detunings and durations are elaborated to generate spectroscopic signals with a strong reduction of the light-shift perturbation by off resonant states. New optical clocks based on weakly allowed or completely forbidden transitions in atoms, ions, molecules and nuclei will benefit from these generalized Ramsey schemes to reach relative accuracies well below the 10-18 level.

  20. Magnetic resonance spectroscopy of an atomically thin material using a single-spin qubit

    Science.gov (United States)

    Lovchinsky, I.; Sanchez-Yamagishi, J. D.; Urbach, E. K.; Choi, S.; Fang, S.; Andersen, T. I.; Watanabe, K.; Taniguchi, T.; Bylinskii, A.; Kaxiras, E.; Kim, P.; Park, H.; Lukin, M. D.

    2017-02-01

    Two-dimensional (2D) materials offer a promising platform for exploring condensed matter phenomena and developing technological applications. However, the reduction of material dimensions to the atomic scale poses a challenge for traditional measurement and interfacing techniques that typically couple to macroscopic observables. We demonstrate a method for probing the properties of 2D materials via nanometer-scale nuclear quadrupole resonance (NQR) spectroscopy using individual atomlike impurities in diamond. Coherent manipulation of shallow nitrogen-vacancy (NV) color centers enables the probing of nanoscale ensembles down to approximately 30 nuclear spins in atomically thin hexagonal boron nitride (h-BN). The characterization of low-dimensional nanoscale materials could enable the development of new quantum hybrid systems, combining atomlike systems coherently coupled with individual atoms in 2D materials.

  1. Intimate relationship between spectroscopy and collisions: a scenario to calculate relevant atomic data for astrophysics

    Science.gov (United States)

    Gao, Xiang; Han, Xiao-Ying; Li, Jia-Ming

    2016-11-01

    An extended atomic data base with sufficiently high precision in energy levels and transition/collision rates is required for satellite observation in astrophysics studies and energy development research in inertial confinement fusion and magnetic confinement fusion. We summarize in this paper a scenario for performing calculations leading to such large-scale atomic data with high precision based on the analytical continuation properties of the scattering matrices, connecting spectroscopy and collisions. Based on the scenario, we calculate directly the scattering matrices with spectroscopic accuracy, i.e. the accurate multi-channel quantum defect theory parameters in both bound and continuum energy regions based on the recently developed eigenchannel R-matrix approach. Applications of the related atomic processes are presented to demonstrate the advantages enjoyed by this approach, which is hoped to meet the requirements in the stages of precision physics for astrophysics and energy research.

  2. Composite pulses in Hyper-Ramsey spectroscopy for the next generation of atomic clocks

    CERN Document Server

    Zanon-Willette, T; Yudin, V I; Taichenachev, A V

    2016-01-01

    The next generation of atomic frequency standards based on an ensemble of neutral atoms or a single-ion will provide very stringent tests in metrology, applied and fundamental physics requiring a new step in very precise control of external systematic corrections. In the proceedings of the 8th Symposium on Frequency Standards and Metrology, we present a generalization of the recent Hyper-Ramsey spectroscopy with separated oscillating fields using composites pulses in order to suppress field frequency shifts induced by the interrogation laser itself. Sequences of laser pulses including specific selection of phases, frequency detunings and durations are elaborated to generate spectroscopic signals with a strong reduction of the light-shift perturbation by off resonant states. New optical clocks based on weakly allowed or completely forbidden transitions in atoms, ions, molecules and nuclei will benefit from these generalized Ramsey schemes to reach relative accuracies well below the 10$^{-18}$ level.

  3. Delaminated graphene at silicon carbide facets: atomic scale imaging and spectroscopy.

    Science.gov (United States)

    Nicotra, Giuseppe; Ramasse, Quentin M; Deretzis, Ioannis; La Magna, Antonino; Spinella, Corrado; Giannazzo, Filippo

    2013-04-23

    Atomic-resolution structural and spectroscopic characterization techniques (scanning transmission electron microscopy and electron energy loss spectroscopy) are combined with nanoscale electrical measurements (conductive atomic force microscopy) to study at the atomic scale the properties of graphene grown epitaxially through the controlled graphitization of a hexagonal SiC(0001) substrate by high temperature annealing. This growth technique is known to result in a pronounced electron-doping (∼10(13) cm(-2)) of graphene, which is thought to originate from an interface carbon buffer layer strongly bound to the substrate. The scanning transmission electron microscopy analysis, carried out at an energy below the knock-on threshold for carbon to ensure no damage is imparted to the film by the electron beam, demonstrates that the buffer layer present on the planar SiC(0001) face delaminates from it on the (112n) facets of SiC surface steps. In addition, electron energy loss spectroscopy reveals that the delaminated layer has a similar electronic configuration to purely sp2-hybridized graphene. These observations are used to explain the local increase of the graphene sheet resistance measured around the surface steps by conductive atomic force microscopy, which we suggest is due to significantly lower substrate-induced doping and a resonant scattering mechanism at the step regions. A first-principles-calibrated theoretical model is proposed to explain the structural instability of the buffer layer on the SiC facets and the resulting delamination.

  4. Applications of beam-foil spectroscopy to atomic collisions in solids

    Science.gov (United States)

    Sellin, I. A.

    1976-01-01

    Some selected papers presented at the Fourth International Conference on Beam-Foil Spectroscopy, whose results are of particular pertinence to ionic collision phenomena in solids, are reviewed. The topics discussed include solid target effects and means of surmounting them in the measurement of excited projectile ion lifetimes for low-energy heavy element ions; the electron emission accompanying the passage of heavy particles through solid targets; the collision broadening of X rays emitted from 100 keV ions moving in solids; residual K-shell excitation in chlorine ions penetrating carbon; comparison between 40 MeV Si on gaseous SiH4 targets at 300 mtorr and 40 MeV Si on Al; and the emergent surface interaction in beam-foil spectroscopy. A distinct overlap of interests between the sciences of beam-foil spectroscopy and atomic collisions in solids is pointed out.

  5. Resonance Ionization Spectroscopy of Cesium Atoms in a Cesium Heat Pipe

    Science.gov (United States)

    Ardis, Robert G.; Gardner, Bernard W.; Smith, R. Seth

    1997-11-01

    A Cesium Heat Pipe has been constructed to produce a cesium metal vapor for use in laser spectroscopy. The heat pipe consists of a 24 inch stainless steel pipe with 2 inch diameter calcium fluoride windows on each end. Electric heaters are used to control the cesium vapor pressure. An argon buffer gas is used to maintain high transmittance through the end windows. Sensors are used to monitor both temperature and pressure. A Nd:YAG-pumped dye laser system is used to probe the cesium atoms via resonance ionization spectroscopy. Details of the construction of the heat pipe and the experimental setup will be presented. The results of the resonance ionization spectroscopy will be discussed. This experimental setup can be utilized with undergraduates in courses such as Optics, Laser Physics, and Senior Laboratory/Research.

  6. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianjuan [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gan Wuer, E-mail: wgan@ustc.edu.cn [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan Lingzhong; Deng Yun; Yang Qinghua; He Youzhao [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-12-15

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH{sub 4} and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL{sup -1} (3{sigma}) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL{sup -1} Sn(IV) standard solution.

  7. Chemometric classification of Chinese lager beers according to manufacturer based on data fusion of fluorescence, UV and visible spectroscopies.

    Science.gov (United States)

    Tan, Jin; Li, Rong; Jiang, Zi-Tao

    2015-10-01

    We report an application of data fusion for chemometric classification of 135 canned samples of Chinese lager beers by manufacturer based on the combination of fluorescence, UV and visible spectroscopies. Right-angle synchronous fluorescence spectra (SFS) at three wavelength difference Δλ=30, 60 and 80 nm and visible spectra in the range 380-700 nm of undiluted beers were recorded. UV spectra in the range 240-400 nm of diluted beers were measured. A classification model was built using principal component analysis (PCA) and linear discriminant analysis (LDA). LDA with cross-validation showed that the data fusion could achieve 78.5-86.7% correct classification (sensitivity), while those rates using individual spectroscopies ranged from 42.2% to 70.4%. The results demonstrated that the fluorescence, UV and visible spectroscopies complemented each other, yielding higher synergic effect.

  8. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xiu-Fang; Chen, Zeng-Ping, E-mail: zpchen2002@hotmail.com; Cui, Yin-Yin; Hu, Yuan-Liang; Yu, Ru-Qin

    2016-05-19

    PEBBLE (probe encapsulated by biologically localized embedding) nanosensor encapsulating an intensity-based fluorescence indicator and an inert reference fluorescence dye inside the pores of stable matrix can be used as a generalized wavelength-ratiometric probe. However, the lack of an efficient quantitative model render the choices of inert reference dyes and intensity-based fluorescence indicators used in PEBBLEs based generalized wavelength-ratiometric probes rather limited. In this contribution, an extended quantitative fluorescence model was derived specifically for generalized wavelength-ratiometric probes based on PEBBLE technique (QFM{sub GRP}) with a view to simplify the design of PEBBLEs and hence further extend their application potentials. The effectiveness of QFM{sub GRP} has been tested on the quantitative determination of free Ca{sup 2+} in both simulated and real turbid media using a Ca{sup 2+} sensitive PEBBLE nanosensor encapsulating Rhod-2 and eosin B inside the micropores of stable polyacrylamide matrix. Experimental results demonstrated that QFM{sub GRP} could realize precise and accurate quantification of free Ca{sup 2+} in turbid samples, even though there is serious overlapping between the fluorescence excitation peaks of eosin B and Ca{sup 2+} bound Rhod-2. The average relative predictive error value of QFM{sub GRP} for the test simulated turbid samples was 5.9%, about 2–4 times lower than the corresponding values of partial least squares calibration model and the empirical ratiometric model based on the ratio of fluorescence intensities at the excitation peaks of Ca{sup 2+} bound Rhod-2 and eosin B. The recovery rates of QFM{sub GRP} for the real and spiked turbid samples varied from 93.1% to 101%, comparable to the corresponding results of atomic absorption spectrometry. - Highlights: • An advanced model was derived for generalized wavelength-ratiometric PEBBLEs. • The model can simplify the design of generalized wavelength

  9. PREFACE: Heavy-Ion Spectroscopy and QED Effects in Atomic Systems

    Science.gov (United States)

    Lindgren, Ingvar; Martinson, Indrek; Schuch, Reinhold

    1993-01-01

    now essentially solved. The experimental accuracy is already so high that also higher-order QED effects become observable, and several groups are now active in trying to evaluate such effects from first principles. Another related field where substantial progress has recently been made involves precision measurements of X-ray transitions. This has created an interest in the study of deep inner holes in heavy atoms, where large relativistic and QED effects appear. These effects are as large as in corresponding highly charged ions, but the interpretation requires that the many-body effects from the surrounding electrons are accurately extracted. This is a big challenge at present. Atomic collision physics with highly charged ions has been dominated in recent years by the search for a possibility to describe electron-electron interaction within the dynamics of collisions. The experiments on multielectron transfer reactions with highly charged ions posed in this respect quite a challenge to the theory. The models developed to meet this were often based on methods and terminologies developed for describing the inter-electronic interactions in atomic structure. This caused many controversial discussions, also during this symposium. A new and fast rising field is the interaction of highly charged ions with solid surfaces. This may become an important link between atomic physics and condensed-matter physics, stimulated by the opportunity to study effects in coupled many-body systems present in the case when a large amount of electrons is transferred from the solid to each single ion. Furtheron, collision experiments with cooled ion beams in ion storage rings open new dimensions also for atomic spectroscopy. It appears possible that transition and binding energies can be measured in recombination of very heavy ions with a better quality than by conventional Auger electron or X-ray spectroscopy. Obviously, it is not possible to cover all the fields mentioned here in a single

  10. Diffusion behavior of the fluorescent proteins eGFP and Dreiklang in solvents of different viscosity monitored by fluorescence correlation spectroscopy

    Science.gov (United States)

    Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas

    2016-12-01

    Fluorescence correlation spectroscopy relies on temporal autocorrelation analysis of fluorescence intensity fluctuations that spontaneously arise in systems at equilibrium due to molecular motion and changes of state that cause changes in fluorescence, such as triplet state transition, photoisomerization and other photophysical transformations, to determine the rates of these processes. The stability of a fluorescent molecule against dark state conversion is of particular concern for chromophores intended to be used as reference tags for comparing diffusion processes on multiple time scales. In this work, we analyzed properties of two fluorescent proteins, the photoswitchable Dreiklang and its parental eGFP, in solvents of different viscosity to vary the diffusion time through the observation volume element by several orders of magnitude. In contrast to eGFP, Dreiklang undergoes a dark-state conversion on the time scale of tens to hundreds of microseconds under conditions of intense fluorescence excitation, which results in artificially shortened diffusion times if the diffusional motion through the observation volume is sufficiently slowed down. Such photophysical quenching processes have also been observed in FCS studies on other photoswitchable fluorescent proteins including Citrine, from which Dreiklang was derived by genetic engineering. This property readily explains the discrepancies observed previously between the diffusion times of eGFP- and Dreiklang-labeled plasma membrane protein complexes.

  11. Steady state and time-resolved fluorescence spectroscopy of quinine sulfate dication bound to sodium dodecylsulfate micelles: Fluorescent complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Sunita; Pant, Debi D., E-mail: ddpant@pilani.bits-pilani.ac.in

    2014-01-15

    Interaction of quinine sulfate dication (QSD) with anionic, sodium dodecylsulphate (SDS) surfactant has been studied at different premicellar, micellar and postmicellar concentrations in aqueous phase using steady state, time-resolved fluorescence and fluorescence anisotropy techniques. At premicellar concentrations of SDS, the decrease in absorbance, appearance of an extra fluorescence band at lower wavelengths and tri-exponential decay behavior of fluorescence, are attributed to complex formation between QSD molecules and surfactant monomers. At postmicellar concentrations the red shift in fluorescence spectrum, increase in quantum yield and increase in fluorescence lifetimes are attributed to incorporation of solute molecules to micelles. At lower concentrations of SDS, a large shift in fluorescence is observed on excitation at the red edge of absorption spectrum and this is explained in terms of distribution of ion pairs of different energies in the ground state and the observed fluorescence lifetime behavior corroborates with this model. The temporal fluorescence anisotropy decay of QSD in SDS micelles allowed determination of restriction on the motion of the fluorophore. All the different techniques used in this study reveal that the photophysics of QSD is very sensitive to the microenvironments of SDS micelles and QSD molecules reside at the water-micelle interface. -- Highlights: • Probe molecule is very sensitive to microenvironment of micelles. • Highly fluorescent ion-pair formation has been observed. • Modulated photophysics of probe molecule in micellar solutions has been observed. • Probe molecules strongly bind with micelles and reside at probe–micelle interface.

  12. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    Science.gov (United States)

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential.

  13. Non-linear Spectroscopy of Sr Atoms in an Optical Cavity for Laser Stabilization

    CERN Document Server

    Christensen, Bjarke T R; Schäffer, Stefan A; Westergaard, Philip G; Ye, Jun; Holland, Murray; Thomsen, Jan W

    2015-01-01

    We study the non-linear interaction of a cold sample of strontium-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit and investigate the implications for applications to laser stabilization. The atoms are probed on the weak inter-combination line $\\lvert 5s^{2} \\, ^1 \\textrm{S}_0 \\rangle \\,-\\, \\lvert 5s5p \\, ^3 \\textrm{P}_1 \\rangle$ at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures - the cavity transmitted phase and absorption - by employing FM spectroscopy (NICE-OHMS). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free space situation where no cavity is present. Furthermore, the non-linear dynami...

  14. The Effect of a Fluorophore Photo-Physics on the Lipid Vesicle Diffusion Coefficient Studied by Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Drabik, Dominik; Przybyło, Magda; Sikorski, Aleksander; Langner, Marek

    2016-03-01

    Fluorescence Correlation Spectroscopy (FCS) is a technique, which allows determination of the diffusion coefficient and concentration of fluorescent objects suspended in the solution. The measured parameter is the fluctuation of the fluorescence signal emitted by diffusing molecules. When 100 nm DOPC vesicles labeled with various fluorescent dyes (Fluorescein-PE, NBD-PE, Atto488 DOPE or βBodipy FL) were measured, different values of diffusion coefficients have been obtained. These diffusion coefficients were different from the expected values measured using the dynamic light scattering method (DLS). The FCS was initially developed for solutions containing small fluorescent molecules therefore the observed inconsistency may result from the nature of vesicle suspension itself. The duration of the fluorescence signal may depend on the following factors: the exposure time of the labeled object to the excitation beam, the photo-physical properties (e.g., stability) of a fluorophore, the theoretical model used for the calculations of the diffusion coefficient and optical properties of the vesicle suspension. The diffusion coefficients determined for differently labeled liposomes show that its dependence on vesicle size and quantity of fluorescent probed used for labeling was significant demonstrating that the fluorescence properties of the fluorophore itself (bleaching and/or blinking) were critical factors for a correct outcome of FCS experiment. The new, based on combined FCS and DLS measurements, method for the determination of the focal volume prove itself to be useful for the evaluation of a fluorescence dye with respect to its applicability for FCS experiment.

  15. High resolution isotope shifts and hyperfine structure measurements of tungsten by laser induced fluorescence spectroscopy

    CERN Document Server

    Lee, Jeongwon; Leanhardt, Aaron

    2012-01-01

    Isotope shifts and hyperfine structure of tungsten were studied in the near UV range. We have used laser induced fluorescence spectroscopy on a pulsed supersonic beam to probe the 5D0 -> 5F1 transition at 384.9 nm, 7S3 -> 7P4 transition at 400.9 nm, and 7S3 -> 7P3 transition at 407.4 nm. Three new magnetic hyperfine constants are reported for 7P3,7P4, and 5F1 states. The isotope shifts of the 384.9 nm transition are presented for the first time, and the isotope shifts of 400.9 nm and 407.4 nm transition are measured with an order of magnitude higher precision compared to the previous measurements. As a result, the nuclear parameters lambda and lambda_{rel} are extracted from the isotope shifts with an improved precision.

  16. Permeability of anti-fouling PEGylated surfaces probed by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Daniels, Charlisa R; Reznik, Carmen; Kilmer, Rachel; Felipe, Mary Jane; Tria, Maria Celeste R; Kourentzi, Katerina; Chen, Wen-Hsiang; Advincula, Rigoberto C; Willson, Richard C; Landes, Christy F

    2011-11-01

    The present work reports on in situ observations of the interaction of organic dye probe molecules and dye-labeled protein with different poly(ethylene glycol) (PEG) architectures (linear, dendron, and bottle brush). Fluorescence correlation spectroscopy (FCS) and single molecule event analysis were used to examine the nature and extent of probe-PEG interactions. The data support a sieve-like model in which size-exclusion principles determine the extent of probe-PEG interactions. Small probes are trapped by more dense PEG architectures and large probes interact more with less dense PEG surfaces. These results, and the tunable pore structure of the PEG dendrons employed in this work, suggest the viability of electrochemically-active materials for tunable surfaces.

  17. Analysis of photographs and photo-paintings by energy-dispersive X-ray fluorescence spectroscopy

    Science.gov (United States)

    Neiva, Augusto Camara; Marcondes, Marli A.; Pinto, Herbert Prince Favero; Almeida, Paula Aline Durães

    2014-02-01

    A collection of Brazilian family photographs and photo-paintings from the beginning of the XX Century was analyzed by portable EDXRF (Energy-Dispersive X-Ray Fluorescence) spectroscopy. The spectrometer uses a Si-drift Amptek detector and an Oxford Cr-tube or an Oxford W-tube. For every region under analysis, spectra obtained with the W-tube were used to detect all the elements above Al, while the Cr-tube was used to obtain more accurate results for elements between Al and V. Thirty nine elements were identified in the photos, and the origin of the most important ones was discussed. These results can be used for cataloging, preservation and restoring procedures.

  18. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    Science.gov (United States)

    Ridgeway, William K.; Millar, David P.; Williamson, James R.

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantify reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. Catalogue identifier: AEOP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 50189 No. of bytes in distributed program, including test data, etc.: 6135283 Distribution format: tar.gz Programming language: C/Assembly. Computer: Any with GCC and

  19. Super-resolution fluorescence imaging and correlation spectroscopy: Principles and examples of application

    Directory of Open Access Journals (Sweden)

    Jovanović-Talisman Tijana

    2013-01-01

    Full Text Available Self-organization of cell-surface receptors in structurally distinct domains in the plasma membrane is of vital interest for correct cellular signaling. However, this dynamic process is difficult to study in cells with sufficiently high temporal and spatial resolution. We present here two quantitative high-resolution methods with single-molecule sensitivity, Fluorescence Correlation Spectroscopy (FCS and pair-correlation Photoactivated Localization Microscopy (pcPALM, which enable nondestructive study of receptor diffusion and lateral organization at the nanoscale level. We introduce here the methods and review their application in studies of lateral organization of G Protein-Coupled Receptors (GPCRs. Examples from our own work on opioid receptor lateral organization are presented in order to illustrate the most recent advances in the field. [Projekat Ministarstva nauke Republike Srbije, br. 172015 i br. 45001

  20. DNA binding activity of Anabaena sensory rhodopsin transducer probed by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Kim, Sung Hyun; Kim, So Young; Jung, Kwang-Hwan; Kim, Doseok

    2015-01-01

    Anabaena sensory rhodopsin transducer (ASRT) is believed to be a major player in the photo-signal transduction cascade, which is triggered by Anabaena sensory rhodopsin. Here, we characterized DNA binding activity of ASRT probed by using fluorescence correlation spectroscopy. We observed clear decrease of diffusion coefficient of DNA upon binding of ASRT. The dissociation constant, K(D), of ASRT to 20 bp-long DNA fragments lied in micro-molar range and varied moderately with DNA sequence. Our results suggest that ASRT may interact with several different regions of DNA with different binding affinity for global regulation of several genes that need to be activated depending on the light illumination.

  1. Monitoring laboratory-scale bioventing using synchronous scan fluorescence spectroscopy: analysis of the vapor phase.

    Science.gov (United States)

    Bachman, J; Kanan, S M; Patterson, H H

    2001-01-01

    Bioventing is an improved method of soil remediation that is being used with increasing frequency. In this paper, we refine techniques to measure the progress of petroleum hydrocarbon decomposition by monitoring vapor phase composition with synchronous scan fluorescence spectroscopy (SSFS). Analysis of the vapor phase has advantages compared to standard extraction techniques that require extensive sample handling and clean up. For comparison, hydrocarbon contamination in the soil was measured by analysis of Soxhlet extractions with gas chromatography-mass spectrometry (GC-MS). Comparison of the GC-MS and SSFS data showed that changes in hydrocarbon composition measured in the vapor phase provide an accurate measure of decomposition reactions taking place in the soil.

  2. Temperature-dependent conformations of a membrane supported zinc porphyrin tweezer by 2D fluorescence spectroscopy.

    Science.gov (United States)

    Widom, Julia R; Lee, Wonbae; Perdomo-Ortiz, Alejandro; Rappoport, Dmitrij; Molinski, Tadeusz F; Aspuru-Guzik, Alán; Marcus, Andrew H

    2013-07-25

    We studied the equilibrium conformations of a zinc porphyrin tweezer composed of two carboxylphenyl-functionalized zinc tetraphenyl porphyrin subunits connected by a 1,4-butyndiol spacer, which was suspended inside the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) liposomes. By combining phase-modulation two-dimensional fluorescence spectroscopy (2D FS) with linear absorbance and fluorimetry, we determined that the zinc porphyrin tweezer adopts a mixture of folded and extended conformations in the membrane. By fitting an exciton-coupling model to a series of data sets recorded over a range of temperatures (17-85 °C) and at different laser center wavelengths, we determined that the folded form of the tweezer is stabilized by a favorable change in the entropy of the local membrane environment. Our results provide insights toward understanding the balance of thermodynamic factors that govern molecular assembly in membranes.

  3. Time-resolved fluorescence spectroscopy for clinical diagnosis of actinic cheilitis

    Science.gov (United States)

    Cosci, Alessandro; Nogueira, Marcelo Saito; Pratavieira, Sebastião; Takahama, Ademar; Azevedo, Rebeca de Souza; Kurachi, Cristina

    2016-01-01

    Actinic cheilitis is a potentially malignant disorder of the lips. Its first cause is believed to be UV sun radiation. The lesion is highly heterogeneous, making the choice of area to be biopsied difficult. This study exploits the capabilities of time-resolved fluorescence spectroscopy for the identification of the most representative area to be biopsied. A preliminary study was performed on fourteen patients. A classification algorithm was used on data acquired on nine different biopsies. The algorithm discriminated between absent, mild, and moderate dysplasia with a sensitivity of 92.9%, 90.0%, and 80.0%, respectively. The false positive rate for healthy tissue (specificity) was 88.8%. PMID:27867726

  4. Time-resolved laser fluorescence spectroscopy of UO2(CO3)3(4-).

    Science.gov (United States)

    Jung, E C; Cho, H-R; Baik, M H; Kim, H; Cha, W

    2015-11-21

    The objective of the present study is to examine the luminescence characteristics of UO2(CO3)3(4-) in detail using time-resolved laser fluorescence spectroscopy. The peak wavelengths and lifetime of UO2(CO3)3(4-) were determined at room temperature using the two excitation laser wavelengths of 266 and 448 nm. The peak wavelengths in the luminescence spectrum exhibited hypsochromic shifts compared with those of UO2(2+). The lifetime determined from several samples containing various uranium concentrations was 8.9 ± 0.8 ns. Explanations for the hindrance to the observation of the luminescence spectrum of UO2(CO3)3(4-) in previous investigations are discussed. The representative experimental parameters, which might interrupt the measurement of weak luminescence, are the insertion delay time of the detection device, the overlapped luminescence of the background materials and the primary inner filter effect in the sample solution.

  5. Towards Environmental Microbial Analysis with Deep UV fluorescence and Raman Spectroscopy

    Science.gov (United States)

    Wanger, G.; Bhartia, R.; Orphan, V. J.; Rowe, A. R.

    2015-12-01

    The study of microbes from the environment is often facilitated by the fixation of samples prior to analyses in the laboratory. Samples not appropriately preserved can show dramatic changes e.g. unwanted growth, loss of biomass and sample degradation between collection and analysis. To move Deep-UV Raman analyses from model lab organisms to environmental samples the effect of preservation must be evaluated. Deep UV Raman and Fluorescence (i.e. excitation culture. The fluorescence signal is typically 3-4 orders of magnitude more intense than the Raman signal and enables rapid location of bacteria on a surface and crudely split them into categories. However it suffers from broad spectral features making discrete classification of bacteria problematic. While a far weaker phenomenon, the chemical specificity of Raman spectroscopy has been shown capable of discriminating between different bacterial species and has even shown spectral variation in same species under differing growth conditions or growth stages and has even been used to measure microbial activity by measuring the incorporation of stable isotope labeled substrates. Typically these analyses are carried out on well-studied, lab-grown model organisms and while relatively easy, these analyses are performed on cells grow under non-environmentally relevant conditions using rich media types not often found in nature. Here we show the effect on the Raman and fluorescence signal (248 nm Deep-UV excitation) from E. coli and other bacteria, grown in more nutrient limited environments, and fixed/preserved in ethanol, PFA and formalin. These fixatives not only preserve the cells for spectroscopic analysis but are compatible with many common techniques that can be used for further characterization of environmental microbial samples. Ethanol appears to heavily degrade the signals from both Raman and fluorescence while formalin and PFA do not. Our ultimate goal is to create an analytical "pipeline" using the Deep UV

  6. [Research on optimization of mathematical model of flow injection-hydride generation-atomic fluorescence spectrometry].

    Science.gov (United States)

    Cui, Jian; Zhao, Xue-Hong; Wang, Yan; Xiao, Ya-Bing; Jiang, Xue-Hui; Dai, Li

    2014-01-01

    Flow injection-hydride generation-atomic fluorescence spectrometry was a widely used method in the industries of health, environmental, geological and metallurgical fields for the merit of high sensitivity, wide measurement range and fast analytical speed. However, optimization of this method was too difficult as there exist so many parameters affecting the sensitivity and broadening. Generally, the optimal conditions were sought through several experiments. The present paper proposed a mathematical model between the parameters and sensitivity/broadening coefficients using the law of conservation of mass according to the characteristics of hydride chemical reaction and the composition of the system, which was proved to be accurate as comparing the theoretical simulation and experimental results through the test of arsanilic acid standard solution. Finally, this paper has put a relation map between the parameters and sensitivity/broadening coefficients, and summarized that GLS volume, carrier solution flow rate and sample loop volume were the most factors affecting sensitivity and broadening coefficients. Optimizing these three factors with this relation map, the relative sensitivity was advanced by 2.9 times and relative broadening was reduced by 0.76 times. This model can provide a theoretical guidance for the optimization of the experimental conditions.

  7. Determination of mercury in rice by cold vapor atomic fluorescence spectrometry after microwave-assisted digestion

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Maria Jose da [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain); Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-550 Recife, PE (Brazil); Paim, Ana Paula S. [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Cidade Universitaria, 50740-550 Recife, PE (Brazil); Pimentel, Maria Fernanda [Departamento de Engenharia Quimica, Universidade Federal de Pernambuco, Recife, PE (Brazil); Cervera, M. Luisa, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain); Guardia, Miguel de la [Department of Analytical Chemistry, Edificio de Investigacion, University of Valencia, 50 Dr. Moliner Street, E-46100 Burjassot, Valencia (Spain)

    2010-05-14

    A cold vapor atomic fluorescence spectrometry method (CV-AFS) has been developed for the determination of Hg in rice samples at a few ng g{sup -1} concentration level. The method is based on the previous digestion of samples in a microwave oven with HNO{sub 3} and H{sub 2}O{sub 2} followed by dilution with water containing KBr/KBrO{sub 3} and hydroxylamine and reduction with SnCl{sub 2} in HCl using external calibration. The matrix interferences and the effect of nitrogen oxide vapors have been evaluated and the method validated using a certified reference material. The limit of detection of the method was 0.9 ng g{sup -1} with a recovery percentage of 95 {+-} 4% at an added concentration of 5 ng g{sup -1}. The concentration level of Hg found in 24 natural rice samples from different origin ranged between 1.3 and 7.8 ng g{sup -1}.

  8. [Determination of mercury in shark liver by cold atom fluorescence spectrometry after microwave dissolution].

    Science.gov (United States)

    Weng, Di

    2005-12-01

    The conditions for the determination of mercury in shark liver by cold atom fluorescence spectrometry (CAFS) with microwave dissolution were studied. After being dried completely, the method employed 2 mol x L(-1) HNO3-4 mol x L(-1) HCl as an oxidant, and with catalysis by V2O5, the samples were digested in a microwave oven. The mercury in absorption solution was reduced by SnCl2, and then was determined by CAFS at wavelength of 253.7 nm. 10% SnCl2 solution was used as a reductive agent for mercury. The linear range was 0-2.0 ng x mL(-1) mercury (r = 0.999 7). The detection limit was 0.05 ng x mL(-1), the relative standard deviation was 0.86%-2.22%, and the average recovery rate was 96.0%-108.5%. The method was suitable for the determination of mercury in shark liver.

  9. Novel Method for Indirect Determination of Iodine in Marine Products by Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    LU Jian-ping; TAN Fang-wei; TANG Qiong; JIANG Tian-cheng

    2013-01-01

    A method for the determination of iodine based upon compound H2HgI4,formed between I-and Hg2+ in nitric acid and extracted in methyl isobutyl ketone(MIBK),was developed via atomic fluorescence spectrometry(AFS).After the compound is reduced with potassium borohydrid(KBH4),the resultant mercury vapor was injected into the instrument and iodine was,therefore,indirectly determined.Experimental parameters such as the conditions of extraction reagents,aqueous phase acidity,elemental mercury diffusion temperature in a vial and other factors were investigated and optimized.Under the optimum experimental conditions,this method shows a detection limit of 0.038 μg/L iodine and a linear relationship between 0.04-20 μg/L.The method was applied to determining the iodine content in marine duck eggs,kelps,laver and Ganoderma lucidum spirulina,showing a relative standard deviation(RSD) of 2.15% and the recoveries in the range of 98.1%-102.5%.

  10. Stark spectroscopy of atomic hydrogen balmer-alpha line for electric field measurement in plasmas by saturation spectroscopy

    Science.gov (United States)

    Nishiyama, S.; Katayama, K.; Nakano, H.; Goto, M.; Sasaki, K.

    2016-09-01

    Detailed structures of electric fields in sheath and pre-sheath regions of various plasmas are interested from the viewpoint of basic plasma physics. Several researchers observed Stark spectra of Doppler-broadened Rydberg states to evaluate electric fields in plasmas; however, these measurements needed high-power, expensive tunable lasers. In this study, we carried out another Stark spectroscopy with a low-cost diode laser system. We applied saturation spectroscopy, which achieves a Doppler-free wavelength resolution, to observe the Stark spectrum of the Balmer-alpha line of atomic hydrogen in the sheath region of a low-pressure hydrogen plasma. The hydrogen plasma was generated in an ICP source which was driven by on-off modulated rf power at 20 kHz. A planar electrode was inserted into the plasma. Weak probe and intense pump laser beams were injected into the plasma from the counter directions in parallel to the electrode surface. The laser beams crossed with a small angle above the electrode. The observed fine-structure spectra showed shifts, deformations, and/or splits when varying the distance between the observation position and the electrode surface. The detection limit for the electric field was estimated to be several tens of V/cm.

  11. Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations.

    Science.gov (United States)

    Bocchinfuso, Gianfranco; Palleschi, Antonio; Orioni, Barbara; Grande, Giacinto; Formaggio, Fernando; Toniolo, Claudio; Park, Yoonkyung; Hahm, Kyung-Soo; Stella, Lorenzo

    2009-09-01

    Most antimicrobial peptides exert their activity by interacting with bacterial membranes, thus perturbing their permeability. They are investigated as a possible solution to the insurgence of bacteria resistant to the presently available antibiotic drugs. However, several different models have been proposed for their mechanism of membrane perturbation, and the molecular details of this process are still debated. Here, we compare fluorescence spectroscopy experiments and molecular dynamics (MD) simulations regarding the association with lipid bilayers and lipid perturbation for two different amphiphilic helical antimicrobial peptides, PMAP-23 and trichogin GA IV. PMAP-23, a cationic peptide member of the cathelicidin family, is considered to induce membrane permeability according to the Shai-Matsuzaki-Huang "carpet" model, while trichogin GA IV is a neutral peptide, member of the peptaibol family. Although several lines of evidence suggest a "barrel-stave" mechanism of pore formation for the latter peptide, its length is only half the normal thickness of a lipid bilayer. Both fluorescence spectroscopy experiments and MD simulations indicated that PMAP-23 associates with membranes close to their surface and parallel to it, and in this arrangement it causes a severe perturbation to the bilayer, both regarding its surface tension and lipid order. By contrast, trichogin GA IV can undergo a transition from a surface-bound state to a transmembrane orientation. In the first arrangement, it does not cause any strong membrane perturbation, while in the second orientation it might be able to span the bilayer from one side to the other, despite its relatively short length, by causing a significant thinning of the membrane.

  12. Fluorescence spectroscopy of single molecules at room temperature and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Taekjip [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    We performed fluorescence spectroscopy of single and pairs of dye molecules on a surface at room temperature. Near field scanning optical microscope (NSOM) and far field scanning optical microscope with multi-color excitation/detection capability were built. The instrument is capable of optical imaging with 100nm resolution and has the sensitivity necessary for single molecule detection. A variety of dynamic events which cannot be observed from an ensemble of molecules is revealed when the molecules are probed one at a time. They include (1) spectral jumps correlated with dark states, (2) individually resolved quantum jumps to and from the meta-stable triplet state, (3) rotational jumps due to desorption/readsorption events of single molecules on the surface. For these studies, a computer controlled optical system which automatically and rapidly locates and performs spectroscopic measurements on single molecules was developed. We also studied the interaction between closely spaced pairs of molecules. In particular, fluorescence resonance energy transfer between a single resonant pair of donor and acceptor molecules was measured. Photodestruction dynamics of the donor or acceptor were used to determine the presence and efficiency of energy transfer Dual molecule spectroscopy was extended to a non-resonant pair of molecules to obtain high resolution differential distance information. By combining NSOM and dual color scheme, we studied the co-localization of parasite proteins and host proteins on a human red blood cell membrane infected with malaria. These dual-molecule techniques can be used to measure distances, relative orientations, and changes in distances/orientations of biological macromolecules with very good spatial, angular and temporal resolutions, hence opening new capabilities in the study of such systems.

  13. The use of one- and two- photon induced fluorescence spectroscopy for the optical characterization of carcinogenic aflatoxins

    Science.gov (United States)

    Smeesters, L.; Meulebroeck, W.; Raeymaekers, S.; Thienpont, H.

    2014-09-01

    Carcinogenic and toxic contaminants in food and feed products are nowadays mostly detected by destructive, time-consuming chemical analyses, like HPLC and LC-MS/MS methods. However, as a consequence of the severe and growing regulations on food products by the European Union, there arose an increased demand for the ultra-fast, high-sensitive and non-destructive detection of contaminants in food and feed products. Therefore, we have investigated fluorescence spectroscopy for the characterization of carcinogenic aflatoxins. With the use of a tunable titanium-sapphire laser in combination with second and third harmonic wavelength generation, both one- and two-photon induced fluorescence excitation wavelengths could be generated using the same setup. We characterized and compared the one- and two-photon induced fluorescence spectra of pure aflatoxin powder, after excitation with 365nm and 730nm respectively. Moreover, we investigated the absolute fluorescence intensity as function of the excitation power density. Afterwards, we applied our characterization setup to the detection of aflatoxins in maize grains. The fluorescence spectra of both healthy and contaminated maize samples were experimentally characterized. In addition to the fluorescence spectrum of the pure aflatoxin, we observed an unwanted influence of the intrinsic fluorescence of the maize. Depending on the excitation wavelength, a varying contrast between the fluorescence spectra of the healthy and contaminated samples was obtained. After a comparison of the measured fluorescence signals, a detection criterion for the optical identification of the contaminated maize samples could be defined. As a result, this illustrates the use of fluorescence spectroscopy as a valuable tool for the non-destructive, real-time and high-sensitive detection of aflatoxins in maize.

  14. Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.

    Science.gov (United States)

    Smith, Adam W

    2015-01-01

    Rhodopsin self-associates in the plasma membrane. At low concentrations, the interactions are consistent with a monomer-dimer equilibrium (Comar et al., J Am Chem Soc 136(23):8342-8349, 2014). At high concentrations in native tissue, higher-order clusters have been observed (Fotiadis et al., Nature 421:127-128, 2003). The physiological role of rhodopsin dimerization is still being investigated, but it is clear that a quantitative assessment is essential to determining the function of rhodopsin clusters in vision. To quantify rhodopsin interactions, I will outline the theory and methodology of a specialized time-resolved fluorescence spectroscopy for measuring membrane protein-protein interactions called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). The strength of this technique is its ability to quantify rhodopsin interactions in situ (i.e., a live cell plasma membrane). There are two reasons for restricting the scope to live cell membranes. First, the compositional heterogeneity of the plasma membrane creates a complex milieu with thousands of lipid, protein, and carbohydrate species. This makes it difficult to infer quaternary interactions from detergent solubilized samples or construct a model phospholipid bilayer that recapitulates all of the interactions present in native membranes. Second, organizational structure and dynamics is a key feature of the plasma membrane, and fixation techniques like formaldehyde cross-linking and vitrification will modulate the interactions. PIE-FCCS is based on two-color fluorescence imaging with time-correlated single-photon counting (TCSPC) (Becker et al., Rev Sci Instrum 70:1835-1841, 1999). By time-tagging every detected photon, the data can be analyzed as a fluorescence intensity distribution, fluorescence lifetime histogram, or fluorescence (cross-)correlation spectra (FCS/FCCS) (Becker, Advanced time-correlated single-photon counting techniques, Springer, Berlin, 2005). These

  15. Comparative Studies of Interactions between Fluorodihydroquinazolin Derivatives and Human Serum Albumin with Fluorescence Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2016-10-01

    Full Text Available In the present study, 3-(fluorobenzylideneamino-6-chloro-1-(3,3-dimethylbutanoyl-phenyl-2,3-dihydroquinazolin-4(1H-one (FDQL derivatives have been designed and synthesized to study the interaction between fluorine substituted dihydroquinazoline derivatives with human serum albumin (HSA using fluorescence, circular dichroism and Fourier transform infrared spectroscopy. The results indicated that the FDQL could bind to HSA, induce conformation and the secondary structure changes of HSA, and quench the intrinsic fluorescence of HSA through a static quenching mechanism. The thermodynamic parameters, ΔH, ΔS, and ΔG, calculated at different temperatures, revealed that the binding was through spontaneous and hydrophobic forces and thus played major roles in the association. Based on the number of binding sites, it was considered that one molecule of FDQL could bind to a single site of HSA. Site marker competition experiments indicated that the reactive site of HSA to FDQL mainly located in site II (subdomain IIIA. The substitution by fluorine in the benzene ring could increase the interactions between FDQL and HSA to some extent in the proper temperature range through hydrophobic effect, and the substitution at meta-position enhanced the affinity greater than that at para- and ortho-positions.

  16. THE USE OF FLUORESCENCE CORRELATION SPECTROSCOPY TO PROBE CHROMATIN IN THE CELL NUCLEUS

    Energy Technology Data Exchange (ETDEWEB)

    Sorscher, Stanley M.; Bartholemew, James C.; Klein, Melvin P.

    1980-03-01

    All systems in thermodynamic equilibrium are subject to spontaneous fluctuations from equilibrium. For very small systems, the fluctuations can be made apparent, and can be used to study the behavior of the system without introducing any external perturbations. The mean squared amplitude of these fluctuations contains information about the absolute size of the system. The characteristic time of the fluctuation autocorrelation function contains kinetic information. In the experiments reported here, these concepts are applied to the binding equilibrium between ethidium bromide and DNA, a system where the fluorescence properties of the dye greatly enhance the effect of spontaneous fluctuations in the binding equilibrium. Preliminary experiments employ well characterized DNA preparations, including calf thymus DNA, SV40 DNA, and calf thymus nucleohistone particles. Additional measurements are described which have been made in small regions of individual nuclei, isolated from green monkey kidney cells, observing as few as 5000 dye molecules. The data indicate that the strength of dye binding increases in nuclei isolated from cells which have been stimulated to enter the cell growth cycle. The viscosity of nuclear material is inferred to be between one and two orders of magnitude greater than that of water, and decreases as the cells leave the resting state, and enter the cell growth cycle. Washing the nuclei also lowers the viscosity. These experiments demonstrate that fluorescence correlation spectroscopy can provide information at the subnuclear level that is otherwise unavailable.

  17. Fluorescent substituted amidines of benzanthrone: Synthesis, spectroscopy and quantum chemical calculations

    Science.gov (United States)

    Gonta, Svetlana; Utinans, Maris; Kirilov, Georgii; Belyakov, Sergey; Ivanova, Irena; Fleisher, Mendel; Savenkov, Valerij; Kirilova, Elena

    2013-01-01

    Several new substituted amidine derivatives of benzanthrone were synthesized by a condensation reaction from 3-aminobenzo[de]anthracen-7-one and appropriate aromatic and aliphatic amides. The obtained derivatives have a bright yellow or orange fluorescence in organic solvents and in solid state. The novel benzanthrone derivatives were characterized by TLC analysis, 1H NMR, IR, MS, UV/vis, and fluorescence spectroscopy. The solvent effect on photophysical behaviors of these dyes was investigated, and the results showed that the Stoke's shift increased, whereas quantum yield decreased with the growth of the solvent polarity. The structure of some dyes was confirmed by the X-ray single crystal structure analysis. AM1, ZINDO/S and ab initio calculations using Gaussian software were carried out to estimate the electron system of structures. The calculations show planar configurations for the aromatic core of these compounds and two possible orientations of amidine substituents. The calculation results correlate well with red-shifted absorption and emission spectra of compounds.

  18. Detection and characterization of stomach cancer and atrophic gastritis with fluorescence and Raman spectroscopy

    Science.gov (United States)

    Li, Xiaozhou; Lin, Junxiu; Jia, Chunde; Wang, Rong

    2003-12-01

    In this paper, we attempt to find a valid method to distinguish gastric cancer and atrophic gastritis. Auto-fluorescence and Raman spectroscopy of laser induced (514.5 nm and 488.0 nm) was measured. The serum spectrum is different between normal and cancer. Average value of diagnosis parameter for normal serum, red shift is less than 12 nm and Raman relative intensity of peak C by 514.5 nm excited is stronger than that of 488.0 nm. To gastric cancer, its red shift of average is bigger than 12 nm and relative intensity of Raman peak C by 514.5 nm excited is weaker than that by 488.0 nm. To atrophic gastritis, the distribution state of Raman peaks is similar with normal serum and auto-fluorescence spectrum's shape is similar to that of gastric cancer. Its average Raman peak red shift is bigger than 12 nm and the relative intensity of peak C by 514.5 excited is stronger than that of by 488.0. We considered it as a criterion and got an accuracy of 85.6% for diagnosis of gastric cancer compared with the result of clinical diagnosis.

  19. Fluorescence correlation spectroscopy as tool for high-content-screening in yeast (HCS-FCS)

    Science.gov (United States)

    Wood, Christopher; Huff, Joseph; Marshall, Will; Yu, Elden Qingfeng; Unruh, Jay; Slaughter, Brian; Wiegraebe, Winfried

    2011-03-01

    To measure protein interactions, diffusion properties, and local concentrations in single cells, Fluorescence Correlation Spectroscopy (FCS) is a well-established and widely accepted method. However, measurements can take a long time and are laborious. Therefore investigations are typically limited to tens or a few hundred cells. We developed an automated system to overcome these limitations and make FCS available for High Content Screening (HCS). We acquired data in an auto-correlation screen of more than 4000 of the 6000 proteins of the yeast Saccharomyces cerevisiae, tagged with eGFP and expanded the HCS to use cross-correlation between eGFP and mCherry tagged proteins to screen for molecular interactions. We performed all high-content FCS screens (HCS-FCS) in a 96 well plate format. The system is based on an extended Carl Zeiss fluorescence correlation spectrometer ConfoCor 3 attached to a confocal microscope LSM 510. We developed image-processing software to control these hardware components. The confocal microscope obtained overview images and we developed an algorithm to search for and detect single cells. At each cell, we positioned a laser beam at a well-defined point and recorded the fluctuation signal. We used automatic scoring of the signal for quality control. All data was stored and organized in a database based on the open source Open Microscopy Environment (OME) platform. To analyze the data we used the image processing language IDL and the open source statistical software package R.

  20. Planetary Surface Analysis Using Fast Laser Spectroscopic Techniques: Combined Microscopic Raman, LIBS, and Fluorescence Spectroscopy

    Science.gov (United States)

    Blacksberg, J.; Rossman, G. R.; Maruyama, Y.; Charbon, E.

    2011-12-01

    In situ exploration of planetary surfaces has to date required multiple techniques that, when used together, yield important information about their formation histories and evolution. We present a time-resolved laser spectroscopic technique that could potentially collect complementary sets of data providing information on mineral structure, composition, and hydration state. Using a picosecond-scale pulsed laser and a fast time-resolved detector we can simultaneously collect spectra from Raman, Laser Induced Breakdown Spectroscopy (LIBS), and fluorescence emissions that are separated in time due to the unique decay times of each process. The use of a laser with high rep rate (40 KHz) and low pulse energy (1 μJ/pulse) allows us to rapidly collect high signal to noise Raman spectra while minimizing sample damage. Increasing the pulse energy by about an order of magnitude creates a microscopic plasma near the surface and enables the collection of LIBS spectra at an unusually high rep rate and low pulse energy. Simultaneously, broader fluorescence peaks can be detected with lifetimes varying from nanosecond to microsecond. We will present Raman, LIBS, and fluorescence spectra obtained on natural mineral samples such as sulfates, clays, pyroxenes and carbonates that are of interest for Mars mineralogy. We demonstrate this technique using a photocathode-based streak camera detector as well as a newly-developed solid state Single Photon Avalanche Diode (SPAD) sensor array based on Complementary Metal-Oxide Semiconductor (CMOS) technology. We will discuss the impact of system design and detector choice on science return of a potential planetary surface mission, with a specific focus on size, weight, power, and complexity. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  1. Recombinant phytochrome of the moss Ceratodon purpureus (CP2): fluorescence spectroscopy and photochemistry.

    Science.gov (United States)

    Sineshchekov, V; Koppel, L; Hughes, J; Lamparter, T; Zeidler, M

    2000-07-01

    The recombinant phytochrome of the moss Ceratodon purpureus (CP2) expressed in Saccharomyces cerevisiae and reconstituted with phycocyanobilin (PCB) was investigated using fluorescence spectroscopy. The pigment had an emission maximum at 670 nm at low temperature (85 K) and at 667 nm at room temperature (RT) and an excitation maximum at 650-652 nm at 85 K (excitation spectra could not be measured at RT). Both spectra had a half-band width of approx. 30-35 nm at 85 K. The fluorescence intensity revealed a steep temperature dependence with an activation energy of fluorescence decay (Ea) of 5.9-6.4 and 12.6-14.7 kJ mol(-1) in the interval from 85 to 210 K and from 210 to 275 K, respectively. The photochemical properties of CP2/PCB were characterised by the extent of the red-induced (lambda(a) = 639 nm) Pr conversion into the first photoproduct lumi-R at 85 K (gamma1) of approximately 0.07 and into Pfr at RT (gamma2) of approximately 0.7. From these characteristics, CP2/PCB can be attributed to the Pr" photochemical type with gamma1 < or = 0.05, which comprises the minor phyA fraction (phyA"), phyB, Adiantum phy1 and Synechocystis Cph1 in contrast to the major phyA' fraction (Pr' type with gamma1 = 0.5). Within the Pr" type, it is closer to phyA" than to phyB and Cph1.

  2. Kinetic model of atomic and molecular emissions in laser-induced breakdown spectroscopy of organic compounds.

    Science.gov (United States)

    Ma, Qianli; Dagdigian, Paul J

    2011-07-01

    A kinetic model previously developed to predict the relative intensities of atomic emission lines in laser-induced breakdown spectroscopy has been extended to include processes related to CN and C(2) molecular emissions. Simulations with this model were performed to predict the relative excited-state populations. The results from the simulations are compared with experimentally determined excited-state populations from 1,064 nm laser irradiation of organic residues on aluminum foil. The model reasonably predicts the relative intensity of the molecular emissions. Significantly, the model reproduces the vastly different temporal profiles of the atomic and molecular emissions. The latter are found to extend to much longer times after the laser pulse, and this appears to be due to the increasing concentration of the molecules versus time. From the simulations, the important processes affecting the CN and C(2) concentrations are identified.

  3. Surface-charge differentiation of streptavidin and avidin by atomic force microscopy-force spectroscopy.

    Science.gov (United States)

    Almonte, Lisa; Lopez-Elvira, Elena; Baró, Arturo M

    2014-09-15

    Chemical information can be obtained by using atomic force microscopy (AFM) and force spectroscopy (FS) with atomic or molecular resolution, even in liquid media. The aim of this paper is to demonstrate that single molecules of avidin and streptavidin anchored to a biotinylated bilayer can be differentiated by using AFM, even though AFM topographical images of the two proteins are remarkably alike. At physiological pH, the basic glycoprotein avidin is positively charged, whereas streptavidin is a neutral protein. This charge difference can be determined with AFM, which can probe electrostatic double-layer forces by using FS. The force curves, owing to the electrostatic interaction, show major differences when measured on top of each protein as well as on the lipid substrate. FS data show that the two proteins are negatively charged. Nevertheless, avidin and streptavidin can be clearly distinguished, thus demonstrating the sensitivity of AFM to detect small changes in the charge state of macromolecules.

  4. Spectroscopy and atomic physics of highly ionized Cr, Fe, and Ni for tokamak plasmas

    Science.gov (United States)

    Feldman, U.; Doschek, G. A.; Cheng, C.-C.; Bhatia, A. K.

    1980-01-01

    The paper considers the spectroscopy and atomic physics for some highly ionized Cr, Fe, and Ni ions produced in tokamak plasmas. Forbidden and intersystem wavelengths for Cr and Ni ions are extrapolated and interpolated using the known wavelengths for Fe lines identified in solar-flare plasmas. Tables of transition probabilities for the B I, C I, N I, O I, and F I isoelectronic sequences are presented, and collision strengths and transition probabilities for Cr, Fe, and Ni ions of the Be I sequence are given. Similarities of tokamak and solar spectra are discussed, and it is shown how the atomic data presented may be used to determine ion abundances and electron densities in low-density plasmas.

  5. [Determination of trace selenium in edible fungi with graphite furnace atomic absorption spectroscopy].

    Science.gov (United States)

    Tie, Mei; Zhang, Wei; Li, Jing; Jing, Kui; Zang, Shu-liang; Li, Hua-wei

    2006-01-01

    In the present article, samples were digested by a quartz high-pressure digestion pot, reducing the loss of selenium in digestion. The content of selenium in edible fungi was determined by using graphite furnace atomic absorption spectroscopy, and the results showed that when the content of selenium in edible fungi was determined by using 1% Ni(NO3)2 as a matrix modifier, ashing temperature of 500 degreed C, and atomization temperature of 2 500 degrees C, and rectifying background by deuterium light, the recovery was in the range of 92.1%-115.5%, the relative standard deviation of the method was 1.28%, and the limit of detection was 15.8 microg x L(-1). The method was suitable for the determination of trace selenium in edible fungi with the advantages of being simple, rapid, sensitive, stable and accurate etc., and the results were satisfactory.

  6. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy

    CERN Document Server

    Stadnik, Y V

    2016-01-01

    Low-mass (sub-eV) spin-0 dark matter particles, which form a coherently oscillating classical field $\\phi = \\phi_0 \\cos(m_\\phi t)$, can induce oscillating variations in the fundamental constants through their interactions with the Standard Model sector. We calculate the effects of such possible interactions, which may include the linear interaction of $\\phi$ with the Higgs boson, on atomic and molecular transitions. Using recent atomic clock spectroscopy measurements, we derive new limits on the linear interaction of $\\phi$ with the Higgs boson, as well as its quadratic interactions with the photon and light quarks. For the linear interaction of $\\phi$ with the Higgs boson, our derived limits improve on existing constraints by up to $2-3$ orders of magnitude.

  7. Improved limits on interactions of low-mass spin-0 dark matter from atomic clock spectroscopy

    Science.gov (United States)

    Stadnik, Y. V.; Flambaum, V. V.

    2016-08-01

    Low-mass (sub-eV) spin-0 dark matter particles, which form a coherently oscillating classical field ϕ =ϕ0cos(mϕt ) , can induce oscillating variations in the fundamental constants through their interactions with the standard model sector. We calculate the effects of such possible interactions, which may include the linear interaction of ϕ with the Higgs boson, on atomic and molecular transitions. Using recent atomic clock spectroscopy measurements, we derive limits on the linear interaction of ϕ with the Higgs boson, as well as its quadratic interactions with the photon and light quarks. For the linear interaction of ϕ with the Higgs boson, our derived limits improve on existing constraints by up to 2-3 orders of magnitude.

  8. Resonant two-photon ionization spectroscopy of Al atoms and dimers solvated in helium nanodroplets

    Energy Technology Data Exchange (ETDEWEB)

    Krasnokutski, Serge A.; Huisken, Friedrich [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany)

    2015-02-28

    Resonant two-photon ionization (R2PI) spectroscopy has been applied to investigate the solvation of Al atoms in helium droplets. The R2PI spectra reveal vibrational progressions that can be attributed to Al–He{sub n} vibrations. It is found that small helium droplets have very little chance to pick up an aluminum atom after collision. However, the pick-up probability increases with the size of the helium droplets. The absorption band that is measured by monitoring the ions on the mass of the Al dimer is found to be very little shifted with respect to the Al monomer band (∼400 cm{sup −1}). However, using the same laser wavelength, we were unable to detect any Al{sub n} photoion with n larger than two.

  9. Wideband laser locking to an atomic reference with modulation transfer spectroscopy.

    Science.gov (United States)

    Negnevitsky, V; Turner, L D

    2013-02-11

    We demonstrate that conventional modulated spectroscopy apparatus, used for laser frequency stabilization in many atomic physics laboratories, can be enhanced to provide a wideband lock delivering deep suppression of frequency noise across the acoustic range. Using an acousto-optic modulator driven with an agile oscillator, we show that wideband frequency modulation of the pump laser in modulation transfer spectroscopy produces the unique single lock-point spectrum previously demonstrated with electro-optic phase modulation. We achieve a laser lock with 100 kHz feedback bandwidth, limited by our laser control electronics. This bandwidth is sufficient to reduce frequency noise by 30 dB across the acoustic range and narrows the imputed linewidth by a factor of five.

  10. Light-induced atom desorption from glass surfaces characterized by X-ray photoelectron spectroscopy

    Science.gov (United States)

    Kumagai, Ryo; Hatakeyama, Atsushi

    2016-07-01

    We analyzed the surfaces of vitreous silica (quartz) and borosilicate glass (Pyrex) substrates exposed to rubidium (Rb) vapor by X-ray photoelectron spectroscopy (XPS) to understand the surface conditions of alkali metal vapor cells. XPS spectra indicated that Rb atoms adopted different bonding states in quartz and Pyrex. Furthermore, Rb atoms in quartz remained in the near-surface region, while they diffused into the bulk in Pyrex. For these characterized surfaces, we measured light-induced atom desorption (LIAD) of Rb atoms. Clear differences in time evolution, photon energy dependence, and substrate temperature dependence were found; the decay of LIAD by continuous ultraviolet irradiation for quartz was faster than that for Pyrex, a monotonic increase in LIAD with increasing photon energy from 1.8 to 4.3 eV was more prominent for quartz, and LIAD from quartz was more efficient at higher temperatures in the range from 300 to 580 K, while that from Pyrex was almost independent of temperature.

  11. Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields

    CERN Document Server

    Jiao, Yuechun; Li, Jingkui; Raithel, Georg; Zhao, Jianming; Jia, Suotang

    2016-01-01

    We study Rydberg atoms modulated by strong radio-frequency (RF) fields with a frequency of 70 MHz. The Rydberg atoms are prepared in a room temperature cesium cell, and their level structure is probed using electromagnetically induced transparency (EIT). As the RF field increases from the weak- into the strong-field regime, the range of observed RF-induced phenomena progresses from AC level shifts through increasingly pronounced and numerous RF-modulation sidebands to complex state-mixing and level-crossings with high-l hydrogen-like states. Weak anharmonic admixtures in the RF field generate clearly visible modifications in the Rydberg-EIT spectra. A Floquet analysis is employed to model the Rydberg spectra, and good agreement with the experimental observations is found. Our results show that all-optical spectroscopy of Rydberg atoms in vapor cells can serve as an antenna-free, atom-based and calibration-free technique to measure and map RF electric fields and to analyze their higher-harmonic contents.

  12. X-ray spectroscopy of light kaonic atoms – new results and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Marton, J. [Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien (Austria); Bazzi, M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Beer, G. [Dep. of Physics and Astronomy, University of Victoria, P.O.Box 3055, Victoria B.C. Canada V8W3P6 (Canada); Berucci, C. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Bombelli, L. [Politecnico di Milano, Dip. di Elettronica e Informazione, Piazza L. da Vinci, 32 I-20133 Milano (Italy); Bragadireanu, A.M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); IFIN-HH, P.O. box MG-6, R76900 Magurele, Bucharest (Romania); Cargnelli, M. [Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien (Austria); Curceanu, C. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); D' Uffizi, A.; Fiorini, C.; Frizzi, T. [Politecnico di Milano, Dip. di Elettronica e Informazione, Piazza L. da Vinci, 32 I-20133 Milano (Italy); Ghio, F. [INFN Sez. di Roma I and Instituto Superiore di Sanita I-00161, Roma (Italy); Guaraldo, C. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Hayano, R. [University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo (Japan); Iliescu, M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Ishiwatari, T. [Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien (Austria); Iwasaki, M. [RIKEN, Institute of Physical and Chemical Research, Saitama (Japan); and others

    2012-12-15

    The antikaon interaction on nucleons and nuclei in the low-energy regime is neither simple nor well understood. Rather direct access to this field is provided by x-ray spectroscopy of light kaonic atoms like kaonic hydrogen, deuterium and helium isotopes. A series of precision measurements on kaonic atoms was performed very successfully by the SIDDHARTA Collaboration at the DAΦNE electron-positron collider at LNF-INFN (Frascati, Italy). Consequently, new precision data on the strong interaction observables (i.e. energy shift and broadening of low-lying atomic states) were delivered having an important impact on the theory of low-energy QCD with strangeness. Presently, the follow-up experiment, SIDDHARTA-2, is in preparation, aiming at a determination of the strong interaction observables in kaonic deuterium as the highest priority; other type of measurements (light and heavier kaonic atoms) are as well foreseen. With the kaonic deuterium data the antikaon-nucleon isospin-resolved scattering lengths can be extracted for the first time. An overview of the progress and present status of experimental studies and an outlook to future perspectives in this fascinating research field is given.

  13. Zeeman Effect of Sm Atoms by High-Resolution Diode-Laser Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wei-Guo Jin

    2013-01-01

    Full Text Available High-resolution atomic-beam diode-laser spectroscopy in Sm I has been performed. Zeeman spectra have been measured for the three optical transitions at different external magnetic fields and well resolved at the magnetic fields of stronger than 6.0 mT. Using the known precise Landé -factors of the ground multiplet, the Landé -factors of the upper 4f66s6p   and levels have been determined, and their precision has been improved compared with the reference values.

  14. Effects of nonlinear forces on dynamic mode atomic force microscopy and spectroscopy.

    Science.gov (United States)

    Das, Soma; Sreeram, P A; Raychaudhuri, A K

    2007-06-01

    In this paper, we describe the effects of nonlinear tip-sample forces on dynamic mode atomic force microscopy and spectroscopy. The jumps and hysteresis observed in the vibration amplitude (A) versus tip-sample distance (h) curves have been traced to bistability in the resonance curve. A numerical analysis of the basic dynamic equation was used to explain the hysteresis in the experimental curve. It has been found that the location of the hysteresis in the A-h curve depends on the frequency of the forced oscillation relative to the natural frequency of the cantilever.

  15. Communication: atomic force detection of single-molecule nonlinear optical vibrational spectroscopy.

    Science.gov (United States)

    Saurabh, Prasoon; Mukamel, Shaul

    2014-04-28

    Atomic Force Microscopy (AFM) allows for a highly sensitive detection of spectroscopic signals. This has been first demonstrated for NMR of a single molecule and recently extended to stimulated Raman in the optical regime. We theoretically investigate the use of optical forces to detect time and frequency domain nonlinear optical signals. We show that, with proper phase matching, the AFM-detected signals closely resemble coherent heterodyne-detected signals. Applications are made to AFM-detected and heterodyne-detected vibrational resonances in Coherent Anti-Stokes Raman Spectroscopy (χ((3))) and sum or difference frequency generation (χ((2))).

  16. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    Science.gov (United States)

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  17. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    Science.gov (United States)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  18. Rotational spectra of N$_2^+$: An advanced undergraduate laboratory in atomic and molecular spectroscopy

    CERN Document Server

    Bayram, S B; Arndt, P T

    2015-01-01

    We describe an inexpensive instructional experiment that demonstrates the rotational energy levels of diatomic nitrogen, using the emission band spectrum of molecular nitrogen ionized by various processes in a commercial AC capillary discharge tube. The simple setup and analytical procedure is introduced as part of a sequence of educational experiments employed by a course of advanced atomic and molecular spectroscopy, where the study of rotational spectra is combined with the analysis of vibrational characteristics for a multifaceted picture of the quantum states of diatomic molecules.

  19. Theoretical analysis on two-photon absorption spectroscopy in a confined four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Li; Jintao Bai; Li Li; Yanpeng Zhang; Xun Hou

    2009-01-01

    We investigate theoretically two-photon absorption spectroscopy modified by a control field in a confined Y-type four-level system. Dicke-narrowing effect occurs both in two-photon absorption lines and the dips of transparency against two-photon absorption due to enhanced contribution of slow atoms. We also find that the suppression and the enhancement of two-photon absorption can be modified by changing the strength of the control field and the detuning of three laser fields. This control of two-photon absorption may have some applications in information processing and optical devices.

  20. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  1. Energy landscape investigation by wavelet transform analysis of atomic force spectroscopy data in a biorecognition experiment.

    Science.gov (United States)

    Bizzarri, Anna Rita

    2016-01-01

    Force fluctuations recorded in an atomic force spectroscopy experiment, during the approach of a tip functionalized with biotin towards a substrate charged with avidin, have been analyzed by a wavelet transform. The observation of strong transient changes only when a specific biorecognition process between the partners takes place suggests a drastic modulation of the force fluctuations when biomolecules recognize each other. Such an analysis allows to investigate the peculiar features of a biorecognition process. These results are discussed in connection with the possible role of energy minima explored by biomolecules during the biorecognition process.

  2. Application de la spectroscopie de fluorescence a l'étude du pétrole : le défi de la complexité Application of Fluorescence Spectroscopy to the Study of Petroleum: Challenging Complexity

    Directory of Open Access Journals (Sweden)

    Ellingsen G.

    2006-12-01

    Full Text Available Grâce à sa sensibilité et à sa sélectivité, la spectroscopie de fluorescence est de plus en plus employée dans l'étude du pétrole. Dans un premier temps, les principes fondamentaux de cette technique sont rappelés, en mettant l'accent sur les difficultés inhérentes à la complexité du milieu et sur les développements récents comme la spectroscopie de fluorescence par excitation synchrone et la détection à distance. Par la suite, les principaux domaines d'application de la fluorescence à la technologie du pétrole sont successivement passés en revue, en particulier la détection de la pollution, la caractérisation rapide des bruts, l'information pour l'exploration et le forage, et enfin l'analyse fine des constituants. Les réactifs fluorogéniques ne sont utilisés qu'après minéralisation de l'échantillon et essentiellement pour détecter les traces de métaux. Due to its sensitivity and selectivity, fluorescence spectroscopy is increasingly used in petroleum technology. Firstly, the fundamentals of fluorescence are briefly presented, emphasizing the many difficulties encountered because of the medium complexity and the recent developments of methods like synchronously excited fluorescence spectroscopy and remote detection. Then, the main application fields are successively reviewed, that is identification of pollutant sources, crude oils fingerprinting, information for drilling and exploration and finally the analysis of petroleum constituents. Fluorogenic reactants are only used for trace metal detection after sample mineralization.

  3. Drug-DNA interactions and their study by UV-Visible, fluorescence spectroscopies and cyclic voltametry.

    Science.gov (United States)

    Sirajuddin, Muhammad; Ali, Saqib; Badshah, Amin

    2013-07-05

    The present paper review the drug-DNA interactions, their types and applications of experimental techniques used to study interactions between DNA and small ligand molecules that are potentially of pharmaceutical interest. DNA has been known to be the cellular target for many cytotoxic anticancer agents for several decades. Understanding how drug molecules interact with DNA has become an active research area at the interface between chemistry, molecular biology and medicine. In this review article, we attempt to bring together topics that cover the breadth of this large area of research. The interaction of drugs with DNA is a significant feature in pharmacology and plays a vital role in the determination of the mechanisms of drug action and designing of more efficient and specifically targeted drugs with lesser side effects. Several instrumental techniques are used to study such interactions. In the present review, we will discuss UV-Visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry. The applications of spectroscopic techniques are reviewed and we have discussed the type of information (qualitative or quantitative) that can be obtained from the use of each technique. Not only have novel techniques been applied to study drug-DNA interactions but such interactions may also be the basis for the development of new assays. The interaction between DNA and drugs can cause chemical and conformational modifications and, thus, variation of the electrochemical properties of nucleobases.

  4. X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, L. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); El Hassan, A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Ferretti, M. [Istituto per le Tecnologie Applicate ai Beni Culturali, Area della Ricerca del CNR di Montelibretti Roma (Italy); Foresta, A.; Legnaioli, S.; Lorenzetti, G. [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Nebbia, E. [Universita degli Studi di Torino (Italy); Catalli, F. [Monetiere di Firenze, Museo Archeologico Nazionale Firenze (Italy); Harith, M.A. [National Institute for Laser- Enhanced Sciences (NILES), Cairo University Giza (Egypt); Diaz Pace, D. [Institute of Physics ' Arroyo Seco' , Faculty of Science, Tandil (Argentina); Anabitarte Garcia, F. [Photonics Engineering Group, University of Cantabria, Santander (Spain); Scuotto, M. [Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy); Palleschi, V., E-mail: vincenzo.palleschi@cnr.it [Istituto di Chimica dei Composti Organometallici del CNR, Research Area of Pisa, Via G. Moruzzi 1, 56124 Pisa (Italy); Dipartimento di Scienze Archeologiche, Via Galvani 1, 56126 Pisa (Italy)

    2012-08-15

    In this paper we present the results of a study performed on a large collection of silver Roman republican denarii, encompassing about two centuries of history. The joint use of Laser-Induced Breakdown Spectroscopy (LIBS) and X-Ray Fluorescence (XRF) spectroscopy allowed for an accurate determination of the coins' elemental composition; the measurements, performed mostly in situ at the 'Monetiere' in Florence, revealed a striking connection between the 'quality' of the silver alloy and some crucial contemporary events. This finding was used to classify a group of denarii whose dating was otherwise impossible. The comparison with other contemporary denarii disproves a recent theory on the origin of the so called 'serrated' denarii (denarii showing notched chisel marks on the edge of the coin). - Highlights: Black-Right-Pointing-Pointer We studied a large collection of Roman republican silver denarii. Black-Right-Pointing-Pointer XRF and LIBS allowed to determine the precious metal content of the coins. Black-Right-Pointing-Pointer A correlation of the 'quality' of the alloy with some contemporary events was found. Black-Right-Pointing-Pointer The study allowed to controvert a recent theory on the so called 'serrated' denarii.

  5. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in a Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid

    2015-08-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs [1, 2]. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions [see 3 for a review]. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser-induced fluorescence (LIF) technique [4] and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examinedReferences[1] F. Salama, E. Bakes, L.J. Allamandola, A.G.G.M. Tielens, Astrophys. J., 458 (1996) p.621[2] F. Salama, The ISO Revolution, EDP Sciences, Les Ulis, France (1999) p.65[3] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press,4, S251,(2008), p. 357 (2008) and references therein.[4

  6. Investigation on the photo-induced de-oxygenation process of myoglobin in aqueous solution by use of fluorescence spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A photo-induced de-oxygenation process of myoglobin (Mb) in aqueous solution was investigated by use of fluorescence spectroscopy. The spectra are characterized by the fluorescence intensity declining gradually after each scan,and the decay of fluorescence intensity being significant in each scan,which is assigned to the release of oxygen from the opening of the heme-pockets induced by illumination. More illumination will cause more release of oxygen; if the temperature of an Mb solution is increased when it is illuminated,the rate of de-oxygenation will be higher. It was found that ligand-oxygen in Fe-porphyrin could be removed from Mb by nitrogen. This indicates that the interac-tion between oxy-Mb and other different gases can be tested by the method of fluorescence spectros-copy. In addition,fluorescence spectroscopy can be employed to probe the energy transfer between Fe-porphyrin and tryptophan or tyrosine in Mb molecules.

  7. The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals.

    Science.gov (United States)

    Lewen, Nancy

    2011-06-25

    The subject of the analysis of various elements, including metals and metalloids, in the pharmaceutical industry has seen increasing importance in the last 10-15 years, as modern analytical instrumentation has afforded analysts with the opportunity to provide element-specific, accurate and meaningful information related to pharmaceutical products. Armed with toxicological data, compendial and regulatory agencies have revisited traditional approaches to the testing of pharmaceuticals for metals and metalloids, and analysts have begun to employ the techniques of atomic spectroscopy, such as flame- and graphite furnace atomic absorption spectroscopy (FAAS, Flame AA or FAA and GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), to meet their analytical needs. Newer techniques, such as laser-induced breakdown spectroscopy (LIBS) and Laser Ablation ICP-MS (LAICP-MS) are also beginning to see wider applications in the analysis of elements in the pharmaceutical industry.This article will provide a perspective regarding the various applications of atomic spectroscopy in the analysis of metals and metalloids in drug products, active pharmaceutical ingredients (API's), raw materials and intermediates. The application of atomic spectroscopy in the analysis of metals and metalloids in clinical samples, nutraceutical, metabolism and pharmacokinetic samples will not be addressed in this work.

  8. Photo-initiated dynamics and spectroscopy of the deprotonated Green Fluorescent Protein chromophore

    DEFF Research Database (Denmark)

    Bochenkova, Anastasia; Andersen, Lars Henrik

    2013-01-01

    . Knowledge of intrinsic properties of the GFP photoabsorbing molecular unit is a prerequisite in understanding the atomic-scale interactions that play a key role for the diverse functioning of these proteins. Here, we show how recent developments in action and photoelectron spectroscopy combined with state......-of-the-art electronic structure theory provide valuable insights into photo-initiated quantum dynamics and enable to disclose mechanisms of multiple intrinsic excited-state decay channels in the bare GFP chromophore anion. When taken out of the protein, the deprotonated chromophore exhibits the ultrafast excited state...... efficiently compete with each other in spite of their inherently different intrinsic timescales. The reason behind this is an efficient coupling between the nuclear and electronic motion in the photo-initiated dynamics, where the energy may be transferred from nuclei to electrons and from electrons to nuclei...

  9. Organic Light Emitting Device as a fluorescence spectroscopy's light source : one step towards the lab-on-a-chip device

    Science.gov (United States)

    Camou, S.; Kitamura, M.; Gouy, Jean-Philippe; Fujita, Hiroyuki; Arakawa, Yasuhiko; Fujii, Teruo

    2003-02-01

    Many papers were recently dedicated to the lab-on-a-chip applications, where all the basic elements should be integrated directly onto the microchip. The fluorescence spectroscopy is mostly used as a detection method due to its high reliability and sensitivity, but requires light source and photo-detector. For the first time, we then propose to use Organic material Light Emitting Diode (OLED) to supply a light source for the optical detection based on fluorescence spectroscopy. By combining this OLED with micro-fluidic channels patterned in PDMS layer, the integration of light source on the chip is then achieved. First, the ability of Organic Material to excite fluorescent response from dye is demonstrated. Then, some configurations are described in order to decrease the major drawbacks that have to be solved before applying such kind of devices.

  10. Potential of two-line atomic fluorescence for temperature imaging in turbulent indium-oxide-producing flames

    Energy Technology Data Exchange (ETDEWEB)

    Münsterjohann, Bettina; Huber, Franz J. T.; Klima, Tobias C.; Holfelder, Sandra; Engel, Sascha R. [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Technische Thermodynamik (LTT) (Germany); Miller, Joseph D. [Aerospace Systems Directorate, Air Force Research Laboratory (United States); Meyer, Terrence R. [Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen Graduate School in Advanced Optical Technologies (SAOT) (Germany); Will, Stefan, E-mail: stefan.will@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Technische Thermodynamik (LTT) (Germany)

    2015-11-15

    The applicability of two-line atomic fluorescence (TLAF) for temperature imaging in an indium-based flame spray pyrolysis (FSP) process is demonstrated using a single tunable optical parametric oscillator (OPO) to generate the required excitation wavelengths consecutively. Single-shot images of the detected fluorescence signals demonstrate that the signal levels in the flame are suitable for evaluation of temperature and verify the capability and potential of the measurement technique directly during particle formation without additional indium seeding. Qualitative averaged two-dimensional temperature distributions in the FSP flame are presented, showing the influence of varying sheath gas flow rates on the resulting temperature distribution. With the addition of a second OPO and detection system, the two fluorescence signals acquired consecutively in this work could be obtained simultaneously and enable spatio-temporally resolved single-shot temperature measurements in flame synthesis processes of indium-containing nanoparticles.

  11. Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy

    CERN Document Server

    Lott, Geoffrey A; Utterback, James K; Widom, Julia R; Aspuru-Guzik, Alán; Marcus, Andrew H

    2011-01-01

    By applying a phase-modulation fluorescence approach to 2D electronic spectroscopy, we studied the conformation-dependent exciton-coupling of a porphyrin dimer embedded in a phospholipid bilayer membrane. Our measurements specify the relative angle and separation between interacting electronic transition dipole moments, and thus provide a detailed characterization of dimer conformation. Phase-modulation 2D fluorescence spectroscopy (PM-2D FS) produces 2D spectra with distinct optical features, similar to those obtained using 2D photon-echo spectroscopy (2D PE). Specifically, we studied magnesium meso tetraphenylporphyrin dimers, which form in the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. Comparison between experimental and simulated spectra show that while a wide range of dimer conformations can be inferred by either the linear absorption spectrum or the 2D spectrum alone, consideration of both types of spectra constrains the possible structures to a "T-shaped" geometry. The...

  12. High performance liquid chromatography--atomic fluorescence spectrometric determination of arsenic species in beer samples

    Energy Technology Data Exchange (ETDEWEB)

    Melo Coelho, N.M.; Parrilla, Carmen; Cervera, M.L.; Pastor, A.; Guardia, M. de la

    2003-04-10

    A method has been developed for the direct determination of As(III), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA) and As(V) in beers by hydride generation--atomic fluorescence spectrometry after separation of arsenic species by high performance liquid chromatography. Compounds were separated by anion-exchange chromatography with isocratic elution using KH{sub 2}PO{sub 4}/K{sub 2}HPO{sub 4} as mobile phase with elution times of 1.67, 2.08, 6.52 and 10.72 min for As(III), DMA, MMA and As(V), respectively. Parameters affecting the hydride generation of all arsenic species were studied and the best conditions were established as a reaction coil of 150 cm, for a sample injected volume of 100 {mu}l, a 4.0% (m/v) solution of sodium tetrahydroborate and 2.0 mol l{sup -1} hydrochloric acid with flow rates of 2.7 and 1.7 ml min{sup -1}, respectively and a flow rate of 500 ml min{sup -1} for the argon carrier gas. Under the best experimental conditions, the detection limit was found to be 0.12, 0.20, 0.27 and 0.39 {mu}g l{sup -1} for As(III), DMA, MMA and As(V), respectively. The relative standard deviation for eight independent determinations varied from 3.9 till 8.9% for species considered at a concentration level of 10.0 {mu}g l{sup -1}. Recovery and comparative studies evidenced that the method is suitable for the accurate determination of arsenic species in water and beer samples.

  13. Kinetic theory and atomic physics corrections for determination of ion velocities from charge-exchange spectroscopy

    Science.gov (United States)

    Muñoz Burgos, J. M.; Burrell, K. H.; Solomon, W. M.; Grierson, B. A.; Loch, S. D.; Ballance, C. P.; Chrystal, C.

    2013-09-01

    Charge-exchange spectroscopy is a powerful diagnostic tool for determining ion temperatures, densities and rotational velocities in tokamak plasmas. This technique depends on detailed understanding of the atomic physics processes that affect the measured apparent velocities with respect to the true ion rotational velocities. These atomic effects are mainly due to energy dependence of the charge-exchange cross-sections, and in the case of poloidal velocities, due to gyro-motion of the ion during the finite lifetime of the excited states. Accurate lifetimes are necessary for correct interpretation of measured poloidal velocities, specially for high density plasma regimes on machines such as ITER, where l-mixing effects must be taken into account. In this work, a full nl-resolved atomic collisional radiative model coupled with a full kinetic calculation that includes the effects of electric and magnetic fields on the ion gyro-motion is presented for the first time. The model directly calculates from atomic physics first principles the excited state lifetimes that are necessary to evaluate the gyro-orbit effects. It is shown that even for low density plasmas where l-mixing effects are unimportant and coronal conditions can be assumed, the nl-resolved model is necessary for an accurate description of the gyro-motion effects to determine poloidal velocities. This solution shows good agreement when compared to three QH-mode shots on DIII-D, which contain a wide range of toroidal velocities and high ion temperatures where greater atomic corrections are needed. The velocities obtained from the model are compared to experimental velocities determined from co- and counter-injection of neutral beams on DIII-D.

  14. Atomic force spectroscopy and density-functional study of graphene corrugation on Ru(0001)

    Science.gov (United States)

    Voloshina, Elena; Dedkov, Yuriy

    2016-06-01

    Graphene, the thinnest material in the world, can form moiré structures on different substrates, including graphite, h -BN, or metal surfaces. In such systems, the structure of graphene, i.e., its corrugation, as well as its electronic and elastic properties, are defined by the combination of the system geometry and local interaction strength at the interface. The corrugation in such structures on metals is heavily extracted from diffraction or local probe microscopy experiments, and it can be obtained only via comparison with theoretical data, which usually simulate the experimental findings. Here we show that graphene corrugation on metals can be measured directly employing atomic force spectroscopy, and the obtained value coincides with state-of-the-art theoretical results. The presented results demonstrate an unexpected space selectivity for the Δ f (z ) signal in the atomic force spectroscopy in the moiré graphene lattice on Ru(0001), which is explained by the different response of the graphene layer on the indentation process. We also address the elastic reaction of the formed graphene nanodoms on the indentation process by the scanning tip that is important for the modeling and fabrication of graphene-based nanoresonators on the nanoscale.

  15. A Proposed Method for Measurement of Absolute Air Fluorescence Yield based on High Resolution Optical Emission Spectroscopy

    CERN Document Server

    Gika, V; Maltezos, S

    2016-01-01

    In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...

  16. Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    CERN Document Server

    Shi, H; Beer, G; Bellotti, G; Berucci, C; Bragadireanu, A M; Bosnar, D; Cargnelli, M; Curceanu, C; Butt, A D; d'Uffizi, A; Fiorini, C; Ghio, F; Guaraldo, C; Hayano, R S; Iliescu, M; Ishiwatari, T; Iwasaki, M; Sandri, P Levi; Marton, J; Okada, S; Pietreanu, D; Piscicchia, K; Vidal, A Romero; Sbardella, E; Scordo, A; Sirghi, D L; Sirghi, F; Tatsuno, H; Doce, O Vazquez; Widmann, E; Zmeskal, J

    2016-01-01

    In the exotic atoms where one atomic $1s$ electron is replaced by a $K^{-}$, the strong interaction between the $K^{-}$ and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the $1s$ state of $K^{-}p$ and the $2p$ state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.

  17. An Effective-Hamiltonian Approach to CH5+, Using Ideas from Atomic Spectroscopy

    Science.gov (United States)

    Hougen, Jon T.

    2016-06-01

    In this talk we present the first steps in the design of an effective Hamiltonian for the vibration-rotation energy levels of CH5+. Such a Hamiltonian would allow calculation of energy level patterns anywhere along the path travelled by a hypothetical CH5+ (or CD5+) molecule as it passes through various coupling cases, and might thus provide some hints for assigning the observed high-resolution spectra. The steps discussed here, which have not yet addressed computational problems, focus on mapping the vibration-rotation problem in CH5+ onto the five-electron problem in the boron atom, using ideas and mathematical machinery from Condon and Shortley's book on atomic spectroscopy. The mapping ideas are divided into: (i) a mapping of particles, (ii) a mapping of coordinates (i.e., mathematical degrees of freedom), and (iii) a mapping of quantum mechanical interaction terms. The various coupling cases along the path correspond conceptually to: (i) the analog of a free-rotor limit, where the H atoms see the central C atom but do not see each other, (ii) the low-barrier and high-barrier tunneling regimes, and (iii) the rigid-molecule limit, where the H atoms remain locked in some fixed molecular geometry. Since the mappings considered here often involve significant changes in mathematics, a number of interesting qualitative changes occur in the basic ideas when passing from B to CH5+, particularly in discussions of: (i) antisymmetrization and symmetrization ideas, (ii) n,l,ml,ms or n,l,j,mj quantum numbers, and (iii) Russell-Saunders computations and energy level patterns. Some of the mappings from B to CH5+ to be discussed are as follows. Particles: the atomic nucleus is replaced by the C atom, the electrons are replaced by protons, and the empty space between particles is replaced by an "electron soup." Coordinates: the radial coordinates of the electrons map onto the five local C-H stretching modes, the angular coordinates of the electrons map onto three rotational

  18. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Science.gov (United States)

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-05

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor.

  19. Double-resonance spectroscopy in Rubidium vapour-cells for high performance and miniature atomic clocks

    Science.gov (United States)

    Gharavipour, M.; Affolderbach, C.; Kang, S.; Mileti, G.

    2017-01-01

    We report our studies on using microwave-optical double-resonance (DR) spectroscopy for a high-performance Rb vapour-cell atomic clock in view of future industrial applications. The clock physics package is very compact with a total volume of only 0.8 dm3. It contains a recently in-house developed magnetron-type cavity and a Rb vapour cell. A homed-made frequency-stabilized laser system with an integrated acousto-optical-modulator (AOM) – for switching and controlling the light output power– is used as an optical source in a laser head (LH). The LH has the overall volume of 2.5 dm3 including the laser diode, optical elements, AOM and electronics. In our Rb atomic clock two schemes of continuous-wave DR and Ramsey-DR schemes are used, where the latter one strongly reduces the light-shift effect by separation of the interaction of light and microwave. Applications of the DR clock approach to more radically miniaturized atomic clocks are discussed.

  20. Single Ra{sup +} ion spectroscopy - towards a measurement of atomic parity violation

    Energy Technology Data Exchange (ETDEWEB)

    Nunez Portela, Mayerlin; Mohanti, A.; Dijck, E.A.; Bekker, H.; Boell, O.; Berg, J. van den; Giri, G.S.; Jungmann, K.; Onderwater, C.J.G.; Santra, B.; Timmermans, R.G.E.; Versolato, O.O.; Wansbeek, L.W.; Willmann, L.; Wilschut, H.W. [KVI, University of Groningen, Groningen (Netherlands)

    2013-07-01

    The sensitivity of the Atomic Parity Violation (APV) signal grows faster than the third power of the atomic number Z. Ra{sup +} (Z=88) is heaviest alkaline earth ion available. A single trapped Ra{sup +} ion opens a very promising path for a measurement atomic parity violation. One of the experimental challenges is the localization of the ion within a fraction of an optical wavelength. For this the current experiments are focused on trapping and laser cooling of Ba{sup +} ions as a precursor for Ra{sup +}. Ba{sup +} ions are trapped and laser cooled in a precision hyperbolic Paul trap. Work towards single Ba{sup +} ion localization and detection is in progress. Recently the hyperfine structure of the 6d{sub 2}D{sub 3/2} states and the isotope shift of the 6d{sub 2}D{sub 3/2}-7p{sub 2}P{sub 1/2} transition in the isotopes {sup 209-214}Ra{sup +} has been measured in online laser spectroscopy experiments at the KVI AGOR/TRIμP facility. These results are essential for the interpretation of an APV measurement in Ra{sup +}.

  1. Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin.

    Science.gov (United States)

    Al-Soufi, Wajih; Reija, Belén; Novo, Mercedes; Felekyan, Suren; Kühnemuth, Ralf; Seidel, Claus A M

    2005-06-22

    The control of supramolecular systems requires a thorough understanding of their dynamics on a molecular level. We present fluorescence correlation spectroscopy (FCS) as a powerful spectroscopic tool to study supramolecular dynamics with single molecule sensitivity. The formation of a supramolecular complex between beta-cyclodextrin (beta-CD) as host and pyronines Y (PY) and B (PB) as guests is studied by FCS. Global target analysis of full correlation curves with a newly derived theoretical model yields in a single experiment the fluorescence lifetimes and the diffusion coefficients of free and complexed guests and the rate constants describing the complexation dynamics. These data give insight into the recently published surprising fact that the association equilibrium constant of beta-CD with PY is much lower than that with the much bulkier guest PB. FCS shows that the stability of the complexes is dictated by the dissociation and not by the association process. The association rate constants are very similar for both guests and among the highest reported for this type of systems, although much lower than the diffusion-controlled collision rate constant. A two-step model including the formation of an encounter complex allows one to identify the unimolecular inclusion reaction as the rate-limiting step. Simulations indicate that this step may be controlled by geometrical and orientational requirements. These depend on critical molecular dimensions which are only weakly affected by the different alkyl substituents of PY and PB. Diffusion coefficients of PY and PB, of their complexes, and of rhodamine 110 are given and compared to those of similar molecules.

  2. Study of the Neutron Deficient Pb and Bi Isotopes by Simultaneous Atomic- and Nuclear-Spectroscopy

    CERN Multimedia

    Kessler, T

    2002-01-01

    We propose to study systematically nuclear properties of the neutron deficient lead $^{183-189}$Pb, $^{191g}$Pb, $^{193g}$Pb and bismuth isotopes $^{188-200}$Bi by atomic spectroscopy with the ISOLDE resonance ionisation laser ion source (RILIS) combined with simultaneous nuclear spectroscopy at the detection set-up. The main focus is the determination of the mean square charge radii of $^{183-190}$Pb and $^{188-193}$Bi from which the influence of low-lying intruder states should become obvious. Also the nuclear spin and magnetic moments of ground-states and long-lived isomers will be determined unambiguously through evaluation of the hyperfine structure, and new isomers could be discovered. The decay properties of these nuclei can be measured by $\\alpha$-$\\gamma$ and $\\beta$-$\\gamma$ spectroscopy. With this data at hand, possible shape transitions around mid-shell at N$\\sim$104 will be studied. This data is crucial for the direct test of nuclear theory in the context of intruder state influence (e.g. energy ...

  3. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality.

    Science.gov (United States)

    Carvalho, Filomena A; Martins, Ivo C; Santos, Nuno C

    2013-03-01

    Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies.

  4. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, Valeria [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Biagi, Simona [National Research Council of Italy, C.N.R., Istituto per i Processi Chimico-Fisici - IPCF-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ghimenti, Silvia [University of Pisa, Department of Chemistry and Industrial Chemistry, Via Risorgimento 35, 56126 Pisa (Italy); Onor, Massimo; D' Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2011-11-15

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H{sub 2} miniaturized flame after sodium borohydride reduction to Hg{sup 0}, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H{sub 2} microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10{sup -5} mol L{sup -1}), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L{sup -1} (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 {mu}mol L{sup -1} were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were

  5. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    Science.gov (United States)

    Angeli, Valeria; Biagi, Simona; Ghimenti, Silvia; Onor, Massimo; D'Ulivo, Alessandro; Bramanti, Emilia

    2011-11-01

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H 2 miniaturized flame after sodium borohydride reduction to Hg 0, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H 2 microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10 - 5 mol L - 1 ), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L - 1 (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 μmol L - 1 were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were never less than 91%. Flow injection

  6. Collective resonance fluorescence in small and dense atom clouds: Comparison between theory and experiment

    CERN Document Server

    Jenkins, S D; Javanainen, J; Jennewein, S; Bourgain, R; Pellegrino, J; Sortais, Y R P; Browaeys, A

    2016-01-01

    We study the emergence of a collective optical response of a cold and dense $^{87}$Rb atomic cloud to a near-resonant low-intensity light when the atom number is gradually increased. Experimental observations are compared with microscopic stochastic simulations of recurrent scattering processes between the atoms that incorporate the atomic multilevel structure and the optical measurement setup. We analyze the optical response of an inhomogeneously-broadened gas and find that the experimental observations of the resonance line shifts and the total collected scattered light intensity in cold atom clouds substantially deviate from those of thermal atomic ensembles, indicating strong light-induced resonant dipole-dipole interactions between the atoms. At high densities, the simulations also predict a significantly slower decay of light-induced excitations in cold than in thermal atom clouds. The role of dipole-dipole interactions is discussed in terms of resonant coupling examples and the collective radiative exc...

  7. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.

    Science.gov (United States)

    Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U

    2006-07-01

    In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution.

  8. Characterization of type I, II, III, IV, and V collagens by time-resolved laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Marcu, Laura; Cohen, David; Maarek, Jean-Michel I.; Grundfest, Warren S.

    2000-04-01

    The relative proportions of genetically distinct collagen types in connective tissues vary with tissue type and change during disease progression, development, wound healing, aging. This study aims to 1) characterize the spectro- temporal fluorescence emission of fiber different types of collagen and 2) assess the ability of time-resolved laser- induced fluorescence spectroscopy to distinguish between collagen types. Fluorescence emission of commercially available purified samples was induced with nitrogen laser excitation pulses and detected with a MCP-PMT connected to a digital storage oscilloscope. The recorded time-resolved emission spectra displayed distinct fluorescence emission characteristics for each collagen type. The time domain information complemented the spectral domain intensity data for improved discrimination between different collagen types. Our results reveal that analysis of the fluorescence emission can be used to characterize different species of collagen. Also, the results suggest that time-resolved spectroscopy can be used for monitoring of connective tissue matrix composition changes due to various pathological and non-pathological conditions.

  9. Using fluorescence correlation spectroscopy to study diffusion in the presence of a hierarchy of membrane domains

    Science.gov (United States)

    Kalay, Ziya

    2014-03-01

    Fluorescence correlation spectroscopy (FCS) is a commonly used experimental technique to study molecular transport, especially in biological systems. FCS is particularly useful in two-dimensional systems such as the cell membrane, where molecules approximately move in a plane over several hundreds of nanometers, and the signal to noise ratio is high. Recent observations showed that proteins and lipids in the plasma membrane (the outermost membrane of a cell) can become temporarily confined in a hierarchy of membrane domains, induced by actin filaments and dynamic clusters formed by lipids and proteins (rafts). There has been considerable interest in measuring the characteristic size and lifetime of these domains via microscopy techniques, including FCS. Even though FCS is widely applicable, interpretation of the results is often indirect, as data has to be fit to model predictions in order to extract transport coefficients. In this talk, I will present our recent theoretical and computational findings on how FCS measurements would reflect diffusion in the simultaneous presence of cytoskeleton induced membrane compartments, and raft-like domains.

  10. Laser-induced fluorescence and FT-Raman spectroscopy for characterizing patinas on stone substrates.

    Science.gov (United States)

    Oujja, M; Vázquez-Calvo, C; Sanz, M; Álvarez de Buergo, M; Fort, R; Castillejo, M

    2012-02-01

    This article reports on a compositional investigation of stone patinas: thin colored layers applied for protective and/or aesthetic purposes on architectural or sculptural substrates of cultural heritage. The analysis and classification of patinas provide important information of historic and artistic interest, as their composition reflects local practices, the availabilities of different materials, and the development of technological knowledge during specific historical periods. Model patinas fabricated according to traditional procedures and applied onto limestone, and a historic patina sample from the main façade of the San Blas Monastery in Lerma (a village in the province of Burgos, Spain), were analyzed by laser-induced fluorescence and Fourier transform Raman spectroscopy. The results obtained demonstrate the ability of these two analytical techniques to identify the key components of each formulation and those of the reaction products which result from the chemical and mineralogical transformations that occur during aging, as well as to provide information that can aid the classification of different types of patinas.

  11. Mapping Liquid-liquid protein phase separation using ultra-fast-scanning fluorescence correlation spectroscopy

    Science.gov (United States)

    Wei, Ming-Tzo; Elbaum-Garfinkle, Shana; Arnold, Craig B.; Priestley, Rodney D.; Brangwynne, Clifford P.

    Intrinsically disordered proteins (IDPs) are an understudied class of proteins that play important roles in a wide variety of biological processes in cells. We've previously shown that the C. elegans IDP LAF-1 phase separates into P granule-like droplets in vitro. However, the physics of the condensed phase remains poorly understood. Here, we use a novel technique, ultra-fast-scanning fluorescence correlation spectroscopy, to study the nano-scale rheological properties of LAF-1 droplets. Ultra-fast-scanning FCS uses a tunable acoustic gradient index of refraction (TAG) lens with an oil immersion objective to control axial movement of the focal point over a length of several micrometers at frequencies of 70kHz. Using ultra-fast-scanning FCS allows for the accurate determination of molecular concentrations and their diffusion coefficient, when the particle is passing through an excitation volume. Our work reveals an asymmetric LAF-1 phase diagram, and demonstrates that LAF-1 droplets are purely viscous phases which are highly tunable by salt concentration.

  12. Multi-confocal Fluorescence Correlation Spectroscopy : experimental demonstration and potential applications for living cell measurements

    CERN Document Server

    Galland, Rémi; Kloster, Meike; Herbomel, Gaetan; Destaing, Olivier; Balland, Martial; Souchier, Catherine; Usson, Yves; Derouard, Jacques; Wang, Irène; Delon, Antoine; 10.2741/e263

    2011-01-01

    We report, for the first time, a multi-confocal Fluorescence Correlation Spectroscopy (mFCS) technique which allows parallel measurements at different locations, by combining a Spatial Light Modulator (SLM), with an Electron Multiplying-CCD camera (EM-CCD). The SLM is used to produce a series of laser spots, while the pixels of the EM-CCD play the roles of virtual pinholes. The phase map addressed to the SLM is calculated by using the spherical wave approximation and makes it possible to produce several diffraction limited laser spots, either aligned or spread over the field of view. To attain fast enough imaging rates, the camera has been used in different acquisition modes, the fastest of which leads to a time resolution of 100 $\\mu$s. We qualified the experimental set-up by using solutions of sulforhodamine G in glycerol and demonstrated that the observation volumes are similar to that of a standard confocal set-up. To demonstrate that our mFCS method is suitable for intracellular studies, experiments have...

  13. Heat shock-induced interactions among nuclear HSFs detected by fluorescence cross-correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Chan-Gi, E-mail: changipack@amc.seoul.kr [Asan Institute for Life Sciences, University of Ulsan, College of Medicine, Asan Medical Center, Seoul 138-736 (Korea, Republic of); Ahn, Sang-Gun [Dept. of Pathology, College of Dentistry, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2015-07-31

    The cellular response to stress is primarily controlled in cells via transcriptional activation by heat shock factor 1 (HSF1). HSF1 is well-known to form homotrimers for activation upon heat shock and subsequently bind to target DNAs, such as heat-shock elements, by forming stress granules. A previous study demonstrated that nuclear HSF1 and HSF2 molecules in live cells interacted with target DNAs on the stress granules. However, the process underlying the binding interactions of HSF family in cells upon heat shock remains unclear. This study demonstrate for the first time that the interaction kinetics among nuclear HSF1, HSF2, and HSF4 upon heat shock can be detected directly in live cells using dual color fluorescence cross-correlation spectroscopy (FCCS). FCCS analyses indicated that the binding between HSFs was dramatically changed by heat shock. Interestingly, the recovery kinetics of interaction between HSF1 molecules after heat shock could be represented by changes in the relative interaction amplitude and mobility. - Highlights: • The binding interactions among nuclear HSFs were successfully detected. • The binding kinetics between HSF1s during recovery was quantified. • HSF2 and HSF4 strongly formed hetero-complex, even before heat shock. • Nuclear HSF2 and HSF4 bound to HSF1 only after heat shock.

  14. Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy.

    Science.gov (United States)

    Mori, Takayasu; Kikuchi, Eriko; Watanabe, Yuko; Fujii, Shinya; Ishigami-Yuasa, Mari; Kagechika, Hiroyuki; Sohara, Eisei; Rai, Tatemitsu; Sasaki, Sei; Uchida, Shinichi

    2013-11-01

    WNKs (with-no-lysine kinases) are the causative genes of a hereditary hypertensive disease, PHAII (pseudohypoaldosteronism type II), and form a signal cascade with OSR1 (oxidative stress-responsive 1)/SPAK (STE20/SPS1-related proline/alanine-rich protein kinase) and Slc12a (solute carrier family 12) transporters. We have shown that this signal cascade regulates blood pressure by controlling vascular tone as well as renal NaCl excretion. Therefore agents that inhibit this signal cascade could be a new class of antihypertensive drugs. Since the binding of WNK to OSR1/SPAK kinases was postulated to be important for signal transduction, we sought to discover inhibitors of WNK/SPAK binding by screening chemical compounds that disrupt the binding. For this purpose, we developed a high-throughput screening method using fluorescent correlation spectroscopy. As a result of screening 17000 compounds, we discovered two novel compounds that reproducibly disrupted the binding of WNK to SPAK. Both compounds mediated dose-dependent inhibition of hypotonicity-induced activation of WNK, namely the phosphorylation of SPAK and its downstream transporters NKCC1 (Na/K/Cl cotransporter 1) and NCC (NaCl cotransporter) in cultured cell lines. The two compounds could be the promising seeds of new types of antihypertensive drugs, and the method that we developed could be applied as a general screening method to identify compounds that disrupt the binding of two molecules.

  15. DNA interaction with DAPI fluorescent dye: Force spectroscopy decouples two different binding modes.

    Science.gov (United States)

    Reis, L A; Rocha, M S

    2017-05-01

    In this work, we use force spectroscopy to investigate the interaction between the DAPI fluorescent dye and the λ-DNA molecule under high (174 mM) and low (34 mM) ionic strengths. Firstly, we have measured the changes on the mechanical properties (persistence and contour lengths) of the DNA-DAPI complexes as a function of the dye concentration in the sample. Then, we use recently developed models in order to connect the behavior of both mechanical properties to the physical chemistry of the interaction. Such analysis has allowed us to identify and to decouple two main binding modes, determining the relevant physicochemical (binding) parameters for each of these modes: minor groove binding, which saturates at very low DAPI concentrations ( CT ∼ 0.50 μM) and presents equilibrium binding constants of the order of ∼10(7) M(-1) for the two ionic strengths studied; and intercalation, which starts to play a significant role only after the saturation of the first mode, presenting much smaller equilibrium binding constants (∼10(5) M(-1) ).

  16. Synchrotron X-ray fluorescence spectroscopy of salts in natural sea ice

    Science.gov (United States)

    Obbard, Rachel W.; Lieb-Lappen, Ross M.; Nordick, Katherine V.; Golden, Ellyn J.; Leonard, Jeremiah R.; Lanzirotti, Antonio; Newville, Mathew G.

    2016-11-01

    We describe the use of synchrotron-based X-ray fluorescence spectroscopy to examine the microstructural location of specific elements, primarily salts, in sea ice. This work was part of an investigation of the location of bromine in the sea ice-snowpack-blowing snow system, where it plays a part in the heterogeneous chemistry that contributes to tropospheric ozone depletion episodes. We analyzed samples at beamline 13-ID-E of the Advanced Photon Source at Argonne National Laboratory. Using an 18 keV incident energy beam, we produced elemental maps of salts for sea ice samples from the Ross Sea, Antarctica. The distribution of salts in sea ice depends on ice type. In our columnar ice samples, Br was located in parallel lines spaced roughly 0.5 mm apart, corresponding to the spacing of lamellae in the skeletal region during initial ice growth. The maps revealed concentrations of Br in linear features in samples from all but the topmost and bottommost depths. For those samples, the maps revealed rounded features. Calibration of the Br elemental maps showed bulk concentrations to be 5-10 g/m3, with concentrations ten times larger in the linear features. Through comparison with horizontal thin sections, we could verify that these linear features were brine sheets or layers.

  17. Tar analysis from biomass gasification by means of online fluorescence spectroscopy

    Science.gov (United States)

    Baumhakl, Christoph; Karellas, Sotirios

    2011-07-01

    Optical methods in gas analysis are very valuable mainly due to their non-intrusive character. That gives the possibility to use them for in-situ or online measurements with only optical intervention in the measurement volume. In processes like the gasification of biomass, it is of high importance to monitor the gas quality in order to use the product gas in proper machines for energy production following the restrictions in the gas composition but also improving its quality, which leads to high efficient systems. One of the main problems in the biomass gasification process is the formation of tars. These higher hydrocarbons can lead to problems in the operation of the energy system. Up to date, the state of the art method used widely for the determination of tars is a standardized offline measurement system, the so-called "Tar Protocol". The aim of this work is to describe an innovative, online, optical method for determining the tar content of the product gas by means of fluorescence spectroscopy. This method uses optical sources and detectors that can be found in the market at low cost and therefore it is very attractive, especially for industrial applications where cost efficiency followed by medium to high precision are of high importance.

  18. Green direct determination of mineral elements in artichokes by infrared spectroscopy and X-ray fluorescence.

    Science.gov (United States)

    Mir-Marqués, Alba; Martínez-García, Maria; Garrigues, Salvador; Cervera, M Luisa; de la Guardia, Miguel

    2016-04-01

    Near infrared (NIR) and X-ray fluorescence (XRF) spectroscopy were investigated to predict the concentration of calcium, potassium, iron, magnesium, manganese and zinc in artichoke samples. Sixty artichokes were purchased from different Spanish areas (Benicarló, Valencia and Murcia). NIR and XRF spectra, combined with partial least squares (PLS) data treatment, were used to develop chemometric models for the prediction of mineral concentration. To obtain reference data, samples were mineralised and analysed by inductively coupled plasma optical emission spectrometry (ICP-OES). Coefficients of determination obtained for the regression between predicted values and reference ones for calcium, potassium, magnesium, iron, manganese and zinc were 0.61, 0.79, 0.53, 0.77, 0.54 and 0.60 for NIR and 0.96, 0.93, 0.80, 0.79, 0.76 and 0.90 for XRF, respectively. Both assayed methodologies, offer green alternatives to classical mineral analysis, but XRF provided the best results in order to be used as a quantitative screening method.

  19. Cell cycle-dependent mobility of Cdc45 determined in vivo by fluorescence correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Ronan Broderick

    Full Text Available Eukaryotic DNA replication is a dynamic process requiring the co-operation of specific replication proteins. We measured the mobility of eGFP-Cdc45 by Fluorescence Correlation Spectroscopy (FCS in vivo in asynchronous cells and in cells synchronized at the G1/S transition and during S phase. Our data show that eGFP-Cdc45 mobility is faster in G1/S transition compared to S phase suggesting that Cdc45 is part of larger protein complex formed in S phase. Furthermore, the size of complexes containing Cdc45 was estimated in asynchronous, G1/S and S phase-synchronized cells using gel filtration chromatography; these findings complemented the in vivo FCS data. Analysis of the mobility of eGFP-Cdc45 and the size of complexes containing Cdc45 and eGFP-Cdc45 after UVC-mediated DNA damage revealed no significant changes in diffusion rates and complex sizes using FCS and gel filtration chromatography analyses. This suggests that after UV-damage, Cdc45 is still present in a large multi-protein complex and that its mobility within living cells is consistently similar following UVC-mediated DNA damage.

  20. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy.

    Science.gov (United States)

    Clark, Natalie M; Hinde, Elizabeth; Winter, Cara M; Fisher, Adam P; Crosti, Giuseppe; Blilou, Ikram; Gratton, Enrico; Benfey, Philip N; Sozzani, Rosangela

    2016-06-11

    To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.

  1. X-ray Fluorescence Spectroscopy Study of Coating Thickness and Base Metal Composition

    Science.gov (United States)

    Rolin, T. D.; Leszczuk, Y.

    2008-01-01

    For electrical, electronic, and electromechanical (EEE) parts to be approved for space use, they must be able to meet safety standards approved by NASA. A fast, reliable, and precise method is needed to make sure these standards are met. Many EEE parts are coated in gold (Au) and nickel (Ni), and the thickness coating is crucial to a part s performance. A nondestructive method that is efficient in measuring coating thickness is x-ray fluorescence (XRF) spectroscopy. The XRF spectrometer is a machine designed to measure layer thickness and composition of single or multilayered samples. By understanding the limitations in the collection of the data by this method, accurate composition and thickness measurements can be obtained for samples with Au and Ni coatings. To understand the limitations of data found, measurements were taken with the XRF spectrometer and compared to true values of standard reference materials (SRM) that were National Institute of Standards and Technology (NIST) traceable. For every sample, six different parameters were varied to understand measurement error: coating/substrate combination, number of layers, counting interval, collimator size, coating thickness, and test area location. Each measurement was taken in accordance with standards set by the American Society for Testing and Materials (ASTM) International Standard B 568.

  2. Measurement of the hydrodynamic radius of quantum dots by fluorescence correlation spectroscopy excluding blinking.

    Science.gov (United States)

    de Thomaz, A A; Almeida, D B; Pelegati, V B; Carvalho, H F; Cesar, C L

    2015-03-19

    One of the most important properties of quantum dots (QDs) is their size. Their size will determine optical properties and in a colloidal medium their range of interaction. The most common techniques used to measure QD size are transmission electron microscopy (TEM) and X-ray diffraction. However, these techniques demand the sample to be dried and under a vacuum. This way any hydrodynamic information is excluded and the preparation process may alter even the size of the QDs. Fluorescence correlation spectroscopy (FCS) is an optical technique with single molecule sensitivity capable of extracting the hydrodynamic radius (HR) of the QDs. The main drawback of FCS is the blinking phenomenon that alters the correlation function implicating in a QD apparent size smaller than it really is. In this work, we developed a method to exclude blinking of the FCS and measured the HR of colloidal QDs. We compared our results with TEM images, and the HR obtained by FCS is higher than the radius measured by TEM. We attribute this difference to the cap layer of the QD that cannot be seen in the TEM images.

  3. 原子吸收法测定化探样中的微量汞%Determination of Trace Mercury in Geochemical Samples by Cold Atomic Absorption Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    王茹

    2014-01-01

    化探样品中微量汞的测定多采用原子荧光法,采用冷原子吸收法测汞也有报道。本法用简易吸收装置于 GGX-2型原子吸收光谱仪上,进行化探样品中微量汞的冷原子吸收法测定,测定结果表明,汞的含量在(0.01~2)×10-6范围呈线性,经对省Ⅱ级标样36号、38号进行实验,相对标准偏差分别为10.56%和17.83%,可满足化探要求。%Trace mercury in geochemical samples is normally determined by atomic fluorescence method. There also are reports on determination of trace mercury in geochemical samples by cold atomic absorption spectroscopy. The method is to install simple absorption equipment on GGX-2 atomic absorption spectrometer to determine trace mercury in geochemical samples. The results show that, the content of mercury is linear in the range of (0.01~2)× 10-6. Provincial level Ⅱ sample No. 36 and No. 38 are determined with the cold atomic absorption spectroscopy, relative standard deviations are 10.56% and 17.83% respectively, so the method can meet the requirements of geochemical exploration.

  4. Atoms

    Institute of Scientific and Technical Information of China (English)

    刘洪毓

    2007-01-01

    Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what

  5. Atoms, molecules and optical physics 2. Molecules and photons - Spectroscopy and collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Ingolf V.; Schulz, Claus-Peter [Max-Born-Institut fuer Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (Germany)

    2015-09-01

    This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.

  6. An open source/real-time atomic force microscope architecture to perform customizable force spectroscopy experiments.

    Science.gov (United States)

    Materassi, Donatello; Baschieri, Paolo; Tiribilli, Bruno; Zuccheri, Giampaolo; Samorì, Bruno

    2009-08-01

    We describe the realization of an atomic force microscope architecture designed to perform customizable experiments in a flexible and automatic way. Novel technological contributions are given by the software implementation platform (RTAI-LINUX), which is free and open source, and from a functional point of view, by the implementation of hard real-time control algorithms. Some other technical solutions such as a new way to estimate the optical lever constant are described as well. The adoption of this architecture provides many degrees of freedom in the device behavior and, furthermore, allows one to obtain a flexible experimental instrument at a relatively low cost. In particular, we show how such a system has been employed to obtain measures in sophisticated single-molecule force spectroscopy experiments [Fernandez and Li, Science 303, 1674 (2004)]. Experimental results on proteins already studied using the same methodologies are provided in order to show the reliability of the measure system.

  7. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    Science.gov (United States)

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  8. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.

    Science.gov (United States)

    Sapra, K Tanuj

    2013-01-01

    The atomic force microscope (AFM) has opened vast avenues hitherto inaccessible to the biological scientist. The high temporal (millisecond) and spatial (nanometer) resolutions of the AFM are suited for studying many biological processes in their native conditions. The AFM cantilever stylus is aptly termed as a "lab on a tip" owing to its versatility as an imaging tool as well as a handle to manipulate single bonds and proteins. Recent examples assert that the AFM can be used to study the mechanical properties and monitor processes of single proteins and single cells, thus affording insight into important mechanistic details. This chapter specifically focuses on practical and analytical protocols of single-molecule AFM methodologies related to high-resolution imaging and single-molecule force spectroscopy of membrane proteins. Both these techniques are operator oriented, and require specialized working knowledge of the instrument, theoretical, and practical skills.

  9. Determination of palladium by graphite furnace atomic absorption spectroscopy without matrix matching.

    Science.gov (United States)

    Jia, X; Wang, T; Wu, J

    2001-05-30

    A graphite furnace atomic absorption spectroscopy method for the analysis of the palladium (Pd) content in bulk pharmaceutical drug substances and their intermediates prepared in aqueous solutions is extended to samples prepared in acetonitrile (ACN) and ACN-water mixtures as well to samples prepared in dimethyl sulfoxide (DMSO) and DMSO-water mixtures. The Pd content in samples solubilized in these solvents can be accurately determined with calibration established with standards prepared in aqueous solutions without matrix matching or using the method of standard additions. The validity of this method is demonstrated by spike recovery studies and by the agreement with results for the same samples prepared in these solvents, in concentrated nitric acid, and prepared by a microwave digestion system.

  10. Application of atomic absorption spectroscopy for detection of multimetal traces in low-voltage electrical marks.

    Science.gov (United States)

    Jakubeniene, Marija; Zakaras, Algirdas; Minkuviene, Zita Nijole; Benoshys, Alvydas

    2006-08-10

    Application of atomic absorption spectroscopy to detect multimetal traces in injured skin is a promising tool for investigation of fatalities caused by electrocution. The present paper is aimed at testing the reliability of this method for metal traces detection in electric current marks and is focused on study of peculiarities of metal penetration into the skin exposed to a current impact. Bare aluminum wire, tin-lead coated copper multistrand wire, and zinc-plated steel rope were used to make electrical marks on pig skin. It is demonstrated that amount of copper, zinc, lead, and iron may serve as statistically reliable indicators for the type of wire, which caused the electrical mark, in spite of the background content of these metals in the skin without injury. Different penetration rates for different metals contained in the wire inflicting an electrical mark were observed.

  11. Extreme ultraviolet spectroscopy and atomic models of highly charged heavy ions in the Large Helical Device

    Science.gov (United States)

    Suzuki, C.; Murakami, I.; Koike, F.; Tamura, N.; Sakaue, H. A.; Morita, S.; Goto, M.; Kato, D.; Ohashi, H.; Higashiguchi, T.; Sudo, S.; O'Sullivan, G.

    2017-01-01

    We report recent results of extreme ultraviolet (EUV) spectroscopy of highly charged heavy ions in plasmas produced in the Large Helical Device (LHD). The LHD is an ideal source of experimental databases of EUV spectra because of high brightness and low opacity, combined with the availability of pellet injection systems and reliable diagnostic tools. The measured heavy elements include tungsten, tin, lanthanides and bismuth, which are motivated by ITER as well as a variety of plasma applications such as EUV lithography and biological microscopy. The observed spectral features drastically change between quasicontinuum and discrete depending on the plasma temperature, which leads to some new experimental identifications of spectral lines. We have developed collisional-radiative models for some of these ions based on the measurements. The atomic number dependence of the spectral feature is also discussed.

  12. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  13. Excited-state dynamics of dGMP measured by steady-state and femtosecond fluorescence spectroscopy.

    Science.gov (United States)

    Miannay, Francois-Alexandre; Gustavsson, Thomas; Banyasz, Akos; Markovitsi, Dimitra

    2010-03-11

    The room-temperature fluorescence of 2'-deoxyguanosine 5'-monophosphate (dGMP) in aqueous solution is studied by steady-state and time-resolved fluorescence spectroscopy. The steady-state fluorescence spectrum of dGMP shows one band centered at 334 nm but has an extraordinary long red tail, extending beyond 700 nm. Both the fluorescence quantum yield and the relative weight of the 334 nm peak increase with the excitation wavelength. The initial fluorescence anisotropy after excitation at 267 nm is lower than 0.2 for all emission wavelengths, indicating an ultrafast S(2) --> S(1) internal conversion. The fluorescence decays depend strongly on the emission wavelength, getting longer with the wavelength. A rise time of 100-150 fs was observed for wavelengths longer than 450 nm, in accordance with a gradual red shift of the time-resolved spectra. The results are discussed in terms of a relaxation occurring mainly on the lowest excited (1)pi pi*-state surface toward a conical intersection with the ground state, in line with recent theoretical predictions. Our results show that the excited-state population undergoes a substantial "spreading out" before reaching the CI, explaining the complex dynamics observed.

  14. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qingyang, E-mail: liuqingyang0807@yahoo.com.c [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China)

    2010-07-15

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg{sup 0}, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL{sup -1} for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  15. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Science.gov (United States)

    Liu, Qingyang

    2010-07-01

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg 0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL -1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury ( n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  16. Photolytic-interference-free, femtosecond, two-photon laser-induced fluorescence imaging of atomic oxygen in flames

    Science.gov (United States)

    Kulatilaka, Waruna D.; Roy, Sukesh; Jiang, Naibo; Gord, James R.

    2016-02-01

    Ultrashort-pulse lasers are well suited for nonlinear diagnostic techniques such as two-photon laser-induced fluorescence (TPLIF) because the signals generated scale as the laser intensity squared. Furthermore, the broad spectral bandwidths associated with nearly Fourier-transform-limited ultrashort pulses effectively contribute to efficient nonlinear excitation by coupling through a large number of in-phase photon pairs, thereby producing strong fluorescence signals. Additionally, femtosecond (fs)-duration amplified laser systems typically operate at 1-10 kHz repetition rates, enabling high-repetition-rate imaging in dynamic environments. In previous experiments, we have demonstrated utilization of fs pulses for kilohertz (kHz)-rate, interference-free imaging of atomic hydrogen (H) in flames. In the present study, we investigate the utilization of fs-duration pulses to photolytic-interference-free TPLIF imaging of atomic oxygen (O). In TPLIF of O, photodissociation of vibrationally excited carbon dioxide (CO2) is known to be the prominent interference that produces additional O atoms in the medium. We have found that through the use of fs excitation, such interferences can be virtually eliminated in premixed laminar methane flames, which paves the way for two-dimensional imaging of O at kHz data rates. Such measurements can provide critical data for validating complex, multidimensional turbulent-combustion models as well as for investigating flame dynamics in practical combustion devices.

  17. Atom-specific look at the surface chemical bond using x-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, A.; Wassdahl, N.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    CO and N{sub 2} adsorbed on the late transition metals have become prototype systems regarding the general understanding of molecular adsorption. It is in general assumed that the bonding of molecules to transition metals can be explained in terms of the interaction of the frontier HOMO and LUMO molecular orbitals with the d-orbitals. In such a picture the other molecular orbitals should remain essentially the same as in the free molecule. For the adsorption of the isoelectronic molecules CO and N{sub 2} this has led to the so called Blyholder model i.e., a synergetic {sigma} (HOMO) donor and {pi} (LUMO) backdonation bond. The authors results at the ALS show that such a picture is oversimplified. The direct observation and identification of the states related to the surface chemical bond is an experimental challenge. For noble and transition metal surfaces, the adsorption induced states overlap with the metal d valence band. Their signature is therefore often obscured by bulk substrate states. This complication has made it difficult for techniques such as photoemission and inverse photoemission to provide reliable information on the energy of chemisorption induced states and has left questions unanswered regarding the validity of the frontier orbitals concept. Here the authors show how x-ray emission spectroscopy (XES), in spite of its inherent bulk sensitivity, can be used to investigate adsorbed molecules. Due to the localization of the core-excited intermediate state, XE spectroscopy allows an atomic specific separation of the valence electronic states. Thus the molecular contributions to the surface measurements make it possible to determine the symmetry of the molecular states, i.e., the separation of {pi} and {sigma} type states. In all the authors can obtain an atomic view of the electronic states involved in the formation of the chemical bond to the surface.

  18. Interaction of fisetin with human serum albumin by fluorescence, circular dichroism spectroscopy and DFT calculations: binding parameters and conformational changes

    Energy Technology Data Exchange (ETDEWEB)

    Matei, Iulia; Ionescu, Sorana [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania); Hillebrand, Mihaela, E-mail: mihh@gw-chimie.math.unibuc.ro [Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta 4-12, 030018 Bucharest (Romania)

    2011-08-15

    The interaction between fisetin, an antioxidant and neuroprotective flavonoid, and human serum albumin (HSA) is investigated by means of fluorescence (steady-state, synchronous, time-resolved) and circular dichroism (CD) spectroscopy. The formation of a 1:1 complex with a constant of about 10{sup 5} M{sup -1} was evidenced. Foerster's resonance energy transfer and competitive binding with site markers warfarin and ibuprofen were considered and discussed. Changes in the CD band of HSA indicate a decrease in the {alpha}-helix content upon binding. An induced CD signal for bound fisetin was observed and rationalized in terms of density functional theory calculations. - Highlights: > Fisetin-BSA system was studied by fluorescence spectroscopy. > Binding parameters, association constant and number of sites were estimated. > Binding site of fisetin was identified by competitive experiments. > Conformational changes in HSA and fisetin were evidenced by circular dichroism. > TDDFT calculated CD spectra supported the experimental data.

  19. Mechanisms of ultrafast fluorescence depletion spectroscopy and applications to measure slovation dynamics of coummarin 153 in methanol

    Energy Technology Data Exchange (ETDEWEB)

    Yang Songqiu, E-mail: sqyang@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Liu Jianyong, E-mail: beam@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhou Panwang, E-mail: pwzhou@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chen Junsheng, E-mail: junshengchen@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Han Keli, E-mail: klhan@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); He Guozhong, E-mail: gzhe@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2012-09-15

    Subpicosecond fluorescence depletion spectroscopy (FDS) was used to measure the solvation dynamics of coumarin 153 (C153) in methanol. The FDS mechanisms were discussed. A quasi-continuous model was used to describe the solvational relaxation of excited states. The perturbations of the probe pulse on the excited sample system, including up-conversion and stimulated emission, were sufficiently discussed. For a probe molecule used in the FDS experiment, ensuring that the up-conversion perturbation can be negligible is important. FDS was found to be a good technique for measuring the solvation dynamics of C153 in methanol. - Highlights: Black-Right-Pointing-Pointer Mechanisms of subpicosecond fluorescence depletion spectroscopy. Black-Right-Pointing-Pointer Quasi-continuous model was used to describe the solvational relaxation. Black-Right-Pointing-Pointer The solvation dynamics of coumarin 153 in methanol has been measured.

  20. Laser-Excited Atomic Fluorescence and Ionization in a Graphite Furnace for the Determination of Metals and Nonmetals

    Science.gov (United States)

    Butcher, David James

    1990-01-01

    Here is reported novel instrumentation for atomic spectrometry that combined the use of a pulsed laser system as the light source and an electrothermal atomizer as the atom cell. The main goal of the research was to develop instrumentation that was more sensitive for elemental analysis than commercially available instruments and could be used to determine elements in real sample matrices. Laser excited atomic fluorescence spectrometry (LEAFS) in an electrothermal atomizer (ETA) was compared to ETA atomic absorption spectrometry (AAS) for the determination of thallium, manganese, and lead in food and agricultural standard reference materials (SRMs). Compared to ETA AAS, ETA LEAFS has a longer linear dynamic range (LDR) (5-7 orders of magnitude compared to 2-3 orders of magnitude) and higher sensitivity (10 ^{-16} to 10^{ -14} g as compared to 10^{ -13} to 10^{-11} g). Consequently, ETA LEAFS allows elemental analysis to be done over a wider range of concentrations with less dilution steps. Thallium was accurately determined in biological samples by ETA LEAFS at amounts five to one hundred times below the ETA AAS detection limit. ETA AAS and ETA LEAFS were compared for the determination of lead and manganese, and in general, the accuracies and precisions of ETA AAS were the same, with typical precisions between 3% and 6%. Fluorine was determined using laser excited molecular fluorescence spectrometry (LEMOFS) in an ETA. Molecular fluorescence from magnesium fluoride was collected, and the detection limit of 0.3 pg fluorine was two to six orders of magnitude more sensitive than other methods commonly used for the determination of fluorine. Significant interferences from ions were observed, but the sensitivity was high enough that fluorine could be determined in freeze dried urine SRMs by diluting the samples by a factor of one hundred to remove the interferences. Laser enhanced ionization (LEI) in an ETA was used for the determination of metals. For thallium, indium

  1. Development of fiber optic spectroscopy for in-vitro and in-planta detection of fluorescent proteins

    Science.gov (United States)

    Liew, Oi Wah; Chen, Jun-Wei; Asundi, Anand K.

    2001-10-01

    The objective of this project is to apply photonics technology to bio-safety management of genetically modified (GM) plants. The conventional method for screening GM plants is through selection using antibiotic resistance markers. There is public concern with such approaches and these are associated with food safety issues, escape of antibiotic resistance genes to pathogenic microorganisms and interference with antibiotic therapy. Thus, the strategy taken in this project is to replace antibiotic resistance markers with fluorescent protein markers that allow for rapid and non-invasive optical screening of genetically modified plants. In this paper, fibre optic spectroscopy was developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in planta. In vitro detection was first carried out to optimize the sensitivity of the optical system. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fibre optic spectroscopy using different light sources, namely, blue LED (475 nm), tungsten halogen (350 - 1000 nm) and double frequency Nd:YAG green laser (532 nm). Fluorescence near the expected emission wavelengths could be detected up to 320X dilution for EGFP and DsRED with blue LED and 532 nm green laser, respectively, as the excitation source. Tungsten halogen was found to be unsuitable for excitation of both EGFP and DsRED. EGFP was successfully purified by size separation under non-denaturing electrophoretic conditions and quantified. The minimum concentration of EGFP detectable with blue LED excitation was 5 mg/ml. To determine the capability of spectroscopy detection in planta, transgenic potato hairy roots and whole modified plant lines expressing the

  2. Study of NaCl:Mn{sup 2+} nanostructures in the Suzuki phase by optical spectroscopy and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mejía-Uriarte, E.V., E-mail: elsi.mejia@ccadet.unam.mx [Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, AP 70-186, C.P. 04510, D.F. México (Mexico); Kolokoltsev, O. [Laboratorio de Fotónica de Microondas, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, AP 70-186, C.P. 04510, D.F. México (Mexico); Navarrete Montesinos, M. [Instituto de Ingeniería, Universidad Nacional Autónoma de México, D.F. México (Mexico); Camarillo, E.; Hernández A, J.; Murrieta S, H. [Instituto de Física, Universidad Nacional Autónoma de México, AP 20-364, C.P. 01000, D.F. México (Mexico)

    2015-04-15

    NaCl:Mn{sup 2+} nanostructures in the Suzuki phase have been studied by fluorescence (emission and excitation) spectroscopy and atomic force microscopy (AFM) as a function of temperature. The “as-grown” samples give rise to two broad emission bands that peak at 508 (green emission) and 610 nm (red emission). The excitation spectrum shows peaks at 227 nm and 232 nm for emission wavelengths at 508 nm and 610 nm, respectively. When the samples are heated continuously from room temperature up to 220 °C, the green emission (associated to the excitation peak at 227 nm) disappears at a temperature close to 120 °C, whilst only the red emission remains, which is characteristic of manganese ions. AFM images on the (0 0 1) surface (freshly cleaved) show several conformations of nanostructures, such as disks of 20–50 nm in diameter. Particularly, the images also reveal nanostructures with rectangular shape of ~280×160 nm{sup 2} and ~6 nm height; these are present only in samples with green emission associated to the Suzuki phase. Then, the evidence suggests that this topographic configuration might be related to the interaction with the first neighbors and the next neighbors, according to the configuration that has been suggested for the Suzuki phase. - Highlights: • NaCl:Mn{sup 2+} single crystals in the Suzuki phase contain rectangular nanostructures. • Double emission of manganese ions: green (508 nm) and red (610 nm) bands. • The excitation peak at 227 nm is attributed to rectangular nanostructures. • The green emission band associated to Suzuki phase is extinguished at 120 °C.

  3. Quantitation of a novel metalloporphyrin drug in plasma by atomic absorption spectroscopy.

    Science.gov (United States)

    Hoffman, K L; Feng, M R; Rossi, D T

    1999-03-01

    A bioanalytical method to quantify cobalt mesoporphyrin (CoMP), a novel therapeutic agent, in plasma has been developed and validated. The approach involves atomic absorption spectroscopy to determine total cobalt in a sample and a back-calculation of the amount of compound present. Endogenous plasma cobalt concentrations were small ( <0.2 ng/ml(-1) Co in rat plasma) in comparison to the quantitation limit (4.5 ng/ml(-1) Co). The inter-day imprecision of the method was 10.0% relative standard deviation (RSD) and the inter-day bias was +/- 8.0% relative error (RE) over a standard curve range of 4.5- 45.0 ng/ml(-1) Co. Because it quantifies total cobalt, the method cannot differentiate between parent drug and metabolites, but negligible metabolism allows reliable estimates of the actual parent drug concentration. A correlation study between the atomic absorption method and 14C-radiometry demonstrated excellent agreement (r = 0.9868, slope = 1.041 +/- 0.028, intercept = 223.7 +/- 190.0) and further substantiated the accuracy of the methods. Methodology was successfully applied to a pharmacokinetic study of CoMP in rat, with pharmacokinetic parameter estimation. The elimination half-lives, after intra-muscular and subcutaneous administration, were 7.7 and 8.8 days, respectively.

  4. Use of flameless atomic absorption spectroscopy in immune cytolysis for nonradioactive determination of killer cell activity.

    Science.gov (United States)

    Borella, P; Bargellini, A; Salvioli, S; Cossarizza, A

    1996-02-01

    We describe here a novel method to evaluate natural killer (NK) cytolytic activity by use of flameless atomic absorption spectroscopy (GF-AAS). This technique may be adopted for use in laboratories equipped with electrothermal atomic absorption spectrometers. Nonradioactive Cr as Na2CrO4 was used to label target cells (K562), and cell lysis was evaluated by measuring Cr released after 4 h of incubation with the effectors. We selected 520 micrograms/L as the optimal dose for labeling targets, between 12 and 20 h as the optimal incubation time, and 10(4) cells as the optimal target size. Advantages of this method include: (a) exclusion of radioactive tracer, with no risk for workers; (b) limited costs; (c) high sensitivity and reproducibility; (d) possibility to store samples; and (e) better control of Cr used for labeling cells due to well-determined, fixed Cr concentrations in the range of nontoxic and linear cellular uptake. Comparison with data obtained by conventional 51Cr labeling of targets killed by the same effectors was excellent, yielding comparable results and corroborating the method.

  5. Nanobiosensors exploiting specific interactions between an enzyme and herbicides in atomic force spectroscopy.

    Science.gov (United States)

    da Silva, Aline C N; Deda, Daiana K; Bueno, Carolina C; Moraes, Ariana S; Da Roz, Alessandra L; Yamaji, Fabio M; Prado, Rogilene A; Viviani, Vadim; Oliveira, Osvaldo N; Leite, Fábio L

    2014-09-01

    The development of sensitive methodologies for detecting agrochemicals has become important in recent years due to the increasingly indiscriminate use of these substances. In this context, nanosensors based on atomic force microscopy (AFM) tips are useful because they provide higher sensitivity with operation at the nanometer scale. In this paper we exploit specific interactions between AFM tips functionalized with the enzyme acetolactate synthase (ALS) to detect the ALS-inhibitor herbicides metsulfuron-methyl and imazaquin. Using atomic force spectroscopy (AFS) we could measure the adhesion force between tip and substrate, which was considerably higher when the ALS-functionalized tip (nanobiosensor) was employed. The increase was approximately 250% and 160% for metsulfuron-methyl and imazaquin, respectively, in comparison to unfunctionalized probes. We estimated the specific enzyme-herbicide force by assuming that the measured force comprises an adhesion force according to the Johnson-Kendall-Roberts (JKR) model, the capillary force and the specific force. We show that the specific, biorecognition force plays a crucial role in the higher sensitivity of the nanobiosensor, thus opening the way for the design of similarly engineered tips for detecting herbicides and other analytes.

  6. Atomic and Molecular Photoelectron and Auger Electron SpectroscopyStudies Using Synchrotron Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, Stephen H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were a 130 measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra o f the ejected electrons. The ''a double-angle-TOF'' method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collect ion efficiency and the elimination of certain systematic errors. Several results were obtained for Xe using photon energies in the range hv {approx_equal} 60-190 eV, where excitation and ionization of the inner-subshell 4d electrons dominates. The 4d asymmetry parameter {beta} exhibits strong oscillations with energy, in agreement with several theoretical calculations. As predicted, the 5p asymmetry parameter was observed to deviate strongly from that calculated using the independent-electron model, due to intershell correlation with the 4d electrons.

  7. Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy.

    Science.gov (United States)

    Nations, Marcel; Wang, Shengkai; Goldenstein, Christopher S; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-10-10

    We report the use of cavity-enhanced absorption spectroscopy (CEAS) using two distributed feedback diode lasers near 777.2 and 844.6 nm for sensitive, time-resolved, in situ measurements of excited-state populations of atomic oxygen in a shock tube. Here, a 1% O2/Ar mixture was shock-heated to 5400-8000 K behind reflected shock waves. The combined use of a low-finesse cavity, fast wavelength scanning of the lasers, and an off-axis alignment enabled measurements with 10 μs time response and low cavity noise. The CEAS absorption gain factors of 104 and 142 for the P35←S520 (777.2 nm) and P0,1,23←S310 (844.6 nm) atomic oxygen transitions, respectively, significantly improved the detection sensitivity over conventional single-pass measurements. This work demonstrates the potential of using CEAS to improve shock-tube studies of nonequilibrium electronic-excitation processes at high temperatures.

  8. A versatile dual spot laser scanning confocal microscopy system for advanced fluorescence correlation spectroscopy analysis in living cell

    CERN Document Server

    Ferrand, P; Kress, A; Aillaud, A; Rigneault, H; Marguet, D

    2009-01-01

    A fluorescence correlation spectroscopy (FCS) system based on two independent measurement volumes is presented. The optical setup and data acquisition hardware are detailed, as well as a complete protocol to control the location, size and shape of the measurement volumes. A method that allows to monitor independently the excitation and collection efficiency distribution is proposed. Finally, a few examples of measurements that exploit the two spots in static and/or scanning schemes, are reported.

  9. Atomic-Scale Spectroscopy of Gated Monolayer MoS2.

    Science.gov (United States)

    Zhou, Xiaodong; Kang, Kibum; Xie, Saien; Dadgar, Ali; Monahan, Nicholas R; Zhu, X-Y; Park, Jiwoong; Pasupathy, Abhay N

    2016-05-11

    The electronic properties of semiconducting monolayer transition-metal dichalcogenides can be tuned by electrostatic gate potentials. Here we report gate-tunable imaging and spectroscopy of monolayer MoS2 by atomic-resolution scanning tunneling microscopy/spectroscopy (STM/STS). Our measurements are performed on large-area samples grown by metal-organic chemical vapor deposition (MOCVD) techniques on a silicon oxide substrate. Topographic measurements of defect density indicate a sample quality comparable to single-crystal MoS2. From gate voltage dependent spectroscopic measurements, we determine that in-gap states exist in or near the MoS2 film at a density of 1.3 × 10(12) eV(-1) cm(-2). By combining the single-particle band gap measured by STS with optical measurements, we estimate an exciton binding energy of 230 meV on this substrate, in qualitative agreement with numerical simulation. Grain boundaries are observed in these polycrystalline samples, which are seen to not have strong electronic signatures in STM imaging.

  10. Unraveling protein-protein interactions in clathrin assemblies via atomic force spectroscopy.

    Science.gov (United States)

    Jin, Albert J; Lafer, Eileen M; Peng, Jennifer Q; Smith, Paul D; Nossal, Ralph

    2013-03-01

    Atomic force microscopy (AFM), single molecule force spectroscopy (SMFS), and single particle force spectroscopy (SPFS) are used to characterize intermolecular interactions and domain structures of clathrin triskelia and clathrin-coated vesicles (CCVs). The latter are involved in receptor-mediated endocytosis (RME) and other trafficking pathways. Here, we subject individual triskelia, bovine-brain CCVs, and reconstituted clathrin-AP180 coats to AFM-SMFS and AFM-SPFS pulling experiments and apply novel analytics to extract force-extension relations from very large data sets. The spectroscopic fingerprints of these samples differ markedly, providing important new information about the mechanism of CCV uncoating. For individual triskelia, SMFS reveals a series of events associated with heavy chain alpha-helix hairpin unfolding, as well as cooperative unraveling of several hairpin domains. SPFS of clathrin assemblies exposes weaker clathrin-clathrin interactions that are indicative of inter-leg association essential for RME and intracellular trafficking. Clathrin-AP180 coats are energetically easier to unravel than the coats of CCVs, with a non-trivial dependence on force-loading rate.

  11. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    Science.gov (United States)

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  12. Study of diffusion in polymer solutions and networks by fluorescence correlation spectroscopy

    Science.gov (United States)

    Chehreghanianzabi, Yasaman

    Diffusion in polymer solutions and networks is a topic of vast importance in many fields related to medical devices, tissue engineering, and drug delivery. Understanding diffusion in such environments is also essential for describing molecular transport through biological systems such as cells and tissues. Fluorescence correlation spectroscopy (FCS) is single molecule spectroscopic technique that measures the fluctuations of fluorescent probes in a defined confocal volume and correlates them in time to give information on diffusion times, concentrations, and interactions as well as indirectly, on macromolecular structure or conformation. In the first project we used diffusivity data obtained by FCS to develop a novel homogenization theory model to accurately predict solute diffusivity in polymer solutions. We focused on a setting where diffusivity was hindered by obstruction only. By choosing experimental conditions that satisfied the model assumptions, we were able to validate the homogenization theory model. While testing diffusivity in various polymer solutions, we also observed an unexpected phenomenon--a dramatic decrease in diffusivity of small fluorophores in dilute solutions of polyethylene glycol (PEG), which led to the second project. Here, we determined that the rapid drop was due to a complexation between the PEG and the fluorophore. We also determined that this complexation was highly specific and could be attributed to hydrogel bonding between the ether oxygen of PEG and the carboxylic hydrogen of the fluorophore. We then transitioned to a more complex hydrogel network environment, namely fluorophore diffusivity in various alginate hydrogels--varied by concentration and modifications with a cell adhesive ligand. Importantly, we were able to determine that while the fluorophore diffusivity was hindered due to electrostatic interactions, it was the same irrespective of the alginate concentration or modifications. The last part of this thesis was focused

  13. Speciation of bioaccumulated uranium(VI) by Euglena mutabilis cells obtained by laser fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Sina; Bernhard, Gert [Technical Univ. Dresden (Germany). Radiochemistry; Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology

    2014-07-01

    The ability of Euglena mutabilis cells - a unicellular protozoan with a flexible pellicle, which is typically found in acid mine drainage (AMD) environments - to bioaccumulate uranium under acid conditions was studied in batch sorption experiments at pH 3 and 4 using Na{sub 2}SO{sub 4} and NaClO{sub 4} as background media. It was found that axenic cultures of Euglena mutabilis Schmitz were able to bioaccumulate in 5 days 94.9 to 99.2% of uranium from a 1 x 10{sup -5} mol/L uranium solution in perchlorate medium and 95.1 to 95.9% in sodium sulfate medium, respectively. The speciation of uranium in solution and uranium bioaccumulated by Euglena mutabilis cells, were studied by laser induced fluorescence spectroscopy (LIFS). The LIFS investigations showed that the uranium speciation in the NaClO{sub 4} systems was dominated by free uranyl(VI) species and that the UO{sub 2}SO{sub 4} species was dominating in the Na{sub 2}SO{sub 4} medium. Fluorescence spectra of the bioaccumulated uranium revealed that aqueous uranium binds to carboxylic and/or (organo)phosphate groups located on the euglenid pellicle or inside the Euglena mutabilis cells. Reduced uranium immobilization rates of 0.93-1.43 mg uranium per g Euglena mutabilis biomass were observed in similar experiments, using sterile filtrated AMD waters containing, 4.4 x 10{sup -5} mol/L uranium. These lower rates were attributed to competition with other cations for available sorption sites. Additional LIFS measurements, however, showed that the speciation of the bioaccumulated uranium by the Euglena mutabilis cells was found to be identical with the uranium speciation found in the bioaccumulation experiments carried out in Na{sub 2}SO{sub 4} and NaClO{sub 4} media. The results indicate that Euglena mutabilis has the potential to immobilize aqueous uranium under acid condition and thus may be used in future as promising agent for immobilizing uranium in low pH waste water environments. (orig.)

  14. Dynamics and flexibility of human aromatase probed by FTIR and time resolved fluorescence spectroscopy.

    Directory of Open Access Journals (Sweden)

    Giovanna Di Nardo

    Full Text Available Human aromatase (CYP19A1 is a steroidogenic cytochrome P450 converting androgens into estrogens. No ligand-free crystal structure of the enzyme is available to date. The crystal structure in complex with the substrate androstenedione and the steroidal inhibitor exemestane shows a very compact conformation of the enzyme, leaving unanswered questions on the conformational changes that must occur to allow access of the ligand to the active site. As H/D exchange kinetics followed by FTIR spectroscopy can provide information on the conformational changes in proteins where solvent accessibility is affected, here the amide I region was used to measure the exchange rates of the different elements of the secondary structure for aromatase in the ligand-free form and in the presence of the substrate androstenedione and the inhibitor anastrozole. Biphasic exponential functions were found to fit the H/D exchange data collected as a function of time. Two exchange rates were assigned to two populations of protons present in different flexible regions of the protein. The addition of the substrate androstenedione and the inhibitor anastrozole lowers the H/D exchange rates of the α-helices of the enzyme when compared to the ligand-free form. Furthermore, the presence of the inhibitor anastrozole lowers exchange rate constant (k1 for β-sheets from 0.22±0.06 min(-1 for the inhibitor-bound enzyme to 0.12±0.02 min(-1 for the free protein. Dynamics effects localised in helix F were studied by time resolved fluorescence. The data demonstrate that the fluorescence lifetime component associated to Trp224 emission undergoes a shift toward longer lifetimes (from ≈5.0 to ≈5.5 ns when the substrate or the inhibitor are present, suggesting slower dynamics in the presence of ligands. Together the results are consistent with different degrees of flexibility of the access channel and therefore different conformations adopted by the enzyme in the free, substrate- and

  15. Dynamics and flexibility of human aromatase probed by FTIR and time resolved fluorescence spectroscopy.

    Science.gov (United States)

    Di Nardo, Giovanna; Breitner, Maximilian; Sadeghi, Sheila J; Castrignanò, Silvia; Mei, Giampiero; Di Venere, Almerinda; Nicolai, Eleonora; Allegra, Paola; Gilardi, Gianfranco

    2013-01-01

    Human aromatase (CYP19A1) is a steroidogenic cytochrome P450 converting androgens into estrogens. No ligand-free crystal structure of the enzyme is available to date. The crystal structure in complex with the substrate androstenedione and the steroidal inhibitor exemestane shows a very compact conformation of the enzyme, leaving unanswered questions on the conformational changes that must occur to allow access of the ligand to the active site. As H/D exchange kinetics followed by FTIR spectroscopy can provide information on the conformational changes in proteins where solvent accessibility is affected, here the amide I region was used to measure the exchange rates of the different elements of the secondary structure for aromatase in the ligand-free form and in the presence of the substrate androstenedione and the inhibitor anastrozole. Biphasic exponential functions were found to fit the H/D exchange data collected as a function of time. Two exchange rates were assigned to two populations of protons present in different flexible regions of the protein. The addition of the substrate androstenedione and the inhibitor anastrozole lowers the H/D exchange rates of the α-helices of the enzyme when compared to the ligand-free form. Furthermore, the presence of the inhibitor anastrozole lowers exchange rate constant (k1) for β-sheets from 0.22±0.06 min(-1) for the inhibitor-bound enzyme to 0.12±0.02 min(-1) for the free protein. Dynamics effects localised in helix F were studied by time resolved fluorescence. The data demonstrate that the fluorescence lifetime component associated to Trp224 emission undergoes a shift toward longer lifetimes (from ≈5.0 to ≈5.5 ns) when the substrate or the inhibitor are present, suggesting slower dynamics in the presence of ligands. Together the results are consistent with different degrees of flexibility of the access channel and therefore different conformations adopted by the enzyme in the free, substrate- and inhibitor

  16. Fiber-optic based in situ atomic spectroscopy for manufacturing of x-ray optics

    Science.gov (United States)

    Atanasoff, George; Metting, Christopher J.; von Bredow, Hasso

    2016-09-01

    The manufacturing of multilayer Laue (MLL) components for X-ray optics by physical vapor deposition (PVD) requires high precision and accuracy that presents a significant process control challenge. Currently, no process control system provides the accuracy, long-term stability and broad capability for adoption in the manufacturing of X-ray optics. In situ atomic absorption spectroscopy is a promising process control solution, capable of monitoring the deposition rate and chemical composition of extremely thin metal silicide films during deposition and overcoming many limitations of the traditional methods. A novel in situ PVD process control system for the manufacturing of high-precision thin films, based on combined atomic absorption/emission spectrometry in the vicinity of the deposited substrate, is described. By monitoring the atomic concentration in the plasma region independently from the film growth on the deposited substrate, the method allows deposition control of extremely thin films, compound thin films and complex multilayer structures. It provides deposition rate and film composition measurements that can be further utilized for dynamic feedback process control. The system comprises a reconfigurable hardware module located outside the deposition chamber with hollow cathode light sources and a fiber-optic-based frame installed inside the deposition chamber. Recent experimental results from in situ monitoring of Al and Si thin films deposited by DC and RF magnetron sputtering at a variety of plasma conditions and monitoring configurations are presented. The results validate the operation of the system in the deposition of compound thin films and provide a path forward for use in manufacturing of X-Ray optics.

  17. The Cologne Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data Centre, VAMDC

    Science.gov (United States)

    Endres, Christian P.; Schlemmer, Stephan; Schilke, Peter; Stutzki, Jürgen; Müller, Holger S. P.

    2016-09-01

    The Cologne Database for Molecular Spectroscopy, CDMS, was founded 1998 to provide in its catalog section line lists of mostly molecular species which are or may be observed in various astronomical sources (usually) by radio astronomical means. The line lists contain transition frequencies with qualified accuracies, intensities, quantum numbers, as well as further auxiliary information. They have been generated from critically evaluated experimental line lists, mostly from laboratory experiments, employing established Hamiltonian models. Separate entries exist for different isotopic species and usually also for different vibrational states. As of December 2015, the number of entries is 792. They are available online as ascii tables with additional files documenting information on the entries. The Virtual Atomic and Molecular Data Centre, VAMDC, was founded more than 5 years ago as a common platform for atomic and molecular data. This platform facilitates exchange not only between spectroscopic databases related to astrophysics or astrochemistry, but also with collisional and kinetic databases. A dedicated infrastructure was developed to provide a common data format in the various databases enabling queries to a large variety of databases on atomic and molecular data at once. For CDMS, the incorporation in VAMDC was combined with several modifications on the generation of CDMS catalog entries. Here we introduce related changes to the data structure and the data content in the CDMS. The new data scheme allows us to incorporate all previous data entries but in addition allows us also to include entries based on new theoretical descriptions. Moreover, the CDMS entries have been transferred into a mySQL database format. These developments within the VAMDC framework have in part been driven by the needs of the astronomical community to be able to deal efficiently with large data sets obtained with the Herschel Space Telescope or, more recently, with the Atacama Large

  18. Delta-ALA-mediated fluorescence spectroscopy of gastrointestinal tumors: comparison of in vivo and in vitro results

    Science.gov (United States)

    Vladimirov, B.; Borisova, E.; Avramov, L.

    2007-06-01

    The limitations of standard endoscopy for detection of dysplastic changes of mucosa are significant challenge and initiate development of new photodiagnostic techniques, additional to diagnostic possibilities of standard endoscopic equipment. One of the most widely examined optical modalities is the laser- or light-induced fluorescence spectroscopy (LIFS), because of its rapid and highly sensitive response to early biochemical and morphological changes in biological tissues. In the recent study delta-aminolevulinic acid/protoporphyrin IX is used as fluorescent marker for dysplasia and tumor detection in esophagus and stomach. The δ -ALA is administered per os six hours before measurements at dose 20mg/kg weight. High-power light-emitting diode at 405 nm is used as an excitation source. Special opto-mechanical device is built to use the light guide of standard video-endoscopic system. Through endoscopic instrumental channel a fiber is applied to return information about fluorescence to microspectrometer. The fluorescence detected from in vivo tumor sites has very complex spectral origins. It consists of autofluorescence, fluorescence from exogenous fluorophores and re-absorption from the chromophores accumulated in the tissue investigated. Mucosa autofluorescence lies at 450-600 nm region. The fluorescence of PpIX is clearly pronounced at the 630-710 nm region. Deep minima in the tumor fluorescence signals are observed in the region 540-575 nm, related to hemoglobin re-absorption. Such high hemoglobin content is an indication of the tumors vascularization and it is clearly pronounced in all dysplastic and tumor sites investigated. After formalin conservation for in vitro samples hemoglobin absorption is strongly reduced that increases mucous fluorescence signal in green-yellow spectral region. Simultaneously the maxima at 635 nm and 720 nm are reduced.

  19. Multimodal Raman-fluorescence spectroscopy of formalin fixed samples is able to discriminate brain tumors from dysplastic tissue

    Science.gov (United States)

    Anand, Suresh; Cicchi, Riccardo; Giordano, Flavio; Buccoliero, Anna Maria; Pavone, Francesco Saverio

    2014-05-01

    In the recent years, there has been a considerable surge in the application of spectroscopy for disease diagnosis. Raman and fluorescence spectra provide characteristic spectral profile related to biochemical and morphological changes when tissues progress from normal state towards malignancy. Spectroscopic techniques offer the advantage of being minimally invasive compared to traditional histopathology, real time and quantitative. In biomedical optical diagnostics, freshly excised specimens are preferred for making ex-vivo spectroscopic measurements. With regard to fresh tissues, if the lab is located far away from the clinic it could pose a problem as spectral measurements have to be performed immediately after dissection. Tissue samples are usually placed in a fixative agent such as 4% formaldehyde to preserve the samples before processing them for routine histopathological studies. Fixation prevents the tissues from decomposition by arresting autolysis. In the present study, we intend to investigate the possibility of using formalin fixed samples for discrimination of brain tumours from dysplastic tissue using Raman and fluorescence spectroscopy. Formalin fixed samples were washed with phosphate buffered saline for about 5 minutes in order to remove the effects of formalin during spectroscopic measurements. In case of fluorescence spectroscopy, changes in spectral profile have been observed in the region between 550-670 nm between dysplastic and tumor samples. For Raman measurements, we found significant differences in the spectral profiles between dysplasia and tumor. In conclusion, formalin fixed samples can be potentially used for the spectroscopic discrimination of tumor against dysplastic tissue in brain samples.

  20. Laser spectroscopy with nanometric gas cells distance dependence of atom-surface interaction and collisions under confinement

    CERN Document Server

    Hamdi, I; Yarovitski, A; Dutier, G; Maurin, I; Saltiel, S; Li, Y; Lezama, A; Vartapetyan, T; Sarkisyan, D; Gorza, M P; Fichet, M; Bloch, D; Ducloy, M; Hamdi, Ismah\\`{e}ne; Todorov, Petko; Yarovitski, Alexander; Dutier, Gabriel; Maurin, Isabelle; Saltiel, Solomon; Li, Yuanyuan; Lezama, Arturo; Varzhapetyan, Tigran; Sarkisyan, David; Gorza, Marie-Pascale; Fichet, Mich\\`{e}le; Bloch, Daniel; Ducloy, Martial

    2005-01-01

    The high sensitivity of Laser Spectroscopy has made possible the exploration of atomic resonances in newly designed "nanometric" gas cells, whose local thickness varies from 20nm to more than 1000 nm. Following the initial observation of the optical analogous of the coherent Dicke microwave narrowing, the newest prospects include the exploration of long-range atom surface van der Waals interaction with spatial resolution in an unprecedented range of distances, modification of atom dielectric resonant coupling under the influence of the coupling between the two neighbouring dielectric media, and even the possible modification of interatomic collisions processes under the effect of confinement.