WorldWideScience

Sample records for atomic fluorescence spectrometry

  1. Study on Atomic Fluorescence Spectrometry Excited by Synchrotron Radiation

    Institute of Scientific and Technical Information of China (English)

    Jia-jia Guo; Wu-er Gan; Guo-bin Zhang; Qing-de Su

    2008-01-01

    A novel analysis approach using atomic fluorescence excited by synchrotron radiation is presented. A system for synchrotron radiation-atomic fluorescence spectrometry is developed, and experimental conditions such as flow rate, analyte acidity, concentration of pre-reducing and hydrogenation system are optimized. The proposed method is successfully applied to get an excitation spectrum of arsenic. Seven of ten primary spectral lines, four of which have never been reported by means of atomic fluorescence spectrometry, agree well with the existing reports. The other three are proposed for the first time. Excitation potentials and possible transitions are investigated. Especially for the prominent line at 234.99 nm, the mechanism of generation is discussed and a model of energy transition processes is proposed.

  2. Theory of analytical curves in atomic fluorescence flame spectrometry

    NARCIS (Netherlands)

    Hooymayers, H.P.

    1968-01-01

    An explicit expression for the intensity of atomic resonance fluorescence as a function of atomic concentration in a flame is derived under certain idealized conditions. The expression is generally valid for a pure Doppler absorption line profile as well as for a combined Doppler and collisional bro

  3. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l−1 and 1.0 ng l−1, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l−1

  4. Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer

    International Nuclear Information System (INIS)

    This review summarizes and discusses the individual atomizers of volatile compounds. A set of criteria important for analytical praxis is used to rank all the currently existing approaches to the atomization based on on-line atomization for atomic absorption (AAS) and atomic fluorescence spectrometry (AFS) as well as on in-atomizer trapping for AAS. Regarding on-line atomization for AAS, conventional quartz tubes are currently the most commonly used devices. They provide high sensitivity and low baseline noise. Running and investment costs are low. The most serious disadvantage is the poor resistance against atomization interferences and often unsatisfactory linearity of calibration graphs. Miniature diffusion flame (MDF) is extremely resistant to interferences, simple, cheap and user-friendly. Its essential disadvantage is low sensitivity. A novel device, known as a multiatomizer, was designed to overcome disadvantages of previous atomizers. It matches performance of conventional quartz tubes in terms of sensitivity and baseline noise as well as in running and investment costs. The multiatomizer, however, provides much better (i) resistance against atomization interferences and (ii) linearity of calibration graphs. In-atomizer trapping enhances the sensitivity of the determination and eliminates the effect of the generation kinetics and of surges in gas flow on the signal shape. This is beneficial for the accuracy of the determination. It could also be an effective tool for reducing some interferences in the liquid phase. In-situ trapping in graphite furnaces (GF) is presently by far the most popular approach to the in-atomizer trapping. Its resistance against interferences is reasonably good and it can be easily automated. In-situ trapping in GF is a mature method well established in various application fields. These are the reasons to rank in-situ trapping in GF as currently the most convenient approach to hydride atomization for AAS. The recently suggested

  5. High sensitivity detection of selenium by laser excited atomic fluorescence spectrometry using electrothermal atomization

    International Nuclear Information System (INIS)

    The high sensitivity detection of the trace element selenium is reported. The analytical method applied is Laser Excited Atomic Fluorescence Spectrometry using Electrothermal Atomization within a graphite furnace atomizer. For the production of tunable laser radiation in the VUV spectral region a laser system was developed which consists of two dye lasers pumped by a Nd:YAG laser. The laser radiations are subsequently frequency doubled and sum frequency mixed by nonlinear optical KDP or BBO crystals, respectively. The system works with a repetition rate of 20 Hz and provides output energies of up to 100 μJ in the VUV at a pulse duration of 5 ns. The analytical investigations were focused on the detection of selenium in aqueous solutions and samples of human whole blood. From measurements on aqueous standards detection limits of 1.5 ng/l for selenium were obtained, with corresponding absolute detected masses of only 15 fg. The linear dynamic range spanned six orders of magnitude and good precision was achieved. In case of human whole blood samples the recovery was found to be within the range of 96% to 104%. The determination of the selenium content yielded medians of [119.5 ± 17.3] μg/l for 200 frozen blood samples taken in 1988 and [109.1 ± 15.6] μg/l for 103 fresh blood samples. (author)

  6. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Czech Academy of Sciences Publication Activity Database

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    Roč. 109, JUL (2015), s. 16-23. ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant ostatní: GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : hydride generation * arsenic * atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.176, year: 2014

  7. Arsenic speciation analysis by HPLC postcolumn hydride generation and detection by atomic fluorescence spectrometry

    Czech Academy of Sciences Publication Activity Database

    Marschner, Karel; Musil, Stanislav; Rychlovský, P.; Dědina, Jiří

    Prague: Charles University in Prague, Faculty of Science, 2014 - (Nesměrák, K.), s. 74-77 ISBN 978-80-7444-030-4. [International Students Conference "Modern Analytical Chemistry" /10./. Prague (CZ), 22.09.2014-23.09.2014] R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : arsenic speciation analysis * hydride generation * atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation http://www.natur.cuni.cz/isc-mac/

  8. Arsenic speciation analysis by hydride generation – cryotrapping – atomic fluorescence spectrometry with flame-in-gas-shield atomizer

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Milan; Musil, Stanislav; Matoušek, Tomáš; Rychlovský, P.; Dědina, Jiří

    Prague: Charles University in Prague, Faculty of Science, 2010 - (Nesměrák, K.), s. 19-22. (1). ISBN 978-80-7444-005-2. [International Students Conference "Modern Analytical Chemistry" /6./. Praha (CZ), 23.09.2010-24.09.2010] R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501 Keywords : arsenic speciation * cryogenic trapping * atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation

  9. Electrochemical hydride generation atomic fluorescence spectrometry for detection of tin in canned foods using polyaniline-modified lead cathode

    International Nuclear Information System (INIS)

    An electrochemical hydride generation system with polyaniline-modified lead cathode was developed for tin determination by coupling with atomic fluorescence spectrometry. The tin fluorescence signal intensity was improved evidently as the polyaniline membrane could facilitate the transformation process from atomic tin to the SnH4 and prevent the aggradation of Sn atom on Pb electrode surface. The effects of experimental parameters and interferences have been studied. The limit of detection (LOD) was 1.5 ng mL-1 (3σ) and the relative standard deviation (RSD) was 3.3% for 11 consecutive measurements of 50 ng mL-1 Sn(IV) standard solution.

  10. Multielement analysis of Pakistan coal by X-ray fluorescence spectrometry and inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Major, minor and trace element concentration levels are determined for 21 tertiary lignites and sub-bituminous coal samples collected from seven major coal field in Pakistan. Samples are collected as channel samples and/or run of mine samples. All samples are analysed by the x-ray fluorescence spectrometry (XRFS) technique whereas samples from Cherat coal field and the Katha-Pale coal field are analysed by the inductively coupled plasma atomic emission spectrometry (ICP-AES). Significant concentrations of toxic elements such as S, Ce, Cd, Cr, Cu, Mn, Ni, P, Pb, U and V are found in these coal samples. Thus, continuous exposure to dust of these coals (by the mine workers and inhabitants of the nearby settlements) and their extensive use of domestic purpose (cooking/heating), or in brick kilns and in combustion chambers of thermal power plants may cause significant environmental pollution problems as well as health problems. Their use in the industrial and energy sectors will further pose engineering/operational problems in items of requirements of preventive measures against corrosion of the combustion units. (author) 8 tabs

  11. Plasma jet desorption atomization-atomic fluorescence spectrometry and its application to mercury speciation by coupling with thin layer chromatography.

    Science.gov (United States)

    Liu, Zhifu; Zhu, Zhenli; Zheng, Hongtao; Hu, Shenghong

    2012-12-01

    A novel plasma jet desorption atomization (PJDA) source was developed for atomic fluorescence spectrometry (AFS) and coupled on line with thin layer chromatography (TLC) for mercury speciation. An argon dielectric barrier discharge plasma jet, which is generated inside a 300 μm quartz capillary, interacts directly with the sample being analyzed and is found to desorb and atomize surface mercury species rapidly. The effectiveness of this PJDA surface sampling technique was demonstrated by measuring AFS signals of inorganic Hg(2+), methylmercury (MeHg), and phenylmercury (PhHg) deposited directly on TLC plate. The detection limits of the proposed PJDA-AFS method for inorganic Hg(2+), MeHg, and PhHg were 0.51, 0.29, and 0.34 pg, respectively, and repeatability was 4.7%, 2.2%, and 4.3% for 10 pg Hg(2+), MeHg, and PhHg. The proposed PJDA-AFS was also successfully coupled to TLC for mercury speciation. Under optimized conditions, the measurements of mercury dithizonate (Hg-D), methylmercury dithizonate (MeHg-D), and phenylmercury dithizonate (PhHg-D) could be achieved within 3 min with detection limits as low as 8.7 pg. The combination of TLC with PJDA-AFS provides a simple, cost-effective, relatively high-throughput way for mercury speciation. PMID:23153091

  12. Determination of inorganic species of Sb and Te in cereals by hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Mariela N.M.; Cervera, Maria L.; Guardia, Miguel de la, E-mail: m.luisa.cervera@uv.e [University of Valencia, Valencia (Spain). Dept. of Analytical Chemistry

    2011-07-01

    A non-chromatographic fast, sensitive and easy method has been developed for the determination of Sb(III), Sb(V), Te(IV) and Te(VI) in cereal samples. The procedure is based on ultrasound assisted extraction and determination by hydride generation atomic fluorescence spectrometry (HG AFS). Preliminary studies were made in order to get the best extraction efficiency using 1 mol L{sup -1} phosphoric acid, 1 mol L{sup -1} nitric acid, aqua regia, 1 mol L{sup -1} sulfuric acid and 6 mol L{sup -1} hydrochloric acid. The extraction with aqua regia showed a clear interconversion of the species during the process, being H{sub 2}SO{sub 4} the best extractant with efficiencies greater than 90% from the total content of Sb and Te quantified previously and without species interconversion. This point was checked by recovery experiments at different spiked levels. The method provided limits of detection values from 0.1 to 0.5 ng g{sup -1} with relative standard deviation values from 5.4 to 9.2% of 10 independent analysis of samples containing few ng g-1 of Sb and Te species. (author)

  13. Determination of inorganic species of Sb and Te in cereals by hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    A non-chromatographic fast, sensitive and easy method has been developed for the determination of Sb(III), Sb(V), Te(IV) and Te(VI) in cereal samples. The procedure is based on ultrasound assisted extraction and determination by hydride generation atomic fluorescence spectrometry (HG AFS). Preliminary studies were made in order to get the best extraction efficiency using 1 mol L-1 phosphoric acid, 1 mol L-1 nitric acid, aqua regia, 1 mol L-1 sulfuric acid and 6 mol L-1 hydrochloric acid. The extraction with aqua regia showed a clear interconversion of the species during the process, being H2SO4 the best extractant with efficiencies greater than 90% from the total content of Sb and Te quantified previously and without species interconversion. This point was checked by recovery experiments at different spiked levels. The method provided limits of detection values from 0.1 to 0.5 ng g-1 with relative standard deviation values from 5.4 to 9.2% of 10 independent analysis of samples containing few ng g-1 of Sb and Te species. (author)

  14. Determination of cadmium in water samples by fast pyrolysis-chemical vapor generation atomic fluorescence spectrometry

    Science.gov (United States)

    Zhang, Jingya; Fang, Jinliang; Duan, Xuchuan

    2016-08-01

    A pyrolysis-vapor generation procedure to determine cadmium by atomic fluorescence spectrometry has been established. Under fast pyrolysis, cadmium ion can be reduced to volatile cadmium species by sodium formate. The presence of thiourea enhanced the efficiency of cadmium vapor generation and eliminated the interference of copper. The possible mechanism of vapor generation of cadmium was discussed. The optimization of the parameters for pyrolysis-chemical vapor generation, including pyrolysis temperature, amount of sodium formate, concentration of hydrochloric acid, and carrier argon flow rate were carried out. Under the optimized conditions, the absolute and concentration detection limits were 0.38 ng and 2.2 ng ml- 1, respectively, assuming that 0.17 ml of sample was injected. The generation efficiency of was 28-37%. The method was successfully applied to determine trace amounts of cadmium in two certified reference materials of Environmental Water (GSB07-1185-2000 and GSBZ 50009-88). The results were in good agreement with the certified reference values.

  15. Determination of mercury by intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    A novel method for determination of mercury was developed using an intermittent flow electrochemical cold vapor generation coupled to atomic fluorescence spectrometry (IF-ECVG-AFS). The mercury vapor was generated on the surface of glassy carbon cathode in the flow cell. The operating conditions for the electrochemical generation of mercury vapor were investigated in detail, and the interferences from various ions were evaluated. Under the optimized conditions, no evident memory effects of mercury were observed. The calibration curve was linear up to 5 μg L-1 Hg at 0.54 A cm-2. A detection limit of 1.2 ng L-1 Hg and a relative standard deviation of 1.8% for 1 μg L-1 Hg were obtained. The accuracy of method was verified by the determination of mercury in the certified reference human hair. The ECVG avoided the use of reductants, thereby greatly reducing the contamination sources. In addition, the manifold of IF-ECVG-AFS was simple and amenable to automation

  16. Speciation analysis of arsenic by selective hydride generation- cryotrapping-atomic fluorescence spectrometry with flame-in-gas- shield atomizer: Achieving extremely low detection limits with inexpensive instrumentation

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Matoušek, Tomáš; Currier, J. M.; Stýblo, M.; Dědina, Jiří

    2014-01-01

    Roč. 86, č. 20 (2014), s. 10422-10428. ISSN 0003-2700 R&D Projects: GA ČR GA14-23532S; GA MŠk LH12040 Institutional support: RVO:68081715 Keywords : speciation analysis of arsenic * selective hydride generation * flame-in-gas-shield atomizer * cryotrapping-atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  17. Speciation analysis of arsenic by hydride generation-cryotrapping-atomic fluorescence spectrometry: achieving extremely low detection limits with inexpensive instrumentation

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Matoušek, Tomáš; Svoboda, Milan; Selecká, Anna; Rychlovský, P.; Dědina, Jiří

    Buzios, Rio de Janeiro, 2011. TH43. ISBN 978-85-8006-046-1. [Colloquium Spectroscopicum Internationale /37./. 28.08.2011-02.09.2011, Buzios, Rio de Janeiro] R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501 Keywords : arsenic speciation analysis * hydride generation * atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation

  18. Speciation analysis of arsenic by hydride generation-cryotrapping-atomic fluorescence spectrometry: achieving extremely low detection limits with inexpensive instrumentation

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Matoušek, Tomáš; Svoboda, Milan; Selecká, Anna; Rychlovský, P.; Dědina, Jiří

    Münster, 2011. FTM 17. [International Symposium on Metallomics /3./. 15.06.2011-18.06.2011, Münster] R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501 Keywords : arsenic speciation analysis * hydride generation * atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation http://www.metallomics2011.org/event/Metallomics2011/Scientific_program.html

  19. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    Science.gov (United States)

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  20. Ultratrace determination of mercury in water following EN and EPA standards using atomic fluorescence spectrometry.

    Science.gov (United States)

    Labatzke, Thomas; Schlemmer, Gerhard

    2004-02-01

    Chemical vapour generation has been used in combination with atomic fluorescence spectrometry to determine mercury at ultratrace concentrations down to 0.1 ng L(-1). A time-based injection of 1 mL of solution for measurement was sufficient to generate a steady-state detector response in the direct mode of measurement. The detection limit calculated from a ten-point calibration curve according to DIN 32645 was 0.26 ng L(-1). Instrument noise is limited by reflected radiation from the light source rather than by the dark current of the photomultiplier. The detection limit is directly influenced by the reagent blank which was 2 ng L(-1) in the experiments described. Focusing by amalgamation and subsequent thermal desorption generates a detector response which is about eight times higher in peak intensity and about twice as large in integrated intensity. The detection limit under these conditions is 0.09 ng L(-1) which can be further improved by preconcentration of larger volumes of solution for measurement. The cycle time for one individual reading is about 40 s without amalgamation and 125 s with amalgamation. The linear dynamic range of the system is five orders of magnitude with a single photomultiplier gain setting. The carry-over is less than 0.3% in direct measurement mode. Reference water samples and a surface water containing approximately 5 ng L(-1) were used to prove the validity of the method for real samples. Good accuracy and recoveries of 103% were calculated using the fast direct determination technique. PMID:14673566

  1. Flow injection-chemical vapor generation atomic fluorescence spectrometry hyphenated system for organic mercury determination: A step forward

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, Valeria [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Biagi, Simona [National Research Council of Italy, C.N.R., Istituto per i Processi Chimico-Fisici - IPCF-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ghimenti, Silvia [University of Pisa, Department of Chemistry and Industrial Chemistry, Via Risorgimento 35, 56126 Pisa (Italy); Onor, Massimo; D' Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici - ICCOM-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2011-11-15

    Monomethylmercury and ethylmercury were determined on line using flow injection-chemical vapor generation atomic fluorescence spectrometry without neither requiring a pre-treatment with chemical oxidants, nor UV/MW additional post column interface, nor organic solvents, nor complexing agents, such as cysteine. Inorganic mercury, monomethylmercury and ethylmercury were detected by atomic fluorescence spectrometry in an Ar/H{sub 2} miniaturized flame after sodium borohydride reduction to Hg{sup 0}, monomethylmercury hydride and ethylmercury hydride, respectively. The effect of mercury complexing agent such as cysteine, ethylendiaminotetracetic acid and HCl with respect to water and Ar/H{sub 2} microflame was investigated. The behavior of inorganic mercury, monomethylmercury and ethylmercury and their cysteine-complexes was also studied by continuous flow-chemical vapor generation atomic fluorescence spectrometry in order to characterize the reduction reaction with tetrahydroborate. When complexed with cysteine, inorganic mercury, monomethylmercury and ethylmercury cannot be separately quantified varying tetrahydroborate concentration due to a lack of selectivity, and their speciation requires a pre-separation stage (e.g. a chromatographic separation). If not complexed with cysteine, monomethylmercury and ethylmercury cannot be separated, as well, but their sum can be quantified separately with respect to inorganic mercury choosing a suitable concentration of tetrahydroborate (e.g. 10{sup -5} mol L{sup -1}), thus allowing the organic/inorganic mercury speciation. The detection limits of the flow injection-chemical vapor generation atomic fluorescence spectrometry method were about 45 nmol L{sup -1} (as mercury) for all the species considered, a relative standard deviation ranging between 1.8 and 2.9% and a linear dynamic range between 0.1 and 5 {mu}mol L{sup -1} were obtained. Recoveries of monomethylmercury and ethylmercury with respect to inorganic mercury were

  2. Prospects in Analytical Atomic Spectrometry

    CERN Document Server

    Bolshakov, A A; Nemets, V M

    2006-01-01

    Tendencies in five main branches of atomic spectrometry (absorption, emission, mass, fluorescence and ionization spectrometry) are considered. The first three techniques are the most widespread and universal, with the best sensitivity attributed to atomic mass spectrometry. In the direct elemental analysis of solid samples, the leading roles are now conquered by laser-induced breakdown and laser ablation mass spectrometry, and the related techniques with transfer of the laser ablation products into inductively-coupled plasma. Advances in design of diode lasers and optical parametric oscillators promote developments in fluorescence and ionization spectrometry and also in absorption techniques where uses of optical cavities for increased effective absorption pathlength are expected to expand. Prospects for analytical instrumentation are seen in higher productivity, portability, miniaturization, incorporation of advanced software, automated sample preparation and transition to the multifunctional modular archite...

  3. Major constituent quantitative determination in uranium alloys by coupled plasma atomic emission spectrometry and X ray fluorescence wavelength dispersive spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luis Claudio de; Silva, Adriana Mascarenhas Martins da; Gomide, Ricardo Goncalves; Silva, Ieda de Souza, E-mail: luis.claudio@ctmsp.mar.mil.br, E-mail: adriana@ctmsp.mar.mil.br, E-mail: gomide@ctmsp.mar.mil.br, E-mail: ieda@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CEA/CTMSP), Ipero, SP (Brazil). Centro Experimental Aramar

    2013-07-01

    A wavelength-dispersive X-ray fluorescence (WD-XRF) spectrometric method for determination of major constituents elements (Zr, Nb, Mo) in Uranium/Zirconium/Niobium and Uranium/Molybdenum alloy samples were developed. The methods use samples taken in the form of chips that were dissolved in hot nitric acid and precipitate particles melted with lithium tetraborate and dissolved in hot nitric acid and finally analyzed as a solution. Studies on the determination by inductively coupled plasma optic emission spectrometry (ICP OES) using matched matrix in calibration curve were developed. The same samples solution were analyzed in both methods. The limits of detection (LOD), linearity of the calibrations curves, recovery study, accuracy and precision of the both techniques were carried out. The results were compared. (author)

  4. Major constituent quantitative determination in uranium alloys by coupled plasma atomic emission spectrometry and X ray fluorescence wavelength dispersive spectrometry

    International Nuclear Information System (INIS)

    A wavelength-dispersive X-ray fluorescence (WD-XRF) spectrometric method for determination of major constituents elements (Zr, Nb, Mo) in Uranium/Zirconium/Niobium and Uranium/Molybdenum alloy samples were developed. The methods use samples taken in the form of chips that were dissolved in hot nitric acid and precipitate particles melted with lithium tetraborate and dissolved in hot nitric acid and finally analyzed as a solution. Studies on the determination by inductively coupled plasma optic emission spectrometry (ICP OES) using matched matrix in calibration curve were developed. The same samples solution were analyzed in both methods. The limits of detection (LOD), linearity of the calibrations curves, recovery study, accuracy and precision of the both techniques were carried out. The results were compared. (author)

  5. Enhancement reagents for simultaneous vapor generation of zinc and cadmium with intermittent flow system coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Simultaneous vapor generation of zinc (Zn) and cadmium (Cd) was evaluated by atomic fluorescence spectrometry coupled with an intermittent flow vapor generation system. Some complexing reagents, surfactant and transition metal ions were respectively tested as enhancement reagents. Experiments showed that an appropriate amount of 8-hydroxyquinoline or phenanthroline and nickel ion simultaneously, effectively improved the vapor generation efficiency of Zn and Cd. The volatile species generation was presumed to be a hydrogenation process interpreting how the enhancement reagents played an important role in vapor generation. Additionally, due to the instability of volatile species, reaction temperature, rapid and sufficient mixing of reagents and rapid separation of the volatile species from liquid phase were also crucial. The method of simultaneous determination of Zn and Cd by intermittent flow vapor generation led to the development of atomic fluorescence spectrometry. The detection limits (3σb) were 1.6 μg l-1 for Zn and 0.01 μg l-1 for Cd and the relative standard deviations were 3.6% for Zn (50 μg l-1, n=11) and 1.7% for Cd (2 μg l-1, n=11) respectively. Results for the determination of Zn and Cd have been confirmed by the analysis of CRMs with good agreement between the certified and found values

  6. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu Qingyang, E-mail: liuqingyang0807@yahoo.com.c [Beijing Center for Physical and Chemical Analysis, Beijing 100089 (China)

    2010-07-15

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg{sup 0}, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL{sup -1} for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury (n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  7. 原子荧光光谱法测定土壤中的砷含量%Determination of Arsenic in Soil by Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    刘燕芬

    2015-01-01

    通过结合具体的试验对运用原子荧光光谱法测定土壤中的砷含量进行了探讨,以期能为有关方面的需要提供有益的参考和借鉴。%In order to provide a useful reference for the relevant aspects of the arsenic content in soil by atomic fluorescence spectrometry, the method of atomic fluorescence spectrometry was used to determine the arsenic content in soil.

  8. Determination of Mercury in Aqueous and Geologic Materials by Continuous Flow-Cold Vapor-Atomic Fluorescence Spectrometry (CVAFS)

    Science.gov (United States)

    Hageman, Philip L.

    2007-01-01

    New methods for the determination of total mercury in geologic materials and dissolved mercury in aqueous samples have been developed that will replace the methods currently (2006) in use. The new methods eliminate the use of sodium dichromate (Na2Cr2O7 ?2H2O) as an oxidizer and preservative and significantly lower the detection limit for geologic and aqueous samples. The new methods also update instrumentation from the traditional use of cold vapor-atomic absorption spectrometry to cold vapor-atomic fluorescence spectrometry. At the same time, the new digestion procedures for geologic materials use the same size test tubes, and the same aluminum heating block and hot plate as required by the current methods. New procedures for collecting and processing of aqueous samples use the same procedures that are currently (2006) in use except that the samples are now preserved with concentrated hydrochloric acid/bromine monochloride instead of sodium dichromate/nitric acid. Both the 'old' and new methods have the same analyst productivity rates. These similarities should permit easy migration to the new methods. Analysis of geologic and aqueous reference standards using the new methods show that these procedures provide mercury recoveries that are as good as or better than the previously used methods.

  9. Determination of mercury by electrochemical cold vapor generation atomic fluorescence spectrometry using polyaniline modified graphite electrode as cathode

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianjuan [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gan Wuer, E-mail: wgan@ustc.edu.c [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wan Lingzhong; Zhang Hanchang; He Youzhao [Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-02-15

    An electrochemical cold vapor generation system with polyaniline modified graphite electrode as cathode material was developed for Hg (II) determination by coupling with atomic fluorescence spectrometry. This electrochemical cold vapor generation system with polyaniline/graphite electrode exhibited higher sensitivity; excellent stability and lower memory effect compared with graphite electrode electrochemical cold vapor generation system. The relative standard deviation was 2.7% for eleven consecutive measurements of 2 ng mL{sup -1} Hg (II) standard solution and the mercury limit of detection for the sample blank solution was 1.3 rg mL{sup -1} (3sigma). The accuracy of the method was evaluated through analysis of the reference materials (GBW09101) (Human hair) and GBW (08517) (Laminaria Japonica Aresch) and the proposed method was successfully applied to the analysis of human hairs.

  10. UV-assisted Fenton digestion of rice for the determination of trace cadmium by hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    Yu, Huimin; Ai, Xi; Xu, Kailai; Zheng, Chengbin; Hou, Xiandeng

    2016-02-21

    A new digestion method using UV-assisted Fe(0) Fenton reaction was developed for the determination of trace Cd in rice by hydride generation atomic fluorescence spectrometry. The proposed method integrated the advantages of simplicity, small dose of reagents, low cost and moderate reaction conditions, and was successfully utilized to analyze a Certified Reference Material (CRM) and real rice samples. A 1 mL mixture of the sample and reagents (0.0500 g rice powder, 0.2% (m/v) Fe(0), 0.75% (v/v) HNO3 and 18% (v/v) H2O2) was irradiated by UV-light for 50 min and then a clear solution was obtained by separating excess Fe(0) with a magnet prior to spectral analysis. The limit of detection (LOD) for Cd was found to be 0.02 mg kg(-1) and the relative standard deviation was better than 5.0% at a concentration level of 0.40 mg kg(-1). The recovery obtained by analyzing the CRM was 103% and spiked recoveries with 0.40 mg kg(-1) Cd in rice samples were 93% and 101%. The t-test proved that there is no significant difference between the certified value and the determined value of the CRM, and between the proposed method and microwave-assisted digestion coupled with inductively coupled plasma mass spectrometry (MWD-ICP-MS) at 95% confidence level. PMID:26759832

  11. Comparison of a portable micro-X-ray fluorescence spectrometry with inductively coupled plasma atomic emission spectrometry for the ancient ceramics analysis

    International Nuclear Information System (INIS)

    Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level)

  12. Determination of lead in environmental waters with dispersive liquid-liquid microextraction prior to atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingxiang, E-mail: zhouqx@cup.edu.cn [School of Chemistry and Environmental Sciences, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007 (China); State Laboratory of Petroleum Resource and Prospecting, College of Geosciences, China University of Petroleum Beijing, Beijing 102249 (China); Zhao, Na [State Laboratory of Petroleum Resource and Prospecting, College of Geosciences, China University of Petroleum Beijing, Beijing 102249 (China); Xie, Guohong [College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003 (China)

    2011-05-15

    This paper established a new, rapid and sensitive method for the determination of lead in water samples preconcentrated by dispersive liquid-liquid microextraction (DLLME) prior to atomic fluorescence spectrometry. Dithizone was used as the chelating agent. In the DLLME procedure, lead formed lead-dithizone complex and migrated into the carbon tetrachloride micro-droplets. Important factors that would affect the extraction efficiency had been investigated including the kind and volume of extraction solvent and dispersive solvent, sample pH, the amount of chelating agent, extraction time and centrifugation time. The results showed that the coexisting ions containing in water samples had no obvious negative effect on the determination of lead. The experimental results indicated that the proposed method had a good linear range of 0.01-100 ng mL{sup -1} (r{sup 2} = 0.9990). The precision was 2.12% (RSD, n = 7) and the detection limit was 0.95 ng L{sup -1}. Proposed method was validated with four real environmental samples and the results indicated that the proposed method was excellent for the future use and satisfied spiked recoveries were in the range of 92.9-97.4%.

  13. Determination of lead in environmental waters with dispersive liquid-liquid microextraction prior to atomic fluorescence spectrometry.

    Science.gov (United States)

    Zhou, Qingxiang; Zhao, Na; Xie, Guohong

    2011-05-15

    This paper established a new, rapid and sensitive method for the determination of lead in water samples preconcentrated by dispersive liquid-liquid microextraction (DLLME) prior to atomic fluorescence spectrometry. Dithizone was used as the chelating agent. In the DLLME procedure, lead formed lead-dithizone complex and migrated into the carbon tetrachloride micro-droplets. Important factors that would affect the extraction efficiency had been investigated including the kind and volume of extraction solvent and dispersive solvent, sample pH, the amount of chelating agent, extraction time and centrifugation time. The results showed that the coexisting ions containing in water samples had no obvious negative effect on the determination of lead. The experimental results indicated that the proposed method had a good linear range of 0.01-100 ng mL(-1) (r(2) = 0.9990). The precision was 2.12% (RSD, n = 7) and the detection limit was 0.95 ng L(-1). Proposed method was validated with four real environmental samples and the results indicated that the proposed method was excellent for the future use and satisfied spiked recoveries were in the range of 92.9-97.4%. PMID:21398026

  14. Ultrasensitive determination of mercury in human saliva by atomic fluorescence spectrometry based on solidified floating organic drop microextraction

    International Nuclear Information System (INIS)

    We report on a new, rapid and simple method for the determination of ultra-trace quantities of mercury ion in human saliva. It is based on solidified floating organic drop microextraction and detection by cold vapor atomic fluorescence spectrometry (CV-AFS). Mercury ion was complexed with diethyldithiocarbamate, and the hydrophobic complex was then extracted into fine droplets of 1-undecanol. By cooling in an ice bath after extraction, the droplets in solution solidify to form a single ball floating on the surface of solution. The solidified micro drop containing the mercury complex was then transferred for determination by CV-AFS. The effects of pH value, concentration of chelating reagent, quantity of 1-undecanol, sample volume, equilibration temperature and time were investigated. Under the optimum conditions, the preconcentration of a 25-mL sample is accomplished with an enrichment factor of 182. The limit of detection is 2.5 ng L-1. The relative standard deviation for seven replicate determinations at 0.1 ng mL-1 level is 4.1%. The method was applied to the determination of mercury in saliva samples collected from four volunteers. Two volunteers having dental amalgam fillings had 0.4 ng mL-1 mercury in their saliva, whereas mercury was not detectable in the saliva of two volunteers who had no dental fillings. (author)

  15. Determination of trace mercury in environmental samples by cold vapor atomic fluorescence spectrometry after cloud point extraction

    International Nuclear Information System (INIS)

    A sensitive method is presented for the determination of ultra-trace levels of mercury using cold vapor atomic fluorescence spectrometry along with cloud point extraction. Preconcentration is based on the complexation of Hg(II) by dithizone, followed by micelle-mediated extraction of the complex using the surfactant Triton X-114. Foaming, which is always observed when generating vapor mercury in the presence of surfactant, was strongly reduced by using SnCl2 as a reducing reagent, and a homemade gas-liquid separator. Variables that affect the assay were optimized. These included pH value, concentration of chelating reagent, concentration of Triton X-114, equilibration temperature and time. The preconcentration of a 45-mL sample gave an enhancement factor of 29. The calibration graph is linear in the range from 0. 05 to 5. 0 ng mL-1 with a correlation coefficient of 0. 9991. The limit of detection obtained under the optimal conditions is 5 pg mL-1. The relative standard deviation for seven replicate determinations at 0. 5 ng mL-1 level is 5. 2%. The method was successfully applied to the determination of Hg in real samples. (author)

  16. Development of an analytical method for antimony speciation in vegetables by HPLC-hydride generation-atomic fluorescence spectrometry.

    Science.gov (United States)

    Olivares, David; Bravo, Manuel; Feldmann, Jorg; Raab, Andrea; Neaman, Alexander; Quiroz, Waldo

    2012-01-01

    A new method for antimony speciation in terrestrial edible vegetables (spinach, onions, and carrots) was developed using HPLC with hydride generation-atomic fluorescence spectrometry. Mechanical agitation and ultrasound were tested as extraction techniques. Different extraction reagents were evaluated and optimal conditions were determined using experimental design methodology, where EDTA (10 mmol/L, pH 2.5) was selected because this chelate solution produced the highest extraction yield and exhibited the best compatibility with the mobile phase. The results demonstrated that EDTA prevents oxidation of Sb(III) to Sb(V) and maintains the stability of antimony species during the entire analytical process. The LOD and precision (RSD values obtained) for Sb(V), Sb(III), and trimethyl Sb(V) were 0.08, 0.07, and 0.9 microg/L and 5.0, 5.2, and 4.7%, respectively, for a 100 microL sample volume. The application of this method to real samples allowed extraction of 50% of total antimony content from spinach, while antimony extracted from carrots and onion samples ranged between 50 and 60 and 54 and 70%, respectively. Only Sb(V) was detected in three roots (onion and spinach) that represented 60-70% of the total antimony in the extracts. PMID:22970588

  17. Determination of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in cereals by hydride generation atomic fluorescence spectrometry

    Science.gov (United States)

    Matos Reyes, M. N.; Cervera, M. L.; Campos, R. C.; de la Guardia, M.

    2007-09-01

    A fast, sensitive and simple non-chromatographic analytical method was developed for the speciation analysis of toxic arsenic species in cereal samples, namely rice and wheat semolina. An ultrasound-assisted extraction of the toxic arsenic species was performed with 1 mol L - 1 H 3PO 4 and 0.1% (m/v) Triton XT-114. After extraction, As(III), As(V), dimethylarsinic acid (DMA) and monomethylarsonic acid (MMA) concentrations were determined by hydride generation atomic fluorescence spectrometry using a series of proportional equations corresponding to four different experimental reduction conditions. The detection limits of the method were 1.3, 0.9, 1.5 and 0.6 ng g - 1 for As(III), As(V), DMA and MMA, respectively, expressed in terms of sample dry weight. Recoveries were always greater than 90%, and no species interconversion occurred. The speciation analysis of a rice flour reference material certified for total arsenic led to coherent results, which were also in agreement with other speciation studies made on the same certified reference material.

  18. Speciation analysis of arsenic by hydride generation-cryotrapping-atomic fluorescence spectrometry: achieving extremely low detection limits with inexpensive instrumentation

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Matoušek, Tomáš; Svoboda, Milan; Selecká, Anna; Rychlovský, P.; Dědina, Jiří

    Münster, 2011. FTM17. [Internaional Symposium on Metallomics /3./. 15.06.2011-18.06.2011, Münster] R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501 Keywords : arsenic speciation analysis * hydride generation * atonmic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation

  19. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shan, E-mail: ls_tuzi@163.com; Wang, Mei, E-mail: wmei02@163.com; Zhong, Yizhou, E-mail: yizhz@21cn.com; Zhang, Zehua, E-mail: kazuki.0101@aliyun.com; Yang, Bingyi, E-mail: e_yby@163.com

    2015-09-01

    A new cloud point extraction technique was established and used for the determination of trace inorganic arsenic species in water samples combined with hydride generation atomic fluorescence spectrometry (HGAFS). As(III) and As(V) were complexed with ammonium pyrrolidinedithiocarbamate and molybdate, respectively. The complexes were quantitatively extracted with the non-ionic surfactant (Triton X-114) by centrifugation. After addition of antifoam, the surfactant-rich phase containing As(III) was diluted with 5% HCl for HGAFS determination. For As(V) determination, 50% HCl was added to the surfactant-rich phase, and the mixture was placed in an ultrasonic bath at 70 °C for 30 min. As(V) was reduced to As(III) with thiourea–ascorbic acid solution, followed by HGAFS. Under the optimum conditions, limits of detection of 0.009 and 0.012 μg/L were obtained for As(III) and As(V), respectively. Concentration factors of 9.3 and 7.9, respectively, were obtained for a 50 mL sample. The precisions were 2.1% for As(III) and 2.3% for As(V). The proposed method was successfully used for the determination of trace As(III) and As(V) in water samples, with satisfactory recoveries. - Highlights: • Cloud point extraction was firstly established to determine trace inorganic arsenic(As) species combining with HGAFS. • Separate As(III) and As(V) determinations improve the accuracy. • Ultrasonic release of complexed As(V) enables complete As(V) reduction to As(III). • Direct HGAFS analysis can be performed.

  20. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    A new cloud point extraction technique was established and used for the determination of trace inorganic arsenic species in water samples combined with hydride generation atomic fluorescence spectrometry (HGAFS). As(III) and As(V) were complexed with ammonium pyrrolidinedithiocarbamate and molybdate, respectively. The complexes were quantitatively extracted with the non-ionic surfactant (Triton X-114) by centrifugation. After addition of antifoam, the surfactant-rich phase containing As(III) was diluted with 5% HCl for HGAFS determination. For As(V) determination, 50% HCl was added to the surfactant-rich phase, and the mixture was placed in an ultrasonic bath at 70 °C for 30 min. As(V) was reduced to As(III) with thiourea–ascorbic acid solution, followed by HGAFS. Under the optimum conditions, limits of detection of 0.009 and 0.012 μg/L were obtained for As(III) and As(V), respectively. Concentration factors of 9.3 and 7.9, respectively, were obtained for a 50 mL sample. The precisions were 2.1% for As(III) and 2.3% for As(V). The proposed method was successfully used for the determination of trace As(III) and As(V) in water samples, with satisfactory recoveries. - Highlights: • Cloud point extraction was firstly established to determine trace inorganic arsenic(As) species combining with HGAFS. • Separate As(III) and As(V) determinations improve the accuracy. • Ultrasonic release of complexed As(V) enables complete As(V) reduction to As(III). • Direct HGAFS analysis can be performed

  1. Development of a MSFIA system for sequential determination of antimony, arsenic and selenium using hydride generation atomic fluorescence spectrometry.

    Science.gov (United States)

    de Santana, Fernanda A; Portugal, Lindomar A; Serra, Antonio M; Ferrer, Laura; Cerdà, Víctor; Ferreira, Sergio L C

    2016-08-15

    This paper proposed a multisyringe flow injection analysis (MSFIA) system for antimony, arsenic and selenium determination in peanut samples by hydride generation atomic fluorescence spectrometry (HG-AFS). The optimization step of the hydride generation was performed using a two-level full factorial design involving the parameters: hydrochloric acid, sodium tetrahydroborate and potassium iodide concentrations. So, using the chemical conditions optimized, this method allows the determination of these elements employing the external calibration technique using aqueous standards with limits of detection and quantification of 0.04 and 0.14µgL(-1) for antimony, 0.04 and 0.14µgL(-1) for arsenic and 0.14 and 0.37µgL(-1) for selenium, respectively. Additionally, the effect of vanadium, chromium, cobalt, nickel, zinc, copper, iron and molybdenum on the generation of chemical vapour was also studied. The precision expressed as relative standard deviation varied from 1.2 to 3.6% for antimony, 1.8-3.9% for arsenic and 1.8-2% for selenium. The accuracy for arsenic and selenium was confirmed using the certified peach leaves reference material SRM 1547 produced by National Institute of Standard and Technology. The proposed method showed 45 injection throughput (h(-1)) using 1.6mL sample volume for each element, 0.8mL NaBH4 0.5% (w/v) containing NaOH 0.05% (w/v), 0.8mL HCl 5M and 0.4mL KI 14% (w/v) containing L-ascorbic acid 2.5% (w/v). The method was applied to the determination of antimony, arsenic and selenium in peanut samples, which were firstly lyophilized and afterward digested using microwave assisted radiation. Six samples were analyzed and the contents of the elements found were: 28.7-41.3µgkg(-1) for arsenic, 86.4-480.1µgkg(-1) for selenium and 32.6-52.4µgkg(-1) for antimony. Addition/recovery tests were also performed to confirm the method accuracy for the three elements. PMID:27260431

  2. Atomic spectrometry update : environmental analysis

    OpenAIRE

    Butler, Owen T.; Cairns, Warren R. L.; Cook, Jennifer M.; Davidson, Christine M.

    2012-01-01

    This is the 27th annual review published in Journal of Analytical Atomic Spectrometry of the application of atomic spectrometry to the chemical analysis of environmental samples. This Update refers to papers published approximately between September 2010 and August 2011 and continues the series of Atomic Spectrometry Updates (ASUs) in Environmental Analysis1 that should be read in conjunction with other related ASU reviews in the series, namely: clinical and biological materials, foods and be...

  3. Atomic spectrometry update : environmental analysis

    OpenAIRE

    Butler, Owen T.; Warren R. L. Cairns; Cook, Jennifer M.; Davidson, Christine M.

    2013-01-01

    This is the 28th annual review published in JAAS on the application of atomic spectrometry to the chemical analysis of environmental samples. This Update refers to papers published approximately between September 2011 and August 2012 and continues the series of Atomic Spectrometry Updates (ASUs) in Environmental Analysis1 that should be read in conjunction with other related ASUs in the series, namely: clinical and biological materials, foods and beverages2; advances in atomic spectrometry an...

  4. X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    The seventh edition of Philips' Review of Literature on x-ray fluorescence spectrometry starts with a list of conference proceedings on the subject, organised by the Philips organisation at regular intervals in various European countries. It is followed by a list of bulletins. The bibliography is subdivided according to spectra, equipment, applications and absorption analysis

  5. Determination of Selenium in Marine Aquatic Products by Hydride Generation-atomic Fluorescence Spectrometry (HG-AFS)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhaohui; GAO Xin; Tashiro Yuri; Hiroo Ogawa

    2005-01-01

    A method for the analysis of selenium in marine aquatic products by HG-AFS has been investigated. The method is based on the reduction of inorganic selenium to volatile SeH2 which is bubbled out by carrier gas of pure argon, and then swept to Ar-H2 flame quarts atomizer to measure its fluorescence intensity. The hydride generation, transportation, atomization and some instrumental parameters were studied by a kind of orthogonal design. The optimum conditions selected are as follows: reactive acidity, 20% HC1; the amount of NaBH4, 4.9mL; gas flow of argon, 600mLmin-1; atomizing temperature, 200 ℃; negative high voltage, -300V; light current, 100 mA; integral time, 7s. The detection limit of the presented method is 0.072μgL-1 for selenium. The calibration curve shows a satisfactory line inthe concentration range from 0.000 to1.000μgL-1 Se. The recovery is 95.8%-102.2%.

  6. Ultra-trace determination of methylmercuy in seafood by atomic fluorescence spectrometry coupled with electrochemical cold vapor generation.

    Science.gov (United States)

    Zu, Wenchuan; Wang, Zhenghao

    2016-03-01

    A homemade electrochemical flow cell was adopted for the determination of methylmercury. The cold vapor of mercury atoms was generated from the surface of glassycarbon cathode through the method of electrolytic reduction and detected by atomic fluorescence spectroscopy subsequently. The operating conditions were optimized with 2 ng mL(-1) methylmercury standard solution. The caliberation curve was favorably linear when the concentrations of standard HgCH3(+) solutions were in the range of 0.2-5 ng mL(-1)(as Hg). Under the optimized conditions, the limit of detection (LOD) for methylmercury was 1.88×10(-3)ng mL(-1) and the precision evaluated by relative standard deviation was 2.0% for six times 2 ng mL(-1) standard solution replicates. The terminal analytical results of seafood samples, available from local market, showed that the methylmercury content ranged within 3.7-45.8 ng g(-1). The recoveries for methylmercury spiked samples were found to be in the range of 87.6-103.6% and the relative standard deviations below 5% (n=6) were acquired, which showed this method was feasible for real sample analysis. PMID:26615576

  7. Determination of trace total inorganic arsenic by hydride generation atomic fluorescence spectrometry after solid phase extraction-preconcentration on aluminium hydroxide gel

    International Nuclear Information System (INIS)

    We describe a simple, effective, inexpensive and rapid method for the determination of trace amounts of total inorganic arsenic in water samples by means of a modified solid phase preconcentration procedure using an aluminium hydroxide gel sorbent and hydride generation atomic fluorescence spectrometry (HGAFS). This method avoids the traditional extraction procedures that are time- and solvent-consuming. The effects of quantity of adsorbent, solution pH, adsorption time and potentially interfering ions were studied. Under the optimal conditions, the detection limit is 3 ng.L-1, and the enrichment factor is 167. The calibration plot is linear in the range from 0.05 to 10 μg.L-1, with a correlation coefficient of 0.9992. The relative standard deviation (RSD) was less than 6.1 % (n = 5) and recoveries in spiked environmental water were >100 %. The method was successfully applied to the determination of total inorganic arsenic in natural water samples. (author)

  8. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    Science.gov (United States)

    Wu, Hong; Jin, Yan; Han, Weiying; Miao, Qiang; Bi, Shuping

    2006-07-01

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH 4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h - 1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l - 1 for Hg 2+ and 2.0 ng l - 1 for CH 3Hg +. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l - 1 of Hg 2+ and CH 3Hg + were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  9. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hong [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Department of Chemistry, Xuzhou Normal University, Xuzhou 221116 (China); Jin Yan [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Han Weiying [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Miao, Qiang [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Bi Shuping [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China)]. E-mail: bisp@nju.edu.cn

    2006-07-15

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH{sub 4} solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h{sup -1} with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l{sup -1} for Hg{sup 2+} and 2.0 ng l{sup -1} for CH{sub 3}Hg{sup +}. The precisions (RSD) for the 11 replicate measurements of each 0.2 {mu}g l{sup -1} of Hg{sup 2+} and CH{sub 3}Hg{sup +} were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples.

  10. Non-chromatographic speciation analysis of mercury by flow injection on-line preconcentration in combination with chemical vapor generation atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    A novel non-chromatographic approach for direct speciation of mercury, based on the selective retention inorganic mercury and methylmercury on the inner wall of a knotted reactor by using ammonium diethyl dithiophosphate and dithizone as complexing agents respectively, was developed for flow injection on-line sorption preconcentration coupled with chemical vapor generation non-dispersive atomic fluorescence spectrometry. With the sample pH kept at 2.0, the preconcentration of inorganic mercury on the inner walls of the knotted reactor was carried out based on the exclusive retention of Hg-DDP complex in the presence of methylmercury via on-line merging the sample solution with ammonium diethyl dithiophosphate solution, and selective preconcentration methylmercury was achieved with dithizone instead of ammonium diethyl dithiophosphate. A 15% (v/v) HCl was introduced to elute the retained mercury species and merge with KBH4 solution for atomic fluorescence spectrometry detection. Under the optimal experimental conditions, the sample throughputs of inorganic mercury and methylmercury were 30 and 20 h-1 with the enhancement factors of 13 and 24. The detection limits were found to be 3.6 ng l-1 for Hg2+ and 2.0 ng l-1 for CH3Hg+. The precisions (RSD) for the 11 replicate measurements of each 0.2 μg l-1 of Hg2+ and CH3Hg+ were 2.2% and 2.8%, respectively. The developed method was validated by the analysis of certified reference materials (simulated natural water, rice flour and pork) and by recovery measurements on spiked samples, and was applied to the determination of inorganic mercury and methylmercury in biological and environmental water samples

  11. Continuous Determination of Heavy Metals in Water by Atomic Fluorescence and Atomic Absorption Spectrometry%原子荧光和原子吸收法连续测定水中的重金属

    Institute of Scientific and Technical Information of China (English)

    谢倩

    2015-01-01

    通过剖析原子荧光和原子吸收法的不同消解体系,优化实验条件,确定了原子荧光和原子吸收法连续测定水中的硒、砷、锌、铜的含量的最佳消解条件和最佳仪器测定条件。经加标回收以及标样分析,连续测定的灵敏度高,回收率在95.9%~109%之间,相对标准误差低于4.41%,操作简便快速,结果精确。%By analyzing the different digestion system of atomic fluorescence and atomic absorption method and optimizing experimental conditions, the optimal digestion conditions and the best measurement conditions of instruments for continuous determination selenium, arsenic, zinc, copper content in water by atomic fluorescence and atomic absorption spectrometry were determined.Spiking recovery and standard analysis result showed that continuous measurement had high sensitivity, and the recoveries was between 95.9% and 109%, relative standard deviation was less than 4.41%, the operation was simple, rapid and accurate.

  12. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Salgado, S. [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain); Quijano, M.A., E-mail: marian.quijano@upm.es [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain); Bonilla, M.M. [Departamento de Ingenieria Civil: Tecnologia Hidraulica y Energetica, Escuela Universitaria de Ingenieria Tecnica de Obras Publicas, Universidad Politecnica de Madrid, Alfonso XII 3 y 5, 28014 Madrid (Spain)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Total As and As species were analyzed in edible marine algae. Black-Right-Pointing-Pointer A microwave-assisted extraction method with deionized water was applied. Black-Right-Pointing-Pointer As compounds identified comprised DMA, As(V) and four arsenosugars Black-Right-Pointing-Pointer Considerably high As(V) concentrations were found in the most of the algae studied. - Abstract: Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 {mu}g g{sup -1}. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography-ultraviolet photo-oxidation-hydride generation atomic-fluorescence spectrometry (HPLC-(UV)-HG-AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 {mu}g g{sup -1}, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 {mu}g g{sup -1}). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (<0.9 {mu}g g{sup -1}) and generally high arsenate (As(V)) concentrations (up to 77 {mu}g g{sup -1}) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  13. Determination of Ca, Mg, Na, Cd, Cu, Fe, K, Li and Zn in acid mine and reference water samples by inductively coupled plasma atomic fluorescence spectrometry

    Science.gov (United States)

    Sanzolone, R.F.; Meier, A.L.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric (ICP-AFS) method was used for the determination of nine elements in natural water. Reference and acid mine water samples were analysed by this method to demonstrate its usefulness for hydrogeochemical exploration. The elements were determined in two groups based on the compatibility of operating conditions and consideration of element abundance levels in natural water. Ca, Mg and Na were determined as a group using one set of instrumental conditions and a 1 + 99 dilution of the sample, and Cd, Cu, Fe, K, Li and Zn were determined using another set of conditions and the undiluted sample. The detection limits for the elements are as follows: Ca, 1.4; Mg, 1.7; Na, 2.0; Cd, 1.8; Cu, 6.2; Fe, 15.8; K, 3.5; Li, 0.3; and Zn, 1.2 ng m1-1. Each element has a linear range spanning about four orders of magnitude. The method has good precision and accuracy, as shown by statistics on replicate analyses and by the agreement between values obtained and those recommended for the reference water samples, and also those obtained by atomic absorption spectrometry for the acid mine water samples.

  14. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  15. Method of trivalent chromium concentration determination by atomic spectrometry

    Science.gov (United States)

    Reheulishvili, Aleksandre N.; Tsibakhashvili, Neli Ya.

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  16. Arsenic speciation in edible alga samples by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Highlights: ► Total As and As species were analyzed in edible marine algae. ► A microwave-assisted extraction method with deionized water was applied. ► As compounds identified comprised DMA, As(V) and four arsenosugars ► Considerably high As(V) concentrations were found in the most of the algae studied. - Abstract: Twelve commercially available edible marine algae from France, Japan and Spain and the certified reference material (CRM) NIES No. 9 Sargassum fulvellum were analyzed for total arsenic and arsenic species. Total arsenic concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) after microwave digestion and ranged from 23 to 126 μg g−1. Arsenic species in alga samples were extracted with deionized water by microwave-assisted extraction and showed extraction efficiencies from 49 to 98%, in terms of total arsenic. The presence of eleven arsenic species was studied by high performance liquid chromatography–ultraviolet photo-oxidation–hydride generation atomic–fluorescence spectrometry (HPLC–(UV)–HG–AFS) developed methods, using both anion and cation exchange chromatography. Glycerol and phosphate sugars were found in all alga samples analyzed, at concentrations between 0.11 and 22 μg g−1, whereas sulfonate and sulfate sugars were only detected in three of them (0.6-7.2 μg g−1). Regarding arsenic toxic species, low concentration levels of dimethylarsinic acid (DMA) (−1) and generally high arsenate (As(V)) concentrations (up to 77 μg g−1) were found in most of the algae studied. The results obtained are of interest to highlight the need to perform speciation analysis and to introduce appropriate legislation to limit toxic arsenic species content in these food products.

  17. Direct determination of arsenic in soil samples by fast pyrolysis–chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    This new study shows for the first time that sodium formate can react with trace arsenic to form volatile species via fast pyrolysis – chemical vapor generation. We found that the presence of thiourea greatly enhanced the generation efficiency and eliminated the interference of copper. We studied the reaction temperature, the volume of sodium formate, the reaction acidity, and the carried argon rate using nondispersive atomic fluorescence spectrometry. Under optimal conditions of T = 500 °C, the volumes of 30% sodium formate and 10% thiourea were 0.2 ml and 0.05 ml, respectively. The carrier argon rate was 300 ml min−1 and the detection limit and precision of arsenic were 0.39 ng and 3.25%, respectively. The amount of arsenic in soil can be directly determined by adding trace amount of hydrochloric acid as a decomposition reagent without any sample pretreatment. The method was successfully applied to determine trace amount of arsenic in two soil-certified reference materials (GBW07453 and GBW07450), and the results were found to be in agreement with certified reference values. - Highlights: • Sodium formate can react with trace arsenic to form volatile species via pyrolysis–chemical vapor generation. • Thiourea can enhance the generation efficiency and eliminate the interference of copper. • Arsenic in soil Sample can be directly determined without sample pretreatment

  18. Determination of As in tobacco by using electrochemical hydride generation at a Nafion® solid polymer electrolyte cell hyphenated with atomic fluorescence spectrometry

    Science.gov (United States)

    Yang, Qinghua; Gan, Wuer; Deng, Yun; Sun, Huihui

    2011-11-01

    In the present work, a novel solid polymer electrolyte hydride generation (SPE-HG) cell was developed. The home-made SPE-HG cell, mainly composed of three components (Nafion®117 membrane for separating and H + exchanging, a soft graphite felt cathode and a Ti mesh modified by Ir anode), was employed for detecting As by coupling to atomic fluorescence spectrometry (AFS). The H + generated by electrolysis of pure water in anode chamber transferred to cathode chamber through SPE, and immediately reacted with As 3 + to generate AsH 3. The relative mechanisms and operation conditions for hydride generation of As were investigated in detail. The developed cell employed water as an alternative of acid anolyte, with virtues of low-cost, more than 6 months lifetime and environment friendly compared with the conventional cell. Under the optimized conditions, the limit of determination of As 3 + for sample blank solution was 0.12 μg L - 1 , the RSD was 2.9% for 10 consecutive measurements of 5 μg L - 1 As 3 + standard solution. The accuracy of the method was verified by the determination of As in the reference Tea (GBW07605) and the developed method was successfully applied to determine trace amounts of As in tobacco samples with recovery from 97% to 103%.

  19. Determination of As in tobacco by using electrochemical hydride generation at a Nafion® solid polymer electrolyte cell hyphenated with atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    In the present work, a novel solid polymer electrolyte hydride generation (SPE-HG) cell was developed. The home-made SPE-HG cell, mainly composed of three components (Nafion®117 membrane for separating and H+ exchanging, a soft graphite felt cathode and a Ti mesh modified by Ir anode), was employed for detecting As by coupling to atomic fluorescence spectrometry (AFS). The H+ generated by electrolysis of pure water in anode chamber transferred to cathode chamber through SPE, and immediately reacted with As3+ to generate AsH3. The relative mechanisms and operation conditions for hydride generation of As were investigated in detail. The developed cell employed water as an alternative of acid anolyte, with virtues of low-cost, more than 6 months lifetime and environment friendly compared with the conventional cell. Under the optimized conditions, the limit of determination of As3+ for sample blank solution was 0.12 μg L−1, the RSD was 2.9% for 10 consecutive measurements of 5 μg L−1 As3+ standard solution. The accuracy of the method was verified by the determination of As in the reference Tea (GBW07605) and the developed method was successfully applied to determine trace amounts of As in tobacco samples with recovery from 97% to 103%.

  20. Determination of As in tobacco by using electrochemical hydride generation at a Nafion Registered-Sign solid polymer electrolyte cell hyphenated with atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang Qinghua; Gan Wuer, E-mail: wgan@ustc.edu.cn; Deng Yun; Sun Huihui

    2011-11-15

    In the present work, a novel solid polymer electrolyte hydride generation (SPE-HG) cell was developed. The home-made SPE-HG cell, mainly composed of three components (Nafion Registered-Sign 117 membrane for separating and H{sup +} exchanging, a soft graphite felt cathode and a Ti mesh modified by Ir anode), was employed for detecting As by coupling to atomic fluorescence spectrometry (AFS). The H{sup +} generated by electrolysis of pure water in anode chamber transferred to cathode chamber through SPE, and immediately reacted with As{sup 3+} to generate AsH{sub 3}. The relative mechanisms and operation conditions for hydride generation of As were investigated in detail. The developed cell employed water as an alternative of acid anolyte, with virtues of low-cost, more than 6 months lifetime and environment friendly compared with the conventional cell. Under the optimized conditions, the limit of determination of As{sup 3+} for sample blank solution was 0.12 {mu}g L{sup -1}, the RSD was 2.9% for 10 consecutive measurements of 5 {mu}g L{sup -1} As{sup 3+} standard solution. The accuracy of the method was verified by the determination of As in the reference Tea (GBW07605) and the developed method was successfully applied to determine trace amounts of As in tobacco samples with recovery from 97% to 103%.

  1. Direct determination of arsenic in soil samples by fast pyrolysis-chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry

    Science.gov (United States)

    Duan, Xuchuan; Zhang, Jingya; Bu, Fanlong

    2015-09-01

    This new study shows for the first time that sodium formate can react with trace arsenic to form volatile species via fast pyrolysis - chemical vapor generation. We found that the presence of thiourea greatly enhanced the generation efficiency and eliminated the interference of copper. We studied the reaction temperature, the volume of sodium formate, the reaction acidity, and the carried argon rate using nondispersive atomic fluorescence spectrometry. Under optimal conditions of T = 500 °C, the volumes of 30% sodium formate and 10% thiourea were 0.2 ml and 0.05 ml, respectively. The carrier argon rate was 300 ml min- 1 and the detection limit and precision of arsenic were 0.39 ng and 3.25%, respectively. The amount of arsenic in soil can be directly determined by adding trace amount of hydrochloric acid as a decomposition reagent without any sample pretreatment. The method was successfully applied to determine trace amount of arsenic in two soil-certified reference materials (GBW07453 and GBW07450), and the results were found to be in agreement with certified reference values.

  2. Application of Graphene as a Sorbent for the Preconcentration and Determination of Trace Amounts of Mercury in Water Samples by Hydride Generation Atomic Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    The potential of graphene as a solid-phase extraction adsorbent for the separation and preconcentration of mercury (Hg) was investigated. Hg2+ was found to be quantitatively adsorbed onto graphene within pH 6.0-8.0, and then completely eluted with 4.0 mL of nitric acid/methanol (1:1, v/v) solution at a flow rate of 2.0 mL min-1. A new method using a microcolumn packed with graphene as a sorbent was developed for the preconcentration of trace amount of Hg2+ prior to its determination by hydride generation atomic fluorescence spectrometry. Under the optimum experimental conditions, the detection limit of this method for Hg2+ was 5.0 ng L /sup -1/, with an enrichment factor of 15.0, and the relative standard deviation was 3.5 percentage at the 1.0 μg L-1 Hg /sup 2+/ level. The method was then applied for the determination of trace amount of Hg /sup 2/+ in water samples with satisfactory results. (author)

  3. Determination of total Sb,Se Te, and Bi and evaluation of their inorganic species in garlic by hydride-generation-atomic-fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matos Reyes, M.N.; Cervera, M.L.; Guardia, M. de la [University of Valencia, Department of Analytical Chemistry, Burjassot, Valencia (Spain)

    2009-07-15

    A sensitive and simple analytical method has been developed for determination of Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), Te(VI), and Bi(III) in garlic samples by using hydride-generation-atomic-fluorescence spectrometry (HG-AFS). The method is based on a single extraction of the inorganic species by sonication at room temperature with 1 mol L{sup -1} H{sub 2}SO{sub 4} and washing of the solid phase with 0.1% (w/v) EDTA, followed by measurement of the corresponding hydrides generated under two different experimental conditions directly and after a pre-reduction step. The limit of detection of the method was 0.7 ng g{sup -1} for Sb(III), 1.0 ng g{sup -1} for Sb(V), 1.3 ng g{sup -1} for Se(IV), 1.0 ng g{sup -1} for Se(VI), 1.1 ng g{sup -1} for Te(IV), 0.5 ng g{sup -1} for Te(VI), and 0.9 ng g{sup -1} for Bi(III), in all cases expressed in terms of sample dry weight. (orig.)

  4. Direct determination of arsenic in soil samples by fast pyrolysis–chemical vapor generation using sodium formate as a reductant followed by nondispersive atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xuchuan; Zhang, Jingya; Bu, Fanlong

    2015-09-01

    This new study shows for the first time that sodium formate can react with trace arsenic to form volatile species via fast pyrolysis – chemical vapor generation. We found that the presence of thiourea greatly enhanced the generation efficiency and eliminated the interference of copper. We studied the reaction temperature, the volume of sodium formate, the reaction acidity, and the carried argon rate using nondispersive atomic fluorescence spectrometry. Under optimal conditions of T = 500 °C, the volumes of 30% sodium formate and 10% thiourea were 0.2 ml and 0.05 ml, respectively. The carrier argon rate was 300 ml min{sup −1} and the detection limit and precision of arsenic were 0.39 ng and 3.25%, respectively. The amount of arsenic in soil can be directly determined by adding trace amount of hydrochloric acid as a decomposition reagent without any sample pretreatment. The method was successfully applied to determine trace amount of arsenic in two soil-certified reference materials (GBW07453 and GBW07450), and the results were found to be in agreement with certified reference values. - Highlights: • Sodium formate can react with trace arsenic to form volatile species via pyrolysis–chemical vapor generation. • Thiourea can enhance the generation efficiency and eliminate the interference of copper. • Arsenic in soil Sample can be directly determined without sample pretreatment.

  5. Evaluation of different extraction procedures for determination of organic Mercury species in petroleum by high performance liquid chromatography coupled with cold vapor atomic fluorescence spectrometry.

    Science.gov (United States)

    Yun, Zhaojun; He, Bin; Wang, Zhenhua; Wang, Thanh; Jiang, Guibin

    2013-03-15

    An extraction procedure for extracting organic mercury species including methylmercury (MeHg) and ethylmercury (EtHg) from petroleum samples was developed. Three extraction methods (shaking, ultrasonic and microwave assisted extraction) using different extraction solvents (TMAH, KOH/CH3OH, HCl and acidic CuSO4/KBr) were investigated by comparing the extraction efficiency of the organic mercury species. Microwave assisted extraction at 60 W for 5 min using TMAH (tetramethylammonium hydroxide, 25%, m/v) provided the most satisfactory extraction efficiency for MeHg and EtHg in petroleum at 86.7% ± 3.4% and 70.6% ± 5.9%, respectively. Speciation analysis of mercury was done by on-line coupling of high performance liquid chromatography with cold vapor generation atomic fluorescence spectrometry (HPLC-CV-AFS). The proposed method was successfully applied to analyze several crude oil and light oil samples. The concentrations of MeHg ranged from under detection limit to 0.515 ng g(-1), whereas EtHg was not detected in the samples. This method can be a very useful tool in evaluating the risk of mercury emissions from petroleum. PMID:23598095

  6. An evaluation of the bioaccessibility of arsenic in corn and rice samples based on cloud point extraction and hydride generation coupled to atomic fluorescence spectrometry.

    Science.gov (United States)

    Castor, José Martín Rosas; Portugal, Lindomar; Ferrer, Laura; Hinojosa-Reyes, Laura; Guzmán-Mar, Jorge Luis; Hernández-Ramírez, Aracely; Cerdà, Víctor

    2016-08-01

    A simple, inexpensive and rapid method was proposed for the determination of bioaccessible arsenic in corn and rice samples using an in vitro bioaccessibility assay. The method was based on the preconcentration of arsenic by cloud point extraction (CPE) using o,o-diethyldithiophosphate (DDTP) complex, which was generated from an in vitro extract using polyethylene glycol tert-octylphenyl ether (Triton X-114) as a surfactant prior to its detection by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). The CPE method was optimized by a multivariate approach (two-level full factorial and Doehlert designs). A photo-oxidation step of the organic species prior to HG-AFS detection was included for the accurate quantification of the total As. The limit of detection was 1.34μgkg(-1) and 1.90μgkg(-1) for rice and corn samples, respectively. The accuracy of the method was confirmed by analyzing certified reference material ERM BC-211 (rice powder). The corn and rice samples that were analyzed showed a high bioaccessible arsenic content (72-88% and 54-96%, respectively), indicating a potential human health risk. PMID:26988526

  7. Analysis of heavy metals and minerals elements in the turmeric using Total-Reflection X-ray Fluorescence analysis technique and Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Currently, many studies demonstrate anti-cancer and anti-inflammatory benefits of turmeric. The aims of this work is to perform analysis of metals such as calcium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, bromine, rubidium, strontium, cadmium and lead in the turmeric collected from various places in Madagascar. The analysis by total reflection X-ray fluorescence technique is used to determine the concentrations of heavy metals, while the atomic absorption spectrometry is used for the determination of trace elements. Analysis results show that the concentration of calcium in the turmeric is very high, its average concentration is 1025.8 mg.kg-1. The average concentrations of manganese, of copper and of iron are respectively 44.7 mg.kg-1; 19.7 mg.kg-1 and 53.6 mg.kg-1. The average concentrations of zinc, of rubidium and of strontium are respectively 17.3 mg.kg-1; 35.2 mg.kg-1 and 21.7 mg.kg-1

  8. Ambient-Temperature Trap/Release of Arsenic by Dielectric Barrier Discharge and Its Application to Ultratrace Arsenic Determination in Surface Water Followed by Atomic Fluorescence Spectrometry.

    Science.gov (United States)

    Mao, Xuefei; Qi, Yuehan; Huang, Junwei; Liu, Jixin; Chen, Guoying; Na, Xing; Wang, Min; Qian, Yongzhong

    2016-04-01

    A novel dielectric barrier discharge reactor (DBDR) was utilized to trap/release arsenic coupled to hydride generation atomic fluorescence spectrometry (HG-AFS). On the DBD principle, the precise and accurate control of trap/release procedures was fulfilled at ambient temperature, and an analytical method was established for ultratrace arsenic in real samples. Moreover, the effects of voltage, oxygen, hydrogen, and water vapor on trapping and releasing arsenic by DBDR were investigated. For trapping, arsenic could be completely trapped in DBDR at 40 mL/min of O2 input mixed with 600 mL/min Ar carrier gas and 9.2 kV discharge potential; prior to release, the Ar carrier gas input should be changed from the upstream gas liquid separator (GLS) to the downstream GLS and kept for 180 s to eliminate possible water vapor interference; for arsenic release, O2 was replaced by 200 mL/min H2 and discharge potential was adjusted to 9.5 kV. Under optimized conditions, arsenic could be detected as low as 1.0 ng/L with an 8-fold enrichment factor; the linearity of calibration reached R(2) > 0.995 in the 0.05 μg/L-5 μg/L range. The mean spiked recoveries for tap, river, lake, and seawater samples were 98% to 103%; and the measured values of the CRMs including GSB-Z50004-200431, GBW08605, and GBW(E)080390 were in good agreement with the certified values. These findings proved the feasibility of DBDR as an arsenic preconcentration tool for atomic spectrometric instrumentation and arsenic recycling in industrial waste gas discharge. PMID:26976077

  9. Graphite filter atomizer in atomic absorption spectrometry

    Science.gov (United States)

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  10. [Cloud Point extraction for determination of mercury in Chinese herbal medicine by hydride generation atomic fluorescence spectrometry with optimization using Box-Behnken design].

    Science.gov (United States)

    Wang, Mei; Li, Shan; Zhou, Jian-dong; Xu, Ying; Long, Jun-biao; Yang, Bing-yi

    2014-08-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Hg in Chinese herbal medicine samples by hydride generation-atomic fluorescence spectrometry (HG-AFS). Hg2+ was reacted with dithizone to form hydrophobic chelate under the condition of pH. Using Triton X-114, as surfactant, chelate was quantitatively extracted into small volume of the surfactant-rich phase by heating the solution in a water bath for 15 min and centrifuging. Four variables including pH, dithizone concentration, Triton X-114 concentration and equilibrium temperature (T) showed the significant effect on extraction efficiency of total Hg evaluated by single-factor experiment, and Box-Behnken design and response surface method- ology were adopted to further investigate the mutual interactions between these variables and to identify their optimal values that would generate maximum extraction efficiency. The results showed that the binomial was used to fit the response to experimental levels of each variable. ALL linear, quadratic terms of four variables, and interactions between pH and Trion X-114, pH and di- thizone affected the response value(extraction efficiency) significantly at 5% level. The optimum extraction conditions were as follows: pH 5.1, Triton X-114 concentration of 1.16 g x L(-1), dithizone concentration of 4.87 mol x L(-1), and T 58.2 degrees C, the predicted value of fluorescence was 4528.74 under the optimum conditions, and the experimental value had only 2.1% difference with it. Under the conditions, fluorescence was linear to mercury concentration in the range of 1-5 microg x L(-1). The limit of detection obtained was 0.01247 microg x L(-1) with the relative standard deviations (R.S.D.) for six replicate determinations of 1.30%. The proposed method was successfully applied to determination of Hg in morindae Radix, Andrographitis and dried tangerine samples with the recoveries of 95.0%-100.0%. Apparently Box-Behnken design combined with

  11. Atomic spectrometry update : environmental analysis

    OpenAIRE

    Butler, Owen T.; Cook, Jennifer; Davidson, Christine M.; Harrington, Chris F.; Miles, Douglas

    2009-01-01

    This is the twenty-forth annual review published in JAAS of the application of atomic spectrometry to the chemical analysis of environmental samples. This Update refers to papers published approximately between September 2007 and August 2008. In the analysis of air, work is focused on the need to collect and characterise ultrafines, i.e. particles below 100 nm in size, and such research is being facilitated through the development of air sampler technologies for subsequent off-line analysis o...

  12. Atomic spectrometry update : environmental analysis

    OpenAIRE

    Butler, O.T.; Cook, Jennifer; Harrington, C.F.; Hill, S. J.; Rieuwerts, J.; Miles, Douglas

    2007-01-01

    This is the twenty-second annual review published in JAAS of the application of atomic spectrometry to the chemical analysis of environmental samples. In the analysis of air, there is ongoing use of XRF techniques for the measurement of particles collected on filters. There is continuing interest in the determination of trace levels of mercury species in the atmosphere. Isotope ratio measurement protocols are attracting wider interest as a potential tool for source apport...

  13. Atomic spectrometry update : environmental analysis

    OpenAIRE

    Butler, Owen T.; Cairns, Warren; Cook, Jennifer M.; Davidson, Christine M.

    2010-01-01

    This is the twenty-fifth annual review published in JAAS on the application of atomic spectrometry to the chemical analysis of environmental samples. This Update refers to papers published approximately between September 2008 and August 2009. In the analysis of air, work has focused on: the need to collect and characterise ultrafines; determination of elements such as Be, Hg and PGEs in air samples; application of SRXRF techniques and advances in the development of field deployable aerosol ma...

  14. Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography – atomic fluorescence spectrometry after microwave extraction

    International Nuclear Information System (INIS)

    Highlights: • DGT–MAE–LC–CV-AFS method was developed for determination of four mercury species. • The microwave extraction was used for isolation of mercury species from resin gels. • Optimized DGT–MAE–LC–CV-AFS method provides low detection limits (13–38 ng L−1). • The diffusion coefficients of four mercury species were simultaneously determined. - Abstract: A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg2+, CH3Hg+, C2H5Hg+, and C6H5Hg+). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6 M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol + 0.05% 2-mercaptoethanol + 0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT–MAE–LC–CV-AFS method were 38 ng L−1 for CH3Hg+, 13 ng L−1 for Hg2+, 34 ng L−1 for C2H5Hg+ and 30 ng L−1 for C6H5Hg+ for 24 h DGT accumulation at 25 °C

  15. Label-Free and Separation-Free Atomic Fluorescence Spectrometry-Based Bioassay: Sensitive Determination of Single-Strand DNA, Protein, and Double-Strand DNA.

    Science.gov (United States)

    Chen, Piaopiao; Wu, Peng; Chen, Junbo; Yang, Peng; Zhang, Xinfeng; Zheng, Chengbin; Hou, Xiandeng

    2016-02-16

    Based on selective and sensitive determination of Hg(2+) released from mercury complex by cold vapor generation (CVG) atomic fluorescence spectrometry (AFS) using SnCl2 as a reductant, a novel label-free and separation-free strategy was proposed for DNA and protein bioassay. To construct the DNA bioassay platform, an Hg(2+)-mediated molecular beacon (hairpin) without labeling but possessing several thymine (T) bases at both ends was employed as the probe. It is well-known that Hg(2+) could trigger the formation of the hairpin structure through T-Hg(2+)-T connection. In the presence of a specific target, the hairpin structure could be broken and the captured Hg(2+) was released. Interestingly, it was found that SnCl2 could selectively reduce only free Hg(2+) to Hg(0) vapor in the presence of T-Hg(2+)-T complex, which could be separated from sample matrices for sensitive AFS detection. Three different types of analyte, namely, single-strand DNA (ssDNA), protein, and double-strand DNA (dsDNA), were investigated as the target analytes. Under the optimized conditions, this bioassay provided high sensitivity for ssDNA, protein, and dsDNA determination with the limits of detection as low as 0.2, 0.08, and 0.3 nM and the linear dynamic ranges of 10-150, 5-175, and 1-250 nM, respectively. The analytical performance for these analytes compares favorably with those by previously reported methods, demonstrating the potential usefulness and versatility of this new AFS-based bioassay. Moreover, the bioassay retains advantages of simplicity, cost-effectiveness, and sensitivity compared to most of the conventional methods. PMID:26781421

  16. Development of a non-chromatographic method for the speciation analysis of inorganic antimony in mushroom samples by hydride generation atomic fluorescence spectrometry

    Science.gov (United States)

    Sousa Ferreira, Hadla; Costa Ferreira, Sergio Luis; Cervera, M. Luisa; de la Guardia, Miguel

    2009-06-01

    A simple and sensitive method has been developed for the direct determination of toxic species of antimony in mushroom samples by hydride generation atomic fluorescence spectrometry (HG AFS). The determination of Sb(III) and Sb(V) was based on the efficiency of hydride generation employing NaBH 4, with and without a previous KI reduction, using proportional equations corresponding to the two different measurement conditions. The extraction efficiency of total antimony and the stability of Sb(III) and Sb(V) in different extraction media (nitric, sulfuric, hydrochloric, acetic acid, methanol and ethanol) were evaluated. Results demonstrated that, based on the extraction yield and the stability of extracts, 0.5 mol L - 1 H 2SO 4 proved to be the best extracting solution for the speciation analysis of antimony in mushroom samples. The limits of detection of the developed methodology were 0.6 and 1.1 ng g - 1 for Sb(III) and Sb(V), respectively. The relative standard derivation was 3.8% (14.7 ng g - 1 ) for Sb(V) and 5.1% (4.6 ng g - 1 ) for Sb(III). The recovery values obtained for Sb(III) and Sb(V) varied from 94 to 106% and from 98 to 105%, respectively. The method has been applied to determine Sb(III), Sb(V) and total Sb in five different mushroom samples; the Sb(III) content varied from 4.6 to 11.4 ng g - 1 and Sb(V) from 14.7 to 21.2 ng g - 1 . The accuracy of the method was confirmed by the analysis of a certified reference material of tomato leaves.

  17. Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic(V) in environmental water samples.

    Science.gov (United States)

    Zhang, Yongjiang; Wang, Weidong; Li, Lu; Huang, Yuming; Cao, Jia

    2010-03-15

    The eggshell membrane (ESM) contains several surface functional groups such as amines, amides and carboxylic groups with potential as SPE adsorbent for the retention of target species of interest. In this paper, the potential use of ESM, a typical biomaterial, as solid-phase extraction (SPE) adsorbent is evaluated for analysis of trace arsenic(V) in environmental water samples in combination with hydride generation atomic fluorescence spectrometry (HG-AFS). In order to obtain the satisfactory recovery of arsenic(V), various parameters including the desorption and enrichment conditions such as pH, the flow rate and the volume of sample solution, the amount of ESM and the content of sodium chloride were systematically optimized and the effects of co-existed ions were also investigated in detail. Under the optimal conditions, arsenic(V) could be easily extracted by the ESM packed cartridge and the breakthrough adsorption capacity was found to be 3.9 microg g(-1). The favorable limit of detection (LOD) for arsenic(V) was found to be 0.001 microg L(-1) with an enrichment factor of 33.3, and the relative standard deviations (R.S.Ds) was 2.1% for 0.6 microg L(-1) arsenic (n=11). The reproducibility among columns was satisfactory (R.S.D. among columns is less than 5%). The proposed method has been successfully applied to analysis of arsenic(V) in aqueous environmental samples, which suggests the ESM can be an excellent SPE adsorbent for arsenic(V) pretreatment and enrichment from real water samples. PMID:20152431

  18. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Brombach, Christoph-Cornelius [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Chen, Bin; Corns, Warren T. [PS Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3HP (United Kingdom); Feldmann, Jörg [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Krupp, Eva M., E-mail: e.krupp@abdn.ac.uk [Trace Element Speciation Laboratory, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2015-03-01

    Ultra-traces of methylmercury at the sub-ppt level can be magnified in the foodweb and is of concern. In environmental monitoring a routine robust analytical method is needed to determine methylmercury in water. The development of an analytical method for ultra-trace speciation analysis of methylmercury (MeHg) in water samples is described. The approach is based on HPLC-CV-AFS with on-line preconcentration of water samples up to 200 mL, resulting in a detection limit of 40 pg/L (ppq) for MeHg, expressed as Hg. The unit consists of an optimized preconcentration column filled with a sulfur-based sorption material, on which mercury species are preconcentrated and subsequently eluted, separated and detected via HPLC-CV-AFS (high performance liquid chromatography–cold vapor atomic fluorescence spectrometry). During the method development a type of adsorbate material, the pH dependence, the sample load rate and the carry-over were investigated using breakthrough experiments. The method shows broad pH stability in the range of pH 0 to 7, without the need for buffer addition and shows limited matrix effects so that MeHg is quantitatively recovered from sewage, river and seawater directly in the acidified samples without sample preparation. - Highlights: • We demonstrate that a novel mixture of thiourea-thiolsilica shows an excellent trapping of MeHg between a broad pH range 1–6. • We develop the method so that it can potentially be automated for inorganic and methyl-mercury. • The method is matrix independent with highly accurate results for MeHg in hair CRM extracts and spiked water samples • The limit of detection is around 40 pg/L when just 200 mL sample is used, without any intensive preparation.

  19. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Ultra-traces of methylmercury at the sub-ppt level can be magnified in the foodweb and is of concern. In environmental monitoring a routine robust analytical method is needed to determine methylmercury in water. The development of an analytical method for ultra-trace speciation analysis of methylmercury (MeHg) in water samples is described. The approach is based on HPLC-CV-AFS with on-line preconcentration of water samples up to 200 mL, resulting in a detection limit of 40 pg/L (ppq) for MeHg, expressed as Hg. The unit consists of an optimized preconcentration column filled with a sulfur-based sorption material, on which mercury species are preconcentrated and subsequently eluted, separated and detected via HPLC-CV-AFS (high performance liquid chromatography–cold vapor atomic fluorescence spectrometry). During the method development a type of adsorbate material, the pH dependence, the sample load rate and the carry-over were investigated using breakthrough experiments. The method shows broad pH stability in the range of pH 0 to 7, without the need for buffer addition and shows limited matrix effects so that MeHg is quantitatively recovered from sewage, river and seawater directly in the acidified samples without sample preparation. - Highlights: • We demonstrate that a novel mixture of thiourea-thiolsilica shows an excellent trapping of MeHg between a broad pH range 1–6. • We develop the method so that it can potentially be automated for inorganic and methyl-mercury. • The method is matrix independent with highly accurate results for MeHg in hair CRM extracts and spiked water samples • The limit of detection is around 40 pg/L when just 200 mL sample is used, without any intensive preparation

  20. Highly sensitive and interference-free determination of bismuth in environmental samples by electrothermal vaporization atomic fluorescence spectrometry after hydride trapping on iridium-coated tungsten coil

    International Nuclear Information System (INIS)

    Bismuthine was on-line trapped on tungsten coil and subsequently electrothermally vaporized for the determination by atomic fluorescence spectrometry (AFS). Several noble metals, including Pd, Rh, Pt, and Ir, were explored as permanent chemical modifier for tungsten coil on-line trapping. Investigation showed that Ir gave the best performance, in which bismuthine was on-line trapped on Ir-coated tungsten coil at 560 oC, and then released at 1550 oC for subsequent transfer to AFS by a mixture of Ar and H2. Under optimum instrumental conditions, the trapping efficiency was found to be 73 ± 3%. With 120 s (12 mL sample volume) trapping time, a limit of detection (LOD) of 4 ng L-1 was obtained, compared to conventional hydride generation AFS (0.09 μg L-1); the LOD can be lowered down to 1 ng L-1 by increasing the trapping time to 480 s. The LOD was found to be better or at least comparable to literature levels involving on-line trapping and some other sophisticated instrumental methods such as ICP-MS and GF-AAS. A comprehensive interference study involving conventional hydride-forming elements and some transition metals was carried out, and the result showed that the gas phase interference from other hydride-forming elements was largely reduced, thanks to the use of on-line tungsten coil trapping. Finally, the proposed method was applied to the determination of bismuth in several biological and environmental standard reference materials, and a t-test shows that the analytical results by the proposed method have no significant difference from the certified values at the confidence level of 95%

  1. Arsenic fractionation in agricultural soil using an automated three-step sequential extraction method coupled to hydride generation-atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Highlights: • A fully automated flow-based modified-BCR extraction method was developed to evaluate the extractable As of soil. • The MSFIA–HG-AFS system included an UV photo-oxidation step for organic species degradation. • The accuracy and precision of the proposed method were found satisfactory. • The time analysis can be reduced up to eight times by using the proposed flow-based BCR method. • The labile As (F1 + F2) was <50% of total As in soil samples from As-contaminated-mining zones. - Abstract: A fully automated modified three-step BCR flow-through sequential extraction method was developed for the fractionation of the arsenic (As) content from agricultural soil based on a multi-syringe flow injection analysis (MSFIA) system coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS). Critical parameters that affect the performance of the automated system were optimized by exploiting a multivariate approach using a Doehlert design. The validation of the flow-based modified-BCR method was carried out by comparison with the conventional BCR method. Thus, the total As content was determined in the following three fractions: fraction 1 (F1), the acid-soluble or interchangeable fraction; fraction 2 (F2), the reducible fraction; and fraction 3 (F3), the oxidizable fraction. The limits of detection (LOD) were 4.0, 3.4, and 23.6 μg L−1 for F1, F2, and F3, respectively. A wide working concentration range was obtained for the analysis of each fraction, i.e., 0.013–0.800, 0.011–0.900 and 0.079–1.400 mg L−1 for F1, F2, and F3, respectively. The precision of the automated MSFIA–HG-AFS system, expressed as the relative standard deviation (RSD), was evaluated for a 200 μg L−1 As standard solution, and RSD values between 5 and 8% were achieved for the three BCR fractions. The new modified three-step BCR flow-based sequential extraction method was satisfactorily applied for arsenic fractionation in real agricultural soil samples from

  2. Study of the disulfide reduction of denatured proteins by liquid chromatography coupled with on-line cold-vapor-generation atomic-fluorescence spectrometry (LC-CVGAFS).

    Science.gov (United States)

    Bramanti, Emilia; Lomonte, Cristina; Onor, Massimo; Zamboni, Roberto; Raspi, Giorgio; D'Ulivo, Alessandro

    2004-09-01

    Hydrophobic-interaction chromatography coupled on-line with chemical-vapor-generation atomic-fluorescence spectrometry (HIC-CVGAFS), optimized recently for the analysis of thiol-containing proteins under denaturing conditions, has been used to study the chemical reduction of denatured proteins. Four proteins chosen as models (human serum albumin (HSA), bovine serum albumin (BSA), alpha-lactalbumin (alpha-Lac) from bovine milk, and lysozyme from chicken egg (Lys)) were denatured with urea and reduced with dithiothreitol (DTT), with selenol as catalyst. The method is based on derivatization of the -SH groups of proteins with p-hydroxymercurybenzoate (PHMB), followed by HIC separation and post-column on-line reaction of the derivatized reduced, denatured proteins with bromine generated in situ. HgII, derived from rapid conversion of uncomplexed and protein-complexed PHMB, is selectively detected by AFS in an Ar/H2 miniaturized flame after sodium borohydride (NaBH4) reduction to Hg degrees . The yield of the reduction was studied as a function of reductant concentration, reduction time (tred), and urea concentration. Results showed that the optimum values for DTT and selenol concentrations and for tred were between 1 and 100 mmol L(-1) and between 1 and 20 min, respectively, depending on the protein studied. The percentage disulfide bond reduction increases as the urea concentration used for protein denaturation increases, giving a single-step sigmoid increment for single-domain, low-MW proteins (alpha-Lac and Lys), and a two-step sigmoid increment for multi-domain, high MW proteins (HSA and BSA). The shapes of plots of percentage reduced disulfide against urea concentration are characteristic of each protein and are correlated with the location of S-S in the protein. Under the adopted conditions complete protein denaturation is the conditio sine qua non for obtaining 100% S-S reduction. The detection limit for denatured, reduced proteins examined under the optimized

  3. Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography – atomic fluorescence spectrometry after microwave extraction

    Energy Technology Data Exchange (ETDEWEB)

    Pelcová, Pavlína, E-mail: pavlina.pelcova@mendelu.cz; Dočekalová, Hana, E-mail: hana.docekalova@mendelu.cz; Kleckerová, Andrea, E-mail: andrea.kleckerova@mendelu.cz

    2015-03-25

    Highlights: • DGT–MAE–LC–CV-AFS method was developed for determination of four mercury species. • The microwave extraction was used for isolation of mercury species from resin gels. • Optimized DGT–MAE–LC–CV-AFS method provides low detection limits (13–38 ng L{sup −1}). • The diffusion coefficients of four mercury species were simultaneously determined. - Abstract: A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg{sup 2+}, CH{sub 3}Hg{sup +}, C{sub 2}H{sub 5}Hg{sup +}, and C{sub 6}H{sub 5}Hg{sup +}). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6 M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol + 0.05% 2-mercaptoethanol + 0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT–MAE–LC–CV-AFS method were 38 ng L{sup −1} for CH{sub 3}Hg{sup +}, 13 ng L{sup −1} for Hg{sup 2+}, 34 ng L{sup −1} for C{sub 2}H{sub 5}Hg{sup +} and 30 ng L{sup −1} for C{sub 6}H{sub 5}Hg{sup +} for 24 h DGT accumulation at 25 °C.

  4. Efficient generation of volatile species for cadmium analysis in seafood and rice samples by a modified chemical vapor generation system coupled with atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xin-an, E-mail: 13087641@qq.com; Chi, Miao-bin, E-mail: 1161306667@qq.com; Wang, Qing-qing, E-mail: wangqq8812@163.com; Zhang, Wang-bing, E-mail: ahutwbzh@163.com

    2015-04-15

    Highlights: • We develop a modified chemical vapor generation method coupled with AFS for the determination of cadmium. • The response of Cd could be increased at least four-fold compared to conventional thiourea and Co(II) system. • A simple mixing sequences experiment is designed to study the reaction mechanism. • The interference of transition metal ions can be easily eliminated by adding DDTC. • The method is successfully applied in seafood samples and rice samples. - Abstract: A vapor generation procedure to determine Cd by atomic fluorescence spectrometry (AFS) has been established. Volatile species of Cd are generated by following reaction of acidified sample containing Fe(II) and L-cysteine (Cys) with sodium tetrahydroborate (NaBH{sub 4}). The presence of 5 mg L{sup −1} Fe(II) and 0.05% m/v Cys improves the efficiency of Cd vapor generation substantially about four-fold compared with conventional thiourea and Co(II) system. Three experiments with different mixing sequences and reaction times are designed to study the reaction mechanism. The results document that the stability of Cd(II)–Cys complexes is better than Cys–THB complexes (THB means NaBH{sub 4}) while the Cys–THB complexes have more contribution to improve the Cd vapor generation efficiency than Cd(II)–Cys complexes. Meanwhile, the adding of Fe(II) can catalyze the Cd vapor generation. Under the optimized conditions, the detection limit of Cd is 0.012 μg L{sup −1}; relative standard deviations vary between 0.8% and 5.5% for replicate measurements of the standard solution. In the presence of 0.01% DDTC, Cu(II), Pb(II) and Zn(II) have no significant influence up to 5 mg L{sup −1}, 10 mg L{sup −1}and 10 mg L{sup −1}, respectively. The accuracy of the method is verified through analysis of the certificated reference materials and the proposed method has been applied in the determination of Cd in seafood and rice samples.

  5. Arsenic fractionation in agricultural soil using an automated three-step sequential extraction method coupled to hydride generation-atomic fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rosas-Castor, J.M. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico); Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Portugal, L.; Ferrer, L. [Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Guzmán-Mar, J.L.; Hernández-Ramírez, A. [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico); Cerdà, V. [Group of Analytical Chemistry, Automation and Environment, University of Balearic Islands, Cra. Valldemossa km 7.5, 07122 Palma de Mallorca (Spain); Hinojosa-Reyes, L., E-mail: laura.hinojosary@uanl.edu.mx [Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de los Garza, Nuevo León, C.P. 66451 Nuevo León (Mexico)

    2015-05-18

    Highlights: • A fully automated flow-based modified-BCR extraction method was developed to evaluate the extractable As of soil. • The MSFIA–HG-AFS system included an UV photo-oxidation step for organic species degradation. • The accuracy and precision of the proposed method were found satisfactory. • The time analysis can be reduced up to eight times by using the proposed flow-based BCR method. • The labile As (F1 + F2) was <50% of total As in soil samples from As-contaminated-mining zones. - Abstract: A fully automated modified three-step BCR flow-through sequential extraction method was developed for the fractionation of the arsenic (As) content from agricultural soil based on a multi-syringe flow injection analysis (MSFIA) system coupled to hydride generation-atomic fluorescence spectrometry (HG-AFS). Critical parameters that affect the performance of the automated system were optimized by exploiting a multivariate approach using a Doehlert design. The validation of the flow-based modified-BCR method was carried out by comparison with the conventional BCR method. Thus, the total As content was determined in the following three fractions: fraction 1 (F1), the acid-soluble or interchangeable fraction; fraction 2 (F2), the reducible fraction; and fraction 3 (F3), the oxidizable fraction. The limits of detection (LOD) were 4.0, 3.4, and 23.6 μg L{sup −1} for F1, F2, and F3, respectively. A wide working concentration range was obtained for the analysis of each fraction, i.e., 0.013–0.800, 0.011–0.900 and 0.079–1.400 mg L{sup −1} for F1, F2, and F3, respectively. The precision of the automated MSFIA–HG-AFS system, expressed as the relative standard deviation (RSD), was evaluated for a 200 μg L{sup −1} As standard solution, and RSD values between 5 and 8% were achieved for the three BCR fractions. The new modified three-step BCR flow-based sequential extraction method was satisfactorily applied for arsenic fractionation in real agricultural

  6. Efficient generation of volatile species for cadmium analysis in seafood and rice samples by a modified chemical vapor generation system coupled with atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Highlights: • We develop a modified chemical vapor generation method coupled with AFS for the determination of cadmium. • The response of Cd could be increased at least four-fold compared to conventional thiourea and Co(II) system. • A simple mixing sequences experiment is designed to study the reaction mechanism. • The interference of transition metal ions can be easily eliminated by adding DDTC. • The method is successfully applied in seafood samples and rice samples. - Abstract: A vapor generation procedure to determine Cd by atomic fluorescence spectrometry (AFS) has been established. Volatile species of Cd are generated by following reaction of acidified sample containing Fe(II) and L-cysteine (Cys) with sodium tetrahydroborate (NaBH4). The presence of 5 mg L−1 Fe(II) and 0.05% m/v Cys improves the efficiency of Cd vapor generation substantially about four-fold compared with conventional thiourea and Co(II) system. Three experiments with different mixing sequences and reaction times are designed to study the reaction mechanism. The results document that the stability of Cd(II)–Cys complexes is better than Cys–THB complexes (THB means NaBH4) while the Cys–THB complexes have more contribution to improve the Cd vapor generation efficiency than Cd(II)–Cys complexes. Meanwhile, the adding of Fe(II) can catalyze the Cd vapor generation. Under the optimized conditions, the detection limit of Cd is 0.012 μg L−1; relative standard deviations vary between 0.8% and 5.5% for replicate measurements of the standard solution. In the presence of 0.01% DDTC, Cu(II), Pb(II) and Zn(II) have no significant influence up to 5 mg L−1, 10 mg L−1and 10 mg L−1, respectively. The accuracy of the method is verified through analysis of the certificated reference materials and the proposed method has been applied in the determination of Cd in seafood and rice samples

  7. Imaging an atomic beam using fluorescence

    Institute of Scientific and Technical Information of China (English)

    Ming He(何明); Jin Wang(王谨); Mingsheng Zhan(詹明生)

    2003-01-01

    A fluorescence detection scheme is applied to image an atomic beam. Using two laser diodes as the sources of detection light and pumping light respectively, the fluorescence image of the atomic beam is then observed by a commercial CCD-camera, which is corresponding to the atomic state and velocity distribution. The detection scheme has a great utilization in the experiments of cold atoms and atomic optics.

  8. Arsenic speciation analysis by post-separation hydride generation and atomic fluorescence detection

    Czech Academy of Sciences Publication Activity Database

    Marschner, Karel; Musil, Stanislav; Rychlovský, P.; Dědina, Jiří

    2014. s. 133-133. [Rio Symposium on Atomic Spectrometry /13./. 19.10.2014-24.10.2014, Merida, Yucatan] R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : arsenic speciation analysis * hydride generation * atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation

  9. Multisyringe flow injection lab-on-valve systems coupled to hydride generation atomic fluorescence spectrometry for on-line bead-injection preconcentration and determination of total inorganic arsenic in environmental waters

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald;

    and 10% KI. The eluate merges downstream with a defined plug of sodium tetrahydroborate (0.3% w/v) for generation of arsine, which is subsequently quantified by AFS. An oxidation agent, namely 2x10-6 M potassium permanganate, was employed for the quantitative oxidation of As(III) to As(V) in the samples......In this work, the third generation of flow injection analysis, that is, the so-called micro-Lab-on-Valve (LOV) approach, is hyphenated for the first time to atomic fluorescence spectrometry (AFS) for the separation, preconcentration and monitoring of hydride forming elements. A multisyringe flowing...... stream network is assembled for accurate handling of solutions and on-line post column derivatization of the eluate for the generation of the volatile species. The potential of the new hyphenated technique for environmental assays was ascertained via the determination of ultratrace levels of total...

  10. Economical Alternatives for High Sensitivity in Atomic Spectrometry Laboratory

    Directory of Open Access Journals (Sweden)

    O. Yavuz Ataman

    2007-12-01

    Full Text Available The most commonly used analytical tools for determination of elements at trace levels are atomic absorption spectrometry (AAS, inductively coupled plasma, optical emission and mass spectrometry (ICP-OES and ICP-MS and atomic fluorescence spectrometry (AFS. Although sensitive plasma techniques are becoming predominant in most of the western laboratories, AAS keeps its importance in developing countries. Simple and inexpensive ways of enhancing sensitivity will be described for laboratories equipped with only a flame AA spectrometer. Although there are many chemical preconcentration procedures to improve sensitivity of flame AAS, only some atom trapping techniques will be included here. One kind of atom trapping device is a slotted quartz tube (SQT used for in situ preconcentration of analyte species followed by a rapid revolatilization cycle to obtain an enhanced signal. These devices provide limits of detection at a level of µg L-1. Another kind of atom trapping involves use of vapor generation technique and quartz or tungsten atom trapping surfaces. The analytical steps consist of the generation of volatile species, usually by hydride formation using NaBH4, trapping these species at the surface of an atom trap held at an optimized temperature and finally re-volatilizing analyte species by rapid heating of trap. These species are transported using a carrier gas to an externally heated quartz tube as commonly used in hydride generation AAS systems; a transient signal is formed and measured. These traps have limits of detection in the order of ng L-1.

  11. Determination of trace mercury in surface water by atomic fluorescence spectrometry%原子荧光光度法测定地表水中的痕量汞

    Institute of Scientific and Technical Information of China (English)

    潘腊青; 章维维; 池怡; 周姗

    2013-01-01

    以硫酸-高锰酸钾加热消解水样,低浓度硼氢化钾作为还原剂,运用 A FS -9230双道原子荧光光度计,采用顺序注射-冷蒸气发生-原子荧光光谱法,测定地表水中的痕量汞。检出限为0.012μg/L ,回收率为90%~110%,RSD小于10.0%,该法具有灵敏度高,精密度好,干扰少和操作简单方便等优点,同时对方法的质量控制进行了探讨。%Heating and digestion of water samples by sulfuric acid and potassium permanganate ,low concentration potassium borohydride as the reducing agent ,using AFS-9230 double-channel atomic fluo-rescence spectrometry ,determination of trace mercury in surface water with sequential injection-cold vapor generation-atomic fluorescence spectrometry was carried out. The detection limit is 0.012μg/L ,the rate of recovery is 90%-110% ,RSD<10.0%. The advantages of the method are of high sensitivity ,good preci-sion ,less interference ,simple and convenient operation. At the same time ,the aspect of quality control w as discussed.

  12. 离子色谱-氢化物发生原子荧光法测定尿中形态砷%Determination of arsenic species in urine by ion chromatography-hydride generation-atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    魏静; 梁琼; 刘俊娓

    2013-01-01

    Objective:To develop a method for the determination of arsenic species in urine by Ion chromatography - hydride Generation - atomic fluorescence spectrometry. Methods; The urine sample was filtered by 0.45 μm membrane. Using ( NH4 ) 2 HPO4 as mobile phase to explore the best ion chromatographic separation condition and the atomic fluorescence determination condition. The content of various forms of arsenic was determined by Ion chromatography - hydride Generation - atomic fluorescence spectrometry. Results; This method had good relativity and good precision(2.60% ~4. 30% ). The detection limits of As( Ⅲ), DMA, MMA and As( V ) were 2. 0 (μg/L, 4.0 μg/L,4.0 μg/L,8.0 μg/L, the average recoveries of samples were 90.48% ~ 102.90%. Conclusion; The method had the advantages of convenience, speediness, high sensitivity, less interference and high practical value without chemical pretreatment.%目的:建立离子色谱-氢化物发生原子荧光法测定尿中形态砷的方法.方法:尿样经0.45 μm滤膜过滤,以(NH4)2HPO4为流动相,采用离子色谱-氢化物发生原子荧光联机测定不同形态砷的含量.结果:实验结果相关性好,线性范围宽,精密度RSD为2.60%~4.30%,方法检出限为As(Ⅲ)2.0 μg/L,DMA4.0 μg/L,MMA4.0 μg/L,As(V)8.0 μg/L,该方法所得回收率为90.48% ~ 102.90%.结论:方法简便、快速、无需化学预处理、干扰少、灵敏度高,有较高的实用价值.

  13. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg0

    International Nuclear Information System (INIS)

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography–atomic fluorescence spectrometry (HPLC–AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg2+ to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO2 nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L−1 for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation–atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system. - Highlights: • Inorganic and organic mercury were determined by photochemical vapor generation using a MW/UV photochemical reactor. • The optimized procedure has been applied to the speciation of Hg(II), MeHg and EtHg coupling HPLC with PVG–AFS. • The proposed method is simple, sensitive, and is established for mercury determination in biological materials

  14. L-半胱氨酸-原子荧光法测定食品中的硒%Determination of selenium in food by L-Cysteine atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    牛晓梅

    2011-01-01

    目的:利用氢化物发生-原子荧光光谱法,在L-半胱氨酸存在下,测定食品中的硒.方法:样品经酸加热消化后,用2%盐酸溶液做载流,原子荧光分光光度计进行测定.结果:方法的测定范围为10.0μg/L~50.0μg/L,相对标准偏差为0.70%~1.90%,回收率为93.0%~101.0%,检出限为0.051μg/L.结论:由于L-半胱氨酸的存在,改善了氢化物发生条件,增敏光谱测定信号,降低了溶液的酸度,金属离子的干扰显著地得到了抑制,适用于食品中硒的测定.%Objective: In this paper, we give a method for determination of selenium in food by hydride generation -atomic fluorescence spectrometry in the presence of L- Cysteine.Methods: Using 2% hydrochloric acid as carrier liquid, the samples were determined by atomic fluorescence spectrometry after been digested by heating in acid.Results: The measurement range of this method was 10.0 μg/L ~ 50.0 μg/L, the RSD 0.7 % ~ 1.9%, the recoveries were in the range of 93.0% ~ 101.0% and the detection limits of this method were found to be 0.051 μg/L.Conclusion: In the presence of L - Cysteine, the hydride generation conditions were improved, the spectrometric signal was enhanced, and the acidity of solution was reduced.In addition, the interferences of the metal elements were significantly inhibited.The method can be used to determine seleium in food.

  15. 工作场所空气中锡的氢化物发生-原子荧光光谱测定法%Determination of Tin in the air by hydride generation-atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    陈峰; 谢超

    2012-01-01

    [Objective] To study the method for determination of tin in workplace air by hydride generation-atomic fluorescence spectrometry. [Methods]The electric hot plate was chosen to digest membrane, with aqua regia as digestive juice. Appropriate instrument conditions were chosen for detection. [Results]The calibration curve was linear in the range of 0-100 μg/L {R =0.999 7). The RSD of standard solution with different concentration was 0.82% -3.87 % , the recoveries were 98.0% -102.7% , and the detection limit was 0.090 μg/ml. [ Conclusion] Hydride generation - atomic fluorescence spectrometry has characteristics of high sensitivity, less interference, selectivity, accuracy, etc. And to do it with aqua regia digestion are appropriate fordetennination of tin in various workplaces.%目的 研究氢化物发生一原子荧光光谱法测定工作场所空气中的锡.方法 电热板消化采样滤膜,选择用王水做消化液消解,选择适宜的仪器工作条件进行检测.结果 在0 ~ 100 μg/L线性范围内,相关系数为0.9997,不同浓度标准溶液的相对标准偏差在0.82%~3.87%之间,加标回收率在98.0%一102.7%之间,方法检出限为0.090 μg/ml.结论 氢化物发生一原子荧光光谱法具有灵敏度高、干扰少、选择性好、准确度高等优点,而用王水做消化液适用于各种作业场所中锡的测定.

  16. The determination of major and some minor constituents in lead zirconate-titanate compositions by x-ray fluorescence and atomic absorption spectrometry

    NARCIS (Netherlands)

    Willigen, van J.H.H.G.; Kruidhof, H.; Dahmen, E.A.M.F.

    1972-01-01

    An accurate X-ray fluorescence spectrometric method is described for the determination of lead, zirconium and titanium in lead zirconate-titanate ceramics. Careful matching of samples and standards by a borax fusion method resulted in a relative standard deviation of about 0.2% for the major constit

  17. Determination of Arsenic, Mercury and Barium in herbarium mount paper using dynamic ultrasound-assisted extraction prior to atomic fluorescence and absorption spectrometry

    OpenAIRE

    Lummas, S.; Ruiz-Jimenez, J.; Luque de Castro, M.D.; Colston, Belinda; Gonzalez-Rodriguez, Jose; B. Chen; W. Corns

    2011-01-01

    A dynamic ultrasound-assisted extraction method using Atomic Absorption and Atomic Flourescence spectrometers as detectors was developed to analyse mercury, arsenic and barium from herbarium mount paper originating from the herbarium collection of the National Museum of Wales. The variables influencing extraction were optimised by a multivariate approach. The optimal conditions were found to be 1% HNO3 extractant solution used at a flow rate of 1 mL min-1. The duty cycle and amplitude of the ...

  18. Speciation analysis of mercury in sediments using ionic-liquid-based vortex-assisted liquid-liquid microextraction combined with high-performance liquid chromatography and cold vapor atomic fluorescence spectrometry.

    Science.gov (United States)

    Leng, Geng; Chen, Wenjin; Wang, Yong

    2015-08-01

    An improved novel method based on ionic liquid vortex-assisted liquid-liquid microextraction has been developed for the extraction of methylmercury, ethylmercury and inorganic mercury in sediment samples prior to analysis by high-performance liquid chromatography with cold vapor atomic fluorescence spectrometry. In this work, mercury species were firstly complexed with dithizone, and the complexes were extracted into 1-hexyl-3-methylimidazolium hexafluorophosphate. Key factors that affect the extraction efficiency of mercury species, such as type and amount of ionic liquid and chelatants, extraction time, sample pH, salt effect and matrix effect were investigated. Under the optimum conditions, linearity was found in the concentration range from 0.1-70 ng/g. Limits of detection ranged from 0.037-0.061 ng/g. Reproducibility and recoveries were assessed by extracting a series of six independent sediment samples that were spiked with different concentration levels. Finally, the proposed method was successfully applied in analysis of real sediment samples. In this work, ionic liquids vortex-assisted liquid-liquid microextraction was for the first time used for the extraction of mercury species in sediment samples. The proposed method was proved to be much simpler and more rapid, as well as more environmentally friendly and efficient compared with the previous methods. PMID:25998155

  19. 原子荧光光谱法测定水中砷的方法比对试验%Comparative Test of Arsenic Determination in Water by Using Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    刘清明

    2011-01-01

    Experimental analysis identifies the conditions of atomic fluorescence spectrometry to determine arsenic in water sam- pie, and performs comparative tests of this method under the optiminum conditions, and the current national standards analysis method GB7485 -87. Results indicates that this method is easy to operate, which can greatly improve the detection efficiency and completely replace current complex national standard analysis operation method.%通过试验分析确定了原子荧光光谱法测定水样中砷的检测条件,并在优化试验条件下与现行砷的国家标准分析方法GB 7485-87进行了样品分析比对实验,试验表明,该方法操作简单方便,历时短,可大大提高检测效率,完全可以代替分析操作复杂繁琐的现行国家标准分析方法。

  20. 液相色谱-原子荧光联用法测定鱼油中的甲基汞%Determination of methylmercury in fish oil by interface technique coupled high performance liquid chromatography with atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    徐君辉; 周向阳; 沈飚; 秦德元

    2011-01-01

    先后采用10% KOH+ 1%硫脲和20% HCl提取鱼油样品,用液相色谱-原子荧光联用技术测定样品中的甲基汞含量.试验结果表明,线性范围在0~ 10 μg/L之间,相关系数为0.999 3,检出限为0.2 μg/L,加标回收率在96.0%~105.0%之间,相对标准偏差小于5%.该方法快速、简便、准确.%Methylmercury was extracted from fish oil sample with 10% potassium hydroxide and 1% thio-urea, then with 20% hydrochloric acid, and then was determined by interface technique coupled high performance liquid chromatography with atomic fluorescence spectrometry. The results showed that the linear range was between 0 and 10 μg/L,the linear coefficient was 0.999 3 ,the detection limit was 0.2 μg/ L,recovery was between 96.0% and 105. 0% ,the relative standard was less than 5%. The method was rapid, simple, and accurate.

  1. Investigation of the Elemental Contents of Some Samples of Soil, Sediments and Fish from the Blue Nile and the White Nile Around Khartoum Using Atomic Absorption and X- Ray Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    This work was performed to evaluate the environmental pollution at the Blue Nile (B.N) and the White Nile (W.N) around Khartoum state. Samples of soil, sediments ( > 63 μm size) and fish were collected from the studied area and analyzed. The concentrations of some elements (K, Ca, Ti, Mn, Fe, Cr, Co, Cu, Ni, Sr, Rb, Zn, Br, Y, Zr, and Pb) were determined using two analytical methods; atomic absorption (AAS) and X- ray fluorescence (XRF) spectrometry. The data was statistically analyzed to compare the results obtained by the two analytical methods. The results of most elements determined by the two methods were significantly similar. Generally, the elemental concentrations of sediments from the BN were higher than the WN. The extent of pollution was determined by calculating the enrichment factors. The enrichment factors in sediments were calculated using both Fe and Ti as reference elements and bulk soil composition as a reference material. Some elements were slightly enriched at some sites but not to a degree to indicate a serious pollution. The elemental concentrations in fish were not that high. We can conclude that the extent of pollution with heavy elements at the B.N and W.N around Khartoum State is not a serious environmental problem so far.(author)

  2. Investigation of the elemental contents of some samples of soil, sediments and fish from the Blue Nile and the White Nile around Khartoum using atomic absorption and x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    This work was performed to evaluate the environmental pollution at the Blue Nile (B.N) and the White Nile (W.N) around Khartoum State. Samples of soil, sediments (> 63 μm size) and fish were collected from the studied area and analyzed. The concentrations of some elements (K, Ca, Ti, Mn, Fe, Cr, Co, Cu, Ni, Sr, Rb, Zn, Br, Y, Zr, and Pb) were determined using two analytical methods, atomic absorption (AAS) and x-ray fluorescence (XRF) spectrometry. The data was statistically analyzed to compare the results obtained by the two analytical methods. The results of most elements determined by the two methods were significantly similar. Generally, the elemental concentrations of sediments from the B.N were higher than the W N. The extent of pollution was determined by calculating the enrichment factors. The enrichment factors in sediments were calculated using both Fe and Ti as reference elements and bulk soil composition as a reference material. Some elements were slightly enriched at some sites but not to a degree to indicate a serious pollution. The elemental concentrations in fish were not that high. We can conclude that the extent of pollution with heavy elements at the B.N and W.N around Khartoum State is not a serious environmental problem so far. (Author)

  3. The Rewards of Fundamental Atomic Spectrometry Research

    Institute of Scientific and Technical Information of China (English)

    Walter Slavin

    2000-01-01

    Atomic spectrometry research is the life-blood of the atomic spectrometry instrument industry.The instrument designer can be expected to innovate in the execution of instrumentation and should be expected to be the expert in optical,electronic and software engineering.Fundamentally new technology has required too long a period of gestation to be compatible with commercial time scales and budgets.But in the past decade,the pressure from stockholders for increased return on investments has put increasingly strong pressure on management to reduce expenses and focus increasingly on projects that guarantee a fast payback.This pressure falls particularly heavily on the larger companies;the same companies that a decade or more ago were the ones that brought the more far-reaching and expensive new concepts to market. Fundamental research in atomic spectrometry has been accomplished in the past several decades mostly in the academic environment and in research institutions that are Federally funded.All of the Federally funded research institutions have been forced to alter their missions to more tangible and immediate goals,and many have also seen severe financial reductions.

  4. Arsenic speciation analysis based on selective hydride generation and atomic fluorescence detection

    Czech Academy of Sciences Publication Activity Database

    Marschner, Karel; Rychlovský, P.; Musil, Stanislav; Dědina, Jiří

    Praha, 2014. s. 107-107. ISBN 978-80-905704-1-2. [European Symposium on Atomic Spectrometry ESAS 2014 & Czech-Slovak Spectroscopic Conference /15./. 16.03.2014-21.03.2014, Praha] R&D Projects: GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : arsenic speciation analysis * hydride generation * atomic fluorescence spectrometry Subject RIV: CB - Analytical Chemistry, Separation

  5. Determination of air Stannum in Workplace by L-cysteine and Atomic Fluorescence Spectrometry%工作场所空气中锡的L-半胱氨酸-原子荧光测定法

    Institute of Scientific and Technical Information of China (English)

    牛晓梅

    2011-01-01

    [Objective]To determine the air stannum in workplaces by hydride generation-atomic fluorescence spectrometry, with the existence of L-cysteine. [ Methods ] After digested by hydrochloric acid, the samples were determined by atomic fluorescence spectrometer with 2% hydrochloric acid as carrier liquid. [ Results] The range of measurement was 5. 0 ~ 200.0 μg/L, the RSD was 2.15% ~ 3.40%, the recoveries ranged from 92. 5% ~ 103.5% ,and the detection limits of this method was 0. 71 μg/L [ Conclusion] Due to the presence of L-cysteine, the hydride generation conditions are improved, the spectrometric signal is enhanced, and the acidity of solution is reduced. In addition, the interferences of the metal elements are significantly inhibited. The method is suitable for determination of air stannum in workplace.%目的 利用氢化物发生-原子荧光光谱法,在L-半胱氨酸存在的情况下,测定工作场所空气中的锡.方法 样品经盐酸消解,用2%盐酸溶液做载流,原子荧光分光光度计进行测定.结果 方法的测定范围为5.0~200.0 μg/L,相对标准偏差为2.15%~3.40%,回收率为92.5%~103.5%,检出限为0.71 μg/L.结论 由于L-半胱氨酸的存在,改善了氢化物发生条件,增敏光谱测定信号,降低了溶液的酸度,金属离子的干扰显著地得到了抑制,适用于工作场所空气中锡的测定.

  6. Determination of Se in Saffron by Using Hydride Generation Atomic Fluorescence Spectrometry%氢化物发生原子荧光光谱法测定西红花柱头中的硒

    Institute of Scientific and Technical Information of China (English)

    张宏; 张新申; 颜钫; 陈放

    2001-01-01

    A method for determination of Se in saffron using AFS-230 hydride generation atomic fluorescence spectrometry was introduced.Detections were completed made in every possible best condition.The optimal analytical conditions in HClO4-HNO3 were examined.The detection limit is 0.5μg/L.The linear range is 1.5~15.0 μg/L.The correlation coefficient is 0.9999,and the recovery rate is about 90%~97%.Se of saffrons from 4 regions was determined by standard curve method.The experiment results show that this method has low detection limit,high accurate,simple operation,fast and low cost.It's easy to be spread.%应用AFS-230型双道原子荧光光谱计进行了氢化物发生原子荧光光谱法测定西红花柱头中硒的研究,方法中采用硝酸做介质,并对各种最佳分析条件进行了测定。线性范围为1.5~15μg/L,相关系数R=0.9999,回收率为90%~97%。采用标准曲线法对4种不同产地的西红花干燥柱头中硒进行了测定。该方法操作简单、快速,精密度好,准确性高,检出限较低,经济,便于推广应用。

  7. Determination of trace germanium in health protection food by hydride generation atomic fluorescence spectrometry%氢化物-原子荧光光谱法测定保健食品中痕量锗

    Institute of Scientific and Technical Information of China (English)

    宋伟明; 倪刚; 胡奇林; 全晓塞

    2001-01-01

    A new method was introduced for the determination of trace germanium by hydride generation atomic fluorescence spectrometry(HGAFS).The effect of the medium amounts of acid, action of hydride and screening agent of the determination of germanium was investigated. The operating condition of the instrument was optimized. The interference from foreign ions was eliminated by adding phosphoric acid and tartaric acid. This method was applied to the determination of germanium in some health protection and nourishing food. The detection limit (3δ) is 6.2 ng/g with a RSD of 5% .The recovery of standard addition is in 95%~105%.%提出了以氢化物-原子荧光光谱法测定保健食品中锗的新方法,研究了酸介质、氢化物发生、增敏掩蔽剂等因素对测定的影响,并选择出仪器的最佳工作条件;采用磷酸-酒石酸介质进行测定,不但可有效消除共存离子的干扰,而且起到增敏作用,方法的检出限为6.2,ng/g,相对标准偏差(RSD)在5%以内,加标回收率为95%~105%,结果令人满意.

  8. Determination of Mercury in Peanut by Microwave Digestion Atomic Fluorescence Spectrometry%微波消解原子荧光光度法测定花生样品中的汞

    Institute of Scientific and Technical Information of China (English)

    何超君; 张激光; 卢思桥

    2012-01-01

    Trace Hg in peanut was determined by atomic fluorescence spectrometry(AFS) with microwave digestion. The detection limit of mercury was 0.000 4 μg/g(n=11), the linear range for mercury was 0.001~6 μg/g, the correlation coefficieni was 0.999 95,and relative standard deviation (RSD,n=7) was in the range of 4.84%~S 30%, the recovery of the method was in the range of 91.00%~114.00%, The experiment results show that the concentration of Hg is lower than the maximum allowable level of Hg in our food standard.The proposed method is rapid and convenient, the result is accurate and reliable, and it is suitable for the determination of trace Hg in peanut.%采用微波消解技术—原子荧光光度法测定花生样品中痕量Hg.方法检出限为0.0004μg/g,线性范围:0.0001~6 μg/g,相关系数r=0.999 95,相对标准偏差(RSD,n=7)4.84%~5.30%,加标回收率在91%~114%之间.实验证明:花生中有害元素Hg的含量远低于我国粮食(成品粮)总Hg允许限标准.方法简便、快速,结果准确、可靠,能够满足花生样品中痕量Hg的测定.

  9. 原子荧光光谱法测定不同产地郁金中砷和硒含量%Determination of Trace Arsenic and Selenium in Curcuma aromatica with Microwave Decomposition-Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    刘艳清; 汪洪武; 蔡璇

    2014-01-01

    After microwave decomposition, the contents of arsenic and selenium in eleven Curcuma aromatica samples were determined by hydride generation atomic fluorescence spectrometry, and plant standard reference materials were used to verify the accuracy and the precision of the analytical method. The experimental conditions were optimized. Under the optimum conditions, there was a good linear relationship between the fluorescence intensity and the contents of arsenic and selenium in the range of 0-20 μg/L with a correlation coefficient of 0.999 8 and 0.999 3, respectively. The recovery rate of arsenic and selenium were in the range of 97.15%-102.87%and 98.35%-101.76%. The results indicated that the contents of arsenic and selenium in different habits of Curcuma aromatica were significant deviation.%应用AFS-930型双道原子荧光光度计,采用湿法消解方式,在选定仪器工作条件下,建立了原子荧光光谱法测定郁金中砷和硒。以工作曲线法测定了不同产地郁金中砷和硒的含量,并用植物标准参考物质评价了分析方法的准确度。在0~20.0μg/L范围内As及Se的线性良好,线性回归方程为:As:If=48.9908 c+55.2433(r=0.9998);Se:If=49.3717 c+46.5837(r=0.9993),砷和硒的回收率分别为97.15%~102.87%和98.35%~101.76%。研究结果表明不同产地郁金中As和Se的含量存在较大差异。

  10. Laser fluorescence spectroscopy of sputtered uranium atoms

    International Nuclear Information System (INIS)

    Laser induced fluorescence (LIF) spectroscopy was used to study the sputtering of 99.8% 238U metal foil when bombarded by normally incident 500 to 3000 eV Ne+, Ar+, Kr+, and O2+. A three-level atom model of the LIF processes is developed to interpret the observed fluorescent emission from the sputtered species. The model shows that close attention must be paid to the conditions under which the experiment is carried out as well as to the details of the collision cascade theory of sputtering. Rigorous analysis shows that when properly applied, LIF can be used to investigate the predictions of sputtering theory as regards energy distributions of sputtered particles and for the determination of sputtering yields. The possibility that thermal emission may occur during sputtering can also be tested using the proposed model. It is shown that the velocity distribution (either the number density or flux density distribution, depending upon the experimental conditions) of the sputtered particles can be determined using the LIF technique and that this information can be used to obtain a description of the basic sputtering mechanisms. These matters are discussed using the U-atom fluorescence measurements as a basis. The relative sputtering yields for various incident ions on uranium were also measured for the first time using the LIF technique. A surprisingly high fraction of the sputtered uranium atoms were found to occupy the low lying metastable energy levels of U(I). The population of the sputtered metastable atoms were found approximately to obey a Boltzman distribution with an effective temperature of 920 +- 1000K. 41 references

  11. Fiber optical assembly for fluorescence spectrometry

    Science.gov (United States)

    Carpenter, II, Robert W.; Rubenstein, Richard; Piltch, Martin; Gray, Perry

    2010-12-07

    A system for analyzing a sample for the presence of an analyte in a sample. The system includes a sample holder for containing the sample; an excitation source, such as a laser, and at least one linear array radially disposed about the sample holder. Radiation from the excitation source is directed to the sample, and the radiation induces fluorescent light in the sample. Each linear array includes a plurality of fused silica optical fibers that receive the fluorescent light and transmits a fluorescent light signal from the first end to an optical end port of the linear array. An end port assembly having a photo-detector is optically coupled to the optical end port. The photo-detector detects the fluorescent light signal and converts the fluorescent light signal into an electrical signal.

  12. Determination of Arsenic and Mercury in Soil by Atomic Fluorescence Spectrometry with Aquafortis Bath Digestion%王水消解-原子荧光光谱法测定土中砷和汞

    Institute of Scientific and Technical Information of China (English)

    杜英秋

    2013-01-01

    To explore new methods of determinating arsenic and mercury in soil ,through atomic fluorescence spectrometry with aquafortis digestion ,arsenic and mercury in soil samples were determinated .The results showed that good linear relationship when concentrations of arsenic was 0~100 ng·mL-1 and mercury was 0~2 .0 ng·mL-1 ,the correlation coefficient were 0 .999 9 and 0 .999 3 respectively ,the detection limits were 0 .260 and 0 .022 ng·mL-1 ,the method was used for the determination of arsenic and mercury in different soil standard materials ,results were in the standard value range ,RSD was 1 .3% ~3 .5% ,that indicatd that the method had wide linear range ,good stability ,high sensitivity ,high accuracy and it could be widely used for the determina-tion of arsenic and mercury in bulk soil samples .%为探讨检测土壤中砷和汞的新方法,采用王水-水体系进行消解,应用原子荧光光谱法对土壤样品中的砷和汞进行测定。结果表明:当砷的质量浓度处于0~100.0 ng·mL-1,汞的质量浓度处于0~2.0 ng·mL-1时,浓度与荧光强度均能呈良好的线性关系,相关系数分别为0.9999和0.9993,方法的检出限分别为0.260和0.022 ng·mL-1,将该方法用于不同土壤标准物质的测定,测定结果均在标准值允许范围内,RSD处于1.3%~3.5%,说明该方法线性范围宽,稳定性好,灵敏度高,准确度高,可广泛用于批量土样中砷和汞的测定。

  13. 断续流动原子荧光法测定铅锡合金中的痕量锑%Determination of Trace Amount of Antimony in Lead-tin Alloy by Intermittent Flow Atomic Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    马毅红; 尹艺青; 陈玉珍

    2012-01-01

    目的:建立氢化物发生双道原子荧光法测定铅锡合金中锑含量的方法,为测定铅锡合金中锑提供依据。方法:选择了最佳的仪器条件,进行样品处理方法、KBH4浓度、检出限、回收率等研究。结果:本方法的标准曲线方程y=157.56x-2.3962,相关系数γ=0.9999,线性范围为0~40μg/L,精密度为1.3%,检出限为0.0304μg/L,回收率达115%。结论:本方法操作简单、快速、灵敏度高、干扰少,可获得满意的结果。%Purpose: A analytical method is recommended for determination of Trace Amount of Antimony in Lead-Tin Alloy by hydride generation double channel atomic fluorescence spectrometry,which provides basis for its measurement.Methods: Optimum condition for the instrument determination is applied to conduct researches relating to the method of sampling,concentration of KBH4,detection limits and recovery rate.Results: The standard curve of the linear equation was y=157.56x-2.3962 with correlation coefficient γ = 0.9999 and linear range of 0~40 μg/L.The precision and the detection limits were 1.3 % and 0.0304 μg/L respectively while the returns-ratio achieves 115 %.Conclusion: The method is easy,fast,highly sensitive and with no much interference during the operation,which can lead to satisfactory results.

  14. Sediment U, Th, K content analyzed using X-ray fluorescence spectrometry for ESR dating samples

    International Nuclear Information System (INIS)

    The accurate measurement of dose rate is the key issues to obtain reliable ESR age. In this article, we used X-ray fluorescence spectrometry to determine the U, Th, K content of the fluvial sediments. And the standard working curves were established using the national rock reference material. Setting the lower X-ray power and the matrix effect, U, Th, K content in the fluvial sediment were investigated. The results show that the method recovery rate of U and Th is less than 15%. Comparing with the measurement data from the α-counting and Atomic Spectrometry analysis, the dose rate difference is less than 5%. It shows that the X-ray fluorescence spectrometry method can fit for the requirement for obtaining the U, Th, K content of fluvial sediment for ESR dating. (authors)

  15. Hyphenating multisyringe flow injection lab-on-valve analysis with atomic fluorescence spectrometry for on-line bead injection preconcentration and determination of trace levels of hydride-forming elements in environmental samples.

    Science.gov (United States)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald; Estela, José Manuel; Cerdà, Víctor

    2006-12-15

    In this work the third generation of flow injection analysis, that is, the so-called micro-lab-on-valve (microLOV) approach, is proposed for the first time for the separation, preconcentration, and monitoring of metalloids as hyphenated with atomic fluorescence spectrometry (AFS). This was made feasible by interfacing the micromachined LOV-module with AFS by a multisyringe flowing stream network for on-line postcolumn derivatization of the eluate aimed at generation of hydride species. The potential of this new hyphenated technique for environmental assays was ascertained via determination of ultratrace level concentrations of total inorganic arsenic in freshwater. Employing quantitative preoxidation of As(III) to As(V) in the samples by means of permanganate, the method involves preconcentration of arsenate at pH 10 on a renewable anion exchanger, namely, Q-Sepharose, packed in a LOV microcolumn. The analyte species is afterward stripped out and concurrently prereduced by a 300 microL eluent plug containing 6 mol L(-)1 HCl and 10% KI. The eluate is downstream merged with a metered volume of sodium tetrahydroborate (0.3% w/v) for generation of arsine, which is subsequently quantified by AFS. The flow system facilitates on-column reduction of the retained arsenic with no need for application of programmable stopped flow. Yet, the high concentration of reductant and extreme pH conditions for elution hinder the sorbent to be reused due to gradual deactivation of the functional moieties, so that maximum benefit can be taken from the application of the bead renewable strategy. The proposed procedure is characterized by a high tolerance to metal species and interfering hydride-forming elements. In fact, ratios of Se(IV) to As < or = 5000 and Sb(V) to As < or = 500 are tolerated at the 10% interference level. Under the optimized experimental conditions, a detection limit (3sigma) of 0.02 ng mL(-1) As, a dynamic linear range of 0.05-2.0 ng mL(-1) As (by tailoring the AFS

  16. Novel laser atomic fluorescence spectrometer for environmental and biomedical analyses of heavy metals

    Science.gov (United States)

    Dergachev, Alex Y.; Mirov, Sergey B.; Pitt, Robert E.; Parmer, Keith D.

    1997-05-01

    We report on the development of a novel experimental set-up using laser atomic fluorescence for detection and concentration measurements of heavy metal atoms for environmental and biomedical analyses. This spectrometer is based on the application of tunable LiF:F2+** and LiF:F2- color center and alexandrite lasers with nonlinear converters for narrowband excitation of atomic fluorescence and the use of gated multichannel CCD detectors for fluorescence measurements. A standard graphite furnace module was used for sample atomization. The laser sources used provide narrowband selective laser excitation continuously tunable in the 200 - 400 nm range and are therefore suitable for resonant excitation of atomic transitions in practically all known heavy metal atoms. In the first experiments, water samples containing Cu, Pb and Fe impurities were studied and detection levels of less than 1 ppb were observed. Comparison of the results of atomic laser fluorescence analysis and traditional atomic absorption spectrometry showed good qualitative agreement between these two methods. It is projected that full optimization of our experimental set up will allow for improved detection levels of several orders of magnitude. Possible optimization and simplification of the spectrometer are discussed in the context of developing a portable instrument for field use.

  17. 微波消解-原子荧光光谱法测定宫瘤消片中的砷、镉%Measuring of arsenic and lead in the Gongliuxiao tablets by microwave digestion and atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    运行; 安迎雪; 尤海丹

    2012-01-01

    Objective: To develop a atomic fluorescence spectrometric method for the determination of heavy metals ( As,Cd) in Gongliuxiao. Method:Sample were digested with microwave system,and the As,Gd were directly analyzed by atomic fluorescence spectrometric. Result:For the analyzed heavy metals,the correlative coefficient of the calibration curves was over0. 9992,the recovery was 91. 5% -97. 8% ,RSD was less 5%. Conclusion:The method is convenient and highly sensitive. The method had been applied to the determination of trace heavy metals in traditional Chinese medicine with satisfactory results.%目的:测定宫瘤消片中的砷、镉.方法:采用微波消解的制样方法,利用原子荧光光谱法测定了宫瘤消片中镉、砷微量元素的含量.结果:测得2种元素,标准曲线的r>0.9992,回收率为91.5%~97.8%,RSD <5%.结论:本法快速、准确且灵敏度高,为宫瘤消片中重金属含量测定提供了较好的方法,结果满意.

  18. Volatile species generation and atomization for atomic absorption and atomic fluorescence: new developments

    Czech Academy of Sciences Publication Activity Database

    Dědina, Jiří; Kratzer, Jan; Musil, Stanislav; Marschner, Karel; Matoušek, Tomáš; Svoboda, Milan; Mester, Z.; Sturgeon, R. E.; Talába, M.; Dvořák, P.

    2015. s. 41-41. [Colloquium Spectroscopicum Internationale /39./. 30.08.2015-03.09.2015, Figueira da Foz] R&D Projects: GA ČR GA14-23532S; GA MŠk LO1411 Grant ostatní: GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : hydride generation * volatile species generation * atomic absorption * atomic fluorescence Subject RIV: CB - Analytical Chemistry, Separation

  19. Manipulation of the atomic localization via resonance fluorescence

    International Nuclear Information System (INIS)

    The possibility of manipulating the position of atoms dressed in the standing field of the cavity, based on the resonance fluorescence emission, is discussed. Stark dynamics modification and the strong coupling between two undistinguishable radiators situated in non-symmetric positions of the anti-nodes are investigated. The fluorescent spectrum is shown versus the second atom localization and external field parameters. We describe the conditions in which the Rabi frequencies of atoms change their correlations and cooperative emission. (paper)

  20. Multielement analysis by total reflection X-ray fluorescence spectrometry for the certification of lichen research material

    International Nuclear Information System (INIS)

    Total reflection X-ray fluorescence spectrometry was applied for the certification of IAEA lichen-336. The elements Ca, Mn, Fe, Cu, Zn, Rb, Sr and Pb were determined simultaneously. The concentrations range from 1.8 mg/kg for Rb to 2360 mg/kg for Ca. The results were compared with those of other methods and laboratories having participated in this certification for the International Atomic Energy Agency (IAEA): emission spectrometry, mass spectrometry, atomic absorption spectrometry, X-ray spectrometry, neutron activation analysis and voltammetry. The results determined by TXRF are in good agreement with the overall means of accepted values and differ from the means by 1 to 10%. (orig.). With 2 figs., 1 tab

  1. Analysis of silicate rocks by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    This study aims at developing an all-purpose method for the determination of various elements in silicate rocks, by means of X-ray fluorescence spectrometry. The sample is prepared by borax fusion, in the presence of cobalt oxide acting as an inner standard meant for eliminating certain errors. Contents are computed in comparison with outer standards having a chemical composition akin to that of the rock sample under analysis. (authors)

  2. Direct determination of lead in produced waters from petroleum exploration by electrothermal atomic absorption spectrometry X-ray fluorescence using Ir-W permanent modifier combined with hydrofluoric acid

    International Nuclear Information System (INIS)

    The present work reports the development of a methodology for the direct determination of lead in high saline waters derived from petroleum exploration employing electrothermal atomic absorption spectrometry with permanent Ir-W and HF as modifiers. These waters, so-called produced waters, have complex composition containing several types of organic and inorganic substances. In order to attain best conditions (highest analytical signal besides lowest background) for the methodology studies about the effect of several variables and the convenient calibration strategy were performed. Also, the efficiency of other modification approaches was evaluated. At best conditions, pyrolysis and atomization temperature were 800 and 2200 deg. C, respectively, when the modifiers cited above were utilized. Obtained results indicate that, in this kind of sample, lead can be determined by standard addition method or employing external calibration with standard solutions prepared in 0.8 mol l-1 NaCl medium. In order to evaluate the accuracy of the procedure, a recovery test was performed with six spiked samples of produced waters. The detection limit, quantification limit and the relative standard deviation in 0.8 mol l-1 NaCl were also calculated and the values are 1.5 μg l-1, 5.0 μg l-1 and 5.0% (at 10 μg l-1 level), respectively

  3. Direct determination of lead in produced waters from petroleum exploration by electrothermal atomic absorption spectrometry X-ray fluorescence using Ir-W permanent modifier combined with hydrofluoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eliane P. [Departamento de Geoquimica, Universidade Federal Fluminense, Niteroi/RJ 24020-007 (Brazil); Santelli, Ricardo E. [Departamento de Geoquimica, Universidade Federal Fluminense, Niteroi/RJ 24020-007 (Brazil); Cassella, Ricardo J. [Departamento de Quimica Analitica, Universidade Federal Fluminense, Niteroi/RJ 24020-007 (Brazil)]. E-mail: cassella@vm.uff.br

    2005-07-22

    The present work reports the development of a methodology for the direct determination of lead in high saline waters derived from petroleum exploration employing electrothermal atomic absorption spectrometry with permanent Ir-W and HF as modifiers. These waters, so-called produced waters, have complex composition containing several types of organic and inorganic substances. In order to attain best conditions (highest analytical signal besides lowest background) for the methodology studies about the effect of several variables and the convenient calibration strategy were performed. Also, the efficiency of other modification approaches was evaluated. At best conditions, pyrolysis and atomization temperature were 800 and 2200 deg. C, respectively, when the modifiers cited above were utilized. Obtained results indicate that, in this kind of sample, lead can be determined by standard addition method or employing external calibration with standard solutions prepared in 0.8 mol l{sup -1} NaCl medium. In order to evaluate the accuracy of the procedure, a recovery test was performed with six spiked samples of produced waters. The detection limit, quantification limit and the relative standard deviation in 0.8 mol l{sup -1} NaCl were also calculated and the values are 1.5 {mu}g l{sup -1}, 5.0 {mu}g l{sup -1} and 5.0% (at 10 {mu}g l{sup -1} level), respectively.

  4. A new approach for archaeological ceramics analysis using total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    The purpose of this study is to investigate the use of a new quantitative analysis method in case total reflection X-ray fluorescence (TXRF) is applied to archaeological ceramics. This method is alternative to and simpler than traditional TXRF quantitative analysis or typical techniques of elemental analysis such as atomic emission and absorption spectrometry (AES and AAS) which implies the chemical digestion of the sample. A new procedure which allows to obtain an homogeneous sample has been successfully applied. This way it was possible to obtain quantitative results for the elements present in the sedimentation obtained from a suspension prepared with the ceramic sample, by resorting to addition of an internal standard. The archaeological ceramic shards have been also chemically digested and analyzed by inductively coupled plasma-atomic emission spectrometry, AES with flame atomization and electrothermal atomic absorption spectrometry. The quantitative data obtained by means of both TXRF, AAS and AES were compared and worked out by multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis in order to achieve information concerning pottery provenance

  5. Cu,Cr and As determination in preserved woods (Eucalyptus ssp.) by X-ray fluorescence spectrometries

    International Nuclear Information System (INIS)

    Brazil produces around 2.2 millions of cubic meters of treated wood to meet the annual demand of railway, electric, rural and construction sectors. The most used wood species are eucalyptus (Eucalyptus ssp.) and pine (Pinus ssp.).The treated woods used for poles, sleepers, fence posts and plywoods should be according to Brazilian norms requirements. The most usual wood preservative products used in Brazil are CCA (chromated copper arsenate) and CCB (copper chromium and boron salt). The analytical methods, such as flame atomic absorption spectrometry (FAAS), plasma inductively coupled optical emission spectrometry (ICPOES) and X-ray fluorescence spectrometry (XRFS) have been used for the analytical control of those treatment processes. In this work, the eucalyptus trees (Eucalyptus ssp) samples was obtained from Minas Gerais State, Brazil, cut plantation areas. Under pressure, eucalyptus wood samples were submitted to different concentration of CCA solution reaching 3.9, 6.7, 9.1, 12.4 and 14.0 kg of CCA by m-³ sapwood retentions. Samples in cylinders and sawdust forms were obtained from treated wood samples. Copper, chromium and arsenic determination was performed using the energy dispersive X-ray fluorescence spectrometry (EDXRFS), portable X-ray fluorescence spectrometry (PXRFS), flame atomic absorption spectrometry (FAAS) and instrumental neutron activation analysis. In this work, the method of analysis, sensitivity, precision and accuracy performances of the related techniques were outlined. (author)

  6. Determination of Trace Tin in Multimetal Ore by Hydride Generation Atomic Fluorescence Spectrometry%HG-AFS 法测定多金属矿中的痕量锡

    Institute of Scientific and Technical Information of China (English)

    艾军; 周俊明

    2001-01-01

    研究了酒石酸介质中氢化物发生原子荧光光谱法(HG-AFS)测定多金属矿中痕量锡的方法,考察了不同酸介质和浓度对氢化物发生效率的影响,试验了共存元素的干扰情况。方法的检出限为1.4×10-10g/mL,精密度(n=5)为3.71%~5.38%。%A method for determination of trace Sn by hydride generationatomic fluorescence spectrometry (HG-AFS) was described. The influence of HG-AFS operation conditions,various acidic media and concentration of NaBH4 solution was studied.The detection limit is 1.4×10-10 g/mL. The method was applied to determination of trace Sn in the standard multimetal ore samples. The results were in good agreement with certifid values with precision of 3.7%~5.4% RSD(n=5).

  7. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    Science.gov (United States)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  8. Vacuum ultraviolet laser induced fluorescence on a Si atomic beam

    Science.gov (United States)

    O'Brian, T. R.; Lawler, J. E.

    1991-01-01

    A broadly applicable vacuum ultraviolet experiment is described for measuring radiative lifetimes of neutral and singly-ionized atoms in a beam environment to 5-percent accuracy using laser induced fluorescence. First results for neutral Si are reported.

  9. Quantification of steroid conjugates using fast atom bombardment mass spectrometry

    International Nuclear Information System (INIS)

    Fast atom bombardment/mass spectrometry or liquid secondary ion mass spectrometry provides the capability for direct analysis of steroid conjugates (sulfates, glucuronides) without prior hydrolysis or derivatization. During the analysis of biologic extracts, limitations on the sensitivity of detection arise from the presence of co-extracted material which may suppress or obscure the analyte signal. A procedure is described for the quantitative determination of dehydroepiandrosterone sulfate in serum which achieved selective isolation of the analyte using immunoadsorption extraction and highly specific detection using tandem mass spectrometry. A stable isotope-labeled analog [( 2H2]dehydroepiandrosterone sulfate) was used as internal standard. Fast atom bombardment of dehydroepiandrosterone sulfate yielded abundant [M-H]- ions that fragmented following collisional activation to give HSO4-; m/z 97. During fast atom bombardment/tandem mass spectrometry of serum extracts, a scan of precursor ions fragmenting to give m/z 97 detected dehydroepiandrosterone sulfate and the [2H2]-labeled analog with a selectivity markedly superior to that observed using conventional mass spectrometry detection. Satisfactory agreement was observed between quantitative data obtained in this way and data obtained by gas chromatography/mass spectrometry of the heptafluorobutyrates of dehydroepiandrosterone sulfate and [2H2]dehydroepiandrosterone sulfate obtained by direct derivatization. 21 refs

  10. Determination of Arsenic in Southern Jiangxi Navel Orange Pulp and Peel by Wet Digestion—Atomic Fluorescence Spectrometry%湿法消解-原子荧光光谱法测定赣南脐橙果皮和果肉中的砷含量

    Institute of Scientific and Technical Information of China (English)

    徐媛; 姚明印; 刘木华; 雷泽剑

    2012-01-01

    With a view to detect the heavy metal element in fruits, the contents of element arsenic in peel and the fruit pulp of Southern Jiangxi navel orange were determined by wet digestion-atomic fluorescence spec-trometry. The fruit pulp and peel were preconditioned by wet digestion and then detected by atomic fluorescence spectrometry. The results showed that trace arsenic was contained in pulp and peel, the average amount of arsenic per kg of Southern Jiangxi navel orange was 0.096 mg(peel) ,0.020 (pulp) respectively, the total arsenic content in Southern Jiangxi navel orange conforms to China' s safety and health indicators. The element arsenic in Southern Jiangxi navel orange mainly rests in the peel.%以检测水果中有害元素(以As为例)含量为目的,实验选用赣南脐橙作为样品,采用湿法消解-原子荧光光谱法测定其果皮和果肉中有害元素砷的含量.实验先用湿法消解的方法预处理赣南脐橙的果皮和果肉,制备好样品,再用原子荧光光谱仪测定样品中痕量砷的含量.结果表明,脐橙果皮和果肉中含有微量砷元素,所检测的脐橙中平均含砷量为0.096 mg/kg(果皮)、0.020 mg/kg(果肉),脐橙样品中元素砷主要累积在果皮.

  11. Rare earth aerosol analysis by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    An analytical method for the determination of four lanthanides in air filter samples is described. The method involves simultaneous quantitative determinations of La, Ce, Pr, and Nd at the microgram level by x-ray fluorescence spectrometry without chemical separation of these rare earths and without serious interferences from the dust matrices on the filters. The method has been used successfully to analyze some air filter samples collected at a rare earth processing refinery in Illinois. A description of the development of the method is given as well as the results obtained by using this method on the air filter samples. The reproducibility of the results was generally +-5%

  12. Determination of arsenic releases from glass infusion bottles of drug packaging materials by hydride generation-atomic fluorescence spectrometry%玻璃输液瓶中砷浸出量的原子荧光光谱法测定

    Institute of Scientific and Technical Information of China (English)

    周红娇

    2011-01-01

    目的:建立氢化物发生-原子荧光光谱法HG-AFS测定药包材中玻璃输液瓶的砷浸出量方法.方法:样品液直接用原子荧光光谱法测定,并对HG-AFS工作参数及条件进行优化和选择.结果:标准曲线线性良好,相关系数r=0.999 4,检出限0.064 μg/L,回收率为97.80%,RSD为2.04%.结论:原子荧光光谱法简便、快速准确、灵敏度高.%Objective: To establish a method for determination of arsenic release from Glass Infusion bottles of drug packaging materials by hydride generation-atomic fluorescence spectrometer (HG-AFS). Methods: Sample solutions were directly determined by HG-AFS. Operation parameters of HG-AFS and condition were optimized and selected. Results: A good linearity was obtained (r=0.999 4). The detection limit was 0.064 μg/L. The recovery was 97.80%. RSD was 2.04%.Conclusion: The HG-AFS method is simple and fast with high sensitivity.

  13. Recent developments in generation of volatile species and in their atomization for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Dědina, Jiří; Arslan, Y.; Mester, Z.; Sturgeon, R. E.; Kratzer, Jan; Matoušek, Tomáš; Musil, Stanislav; Svoboda, Milan

    2014. s. 221-221. [Rio Symposium on Atomic Spectrometry /13./. 19.10.2014-24.10.2014, Merida, Yucatan] R&D Projects: GA AV ČR(CZ) M200311202; GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : Arsenic * speciation analysis * sapphire tube atomizer Subject RIV: CB - Analytical Chemistry, Separation

  14. A Thermo-Chemical Reactor for analytical atomic spectrometry

    International Nuclear Information System (INIS)

    A novel atomization/vaporization system for analytical atomic spectrometry is developed. It consists of two electrically and thermally separated parts that can be heated separately. Unlike conventional electrothermal atomizers in which atomization occurs immediately above the vaporization site and at the same instant of time, the proposed system allows analyte atomization via an intermediate stage of fractional condensation as a two stage process: Vaporization → Condensation → Atomization. The condensation step is selective since vaporized matrix constituents are mainly non-condensable gases and leave the system by diffusion while analyte species are trapped on the cold surface of a condenser. This kind of sample distillation keeps all the advantages of traditional electrothermal atomization and allows significant reduction of matrix interferences. Integration into one design a vaporizer, condenser and atomizer gives much more flexibility for in situ sample treatment and thus the system is called a Thermo-Chemical Reactor (TCR). Details of the design, temperature measurements, vaporization-condensation-atomization mechanisms of various elements in variety of matrices are investigated in the TCR with spectral, temporal and spatial resolution. The ability of the TCR to significantly reduce interferences and to conduct sample pyrolysis at much higher temperatures as compared to conventional electrothermal atomizers is demonstrated. The analytical potential of the system is shown when atomic absorption determination of Cd and Pb in citrus leaves and milk powder without the use of any chemical modification

  15. A Thermo-Chemical Reactor for analytical atomic spectrometry

    Science.gov (United States)

    Gilmutdinov, A. Kh.; Nagulin, K. Yu.

    2009-01-01

    A novel atomization/vaporization system for analytical atomic spectrometry is developed. It consists of two electrically and thermally separated parts that can be heated separately. Unlike conventional electrothermal atomizers in which atomization occurs immediately above the vaporization site and at the same instant of time, the proposed system allows analyte atomization via an intermediate stage of fractional condensation as a two stage process: Vaporization → Condensation → Atomization. The condensation step is selective since vaporized matrix constituents are mainly non-condensable gases and leave the system by diffusion while analyte species are trapped on the cold surface of a condenser. This kind of sample distillation keeps all the advantages of traditional electrothermal atomization and allows significant reduction of matrix interferences. Integration into one design a vaporizer, condenser and atomizer gives much more flexibility for in situ sample treatment and thus the system is called a Thermo-Chemical Reactor (TCR). Details of the design, temperature measurements, vaporization-condensation-atomization mechanisms of various elements in variety of matrices are investigated in the TCR with spectral, temporal and spatial resolution. The ability of the TCR to significantly reduce interferences and to conduct sample pyrolysis at much higher temperatures as compared to conventional electrothermal atomizers is demonstrated. The analytical potential of the system is shown when atomic absorption determination of Cd and Pb in citrus leaves and milk powder without the use of any chemical modification.

  16. Speciation of the immediately mobilisable As(III), As(V), MMA and DMA in river sediments by high performance liquid chromatography-hydride generation-atomic fluorescence spectrometry following ultrasonic extraction

    International Nuclear Information System (INIS)

    In this work, a fast method is developed for the speciation of As(III), As(V), MMA and DMA in the immediately mobilisable fraction of river sediments (i.e. water-soluble and phosphate-exchangeable) by high performance liquid chromatography-hydride generation-atomic fluorescence detection (HPLC-HG-AFD) after extraction using focused ultrasound. The influence of relevant parameters influencing an ion-pairing chromatographic separation following isocratic elution (i.e. amount of MeOH in the mobile phase, ion pair reagent concentration, pH, flow rate) was studied. Focused ultrasound transmitted from an ultrasonic probe provided the same extractable contents as conventional extraction with no changes in the species distribution. The effect of the drying step over extraction of As species was investigated. The following drying procedures were compared: freeze-, oven-, microwave- and air-drying. No influence of the drying operation on the water-extractable fraction was observed. However, freeze- and air-drying yielded significantly higher phosphate-extractable amounts of As(III) and As(V) as compared to oven and microwaves. Detection limits for the As species were in the range 1.3-4.1 ng/g for the water-soluble fraction and 1.6-4.8 ng/g for the phosphate buffer exchangeable fraction. The method was applied to the speciation of immediately mobilisable As(III), As(V), DMA and MMA in 11 sediment samples collected along the beds of the Louro River (southern Galicia, Spain)

  17. Glass frit nebulizer for atomic spectrometry

    Science.gov (United States)

    Layman, L.R.

    1982-01-01

    The nebuilizatlon of sample solutions Is a critical step In most flame or plasma atomic spectrometrlc methods. A novel nebulzatlon technique, based on a porous glass frit, has been Investigated. Basic operating parameters and characteristics have been studied to determine how thte new nebulizer may be applied to atomic spectrometrlc methods. The results of preliminary comparisons with pneumatic nebulizers Indicate several notable differences. The frit nebulizer produces a smaller droplet size distribution and has a higher sample transport efficiency. The mean droplet size te approximately 0.1 ??m, and up to 94% of the sample te converted to usable aerosol. The most significant limitations In the performance of the frit nebulizer are the stow sample equMbratton time and the requirement for wash cycles between samples. Loss of solute by surface adsorption and contamination of samples by leaching from the glass were both found to be limitations only In unusual cases. This nebulizer shows great promise where sample volume te limited or where measurements require long nebullzatlon times.

  18. Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF)

    International Nuclear Information System (INIS)

    Nutrient analysis is used to estimate nutrient content of crop plants to manage fertilizer application for sustained crop production. Direct solid analysis of agricultural and environmental samples by energy dispersive X-ray fluorescence spectrometry (EDXRF) was chosen as alternative technique to evaluate the simultaneous multielemental quantification of the most important essential elements in coffee (Coffea arabica L.) plants. Inductively coupled plasma atomic emission spectrometry and certified reference materials made from leaves were used to calibrate and check the trueness of EDXRF method for the determination of the concentration of several nutrients in coffee leaves and branches. Fluorescence spectrometry proved to be advantageous and presented low cost as loose powder samples could be used. Samples collected from a field experiment where coffee plants were treated with excess of Ni and Zn were used to verify the practical application of the method. Good relationships were achieved between certified values and data obtained by EDXRF, with recoveries ranging from 82 to 117 %.(author)

  19. Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Tezotto, Tiago; Favarin, Jose Laercio; Neto, Ana Paula; Azevedo, Ricardo Antunes, E-mail: tiago.tezotto@usp.br [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil); Gratao, Priscila Lupino [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/ FCAV), Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada a Agropecuaria; Mazzafera, Paulo [Universidade Estadual de Campinas (UNICAMP/IB), SP (Brazil). Dept. Biologia Vegetal

    2013-07-15

    Nutrient analysis is used to estimate nutrient content of crop plants to manage fertilizer application for sustained crop production. Direct solid analysis of agricultural and environmental samples by energy dispersive X-ray fluorescence spectrometry (EDXRF) was chosen as alternative technique to evaluate the simultaneous multielemental quantification of the most important essential elements in coffee (Coffea arabica L.) plants. Inductively coupled plasma atomic emission spectrometry and certified reference materials made from leaves were used to calibrate and check the trueness of EDXRF method for the determination of the concentration of several nutrients in coffee leaves and branches. Fluorescence spectrometry proved to be advantageous and presented low cost as loose powder samples could be used. Samples collected from a field experiment where coffee plants were treated with excess of Ni and Zn were used to verify the practical application of the method. Good relationships were achieved between certified values and data obtained by EDXRF, with recoveries ranging from 82 to 117 %.(author)

  20. Excimer laser-ablated plasma atomic spectrometry

    International Nuclear Information System (INIS)

    The characterization and evaluation of a new kind of excimer laser-ablated plasma and applications for direct spectrochemical analysis were investigated through time- and space-resolved spectroscopy. The shape, size, emission spectra, and excitation temperatures of the plasma are largely department on the atmospheric surroundings, the ambient gas composition, the pressure, and laser energy. Spatial discrimination may be desirable to increase the line-to-background (L/B) ratio in atomic emission spectroscopy. A direct spectrochemical analytical method for solid samples with good linearity was developed using the excimer laser-AES. The sensitivity of the analytical signal varied depending on the chemical matrix of the solid samples. A typical detection limit for potassium in a glass matrix was 0.13 μg/g.

  1. Quantum beats in fluorescence for multi-level atomic system

    International Nuclear Information System (INIS)

    For Λ-type three-level atomic systems we have clarified using diagram that (1) it is impossible to observe quantum beats due to the ground state sublevels by measuring the time dependence of the fluorescence intensity, and (2) why it is physically possible to observe and how we can observe quantum beats in the ground state sublevels by using fluorescence. Generalization of the results shows that we can determine from which state (the ground state or the excited state) the quantum beats are originated. Analytical result is shown for four-level atomic systems.

  2. Determination of Inorganic Arsenic in Atmospheric Particles by Hydride Generation-atomic Fluorescence Spectrometry%氢化物发生-原子荧光光谱法测定大气颗粒物中的砷形态

    Institute of Scientific and Technical Information of China (English)

    梁淑轩; 吴虹; 齐学先; 郑璇; 何晓娇

    2011-01-01

    Concentration of atmospheric particles is one of the atmospheric pollution indicators. Heavy metals in the atmospheric particles can risk for human health in both direct and indirect way. Arsenic is one of the higher metal content in them. The inorganic compounds are far more toxic than their organic metabolites. In this paper, the hydride generation atomic fluorescence spectrometric method was employed to the determination of As ( Ⅲ ) and As (V) in the Atmospheric particles. The amount of reducing agent,acid medium and its acidity, carrier gas and shield gas flow rate and observation height of the fluorescence intensity were investigated, and the interference experiment was carried out for concomitant elements. In the best conditions, the detection limit was 0. 34 μg/L, the recovery ranged from 98.18% ~ 102.54%,and the relative standard deviation was about 0.8%. The method was featured by easy operation, fast speed and it has been applied to the analysis of arsenic in the particles with satisfactory results.%采用氢化物发生原子荧光法直接测定不同粒径大气颗粒物中As(Ⅲ)和As(Ⅴ)的含量.研究了还原剂用量、酸介质及其酸度、载气及屏蔽气流量和观测高度等对荧光强度的影响,探讨了共存离子对砷测定的干扰.在选定的最佳条件下,得到检出限为0.34μg/L,方法检出限为0.21μg/g,加标回收率为98.18%~102.54%,相对标准偏差为0.8%左右.用该方法测定大气颗粒物中不同形态的砷,操作简便,快速,灵敏度高.

  3. An atomic beam fluorescence locked magneto-optical trap for krypton atoms

    International Nuclear Information System (INIS)

    We report here an atomic beam loaded magneto-optical trap (MOT) for metastable krypton atoms in which the fluorescence signal from the atomic beam is used to lock the cooling laser frequency. The fluorescence signal is generated by exciting the metastable krypton atomic beam using a probe laser beam (i.e. part of the cooling laser beam) intersecting the atomic beam at an angle. A spectral shift in the fluorescence signal can be achieved by varying the angle between the probe laser beam and the atomic beam to obtain the desired frequency detuning to lock the cooling laser frequency. This has been used to optimize the number of cold atoms in the MOT. The dependence of the peak height and slope of the atomic beam fluorescence (ABF) locking signal on the RF power in the discharge tube and pressure in the observation chamber of the setup has been studied to correlate its effect on the number of atoms in the MOT. (paper)

  4. Mercury speciation by high-performance liquid chromatography atomic fluorescence spectrometry using an integrated microwave/UV interface. Optimization of a single step procedure for the simultaneous photo-oxidation of mercury species and photo-generation of Hg{sup 0}

    Energy Technology Data Exchange (ETDEWEB)

    Quadros, Daiane P.C. de [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Campanella, Beatrice; Onor, Massimo; Bramanti, Emilia [National Research Council of Italy, C.N.R., Instituto di Chimica dei Composti Organo Metallici – ICCOM – UOS Pisa, Area della Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Borges, Daniel L.G. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); D' Ulivo, Alessandro, E-mail: dulivo@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Instituto di Chimica dei Composti Organo Metallici – ICCOM – UOS Pisa, Area della Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2014-11-01

    We described the hyphenation of photo-induced chemical vapor generation with high performance liquid chromatography–atomic fluorescence spectrometry (HPLC–AFS) for the quantification of inorganic mercury, methylmercury (MeHg) and ethylmercury (EtHg). In the developed procedure, formic acid in mobile phase was used for the photodecomposition of organomercury compounds and reduction of Hg{sup 2+} to mercury vapor under microwave/ultraviolet (MW/UV) irradiation. We optimized the proposed method studying the influence of several operating parameters, including the type of organic acid and its concentration, MW power, composition of HPLC mobile phase and catalytic action of TiO{sub 2} nanoparticles. Under the optimized conditions, the limits of detection were 0.15, 0.15 and 0.35 μg L{sup −1} for inorganic mercury, MeHg and EtHg, respectively. The developed method was validated by determination of the main analytical figures of merit and applied to the analysis of three certified reference materials. The online interfacing of liquid chromatography with photochemical-vapor generation–atomic fluorescence for mercury determination is simple, environmentally friendly, and represents an attractive alternative to the conventional tetrahydroborate (THB) system. - Highlights: • Inorganic and organic mercury were determined by photochemical vapor generation using a MW/UV photochemical reactor. • The optimized procedure has been applied to the speciation of Hg(II), MeHg and EtHg coupling HPLC with PVG–AFS. • The proposed method is simple, sensitive, and is established for mercury determination in biological materials.

  5. Single-atom-resolved fluorescence imaging of an atomic Mott insulator

    DEFF Research Database (Denmark)

    Sherson, Jacob; Weitenberg, Christof; Andres, Manuel;

    2010-01-01

    situ images of a quantum fluid in which each underlying quantum particle is detected. Here we report fluorescence imaging of strongly interacting bosonic Mott insulators in an optical lattice with single-atom and single-site resolution. From our images, we fully reconstruct the atom distribution on the...

  6. Characterizing optical dipole trap via fluorescence of trapped cesium atoms

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; GENG; Tao; YAN; Shubin; LI; Gang; ZHANG; Jing; WANG; Junmin; PENG; Kunchi; ZHANG; Tiancai

    2006-01-01

    Optical dipole trap (ODT) is becoming an important tool of manipulating neutral atoms. In this paper ODT is realized with a far-off resonant laser beam strongly focused in the magneto-optical trap (MOT) of cesium atoms. The light shift is measured by simply monitoring the fluorescence of the atoms in the magneto-optical trap and the optical dipole trap simultaneously. The advantages of our experimental scheme are discussed, and the effect of the beam waist and power on the potential of dipole trap as well as heating rate is analyzed.

  7. 流动注射在线离子交换分离富集-氢化物发生原子荧光光谱法测定铜合金中痕量锑%Determination of trace antimony in copper alloys by flow injection on-line ion-exchange separation and enrichment-hydride generation atomic fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    吴良俊; 邱海鸥; 郝志红; 袁红战; 郑洪涛

    2009-01-01

    A method for the determination of trace antimony in copper by flow injection on-line ion-exchange separation and enrichment-hydride generation atomic fluorescence spectrometry is suggested. The manifolds and operating program for ftlow injection on-line ion-exchange were designed and chemical conditions were optimized. Antimony complex was absorbed on strongly basic anion exchange resin 717 with 1. 4 mol/L HC1 as absorbent medium and 2. 0 mol/L HNO_3 for elution. The interference of co-existent elements (i-ron, nickel, lead, etc) was eliminated while antimony was enriched and was determined by hydride generation-atomic fluorescence spectrometry. The method is easy to operate and fast, and has lesser pollution to environment. The linear range is 0. 2-120μg/L and the RSD is 3%~5% with detection limit of 0. 05 μg/L. The results for determination of antimony in standard samples of copper alloys are satisfactory.%提出了流动注射离子交换在线分离富集-氢化物发生原子荧光光谱法测定铜合金中痕量锑的分析方法.设计了流动注射在线离子交换的流路和操作程序,优化了各项化学条件.采用717强碱性阴离子交换树脂吸附锑,并能有效消除铁、镍、铅等元素的干扰,也使大量基体元素铜与待测元素分离,锑在1.4 mol/L的HCl介质中上柱,选用2.0 mol/L的HNO_3作为洗脱剂.实现了氢化物发生原子荧光光谱法对铜合金中痕量锑的在线测定.方法操作简便、快速,环境污染小,线性范围为0.15~120 μg/L,相对标准偏差在3%~5%之间,检出限为0.05μg/L.方法应用于铜合金标准样品,结果与推荐值吻合.

  8. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Arslan, Y.; Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan; Dědina, Jiří

    103-104, JAN-FEB (2015), s. 155-163. ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant ostatní: GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : gold * volatile species generation * quartz atomizers * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.176, year: 2014

  9. Analytical control of wollastonite for biomedical applications by use of atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry.

    Science.gov (United States)

    De Aza, P N; Guitián, F; De Aza, S; Valle, F J

    1998-04-01

    Preliminary in vitro experiments revealed that wollastonite (CaSiO3) is a potentially highly bioactive material that forms a hyroxyapatite (HA) surface layer on exposure to simulated body fluid with an ion concentration, pH and temperature virtually identical with those of human blood plasma. The formation of the HA layer is an essential requirement for an artificial material to be used as bioactive bone substitute. This finding opens up a wide field for biomedical applications of wollastonite. Biomaterials used as implants in the human body require strict control of trace elements and of the toxic species specified in American Society for Testing and Materials F-1185-88 (As, Cd, Hg and Pb) in ceramic hydroxyapatite for surgical implantation. In this work, two types of pseudowollastonite, the high temperature form of wollastonite, were analysed by using cold vapour atomic absorption spectrometry and hydride generation atomic absorption spectrometry, in order to determine the elements stated in the above-mentioned norm, and inductively coupled plasma atomic emission spectrometry to establish the SiO2/CaO ratio of the two materials and analyse for all other impurities introduced by the raw materials and by the processes of synthesis, sintering and grinding. Barium and Mg were especially prominent in raw materials, and Zr, Y, Mg, W, Co and Ni come mainly from the processing. PMID:9684401

  10. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Czech Academy of Sciences Publication Activity Database

    Duben, Ondřej; Boušek, J.; Dědina, Jiří; Kratzer, Jan

    2015-01-01

    Roč. 111, SEP (2015), s. 57-63. ISSN 0584-8547 Grant ostatní: GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation-atomic absorption spectrometry * selenium Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.176, year: 2014

  11. Development of temperature imaging using two-line atomic fluorescence.

    Science.gov (United States)

    Medwell, Paul R; Chan, Qing N; Kalt, Peter A M; Alwahabi, Zeyad T; Dally, Bassam B; Nathan, Graham J

    2009-02-20

    This work aims to advance understanding of the coupling between temperature and soot. The ability to image temperature using the two-line atomic fluorescence (TLAF) technique is demonstrated. Previous TLAF theory is extended from linear excitation into the nonlinear fluence regime. Nonlinear regime two-line atomic fluorescence (NTLAF) provides superior signal and reduces single-shot uncertainty from 250 K for conventional TLAF down to 100 K. NTLAF is shown to resolve the temperature profile across the stoichiometric envelope for hydrogen, ethylene, and natural gas flames, with deviation from thermocouple measurements not exceeding 100 K, and typically ≲30 K. Measurements in flames containing soot demonstrate good capacity of NTLAF to exclude interferences that hamper most two-dimensional thermometry techniques. PMID:23567586

  12. Determination of cadmium in aluminium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A direct method for the determination of cadmium in elemental aluminium is described. Metal samples are dissolved in diluted hydrochloric acid and cadmium is determined by atomic absorption spectrometry in an air-acetylene flame. Interference by non-specific absorption observed at the analytical wavelength incorrected for by means of a non-absorbing line emitted by the hollow-cathode lamp. Relatively large amounts of arsenic do not interfere. The minimun determinable concentration of cadmium for this procedure is 2-3 ppm, expressed on aluminium basis. (author)

  13. Determination of metals in atmospheric particulates using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Nineteen trace metals in atmospheric samples have been determined by atomic absorption spectrometry, using a graphite furnace for most elements. Paper filters have been used to collect air samples. The sample preparation procedure involves the removal of organic matter and the conversion of the metals to soluble salts by ashing the filters in an oxygen plasma at 125 deg C for 6 h. and by subsequent dissolution in HN03HCl solution. The sensitivities achieved are in the range of 2,5.10-5 and 6,3.10-3 μg/m3, for an air volume of 2000 m3. (author)

  14. Flow Injection and Atomic Absorption Spectrometry (FI-AAS) -

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    absorption spectrometry (AAS). Initially with flame-AAS (fAAS) procedures, later for hydride generation (HG) techniques, and most recently in combination with electrothermal AAS (ETAAS). The common denominator for all these procedures is the inherently precise and strictly reproducible timing in FI from the......One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atomic...

  15. Solvent effects on two-line atomic fluorescence of indium.

    Science.gov (United States)

    Chan, Qing N; Medwell, Paul R; Kalt, Peter A M; Alwahabi, Zeyad T; Dally, Bassam B; Nathan, Graham J

    2010-03-10

    We aim to investigate the potential of four different organic solvents, namely, acetone, ethanol, methanol, and isopropanol, and the organic-solvent-water mixtures as a seeding medium for the two-line atomic fluorescence technique. Water is used as the reference case. Indium, which has been previously shown to have suitable spectroscopic attributes, is chosen as the thermometry species in the present study. Acetone and methanol are shown to enhance the fluorescence signal intensity the most (approximately threefold to fivefold at stoichiometric conditions) when used. Acetone and methanol are shown to improve the fluorescence emission over the entire stoichiometric envelope of flame, most significantly in the rich combustion region, as well as a twofold enhancement in the signal-to-noise ratio. PMID:20220881

  16. Determination of lead traces in water and liqueurs by derivative atom trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H. [Department of Chemistry, Hebei University, Baoding, 071002 (China); Yang Lili [Department of Chemistry, Hebei University, Baoding, 071002 (China); Zhang Deqiang [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing (China); Wang Weixiao [Department of Chemistry, Hebei University, Baoding, 071002 (China); Sun Jianmin [Department of Chemistry, Hebei University, Baoding, 071002 (China)

    1997-07-01

    A new method for the direct determination of lead traces using derivative atom trapping flame atomic absorption spectrometry (DAT-FAAS) with an improved water-cooled stainless steel trapping equipment in an air-acetylene flame was investigated. The optimum conditions concerning the sensitivity were studied. For a 1 min collection, the characteristic concentration (given as derivative absorbance of 0.0044) and the detection limit (3s) were 1.4 ng/mL and 0.27 ng/mL, respectively. This is 361 and 74-fold better than those of the conventional flame atomic absorption spectrometry (FAAS) and comparable to those of graphite furnace atomic absorption spectrometry (GFAAS). The detection limit and sensitivity of DAT-FAAS for a 3 min collection time were 2 and 3 orders of magnitude higher than those of conventional FAAS. The present method was applied to the determination of lead in water and liqueur samples with a recovery range of 94-108% and a relative standard deviation of 3.5-5.6%. (orig.). With 5 figs., 5 tabs.

  17. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  18. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  19. Studies in atomic-fluorescence spectroscopy-V The fluorescence characteristics and determination of antimony.

    Science.gov (United States)

    Dagnall, R M; Thompson, K C; West, T S

    1967-10-01

    Atomic-fluorescence of antimony may be generated in an air-propane flame by nebulizing aqueous solutions of antimony salts whilst irradiating the flame by means of a microwave-excited electrode-less discharge tube operating at 30 W. The strongest fluorescence is exhibited by the (4)S(11 2 ) --> (4)P(1 3 ) 2311 A resonance line and weaker signals are observed at the 2068 and 2176 A resonance lines and at four intercombination lines, at 2598, 2671, 2770 and 2878 A. A process of thermally assisted direct-line fluorescence is postulated to account for the otherwise inexplicable intensity of the 2598 A line emission. Atomic-fluorescence spectroscopy at 2176 A permits the determination of antimony in the range 0.1-120 ppm with a detection limit of 0.05 ppm. With the same equipment and source, the range of measurement for atomic-absorption was 6-120 ppm and the detection limit was 1 ppm. No interferences were observed from 100-fold molar amounts of Cd, Co, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, NH(4), Pb and Zn or from arsenate, chloride, nitrate, phosphate and sulphate. PMID:18960212

  20. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    Science.gov (United States)

    Karadjova, Irina B.; Lampugnani, Leonardo; Dědina, Jiri; D'Ulivo, Alessandro; Onor, Massimo; Tsalev, Dimiter L.

    2006-05-01

    Interference effects of various organic solvents miscible with water on arsenic determination by hydride generation atomic absorption spectrometry have been studied. Arsine was chemically generated in continuous flow hydride generation system and atomized by using a flame atomizer able to operate in two modes: miniature diffusion flame and flame-in-flame. The effects of experimental variables and atomization mode were investigated: tetrahydroborate and hydrochloric acid concentrations, argon, hydrogen and oxygen supply rates for the microflame, and the distance from the atomization region to the observation zone. The nature of the species formed in the flame due to the pyrolysis of organic solvent vapors entering the flame volume together with arsine is discussed. The observed signal depression in the presence of organic solvents has been mainly attributed to the atomization interference due to heterogeneous gas-solid reaction between the free arsenic atoms and finely dispersed carbon particles formed by carbon radicals recombination. The best tolerance to interferences was obtained by using flame-in-flame atomization (5-10 ml min - 1 of oxygen flow rate), together with higher argon and hydrogen supply rates and elevated observation heights.

  1. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  2. Determination of Trace Inorganic Mercury in Mineral Water by Flow Injection On-line Sorption Preconcentration-Cold Vapor Atomic Fluorescence Spectrometry%流动注射在线吸附预富集-冷蒸气原子荧光法测定矿泉水中的痕量无机汞

    Institute of Scientific and Technical Information of China (English)

    訾洪静; 淦五二; 韩素平; 姜宪娟; 完玲中

    2009-01-01

    Flow injection on-line sorption preconcentration and separation in a knotted reactor (KR) was coupled to cold vapor atomic fluorescence spectrometry for the determination of trace mercury in mineral water. Mercury was preconcentrated by on-line formation of mercury diethyldithiocarbamate complex (Hg-DDTC) and absorption of the resulting neutral complex on the inner walls of a knotted reactor. A 20%(V/V) HNO3 solution heated by electromagnetic induction heating technique was used as eluent to remove the absorbed Hg-DDTC from the KR, and then the vapor mercury generated by mixing the resulting solution and KBH4 was determined on-line by cold vapor atomic fluorescence spectrometry. The 20% HNO3 was employed as both the efficient eluent and the required acidic medium for subsequent mercury vapor generation in our work. Using 20% HNO3 instead of conventional organic solvent as eluent, the proposed method is simple, easy operational and environmentally friendly. Under the optimal experimental conditions, the sample throughput was approximatively 30/h with an enhancement factor of 35. The detection limit of mercury was 2.0 ng/L. The precision(RSD, n=11) was 2.2% at the 0.1 μg/L Hg2+ level.%研究了聚四氟乙烯管编结反应器(KR)在线吸附预富集技术与冷蒸气原子荧光联用测定矿泉水中痕量无机汞的方法.Hg2+与DDTC在线形成Hg2+-DDTC络合物并吸附在KR内壁上,采用电磁感应加热技术,用20% (V/V) HNO3在线加热洗脱并氧化预富集于KR内壁上的Hg2+-DDTC.洗脱液与KBH4溶液反应生成蒸气态汞,直接用冷蒸气原子荧光联用技术检测.20%(V/V)HNO3作为洗脱液的同时也为氢化发生提供了酸性介质.本方法未使用常用的有机洗脱液,具有操作简单和环保等优点.每小时可分析30个样品,最大吸附倍数为35倍,样品分析精密度RSD为2.2%(n=11),检出限(3σ)为2.0 ng/L.

  3. Preconcentration and Atomization of Arsane in a Dielectric Barrier Discharge with Detection by Atomic Absorption Spectrometry.

    Science.gov (United States)

    Novák, Petr; Dědina, Jiří; Kratzer, Jan

    2016-06-01

    Atomization of arsane in a 17 W planar quartz dielectric barrier discharge (DBD) atomizer was optimized, and its performance was compared to that of a multiple microflame quartz tube atomizer (MMQTA) for atomic absorption spectrometry (AAS). Argon, at a flow rate of 60 mL min(-1), was the best DBD discharge gas. Free As atoms were also observed in the DBD with nitrogen, hydrogen, and helium discharge gases but not in air. A dryer tube filled with NaOH beads placed downstream from the gas-liquid separator to prevent residual aerosol and moisture transport to the atomizer was found to improve the response by 25%. Analytical figures of merit were comparable, reaching an identical sensitivity of 0.48 s ng (-1) As in both atomizers and limits of detection (LOD) of 0.15 ng mL(-1) As in MMQTA and 0.16 ng mL(-1) As in DBD, respectively. Compared to MMQTA, DBD provided 1 order of magnitude better resistance to interference from other hydride-forming elements (Sb, Se, and Bi). Atomization efficiency in DBD was estimated to be 100% of that reached in the MMQTA. A simple procedure of lossless in situ preconcentration of arsane was developed. Addition of 7 mL min(-1) O2 to the Ar plasma discharge resulted in a quantitative retention of arsane in the optical arm of the DBD atomizer. Complete analyte release and atomization was reached as soon as oxygen was switched off. Preconcentration efficiency of 100% was observed, allowing a decrease of the LOD to 0.01 ng mL(-1) As employing a 300 s preconcentration period. PMID:27159266

  4. Cooperative analysis of alloying elements in zirconium alloys using inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    The Second Sub-Committee on Zircaloy Analysis, under Committee on Analytical Chemistry of Nuclear Fuels and Reactor Materials, JAERI, carried out a cooperative analysis with the nine laboratories on the determination of tin, iron, nickel and chromium in zirconium alloys to evaluate the practical applicability of inductively coupled plasma (ICP) atomic emission spectrometry. This report describes the sample decomposition procedures, determination conditions and procedures, and analytical results. The results obtained for alloying elements in samples for cooperative analysis (JAERI CRMs Z11 to Z14 and others) were compared with certified values or those obtained by X-ray fluorescence method, and were in good agreement with those values. ICP atomic emission spectrometry were shown to be an effective field method for determining alloying elements (C.V. % 2 to 7 for 0.5 to 1.90 % Sn, C.V. % 2 to 3 for 0.093 to 0.130 % Fe, C.V. % 3 to 6 for 0.095 to 0.110 % Ni and C.V. % 2 to 7 for 0.01 to 0.150 % Cr) in zirconium alloys. (author)

  5. Determination of Cu, Cr, and As in preserved wood (Eucalyptus sp.) using x-ray fluorescent spectrometry techniques

    International Nuclear Information System (INIS)

    Energy dispersive (EDXRF) and Portable (PXRF) X-ray fluorescence techniques are proposed for wood treatment control process and wood waste assortment. In this study, different retentions of chromated copper arsenate preservative were applied to Eucalyptus sp. sapwood samples. Cu, Cr and As were determined by XRF techniques in treated sapwood massive blocks and treated sapwood sawdust samples were analyzed by FAAS spectrometry (Flame Atomic Absorption) and INAA (Instrumental Neutron Activation Analysis). Cu, Cr and As mean values, obtained by FAASS and INAA, showed to be statically equal; however, XRF analysis showed considerable deviations, presenting the absorption and the enhancement effects in analytical lines. (author)

  6. Study on simultaneous determination of Bi and Hg in chinese herbal medicine by the sequential injection hydride generation atomic fluorescence spectrometry%顺序注射氢化物发生-原子荧光光谱法同时测定中草药中铋和汞

    Institute of Scientific and Technical Information of China (English)

    徐文军

    2009-01-01

    建立了一种顺序注射氢化物发生-原子荧光光谱法测定中草药中的Bi和Hg的方法, 讨论了共存离子的干扰情况. 在最佳实验条件下, Bi和Hg的检出限分别为0.0057 μg/L和0.0197 μg/L, 加标回收率为93.4%~104.7%, 相对标准偏差小于4.3%, 被测中草药试样中共存的离子对Bi和Hg的测定没有干扰. 方法可用于中草药试样中Bi和Hg的同时测定.%A method for the determination of Bi and Hg in Chinese herbal medicine by sequential injection hydride generation atomic fluorescence spectrometry was established. The interference circumstance of the coexistence ions at the same time was discussed. Under the proposed conditions, the detection limits of the Bi and Hg were 0.0057 and 0.0197 μg/L. Recoveries of standard addition of the Bi and Hg have been proveed to be 93.4% ~104.7% in samples . The maximum RSD was 4.3%. The coexistence ions in chinese herbal medicine samples hardly interfered in the determination of bismuth and mercury. The operation was easy and its sensitivity was high. This method is feasible and practicable to determine bismuth and mercury in chinese herbal medicine.

  7. Determination of gold by chemical hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. The chemical vapour generation (CVG) of transition and noble metals opens a novel route for introduction of these elements into atomic spectrometric sources. It can be accomplished by merging an acidic sample with tetrahydroborate reductant solution (Y. L. Feng et al., J. of Anal. At. Spectrom., 20 (2005) 255-265). There have been some studies for determination of Au; however, only mg L-1 levels of gold have been determined by CVG - Atomic Absorption Spectrometry (AAS) (G. Ertas et al., Applied Spectroscopy, 60 (2006) 423-429). Volatile Au species were generated in flow injection arrangement from acid environment in presence of surfactants. The core of the system is a mixing manifold based on 3 concentric capillaries (T. Matousek et al., J. of Anal. At. Spectrom., 18 (2003) 487-494) protruding into the glass gas-liquid separator (glass, volume 3 ml). Optimum flow rate of Ar as a carrier gas was found at 240 mL/min. The study of generation parameters as well as the use of reaction modifiers-surfactants and dithiocarbamate- will be presented. Quartz tube multiatomizer for AAS was employed for atomization. Atomization conditions including composition of carrier gases and their flow rates and atomization temperature were optimized. 900 deg C was found as the optimum atomization temperature; over 900 deg C, peak area of Au signal decreased; in addition, peak shape was altered. A sharp maximum of 6 mL/min oxygen as the outer gas was observed. Another important point was that hydrogen-rich atmosphere caused signal depression. Analytical performance of this approach to generation and atomization will be discussed and perspectives of its future will be outlined. This work was supported by the GA ASCR (grant No. A400310507 and IAA400310704) and Institute of Analytical Chemistry of the ASCR, v.v.i. (project no. AV0Z40310501). This work also was supported from OYP (Faculty Development Program) from the Middle East Technical University

  8. New cryogenic trap design for speciation analysis of arsenic by hydride generation-atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Milan; Kratzer, Jan; Dědina, Jiří

    Praha, 2014. s. 240-240. ISBN 978-80-905704-1-2. [European Symposium on Atomic Spectrometry ESAS 2014 & Czech-Slovak Spectroscopic Conference /15./. 16.03.2014-21.03.2014, Praha] R&D Projects: GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : atomic absorption spectrometry * hydride generation * cryogenic trapping Subject RIV: CB - Analytical Chemistry, Separation

  9. Quantitative determination of impurities in nuclear grade aluminum by Flame-Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    The paper deals with quantitative determination of impurity elements in nuclear grade aluminum, used as fin tubes in research reactors, by Flame-Atomic Absorption Spectrometry (F-AAS). The results have been compared with those obtained by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method. Experimental conditions used in both the methods are given in the paper. (author)

  10. Slurry sampling hydride generation-cryotrapping-atomic absorption spectrometry for arsenic speciation analysis in baby food

    Czech Academy of Sciences Publication Activity Database

    Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, Milan; Dědina, Jiří

    Hungarian Chemical Society, 2016 - (Mihucz, V.). s. 165 ISBN 978-963-9970-65-6. [European Symposium on Atomic Spectrometry /ESAS 2016/ & Hungarian Spectrochemical Conference /59./. 31.03.2016-02.04.2016, Eger] Institutional support: RVO:68081715 Keywords : arsenic speciation * atomic spectrometry * hydride generation Subject RIV: CB - Analytical Chemistry, Separation

  11. Fluorescence detection at the atom shot noise limit for atom interferometry

    CERN Document Server

    Rocco, Emanuele; Valenzuela, Tristan; Boyer, Vincent; Freise, Andreas; Bongs, Kai

    2014-01-01

    Atom interferometers are promising tools for precision measurement with applications ranging from geophysical exploration to tests of the equivalence principle of general relativity, or the detection of gravitational waves. Their optimal sensitivity is ultimately limited by their detection noise. We review resonant and near-resonant methods to detect the atom number of the interferometer outputs and we theoretically analyze the relative influence of various scheme dependent noise sources and the technical challenges affecting the detection. We show that for the typical conditions under which an atom interferometer operates, simultaneous fluorescence detection with a CCD sensor is the optimal imaging scheme. We extract the laser beam parameters such as detuning, intensity, and duration, required for reaching the atom shot noise limit.

  12. Micro-X-Ray Fluorescence Spectrometry of the Surface Elemental Composition of Vegetative Parts and Fruiting Bodies of Lichenized Teloschistaceae Fungi

    Science.gov (United States)

    Biazrov, L. G.; Pelgunova, L. A.

    2016-01-01

    The elemental composition and atomic mass ratios (%) on the surface of vegetative and generative parts of crustose Caloplaca cerina and foliose Xanthoria parietina lichen thalli collected from the same tree trunk were measured using micro-x-ray fluorescence spectrometry. The atomic mass fractions for half of the elements (of 21 identified) were significantly higher on the surfaces of fruiting bodies (apothecia) than on vegetative parts of thalli of both species. The atomic mass fractions of most elements were much greater on the surfaces of fruiting bodies and vegetative parts of the foliose species than on the crustose species.

  13. Study on the GaAs(110) surface using emitted atom spectrometry

    International Nuclear Information System (INIS)

    The facilities implemented at Bariloche for the ion scattering spectrometry is described, and recent examples of the technique application to determine the atomic structure and the composition of metallic and semiconductor surfaces, pure and with different adsorbates. The surface analysis technique using emitted atom spectrometry is discussed. The sensitivity to the GaAs(110) surface atomic relaxation is presented, and the kinetic of hydrogen adsorption by the mentioned surface is studied

  14. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    International Nuclear Information System (INIS)

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C0, where the change in characteristic mass, m0, can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as Emax, maximum enhancement factor; Et, enhancement for 1.0 minute sampling and Ev, enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps

  15. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    Energy Technology Data Exchange (ETDEWEB)

    Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C{sub 0}, where the change in characteristic mass, m{sub 0}, can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E{sub max}, maximum enhancement factor; E{sub t}, enhancement for 1.0 minute sampling and E{sub v}, enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps.

  16. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    Science.gov (United States)

    Ataman, O. Yavuz

    2008-08-01

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C0, where the change in characteristic mass, m0, can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as Emax, maximum enhancement factor; Et, enhancement for 1.0 minute sampling and Ev, enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps.

  17. Determination of Trace Selenium in Plants by Hydride Generation Atomic Fluorescence Spectrometry with Program Temperature- Controlled Graphite Digestion%程序控温石墨消解-氢化物原子荧光光谱法测定植物中痕量硒

    Institute of Scientific and Technical Information of China (English)

    钱薇; 蒋倩; 王如海; 龚华; 韩勇

    2014-01-01

    Discussed several methods of pretreatment for the determination of selenium were discussed ,and a program tempera-ture-controlled graphite digestion method was developed to digest 5 kinds of representative standard plant samples of citrus leav-es ,tea ,cabbage leaves ,shrubs and rice .The effect of the pretreatment method of digestion solution ,digestion temperature and digestion time on the extraction of selenium was investigated in detail .The instrumental working parameters were optimized .For the reaction conditions of hydride generation atomic fluorescence spectrometry (HG-AFS) ,the effect of the concentration of KBH4 and HCl on the determination of selenium was emphasized .Not only the effect of the concentration of carrier fiow HCl was considered ,but also the effect of the concentration of sample HCl on the determination of selenium was studied .The best method for determination of trace selenium in plant samples by atomic fluorescence spectrometry with program temperature-con-trolled graphite digestion was established .Results indicated that the recovery of the method of selenium was 87.1% ~106 .2% , the detection limit was 0.018 μg · L -1 and the relative standard deviation (RSD) was less than 6.0% .In the range of 0~10 μg · L -1 (low standard) and 0~100μg · L -1 (high standard) fluorescence was linearly related to the concentration of selenium ,the coefficient of r was 0.999 9 and r was 0.999 7 .Therefore ,this method has wide linear range ,high sensitivity ,low detection limit and good stability ,which was very suitable for the determination of trace selenium of plant .And the method was of easy and safe operation ,strong practicability ,low cost ,and low toxicity of chemicals used ,so it can be used as a routine analysis method in general laboratory .%探讨了硒测定的几种预处理方法,采用一种程序控温的石墨消解系统来消化处理柑橘叶、茶叶、灌木叶、圆白菜、大米五种代表性的植物标准样品。

  18. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  19. Investigation of polyelectrolytes by total reflection x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Water soluble polyelectrolyte samples containing mono-, bi- and trivalent metal ions were investigated without any pretreatment. Acid digestion of linear polymers may lead to a product insoluble in water so the digestion has to be avoided. The aim of this paper was the determination of analytical characteristics and limitations of the total reflection x-ray fluorescence (TXRF) analysis for poly (vinylalcohol-vinylsulphate) salts and poly (acrylic acid, acrylamide) copolymers containing the following cations: K+, Cs+, Ba2+, Cu2+ and La3+. On the basis of our results efficiency of ion-exchange during preparation of polyelectrolytes and stoichiometry of the end-product were determined. TXRF results were compared with data gained by inductively coupled plasma atomic emission spectrometry (ICP-AES) measurements except in the case of Cs+ which has poor sensitivity in ICP-AES. Good agreement was found between the results of the two techniques and calculations from titrimetric data. Concentration of Li+ and Mg2+ in polymer samples was measured by ICP-AES. In majority of cases film-like dry residues of aqueous solutions of polyelectrolytes can be characterized by homogeneous spatial distribution of metal ions within the organic matrix. This is because the migration of the ions is hindered during drying process. Determination of metals in polyelectrolyte films by TXRF is quite ideal as model for analysis of plant, animal or human tissues which is a frequent task in environmental and inorganic biomedical analytical chemistry. (author)

  20. Determination of arsenic in bag tea samples of health food by hydride generator atomic fluorescence spectrometry%氢化物发生-原子荧光光度法测定保健食品袋泡茶中的总砷

    Institute of Scientific and Technical Information of China (English)

    王正; 张妮娜; 李敏; 沙博郁; 罗仁才

    2011-01-01

    Objective: To establish a method of hydride generator atomic fluorescence spectrometry ( HG - AFS) to determine arsenic in bag tea samples of 20 kinds of health food. Methods: After microwave or wet digestion, the contents of arsenic in twenty bag tea samples were determined by HG - AFS. Results: Linear range for the determination of arsenic was 0 |xg/L ~ 80 μg/L. The linear correlative coefficient for arsenic was 0.9994. The quality of the results was proved by the recovery experiments ( ranging from 92.4% to 109.6% ). The relative standard deviation was 2.5% (n = 11) for arsenic in bag tea samples. The contents of arsenic in bag tea were in the range of 0.10 mg/kg ~0.80 mg/kg. Conclusion: The findings indicate that the proposed method is simple, fast and accurate, which can meet the demand for determining arsenic in bag tea samples of health food.%目的:本文建立了保健食品袋泡茶中总砷的测定方法并测定了20种保健食品袋泡茶中总砷含量.方法:以微波消解和湿消解法处理样品,原子荧光光度法进行测定.结果:本文测定总砷的线性范围为0 μg/L~80μg/L,相关系数为0.9994,方法回收率为92.4%~109.6%,RSD为2.5%.测定的20种保健食品袋泡茶中总砷含量为0.10 mg/kg~0.80 mg/kg.结论:实验表明,本法简单、快速、准确,可以用于保健食品袋泡茶中总砷含量的测定.

  1. Microwave digestion-hydride generation-atomic fluorescence spectrometry determination of arsenic and mercury in imported copper matte%微波消解一氢化物发生原子荧光光谱法测定进口铜锍中砷和汞

    Institute of Scientific and Technical Information of China (English)

    葛钰玮; 索金玲; 王成; 胡晓民

    2011-01-01

    A determination method of arsenic and mercury in imported copper mattc by hydride generation- atomic fluorescence spectrometry (AFS) was established. The copper matte samples were digested in aqua regia and hydrofluoric acid by microwave. Then, the solution was diluted. The thiourea and ascorbic acid were added into digestion solution for prereduction Arsenic and mercury were made to form hydride by adding potassium borohydride. The contents of arsenic and mercury were determined by AFS. The results indicated that the matrix effect of Cu, Fe and S on the determination of elements was not obvious. Under the selected conditions, the detection limits were for arsenic and mercury were 0. 003 9 μg/L and 0. 060 8 μg/L, respectively. The recoveries of standard addition were 95 %-123%, and the relative standard deviations (RSD, n=10) were 0. 56 % and 2. 0% for arsenic and mercury, respectively. The proposed method could be used for the determination of arsenic and mercury in large quantities of copper matte samples.%建立了测定进口铜锍样品中砷、汞含量的氢化物发生原子荧光光谱法.在铜锍试样中加入王水和氢氟酸,经微波消解后稀释,消解液中加入硫脲-抗坏血酸预还原,加硼氢化钾使砷和汞生成硼氢化物,用原子荧光光谱法测定砷和汞含量.铜、铁、硫等对待测元素基体效应不显著.在选定条件下,砷和汞的检出限分别为0.003 9μg/L和0.060 8μg/L,样品的加标回收率在95%~123%之间,砷和汞的相对标准偏差分别为0.56%和2.0%(n=6),方法可用于大批铜锍样品中砷和汞的测定.

  2. Exploiting flow injection and sequential injection for trace metal determinations in conjunction with detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Despite their excellent analytical chemical capacities, Electrothermal Atomic Absorption Spectrometry (ETAAS) and Inductively Coupled Plasma Mass Spectrometry (ICPMS), nevertheless, often require suitable pretreatment of the sample material in order to obtain the necessary sensitivity and...

  3. Advances with tungsten coil atomizers: Continuum source atomic absorption and emission spectrometry

    International Nuclear Information System (INIS)

    Two new tungsten coil spectrometers are described: a continuum source tungsten coil atomic absorption spectrometer and a tungsten coil atomic emission spectrometer. Both devices use a 150 W tungsten coil extracted from a slide projector bulb. The power is provided by a computer-controlled, solid state, constant current 0-10 A supply. The heart of the optical system is a high-resolution spectrometer with a multi-channel detector. The continuum source system employs xenon or deuterium lamps, and is capable of multi-element analyses of complex samples like engine oil, urine, and polluted water. Spiked engine oil samples give mean percent recoveries of 98 ± 9, 104 ± 9, and 93 ± 0.8 for Al, V, and Ni, respectively. Copper, Zn, and Cd are determined in urine samples; while Cd, Co, Yb, and Sr are determined in water samples. Detection limits for Cd, Zn, Cu, Yb, Sr, and Co are: 8, 40, 1, 4, 1, and 4 μg l-1. The technique of tungsten coil atomic emission spectrometry using a 150 W commercial projector bulb is reported for the first time. Calcium, Ba, and Sr are determined with detection limits of 0.01, 0.5, and 0.1 μg l-1. Relative standard deviations are lower than 10% in each case, and Sr is determined in two water standard reference materials

  4. Certification of reference materials by energy-dispersive x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    The present paper studies the precision and accuracy that can be achieved using energy-dispersive x-ray fluorescence spectrometry for the determination of total sulphur content in BCR 38 Fly Ash issued by the European Community Bureau of Reference

  5. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    Science.gov (United States)

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  6. Evaluation of electrochemical generation of volatile zinc hydride by heated quartz tube atomizer atomic absorption spectrometry.

    Science.gov (United States)

    Arbab-Zavar, Mohammad-Hossein; Chamsaz, Mahmoud; Youssefi, Abbas; Aliakbari, Mostafa

    2012-01-01

    Electrochemical hydride generation (EcHG) as a sample introduction system for determination of zinc was developed. It was directly coupled to an electrically heated quartz tube atomizer (QTA) atomic absorption spectrometry (AAS) system. The hydride generator is a laboratory-made semi-batch electrolytic cell that consists of a lead-tin alloy cathode and a platinum anode. The effects of typical parameters on the generation efficiency of the technique, such as types of cathode material and catholyte and anolyte solutions, were studied. The influences of numerical experimental operating parameters on the analytical signal were evaluated in detail and optimum conditions were obtained. The analytical figures of merit for the developed method were determined. The calibration curve was linear up to 300 ng mL(-1) of Zn. A concentration detection limit (3σ, n = 9) of 11 ng mL(-1) Zn and a relative standard deviation of 5.0% (RSD, n = 9) for 200 ng mL(-1) Zn were accessed. In addition, the susceptibility of interference from various ions was evaluated. The accuracy of the method was verified by determination of Zn in a certified reference material and in tap water. The achieved concentrations were found to be in good agreement with both the certified value and the data obtained using flame AAS. PMID:22790376

  7. Titanium atom detection by resonance fluorescence excited with a nitrogen laser

    International Nuclear Information System (INIS)

    Coincidence of wave lengths of nitrogen laser basing lines and resonance transitions in titanium atom is investigated. It is shown that resonance fluorescence excited by nitrogen laser can be used for absolute titanium atom density measurements. Experiments on titanium atom detection in a vapour cloud formed under irradiation of a titanium target in vacuum by dye laser pulse, are conducted. Fluorescence extinguishing is observed under high evaporation power

  8. Analysis of tungsten carbides by X-ray fluorescence spectrometry.

    Science.gov (United States)

    Kinson, K; Knott, A C; Belcher, C B

    Five sample presentation techniques were examined for the X-ray fluorescence spectrometric analysis of tungsten carbide alloys in powder and cemented forms. Powder samples may be oxidized by air at 600 degrees before fusion (I), or preferably by lithium nitrate during fusion (II); the fusion is effected with lithium-lanthanum tetraborate followed by briquetting with graphite. Powder samples may also be blended with wax and briquetted (III). Cemented carbides are surface-prepared with silicon carbide before analysis (V). Briquettes prepared by blending carbide powder, lithium-lanthanum tetraborate and graphite (IV), give poor reproducibility, however, owing to micro-absorption effects the technique is not recommended. The determination of eight common elements in tungsten carbide is discussed and the relative standard deviations are 0.002-0.004 for major and 0.008-0.01 for minor elements. PMID:18961988

  9. Determination of thorium by fluorescent x-ray spectrometry

    Science.gov (United States)

    Adler, I.; Axelrod, J.M.

    1955-01-01

    A fluorescent x-ray spectrographic method for the determination of thoria in rock samples uses thallium as an internal standard. Measurements are made with a two-channel spectrometer equipped with quartz (d = 1.817 A.) analyzing crystals. Particle-size effects are minimized by grinding the sample components with a mixture of silicon carbide and aluminum and then briquetting. Analyses of 17 samples showed that for the 16 samples containing over 0.7% thoria the average error, based on chemical results, is 4.7% and the maximum error, 9.5%. Because of limitations of instrumentation, 0.2% thoria is considered the lower limit of detection. An analysis can be made in about an hour.

  10. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    Science.gov (United States)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  11. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    Energy Technology Data Exchange (ETDEWEB)

    Dhara, Sangita [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Misra, N.L., E-mail: nlmisra@barc.gov.i [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Maind, S.D. [NAA Unit of Central Forensic Science Laboratory Hyderabad at Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kumar, Sanjukta A. [Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Chattopadhyay, N. [NAA Unit of Central Forensic Science Laboratory Hyderabad at Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Aggarwal, S.K. [Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2010-02-15

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 muL of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO{sub 3}/HClO{sub 4}, mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1sigma) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  12. Forensic application of total reflection X-ray fluorescence spectrometry for elemental characterization of ink samples

    International Nuclear Information System (INIS)

    The possibility of applying Total Reflection X-ray Fluorescence for qualitative and quantitative differentiation of documents printed with rare earth tagged and untagged inks has been explored in this paper. For qualitative differentiation, a very small amount of ink was loosened from the printed documents by smoothly rubbing with a new clean blade without destroying the manuscript. 50 μL of Milli-Q water was put on this loose powder, on the manuscript, and was agitated by sucking and releasing the suspension two to three times with the help of a micropipette. The resultant dispersion was deposited on quartz sample support for Total Reflection X-ray Fluorescence measurements. The Total Reflection X-ray Fluorescence spectrum of tagged and untagged inks could be clearly differentiated. In order to see the applicability of Total Reflection X-ray Fluorescence for quantitative determinations of rare earths and also to countercheck such determinations in ink samples, the amounts of rare earth in painted papers with single rare earth tagged inks were determined by digesting the painted paper in HNO3/HClO4, mixing this solution with the internal standard and recording their Total Reflection X-ray Fluorescence spectra after calibration of the instrument. The results thus obtained were compared with those obtained by Inductively Coupled Plasma Mass Spectrometry and were found in good agreement. The average precision of the Total Reflection X-ray Fluorescence determinations was 5.5% (1σ) and the average deviation of Total Reflection X-ray Fluorescence determined values with that of Inductively Coupled Plasma Mass Spectrometry was 7.3%. These studies have shown that Total Reflection X-ray Fluorescence offers a promising and potential application in forensic work of this nature.

  13. Influence of angle's ranges for recording an X-ray fluorescence hologram on reconstructed atomic images

    Institute of Scientific and Technical Information of China (English)

    XIE Hong-Lan; CHEN Jian-Wen; GAO Hong-Yi; ZHU Hua-Feng; LI Ru-Xin; XU Zhi-Zhan

    2004-01-01

    X-ray fluorescence holography (XFH) is a novel method for three-dimensional (3D) imaging of atomic structure. Theoretically, in an XFH experiment, one has to measure the fluorescence energy on a spherical surface to get well-resolved 3D images of atoms. But in practice, the experimental system arrangement does not allow the measurement of the fluorescent intensity oscillations in the full sphere. The holographic information losses because of the limited sampling range (less than 4π) will directly result in defective reconstructed atomic images. In this work, the atomic image of a Fe single crystal (001) was reconstructed by numerically simulating X-ray fluorescence holograms of the crystal at different recording angle's ranges and step lengths. Influences of the ranges of azimuth angles and polar angles and the step length of polar angles on the reconstructed atomic images were discussed.

  14. Speciation of mercury by chromatography coupled with atomic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, H.E.L

    2000-03-01

    A commercial GC-AFS instrument has been developed and optimised for the speciation of organomercury. This instrument couples a GC oven to a modified atomic fluorescence detector via a ceramic pyrolyser. Organomercury compounds in dichloromethane solvent were directly injected through a Programmable Temperature Vaporiser Injector onto a DB1 Megabore column. Once separated, the compounds eluted from the column and were atomised in the pyrolyser then detected by AFS. The direct injection technique, ceramic pyrolysis design and argon purged detector have improved previous instrument designs by enhancing and maintaining sensitivity. The instrumental limit of detection was determined to be 0.25 pg Hg absolute. Methods were developed for the extraction of methylmercury from a variety of marine samples. The techniques were validated using mussel homogenate and dogfish liver (IAEA 142, SRM 8044 and DOLT-2) certified reference materials. An interlaboratory comparison exercise was participated in and a method was developed for the determination of methylmercury in Fucus sea plant (IAEA 140). A concentration of 0.63 {+-} 0.006 ng g{sup -1} was reported. The material is now certified at 0.626 {+-} 0.139 ng g{sup -1}. Of all the participating laboratories, this was the closest result to the certified value. The instrument and methods were also applied to soil and sediment samples. Once again validation was performed with a CRM sediment, IAEA 356. Although this material has been reported to give positive artifact formation when using a steam distillation sample preparation procedure, good agreement and no artifacts were observed upon analysis. A further contaminated land, an uncontaminated soil and sediment sample were also studied. For all the samples studied by GC-AFS total mercury measurements were also made following an appropriate digestion procedure and CV-AFS. A gas chromatograph was also coupled with ICP-MS and HPLC was coupled to CV-AFS as comparative techniques. Both

  15. Speciation of mercury by chromatography coupled with atomic spectrometry

    International Nuclear Information System (INIS)

    A commercial GC-AFS instrument has been developed and optimised for the speciation of organomercury. This instrument couples a GC oven to a modified atomic fluorescence detector via a ceramic pyrolyser. Organomercury compounds in dichloromethane solvent were directly injected through a Programmable Temperature Vaporiser Injector onto a DB1 Megabore column. Once separated, the compounds eluted from the column and were atomised in the pyrolyser then detected by AFS. The direct injection technique, ceramic pyrolysis design and argon purged detector have improved previous instrument designs by enhancing and maintaining sensitivity. The instrumental limit of detection was determined to be 0.25 pg Hg absolute. Methods were developed for the extraction of methylmercury from a variety of marine samples. The techniques were validated using mussel homogenate and dogfish liver (IAEA 142, SRM 8044 and DOLT-2) certified reference materials. An interlaboratory comparison exercise was participated in and a method was developed for the determination of methylmercury in Fucus sea plant (IAEA 140). A concentration of 0.63 ± 0.006 ng g-1 was reported. The material is now certified at 0.626 ± 0.139 ng g-1. Of all the participating laboratories, this was the closest result to the certified value. The instrument and methods were also applied to soil and sediment samples. Once again validation was performed with a CRM sediment, IAEA 356. Although this material has been reported to give positive artifact formation when using a steam distillation sample preparation procedure, good agreement and no artifacts were observed upon analysis. A further contaminated land, an uncontaminated soil and sediment sample were also studied. For all the samples studied by GC-AFS total mercury measurements were also made following an appropriate digestion procedure and CV-AFS. A gas chromatograph was also coupled with ICP-MS and HPLC was coupled to CV-AFS as comparative techniques. Both approaches were

  16. Determination of uranium in seawater, biological samples and sediments using laser induced fluorescence spectrometry

    International Nuclear Information System (INIS)

    Uranium has been determined in seawater, biological samples and sediments using laser induced fluorescence spectrometry (LIFS). The biological samples and sediments are digested with a mixture of HNO3, HClO4 and HF. The conductivity of the seawater should be below 5.0 mS and the pH of the sample should be in the range 6.5-9.0. The volume of the reagent used to enhance the fluorescence intensity was 0.5 ml. Comparison with other methods was favorable, LIFS being rapid, simple and sensitive, and well suited to environmental monitoring. (author)

  17. Method for detecting binding events using micro-X-ray fluorescence spectrometry

    Science.gov (United States)

    Warner, Benjamin P.; Havrilla, George J.; Mann, Grace

    2010-12-28

    Method for detecting binding events using micro-X-ray fluorescence spectrometry. Receptors are exposed to at least one potential binder and arrayed on a substrate support. Each member of the array is exposed to X-ray radiation. The magnitude of a detectable X-ray fluorescence signal for at least one element can be used to determine whether a binding event between a binder and a receptor has occurred, and can provide information related to the extent of binding between the binder and receptor.

  18. Grazing-emission X-ray fluorescence spectrometry: principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bokx, P.K. de; Kok, C.; Bailleul, A.; Wiener, G.; Urbach, H.P. [Philips Research Labs., Eindhoven (Netherlands)

    1997-06-20

    In grazing emission X-ray fluorescence spectrometry (GEXRF), the sample is irradiated at approximately normal incidence, and only that part of fluorescence radiation is detected that is emitted at grazing angles. This configuration allows the use of wavelength-dispersive detection. This type of detection has the advantages of substantially better energy resolution at longer wavelengths (light elements, L and M lines of heavier elements) and a much larger dynamic range than the energy-dispersive detectors currently used in grazing X-ray techniques. Typical examples are presented of applications that are made possible by this new technique. (Author).

  19. X-ray fluorescence analysis and optical emission spectrometry of an roman mirror from Tomis, Romania

    International Nuclear Information System (INIS)

    The miscellaneous population of Roman Empire, their diverse cultural tradition, their ability to assimilate the roman civilization spirits, had determined a permanent reassessment superimposed upon the roman contribution. Analysis was undertaken using optical emission spectrometry and non-destructive X-ray fluorescence. X-ray fluorescence analysis is a well-established method and is often used in archaeometry and other work dealing with valuable objects pertaining to the history of art and civilization. Roman mirror analysed has been found not to be made of speculum (a high tin bronze). (authors)

  20. Box-Behnken设计优化浊点萃取-原子荧光光谱法测定中药材中的汞%Cloud Point Extraction for Determination of Mercury in Chinese Herbal Medicine by Hydride Generation Atomic Fluorescence Spectrometry with Optimization Using Box-Behnken Design

    Institute of Scientific and Technical Information of China (English)

    王梅; 李姗; 周建栋; 徐英; 龙军标; 杨冰仪

    2014-01-01

    Cloud point extraction (CPE)is proposed as a pre-concentration procedure for the determination of Hg in Chinese herbal medicine samples by hydride generation-atomic fluorescence spectrometry (HG-AFS).Hg2+ was reacted with dithizone to form hydrophobic chelate under the condition of pH.Using Triton X-114,as surfactant,chelate was quantitatively extracted in-to small volume of the surfactant-rich phase by heating the solution in a water bath for 15 min and centrifuging.Four variables including pH,dithizone concentration,Triton X-114 concentration and equilibrium temperature (T)showed the significant effect on extraction efficiency of total Hg evaluated by single-factor experiment,and Box-Behnken design and response surface method-ology were adopted to further investigate the mutual interactions between these variables and to identify their optimal values that would generate maximum extraction efficiency.The results showed that the binomial was used to fit the response to experimental levels of each variable.ALL linear,quadratic terms of four variables,and interactions between pH and Trion X-114,pH and di-thizone affected the response value(extraction efficiency)significantly at 5% level.The optimum extraction conditions were as follows:pH 5. 1,Triton X-114 concentration of 1. 16 g·L-1 ,dithizone concentration of 4. 87 mol·L-1 ,and T 58. 2 ℃,the predicted value of fluorescence was 4 528. 74 under the optimum conditions,and the experimental value had only 2. 1%difference with it.Under the conditions,fluorescence was linear to mercury concentration in the range of 1~5μg·L-1 .The limit of de-tection obtained was 0. 012 47 μg·L-1 with the relative standard deviations (R.S.D.)for six replicate determinations of 1. 30%.The proposed method was successfully applied to determination of Hg in morindae Radix,Andrographitis and dried tan-gerine samples with the recoveries of 95. 0%~100. 0%.Apparently Box- Behnken design combined with response surface anal-ysis method was

  1. 尿中砷的原子荧光光谱测定法样品前处理及标准的研究%Determination of arsenic in urine by atomic fluorescence spectrometry: a research on sample pretreatment and standard

    Institute of Scientific and Technical Information of China (English)

    宋为丽; 殷文军; 万思宇

    2012-01-01

    [ Objective]To compare the different sample pretreatment methods of atomic fluorescence spectrometry for detecting the arsenic in urine, and compare the standard curve and the working curve, simplify the analysis procedure, so as to promote the popularization of this method. [ Methods] Two sets of arsenic standard series with same concentration was respectively digested and not, and the data were analyzed statistically and compared. Urine samples were digested with nitric acid and perchloric acid in automatic control electric heater. The recovery of standard addition was applied on evaluating the accuracy of this digestion method. Six samples were collected from each of upper and lower concentration groups, the precision was calculated, and the stability in digestion process was estimated. [ Results] There was no significant difference between digested treatment and non-digested treatment of urine arsenic standard series. By digesting the urine samples with nitric acid and perchloric acid in automatic control electric heater, the recovery of standard addition of upper and lower concentration groups was 99.8% and 104.3% respectively. The precision of upper and lower concentration groups was 6.3% and9.5% respectively. [Conclusion]The improvement will not affect the accuracy, precision and stability of this method, and can greatly simplify the analysis procedure, get easy operation, alleviate the workload of analysts , reduce the errors which axe caused by the complex program, and use less apparatus, so as to promote the popularization.%目的 对尿中砷的原子荧光光谱测定法进行样品不同前处理方法的比较以及标准曲线和工作曲线的比较.简化分析程序,使得该法更易推广普及.方法 配制两套相同浓度的砷标准系列进行消化与不消化的比较,将两组数据进行统计处理,比较有无显著性差异;尿样采用硝酸高氯酸在自控电热器上消解,用加标回收率评价此消

  2. Determination of Lead in Tea Garden Soil by Hydride Generation Atomic Fluorescence Spectrometry with Microwave Digestion%微波消解-氢化物发生原子荧光光谱法测定茶园土壤中的铅

    Institute of Scientific and Technical Information of China (English)

    凤海元; 时晓露; 黄勤

    2013-01-01

    样品用王水微波消解浸提,氢化物发生-原子荧光光谱法测定茶园土壤中痕量铅的含量.对样品浸取方法、实验条件、增感剂和共存元素进行了条件实验.结果表明,王水微波消解浸取,铅浸出量最大,减少了试剂用量和环境污染;铁氰化钾-盐酸羟胺体系有显著的增感作用,铁氰化钾在配制溶液时用米糠除去试剂中可能存在的铅,降低了空白;钴、锌、砷、镉等共存离子不干扰铅的测定,通过加入邻菲啰啉-硫氰酸钠消除铁和铜的干扰,提高了铅的回收率.方法检出限为0.65 μg/L,精密度(RSD,n=10)为1.89%,回收率在86.8% ~ 110.4%之间.用土壤标准物质验证,测定值与标准值相符,方法快速准确,适合于大批量样品的分析检测.%The microwave digestion system with aqua regia was developed for the determination of trace lead in tea garden soil using Hydride Generation-Atomic Fluorescence Spectrometry ( HG-AFS). The leaching methods, experimental conditions, booster and coexisting element were optimized. The largest amount of lead was leached out by microwave digestion with aqua regia, which has the advantages of less usage of reagent and less environmental pollution. An appropriate amount of potassium ferricyanide and hydroxylamine hydrochloride improved the hydride generation efficiency of Pb. The lead blank was reduced significantly when Potassium ferricyanide solution was treated with rice husk to remove Pb in the reagent. It was found that Co, Zn, As, and Cd did not interfere with the determination of lead. The addition of 1,10-phenanthroline monohydrate and sodium hydrosulfide could effectively eliminate the interferences from Fe and Cu, which improved the recovery rate of lead. The limit of detection was 0. 65 μg/L and the precision was 1. 89% (n = 10) with recoveries of 86. 8% - 110. 4% for Pb. The reliability of the method has been tested by determination of Pb in the Soils Standard Reference

  3. Simultaneous determination of arsenic and mercury of sea-water aquiculture base environment medium by flow injection Hydride Generation-Atomic Fluorescence Spectrometry%流动注射氢化物发生原子荧光光谱法同时测定海水养殖基地环境介质As和Hg

    Institute of Scientific and Technical Information of China (English)

    黄月芳; 曹军; 丁智; 仇东辉; 郝玉凤

    2012-01-01

    应用氢化物发生原子荧光光谱技术,同时测定海水养殖基地环境介质底泥、海水和水产品中微量As和Hg.研究了载流、KBH4浓度对As和Hg测定的影响.在最佳实验操作条件下,As和Hg检出限分别为0.028 3 μg/L、0.017 4 μg/L.底泥中As和Hg的加标回收率分别为89.7%~ 112.6%和91.7% ~ 110.8%,相对标准偏差分别为2.7%~5.3%和2.2% ~4.3%;海水中As和Hg的加标回收率分别为90.2%~ 101.8%和90.0%~ 108.8%,相对标准偏差分别为3.1%~5.6%和2.1%~4.5%;水产品中As和Hg的加标回收率分别为89.6%~ 102.0%和89.2.0%~ 108.0%,相对标准偏差分别为2.6%~4.9%和1.7%~4.4%.%A systemic method for simultaneous determination of arsenic and mercury of sediment, seawater and fishery product in sea-water aquiculture base was developed by Hydride Generation-double channel Atomic Fluorescence Spectrometry ( HG-AFS). Effects of flowing acid and concentration of KBH4 solution on the determination of As and Hg were studied and optimized. The detection limits were found to be 0. 028 3 μg/L and 0. 017 4 μg/L for As and Hg, respectively. The proposed method was applied to the determination of As and Hg. The values of RSD's ( n = 10) were in the ranges of 2. 7% -5.3%(As) and2.2% -4.3%(Hg) in sediments, 3.1% -5.6%(As) and 2.1% -4.5%(Hg) in seawater, 2.6% -4.9%(As) and 1.7% -4.4% (Hg) in fishery product, respectively. Result s of recovery test were found in the ranges of 89. 7% -112. 6% (As) and 91.7% -110.8% (Hg) in sediments, 90.2% -101. 8% (As) and 90.0% -108.8% (Hg) in seawater, 89.6% -102.0% (As) and 89. 2.0% -108.0% (Hg) in fishery product, respectively.

  4. Determination of cadmium in biodiesel using microemulsion and electrothermal atomization atomic absorption spectrometry.

    Science.gov (United States)

    Lima, Adriana S; Silva, Deise G; Teixeira, Leonardo S G

    2015-01-01

    This work aimed to prepare biodiesel microemulsions for the subsequent quantification of cadmium via graphite furnace atomic absorption spectrometry (GFAAS). The biodiesel samples were prepared using n-propanol as an emulsifier, 10% (v/v) nitric acid as the aqueous phase, and biodiesel. Pseudoternary phase diagrams were constructed to determine the microemulsion region with the specified components. The optimized conditions for microemulsion formation were 57.6% (v/v) n-propanol, 21.2% (v/v) biodiesel, and 21.2% (v/v) nitric acid solution. The stability of the microemulsified system was investigated using aqueous and organic standards, and the system was found to be stable for at least 240 min. The applied pyrolysis and atomization temperatures were 800 and 2000 °C, respectively, and 5 μg of aluminum was used as the chemical modifier. The obtained limits of detection and quantification were 0.2 and 0.5 μg kg(-1), respectively, and the characteristic mass was 1.6 pg. The precision, expressed as the relative standard deviation (% R.S.D., n = 10), was 2.5% for a sample with a cadmium concentration of 6.5 μg kg(-1). The accuracy was determined from addition and recovery experiments, with results varying from 93 to 108% recovery. This study demonstrates that the proposed method based on the use of a microemulsion formation in sample preparation can be applied as an efficient alternative for the determination of cadmium in biodiesel by GFAAS. Cadmium determination in biodiesel samples of different origins (soybean, corn, cotton, and sunflower) was evaluated after acid digestion using the inductively coupled plasma-mass spectrometry (ICP-MS) technique, and the obtained results were compared to the results obtained using the proposed method. The paired t test (95% confidence level) did not show significant differences. The concentrations of cadmium found ranged from 5.3 to 8.0 μg kg(-1). PMID:25381584

  5. Analysis of stainless steel samples by energy dispersive X-ray fluorescence (EDXRF) spectrometry

    Indian Academy of Sciences (India)

    M K Tiwari; A K Singh; K J S Sawhney

    2001-12-01

    A simple method for the analysis of stainless steel samples is presented which is based on radioisotope excited energy dispersive X-ray fluorescence (EDXRF) spectrometry and does not require any type-standards. Both absorption and enhancement effects have been taken into account in the fundamental parameter method for quantitative analysis and an iterative approach is followed for calculation of concentrations in steel samples. Non-linear least square fitting (NL-LSF) procedures have been used to determine accurately the fluorescent peak intensities. The method has been tested by analysing several CRM standard reference samples and 304 and 316 steel samples assuming as unknown. The EDXRF results have also been compared with the results of analysis of same samples by vacuum emission spark spectrometry (VES). Obtained values for concentration in steel samples match quite well with their certified values.

  6. Padronização interna em espectrometria de absorção atômica Internal standardization in atomic absorption spectrometry

    OpenAIRE

    Kelly G. Fernandes; Mercedes de Moraes; José A. Gomes Neto; Joaquim A. Nóbrega; Pedro V. Oliveira

    2003-01-01

    This paper describes a review on internal standardization in atomic absorption spectrometry with emphasis to the systematic and random errors in atomic absorption spectrometry and applications of internal standardization in flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry. The rules for selecting an element as internal standard, limitations of the method, and some comments about the application of internal standardization in atomic absorption spectrometry...

  7. Development of a portable system of X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    This paper develops a compact and portable spectrometry system that will be used at the Laboratory of Applied Physics to the Biomedical and Environmental Sciences of the Institute of Physics/UERJ, Rio de Janeiro, Brazil. The laboratory both prepares the samples and develops the X-ray spectrometry techniques. The techniques of X-ray diffraction and fluorescence on various samples (biological, industrial and environmental) are used, attending to pos-graduation and graduation students, with multidisciplinary characteristics. The Mini-X system consists of X-ray mini tube MINI-X from Amptek with tungsten (W) target, and a compact spectrometer X123, also from Amptek that includes a detector, pre-amplifier, digital pulse processor, and multichannel. All the system is controlled by dedicated microprocessor. This work will present both a methodology for alignment and calibration of the system as far the first measurements performed using the X-ray fluorescence technique on standard samples. The multi elementary analysis by X-ray fluorescence (XRF) is based on the measurements of the characteristic X-ray intensity emitted by the chemical elements components of the samples when excited. Therefore, from the development of this compact and versatile system it will be possible to obtain the fluorescent intensities of the analysed samples at the Laboratory, not only at the research area but at the teaching area. Besides, new laboratory practices are being developed for the discipline of medical physics

  8. Chemotrapping-atomic fluorescence spectrometric method as a field method for volatile arsenic in natural gas.

    Science.gov (United States)

    Uroic, M Kalle; Krupp, Eva M; Johnson, Charlie; Feldmann, Jörg

    2009-12-01

    Volatile arsenic compounds in natural gas, existing in the form of trimethylarsine (TMAs), have been determined using gas cryo-trapping gas chromatography coupled to inductively coupled plasma-mass spectrometry (CT-GC-ICP-MS). The results from a number of different gas wells revealed a huge concentration spread ranging from below the detection limit of 0.2 up to 1800 microg/m(3) TMAs (as As) in the gas. Due to the toxicity and corrosive nature of these arsines, they need near real time monitoring via a method that can easily be implemented on site, i.e. during gas exploitation. Here, we introduce a novel method which utilises silver nitrate impregnated silica gel tubes for quantitative chemotrapping of trimethylarsine (TMAs) from a natural gas matrix. Subsequent elution with hot nitric acid followed by online photo-oxidation hydride generation atomic fluorescence spectrometry (HG-AFS) is used for the determination of TMAs gas standards in nitrogen and natural gas samples, respectively. The chemotrapping method was validated using CT-GC-ICP-MS as a reference method. The recovery of arsenic from nitrogen or natural gas matrix ranged from 85 to 113% for a range of 20 to 2000 ng As. Trapping efficiency was >98%, from the methods LOD of 20 ng to 4.8 microg (absolute amount As) with sample sizes of 0.02 and 2 L gas. Method performance was established by comparing the results obtained for eight natural gas samples containing between 1 and 140 microg As/m(3) with those achieved by the reference method (CT-GC-ICP-MS). PMID:20024020

  9. Cu,Cr and As determination in preserved woods (Eucalyptus ssp.) by X-ray fluorescence spectrometries; Determinacao de cobre, cromo e arsenio em madeira preservada (Eucalyptus sp.) pelas espectrometrias de fluorescencia de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Junior, Sergio Matias

    2014-07-01

    Brazil produces around 2.2 millions of cubic meters of treated wood to meet the annual demand of railway, electric, rural and construction sectors. The most used wood species are eucalyptus (Eucalyptus ssp.) and pine (Pinus ssp.).The treated woods used for poles, sleepers, fence posts and plywoods should be according to Brazilian norms requirements. The most usual wood preservative products used in Brazil are CCA (chromated copper arsenate) and CCB (copper chromium and boron salt). The analytical methods, such as flame atomic absorption spectrometry (FAAS), plasma inductively coupled optical emission spectrometry (ICPOES) and X-ray fluorescence spectrometry (XRFS) have been used for the analytical control of those treatment processes. In this work, the eucalyptus trees (Eucalyptus ssp) samples was obtained from Minas Gerais State, Brazil, cut plantation areas. Under pressure, eucalyptus wood samples were submitted to different concentration of CCA solution reaching 3.9, 6.7, 9.1, 12.4 and 14.0 kg of CCA by m-³ sapwood retentions. Samples in cylinders and sawdust forms were obtained from treated wood samples. Copper, chromium and arsenic determination was performed using the energy dispersive X-ray fluorescence spectrometry (EDXRFS), portable X-ray fluorescence spectrometry (PXRFS), flame atomic absorption spectrometry (FAAS) and instrumental neutron activation analysis. In this work, the method of analysis, sensitivity, precision and accuracy performances of the related techniques were outlined. (author)

  10. Laser-excitation atomic fluorescence spectroscopy in a helium microwave-induced plasma

    Science.gov (United States)

    Schroeder, Timothy S.

    The focus of this dissertation is to report the first documented coupling of helium microwave induced plasmas (MIPs) to laser excitation atomic fluorescence spectroscopy. The ability to effectively produce intense atomic emission from both metal and nonmetal analytes gives helium microwave induced plasmas a greater flexibility than the more commonly utilized argon inductively coupled plasma (ICP). Originally designed as an element selective detector for non-aqueous chromatography applications at low applied powers (plasma has been applied to aqueous sample determinations at higher applied powers (>500 W). The helium MIP has been shown to be a very powerful analytical atomic spectroscopy tool. The development of the pulsed dye laser offered an improved method of excitation in the field of atomic fluorescence. The use of laser excitation for atomic fluorescence was a logical successor to the conventional excitation methods involving hollow cathode lamps and continuum sources. The highly intense, directional, and monochromatic nature of laser radiation results in an increased population of atomic species in excited electronic states where atomic fluorescence can occur. The application of laser excitation atomic fluorescence to the analysis of metals in a helium microwave induced plasma with ultrasonic sample nebulization was the initial focus of this work. Experimental conditions and results are included for the aqueous characterization of manganese, lead, thallium, and iron in the helium MIP- LEAFS system. These results are compared to previous laser excitation atomic fluorescence experimentation. The effect of matrix interferences on the analytical fluorescence signal was also investigated for each element. The advantage of helium MIPs over argon ICPs in the determination of nonmetals in solution indicates that the helium MIP is an excellent candidate for laser excitation atomic fluorescence experiments involving nonmetals such as chlorine, bromine, iodine, and

  11. A NEW GENERATION OF INSTRUMENTATION AND CAPABILITIES FOR ATOMIC MASS SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    @@ Atomic mass spectrometry,embodied usually as inductively coupled plasma mass spectrometry (ICPMS) or glow-discharge mass spectrometry (GDMS),has become a widely accepted tool for trace and ultra-trace elemental analysis.ICPMS offers detection limits below 1 ppt in solution,a dynamic concentration levels,isotope-analysis and isotope-dilution capabilities,modest matrix interferences,understandable spectral interferences (isobaric overlaps),precision in range of 2—5%,and rapid measurements (typically 10 seconds per isotope).

  12. A geração química de vapor em espectrometria atômica Chemical vapor generation in atomic spectrometry

    OpenAIRE

    Iracema Takase; Hugo Borges Pereira; Aderval S. Luna; Patrícia Grinberg; Reinaldo Calixto de Campos

    2002-01-01

    The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS), microwave induced plasma optical emission spectrometry (MIP-OES), inductively coupled plasma optical emission spectrometry (ICP-OES) , inductively coupled plasma mass spectrometry (ICP-MS) and furnace atomic nonthermal excitation spectrometry (FANES) are considered. Hydride generation...

  13. Cooperative Fluorescence from a Strongly Driven Dilute Cloud of Atoms

    OpenAIRE

    Ott, Johan Raunkjær; Wubs, Martijn; Lodahl, Peter; Mortensen, N. Asger; Kaiser, R.

    2013-01-01

    We investigate cooperative fluorescence in a dilute cloud of strongly driven two-level emitters. Starting from the Heisenberg equations of motion, we compute the first-order scattering corrections to the saturation of the excited-state population and to the resonance-fluorescence spectrum, which both require going beyond the state-of-the-art linear-optics approach to describe collective phenomena. A dipole blockade is observed due to long-range dipole-dipole coupling that vanishes at stronger...

  14. New high temperature plasmas and sample introduction systems for analytical atomic emission and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Montaser, A.

    1992-01-01

    New high temperature plasmas and new sample introduction systems are explored for rapid elemental and isotopic analysis of gases, solutions, and solids using mass spectrometry and atomic emission spectrometry. Emphasis was placed on atmospheric pressure He inductively coupled plasmas (ICP) suitable for atomization, excitation, and ionization of elements; simulation and computer modeling of plasma sources with potential for use in spectrochemical analysis; spectroscopic imaging and diagnostic studies of high temperature plasmas, particularly He ICP discharges; and development of new, low-cost sample introduction systems, and examination of techniques for probing the aerosols over a wide range. Refs., 14 figs. (DLC)

  15. Quenching-independent fluorescence measurements of atomic hydrogen with photoionization controlled-loss spectroscopy

    International Nuclear Information System (INIS)

    Quenching-independent fluorescence by atomic hydrogen has been measured with photoionization controlled-loss spectroscopy (PICLS) in stoichiometric and fuel-rich premixed H2/O2/N2 flames at a pressure of 20 Torr. These measurements are compared with conventional fluorescence measurements in the same flames. When matched in the postflame zone, the two sets of measurements diverge in the preheat zone between the burner surface and the peak of the fluorescence profiles. This divergence, caused by changes in the local quenching rate coefficient, shows the utility of PICLS for determining the kinetics of atomic hydrogen in the preheat zone

  16. Optical resonance shifts in the fluorescence imaging of thermal and cold Rubidium atomic gases

    CERN Document Server

    Jenkins, S D; Javanainen, J; Bourgain, R; Jennewein, S; Sortais, Y R P; Browaeys, A

    2016-01-01

    We show that the resonance shifts in fluorescence of a cold gas of rubidium atoms substantially differ from those of thermal atomic ensembles that obey the standard continuous medium electrodynamics. The analysis is based on large-scale microscopic numerical simulations and experimental measurements of the resonance shifts in a steady-state response in light propagation.

  17. Optical Resonance Shifts in the Fluorescence of Thermal and Cold Atomic Gases

    Science.gov (United States)

    Jenkins, S. D.; Ruostekoski, J.; Javanainen, J.; Bourgain, R.; Jennewein, S.; Sortais, Y. R. P.; Browaeys, A.

    2016-05-01

    We show that the resonance shifts in the fluorescence of a cold gas of rubidium atoms substantially differ from those of thermal atomic ensembles that obey the standard continuous medium electrodynamics. The analysis is based on large-scale microscopic numerical simulations and experimental measurements of the resonance shifts in a steady-state response in light propagation.

  18. Comparative study of multi-element determination using inductively coupled plasma mass spectrometry, total reflection X-ray fluorescence spectrometry and neutron activation analysis

    International Nuclear Information System (INIS)

    The analytical capabilities of inductively coupled plasma mass spectrometry, total reflection X-ray fluorescence spectrometry and neutron activation analysis were compared. The data originated from the parallel analyses of spinach, cabbage and domestic sludge samples, which were used in inter-laboratory tests to monitor precision and accuracy. The determined concentrations range from 40 mg g-1 to 20 ng g-1 and the analytical errors from 2 to 30%. The extensive results and the reliability of the techniques are discussed. (orig.)

  19. Evaluation of a method for the determination of chromium in urine by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A method for the determination of chromium in urine by atomic absorption spectrometry, using electrothermic atomization with pyrolytic graphite tubes, is proposed. The determinations are performed by standard addition. The method is applicable to biologic monitoring of populations with different degrees of exposition. It is also used in the analysis of chromium in sediments. Results of chromium in urine of a population group non-exposed to the metal are presented. 11 refs

  20. A double-well atom trap for fluorescence detection at the Heisenberg limit

    CERN Document Server

    Stroescu, Ion; Oberthaler, Markus K

    2014-01-01

    We experimentally demonstrate an atom number detector capable of simultaneous detection of two mesoscopic ensembles with single atom resolution. Such a sensitivity is a prerequisite for going beyond quantum metrology with spin-squeezed states. Our system is based on fluorescence detection of atoms in a novel hybrid trap in which a dipole barrier divides a magneto-optical trap into two separated wells. We introduce a noise model describing the various sources contributing to the measurement error and report a limit of up to 500 atoms for the exact determination of the atom number difference.

  1. Using Atomic Fluorescence Spectrometry to Study the Spatial Distribution of As and Hg in Orchard Soils%原子荧光光谱法对果园土壤中砷和汞空间分布特征的研究

    Institute of Scientific and Technical Information of China (English)

    赵西梅; 吕春艳; 刘庆; 朱西存

    2014-01-01

    Aqua regia digestion ,double channels-atomic fluorescence spectrometry method was used to determine the concentra-tions of As and Hg in orchard soils of Qixia City -the main apple production area of Shandong province .Validate The detection limitation ,accuracy and precision of the method were validated ,the spatial distribution was analyzed ,and the characteristics of As and Hg pollution in Qixia orchard soils were assessed .The results showed that the range of As concentration in Qixia soils is between 2.79 and 20.93 mg · kg -1 ,the average concentration is 10.59 mg · kg -1 ,the range of Hg concentration in Qixia soil is between 0.01 and 0.79 mg · kg -1 ,the average concentration is 0.12 mg · kg -1 .The variation of As concentration in soils is small ,whereas that of Hg concentration is large .Frequency distribution graphics of As and Hg showed that the concentration of As in soils is according with the normal distribution approximately and the concentrations are mostly between 7 and 15 mg · kg -1 ,the concentration of Hg in soil isn't according with the normal distribution and the concentrations are mostly between 0.03 and 0.21 mg · kg -1 .The correlations between the concentrations of As or Hg in soils and the nutrient are not significant and there is no significant correlation even between As and Hg .Based on the environmental technical terms for green food production area ,the As concentration in orchard soil of Qixia City is at clean level ,but there are 4.76% of sample points with Hg pollution index exceeding 1 ,and this should be attracted the attention of the administrators .%利用王水消解-双道原子荧光光谱法测定了山东省苹果主产区栖霞市果园土壤中的 As和 Hg含量,验证了检测方法的检出限、准确度与精密度,分析了栖霞市果园土壤中重金属As和 Hg的空间分布特征,并对栖霞市果园土壤中As和Hg的污染状况进行评价。结果表明:栖霞市果园

  2. Cooperative fluorescence from a strongly driven dilute cloud of atoms

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Wubs, Martijn; Lodahl, Peter;

    2013-01-01

    We investigate cooperative fluorescence in a dilute cloud of strongly driven two-level emitters. Starting from the Heisenberg equations of motion, we compute the first-order scattering corrections to the saturation of the excited-state population and to the resonance-fluorescence spectrum, which...... both require going beyond the state-of-the-art linear-optics approach to describe collective phenomena. A dipole blockade is observed due to long-range dipole-dipole coupling that vanishes at stronger driving fields. Furthermore, we compute the inelastic component of the light scattered by a cloud of...

  3. Recent trends in total reflection X-ray fluorescence spectrometry for biological applications

    International Nuclear Information System (INIS)

    This review is focused on the application of total reflection X-ray fluorescence (TXRF) spectrometry in the field of biological research. In the last decade, most papers were published by authors who applied laboratory-scale TXRF equipments. The application of synchrotron radiation as excitation source (SR-TXRF) shows a slowly increasing tendency. In the cited papers the micro-, trace and multielement capability of these TXRF techniques was demonstrated in the clinical and medical laboratory practice, as well as in various plant physiological studies. For speciation of elements in biological matrices, the TXRF was used as element specific detector following an off-line separation step (e.g., thin layer chromatography, high performance liquid chromatography), however, these off-line methods are not competitive with the on-line coupled HPLC-inductively coupled plasma mass spectrometry

  4. X-Ray Fluorescence Spectrometry. II. Determination of Uranium in ores

    International Nuclear Information System (INIS)

    A method of analysis of uranium in ores by X-ray spectrometry was developed, using the internal standard technique. Strontium was found to be the most suitable internal standard for general use. A Norelco Philips X-ray fluorescent spectrometer was used in this work, equipped with a lithium fluoride crystal acting as a diffraction grating analyzer. The intensity of the uranium-L α1 spectral line is calculated and related to corresponding strontium-Kα spectral line, both detected with a Scintillation Counter. (Author) 31 refs

  5. The determination, by x-ray-fluorescence spectrometry, of gold in activated charcoal

    International Nuclear Information System (INIS)

    A rapid method is described for the determination of gold in activated charcoal by X-ray-fluorescence spectrometry. Compensation for matrix effects is achieved by means of platinum that is added for use as an internal standard. Calibration is achieved by use of a series of synthetic standards that are made by the spiking of barren charcoal with gold and platinum. The limit of determination is about 8 p.p.m. of gold, and the relative standard deviation is 1,2 per cent at a concentration level of 2300 p.p.m

  6. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The on-line atomization of gold volatile species was studied and the results were compared with thermodynamic calculations in several quartz atomizers, namely: diffusion flame, flame-in-gas-shield, flame-in-plain-tube, externally heated T-tube and externally heated flame-in-T-tube. Atomization mechanism in the explored devices is proposed, where volatile species are converted to thermodynamically stable AuH at elevated temperature over 500 °C and then atomized by an interaction with a cloud of hydrogen radicals. Because of its inherent simplicity and robustness, diffusion flame was employed as a reference atomizer. It yielded atomization efficiency of 70 to 100% and a very good long time reproducibility of peak area sensitivity: 1.6 to 1.8 s μg−1. Six and eleven times higher sensitivity, respectively, was provided by atomizers with longer light paths in the observation volume, i.e. externally heated T-tube and externally heated flame-in-T-tube. The latter one, offering limit of detection below 0.01 μg ml−1, appeared as the most prospective for on-line atomization. Insight into the mechanism of atomization of gold volatile species, into the fate of free atoms and into subsequent analyte transfer allowed to assess possibilities of in-atomizer preconcentration of gold volatile species: it is unfeasible with quartz atomizers but a sapphire tube atomizer could be useful in this respect. - Highlights: • On-line atomization of gold volatile species for AAS in quartz devices was studied. • Atomization mechanism was proposed and atomization efficiency was estimated. • Possibilities of in-atomizer preconcentration of gold volatile species were assessed

  7. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vojtková, Blanka; Dočekal, Bohumil

    2005-01-01

    Roč. 99, S (2005), s489-s491. ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] Institutional research plan: CEZ:AV0Z40310501 Keywords : solid sampling * electrothermal atomic absorption spectrometry * trace analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  8. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne;

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve...

  9. Rapid accurate analysis of metal (oxide)-on-silica catalysts by atomic absorption spectrometry

    NARCIS (Netherlands)

    Jütte, B.A.H.G.; Heikamp, A.; Agterdenbos, J.

    1979-01-01

    The catalysts, which contain 10–60% copper, chromium, nickel and silicon, are decomposed in sealed Teflon-lined vessels and analyzed by atomic absorption spectrometry. Matrix matching and bracketing standards are applied. The RSD of a single determination is about 1% for all components.

  10. Precise atomic mass measurements by deflection mass spectrometry

    CERN Document Server

    Barber, R C

    2003-01-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 sup 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  11. Precise atomic mass measurements by deflection mass spectrometry

    Science.gov (United States)

    Barber, R. C.; Sharma, K. S.

    2003-05-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  12. Ultimate Statistical Physics: fluorescence of a single atom

    CERN Document Server

    Pomeau, Yves; Ginibre, Jean

    2016-01-01

    We discuss the statistics of emission of photons by a single atom or ion illuminated by a laser beam at the frequency of quasi-resonance between two energy levels, a situation that corresponds to real experiments. We extend this to the case of two laser beams resonant with the energy differences between two excited levels and the ground state (three level atom in V-configuration). We use a novel approach of this type of problem by considering Kolmogorov equation for the probability distribution of the atomic state which takes into account first the deterministic evolution of this state under the effect of the incoming laser beam and the random emission of photons during the spontaneous decay of the excited state(s) to the ground state. This approach yields solvable equations in the two level atom case. For the three level atom case we set the problem and define clearly its frame. The results obtained are valid both in the opposite limits of rare and of frequent spontaneous decay, compared to the period of the...

  13. A geração química de vapor em espectrometria atômica Chemical vapor generation in atomic spectrometry

    Directory of Open Access Journals (Sweden)

    Iracema Takase

    2002-12-01

    Full Text Available The historical development of atomic spectrometry techniques based on chemical vapor generation by both batch and flow injection sampling formats is presented. Detection via atomic absorption spectrometry (AAS, microwave induced plasma optical emission spectrometry (MIP-OES, inductively coupled plasma optical emission spectrometry (ICP-OES , inductively coupled plasma mass spectrometry (ICP-MS and furnace atomic nonthermal excitation spectrometry (FANES are considered. Hydride generation is separately considered in contrast to other methods of generation of volatile derivatives. Hg ¾ CVAAS (cold vapor atomic absorption spectrometry is not considered here. The current state-of-the-art, including extension, advantages and limitations of this approach is discussed.

  14. Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine

    International Nuclear Information System (INIS)

    Methods for the atomic fluorescence spectrometric (AFS) determination of total arsenic and arsenic species in wines based on continuous flow hydride generation (HG) with atomization in miniature diffusion flame (MDF) are described. For hydride-forming arsenic, L-cysteine is used as reagent for pre-reduction and complexation of arsenite, arsenate, monomethylarsonate and dimethylarsinate. Concentrations of hydrochloric acid and tetrahydroborate are optimized in order to minimize interference by ethanol. Procedure permits determination of the sum of these four species in 5-10-fold diluted samples with limit of detection (LOD) 0.3 and 0.6 μg l-1 As in white and red wines, respectively, with precision between 2% and 8% RSD at As levels within 0.5-10 μg l-1. Selective arsine generation from different reaction media is used for non-chromatographic determination of arsenic species in wines: citrate buffer at pH 5.1 for As(III); 0.2 mol l-1 acetic acid for arsenite + dimethylarsinate (DMA); 8 mol l-1 HCl for total inorganic arsenic [As(III) + As(V)]; and monomethylarsonate (MMA) calculated by difference. Calibration with aqueous and ethanol-matched standard solutions of As(III) is used for 10- and 5-fold diluted samples, respectively. The LODs are 0.4 μg l-1 for As(III) and 0.3 μg l-1 for the other three As species and precision is within 4-8% RSDs. Arsenic species in wine were also determined by coupling of ion chromatographic separation on an anion exchange column and HG-flame AFS detection. Methods were validated by means of recovery studies and comparative analyses by HG-AFS and electrothermal atomic absorption spectrometry after microwave digestion. The LODs were 0.12, 0.27, 0.15 and 0.13 μg l-1 (as As) and RSDs were 2-6%, 5-9%, 3-7% and 2-5% for As(III), As(V), MMA and DMA arsenic species, respectively. Bottled red and white wines from Bulgaria, Republic of Macedonia and Italy were analyzed by non-chromatographic and chromatographic procedures and the As

  15. Pulse nebulization atomic absorption spectrometry after preconcentration from acidic media

    International Nuclear Information System (INIS)

    The possible advantages of the combination: chlorinated solvent extraction - pulse nebulization, abomic absorption spectrometry (AAS), as well as application of this method to multi-element determination of several important trace elements in biological samples is investigated. Hexamethyleneammonium hexamethylenedithiocarbamate (HMA-HMDTC) and ammonium pyrrolidinedithiocarbamate (APDC) as regents and CCl4, CHCl3, butylacetate (BuOAc) and methylisobutyl ketone (MIBK) as organic solvents are utilized. There is a tendency that CCl4 is the best solvent and MIBK - the worst. The study of extraction efficiency versus the ratio of aqueous-to-organic phase also shows the advantages of chlorinated solvents for extraction from acidic media. Better results are obtained with HMA-HMDTC as a reagent for Cu and Pb, whereas, for Cd extraction APDC gave a more efficient extraction. Chloroform shows a higher sensitivity enhancement factor, especially for volatile and/or chloride-forming elements. The extraction is successfully applied to determination of Cd, Cu and Pb in tissues of alfalfa, cabbage, carrots, onions, potatoes and wheat, as well as two standard reference materials. The results are in good agreement with the certified values

  16. Determination of antimony by using tungsten trap atomic absorption spectrometry

    International Nuclear Information System (INIS)

    An electrically heated tungsten coil was used as a trap in the determination of antimony. The technique consists of three steps. Initially, SbH3 is formed by hydride generation procedure; then the analyte species in vapor form are transported to W-coil trap heated at 370 deg. C. Following the preconcentration step, the trap is heated to 895 deg. C; analyte species are revolatilized and transported to the flame-heated quartz atom cell where atomization and the formation of signal take place. The experimental parameters were optimized both for trap and no-trap studies. The most important experimental parameters are concentrations of HCl and NaBH4 solutions, H2 and Ar gas flow rates, and collection and revolatilization temperatures of W-coil. Accuracy was tested using a certified reference material, waste water EU-L-1. Limit of detection for the system is 16 ng l-1 using a sample of 36 ml collected in 4.0 min. Enhancement factor in sensitivity was 17

  17. Micro-determination of ytterbium with electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This communication reports the use of a pyrolytic graphite coated tube, lined with tantalum-tungsten, and a local made atomic absorption spectrometer (Model WFD-Y3) for the determination of small amount Yb in pure Y2O3 and mixed rare earth oxides. It is found that the method proposed is sensitive, reproducible and simple in manipulation. Even as low as 0.2 μg Yb in one gram sample (n x 10-7) can be determined directly without pre-concentration. It is found experimentally that the optimum condition for drying is at 150 deg C. for 20 sec, ashing at 1000 deg C. for 20 sec and atomization at 2770 deg C. for 12 sec. Within the range 1.0-18ng Yb/ml the calibration curve of Yb is linear. Before injecting into the tube, the acidity of the sample solution should be ajusted to 0.1 to 2 M with nitric or hydrochloric acid. For 5ng Yb/ml, Al(III), Ca(II) and La(III) interference, when their amount present is 50 μg/ml or more. On the other hand, Cu(II), Fe(III), Mg(II), K(I) and Y(III) in amount up to 1 mg/ml do not interfere

  18. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    Science.gov (United States)

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC. PMID:15910814

  19. Bromine and bromide content in soils: Analytical approach from total reflection X-ray fluorescence spectrometry.

    Science.gov (United States)

    Gallardo, Helena; Queralt, Ignasi; Tapias, Josefina; Candela, Lucila; Margui, Eva

    2016-08-01

    Monitoring total bromine and bromide concentrations in soils is significant in many environmental studies. Thus fast analytical methodologies that entail simple sample preparation and low-cost analyses are desired. In the present work, the possibilities and drawbacks of low-power total reflection X-ray fluorescence spectrometry (TXRF) for the determination of total bromine and bromide contents in soils were evaluated. The direct analysis of a solid suspension using 20 mg of fine ground soil (water soil extracts. In this case, the TXRF analysis can be directly performed by depositing 10 μL of the internal standardized soil extract sample on a quartz glass reflector in a measuring time of 1500 s. The bromide limit of detection by this approach was 10 μg L(-1). Good agreement was obtained between the TXRF results for the total bromine and bromide determinations in soils and those obtained by other popular analytical techniques, e.g. energy dispersive X-ray fluorescence spectrometry (total bromine) and ionic chromatography (bromide). As a study case, the TXRF method was applied to study bromine accumulation in two agricultural soils fumigated with a methyl bromide pesticide and irrigated with regenerated waste water. PMID:27179429

  20. Experimental and theoretical comparison of the precision of flame atomic absorption, fluorescence, and emission measurements

    International Nuclear Information System (INIS)

    Theoretical equations and experimental evaluation procedures for the determination of the precision of flame atomic absorption, emission, and fluorescence measurements are presented. These procedures and noise power spectra are used to evaluate the precision and noise characteristics of atomic copper measurements with all three techniques under the same experimental conditions in a H2-air flame. At the detection limit, emission and fluorescence measurements are limited by background emission shot and flicker noise whereas absorption measurements are limited by flame transmission lamp flicker noise. Analyte flicker noise limits precision at higher analyte concentrations for all three techniques. Fluctutations in self-absorption and the inner filter effect are shown to contribute to the noise in atomic emission and fluorescence measurements

  1. In-trap fluorescence detection of atoms in a microscopic dipole trap

    CERN Document Server

    Hilliard, A J; Sompet, P; Carpentier, A V; Andersen, M F

    2015-01-01

    We investigate fluorescence detection using a standing wave of blue-detuned light of one or more atoms held in a deep, microscopic dipole trap. The blue-detuned standing wave realizes a Sisyphus laser cooling mechanism so that an atom can scatter many photons while remaining trapped. When imaging more than one atom, the blue detuning limits loss due to inelastic light-assisted collisions. Using this standing wave probe beam, we demonstrate that we can count from one to the order of 100 atoms in the microtrap with sub-poissonian precision.

  2. Polymerized LB films imaged with a combined atomic force microscope-fluorescence microscope

    OpenAIRE

    Putman, Constant A.J.; Hansma, Helen G.; Gaub, Hermann E.; Hansma, Paul K.

    1992-01-01

    The first results obtained with a new stand-alone atomic force microscope (AFM) integrated with a standard Zeiss optical fluorescence microscope are presented. The optical microscope allows location and selection of objects to be imaged with the high-resolution AFM. Furthermore, the combined microscope enables a direct comparison between features observed in the fluorescence microscope and those observed in the images obtained with the AFM, in air or under liquid. The cracks in polymerized La...

  3. Advances in metallomics by atomic and molecular spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. The scope of research in the field of elemental speciation has considerably evolved during the last decade. The analysis of specific metal-containing contaminants reached the maturity and has given way to the development of analytical methods to describe interactions of metals with biomolecules which are constituents of the genome, proteome, metabolome and other -omes in a cell, tissue or organism. The entirety of metal-biomolecule species has been termed the 'metallome' which gave rise to an emerging discipline: metallomics. Advances of trace element analysis in life sciences resulted in the proliferation of new terms related to the description of metal-interactions with biomolecules, such as, e.g. ionome, metalloproteome, metallogenome, metallometabolome, heteroatom-tagged proteome, single element proteomes (e.g., selenoproteome) and the corresponding -omics. The analytical chemistry challenges in the area metallomics include the detection, quantification, identification and characterization of complexes of metals (metalloids) at trace levels in an environment rich in biomolecules often having similar physicochemical properties. In the past, the only way to access to this information was modelling using stability constants. Today, hyphenated techniques based on the coupling of a high resolution separation technique with sensitive elemental (ICP MS) and molecular (ES MS/MS) mass spectrometry offer the possibility of high-throughput acquisition of metallomics information in many biological systems. The lecture discusses advances in analytical techniques in the field of metallomics. Particular attention will be to developments in multidimensional nanoHPLC with the parallel ICP MS and ESI MS detection and the sensitive spotting of heteroelement-containing proteins in 2D gels, accompanied by advances in MALDI TOF MS. Potential for medical research (e.g., characterization for selenoproteins as new biomarkers of clinical utility

  4. Instantaneous temperature imaging of diffusion flames using two-line atomic fluorescence.

    Science.gov (United States)

    Medwell, Paul R; Chan, Qing N; Kalt, Peter A M; Alwahabi, Zeyad T; Dally, Bassam B; Nathan, Graham J

    2010-02-01

    This work investigates the first demonstration of nonlinear regime two-line atomic fluorescence (NTLAF) thermometry in laminar non-premixed flames. The results show the expediency of the technique in the study of the reaction zone and reveals interesting findings about the indium atomization process. Indium fluorescence is observed to be strongest at the flame-front, where the temperature exceeds 1000 K. The uncertainty in the deduced temperature measurement is approximately 6%. The temperature profile across the reaction zone shows good agreement with laminar flame calculations. The advantages and inherent limitations of the technique are discussed. PMID:20149278

  5. The stationary resonance fluorescence of a two-level atom in a cat-state field

    Science.gov (United States)

    Tomilin, V. A.; Il'ichov, L. V.

    2016-09-01

    We investigate the resonance fluorescence of a two-level atom placed in non-classical field which is a superposition of Glauber coherent states. The source of this superposition known under the common name of 'Schrödinger cat'-states is explicitly incorporated into the model. This let us to explore the stationary regime. In the strong (multiphoton) field limit the steady-state of the atom+photons system is found. We evaluated the spectrum of the resonance fluorescence. It appears to be one-component in contrast to the case with the classical external field.

  6. Nitrogen atom detection in low-pressure flames by two-photon laser-excited fluorescence

    OpenAIRE

    Bittner, Jürgen; Lawitzki, Annette; Meier, Ulrich; Kohse-Höinghaus, Katharina

    1991-01-01

    Nitrogen atoms have been detected in stoichiometric flat premixed H2/O2/N2 flames at 33 and 96 mbar doped with small amounts of NH3, HCN, and (CN)2 using two-photon laser excitation at 211 nm and fluorescence detection around 870 nm. The shape of the fluorescence intensity profiles versus height above the burner surface is markedly different for the different additives. Using measured quenching rate coefficients and calibrating with the aid of known N-atom concentrations in a discharge flow r...

  7. (2+1) laser-induced fluorescence of spin-polarized hydrogen atoms.

    Science.gov (United States)

    Bougas, Lykourgos; Sofikitis, Dimitris; Everest, Michael A; Alexander, Andrew J; Rakitzis, T Peter

    2010-11-01

    We report the measurement of the spin polarization of hydrogen (SPH) atoms by (2+1) laser-induced fluorescence, produced via the photodissociation of thermal HBr molecules with circularly polarized 193 nm light. This scheme, which involves two-photon laser excitation at 205 nm and fluorescence at 656 nm, offers an experimentally simpler polarization-detection method than the previously reported vacuum ultraviolet detection scheme, allowing the detection of SPH atoms to be performed more straightforwardly, from the photodissociation of a wide range of molecules and from a variety of collision experiments. PMID:21054033

  8. Optimization of conditions for the determination of Eu, Gd and Sm by atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES)

    International Nuclear Information System (INIS)

    The possibilities of the determination of Sm, Eu and Gd by atomic absorption and emission spectrometry were investigated. Measurement parameters on a Varian atomic absorption spectrometer were optimized (the height of the measurement above the nozzle of the burner, stoichiometry of the dinitrogen oxide-acetylene flame by statistical evaluation of the signals). The following optimal conditions were found for the Sm, Eu and Gd determinations: Samarium - measurement under the emission arrangement at 476.1 nm wavelength, slit width 0.05 nm, in reduction flame close to the outlet slit of the flame (at the lowest part of the flame). Europium - measurement under the absorption arrangement at 459.4 nm wavelength, slit width 1 nm, in reduction flame at the lowest part of the flame. Gadolinium - measurement under the emission arrangement at 461.7 nm wavelength, slit width 0.05 nm, at the lowest part of the flame. (author). 2 figs., 3 tabs., 2 refs

  9. The use of portable X-ray Fluorescence Spectrometry (PXRFS) for clinical practices

    International Nuclear Information System (INIS)

    In the last years X-Ray Fluorescence (X RF) technique has been applied to clinical finality at IPEN/CNEN-S P, in collaboration with blood banks and research centers from Brazil. The major advantage for using this analytic technique for chemistry clinical is the viability to use small quantities of blood (25 to 100μL) comparatively to conventional analyses preformed using serum (at least 500 μL to 10 m L). Besides, the execution is faster and the procedure is not destructive. Now, we intend to check the viability of using a portable X- Ray Fluorescence Spectrometry (PXRFS) for clinical blood examination. In this study the biological samples came from Blood Banks of Sao Paulo city (Brazil). Each sample was collected in a vacuum plastic tube (without anticoagulants) attached to the donors arm and, immediately after the collection exactly, 100 μ L of whole blood was transferred to the filter paper (Whatman, n 41) using a calibrated micropipette and it was dried for few minutes using an infrared lamp. Samples were prepared in duplicate. The X RF analysis was performed using Mini X spectrometer from Amptek, model X-123 Sdd with Ag X-ray tube. The characteristics X-ray fluorescent intensities (Kα lines) were measured with a Si detector (Si Drift 25 m m2 x 500 μm / 0.5 mil) Be (window / 1.5) and biological samples were irradiated for 300s using 30 kV and 5 μA excitation. The quantitative analysis was performed using WINAXIL software program. We intend to stimulate the use of this small spectrometry as an alternative for diagnostic of the clinical diseases that have high prevalence in Brazilian population

  10. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO3)2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 μg g-1 of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  11. [Energy-dispersive x-ray fluorescence spectrometry--a forensic chemistry method for determination of shooting distance].

    Science.gov (United States)

    Havel, J

    2003-10-01

    The article follows up the experiences Energo-dispersive X-ray fluorescence spectrometry (EDXRF) as the forensic necrochemical method as the tool for detection of metals (gunshot residues--GSR) in connection with gunshot-wounds of persons--authors: dipl. Ing. J. Havel and dipl. Ing. K. Zelenka and Energo-dispersive X-ray fluorescence spectrometry (EDXRF) as the forensic method as the tool for identification of inlets (gunshot--entries) and outlets (gunshot--exits)--author: dipl. Ing. J. Havel. PMID:14661530

  12. Dispersed fluorescence spectrometry from the VIS to VUV spectral range for experiments at heavy-ion storage facilities

    Science.gov (United States)

    Reiß, Philipp; Schmidt, Philipp; Ozga, Christian; Knie, André; Ehresmann, Arno

    2015-11-01

    For the electronic- and charge-state specific determination of VUV-VIS fluorescence emission cross sections after collisions between heavy ions and neutral gases or electrons a fluorescence spectrometer for the VUV-VIS spectral range is planned. Tentative experiments showed that signal rates after collisions between Xe atoms and {{Xe}}54+ ions are high enough to allow efficient experiments.

  13. Quantitative analysis of soil by using X-ray fluorescence spectrometry (WDXRFS)

    International Nuclear Information System (INIS)

    Development of the new technologies has been using a lot of substances composed by metals, consequently generating reject for the environment. There is nowadays a concern in management and to control processes that contribute to the environmental degradation. This paper has the purpose to establish an analysis method for the quantitative determination of major and trace elements soil used the Technique of Wavelength Dispersion X-ray Fluorescence Spectrometry (WDRXFS) and the Fundamental Parameters Method. This method allows calculating the theoretical fluorescent intensities obtained by the measured intensities of the elements present in the sample, through the instrumental sensibility. Advantages of this methodology are: use of small amount of sample, accuracy high and sensibility in the determinations studied analyte; not use of chemical treatments in the preparation of samples; speed and cost relatively low. Methodology was validated by the analyze of five certified reference materials, CRM-2704 - Buffalo River Sediment (NIST), JB2, JG1 and JG1a - Geological Survey of Japan (GSJ) and SL-3 -Lake Sediment (IAEA). An X- Ray Fluorescence Spectrometer RIGAKU was used, RIX 3000, 1996 of the Laboratory X-Ray Fluorescence, Center of Chemistry and environment of the Institute of Energy and Nuclear Researches of Sao Paulo. The detection limit for major elements is 0,01-0,2% and trace elements 5 μg/g-100 μg/g. The analytes studied were: SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5, Ag, As, Cd, Ce, Cr, Cu, Ga, Hg, La, Nd, Ni, Pb, Rb, Se, Sr, V, Y, Zn and Zr. (author)

  14. Atomic spectrometry methods for wine analysis: A critical evaluation and discussion of recent applications

    Energy Technology Data Exchange (ETDEWEB)

    Grindlay, Guillermo, E-mail: guillermo.grindlay@ua.es [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 Alicante (Spain); Mora, Juan; Gras, Luis [Department of Analytical Chemistry, Nutrition and Food Sciences, University of Alicante, PO Box 99, 03080 Alicante (Spain); Loos-Vollebregt, Margaretha T.C. de [Delft University of Technology, Faculty of Applied Sciences, Analytical Biotechnology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2011-04-08

    The analysis of wine is of great importance since wine components strongly determine its stability, organoleptic or nutrition characteristics. In addition, wine analysis is also important to prevent fraud and to assess toxicological issues. Among the different analytical techniques described in the literature, atomic spectrometry has been traditionally employed for elemental wine analysis due to its simplicity and good analytical figures of merit. The scope of this review is to summarize the main advantages and drawbacks of various atomic spectrometry techniques for elemental wine analysis. Special attention is paid to interferences (i.e. matrix effects) affecting the analysis as well as the strategies available to mitigate them. Finally, latest studies about wine speciation are briefly discussed.

  15. On the expression 'external calibration' in atomic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, Tibor [Geological Institute of Hungary, Stefania Ave 14, 1143 Budapest (Hungary)], E-mail: kantib@t-online.hu

    2008-04-15

    The expressions 'calibration' and 'external calibration' appear together in the present literature of atomic spectrometry resulting in a dilemma of understanding and correct use. It is examined how the IUPAC can provide a guidance to the solution of this problem by recalling the definitions of related terms of optical, mass and X-ray atomic spectrometry techniques. The introduction and definition of these expressions in widely used text books are investigated and statistically evaluated for the articles published during the last 30 years in the periodical Spectrochimica Acta Part B. For the elimination of the literary difficulties with the use of the term 'calibration', attributes are proposed to express the degree of matrix matching of standards and samples.

  16. Atomic spectrometry methods for wine analysis: A critical evaluation and discussion of recent applications

    International Nuclear Information System (INIS)

    The analysis of wine is of great importance since wine components strongly determine its stability, organoleptic or nutrition characteristics. In addition, wine analysis is also important to prevent fraud and to assess toxicological issues. Among the different analytical techniques described in the literature, atomic spectrometry has been traditionally employed for elemental wine analysis due to its simplicity and good analytical figures of merit. The scope of this review is to summarize the main advantages and drawbacks of various atomic spectrometry techniques for elemental wine analysis. Special attention is paid to interferences (i.e. matrix effects) affecting the analysis as well as the strategies available to mitigate them. Finally, latest studies about wine speciation are briefly discussed.

  17. Case Studies on Facility Characterization with X-Ray Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    A hand-held x-ray fluorescence (XRF) analyzer is being used to characterize facilities in support of demolition activities at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Approximately 500 facilities at the U.S. Department of Energy site are being demolished under the ETTP Decontamination and Decommissioning (D and D) project. Facility characterization is being conducted to provide data for waste profiling and identify hazards to demolition workers. XRF spectrometry is a non-destructive analytical technique used to identify and quantify the elemental composition of a substance based on the intensity of its characteristic X-ray emission wavelength or energy. The Innov-X SystemsR Model XT-245S XRF analyzer used at ETTP is equipped with a silver anode x-ray tube and a Si PIN diode detector. X-rays are generated by electrical current, eliminating the need for radioactive isotopes. Electronic components can be powered by either a lithium-ion battery or an A/C adapter, and the instrument is controlled by an iPAQR pocket personal computer. The unit has two primary operating modes. Alloy analysis mode measures percent levels of elements in metals such as a pipes, valves, equipment, or construction materials. Soil mode provides parts-per-million (ppm) quantities in bulk solids like concrete dust, residue, paint chips, or soil. The hand-held unit can analyze material in place, or it can analyze samples in a test stand by remote operation. This paper present some case studies demonstrating a variety of XRF applications for facility characterization: Metal Materials Characterization, Lead Paint Identification, Hot Spot Delineation, Bulk Solids Testing. XRF has been the analytical technique of choice for identifying metal alloy components and has also been useful in analyzing bulk materials. Limitations of XRF testing include the inability to directly analyze elements with low atomic weights. Light elements such as beryllium and aluminum do not emit

  18. Depth profiling using total reflection X-ray fluorescence spectrometry alone and in combination with ion beam sputtering

    Science.gov (United States)

    Schwenke, H.; Knoth, J.; Günther, R.; Wiener, G.; Bormann, R.

    1997-07-01

    The capability of total reflection X-ray fluorescence spectrometry (TXRF) for depth profiling is examined by means of selected examples including organometallic layers, an implantation profile of arsenic in silicon and a layered nickel/cobalt structure. For structures without density differences that are deeper than 20 nm or so, and also for buried layers and for the examination of sharp interfaces, which require the highest resolution, two different combinations of ion beam sputtering with TXRF have been employed. A microsectioning technique was investigated in which samples were etched to a bevel shape and subsequently scanned by TXRF. A depth resolution of 2.5 nm was obtained. Alternatively, the so called "transfer technique" was investigated. This involves surface atoms being sputtered by an ion beam and immediately deposited on a silicon wafer rotated behind a slit which is moved in step with the sputter progress. Subsequently, the wafer is scanned by TXRF. Using this technique, the width of a coherent Ti/Al interface within a layered structure was measured to be 1.4 nm. The depth resolutions of the "microsectioning" and the "transfer" techniques are compared with data from RBS, XPS, SIMS and SNMS.

  19. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed in...... compensated by superior performance and versatility. In fact, two approaches are conceivable: The analyte-loaded ion-exchange beads might either be transported directly into the graphite tube where they are pyrolized and the measurand is atomized and quantified; or the loaded beads can be eluted and the...

  20. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...... were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well as...

  1. Determination of serum lithium: comparison between atomic emission and absorption spectrometry methods

    Directory of Open Access Journals (Sweden)

    Carlos Elielton do Espírito Santo

    2014-02-01

    Full Text Available Introduction: The therapeutic monitoring of lithium, through concentration measurements, is important for individual dose adjustment, as a marker of treatment adherence and to prevent poisoning and side effects. Objectives: Validate and compare two methods - atomic emission and atomic absorption - for the determination of lithium in serum samples. Methodology: Parameters such as specificity, precision, accuracy, limit of detection (LOD and linearity were considered. The atomic absorption spectrometer was used, operating in either emission or absorption mode. For the quantitative comparison of 30 serum samples from patients with mood disorder treated with lithium, the results were submitted to Student's t-test, F-test and Pearson's correlation. Results: The limit of quantification (LOQ was established as 0.05 mEq/l of lithium, and calibration curves were constructed in the range of 0.05-2 mEq/l of lithium, using aqueous standards. Sample preparation time was reduced, what is important in medical laboratory. Conclusion: Both methods were considered satisfactory, precise and accurate and can be adopted for lithium quantification. In the comparison of quantitative results in lithium-treated patients through statistical tests, no significant differences were observed. Therefore the methods for lithium quantification by flame atomic absorption spectrometry (FAAS and flame atomic emission spectrometry (FAES may be considered similar.

  2. Mineral Analysis the Infusion of Black Tea Samples by Atomic Absorption Spectrometry

    OpenAIRE

    Lahiji N.; Tadayon F.; Tamiji F.; Lahiji A. H.

    2013-01-01

    Tea infusion is one of the most popular drinks around the world. Since tea infusion is known to contain several essential nutrients, it is considered a healthy beverage. In this study eight different Iranian brands of tea infusion and eleven brands imported tea infusion samples from another country for Cu, Zn, Mn and Al were determined by flame atomic absorption spectrometry after wet digestion. The results of analysis showed that the extraction rates of minerals from dry black tea to infusio...

  3. Polymerized LB films imaged with a combined atomic force microscope-fluorescence microscope

    NARCIS (Netherlands)

    Putman, Constant A.J.; Hansma, Helen G.; Gaub, Hermann E.; Hansma, Paul K.

    1992-01-01

    The first results obtained with a new stand-alone atomic force microscope (AFM) integrated with a standard Zeiss optical fluorescence microscope are presented. The optical microscope allows location and selection of objects to be imaged with the high-resolution AFM. Furthermore, the combined microsc

  4. In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies

    International Nuclear Information System (INIS)

    Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL−1 and 0.51 ng mL−1, respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL−1 for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. - Highlights: • Further increasing in sensitivity of SQT-AT-FAAS was obtained by using a W coated SQT. • 613 fold sensitivity enhancement was achieved by W coated SQT-AT-FAAS versus FAAS. • A sensitive, rapid and simple technique for Bi was developed with an LOD of 0.51 ng mL−1. • The technique is suggested for laboratories equipped with only a flame AA spectrometer

  5. Evaluation of quartz tubes as atomization cells for gold determination by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This work describes the development of a new analytical procedure able to determine gold by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) using nickel tubes (NiT) and quartz tubes (QT) as atomization cells. Experiments involving changes in the flow injection operational parameters, reagent concentrations and sizes of the QT were performed in order to optimize sensitivity. Under the same operational conditions, it was observed that the employment of QT increases the sensitivity of gold determination when compared to the nickel tube. Since solutions of highly concentrated hydrochloric acid showed the best performance as carriers, quartz tubes were also preferred due to its greater tolerance to corrosion by mineral acids in comparison to NiT. In addition, changes in the internal diameter of the QT revealed an important improvement in sensitivity for smaller tubes. Under optimized conditions the main figures of merit showed values close to that of graphite furnace atomic absorption spectrometry with the addition of an excellent improvement of the sample throughput. They are: LOD (3 s): 0.004 μg mL−1, sensitivity: 0.306 (μg mL−1)−1, RSD% (n = 10, 1 μg mL−1): 2.5, linear range: 0.01–4 μg mL−1 and sample throughput: 72 h−1. This new method was employed for the determination of gold in homeopathic medicines with no need of sample digestion. Validation of the analytical results will be shown. A full discussion of the most relevant findings regarding the role of the atomization cell as a strategic key for improving sensitivity will be also provided. - Highlights: ► Quartz tubes as furnaces in TS-FFAAS. ► Small tubes for controlling radial dispersion. ► Improved figures of merit for gold determination. ► Analysis of homeopathic medicines.

  6. Trace element distribution in human teeth by x-ray fluorescence spectrometry and multivariate statistical analysis

    CERN Document Server

    Oprea, Cristiana; Gustova, Marina V; Oprea, Ioan A; Buzguta, Violeta L

    2014-01-01

    X-ray fluorescence spectrometry (XRFS) was used as a multielement method of evaluation of individual whole human tooth or tooth tissues for their amounts of trace elements. Measurements were carried out on human enamel, dentine, and dental cementum, and some differences in tooth matrix composition were noted. In addition, the elemental concentrations determined in teeth from subjects of different ages, nutritional states, professions and gender, living under various environmental conditions and dietary habits, were included in a comparison by multivariate statistical analysis (MVSA) methods. By factor analysis it was established that inorganic components of human teeth varied consistently with their source in the tissue, with more in such tissue from females than in that from males, and more in tooth incisor than in tooth molar.

  7. Determination of rubidium and strontium in geological materials by X-Ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    In order to determine whole-rock ages by the Rb/Sr procedure, an X-ray fluorescence spectrometry method for the determination of both elements has been developed. The samples are pressed into boric acid backed and ringed pellets with this material as a binding agent. Matrix corrections are made following the determination od the mass absorption coefficients, based on the intensity of the Compton-scattered peak of MoKα. or MoKβ1.3. The U. S. Geological Survey granodiorite GSP-1 is used as a reference standard. Spectral-line interferences have been carefully studied and the empirical correction factors determined. A BASIC language program for calculating the Rb and Sr concentrations and the Rb/Sr ratios has been written. (Author) 7 refs

  8. The determination of trace elements in uranium ores by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    The determination of 17 trace elements (As, Ba, Co, Cr, Cu, Mo, Nb, Ni, Pb, Rb, Sr, Th, U, V, Y, Zn and Zr) in uranium ores by x-ray fluorescence spectrometry was investigated in this study. The determination of major elements was also necessary for the calculation of mass absorption coefficients. Initially a method was developed for the determination of the elements of interest in unmineralised silicates. Correction for absorption of radiation by the sample were made by means of mass absorption coefficients which were obtained from the relation between the inverse of the mass absorption coefficient and the intensity of the Compton scattering peak. The Feather and Willis method was used for determining the background intensity at the peak positions as well as for mass absorption coefficients. It was observed that the background intensity in the region of the uranium lines increases with increasing uranium content of the sample

  9. Determination of impurities in magnesium and aluminium by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    The determination of traces of Al, Cr, Cu, Fe, Mn, Ni, Pb, Si and of Bi, Cr, Cu, Fe, Ga, Mg, Mn, Ni, Pb, Si, Sn, Ti, V and Zn in samples of magnesium and aluminium, respectively, by means of X-ray fluorescence spectrometry, are studied. An automatic sequential spectrometer with an on-line computer for the treatment of data has been employed. The most suitable measurement parameters have been chosen for each element in order to achieve detection limits to a few p.p.m. For magnesium in the form of drillings the analyses are performed with satisfactory results for most impurities by pressing the samples into briquettes and employing metallic discs as standards. Correction methods for the spectral interferences of Ti on V, and V on Cr have been applied. (author)

  10. [Determination of major elements in superphosphate by X-ray fluorescence spectrometry].

    Science.gov (United States)

    Rui, Yu-Kui; Li, He; Shen, Jian-Bo; Zhang, Fu-Suo

    2008-11-01

    Phosphate fertilizer is one of the most important fertilizers. The authors determined nine kinds of major elements in superphosphate, the most important phosphate fertilizer, by X-ray fluorescence spectrometry. The detection range of SiO2, Al2O3, TFe2O3, MnO, MgO, CaO, Na2O, K2O and P2O5 is 15.0%-90.0%, 0.20%-25.0%, 0.20%-25.0%, 0.01%-0.35%, 0.20%-40.0%, 0.10%-35.0%, 0.10%-7.50%, 0.05%-7.50% and 1.00%-100.00% respectively, and the precision of the method for SiO2, Al2O3, TFe2O3, MnO, MgO, CaO, Na2O, K2O and P2O5 range from 0.20% to 0.005%, so the method of X-ray fluorescence spectrometry is a fast and effectual method for detecting the composition of phosphate fertilizer. The contents of the above elements showed (1) the detected superphosphate content is 18.101% of P2O5, which is accordant to the labeled level (> or = 16%); (2) the detected superphosphate contains much SiO2, TFe2O3, MgO, CaO and K2O, which are necessary for plant growth and the content of which is 16.954%, 1.495%, 1.580%, 21.428% and 1.585% respectively. These data showed that phosphate fertilizer sometimes can supply some trace elements for plants, but we should eliminate the interference effect of these elements when we research the role of phosphorus; (3) superphosphate contains 3.225% of Al2O3, so the authors should attention to the aluminium poison when superphosphate is used chronically. PMID:19271522

  11. Determination of non-ionic surfactants in technologic liquors and effluents by X-ray fluorescent spectrometry

    International Nuclear Information System (INIS)

    The method has been worked out for determination of non-ionic surfactants in technological liquors and effluents, based on the X-ray fluorescent spectrometry with an initial concentration by means of the phosphomolybdic acid. The method is suitable for a quantitative determination of ethylene oxide adducts in a wide range of applicable concentrations, the trace-ones included. (M.Z.)

  12. The determination, by x-ray-fluorescence spectrometry, of gold, silver, and base metals on activated carbon

    International Nuclear Information System (INIS)

    The method proposed involves ashing of the sample at a low temperature in a muffle furnace, mixing of the ash with alumina and boric acid in a Siebtechnik mill, and briquetting of the mixture. The elements are measured in the briquette by the use of x-ray fluorescence spectrometry. The detailed laboratory method is given in an appendix

  13. Rapid and direct determination of percentage tungsten in tantalum-10% tungsten alloy by Wavelength Dispersive X-Ray Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    A method for rapid and direct determination of percentage tungsten in tungsten-tantalum alloy by Wavelength Dispersive X-Ray Fluorescence Spectrometry has been developed for the routine determination of tungsten in tantalum-10% tungsten alloy samples. A RSD of < 1% is obtained in the technique. (author)

  14. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Science.gov (United States)

    Duben, Ondřej; Boušek, Jaroslav; Dědina, Jiří; Kratzer, Jan

    2015-09-01

    Atomization of selenium hydride in a quartz dielectric barrier discharge (DBD) atomizer was optimized and its performance was compared to that of the externally heated quartz multiatomizer. Argon was found as the best DBD discharge gas employing a flow rate of 75 ml min- 1 Ar while the DBD power was optimized at 14 W. The detection limits reached 0.24 ng ml- 1 Se in the DBD and 0.15 ng ml- 1 Se in the multiatomizer. The tolerance of DBD to interferences is even better than with the multiatomizer.

  15. Far-field resonance fluorescence from a dipole-interacting laser-driven cold atomic gas

    CERN Document Server

    Jones, Ryan; Olmos, Beatriz

    2016-01-01

    We analyze the temporal response of the fluorescence light that is emitted from a dense gas of cold atoms driven by a laser. When the average interatomic distance is smaller than the wavelength of the photons scattered by the atoms, the system exhibits strong dipolar interactions and collective dissipation. We solve the exact dynamics of small systems with different geometries and show how these collective features are manifest in the scattered light properties such as the photon emission rate, the power spectrum and the second-order correlation function. By calculating these quantities beyond the weak driving limit, we make progress in understanding the signatures of collective behavior in these many-body systems. Furthermore, we clarify the role of disorder on the resonance fluorescence, of direct relevance for recent experimental efforts that aim at the exploration of many-body effects in dipole-dipole interacting gases of atoms.

  16. A New Method for Determination of Arsenic and Mercury in Copper Concentrates: By High pressure airproof Microwave Digestion,Sequential Injection,Hydride Generation,and Atomic Fluorescence Spectrometry%一种检测铜精矿中砷和汞含量的新方法——高压密封微波消解-顺序注射-氢化物发生-原子荧光光谱法

    Institute of Scientific and Technical Information of China (English)

    苏明跃; 杨丽飞; 郭芬

    2011-01-01

    利用高压密封微波消解和顺序注射-氢化物发生-原子荧光光谱两项技术建立了检测铜精矿中砷、汞含量的新方法,并通过试验确定了适宜的检测条件.研究结果表明:本方法对砷的检出限为0.02μg/L,对汞的检出限为0.05μg/L;检测铜精矿中砷、汞的含量时,砷、汞的回收率分别为94.3%~107.0%和91.0%~102.0%,检测结果相对标准偏差分别在0.93%~1.97%之间和3.11%~8.07%之间,并且检测结果与认定值和国家标准方法测定值一致.%A new method for the determinations of arsenic content and mercury content in copper concentrates was founded by adopting two processes of high pressure-airproof microwave digestion and the sequential injection-hydride generation -atomic fluorescence spectrometry. Through tests, the optimum conditions for detection were determined. The tests resuits indicated that the detection limit of arsenic was 0.02 μg/L and the detection limit of mercury was 0.05 μg/L by this method. While detecting arsenic and mercury content in copper concentrate, it is found that the arsenic and mercury recovery rates reached 94.3% ~ 107.0% and 91.0% ~ 102.0% respectively with relative standard of deviation between 0.93% ~1.97% for arsenic and 3.11% ~ 8.07% for mercury. Also, these detecting results are in good agreement with the certified values and the values by the national standard method.

  17. Resonance fluorescence spectra of three-level atoms in a squeezed vacuum

    International Nuclear Information System (INIS)

    The fluorescence field from one of the two allowed transitions in a three-level atom can sense squeezed fluctuations of a vacuum field coupled to the other transition. We examine the fluorescence spectra of strongly driven three-level atoms in Λ, V, and cascade configurations in which one of the two one-photon transitions is coupled to a finite-bandwidth squeezed vacuum field, when the bandwidth is much smaller than the difference in the atomic transition frequencies, though much larger than atomic decay rates and Rabi frequencies of the driving fields. The driving fields are on one-photon resonance, and the squeezed vacuum field is generated by a degenerate parameter oscillator. Details are only given for the Λ configuration. The extension to the V and cascade configurations is straightforward. We find that in all configurations the fluorescence spectra of the transition not coupled to the squeezed vacuum field are composed of five lines, one central and two pairs of sidebands, with intensities and widths strongly influenced by the squeezed vacuum field. However, only the central component and the outer sidebands exhibit a dependence on the squeezing phase. We also examine the fluorescence spectrum for the cascade configuration with a squeezed vacuum field on resonance with the two-photon transition between the ground and the most excited states and now generated by a nondegenerate parametric oscillator. In this case, where the squeezed vacuum field can be made coupled to both transitions, all spectral lines depend on the squeezing phase. The spectral features are explained in terms of the dressed-atom model of the system. We show that the coherent mixing of the atomic states by the strong driving fields modifies transition rates between the dressed states, which results in the selective phase dependence of the spectral features. copyright 1996 The American Physical Society

  18. Determination of toxic metals in clay-minerals by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    The presence of toxic elements such as Mn, Cr, Co, Ni, As, Se, Cd and Pb have been awakening great interest, because they are frequently found in environmental materials like soils, sediments and waters. The emission of those metals can be, mainly, attributed to industries, thermoelectric plants and urban occupation sources. The study of the contamination of the soils and sediments for toxic metals is important for the preservation and conservation of those resources, once the soil is a component key of the ecosystem for the growth of the plants, degradation and recycling of the dead biomass. A method for determination of those elements in clay minerals was established. It was used x-ray fluorescence spectrometry and fundamental parameters method. This method allows to calculate the theoretical fluorescent intensities from the measured intensities of the elements present in sample, using instrumental sensitivity. The clay fraction was obtained through mineral desegregation, being deposited by gravity on a quartz substrate. This kind of sample preparation allows to obtain thin film samples, reducing drastically the matrix effects. The fundamental parameters method does not need the single element calibration curves, carrying a very fast analysis. The method presented an accuracy lower than 10%, a precision between 0.3 to 2.4% and a determination limit at the 1μg/g (author)

  19. Electrochemical preconcentration and hydride generation methods for trace determination of selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The use of atomic absorption spectrometry in combination with two different preconcentration/separation techniques for the determination of trace concentrations of selenium is described. Electrochemical preconcentration onto a platinum electrode with a subsequent atomization of selenium is discussed briefly. Several parameters are considered such as the presence of depolarizers, and the temperature of the electrolyzed solutions. Special attention is payed to the efficiency of the atomization step, and a method to improve this is proposed. Applications of the technique to real samples are also reported. Secondly, the separation of the selenium as the volatile selenium hydride from the sample solution is considered. Several papers in this thesis deal with commonly occurring interferants as nickel and copper and with ways of minimizing or avoiding the interferring effects, whereas other papers relate to more theoretical aspects of the hydride generation process. New methods for the determination of selenium in technical samples with high contents of nickel and copper are also presented

  20. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D2 background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during digestion

  1. Fluorescence studies on 20Na and excited neon atoms in proton-induced plasmas

    International Nuclear Information System (INIS)

    In this thesis, an experimental study on the application of the optical fluorescence technique for the detection of excited and ground-state atoms in a neon plasma produced by 20-MeV protons is presented. By making use of a continuous-wave dye laser tuned to the D2-line of sodium, the 20Na atoms, produced via the reaction 20Ne(p,h)20Na, were excited and the intensity of the fluorescence light measured for several positions in the reaction vessel. From the time dependence of the fluorescence signal after a period of production by the proton beam, the diffusion of the 20Na atoms through the reaction vessel could be studied. Using single-mode operation of the dye laser the absorption line shape of the 23Na D-lines and the isotope shift of the 20Na D-lines with respect to the 23Na D-lines were determined. The proton beam was used as a well-defined excitation source to study the kinetic behaviour of neon atoms in the 1S2, 1S4 and 1S5 states. To learn the effect of plasma conditions on the results of the experiments, the electron density and the electron temperature in the plasma were measured

  2. Fluorescence spectra of atomic ensembles in a magneto-optical trap as an optical lattice

    CERN Document Server

    Yoon, Seokchan; Kang, Sungsam; Kim, Wook-Rae; Kim, Jung-Ryul; An, Kyungwon

    2015-01-01

    We present a study on characteristics of a magneto-optical trap (MOT) as an optical lattice. Fluorescence spectra of atoms trapped in a MOT with a passively phase-stabilized beam configuration have been measured by means of the photon-counting heterodyne spectroscopy. We observe a narrow Rayleigh peak and well-resolved Raman sidebands in the fluorescence spectra which clearly show that the MOT itself behaves as a three-dimensional optical lattice. Optical-lattice-like properties of the phase-stabilized MOT such as vibrational frequencies and lineshapes of Rayleigh peak and Raman sidebands are investigated systematically for various trap conditions.

  3. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  4. Study on the application of cold vapor atomic absorption spectrometry and hydride generation atomic absorption spectrometry for the determination of Hg and As traces in sea water samples

    International Nuclear Information System (INIS)

    The trace amount of total mercury (Hg) and arsenic (As) in sea water samples were quantitatively determined by using the Atomic Absorption Spectrometry connected with the hydride generation technique (HG-AAS) for As, and with the cold vapour technique (CV-AAS) for Hg. The experiments were carried out at room temperature on a Hydride System Module (HS55) combined with an Atomic Absorption Spectrometer (VARIO 6, Analytik Jena AG). The effect of reductants concentration, and that of matrix on the absorption intensity of each analyzed element was studied in details. The sea water sample after fitrating through a membrane with 0.45(μm-hole size was pre-treated with an oxidant or an reductant to obtain the identical medium. The absorption intensity of each element was then measured on the VARIO-6 under the optimum parameters for spectrometer such as: maximum wavelength, current of hollow cathode lamp, and that for hydride system such as cell temperature, speed of peristaltic pump, pump time, reaction time and rewash time, ect. The analytical procedures were set-up and applied for the determination of these above mentioned elements in the synthesized sea water sample and in the real sea water samples with high precision and accuracy. (author)

  5. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are...

  6. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are...

  7. Determination of lithium in coloured alcoholic beverages by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. Lithium was first found in ashes from wine in 1878, and its presence was later confirmed by spectroscopy, but its determination in wine and beverages is not well documented, unlike the extensive research reported on other metals. Several methods can be implemented for determination of lithium, involving the use of atomic spectroscopy techniques. This paper reports on an analytical optimization to determine lithium by atomic absorption spectrometry (AAS). Good results in reproducibility, accuracy and precision were obtained. No significant interference was found. The method was applied for determination of lithium in six rum samples, eight brandy samples, four vermouth samples, eight whisky samples and two bourbon samples. The value of lithium content in samples ranges from 0,33 to 1,48 μg/ml. Recovery experiments were carried out in order to evaluate the accuracy of the method in samples determination. The values obtained ranges from 95,71% to 98%. The precision of the method in that samples determination was evaluated through variation coefficients. The values obtained ranges from 7,2% to 2,5%. The results have been statistically compared with those obtained using the Inductively Coupled Plasma Atomic Emission Spectrometry (ICP/AES) and reaches a 95% level of significance.

  8. Energy dissipation in matrix-isolated silver atoms: A time-resolved fluorescence study

    Science.gov (United States)

    Wiggenhauser, H.; Schroeder, W.; Kolb, D. M.

    1988-03-01

    The fluorescence from optically excited Ag atoms in Ar, Kr, and Xe matrices has been investigated in a time-resolved synchrotron-radiation study. A detailed energy dissipation model could be established from a systematic analysis of rise and decay times of all the observed fluorescence bands after pulsed excitation into the Ag (4d105p)2P1/2,3/2 levels, and by setting time windows between the excitation pulses in emission and emission-yield spectroscopy. Although the overall wavelength dependence of the decay time follows the λ3 law, the decay time is independent of λ within a given emission band. Finally, the role of energy transfer between Ag atoms and dimers for the evaluation of decay times is briefly addressed.

  9. In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies

    Energy Technology Data Exchange (ETDEWEB)

    Kılınç, Ersin, E-mail: kilincersin@gmail.com [Medical Laboratory Techniques, Vocational Higher School of Healthcare Studies, Mardin Artuklu University, 47200 Mardin (Turkey); Bakırdere, Sezgin [Yıldız Technical University, Art and Science Faculy, Department of Chemistry, Esenler, TR 34220 İstanbul (Turkey); Aydın, Fırat [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbakır (Turkey); Ataman, O. Yavuz [Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, 06800 Ankara (Turkey)

    2013-11-01

    Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL{sup −1} and 0.51 ng mL{sup −1}, respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL{sup −1} for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. - Highlights: • Further increasing in sensitivity of SQT-AT-FAAS was obtained by using a W coated SQT. • 613 fold sensitivity enhancement was achieved by W coated SQT-AT-FAAS versus FAAS. • A sensitive, rapid and simple technique for Bi was developed with an LOD of 0.51 ng mL{sup −1}. • The technique is suggested for laboratories equipped with only a flame AA spectrometer.

  10. Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy

    OpenAIRE

    Spedden, Elise; White, James D.; Naumova, Elena N.; Kaplan, David L.; Staii, Cristian

    2013-01-01

    Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here, we combine atomic force microscopy-based force spectroscopy with fluorescence microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglio...

  11. New energy levels of atomic niobium by laser induced fluorescence spectroscopy in the near infrared

    International Nuclear Information System (INIS)

    Laser-induced fluorescence spectroscopy was applied in order to find new energy levels of the niobium atom. A continuous wave tuneable titanium–sapphire laser in the wavelength range from 750 to 865 nm and a hollow-cathode lamp were used. We discovered four energy levels of even parity, three lying levels below 19 000 cm−1 and one at much higher energy. Additionally hyperfine structure data of six levels of odd parity were determined. (paper)

  12. Elemental analysis of hair samples using energy dispersive X-ray fluorescence and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Elemental analysis of hair samples was performed using energy dispersive X-ray fluorescence. The ion exchange preconcentration technique was employed. The capacity of the exchanger used-cellulose hyphan at different pH was investigated to determine the optimum pH for the resin. The capacity of the resin to take up elements of interest from mixed solutions was also analysed using atomic absorption spectroscopy. (author)

  13. Study of a Model Humic Acid-type Polymer by Fluorescence Spectroscopy and Atomic Force Microscopy

    OpenAIRE

    Marcos Antonio Piza; Nelson Consolin-Filho; Sérgio da Costa Saab; Daiana Kotra Deda; Fábio de Lima Leite; Marcilene Ferrari Barriquello; Ladislau Martin-Neto

    2012-01-01

    A model HA-type polymer of para-benzoquinone synthetic humic acid (SHA) and its complexes with copper, iron and manganese metal ions were studied using atomic force microscopy (AFM). Natural humic acids (HA) and synthetic humic acids (SHA) were examined by fluorescence spectroscopy, which indicated similarity of SHA and HA spectra. The AFM images of SHA and its complexes revealed variable morphologies, such as small spheres, aggregates and a sponge-like structure. The SHA complexes displayed ...

  14. Simultaneous differential spinning disk fluorescence optical sectioning microscopy and nanomechanical mapping atomic force microscopy

    International Nuclear Information System (INIS)

    Combined microscopy techniques offer the life science research community a powerful tool to investigate complex biological systems and their interactions. Here, we present a new combined microscopy platform based on fluorescence optical sectioning microscopy through aperture correlation microscopy with a Differential Spinning Disk (DSD) and nanomechanical mapping with an Atomic Force Microscope (AFM). The illumination scheme of the DSD microscope unit, contrary to standard single or multi-point confocal microscopes, provides a time-independent illumination of the AFM cantilever. This enables a distortion-free simultaneous operation of fluorescence optical sectioning microscopy and atomic force microscopy with standard probes. In this context, we discuss sample heating due to AFM cantilever illumination with fluorescence excitation light. Integration of a DSD fluorescence optical sectioning unit with an AFM platform requires mitigation of mechanical noise transfer of the spinning disk. We identify and present two solutions to almost annul this noise in the AFM measurement process. The new combined microscopy platform is applied to the characterization of a DOPC/DOPS (4:1) lipid structures labelled with a lipophilic cationic indocarbocyanine dye deposited on a mica substrate

  15. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) in support of nuclear waste management

    International Nuclear Information System (INIS)

    Simulated complex nuclear waste solutions are characterized by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AEC). The system uses and ICP source focused on both a polychromator and a computer-controlled scanning monochromator for intensity measurements. This instrumentation allows for simultaneous and sequential measurements of liquid extraction distribution coefficients needed in the development of process flow sheets for component separations. A large number of elements are determined rapidly with adequate sensitivity and accuracy. The focus of this investigation centers on the analysis of nuclear fission products. 13 references, 13 tables

  16. Analysis of atmospheric aerosols by atomic emission spectrometry with electrical discharge sampling

    International Nuclear Information System (INIS)

    A procedure is developed for the determination of the concentration of heavy metals (Pb, Mn, Cu, Ni, Zn, and Cd) in atmospheric air by atomic emission spectrometry with gas-discharge sampling onto the end of a standard carbon electrode. A design of a two-section sampler is proposed; the sampler provides the rapid determination of deposition factors for the deposition of heavy metals contained in aerosol particles onto the end of a carbon electrode. Examples of determining metal concentrations in a model sample of air and in atmospheric air and determination limits of metals deposited onto the end of a carbon electrode are given

  17. Chloride isolation for accelerator mass spectrometry of 36Cl produced by atomic bomb neutrons

    International Nuclear Information System (INIS)

    Accelerator mass spectrometry was performed at the Munich tandem laboratory to determine the ratio of 36Cl/Cl in silicate rock samples exposed to neutrons of the Hiroshima atomic bomb. Chloride was chemically separated from silicate rock for this purpose. Five grams of silicate rock was fused with 30 g of sodium hydroxide and dissolved in 900 ml of water. The chloride in the resulting solution was spectrophotometrically determined. Chloride was precipitated as silver chloride by addition of appropriate amounts of silver nitrate, and silver chloride was then collected on a membrane filter. The chloride in the rock samples was thus isolated quantitatively. (author)

  18. A double cell for X-ray absorption spectrometry of atomic Zn

    CERN Document Server

    Mihelic, A; Arcon, I; Padeznik-Gomilsek, J; Borowski, M

    2002-01-01

    A high-temperature cell with a double wall design has been constructed for X-ray absorption spectrometry of metal vapors. The inner cell, assembled from a corundum tube and thin plates without welding or reshaping, serves as a container of the vapor sample. It is not vacuum tight: instead, the outer tube provides inert atmosphere. Several spectra of K-edge atomic absorption of Zn were obtained in the stationary working regime below the Zn boiling point. The K-edge profile shows an extremely strong resonance and, above the continuum threshold, coexcitations of the outer electrons.

  19. Speciation of organometallic compounds by Zeeman atomic absorption spectrometry with liquid chromatography

    International Nuclear Information System (INIS)

    A method for the determination of organometallic compounds in the ppB range includes separation of the desired species with a high pressure liquid chromatograph and determination of the trace element by Zeeman atomic absorption spectrometry. The analysis of a mixture of vitamin B12 and Co(NO3)2 is described as a demonstration of the method. Determination of many enzymes and coenzymes having a metal ion in their functional center and of many toxic metals in environmental samples are other fields for application of this method

  20. The determination, by x-ray-fluorescence spectrometry, of gold and uranium on resin

    International Nuclear Information System (INIS)

    The problems encountered in the determination of gold and uranium that are present simultaneously in a sample of resin were considered, and new background positions, as well as correction factors for background lift and partial spectral overlap, were determined for use in the X-ray-fluorescence measurement of these elements. The agreement between the results obtained by the use of the X-ray-fluorescence method and those obtained by atomic-absorption spectrophotometry were found to be satisfactory. The relative standard deviation in the former measurements is 0,005 at a concentration of 1000 p.p.m., and the working range of the calibrations is 15 to 1000 p.p.m. These limits can be extended by further dilution of the sample. The limits of determination are 6 p.p.m. in the briquette prepared from a sample of resin and 18 p.p.m. in the sample when the maximum mass of the sample is 3 g. The procedure is intended primarily for use in the rapid determination of gold and uranium when no analyses for other elements are required. The time taken for the analysis is 2 hours for 10 samples when 6 standards are used. A computer programme that was developed for the processing of the data is appended as part of a laboratory method

  1. 碱熔、氢化物原子荧光光谱法测定土壤中微量锗%FLUORESCENCE SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    陈锡海; 王国成

    2011-01-01

    Acidize sample that has been subjected to alkali fusion.Determine the content of germanium in phosphate medium with potassium borohydride as reducing agent,by using atomic fluorescence spectrometry.The detection limit of the method is 0.1μg/g.It was used to test 6 national level 1 soil samples and gave results consistent to recommended values.Respective test of 12 times gave RSD all below 10%.%将碱熔后的样品酸化,在磷酸介质中,以硼氢化钾为还原剂,用原子荧光光谱法测定锗的含量。该法的检出限为0.1μg/g,,测定的六个国家一级土样与推荐值相符,并且各自测定12次的RSD均小于10%。

  2. Determination of niobium content in Zr-Nb alloys by Wavelength Dispersive X-ray Fluorescence Spectrometry

    International Nuclear Information System (INIS)

    Quantitative determination of niobium content in zirconium alloys, viz. Zr-2.5% Nb and Zr-1% Nb by Wavelength Dispersive X-Ray Fluorescence Spectrometer (WDXRFS) has been described in the paper. The results are compared with those obtained by Direct Reading Emission Spectrometer (DRES) for Zr-2.5%Nb samples. For Zr-1%Nb samples, analysis by wavelength dispersive x-ray fluorescence spectrometry in two modes viz. through solution mode and by nondestructive solid sample analysis were performed and the results are compared. A RSD of < 1% is obtained in the technique. (author)

  3. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  4. Expressing self-absorption in the analytical function of inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Kántor, Tibor; Bartha, András

    2015-11-01

    The self-absorption of spectral lines was studied with up to date multi-element inductively coupled plasma atomic emission spectrometry (ICP-AES) instrumentation using radial and axial viewing of the plasma, as well, performing line peak height and line peak area measurements. Two resonance atomic and ionic lines of Cd and Mg were studied, the concentration range was extended up to 2000 mg/L. At the varying analyte concentration, constant matrix concentration of 10,000 mg/L Ca was ensured in the pneumatically nebulized solutions. The physical and the phenomenological formulation of the emission analytical function is overviewed and as the continuity of the earlier results the following equation is offered:

  5. Determination of tetraalkyllead compounds in gasoline by liquid chromatography-atomic absorption spectrometry

    Science.gov (United States)

    Messman, J.D.; Rains, T.C.

    1981-01-01

    A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.

  6. X-ray fluorescence spectrometry. A useful tool in the chemical characterization of soils

    Energy Technology Data Exchange (ETDEWEB)

    Low, A.B.; Bristow, J.W.

    1983-02-01

    Soil nutrient data are often required where variation in substrate is responsible for associated differences in plant communities. In ecological studies, elements generally examined include the major nutrients. On the other hand, S and certain trace elements which may be equally important to plant growth, are seldom dealt with. The total elemental status of soils is commonly determined after wet digestion with perchloric acid or fusion with sodium carbonate. Following this, each element must be determined separately using any one of a number of methods. Few recognised analytical laboratories have the facilities for these methods and most do not conduct routine investigations of trace element status. In addition several items of equipment are necessary. Because of the disadvantages associated with standard analysis of soil, X-ray fluorescence spectrometry techniques were used to ascertain whether this relatively low-cost method could be applied to the rapid analysis of soil samples. The exercise was also prompted by the fact that no facility exists for the express purpose of handling the analytical needs of the Fynbos Biome Project. Several soils of differing origin and/or development from the Cape Peninsula and Cape Flats where chosen for chemical analysis. These soils were also selected because basic data on their respective nutrient statuses were lacking.

  7. Characterization of Bacillus subtilis Colony Biofilms via Mass Spectrometry and Fluorescence Imaging.

    Science.gov (United States)

    Si, Tong; Li, Bin; Zhang, Ke; Xu, Yiran; Zhao, Huimin; Sweedler, Jonathan V

    2016-06-01

    Colony biofilms of Bacillus subtilis are a widely used model for studying cellular differentiation. Here, we applied matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) to examine cellular and molecular heterogeneity in B. subtilis colony biofilms. From B. subtilis cells cultivated on a biofilm-promoting medium, we detected two cannibalistic factors not found in previous MALDI MSI studies of the same strain under different culturing conditions. Given the importance of cannibalism in matrix formation of B. subtilis biofilms, we employed a transcriptional reporter to monitor matrix-producing cell subpopulations using fluorescence imaging. These two complementary imaging approaches were used to characterize three B. subtilis strains, the wild type isolate NCIB3610, and two mutants, Δspo0A and ΔabrB, with defective and enhanced biofilm phenotypes, respectively. Upon deletion of key transcriptional factors, correlated changes were observed in biofilm morphology, signaling, cannibalistic factor distribution, and matrix-related gene expression, providing new insights on cannibalism in biofilm development. This work underscores the advantages of using multimodal imaging to compare spatial patterns of selected molecules with the associated protein expression patterns, obtaining information on cellular heterogeneity and function not obtainable when using a single method to characterize biofilm formation. PMID:27136705

  8. The analysis of anode sludges by x-ray-fluorescence spectrometry

    International Nuclear Information System (INIS)

    A method is described for the analysis, by X-ray-fluorescence spectrometry, of anode sludges for the determination of antimony, bismuth, copper, iron, lead, nickel, selenium, silver, tellurium, tin, and zinc. The preparation of the samples involves fusion with a flux of barium peroxide and lithium hydroxide, and with dichromium trioxide as the internal standard, in a zirconium or vitreous-carbon crucible and casting of the melt in an aluminium mould; the fused disc so formed is then pulverized and briquetted to form pellets. Calibration curves, which are straight lines for all the elemets determined because the flux contains a heavy absorber, are established by measurement of pellets prepared from standard anode sludges, pure metals, compounds of the metals, or any combination of these materials. The precision of the results varies between 2 and 15 per cent relative standard deviation, depending on the concentration of the element being determined. The accuracy of the results is comparable with that obtained by wet-chemical methods. The laboratory method is given in an appendix

  9. Micro energy-dispersive x-ray fluorescence spectrometry study of dentin coating with nanobiomaterials

    Science.gov (United States)

    Soares, Luís. Eduardo Silva; Nahorny, Sídnei; Marciano, Fernanda Roberta; Zanin, Hudson; Lobo, Anderson de Oliveira

    2015-06-01

    New biomaterials such as multi-walled carbon nanotubes oxide/graphene oxide (MWCNTO/GO), nanohydroxyapatite (nHAp) and combination of them together or not to acidulated phosphate fluoride gel (F) have been tested as protective coating before root dentin erosion. Fourteen bovine teeth were cleaned, polished, divided into two parts (n=28) and assigned to seven groups: (Control) - without previous surface treatment; F treatment; nHAp; MWCNTO/GO; F+nHAp; F+MWCNTO/GO and F+MWCNTO/GO/nHAp composites. Each sample had two sites of pre-treatments: acid etched area and an area without treatment. After the biomaterials application, the samples were submitted to six cycles (demineralization: orange juice, 10 min; remineralization: artificial saliva, 1 h). Micro energy-dispersive X-ray fluorescence spectrometry (μ-EDXRF) mapping area analyses were performed after erosive cycling on both sites (n=84). μ-EDXRF mappings showed that artificial saliva and MWCNTO/GO/nHAp/F composite treatments produced lower dentin demineralization than in the other groups. Exposed dentin tubules allowed better interaction of nanobiomaterials than in smear layer covered dentin. Association of fluoride with other biomaterials had a positive influence on acid etched dentin. MWCNTO/GO/nHAp/F composite treatment resulted in levels of demineralization similar to the control group.

  10. Geochemical analysis of marine sediments using fused glass disc by X-ray fluorescence spectrometry

    Institute of Scientific and Technical Information of China (English)

    XIA Ning; ZHANG Qin; YAO De; LI Guohui

    2008-01-01

    A method was developed for content determination of Na, Mg, Al, Si, P,S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Nb, Zr, Y, Sr, Rb, Ba, La and Ce etc. covering 26 major, minor, and trace elements in marine sediment samples using fused glass disc by X-ray Fluorescence spectrometry. Calibration was made using marine sediment certified reference materials and the synthetic standard samples prepared by mixing several marine sediments with stream sediment and carbonate standard samples in different proportions. The matrix effect was corrected using theoretical alpha coefficients, experience coefficients and the scattered radiation as the internal standard (for the trace elements). The accuracy of the method was evaluated by analysis of certified reference materials GBW07314, GBW07334 and GSMS6. The results are in good agreement with the certified values of the standards with RSD less than 2.60%, except for Y, Cr, Ga, Ce, La, Nb, Rb, and V with RSD less than 9.0% (n=12).

  11. Multi-elemental analysis of marine sediments of Manila Bay using x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    An analysis of the marine sediments of Manila Bay was done by employing X-ray fluorescence spectrometry. The general trends observed in sediments are increasing (Ca and Sr), decreasing (Zr), or constant (Cl, Na, S, K) with respect to depth, sometimes, no trend can be observed. These trends are further explained by correlations present among these elements, plus all the other elements. The two X RF data analysis methods Auto Quantify and AXIL were also compared on the basis of the correlation plot obtained. AutoQuantify gave clearer correlations; thus, results from this method were used for constructing correlation plots. Correlations using Microsoft Excel and Stat graphics Centurion X V show that there are naturally occurring [lithogenic (Si, Ti, Al, Mg, Rb, Zn and Fe), biogenic (Ca, Mg), and conservative (Na, Cl)] and non-naturally occurring [mostly anthropogenic, brought to the bodies of water by aeolian or fluvial input (heavy metals Pb-Cu-Zn and Ni-Cr)] correlation present in the sediments. Moreover, pairs of elements that may coexist in a source and not coexist in another (Cr and Mg, Cr and Ni) have also been observed. The heavy metal enrichment was attributed to the burning of fossil fuels, iron and steel manufacturing (present in Valenzuela-Bulacan area), ferry and fishing services and other industrialization activities present in Manila Bay. Marine organisms are affected by the presence of these heavy metals by means of bioaccumulations, and may later on affect humans because of trophic transfer and bio magnification. (author)

  12. Determination of carbon in natural freshwater biofilms with total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    There is a growing interest in determination of low Z elements, i.e., carbon to phosphorus, in biological samples. Total reflection X-ray fluorescence spectrometry (TXRF) has been already established as suitable trace element analytical method with low sample demand and quite good quantification limits. Recently, the determinable element range was extended towards Z = 6 (carbon). Biofilms can be used for biomonioring purposes in the aquatic environment. Besides the trace metals, especially the determination of the carbon content is important for the better understanding of the early stage of biofilm formation. For this, an ATI low Z spectrometer equipped with Cr-anode X-ray tube, multilayer monochromator, vacuum chamber, and a Si(Li) detector with ultra thin window was used. Biofilms were grown on two different artificial supports (granite and plexiglass), freeze dried, suspended in high purity water and analyzed. As an internal standard the natural titanium content of the biofilms was used. The accuracy of the method was checked by total carbon measurement using a combusting carbon analyzer.

  13. Quantitative determination of Sulfur and Chlorine in Crude Oils by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Given the importance of sulfur and chlorine content in crude petroleum, and that the actual methods used in the country to its determination are slow and cumbersome, the present work consisted in applying a new method, based on X-ray fluorescence spectrometry, to make this analysis as fast as possible with greater sensibility and precision. Samples of crude petroleum were analyzed using two different quantitative methods: a) through calibration curves elaborated with standard aqueous solutions of inorganic salts of S and Cl and b) through standard addition method using CS2 as standard for S and CCl4 for Cl. The measuring system consisted of Fe-55 radioactive source (10 mCi), Si-Li semiconductor detector, spectrum amplifier, multichannel analyzer and a DIGITAL Computer. The peak areas and their deviations were obtained through AXIL software. The values of area and deviation joined to weight of sample and amount of standard added were used to calculate the concentration of the analite and its deviation. In conclusion, calibration curves enable only semiquantitative analysis. However, the standard addition method has advantages over ASTM methods D 129-64 and D 808-63 for sulfur and chlorine respectively. The main advantage is the great speed with which an analysis is made: 20 minutes, while ASTM methods need approximately 16 hours. Likewise it was obtained: sensibility 0.05%; accuracy: maximum 0.02%, minimum 10%; and precision: maximum 2%, minimum 10%. (author)

  14. Determination of noble metals by Inductively Coupled Plasma Atomic Emission Spectrometry

    International Nuclear Information System (INIS)

    Full text: It is well known that significant quantities of soluble fission products such as La, Ce, Pr, Eu, Gd, Sm and noble metals such as Ag, Pt, Au, Ru, Rh, Pd are produced in the spent fuel dissolver solutions, in nuclear reactors. The recovery of noble metals from generated high level waste assumes importance in view of their usage in chemical and electronic industries. In the present work, Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) technique has been explored to determine six noble metals in aqueous solutions. Synthetic solution standards containing individually Ag, Au, Pt, Pd, Rh and Ru in the range of 1-500 μg/mL were prepared. Individual elemental solutions at 100μg/mL were fed in to the plasma. The instrumental parameters were obtained for positioning of the analytical line with appropriate sensitivity on the photomultiplier tube. The prominent ICP lines reported in literature in decreasing order of sensitivities for Au are 242.745, 267.895, 197.819, 208.219 nm; Ru are 240.272, 245.657, 267.876 nm; for Rh are 233.477, 249.077, 343.419, 252.053 nm and for Pt are 214.423, 203.646, 214.937 nm respectively. Of these the lines shown in bold are only accessible with the axial ICP unit used in these studies. In addition less sensitive lines in the polyscan mode were chosen, where one can access an elemental line 2.2 nm on either side of the analytical channel provided in polychromator of the instrument. The lines chosen in the polyscan are: Pt 306.471, Ru 249.877 and Rh at 343.489 nm. For Ag and Pd the lines at 328.068 nm and 340.458 nm available with the polychromator of the ICP unit were used. A three point standardization containing the analytes in the concentration range of 0.1 to 200 μg/mL was used. The detection limits determined as per the IUPAC convention for these elements are given. The analytical range for Ag and Pd were 0.05-200 μg/mL while for other elements viz: Au, Pt, Rh and Ru it was 0.5-500 μg/mL . Synthetic samples

  15. Optimization of trace molybdenum content determination in human nails by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The accurate determination of molybdenum (Mo) in biological materials is of considerable importance in medical science because of the essential role played by this element in human metabolism. Molybdenum is a component of enzymes responsible for the initial stages of nitrogen, carbon and sulfur metabolism of plants, animals and humans. This element is usually determined by neutron activation analysis (NAA) in variety of samples, but direct measurement of low levels of molybdenum in biological samples by NAA is difficult. Recently instrumental analysis procedures such as atomic absorption spectrometry (AAS) have been used in clinical measurements for determination of many trace elements in the biological samples. These techniques are much simpler and cheaper than NAA. In this paper we are reporting a method of sample preparation for determining molybdenum by using graphite furnace atomic absorption spectrometry (GF-AAS). This method is the most readily available technique for determination of molybdenum at the ng/g level in biological samples. It can be used for the routine hospital laboratory determination of molybdenum and has appropriate sensitivity and simplicity. The best and reliable results for molybdenum analysis was achieved by digestion of nails in HNO3 2 N and was determined in the range from 0.11 to 5.10 μg/g

  16. Atomic force microscopy fishing and mass spectrometry identification of gp120 on immobilized aptamers

    Directory of Open Access Journals (Sweden)

    Ivanov YD

    2014-10-01

    Full Text Available Yuri D Ivanov,1 Natalia S Bukharina,1 Tatyana O Pleshakova,1 Pavel A Frantsuzov,1 Elena Yu Andreeva,1 Anna L Kaysheva,1,2 Victor G Zgoda,1 Alexander A Izotov,1 Tatyana I Pavlova,1 Vadim S Ziborov,1 Sergey P Radko,1 Sergei A Moshkovskii,1 Alexander I Archakov1 1Department of Personalized Medicine, Orekhovich Institute of Biomedical Chemistry of the Russian Academy of Medical Sciences, Moscow, Russia; 2PostgenTech Ltd., Moscow, Russia Abstract: Atomic force microscopy (AFM was applied to carry out direct and label-free detection of gp120 human immunodeficiency virus type 1 envelope glycoprotein as a target protein. This approach was based on the AFM fishing of gp120 from the analyte solution using anti-gp120 aptamers immobilized on the AFM chip to count gp120/aptamer complexes that were formed on the chip surface. The comparison of image contrasts of fished gp120 against the background of immobilized aptamers and anti-gp120 antibodies on the AFM images was conducted. It was shown that an image contrast of the protein/aptamer complexes was two-fold higher than the contrast of the protein/antibody complexes. Mass spectrometry identification provided an additional confirmation of the target protein presence on the AFM chips after biospecific fishing to avoid any artifacts. Keywords: gp120 HIV-1 envelope glycoprotein, aptamer, atomic force microscopy, mass spectrometry

  17. Determination of trace elements in ground water by two preconcentration methods using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This is a comparative study between two different methods of preconcentration done to separate the trace elements cadmium, nickel. chromium, manganese, copper, zinc, and lead in drinking (ground) water samples taken from different locations in Gezira State, central Sudan (the map); these methods are (coprecipitation) with aluminium hydroxide and by Ammonium Pyrrolidine Dithiocarbamate (APDC) using Methyl Isobutyl Ketone (MIBK) as an organic solvent; and subsequent analysis by Atomic Absorption Spectrometry (AAS) for both methods. The result of comparison showed the superiority of the (APDC) coprecipitation method over the aluminium hydroxide coprecipitation method in the total percentage recoveries of the studied trace elements in drinking (ground) water samples, such results confirm previous studies. This study also involves direct analysis of these water samples by atomic absorption spectrometry to determine the concentrations of trace elements Cadmium, Nickel, Chromium, Manganese, Copper, Zinc and Lead and compare it to the corresponding guide line values described by the World Health Organization and the maximum concentrations of trace elements in drinking water permitted by the Sudanese Standards and Metrology Organizations (SSMO), where the concentrations of some elements in some samples were found to be different than the described values by both of the organizations. The study includes a trial to throw light on the effect of the proximity of the water samples sources to the Blue Nile river on its trace elements concentrations; no relation was proved to exist in that respect.(Author)

  18. Determination of Elements by Atomic Absorption Spectrometry in Medicinal Plants Employed to Alleviate Common Cold Symptoms

    Institute of Scientific and Technical Information of China (English)

    F Zehra Küçükbay; Ebru Kuyumcu

    2014-01-01

    Eleven important medicinal plants generally used by the people of Turkey for the treatment of com-mon cold have been studied for their mineral contents .Eleven minor and major elements (essential ,non-essen-tial and toxic) were identified in the Asplenium adiantum-nigrum L .,Althaea of ficinalis L .,Verbascum phlomoides L .,Euphorbiachamaesyce L .,Zizyphus jujube Miller ,Peganum harmala L .,Arum dioscori-dis Sm .,Sambucus nigra L .,Piper longum L .,Tussilago farfara L .and Elettariacardamomum Maton by employing flame atomic absorption and emission spectrometry and electro-thermal atomic absorption spectrom-etry .Microwave digestion procedure for total concentration was applied under optimized conditions for dissolu-tion of medicinal plants .Plant based biological certified reference materials (CRMs) served as standards for quantification .These elements are found to be present in varying concentrations in the studied plants .The baseline data presented in this work can be used in understanding the role of essential ,non-essential and toxic elements in nutritive ,preventive and therapeutic properties of medicinal plants .

  19. Efficient isotope ratio analysis of uranium particles in swipe samples by total-reflection x-ray fluorescence spectrometry and secondary ion mass spectrometry

    International Nuclear Information System (INIS)

    A new particle recovery method and a sensitive screening method were developed for subsequent isotope ratio analysis of uranium particles in safeguards swipe samples. The particles in the swipe sample were recovered onto a carrier by means of vacuum suction-impact collection method. When grease coating was applied to the carrier, the recovery efficiency was improved to 48±9%, which is superior to that of conventionally-used ultrasoneration method. Prior to isotope ratio analysis with secondary ion mass spectrometry (SIMS), total reflection X-ray fluorescence spectrometry (TXRF) was applied to screen the sample for the presence of uranium particles. By the use of Si carriers in TXRF analysis, the detection limit of 22 pg was achieved for uranium. By combining these methods with SIMS, the isotope ratios of 235U/238U for individual uranium particles were efficiently determined. (author)

  20. Determination of various extracted Al species and their fractions by atomic spectrometry techniques

    International Nuclear Information System (INIS)

    Complete text of publication follows. During the last few decades aluminium and its distribution in the environment has attracted much attention because of Al toxic effects to the plants, animals and humans. Its concentration in different environmental samples varies widely. While determination of high Al concentrations can be realized with no serious problem, reliable determination of its trace and ultratrace concentrations requires the development of enrichment techniques capable of improving both, the selectivity and also sensitivity for this analyte. Two extraction methods were used for selective separation and preconcentration of aluminium trace concentrations from model solutions. Solid phase extraction (SPE) using nanometer-sized titanium dioxide as a solid sorbent and cloud point extraction (CPE) using nonionic surfactant octylphenoxypolyethoxyethanol (Triton X-114) were utilized. Spectrometry techniques such as flame (F AAS) and electrothermal (ET AAS) atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry (ICP OES) or inductively coupled plasma mass spectrometry (ICP MS) were applied for the determination of aluminium. Direct TiO2-slurry sampling was used for sample injection into the graphite furnace of ET AAS in SPE. Optimized procedures were used for the determination of trace and ultratrace amounts of total aluminium and various aluminium species and their fractions in speciation analysis and fractionation studies using environmental samples such as natural waters, soils and sediments. The work was supported by Slovak Research and Development Agency under the contracts No. APVT-20-010204, LPP-0038-06, LPP-0146-09 and SK-CZ-0044-07, by Scientific Grant Agency of Ministry of Education of Slovak Republic and the Slovak Academy of Sciences under the contracts No. VEGA 1/4464/07 and VEGA 1/0272/08 and by Ministry of Education, Youth and Sports of Czech Republic under the contract No. MEB 080813.

  1. A semiclassical study of laser-induced atomic fluorescence from Na2, K2 and NaK

    Science.gov (United States)

    Yuan, J.-M.; Bhattacharyya, D. K.; George, T. F.

    1982-01-01

    A semiclassical treatment of laser-induced atomic fluorescence for the alkali-dimer systems Na2, K2 and NaK is presented. The variation of the fluorescence intensity with the frequency of the exciting laser photon is studied and a comparison of theoretical results with a set of experimental data is presented.

  2. Photoluminescence Enhancement in Nanotextured Fluorescent SiC Passivated by Atomic Layer Deposited Al2O3 Films

    DEFF Research Database (Denmark)

    Lu, Weifang; Ou, Yiyu; Jokubavicius, Valdas;

    2016-01-01

    The influence of thickness of atomic layer deposited Al2O3 films on nano-textured fluorescent 6H-SiC passivation is investigated. The passivation effect on the light emission has been characterized by photoluminescence and time-resolved photoluminescence at room temperature. The results show that...... passivation in fluorescent SiC based white LEDs applications....

  3. Improvements and application of a modified gas chromatography atomic fluorescence spectroscopy method for routine determination of methylmercury in biota samples.

    Science.gov (United States)

    Gorecki, Jerzy; Díez, Sergi; Macherzynski, Mariusz; Kalisinska, Elżbieta; Golas, Janusz

    2013-10-15

    Improvements to the application of a combined solid-phase microextraction followed by gas chromatography coupled to pyrolysis and atomic fluorescence spectrometry method (SPME-GC-AFS) for methylmercury (MeHg) determination in biota samples are presented. Our new method includes improvements in the methodology of determination and the quantification technique. A shaker instead of a stirrer was used, in order to reduce the possibility of sample contamination and to simplify cleaning procedures. Then, optimal rotation frequency and shaking time were settled at 800 rpm and 10 min, respectively. Moreover, the GC-AFS system was equipped with a valve and an argon heater to eliminate the effect of the decrease in analytical signal caused by the moisture released from SPME fiber. For its determination, MeHg was first extracted from biota samples with a 25% KOH solution (3h) and then it was quantified by two methods, a conventional double standard addition method (AC) and a modified matrix-matched calibration (MQ) which is two times faster than the AC method. Both procedures were successfully tested with certified reference materials, and applied for the first time to the determination of MeHg in muscle samples of goosander (Mergus merganser) and liver samples of white-tailed eagle (Haliaeetus albicilla) with values ranging from 1.19 to 3.84 mg/kg dry weight (dw), and from 0.69 to 6.23 mg kg(-1) dw, respectively. PMID:24054647

  4. PEGylated Fluorescent Nanoparticles from One-Pot Atom Transfer Radical Polymerization and “Click Chemistry”

    Directory of Open Access Journals (Sweden)

    Li Qun Xu

    2015-10-01

    Full Text Available The preparation of PEGylated fluorescent nanoparticles (NPs based on atom transfer radical polymerization (ATRP and “click chemistry” in one-pot synthesis is presented. First, poly(p-chloromethyl styrene-alt-N-propargylmaleimide (P(CMS-alt-NPM copolymer was prepared via reversible addition-fragmentation chain transfer (RAFT polymerization. Subsequently, the azido-containing fluorene-based polymer, poly[(9,9-dihexylfluorene-alt-(9,9-bis-(6-azidohexylfluorene] (PFC6N3, was synthesized via Suzuki coupling polymerization, followed by azidation. Finally, the PEGylated fluorescent NPs were prepared via simultaneous intermolecular “click” cross-linking between P(CMS-alt-NPM and PFC6N3 and the ATRP of poly(ethylene glycol methyl ether methacrylate (PEGMMA using P(CMS-alt-NPM as the macroinitiator. The low cytotoxicity of the PEGylated fluorescent NPs was revealed by incubation with KB cells, a cell line derived from carcinoma of the nasopharynx, in an in vitro experiment. The biocompatible PEGylated fluorescent NPs were further used as a labeling agent for KB cells.

  5. Analysis of the elemental concentrations in rat femur's head using energy dispersive X ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    EDXRF spectrometry is used normally to determine the concentration of the different elements in a sample with advantages of good sensitivity, multielemental capabilities, fast, non-destructive and because of this simple relation to the fundamental physics of atom-radiation interaction, make of EDXRF a highly attractive analytical technique. A major goal for research in biomedical sciences over the last few decades has been determining the concentrations of various elements in human tissues. In recent years, large increase in research work related to bio-medical field such as blood, human hair, human teeth and bones have mad it desirable to improve the application of EDXRF analysis. The aim of this research is determine the concentration of the elements in femur heads of female and males Wistar rats. For such, samples of rats' femur of 92 days of age were irradiated with a miniaturized and low power X-ray generators (26.3 W and molybdenum anode). In this preliminary study, the results shows that EDXRF can be used to determinate the mains elements presents in femur's head and encourage the authors to investigate others regions of those samples to correlate and know about some pathologic such as osteoporosis or similar disease. (author)

  6. Use of laser-excited atomic fluorescence spectroscopy for characterization of an argon inductively coupled plasma

    International Nuclear Information System (INIS)

    Laser-excited atomic fluorescence spectroscopy (LEAFS) is investigated and employed as a diagnostic technique for study of the argon inductively coupled plasma (ICP). Computer simulations are used to describe the behavior of nonsteady-state laser excited fluorescence (LEF) for multi-level atomic systems under conditions expected to be encountered in the ICP and an atmospheric pressure flame. These simulations are then compared to experimental data collected under similar conditions in the ICP and a flame. These studies show that LEAFS should be a useful tool for characterization of an ICP, with certain limitations. Relatively small changes in saturated LEF signals under changing quenching and mixing conditions are both predicted theoretically and observed experimentally for several atomic systems. This independence from quenching and mixing effects allows one to relate saturated LEF signals directly to relative number densities of species when spatially scanning over an inhomogeneous medium, such as an ICP discharge, where significant changes in quenching can be encountered in a single scan. SSI values are also found to be useful as indicators of relative collisional quenching rates and relative degree of LTE establishment in the ICP, as well as ease of saturation for a given transition

  7. Direct determination of lead in sweet fruit-flavored powder drinks by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Lima, Éder C.; Krug, Francisco José; Arruda, Marco A. Z.

    1998-04-01

    A simplified method for direct determination of lead in sweet fruit-flavored powder drinks, syrups and honeys by electrothermal atomic absorption spectrometry without sample digestion is proposed. Samples were dissolved in water, acidified to 0.2% (v/v) HNO 3, and directly injected into an end-capped transversely heated graphite atomizer (THGA). Building up of carbonaceous residue inside the atomizer was effectively precluded for sugar solutions not exceeding 8.0% (m/v) when a heating program with two pyrolysis steps (600 and 1000°C) was carried out without air-ashing. Under these conditions one atomizer supported about 250 firings. Among various chemical modifiers tested, better recovery and repeatability results were obtained with a 5 μg Pd + 3 μg Mg(NO 3) 2 mixture. Tests carried out with individual concomitants containing up to 1.0 μg Na, K, Ca or Cl, and up to 10.0 μg phosphate or sulphate, and several mixtures of these six concomitants, did not reveal significant interferences on lead atomization. Characteristic mass and detection limit based on integrated absorbance were 15 and 11 pg Pb, respectively. The relative standard deviation based on 10 measurements for typical samples (20-60 ng g -1 Pb) was always lower than 5.5%. The detection limit of 7.0 ng g -1 Pb attained the Codex recommendation for the maximum allowed lead contents in the sugar samples. Application of t-test to the results obtained by the proposed direct analysis, and the official method adopted by Food Chemical Codex, demonstrated that there were no significant differences at the 5% probability level.

  8. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    Energy Technology Data Exchange (ETDEWEB)

    Arp, U. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Electron and Optical Physics Div.; LeBrun, T.; Southworth, S.H.; Jung, M. [Argonne National Lab., IL (United States). Physics Div.; MacDonald, M.A. [E.P.S.R.C. Daresbury Lab., Warrington (United Kingdom)

    1996-12-01

    Argon L{sub 2.3}-M{sub 2.3}M{sub 2.3} Auger-electron spectra were measured in coincidence with K{alpha} fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons.

  9. Comparative oxidation state specific analysis of arsenic species by high-performance liquid chromatography- inductively coupled plasma-mass spectrometry and hydride generation-cryotrapping-atomic absorption spectrometry

    OpenAIRE

    Currier, J. M.; Saunders, R J; Ding, L.; Bodnar, W.; Cable, P.; Matoušek, T. (Tomáš); Creed, J. T.; Stýblo, M.

    2013-01-01

    The formation of methylarsonous acid (MAsIII) and dimethylarsinous acid (DMAsIII) in the course of inorganic arsenic (iAs) metabolism plays an important role in the adverse effects of chronic exposure to iAs. High-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) and hydride generation-cryotrapping-atomic absorption spectrometry (HG-CT-AAS) have been frequently used for the analysis of MAsIII and DMAsIII in biological samples. While HG-CT-AAS has con...

  10. Supersonic pulsed free-jet of atoms and molecules of refractory metals: laser induced fluorescence spectroscopic studies on zirconium atoms and zirconium oxide molecules

    International Nuclear Information System (INIS)

    The experimental setup for generating supersonic pulsed free-jet containing atoms and molecules of refractory nature has been built. The technique of laser vaporization in conjunction with supersonic cooling is used to generate these species. The cooled atoms and molecules in supersonic free-jet are probed by laser induced fluorescence spectroscopy. In particular, the technique has been used to perform low-resolution laser induced fluorescence spectroscopy, limited by laser linewidth, on cold Zr atoms and ZrO molecules. The translational temperatures of ∼ 26.5 K and the rotational temperatures of ∼ 81 K have been achieved. It is possible to achieve the Doppler width of few tens of MHz allowing it to perform high-resolution spectroscopy on these atomic and molecular species. Also because of low rotational temperature of molecules the spectral congestion is greatly reduced. In general, this technique can be applied to perform spectroscopy on atoms and molecules of refractory nature. (author)

  11. Two-photon absorption laser-induced fluorescence measurement of atomic oxygen density in an atmospheric pressure air plasma jet

    OpenAIRE

    Conway, Jim; Gogna, G; Gaman, C.; Turner , MM; Daniels, Stephen

    2015-01-01

    Atomic Oxygen density is measured in an air atmospheric jet system using Two-photon Absorption Laser Induced Fluorescence (TALIF). The TALIF system is calibrated using photolysis of molecular oxygen (O2). The RF power coupled into the plasma is varied and the resulting atomic oxygen density in the plasma plume measured.

  12. Fluorescent atom coincidence spectroscopy of extremely neutron-deficient barium isotopes

    International Nuclear Information System (INIS)

    Fluorescent atom coincidence spectroscopy (FACS) has been used to measure the nuclear mean square radii and moments of the extremely neutron-deficient isotopes 120-124Ba. At N=65 an abrupt change in nuclear mean square charge radii is observed which can be understood in terms of the occupation of the spin-orbit partner g7/2 5/2[413] neutron and g9/2 9/2[404] proton orbitals and the consequent enhancement of the n-p interaction. (orig.)

  13. Recyclable decoration of amine-functionalized magnetic nanoparticles with Ni(2+) for determination of histidine by photochemical vapor generation atomic spectrometry.

    Science.gov (United States)

    Hu, Yuan; Wang, Qi; Zheng, Chengbin; Wu, Li; Hou, Xiandeng; Lv, Yi

    2014-01-01

    It is critically important to accurately determine histidine since it is an indicator for many diseases when at an abnormal level. Here, an inexpensive and simple method using an amine-functionalized magnetic nanoparticle-based Ni(2+)-histidine affinity pair system was developed for highly sensitive and selective detection of histidine in human urine by photochemical vapor generation atomic spectrometry. Ni(2+) was first bound to the amine groups of the amine-functionalized magnetic nanoparticles and then liberated to solution via the highly specific interaction between the histidine and Ni(2+) in the presence of histidine. The liberated histidine-Ni(2+) complex was exposed to UV irradiation in the presence of formic acid to form gaseous nickel tetracarbonyl, which was separated from the sample matrix and determined by atomic absorption/fluorescence spectrometry. Compared to other methods, this approach promises high sensitivity, simplicity in design, and convenient operation. The need for organic solvents, enzymatic reactions, separation processes, chemical modification, expensive instrumentations, and sophisticated and complicated pretreatment is minimized with this strategy. A limit of detection of 1 nM was obtained and provided tens-to-hundreds of fold improvements over that achieved with conventional methods. The protocol was evaluated by analysis of several urine samples with good recoveries and showed great potential for practical application. PMID:24286112

  14. Analysis of lead accumulated in vetiver grass using the x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    This research was conducted to study the field application availability of using the x-ray fluorescence (XRF) technique in environmental analysis. The measurement was conducted with calibration standardization technique and internal standardization technique for comparison and optimization. The research was conducted to analyze the concentration of lead accumulated in shoot and root of vetiver grasses grown in lead mine tailings using both XRF techniques. Vetiver was planted on two difference tailings concentrations: 50% and 100%. Every 30 days period, both concentration treatments were amended with chemical fertilizer (C-treatment), organic fertilizer (O-treatment) and no fertilizer (N-treatment). Vetiver was designed to harvest at 120 days after planted. The results show that organic or chemical fertilizer could improve the growth of vetiver growing on all lead tailings concentration. Vetiver planted on 100% Pb tailings concentration and amended with chemical fertilizer have the highest uptake ability of 182.7 mg. In the analysis section, the quantitative results of Pb have shown no significant difference among both XRF techniques as well as the results from atomic absorption spectroscopy(AAS)

  15. Different platform and tube geometries and atomization temperatures in graphite furnace atomic absorption spectrometry: Cadmium determination in whole blood as a case study

    International Nuclear Information System (INIS)

    In the present work the performance of different platform and tube geometries and atomization temperatures in graphite furnace atomic absorption spectrometry was investigated, using the determination of Cd in whole blood as an example. Grooved, integrated and fork platforms as well as atomization temperatures between 1200 deg. C and 2200 deg. C were investigated in a longitudinally heated graphite atomizer and compared with the performance of a transversely heated furnace. In the longitudinally heated furnace the increase of the atomization temperature in the studied range resulted in an increase of matrix effects for all platform geometries. The integrated platform exhibited slightly lower sensitivity and increased multiplicative interferences in comparison to the other two platform designs. Interference-free Cd determination was possible with all types of platforms and 1200 deg. C as the atomization temperature as well as with grooved and fork platforms at 1700 deg. C. On the other hand, lower atomization temperatures resulted in poorer limits of detection, due to the longer integration time needed. No matrix effect was observed at any atomization temperature using the transversely heated atomizer; in addition, limits of detection were better than those observed with the longitudinally heated atomizer. Best values were around 0.02 μg L-1 with the latter atomizer compared to values around 0.02 μg L-1 with the former one

  16. Analysis of soil reference materials for vanadium(+5) species by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Solid Certified Reference Materials (CRMs) with known vanadium(+5) content are currently not commercially available. Because of this, vanadium species have been determined in solid CRMs of soil, viz. CRM023-50, CRM024-50, CRM049-50, SQC001 and SQC0012. These CRMs are certified with only total vanadium content. Vanadium(+5) was extracted from soil reference materials with 0.1 M Na2CO3. The quantification of V(+5) was carried out by electrothermal atomic absorption spectrometry (ET-AAS). The concentration of V(+5) in the analyzed CRMs was found to be ranging between 3.60 and 86.0 μg g-1. It was also found that SQC001 contains approximately 88% of vanadium as V(+5) species. Statistical evaluation of the results of the two methods by paired t-test was in good agreement at 95% level of confidence.

  17. The coupling of rapidly synergistic cloud point extraction with thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rapidly synergistic cloud point extraction (RS-CPE) was coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to result in new CPE patterns and accelerated (1 min) protocols. It is demonstrated, for the case of copper (II) ion, that TS-FF-AAS improves the sampling efficiency and the sensitivity of FAAS determinations. Problems of nebulization associated with previous methods based on the coupling of FAAS and RS-CPE are overcome. TS-FF-AAS also improves sensitivity and gives a limit of detection for copper of 0.20 μg L-1, which is better by a factor of 32. Compared to direct FAAS, the factor is 114. (author)

  18. Determination of Trace Selenium in Electrolytic Manganese by Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    YAO Jun; ZHOU Fang-qin; MA Cheng-jin; TUO Yong; LIU Jian-ben; WU Zhu-qin; TAN Zhu-zhong

    2003-01-01

    The effects of four types of graphite tube and five matrix modifiers on the determination of selenium by graphite furnace atomic absorption spectrometry were compared.The results show that platform thermolysis coat graphite tube and magnesium nitrate and cobaltco as matrix modifer can get a high sensitivity and a good recovery.The optimized working conditions and interference in the determination were invesigated.This result is consistent with that of XRF.The recovery is from 100.8 % to102.2 %,the relative standard deviation is from 3.47% to 5.56 % (n=9),and the detection limit of selenium is 378 pg (C=44.5μg/g to 97.3μg/g.).The proposed method can be applied to the rapid determination of selenium in electrolytic manganese.

  19. Some metals determination in beers by atomic emission spectrometry of induced argon plasma

    International Nuclear Information System (INIS)

    It was made the identification and determination of metals in brazilian bottled and canned beer, using atomic emission spectrometry with d.c. are and argon coupled plasma excitation sources. The elements Co, Cr, Cu, Fe, Pb and Zn were determined in beer samples, after treatment with HNO sub(3) conc. /H sub(2) O sub(2) (30%). In the determination of Co, Cr, Cu, Pb and Zn and alternative method using HNO sub(3) conc. /O sub(3) was proved be useful. The results obtained for Co, Cr, Cu, Fe, Pb and Zn were below the limits established by brazilian legislation, showing the good quality of the beer concerning the metals. The results of this work were requested by the previous Ministerio do Meio Ambiente e Urbanismo in order to contribute to review the brazilian legislation in foods and beverages about metals contents. (author)

  20. Determination of molybdenum in silicates through atomic absorption spectrometry using pre-concentration by active carbon

    International Nuclear Information System (INIS)

    An analytical procedure for molybdenum determination in geological materials through Atomic Absorption Spectrometry, after pre-concentration of the Mo-APDC complex in activated carbon, has been developed, which is needed in order to reduce the dilution effect in the sample decomposition. During the development of this method the influence of pH, the amount of APDC for complexation of Mo and the interference of Fe, Ca, Mn, Al, K, Na, Mg and Ti were tested. It was shown that none of these causes any significant effect on the Mo determination proposed. The results of the analysis at the international geochemical reference samples JB-1 (basalt) and GH (granite) were very accurate and showed that the detection limit in rocks (1,00g) is 0,6 ppm, when using sample dilution of 1 ml and microinjection techniques. (author)

  1. The direct determination of HgS by thermal desorption coupled with atomic absorption spectrometry

    Science.gov (United States)

    Coufalík, Pavel; Zvěřina, Ondřej; Komárek, Josef

    2016-04-01

    This research was aimed at the direct determination of HgS in environmental samples by means of thermal desorption coupled with atomic absorption spectrometry. Operating parameters of the apparatus used for thermal desorption (including a prototype desorption unit) are described in this work, as well as the procedure for measuring mercury release curves together with an evaluation of the analytical signal including two methods of peak integration. The results of thermal desorption were compared with HgS contents obtained by sequential extraction. The limits of quantification of the proposed method for the selective determination of the black and red forms of HgS were 4 μg kg- 1 and 5 μg kg- 1, respectively. The limit of quantification of red HgS in soils was 35 μg kg- 1. The developed analytical procedure was applied to soil and sediment samples from historical mining areas.

  2. Preconcentration of Vanadium(Ⅴ) on Crosslinked Chitosan and Determination by Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new method is proposed for the preconcentration of vanadium(Ⅴ) with crosslinked chitosan (CCTS) and determination by graphite furnace atomic absorption spectrometry (GFAAS). The adsorption rate of vanadium(Ⅴ) by CCTS was 97% at pH 4.0, and vanadium(Ⅴ) was eluted from crosslinked chitosan with 2 mL 2.0 mol*L-1 chlorhydric acid and determined by GFAAS. The detection limit (3σ,n=7) for vanadium(Ⅴ) was 4.8×1 0-12g and the relative standard deviation (R.S.D) at concentration level of 2.6 μg*L-1 is less than 3.6%. The method shows a good selectivity and high sensitivity, and it was applied to determination of vanadium(Ⅴ) in oyster and water samples. The analytic recoveries are (97±5)%.

  3. Determination of mineral elements in fresh olive fruits by flame atomic spectrometry

    International Nuclear Information System (INIS)

    The mineral element characterisation of olive fruits is acquiring interest to evaluate the link between their nutritional status and the olive oil quality. A method for the analysis of mineral elements in fresh olive fruits is proposed. The presence of mineral elements such as potassium, sodium, calcium, magnesium, zinc, copper, iron, and manganese in olive fruits was quantified by flame atomic absorption spectrometry. The limits of quantification were (expressed in mg kg.1 of dry weight) 1.266, 1.569, 0.272, 0.172, 0.268, 0.316, 1.017 and 0.513 for K, Na, Ca, Mg, Zn, Cu, Fe and Mn, respectively. The results showed the method is a robust, reliable, and simple analytical procedure for the mineral element characterisation of olive fruit. (Author).

  4. Development of time-resolved laser fluorescence spectrometry for on-line uranium checking in solutions of the Purex reprocessing process

    International Nuclear Information System (INIS)

    The Purex process and the fluorescence spectrometry are first recalled, then uranyl fluorescence is studied in a pure nitric medium without other elements to establish a theoretical model, allowing the description of uranium fluorescence signal with a general equation. The influence of different parameters (temperature, inhibitors, dynamic quenching of iron and cerium) is investigated to develop the model. A quantitative analysis method without addition of reagents is proposed to validate the model

  5. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Pedersen, Gitte Alsing; Larsen, Erik Huusfeldt

    1997-01-01

    with an aqueous solution of 6 mmol L-1 of salicylate ion at pH 8.5 as the mobile phase which allowed the isocratic separation of the four selenium analytes within 8 minutes. The separated selenium species were detected on-line by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass...... spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 sigma) achieved by the HPLC-FAAS system was 1 mg L-1 of selenium (100 mu L injections) for each of the four...

  6. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    International Nuclear Information System (INIS)

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D2 and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  7. X spectrometry direct elementary analysis: trace analysis by fluorescence X spectrometry, L lines with Bragg reflector. Concentrated solution by hybrid X spectrometry

    International Nuclear Information System (INIS)

    There are two further X spectrometer equipments: one K line hybrid X-fluorescence spectroscope with graphite monochromator. Their advantage is the direct nondestructive measurements of radioactive mix solutions without liquid waste generation

  8. Characterization of the impurity profile at the SiO2/Si interface using a combination of total reflection X-ray fluorescence spectrometry and successive etching of silicon

    International Nuclear Information System (INIS)

    During the fabrication process of integrated circuits, dopant atoms segregate to energetically favorable sites at the interface between silicon and silicon dioxide. Because of the continuously shrinking device dimensions, this effect becomes even more significant. To describe it quantitatively within the framework of Technology Computer-Aided Design, the concentration profile at and near the SiO2/Si interface has to be characterized accurately. Total Reflection X-ray Fluorescence Spectrometry (TXRF) with successive etching was used to determine the impurity profile at the SiO2/Si interface with a resolution on the order of a nanometer

  9. Interactions between fluorescence of atomically layered graphene oxide and metallic nanoparticles

    Science.gov (United States)

    Wang, Yu; Li, Shao-Sian; Yeh, Yun-Chieh; Yu, Chen-Chieh; Chen, Hsuen-Li; Li, Feng-Chieh; Chang, Yu-Ming; Chen, Chun-Wei

    2013-01-01

    Graphene oxide (GO) demonstrates interesting photoluminescence (PL) because of its unique heterogeneous atomic structure, which consists of variable sp2- and sp3-bonded carbons. In this study, we report the interaction between the luminescence of GO ranging from a single atomic layer to few-layered thin films and localized surface plasmon resonance (LSPR) from silver nanoparticles (Ag NPs). The photoluminescence of GO in the vicinity of the Ag NPs is enhanced significantly due to the near-field plasmonic effect by coupling electron-hole pairs of GO with oscillating electrons in Ag NPs, leading to an increased PL intensity and a decreased PL decay lifetime. The maxima 30-fold enhancement in PL intensity is obtained with an optimized film thickness of GO, and the luminescence image from a single atomic layer GO sheet is successfully observed with the assistance of the LSPR effect. The results provide an ideal platform for exploring the interactions between the fluorescence of two-dimensional layered materials and the LSPR effect.Graphene oxide (GO) demonstrates interesting photoluminescence (PL) because of its unique heterogeneous atomic structure, which consists of variable sp2- and sp3-bonded carbons. In this study, we report the interaction between the luminescence of GO ranging from a single atomic layer to few-layered thin films and localized surface plasmon resonance (LSPR) from silver nanoparticles (Ag NPs). The photoluminescence of GO in the vicinity of the Ag NPs is enhanced significantly due to the near-field plasmonic effect by coupling electron-hole pairs of GO with oscillating electrons in Ag NPs, leading to an increased PL intensity and a decreased PL decay lifetime. The maxima 30-fold enhancement in PL intensity is obtained with an optimized film thickness of GO, and the luminescence image from a single atomic layer GO sheet is successfully observed with the assistance of the LSPR effect. The results provide an ideal platform for exploring the

  10. Arsenic speciation in drugs by selective hydride generation-cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer

    Czech Academy of Sciences Publication Activity Database

    de Moraes, D. P.; Dědina, Jiří; Matoušek, Tomáš; de Moraes Flores, E. M.

    2010. s. 183. [Rio Symposium on Atomic Spectrometry /11./. 24.10.2010-29.10.2010, Mar del Plata] R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501 Keywords : arsenic * HG-CT-AAS * multiatomizer Subject RIV: CB - Analytical Chemistry, Separation http://www.11thriosymposium.com.ar/index.htm

  11. New cryogenic trap design for speciation analysis of Arsenic by generation of substituted hydrides-atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Milan; Kratzer, Jan; Dědina, Jiří

    2014. s. 196-196. [Rio Symposium on Atomic Spectrometry /13./. 19.10.2014-24.10.2014, Merida, Yucatan] R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : cryotrapping * hydride generation * arsenic speciation analysis Subject RIV: CB - Analytical Chemistry, Separation

  12. Application of FTIR spectrometry to determine the atomic composition of submicron silicon nitride layers HxSirNzHy

    International Nuclear Information System (INIS)

    Authors presents the developed software that allows to use the data from Fourier transform infrared spectrometry to calculate atomic composition in the silicon nitride HxSirNzHy layers of the submicron thickness. Autonomous and rapid method for the quantitative analysis of the IR spectra does not require prior measurement of thickness and density of the layers

  13. SPECIATION OF SELENIUM(IV) AND SELENIUM(VI) USING COUPLED ION CHROMATOGRAPHY: HYDRIDE GENERATION ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    A simple method was developed to speciate inorganic selenium in the microgram per liter range using coupled ion chromatography-hydride generation atomic absorption spectrometry. Because of the differences in toxicity and adsorption behavior, determination of the redox states selenite, Se(IV), and s...

  14. The Use of Gas Chromatography and Mass Spectrometry to Introduce General Chemistry Students to Percent Mass and Atomic Mass Calculations

    Science.gov (United States)

    Pfennig, Brian W.; Schaefer, Amy K.

    2011-01-01

    A general chemistry laboratory experiment is described that introduces students to instrumental analysis using gas chromatography-mass spectrometry (GC-MS), while simultaneously reinforcing the concepts of mass percent and the calculation of atomic mass. Working in small groups, students use the GC to separate and quantify the percent composition…

  15. Determination of total selenium in nutritional supplements and selenised yeast by Zeeman-effect graphite furnace atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Ekelund, J.

    1989-01-01

    -effect background corrected graphite furnace atomic absorption spectrometry. A furnace ashing step at 1100 °C was necessary in order to obtain a total recovery of selenium when present in the organic form. Palladium nitrate-magnesium nitrate was used as a matrix modifier. Independent methods were used to determine...

  16. X-ray fluorescence and gamma-ray spectrometry combined with multivariate analysis for topographic studies in agricultural soil

    International Nuclear Information System (INIS)

    Physical and chemical properties of soils play a major role in the evaluation of different geochemical signature, soil quality, discrimination of land use type, soil provenance and soil degradation. The objectives of the present study are the soil elemental characterization and soil differentiation in topographic sequence and depth, using Energy Dispersive X-Ray Fluorescence (EDXRF) as well as gamma-ray spectrometry data combined with Principal Component Analysis (PCA). The study area is an agricultural region of Boa Vista catchment which is located at Guamiranga municipality, Brazil. PCA analysis was performed with four different data sets: spectral data from EDXRF, spectral data from gamma-ray spectrometry, concentration values from EDXRF measurements and concentration values from gamma-ray spectrometry. All PCAs showed similar results, confirmed by hierarchical cluster analysis, allowing the data grouping into top, bottom and riparian zone samples, i.e. the samples were separated due to its landscape position. The two hillslopes present the same behavior independent of the land use history. There are distinctive and characteristic patterns in the analyzed soil. The methodologies presented are promising and could be used to infer significant information about the region to be studied. - Highlights: • Characterization of topographic sequence of two hillslopes from agricultural soil. • Employment of EDXRF and gamma-ray spectrometry data combined with PCA. • The combination of green analytical methodologies with chemometric studies allowed soil differentiation. • The innovative methodology is promising for direct characterization of agricultural catchments

  17. Development of a 2D temperature measurement technique for combustion diagnostics using 2-line atomic fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, Johan

    2001-01-01

    The present thesis is concerned with the development and application of a novel planar laser-induced fluorescence (PLIF) technique for temperature measurements in a variety of combusting flows. Accurate measurement of temperature is an essential task in combustion diagnostics, since temperature is one of the most fundamental quantities for the characterization of combustion processes. The technique is based on two-line atomic fluorescence (TLAF) from small quantities of atomic indium (In) seeded into the fuel. It has been developed from small-scale experiments in laboratory flames to the point where practical combustion systems can be studied. The technique is conceptually simple and reveals temperature information in the post-flame regions. The viability of the technique has been tested in three extreme measurement situations: in spark ignition engine combustion, in ultra-lean combustion situations such as lean burning aero-engine concepts and, finally, in fuel-rich combustion. TLAF was successfully applied in an optical Sl engine using isooctane as fuel. The wide temperature sensitivity, 700 - 3000 K, of the technique using indium atoms allowed measurements over the entire combustion cycle in the engine to be performed. In applications in lean combustion a potential problem caused by the strong oxidation processes of indium atoms was encountered. This limits measurement times due to deposits of absorbing indium oxide on measurement windows. The seeding requirement is a disadvantage of the technique and can be a limitation in some applications. The results from experiments performed in sooting flames are very promising for thermometry measurements in such environments. Absorption by hydrocarbons and other native species was found to be negligible. Since low laser energies and low seeding concentrations could be used, the technique did not, unlike most other incoherent optical thermometry techniques, suffer interferences from LII of soot particles or LIF from PAH

  18. Methylmercury determination in biological samples using electrothermal atomic absorption spectrometry after acid leaching extraction

    Energy Technology Data Exchange (ETDEWEB)

    Saber-Tehrani, Mohammad; Hashemi-Moghaddam, Hamid; Givianrad, Mohammad Hadi; Abroomand-Azar, Parviz [Islamic Azad University, Department of Chemistry, Science and Research Branch, Tehran (Iran)

    2006-11-15

    An efficient and sensitive method for the determination of methylmercury in biological samples was developed based on acid leaching extraction of methylmercury into toluene. Methylmercury in the organic phase was determined by electrothermal atomic absorption spectrometry (ETAAS). The methylmercury signal was enhanced and the reproducibility increased by formation of certain complexes and addition of Pd-DDC modifier. The complex of methylmercury with DDC produced the optimum analytical signal in terms of sensitivity and reproducibility compared to complexes with dithizone, cysteine, 1,10-phenanthroline, and diethyldithiocarbamate. Method performance was optimized by modifying parameters such as temperature of mineralization, atomization, and gas flow rate. The limit of detection for methylmercury determination was 0.015 {mu}g g{sup -1} and the RSD of the whole procedure was 12% for human teeth samples (n=5) and 15.8% for hair samples (n=5). The method's accuracy was investigated by using NIES-13 and by spiking the samples with different amounts of methylmercury. The results were in good agreement with the certified values and the recoveries were 88-95%. (orig.)

  19. Determination of tellurium in indium antimonide semiconductor material by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Shiue, M Y; Sun, Y C; Yang, M H

    2001-08-01

    A method for the determination of the dopant concentration of tellurium in dissolved indium antimonide semiconductor material by electrothermal atomic absorption spectrometry (ETAAS) was developed. Efforts were made to investigate the optimal conditions of the furnace heating program and the effect of palladium modifier on the variation of tellurium and the background absorbance. According to the results obtained, the presence of palladium chemical modifier in the analysis of indium antimonide allowed the successful retention of tellurium in the graphite tube, and the optimum mass of palladium modifier was found to be dependent on the sample matrix concentration. The absorbance profile of tellurium and the background level were significantly improved when a pyrolysis temperature of 1100 degrees C and an atomization temperature of 2200 degrees C were employed in the optimized heating program. With the use of this method, a detection limit of 0.8 microg g(-1) tellurium in indium antimonide could be achieved. The applicability of the proposed method was evaluated by comparison with two independent methods, i.e. slurry sampling-ETAAS and ICP-MS. From the good agreement between the results, it was demonstrated that the proposed method is suitable for the determination of typical dopant concentrations of tellurium in indium antimonide. PMID:11534624

  20. Test of the Pauli exclusion principle for nucleons and atomic electrons by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    The Pauli exclusion principle was tested by searching with accelerator mass spectrometry for non-Paulian atoms with three electrons in the K-shell and for non-Paulian nuclei with three protons or three neutrons in the nuclear 1 s1/2 shell. For non-Paulian atoms of 20Ne and 36Ar the following limits have been obtained: N(20Ne)/N(20Ne)-21 and N(36Ar)/N(36Ar)-17. For non-Paulian nuclei of 5Li and 5He with three protons or three neutrons, respectively, in the nuclear 1 s1/2 shell the following limits have been measured: N(5Li)/N(6Li)-17 for a range of proton separation energies of 5Li between 0 and 50 MeV and N(5He)/N(4He)-15 for neutron separation energies between 0 and 32 MeV. The result for 5Li is used to deduce a limit for the probability β2/2 of finding two colliding protons in the symmetric state with respect to exchange to be β2/2-32. (orig.)

  1. Shape, size, and atomic composition analysis of nanostructures in 3D by Rutherford backscattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zolnai, Zsolt, E-mail: zolnai.zsolt@ttk.mta.hu

    2013-09-15

    The emergence of novel micro- and nanofabrication tools lead to the targeted research of highly ordered three-dimensional nanosystems, constructed from regular building blocks like spheres, cylinders, bricks, pyramids, which can be used in a wide range of applications. As a consequence, the exploration of the potential and limits of efficient analytical techniques to characterize structured nanosystems became a significant task. In this work the scope of conventional Rutherford backscattering spectrometry (RBS) analysis is extended to investigate highly ordered periodic nanostructures in three dimensions. Hexagonally arranged spherical and ellipsoidal silica particles, rectangular gold nano-arrays, and embedded structures in Si substrates and silica particles are analyzed. It is shown that the shape of the measured spectra can be correlated with the shape of individual nano-objects through geometrical considerations. The evaluation of the recorded data for different sample tilt angles can be carried out with the Monte-Carlo type 3D simulation model cell concept considering the details of the applied measurement geometry. It is demonstrated that macrobeam 3D-RBS can provide valuable information on the shape, size, spacing, and atomic composition of nanostructured samples as well as on nanoscale atomic transport processes and consequently, it can be utilized as a highly precise, non-destructive characterization tool for nanotechnology.

  2. Wavelength Dispersive X-ray Fluorescence Spectrometry for the Analysis of Organic Polymer Film

    International Nuclear Information System (INIS)

    Recently, many studies have been focused on the thin films because there are numerous industrial processes relevant to thin films such as fuel cells, sensors, lubricants, coatings, and so on. Physical and chemical properties of solid surface have been modified by ultra-thin coatings such as Langmuir-Blodgett (LB) method with a variety of types of organic functional materials for the specific purposes in many applications. In addition, the layer-by-layer technique using polyelectrolyte films are now of interest as biosensors, electrochromic and electroluminescent devices, etc. In general, several methods such as X-ray or neutron reflectivity, and quartz crystal microbalance (QCM) have been utilized for the thin film analysis. These optical techniques can measure the film thicknesses up to hundreds of nanometers while X-ray photoelectron spectroscopy is widely used to study a few nanometers thick films. Other methods such as X-ray Photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom force microscopy (AFM) have also been used in the film analysis in spite of some disadvantages for each method. X-ray fluorescence (XRF) has long been used as a rapid and simple analytical tool for the analysis of elemental composition of materials. XRF technique is suitable for on-line or in-line real-time monitoring because it is a non-destructive and rapid analysis with good precision and good accuracy at low cost. The aim of this work is to develop a new analytical technique for the quantitative analysis of polymer film on metal substrate. In the present study, Compton peak profile was investigated under different experimental conditions by using wavelength-dispersive XRF (WD-XRF). Compared to energy-dispersive XRF (ED-XRF), WD-XRF is more adequate in an accurate quantitative analysis of thin organic film

  3. CANAS '01 - Colloquium analytical atomic spectroscopy; CANAS '01 - Colloquium Analytische Atomspektroskopie. Programm. Kurzfassungen der Vortraege und Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The main topics of the meeting on analytical atom spectroscopy were: optical atom spectrometry, x-ray fluorescence analysis, absorption spectroscopy, icp mass spectroscopy, trace analysis, sampling, sample preparation and quality assurance.

  4. Determination of Fe in blood using portable X-ray fluorescence spectrometry: an alternative for sports medicine

    International Nuclear Information System (INIS)

    An alternate methodology based on a portable X-ray fluorescence spectrometry (PXRFS) for determination of Fe in blood was evaluated. The iron concentrations was determined in whole blood of 18 male amateur athletes (runners) using this portable XRF spectrometer and compared with a control group (54 male donors at the same age but not involved with physical activities) obtained by XRF and NAA techniques. The Fe concentration in the blood of runners is an important factor in sports medicine contributing to the performance of endurance athletes as well as for proposing new protocols of clinical evaluation. (author)

  5. Geo-chemical analysis of beach rock samples of Andaman island using energy dispersive X-ray fluorescence (EDXRF) spectrometry

    International Nuclear Information System (INIS)

    Elemental concentrations of beach rock samples have been analyzed using non-destructive technique of energy dispersive X-ray fluorescence (EDXRF) spectrometry. The samples were collected from three different locations of Andaman Island. The concentrations of Al, Ca, K, Fe, Ti, Si, V, Co, Cu, Ba, Zn, Pb, Cd and Mn were determined. The geochemical behavior of elements in the region is discussed. Present study shows that elemental concentrations of beach rock samples from Andaman Islands are much below the values of both earth crust and that of Tamilnadu region. However, the Biogenic element (Ca) showed high concentration compared to all other elements. (author)

  6. Determination of lead in dolomite by Zeeman electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The mineral lorandite (TlAsS2), present in the Alshar deposit (Republic of Macedonia), is a possible solar neutrino detector (Freedman et al., 1976). As a result of nuclear reaction between the isotopes of thallium 205Tl and the solar neutrino, 205 Pb is produced. The aim of the idea is to determine the content of Pb in the lorandite, that could give information for the value of solar neutrino flux over extended time (Pavicevic, 1994). A method for the lead determination in dolomite by Zeeman electrothermal atomic absorption spectrometry, is presented. After the dissolution of samples, lead was extracted with sodium diethyldithio-carbamate. The lead-diethyldithiocarbamate complex was extracted into methylisobutyl ketone from a medium of pH 6.0-10.0. The procedure was verified by method of standard additions and by analyzing referent standard samples. A calibration curve (for organic solutions containing up to 1 ng Pb) was made using the proposed extraction procedure for standard solutions of lead. The standard deviation (SD) for 0.5 ng Pb is 0.01 ng and the relative standard deviation ranges from 2.5 to 3.5%. The detection limit of the method, calculated as 3 SD of the blank, was found to be 1.5 ng.g-1. The operation conditions in electrothermal atomic absorption measurements (temperature and time) were: drying - 90oC, 20 s; charring - 400oC, 20 s; atomizing - 1900oC, 3 s; cleaning - 2650oC, 3 s (Author)

  7. Mass spectrometry based approach for identification and characterisation of fluorescent proteins from marine organisms

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna Iwona; Rogowska-Wrzesinska, Adelina; Wrzesinski, Krzysztof;

    2011-01-01

    We present here a new analytical strategy for identification and characterisation of fluorescent proteins from marine organisms. By applying basic proteomics tools it is possible to screen large sample collections for fluorescent proteins of desired characteristics prior to gene cloning. Our...... methodology which includes isolation, spectral characterisation, stability testing, gel-based separation and mass spectrometric identification was optimised on samples collected during the Danish Galathea 3 expedition. Four corals of the Fungia, Sarcophyton and Acropora species emitting green fluorescence...... were tested. Each of the fluorescent extracts behaves differently under denaturing conditions but complete fluorescence loss was not observed. Optimised electrophoretic conditions yielded effective separation of active fluorescent proteins in both 1DE and 2DE. Mass spectrometric analysis...

  8. Mass spectrometry based approach for identification and characterisation of fluorescent proteins from marine organisms

    DEFF Research Database (Denmark)

    Wojdyla, Katarzyna; Rogowska-Wrzesinska, Adelina; Wrzesinski, Krzysztof;

    2011-01-01

    We present here a new analytical strategy for identification and characterisation of fluorescent proteins from marine organisms. By applying basic proteomics tools it is possible to screen large sample collections for fluorescent proteins of desired characteristics prior to gene cloning. Our...... methodology which includes isolation, spectral characterisation, stability testing, gel-based separation and mass spectrometric identification was optimised on samples collected during the Danish Galathea 3 expedition. Four corals of the Fungia, Sarcophyton and Acropora species emitting green fluorescence...... were tested. Each of the fluorescent extracts behaves differently under denaturing conditions but complete fluorescence loss was not observed. Optimised electrophoretic conditions yielded effective separation of active fluorescent proteins in both 1DE and 2DE. Mass spectrometric analysis of the...

  9. Study of archaeological ceramics by total-reflection X-ray fluorescence spectrometry: Semi-quantitative approach

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ruiz, R. [Universidad Autonoma de Madrid, Facultad de Ciencias, Servicio Interdepartamental de Investigacion, Modulo C-9, Laboratorio de TXRF, Crta. Colmenar, Km 15, Cantoblanco, E-28049, Madrid (Spain)], E-mail: ramon.fernandez@uam.es; Garcia-Heras, M. [Instituto de Historia-CSIC, C/Serrano, 13. E-28001, Madrid (Spain); CENIM-CSIC, Avda. Gregorio del Amo, 8. E-28040, Madrid (Spain)

    2007-10-15

    Total-reflection X-ray fluorescence spectrometry has been compared with Instrumental Neutron Activation Analysis in order to test its potential application to the study of archaeological ceramics in the archaeometric field. Two direct solid non-chemical sample preparation procedures have been checked: solid sedimentation and solid chemical homogenization. For sedimentation procedure, total-reflection X-ray fluorescence allows the analysis of the elemental composition with respect to the size fraction but not the average evaluation of the composition. For solid chemical homogenization procedure, total-reflection X-ray fluorescence provides precise (from 0.8% to 27% of coefficient of variation) and accurate results (from 91% to 110% of recovery) for 15 elements (Cr, Hf, Ni, Rb, Al, Ba, Ca, K, Mn, Ti, V, Cu, Ga, Y and Fe) with an easy sample preparation process of the solid clay and without previous chemical treatment. The influence of the particle sizes has been checked by total-reflection X-ray fluorescence sample angle scans and anomalous behaviors have been found for three additional detected elements: As, Sr and Zn, which can be attributed to interference effects of the mineral grain sizes of their associated chemical phases in the total-reflection X-ray fluorescence interference region. The solid chemical homogenization procedure produces data useful for archaeological interpretation, which is briefly illustrated by a case-study. Finally, the decantation procedure data can be also useful for size chemical speciation and, consequently, for alternative environmental total-reflection X-ray fluorescence applications.

  10. Study of archaeological ceramics by total-reflection X-ray fluorescence spectrometry: Semi-quantitative approach

    International Nuclear Information System (INIS)

    Total-reflection X-ray fluorescence spectrometry has been compared with Instrumental Neutron Activation Analysis in order to test its potential application to the study of archaeological ceramics in the archaeometric field. Two direct solid non-chemical sample preparation procedures have been checked: solid sedimentation and solid chemical homogenization. For sedimentation procedure, total-reflection X-ray fluorescence allows the analysis of the elemental composition with respect to the size fraction but not the average evaluation of the composition. For solid chemical homogenization procedure, total-reflection X-ray fluorescence provides precise (from 0.8% to 27% of coefficient of variation) and accurate results (from 91% to 110% of recovery) for 15 elements (Cr, Hf, Ni, Rb, Al, Ba, Ca, K, Mn, Ti, V, Cu, Ga, Y and Fe) with an easy sample preparation process of the solid clay and without previous chemical treatment. The influence of the particle sizes has been checked by total-reflection X-ray fluorescence sample angle scans and anomalous behaviors have been found for three additional detected elements: As, Sr and Zn, which can be attributed to interference effects of the mineral grain sizes of their associated chemical phases in the total-reflection X-ray fluorescence interference region. The solid chemical homogenization procedure produces data useful for archaeological interpretation, which is briefly illustrated by a case-study. Finally, the decantation procedure data can be also useful for size chemical speciation and, consequently, for alternative environmental total-reflection X-ray fluorescence applications

  11. Real-Time Near-Field Terahertz Imaging with Atomic Optical Fluorescence

    CERN Document Server

    Wade, Christopher G; de Melo, Natalia R; Kondo, Jorge M; Adams, Charles S; Weatherill, Kevin J

    2016-01-01

    Terahertz (THz) near-field imaging is a flourishing discipline [1], with applications from fundamental studies of beam propagation [2,3] to the characterisation of metameterials [4,5] and waveguides [6,7]. Beating the diffraction limit typically involves rastering structures or detectors with length scale shorter than the radiation wavelength; in the THz domain this has been achieved using a number of techniques including scattering tips [8,9] and apertures [10]. Alternatively, mapping THz fields onto an optical wavelength and imaging the visible light removes the requirement for scanning a local probe, speeding up image collection times [11,12]. Here we report THz to optical conversion using a gas of highly excited `Rydberg' atoms. By collecting THz-induced optical fluorescence we demonstrate a real-time image of a THz standing wave and we use well-known atomic properties to calibrate the THz field strength. The mono-atomic gas does not distort the THz field and offers the potential to immerse structures wit...

  12. Inductively coupled plasma atomic spectrometry (ICP-AES) and associated tecgniques

    International Nuclear Information System (INIS)

    Plasma emission spectroscopy is now an established technique for the analysis and quality control of modern inorganic and polymeric materials. The detection limit of < mu g iota /sup -1/ achieved by ICP-MS and atomic fluorescence methods with multielement capability has led to the explosive growth of trends and methodologies in thousands of published articles. The major development has been in the evolution of powerful computer controlled instruments with advanced optics and highly sophisticated detection and data processing systems. The high resolution spectrometers developed by several companies have reduced the inter element and molecular interference relieving the analyst of tedious and time-consuming routines of matrix matching and spectral corrections. The cost of analysis per sample has been drastically reduced due to rapid and reliable results in a short time. However the costs of such systems remains high and require very clean environment for the installation and operation of modern high resolution instruments. Major applications of atomic spectrometric methods are in semiconductor and high purity industrial materials where the purchase of such expensive units can be justified. Applications in pharmaceutical, chemical and material sciences are also on the increase. Assessment of natural resources and environmental and toxic element studies are also justifying the social services provided by modern instrumental techniques. The trend of inter comparison is also growing due to the availability of large number of instruments / techniques. (author)

  13. X-ray fluorescence in Member States: Slovenia. Applications of X ray fluorescence spectrometry in biology and food science

    International Nuclear Information System (INIS)

    Our objective here is to present briefly two applications of the XRF elemental analysis, which we recently started: applying the XRF analysis after sample excitation by radioisotope sources, X ray tubes in the standard and the total reflection modes (TXRF), as well as by PIXE and microPIXE. The fluorescence X ray spectra shown below are typical examples of data and information on basis of which all the applications were realized. It is obvious that the use of the techniques, which produce the above spectra require a good knowledge of the nuclear spectroscopy, and also skills to adjust the experimental set-up including the source of fluorescence excitation, selection of appropriate X ray detection system (geometry of experiment), as well as proper sampling and sample preparation, considering the characteristics of a large variety of different materials to be examined. And finally one needs to define the application and establish good collaboration with the users and/or scientists in a number of interesting fields. We would like to present here just two examples of such a comprehensive approach to the application of XRF analysis

  14. Mesoporous Silica Nanoparticles as an Adsorbent for Preconcentration and Determination of Trace Amount of Nickel in Environmental Samples by Atom Trap Flame Atomic Absorption Spectrometry

    Science.gov (United States)

    Shirkhanloo, H.; Falahnejad, M.; Zavvar Mousavi, H.

    2016-01-01

    A rapid enrichment method based on solid-phase extraction (SPE) has been established for preconcentration and separation of trace Ni(II) ions in water samples prior to their determination by atom trap flame atomic absorption spectrometry. A column filled with bulky NH2-UVM7 was used as the novel adsorbent. Under optimal conditions, the linear range, limit of detection (LOD), and preconcentration factor (PF) were 3-92 μg/L, 0.8 μg/L, and 100, respectively. The validity of the method was checked by the standard reference material.

  15. Combined atomic force and fluorescence microscopy to study lipid transfer from lipoproteins to biomembranes

    International Nuclear Information System (INIS)

    Biological cells notice there environment via highly sensitive receptor-ligand interactions. The involved receptors reside at the cellular plasma membrane and react along complex molecular processes to the external stimulus. The spatial arrangement of the receptors affect their function strongly. By stimulating specific receptors -molecule by molecule- we can characterize their function. Atomic Force Microscopy (AFM) enables controlled stimulation of single receptor molecules. For this purpose the corresponding ligand is attached via a flexible linker to the cantilever tip. In contrast, fluorescence microscopy allows for measuring the time response of the signal processing, even at the single molecule level. It is the combination of both approaches, however, which paves the way for reaching new levels of understanding of cellular processes, as molecular trigger set by the functionalized AFM tip can be directly correlated to the cellular response measured by fluorescence microscopy. In this thesis, I firstly developed the instrumentation for combined and fully synchronized force and fluorescence microscopy, down to the level of single molecules. Secondly, I applied the new instrumentation to study the transfer of individual lipid molecules out of an HDL-particle into supported lipid bilayers, which serve as well defined model membranes. In particular, the transfer of fluorescently labeled lipids as a function of the receptor for selective cholesterol uptake was of major interest. It is generally assumed that this process is a receptor-mediated transfer of lipid from the particle directly into the cellular plasma membrane. By analyzing the interaction of HDL-particles and a supported lipid bilayer, I could demonstrate that cholesterol can indeed be transferred from an HDL particle to the bilayer without the need for a receptor; for cholesteryl ester, no transfer was observable. The ability to monitor released lipids and to adjust contact times or contact forces let

  16. Time-resolved fluorescence spectroscopy of matrix-isolated silver atoms after pulsed excitation of inner-shell transitions

    Science.gov (United States)

    Hebert, T.; Wiggenhauser, H.; Schriever, U.; Kolb, D. M.

    1990-02-01

    The energy dissipation in matrix-isolated silver atoms after pulsed vacuum ultraviolet (VUV) excitation of 4d-5p transitions has been studied by time-resolved fluorescence spectroscopy. The decay behavior of the various fluorescence bands has been analyzed and a model for the relaxation process proposed within the framework of a two-dimensional configuration-coordinate diagram. If minute quantities of Ag2 are present in the matrix, the analysis requires consideration of energy transfer between silver atoms and dimers.

  17. Wall loss of atomic nitrogen determined by ionization threshold mass spectrometry

    International Nuclear Information System (INIS)

    In the afterglow of an inductively coupled N2 plasma, relative N atom densities are measured by ionization threshold mass spectrometry as a function of time in order to determine the wall loss time twN from the exponential decay curves. The procedure is performed with two mass spectrometers on different positions in the plasma chamber. twN is determined for various pressures, i.e., for 3.0, 5.0, 7.5, and 10 Pa. For this conditions also the internal plasma parameters electron density ne and electron temperature Te are determined with the Langmuir probe and the rotational temperature TrotN2 of N2 is determined with the optical emission spectroscopy. For TrotN2, a procedure is presented to evaluate the spectrum of the transition υ′=0→υ″=2 of the second positive system (C3Πu→B3Πg) of N2. With this method, a gas temperature of 610 K is determined. For both mass spectrometers, an increase of the wall loss times of atomic nitrogen with increasing pressure is observed. The wall loss time measured with the first mass spectrometer in the radial center of the cylindrical plasma vessel increases linearly from 0.31 ms for 3 Pa to 0.82 ms for 10 Pa. The wall loss time measured with the second mass spectrometer (further away from the discharge) is about 4 times higher. A model is applied to describe the measured twN. The main loss mechanism of atomic nitrogen for the considered pressure is diffusion to the wall. The surface loss probability βN of atomic nitrogen on stainless steel was derived from twN and is found to be 1 for the present conditions. The difference in wall loss times measured with the mass spectrometers on different positions in the plasma chamber is attributed to the different diffusion lengths

  18. Simultaneous determination of cadmium and lead in wine by electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Freschi, Gian P. G.; Dakuzaku, Carolina S.; de Moraes, Mercedes; Nóbrega, Joaquim A.; Gomes Neto, José A.

    2001-10-01

    A method has been developed for the direct simultaneous determination of Cd and Pb in white and red wine by electrothermal atomic absorption spectrometry (ET-AAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of both analytes during pyrolysis and atomization stages were investigated in 0.028 mol l -1 HNO 3 and in 1+1 v/v diluted wine using mixtures of Pd(NO 3) 2+Mg(NO 3) 2 and NH 4H 2PO 4+Mg(NO 3) 2 as chemical modifiers. With 5 μg Pd+3 μg Mg as the modifiers and a two-step pyrolysis (10 s at 400°C and 10 s at 600°C), the formation of carbonaceous residues inside the atomizer was avoided. For 20 μl of sample (wine+0.056 mol l -1 HNO 3, 1+1, v/v) dispensed into the graphite tube, analytical curves in the 0.10-1.0 μg l -1 Cd and 5.0-50 μg l -1 Pb ranges were established. The characteristic mass was approximately 0.6 pg for Cd and 33 pg for Pb, and the lifetime of the tube was approximately 400 firings. The limits of detection (LOD) based on integrated absorbance (0.03 μg l -1 for Cd, 0.8 μg l -1 for Pb) exceeded the requirements of Brazilian Food Regulations (decree #55871 from Health Department), which establish the maximum permissible level for Cd at 200 μg l -1 and for Pb at 500 μg l -1. The relative standard deviations ( n=12) were typically <8% for Cd and <6% for Pb. The recoveries of Cd and Pb added to wine samples varied from 88 to 107% and 93 to 103%, respectively. The accuracy of the direct determination of Cd and Pb was checked for 10 table wines by comparing the results with those obtained for digested wine using single-element ET-AAS, which were in agreement at the 95% confidence level.

  19. Standard test methods for chemical analysis of ceramic whiteware materials using wavelength dispersive X-Ray fluorescence spectrometry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover the determination of ten major elements (SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, TiO2, P2O5, MnO, and LOI in ceramic whitewares clays and minerals using wavelength dispersive X-ray fluorescence spectrometry (WDXRF). The sample is first ignited, then fused with lithium tetraborate and the resultant glass disc is introduced into a wavelength dispersive X-ray spectrometer. The disc is irradiated with X-rays from an X-ray tube. X-ray photons emitted by the elements in the samples are counted and concentrations determined using previously prepared calibration standards. (1) In addition to 10 major elements, the method provides a gravimetric loss-on-ignition. Note 1—Much of the text of this test method is derived directly from Major element analysis by wavelength dispersive X-ray fluorescence spectrometry, included in Ref (1). 1.2 Interferences, with analysis by WDXRF, may result from mineralogical or other structural effects, line overlaps, and matrix effects. The structure of the...

  20. Velocity and electronic state distributions of sputtered Fe atoms by laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Velocity distributions and relative populations in the fine-structure levels of the a5D/sub J/ ground state of Fe atoms, produced by sputtering with 3 keV argon ions, have been investigated by Doppler shifted laser induced fluorescence. The laser system employs a single-mode, scanning ring dye laser, amplified by a sequence of three excimer-pumped flowing-dye cells. Frequency doubling in a KD*P crystal was used to produce high energy (> .5 mJ) pulses of narrowband tunable UV output near 300 nm. Laser power influence on effective velocity bandwidth was investigated. Favorable light-collection geometry minimized distortion of the velocity spectra from apparatus-averaging effects. In impurity flux diagnostic applications in fusion devices, substantial spatial averaging may occur. In the latter case, the narrow velocity bandwidth (70 m/s, transform limit) of the present laser system is particularly useful

  1. Probing intra-molecular mechanics of single circularly permuted green fluorescent protein with atomic force microscopy

    International Nuclear Information System (INIS)

    We investigated the mechanical unfolding of single circularly permuted green fluorescent protein (cpGFP) with atomic force microscopy (AFM). The molecule was stretched from its N- and C-termini by an external force causing an elongation of the polypeptide chain up to its full length. The features of the force-extension (F-E) curves were found to depend on the stretching speed. At fast speeds, we detected one peak in the F-E curves before final rupture of the extended molecule, which we interpreted as the unfolding of two terminal halves within cpGFP. We observed several more force peaks in a sawtooth pattern at much slower speeds, and explained the appearance of such force peaks as cooperative unfolding of the hidden sub-structures inside each terminal half

  2. Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study

    Science.gov (United States)

    Bilo, Fabjola; Borgese, Laura; Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina; Pazzaglia, Ugo; Depero, Laura E.

    2015-12-01

    We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co-Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO2. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO2 layer, the lower is the metal migration.

  3. Fluorescence and atomic force microscopy to visualize the interaction of HDL particles with lipid membranes

    International Nuclear Information System (INIS)

    Full text: High density lipoprotein (HDL) plays a key role in cholesterol homeostasis: cholesterol-loaded HDL particles are transported from non-hepatic peripheral tissue to the liver, where they unload their cargo via receptor-mediated selective uptake. It is astonishing that – although blood levels of HDL are broadly used in diagnosis for the prognosis of developing cardiovascular disease – the cholesterol uptake mechanisms are still poorly understood. Particularly, it remains unclear how the amphipathic cholesterol crosses the aqueous phase between the HDL particle and the cell membrane. We applied state-of-the-art high-resolution and ultra-sensitive force and fluorescence microscopy techniques to image directly the interaction of HDL particles with the target membrane. Using highspeed atomic-force microscopy (AFM) we made a surprising discovery: when added to membranes, we observed HDL particles to integrate into the interleaflet core of the bilayer, generating 'nanoblisters' with a size below 10 nm. Amphipathic cargo was able to leave such blisters, whereas hydrophobic cargo such as cholesteryl-ester remained associated with the particles. Using a combined fluorescence and force microscopy system we could directly visualize the transfer of single cargo molecules into supported lipid bilayers. Particularly, we compared the transfer of the fluorescently labelled amphiphilic DiI and Bodipy-labelled cholesterol with the hydrophobic Bodipy-labelled cholesteryl- ester. Our experiments revealed that i) cargo transfer requires contact; ii) only amphiphilic cargo is transferred. Interestingly, membrane elasticity was found to be crucial for the fusion: only highly elastic (and thus cholesterol-poor) membranes facilitate particle fusion, whereas inelastic cholesterol-rich membranes prevented the fusion. Live cell experiments show that the plasma membrane itself regulates a cell’s cholesterol demand: high cholesterol levels act repulsive, low cholesterol levels

  4. Direct analysis of silica by means of solid sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    This paper reports on the use of solid sampling-graphite furnace atomic absorption spectrometry for the direct analysis of synthetic amorphous silica. In particular, determination of hazardous elements such As, Cd, Cr, Cu, Pb and Sb is investigated, as required by regulations of the food industry. The conclusion of the work is that, after proper optimization of the working conditions, paying particular attention to the atomization temperature and the use of proper modifiers (graphite powder, HNO3 or Pd), it is possible to develop suitable procedures that rely on the use of aqueous standard solutions to construct the calibration curves for all the elements investigated. The proposed method shows important benefits for the cost-effective analysis of such difficult samples in routine labs, permitting fast screening of those elements that are very rarely present in this type of sample, but also accurate quantification of those often found, while offering low limits of detection (always below 0.1 mg g−1) that comply well with legal requirements, and precision levels that are fit for the purpose (approx. 6–9% R.S.D.). - Highlights: ► Solid sampling GFAAS is investigated for the direct analysis of silica samples; ► a fast and simple methodology with aqueous standards for calibration is proposed; ► this method permits accurate determination of As, Cd, Cr, Cu, Pb and Sb in the samples of interest; ► LODs below 100 ng g−1 and precision values in the 6–10% RSD range are achieved.

  5. A comparative study of inductively coupled plasma optical emission spectrometry and microwave plasma atomic emission spectrometry for the direct determination of lanthanides in water and environmental samples

    International Nuclear Information System (INIS)

    A new instrumental technique – Microwave Plasma Atomic Emission Spectrometry (MP - AES) is compared to conventional Inductively Coupled Plasma Optical Emission Spectrometry (ICP - OES) for direct determination of lanthanides. Estimation of both methods is done using standard measurement conditions. The present study includes spectral and non- spectral matrix effect evaluation. Tested analytical wavelengths of lanthanides are divided into three groups: 1) relatively free, 2) interfered by other lanthanides and 3) interfered by concomitant elements. Non spectral effect on analytes is examined in two typical real matrices – acidic plant digests and saline water. The capabilities of both plasma methods for quantitative determination of La, Ce, Sm, Eu, Gd and Er are compared. The interference - free emission lines are selected; appropriate background correction is proposed and the corresponding instrumental detection limits are calculated. Key words: lanthanides, ICP -OES, MP -AES, spectral and non-spectral interference

  6. Determination of nickel in active pharmaceutical ingredients by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Bubnič, Zoran; Urleb, Uroš; Kreft, Katjuša; Veber, Marjan

    2010-03-01

    An electrothermal atomic absorption spectrometric procedure for the determination of nickel in active pharmaceutical ingredients was developed. Since the recoveries of nickel by the direct dissolution of samples in diluted nitric acid were low and caused errors in the determination of Ni in pharmaceutical samples, different approaches for sample pre-treatment were examined. It was found that the microwave digestion was the most suitable way for sample preparation. Various combinations of digestion agents and different microwave conditions were tested. The combination of nitric acid and hydrogen peroxide was found to be the most appropriate. The validity of the method was evaluated by recovery studies of spiked samples and by the comparison of the results obtained by inductively coupled plasma mass spectrometry (ICP-MS). The recovery ranged from 87.5 to 104.0% and a good agreement was achieved between both methods. The detection limit and the limit of quantification were 0.6 and 2.1 µg g-1 respectively. The precision of the method was confirmed by the determination of Ni in the spiked samples and was below 4%, expressed in terms of a relative standard deviation. The method was applied to the determination of nickel in production samples of active pharmaceutical ingredients and intermediates. PMID:24061653

  7. Wet sample digestion for quantification of vanadium(V) in serum by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Three types of pressure digestion systems used prior to the determination of the ultratrace element vanadium by electrothermal atomic absorption spectrometry were evaluated: The high-pressure ashing (HPA) system, the DAB III pressure digestion system and the pressurized microwave digestion (PMD) system. Complete sample digestion and no loss of graphite tube sensitivity as well as reliable vanadium values could only be achieved with HPA digests of freeze-dried serum. The mean recovery rate was 98% and no loss of tube sensitivity could be observed. Using non-lyophilized serum the mean recovery rate was 70%. The DAB III digestion system, vicarious for closed pressure digestion in steel bombs with an allowable temperature up to about 200C, cannot be recommended to mineralize human biological material for vanadium determinations, because the remaining not completely decomposed organic compounds extracted together with the vanadium-cupferron complex caused a marked carbon-buildup and formation of carbides in the graphite tube were found to change the shape of the absorption signals distinctly, and to decline the tube sensitivity strongly (about 25%) so that reliable results cannot be achieved. The recovery rate was too low in general (about 50%). In addition, a subsequent treatment of the DAB III digests with perchloric acid was unsuccessful. The PMD system proved to be not suited, because the samples became highly contaminated by vanadium possibly from the titan seal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Determination of cadmium in real water samples by flame atomic absorption spectrometry after cloud point extraction

    International Nuclear Information System (INIS)

    Water pollution is a global threat and it is the leading world wide cause of death and diseases. The awareness of the potential danger posed by heavy metals to the ecosystems and in particular to human health has grown tremendously in the past decades. Separation and preconcentration procedures are considered of great importance in analytical and environmental chemistry. Cloud point is one of the most reliable and sophisticated separation methods for determination of traces quantities of heavy metals. Cloud point methodology was successfully employed for preconcentration of trace quantities of cadmium prior to their determination by flame atomic absorption spectrometry (FAAS). The metals react with 8-hydroxquinoline in a surfactant Triton X-114 medium. The following parameters such as pH, concentration of the reagent and Triton X-114, equilibrating temperature and centrifuging time were evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation and the cadmium content was measured by FAAS. The validation of the procedure was carried out by spiking addition methods. The method was applied for determination of Cd in water samples of different ecosystems (lake and river). (author)

  9. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L-1. The detection limit (3σ b/S) achieved is 5 ng L-1. The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L-1 Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples

  10. Use of Atomic Absorption Spectrometry in Assessment of Biomonitor Plants for Lead, Cadmium and Copper Pollution

    Institute of Scientific and Technical Information of China (English)

    Gokce Kaya; Mehmet Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep,Turkey.Lead,cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry.Lead,Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304~602,0.4~0.44 and 31~37 mg · kg-1,respectively.Significantly increased lead concentration up to 2 750 mg · kg-1 was found in the leaves of Eleagnus angustifolia L.plant.The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima >Morus sp.> Juglans regia L.> Ficus carica L.>Cydonia oblonga Miller> Prunus x domestica L.The plants,Populus nigra L.,Eleagnus angustifolia L.and Salix sp.were found useful for Cd,and the plant,Eleagnus angustifolia L.for Pb,to be considered as potential biomonitor.Especially,leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations.Therefore,people who and animals which live in this area and benefit from these soil and plants have vital risks.

  11. Use of atomic absorption spectrometry in assessment of biomonitor plants for lead, cadmium and copper pollution.

    Science.gov (United States)

    Gokce, Kaya; Mehmet, Yaman

    2012-01-01

    Eleven plant species were collected from the vicinity of lead-battery plant in the city of Gaziantep, Turkey. Lead, cadmium and copper concentrations in the soil and leaves of plants were determined by atomic absorption spectrometry. Lead, Cd and Cu concentrations in the soil samples taken from battery area were found to be in the ranges of 304-602, 0.4-0.44 and 31-37 mg x kg(-1), respectively. Significantly increased lead concentration up to 2 750 mg x kg(-1) was found in the leaves of Eleagnus angustifolia L. plant. The lead concentrations in the other plant leaves taken from 50 m around battery factory followed the order Ailanthus altissima > Morus sp. > Juglans regia L. > Ficus carica L. > Cydonia oblonga Miller > Prunus x domestica L. The plants, Populus nigra L. , Eleagnus angustifolia L. and Salix sp. were found useful for Cd, and the plant, Eleagnus angusti folia L. for Pb, to be considered as potential biomonitor. Especially, leaves of trees and plants taken from the distance of 50 m from battery plant have relatively higher Pb concentrations. Therefore, people who and animals which live in this area and benefit from these soil and plants have vital risks. PMID:22497165

  12. Methods for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry

    Science.gov (United States)

    Chan, George C. Y.; Hieftje, Gary M.

    2010-08-03

    A method for detecting and correcting inaccurate results in inductively coupled plasma-atomic emission spectrometry (ICP-AES). ICP-AES analysis is performed across a plurality of selected locations in the plasma on an unknown sample, collecting the light intensity at one or more selected wavelengths of one or more sought-for analytes, creating a first dataset. The first dataset is then calibrated with a calibration dataset creating a calibrated first dataset curve. If the calibrated first dataset curve has a variability along the location within the plasma for a selected wavelength, errors are present. Plasma-related errors are then corrected by diluting the unknown sample and performing the same ICP-AES analysis on the diluted unknown sample creating a calibrated second dataset curve (accounting for the dilution) for the one or more sought-for analytes. The cross-over point of the calibrated dataset curves yields the corrected value (free from plasma related errors) for each sought-for analyte.

  13. Stabilizing Agents for Calibration in the Determination of Mercury Using Solid Sampling Electrothermal Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Hana Zelinková

    2012-01-01

    Full Text Available Tetramethylene dithiocarbamate (TMDTC, diethyldithiocarbamate (DEDTC, and thiourea were investigated as stabilizing agents for calibration purposes in the determination of mercury using solid sampling electrothermal atomic absorption spectrometry (SS-ETAAS. These agents were used for complexation of mercury in calibration solutions and its thermal stabilization in a solid sampling platform. The calibration solutions had the form of methyl isobutyl ketone (MIBK extracts or MIBK-methanol solutions with the TMDTC and DEDTC chelates and aqueous solutions with thiourea complexes. The best results were obtained for MIBK-methanol solutions in the presence of 2.5 g L-1 TMDTC. The surface of graphite platforms for solid sampling was modified with palladium or rhenium by using electrodeposition from a drop of solutions. The Re modifier is preferable due to a higher lifetime of platform coating. A new SS-ETAAS procedure using the direct sampling of solid samples into a platform with an Re modified graphite surface and the calibration against MIBK-methanol solutions in the presence of TMDTC is proposed for the determination of mercury content in solid environmental samples, such as soil and plants.

  14. Determination of eight trace elements in doped crystal ALN by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. In this paper, an accurate and simple method has been developed for the determination of trace Cr, Co, Cu, Fe, Mg, Mn ,Ni and Zn in doped AlN crystal using inductively coupled plasma atomic emission spectrometry (ICP-AES). AlN crystal becomes ideal substrate for the epitaxial growth of GaN, AlGaN with high Al ingredient and AlN which are used to fabricate ultraviolet LEDs, blue- ultraviolet solid state LDs, lasers, ultraviolet detectors. At present, It is a very important aspect for scientific workers to promote in the transition metals elements doped AlN showing ferromagne. Owing its low detection limits and multi-element capability, ICP-AES has been used in many fields.The optimum instrument working conditions are selected .AlN crystal was fused with KOH and the fusion product was dissolved in dilute aqua regia. Matrix effect from KOH and interference to the spectral lines of the elements to be determined were investigated and corrected by matrix matching and background correction method. Detection limits of elements were 0.01% to 0.0002% The recoveries for elements were 98% to 104%. The relative standard deviation was 0.5% to 4.0%.

  15. Direct solid soil analysis by laser ablation inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Determination of heavy metals in soils by inductively coupled plasma atomic emission spectrometry (ICP-AES) usually involves the time-consuming step of preparing a solution of the solid that is then nebulized into the plasma. According to regulations, digestion by aqua regia(hydrochloric acid + nitric acid, 3 + 1) should be carried out although it is known that this method is incomplete for silicate soils. The problem can be eliminated by introducing the solid directly into the plasma using the laser ablation technique for sampling. Results are described for a study of laser ablation using a Q-switched Nd: YAG laser coupled with a new échelle spectrometer which has a multichannel solid-state detector. The laser pulses were focused onto the solid surface of pressed soil samples to generate an aerosol which is entrained in a flowing Ar stream, transported through a tube and then introduced directly into the inductively coupled plasma. Some characteristics of the preparation technique, the selection of an internal standard and homogeneity tests of the elemental distribution are reported along with a comparison and evaluation of three methods of calibration. The criteria used to measure the performance of laser ablation ICP-AES are the relative standard deviations obtained of 4.9–12.7% and the accuracy, 0.3–12.4% for Fe, Mn, Cu, Pb, Cr, Zn and Ni

  16. EVALUATION OF HEAVY METALS CONTENT IN EDIBLE MUSHROOMS BY MICROWAVE DIGESTION AND FLAME ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Cristiana Radulescu

    2011-05-01

    Full Text Available The aim of this work was to determine the heavy metal (Cd, Cr, Ni, Pb, Mn, Zn, Fe and Cu content of the fruiting bodies (cap and stipe of four species (Amanita caesarea, Pleurotus ostreatus, Fistulina hepatica and Armillariella mellea and their substrate, collected from forest sites in Dâmboviţa County, Romania. The elements were determined by Flame Atomic Absorption Spectrometry (FAAS after microwave assisted digestion. From the same collecting point were taken n = 5 samples of young and mature fruiting bodies of mushrooms and their substrate. The high concentrations of lead, chrome and cadmium (Pb: 0.25 – 1.89 mg.kg-1, Cr: 0.36 – 1.94 mg.kg-1, Cd: 0.23 – 1.13 mg.kg-1 for all collected wild edible mushrooms, were determined. These data were compared with maximum level for certain contaminants in foodstuffs established by the commission of the European Committees (EC No 466/2001. A quantitative evaluation of the relationship of element uptake by mushrooms from substrate was made by calculating the accumulation coefficient (Ka. The moderately acid pH value of soil influenced the accumulation of Zn and Cd inside of the studied species. The variation of heavy metals content between edible mushrooms species is dependent upon the ability of the species to extract elements from the substrate and on the selective uptake and deposition of metals in tissue.

  17. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  18. Determination of manganese in thermoluminescent materials by inductively coupled plasma atomic emission spectrometry and spectrophotometry

    International Nuclear Information System (INIS)

    The content of manganese in the mixed fluorides CaF2: MnF2 and CaF2: Mn thermoluminophors was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) and spectrophotometry. The various Mn emission lines were compared and the manganese emission line at 257.610 nm was used for ICP-AES analysis. For the spectrophotometric determination the manganese(II) ions were oxidized to intensively coloured permanganate ions using potassium periodate. No statistically significant differences were found between the results of ICP-AES and spectrophotometric methods of analysis. The thermoluminophors were synthesized by coprecipitation of manganese with CaF2, varying the concentration of manganese in the initial solutions in the range of 0.01 - 2.0 % (m/m). The coprecipitated mixed fluorides CaF2: MnF2 were heated at 1423 K. The glow curves of synthesized CaF2: Mn thermoluminophors were measured. (author)

  19. Speciation Analysis of Serum Copper by Ultrafiltration Com-bined with Graphite Furnace Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Hua; MA Hui-Min; MA Quan-Li; LIANG Shu-Chuan

    2001-01-01

    UItrafiltration combined with graphite furnace atomic absorp-tion spectrometry(GFAAS)was used to study protein binding and speciation of copper in human serum..UItrafiltration was carried out using a cell unit ultrafiltration membraoes having a nominal cut-off of 10,000Dalton.The effects of var-ious experimental factors including the kind and concentration of electrolyte,sample storge,pH,pressure and the precon-ditioning of the membranes on the speciation analysis of serum copper by ultrafiltration were examined.It was observed that 4.5±2.3% of the total copper in serum was ultrafiltrable and this value did not seem to be influenced by the total serum ele-mental concentration,the PH (6.5——10) adn the pressure(≤1.5kg/cm2).the preconditioning of the ultrafiltration system with 0.1mol/L calcium nitrate can overcome the adsorption loss of copper effectively,and the addition of tris-HCI sohtion (pH 7.4)to serum accelerates the ultrafiltration.The present method was proved to be suitable for speciation analysis for its simplicity,rapidity,small sample reuqirement and easy con-trol.The results obtained with the method are accurate and reliable.

  20. Determination of myo-inositol hexakisphosphate (phytate) in urine by inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grases, F.; Perello, J.; Isern, B.; Prieto, R.M

    2004-05-10

    Myo-inositol hexakisphosphate (phytate) is a substance present in urine with an important role in preventing calcium renal calculi development. In spite of this, the use of urinary phytate levels on stone-formers' evaluation and treatment is still notably restricted as a consequence of the enormous difficulty to analyze this substance in urine. In this paper, a simple procedure for routinary urinary phytate determination based on phosphorus determination through inductively coupled plasma atomic emission spectrometry is described. The method only requires a previous separation of phytate from other components by column anion exchange chromatography. The working linear range used was 0-2 mg l{sup -1} phosphorus (0-7 mg l{sup -1} phytate). The limit of detection was 64 {mu}g l{sup -1} of phytate and the limit of quantification was 213 {mu}g l{sup -1}. The relative standard deviation (R.S.D.) for 1.35 mg l{sup -1} phytate was 2.4%. Different urine samples were analyzed using an alternative analytical methodology based on gas chromatography (GC)/mass detection used for inositol determination (phytate was previously hydrolyzed), resulting both methods comparable using as criterion to assess statistical significance P<0.05.

  1. Analysis of the release characteristics of cu-treated antimicrobial implant surfaces using atomic absorption spectrometry.

    Science.gov (United States)

    Zietz, Carmen; Fritsche, Andreas; Finke, Birgit; Stranak, Vitezslav; Haenle, Maximilian; Hippler, Rainer; Mittelmeier, Wolfram; Bader, Rainer

    2012-01-01

    New developments of antimicrobial implant surfaces doped with copper (Cu) ions may minimize the risk of implant-associated infections. However, experimental evaluation of the Cu release is influenced by various test parameters. The aim of our study was to evaluate the Cu release characteristics in vitro according to the storage fluid and surface roughness. Plasma immersion ion implantation of Cu (Cu-PIII) and pulsed magnetron sputtering process of a titanium copper film (Ti-Cu) were applied to titanium alloy (Ti6Al4V) samples with different surface finishing of the implant material (polished, hydroxyapatite and corundum blasted). The samples were submersed into either double-distilled water, human serum, or cell culture medium. Subsequently, the Cu concentration in the supernatant was measured using atomic absorption spectrometry. The test fluid as well as the surface roughness can alter the Cu release significantly, whereby the highest Cu release was determined for samples with corundum-blasted surfaces stored in cell medium. PMID:22162672

  2. Determination of lead in croatian wines by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A method has been developed for direct determination of lead in wine by graphite furnace atomic absorption spectrometry (GFAAS) with Zeeman-effect background correction. The thermal behaviour of Pb during pyrolysis and atomisation stages was investigated without matrix modifier and in the presence of Pd(NO3)2, Pd(NO3)2 + Mg(NO3)2 x 6H2O, and NH4H2PO4 + Mg(NO3)2 x 6H2O as matrix modifiers. A simple 1:1 dilution of wine samples with Pd(NO3)2 as a matrix modifier proved optimal for accurate determination of Pb in wine. Mean recoveries were 106 % for red and 114 % for white wine, and the detection limit was 3 μg L-1. Within-run precision of measurements for red and white wine was 2.1 % and 1.8 %, respectively. The proposed method was applied for analysis of 23 Croatian wines. Median Pb concentrations were 33 μg L-1, range (16 to 49) μg L-1 in commercially available wines and 46 μg L-1, range (14 to 559) μg L-1 in home-made wines. There were no statistically significant differences (P<0.05) in Pb concentration between commercial and home-made wines or between red and white wines. (authors)

  3. Evaluation of a new optic-enabled portable X-ray fluorescence spectrometry instrument for measuring toxic metals/metalloids in consumer goods and cultural products

    Science.gov (United States)

    Guimarães, Diana; Praamsma, Meredith L.; Parsons, Patrick J.

    2016-08-01

    X-ray fluorescence spectrometry (XRF) is a rapid, non-destructive multi-elemental analytical technique used for determining elemental contents ranging from percent down to the μg/g level. Although detection limits are much higher for XRF compared to other laboratory-based methods, such as inductively coupled plasma mass spectrometry (ICP-MS), ICP-optical emission spectrometry (OES) and atomic absorption spectrometry (AAS), its portability and ease of use make it a valuable tool, especially for field-based studies. A growing necessity to monitor human exposure to toxic metals and metalloids in consumer goods, cultural products, foods and other sample types while performing the analysis in situ has led to several important developments in portable XRF technology. In this study, a new portable XRF analyzer based on the use of doubly curved crystal optics (HD Mobile®) was evaluated for detecting toxic elements in foods, medicines, cosmetics and spices used in many Asian communities. Two models of the HD Mobile® (a pre-production and a final production unit) were investigated. Performance parameters including accuracy, precision and detection limits were characterized in a laboratory setting using certified reference materials (CRMs) and standard solutions. Bias estimates for key elements of public health significance such as As, Cd, Hg and Pb ranged from - 10% to 11% for the pre-production, and - 14% to 16% for the final production model. Five archived public health samples including herbal medicine products, ethnic spices and cosmetic products were analyzed using both XRF instruments. There was good agreement between the pre-production and final production models for the four key elements, such that the data were judged to be fit-for-purpose for the majority of samples analyzed. Detection of the four key elements of interest using the HD Mobile® was confirmed using archived samples for which ICP-OES data were available based on digested sample materials. The HD

  4. Molecular-level characterization of fluorescent dissolved organic matter in 120 boreal lakes using ultrahigh resolution mass spectrometry

    Science.gov (United States)

    Kellerman, Anne; Kothawala, Dolly N.; Dittmar, Thorsten; Tranvik, Lars J.

    2014-05-01

    Dissolved organic matter (DOM) is a highly diverse composite of degradation products, with its reactivity and composition central to the role inland waters play in the global carbon cycle. Thus characterizing DOM is of great interest; however, a major challenge in DOM characterization is its inherent heterogeneity. Absorbance and fluorescence spectroscopy are accessible and time-efficient characterization techniques, thus the use of such techniques continues to increase. Despite the pervasive use of these methods, the molecular basis of many commonly used indices remains a subject of great interest. We analyzed 120 lakes across Sweden using 15 Tesla ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). This method allows for precise molecular formula assignment of thousands of molecules in each sample. These data were then compared to absorbance and fluorescence properties including a six-component model derived from parallel factor analysis (PARAFAC). We found that aliphatic compounds were most highly associated with microbially derived components and vascular plant-derived polyphenols were most highly associated with terrestrial components. This state of the art analysis reveals the specific chemistry behind widely used absorbance and fluorescence fingerprinting techniques and serves as a basis for future studies looking to understand the molecular characteristics of optical parameters.

  5. An improved reagent for determination of aliphatic amines with fluorescence and online atmospheric chemical ionization-mass spectrometry identification

    International Nuclear Information System (INIS)

    An improved reagent named 2-[2-(dibenzocarbazole)-ethoxy] ethyl chloroformate (DBCEC-Cl) for the determination of aliphatic amines by high-performance liquid chromatography (HPLC) with fluorescence detection and post-column online atmospheric chemical ionization-mass spectrometry (APCI-MS) identification has been developed. DBCEC-Cl could easily and quickly label aliphatic amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+H]+ under APCI-MS in positive-ion mode. The ratios for fluorescence responses were IDBCEC-amine/IBCEC-amine = 1.02-1.60; IDBCEC-amine/IBCEOC-amine = 1.30-2.57; and IDBCEC-amine/IFMOC-amine = 2.20-4.12 (here, I was relative fluorescence intensity). The ratios for MS responses were ICDBCEC-amine/ICBCEC-amine = 4.16-29.31 and ICDBCEC-amine/ICBCEOC-amine = 1.23-2.47 (Here, IC: APCI-MS ion current intensity). Detection limits calculated from 0.0244 pmol injection, at a signal-to-noise ratio of 3, were 0.3-3.0 fmol. The relative standard deviations for within-day determination (n = 6) were 0.045-0.081% for retention time and 0.86-1.03% for peak area for the tested aliphatic amines. The mean intra- and inter-assay precision for all amine levels were 0.9991.

  6. Fluorescence spectrometry for quantitative characterization of cobalt(II) complexation by Leonardite humic acid.

    Science.gov (United States)

    Monteil-Rivera, Fanny; Dumonceau, Jacques

    2002-11-01

    Quenching of the fluorescence of a Leonardite humic acid by Co(II) has been studied at different pH. The interaction was monitored by emission fluorescence and by synchronous fluorescence with two different offsets (deltalambda=20 and 80 nm). It was found that synchronous fluorescence performed with the smaller offset resolves the individual components of the heterogeneous material better than emission or synchronous fluorescence performed with the larger offset. Enhancement of the signal induced by Cobalt(II) complexation resulted in more complex behavior for measurements performed by synchronous fluorescence with an offset of 20 nm, however. The quenching profiles obtained for pH 5.0, 6.0, and 7.0 ([KNO(3)]=0.1 mol L(-1); [LHA]=3.3 mg(C) L(-1); [Co(II)]=1.0 x 10(-6)-1.6 x 10 (-3) mol L(-1)) by emission and synchronous (deltalambda=80 nm) fluorescence were analyzed by two methods: 1. a non-linear least-squares procedure that leads to conditional constants; and 2. a pH-dependent discrete logK spectrum model that leads to stability constants. The first method resulted in poor fitting and unreasonable values for maximum capacities. The second procedure resulted in smooth fitting that accounted well for the pH changes when results for pH 6.0 and 5.0 were predicted by use of the four values of logK(Co)(i) (4.31, 3.76, 7.32, and 7.67 corresponding to the four sites (i) of the respective pKa(i) values 4, 6, 8, and 10) calculated at pH 7.0 for the equilibrium PMID:12458428

  7. Determination of cadmium, cobalt, manganese, copper, nickel, and chromium in concentrated solutions of calcium chloride by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A procedure is developed for the direct determination of Cd, Co, Cr, Cu, Mn, and Ni in concentrated solutions of calcium chloride by electrothermal atomic absorption spectrometry. Ascorbic and oxalic acids and magnesium nitrate were examined as chemical modifiers. Oxalic acid was found to be the best modifier. Although an atomic absorption spectrometer with a background correction system of relatively low efficiency (deuterium lamp) was used, elements under study can be reliably determined in the presence of oxalic acid at concentrations of calcium chloride in the solution up to 6%. Because cadmium is evaporated before the major part of the given matrix, it can be determined without modifier

  8. Construction and performance of a time-multiplex multiple-slit flame atomic fluorescence spectrometer for multi-element analysis

    International Nuclear Information System (INIS)

    The design and performance characteristics of a new multi-element flame atomic fluorescence spectrometer are presented. Radiation from four-hollow-cathode tubes is directed onto an unsheathed air-hydrogen flame. The resulting atomic fluorescence is viewed by a special monochromator with a separate exit slit for each element. The light exiting from all slits is directed onto a single photomultiplier tube. The fluorescence signals from different elements are distinguished by a time multiplex approach. Single-element detection limits for ten elements and multi-element detection limits for four elements are presented. The degradation of detection limits by flame background emission noise and effect of flame composition on performance are discussed. Better than 10% is obtained for moderate analyte concentrations. (Auth.)

  9. Temperature-controlled electrothermal atomization-atomic absorption spectrometry using a pyrometric feedback system in conjunction with a background monitoring device

    Science.gov (United States)

    Van Deijck, W.; Roelofsen, A. M.; Pieters, H. J.; Herber, R. F. M.

    The construction of a temperature-controlled feedback system for electrothermal atomization-atomic absorption spectrometry (ETA-AAS) using an optical pyrometer applied to the atomization stage is described. The system was used in conjunction with a fast-response background monitoring device. The heating rate of the furnace amounted to 1400° s -1 with a reproducibility better than 1%. The precision of the temperature control at a steady state temperature of 2000°C was 0.1%. The analytical improvements offered by the present system have been demonstrated by the determination of cadmium and lead in blood and finally by the determination of lead in serum. Both the sensitivity and the precision of the method have been improved. The accuracy of the method was checked by determining the lead content for a number of scrum samples both by ETA-AAS and differential pulse anodic stripping voltametry (DPASV) and proved to be satisfactory.

  10. Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Musil, Stanislav, E-mail: stanomusil@biomed.cas.cz; Matoušek, Tomáš; Dědina, Jiří

    2015-06-01

    Sapphire is presented as a high temperature and corrosion resistant material of an optical tube of an atomizer for volatile species of Ag generated by the reaction with NaBH{sub 4}. The modular atomizer design was employed which allowed to carry out the measurements in two modes: (i) on-line atomization and (ii) in situ collection (directly in the optical tube) by means of excess of O{sub 2} over H{sub 2} in the carrier gas during the trapping step and vice versa in the volatilization step. In comparison with quartz atomizers, the sapphire tube atomizer provides a significantly increased atomizer lifetime as well as substantially improved repeatability of the Ag in situ collection signals shapes. In situ collection of Ag in the sapphire tube atomizer was highly efficient (> 90%). Limit of detection in the on-line atomization mode and in situ collection mode, respectively, was 1.2 ng ml{sup −1} and 0.15 ng ml{sup −1}. - Highlights: • Sapphire was tested as a new material of an atomizer tube for Ag volatile species. • Two measurement modes were investigated: on-line atomization and in situ collection. • In situ collection of Ag was highly efficient (> 90%) with LOD of 0.15 ng ml{sup −1}. • No devitrification of the sapphire tube observed in the course of several months.

  11. Arsenic speciation analysis by cryogenic trapping – hydride generation – atomic absorption spectrometry; Investigation of water vapour dryers

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Milan; Taurková, Petra; Matoušek, Tomáš; Rychlovský, P.; Dědina, Jiří

    Prague: Charles University in Prague, Faculty of Science, 2010 - (Nesměrák, K.), s. 15-18. (1). ISBN 978-80-7444-005-2. [International Students Conference "Modern Analytical Chemistry" /6./. Praha (CZ), 23.09.2010-24.09.2010] R&D Projects: GA ČR GA203/09/1783 Institutional research plan: CEZ:AV0Z40310501 Keywords : arsenic speciation * cryogenic trapping * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation

  12. Determination of trace amounts of selenium in minerals and rocks by flame less atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    The determination of trace amounts of selenium In silicate rocks and feldspar by solvent extraction and graphite furnace atomic-absorption spectrometry has been stu- died. Sodium diethyl-ditio carbamate and ammonium pyrrolidine dithiocarbamate have been tried as chelating agents. The best results are achieved when selenium is extracted Into carbon tetrachloride as the sodium diethyldithiocarbamate complex. The method allows to detect 0,75 ppm of selenium in the sample. Recoveries are about 100%. (Author) 7 refs

  13. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author)

  14. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong Sam; Choi, Kwang Soon; Moon, Jong Hwa; Kim, Sun Ha; Lim, Jong Myoung; Kim, Young Jin [KAERI, Taejon (Korea, Republic of); Quraishi, Shamshad Begum [Bangladesh Atomic Energy Commission, Dhaka (Bangladesh)

    2003-05-01

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  15. Dispersive Liquid-Liquid Microextraction of Bismuth in Various Samples and Determination by Flame Atomic Absorption Spectrometry

    OpenAIRE

    Teslima Daşbaşı; Şenol Kartal; Şerife Saçmacı; Ahmet Ülgen

    2016-01-01

    A dispersive liquid-liquid microextraction method for the determination of bismuth in various samples by flame atomic absorption spectrometry is described. In this method, crystal violet was used as counter positive ion for BiCl4 − complex ion, chloroform as extraction solvent, and ethanol as disperser solvent. The analytical parameters that may affect the extraction efficiency like acidity of sample, type and amount of extraction and disperser solvents, amount of ligand, and extraction time ...

  16. Trace elements analysis by PIXE (particle induced x-ray excitation) and AAS (atomic absorption spectrometry) from environmental samples

    International Nuclear Information System (INIS)

    The aim of this work is the micro elemental analysis of environmental samples by PIXE (Particle Induced X-ray Excitation) method and AAS (Atomic Absrobtion Spectrometry). The samples were collected from neighborhood of Targoviste city (mulberry, apple, poplar, walnut, prune, maple). The concentration data have been obtain for the elements: S, Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Sr by PIXE method and Mn, Fe, Cu, Cr, Se, Zn by AAS method. A good correlation b

  17. Determination of Copper-Based Fungicides by Flame Atomic Absorption Spectrometry Using Digestion Procedure with Sulfuric and Nitric Acid

    OpenAIRE

    Jelena Milinović; Rada Đurović

    2007-01-01

    Copper-based fungicides can be effectively digested by treatment with a mixture of concentrated sulfuric and nitric acid in exactly 15 minutes for the rapid determination via copper using flame atomic absorption spectrometry (AAS). Under optimum conditions, the results of copper fungicide analysis were consistent to those obtained by the AOAC’s recommended method. Recovery values ranged from 98.63 to 103.40%. Relative standard deviation values are lower than 2%. The proposed digestion procedu...

  18. Determination of Trace Silver in Water Samples by Online Column Preconcentration Flame Atomic Absorption Spectrometry Using Termite Digestion Product

    OpenAIRE

    Joyce Nunes Bianchin; Eduardo Carasek; Edmar Martendal

    2011-01-01

    A new method for Ag determination in water samples using solid phase extraction (SPE) coupled to a flow injection system and flame atomic absorption spectrometry was developed. The sorbent used for Ag preconcentration and extraction was the termite digestion product. Flow and chemical variables of the system were optimized through a multivariate procedure. The factors selected were adsorbent mass, buffer type and concentration, sample pH, and sample flow rate. The detection limit and precisio...

  19. Determination of Arsenic in Palm Kernel Expeller using Microwave Digestion and Graphite Furnace Atomic Absorption Spectrometry Method

    OpenAIRE

    Abdul Niefaizal Abdul Hammid; Ainie Kuntom; RazaIi Ismail; Norazilah Pardi

    2013-01-01

    A study on the method to determine arsenic in palm kernel expeller wascarried out. Microwave digestion technique is widely applied in the analytical chemistry field. In comparison to conventional sample digestion method, the microwave technique is simple, reduced contamination, usage of safe reagent and matrix completely digested. A graphite furnace atomic absorption spectrometry method was used for the total determination of arsenic in palm kernel expeller. Arsenic was extracted from palm ke...

  20. Elemental analysis using instrumental neutron activation analysis and inductively coupled plasma atomic emission spectrometry: a comparative study

    International Nuclear Information System (INIS)

    Elemental analyses for certified reference materials were carried out using instrumental neutron activation analysis and inductively coupled plasma-atomic emission spectrometry. Five Certified Reference Materials (CRM) were selected for the study on comparative analysis of environmental samples. The CRM are Soil (NIST SRM 2709), Coal fly ash (NIST SRM 1633a), urban dust (NIST SRM 1649a) and air particulate on filter media (NIST SRM 2783 and human hair (GBW 09101)

  1. Towards broadening thermospray flame furnace atomic absorption spectrometry: Influence of organic solvents on the analytical signal of magnesium

    OpenAIRE

    Ezequiel Morzan; Jorge Stripeikis; Mabel Tudino

    2015-01-01

    This study demonstrates the influence of the solvent when thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) is employed for the determination of elements of low volatility, taking magnesium (Mg) as leading case. Several organic solvents/water solutions of different characteristics (density, surface tension, viscosity, etc.) and proportions were employed for the TS-FF-AAS analytical determination. To this end, solutions containing methanol, ethanol and isopropanol in water w...

  2. Liquid sample introduction in inductively coupled plasma atomic emission and mass spectrometry — Critical review

    International Nuclear Information System (INIS)

    Inductively coupled plasma optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS) can be considered as the most important tools in inorganic analytical chemistry. Huge progress has been made since the first analytical applications of the ICP. More stable RF generators, improved spectrometers and detection systems were designed along with the achievements gained from advanced microelectronics, leading to overall greatly improved analytical performance of such instruments. In contrast, for the vast majority of cases liquid sample introduction is still based on the pneumatic principle as described in the late 19th century. High flow pneumatic nebulizers typically demand the use of spray chambers as “aerosol filters” in order to match the prerequisites of an ICP. By this, only a small fraction of the nebulized sample actually contributes to the measured signal. Hence, the development of micronebulizers was brought forward. Those systems produce fine aerosols at low sample uptake rates, but they are even more prone for blocking or clogging than conventional systems in the case of solutions containing a significant amount of total dissolved solids (TDS). Despite the high number of publications devoted to liquid sample introduction, it is still considered the Achilles' heel of atomic spectrometry and it is well accepted, that the technology used for liquid sample introduction is still far from ideal, even when applying state-of-the-art systems. Therefore, this review is devoted to offer an update on developments in the field liquid sample introduction that had been reported until the year 2013. The most recent and noteworthy contributions to this field are discussed, trends are highlighted and future directions are outlined. The first part of this review provides a brief overview on theoretical considerations regarding conventional pneumatic nebulization, the fundamentals on aerosol generation and discusses characteristics of aerosols ideally

  3. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at mug L{sup -1} levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages

  4. Achieving 100% Efficient Postcolumn Hydride Generation for As Speciation Analysis by Atomic Fluorescence Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2016-01-01

    Roč. 88, APR (2016), s. 4041-4047. ISSN 0003-2700 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : arsenic speciation analysis * hydride generation * HPLC Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  5. Achieving 100% Efficient Postcolumn Hydride Generation for As Speciation Analysis by Atomic Fluorescence Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2016-01-01

    Roč. 88, - (2016), s. 4041-4047. ISSN 0003-2700 R&D Projects: GA ČR GA14-23532S Institutional support: RVO:68081715 Keywords : arsenic speciation analysis * hydride generation * HPLC Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 5.636, year: 2014

  6. Slurry sampling procedure for the determination of lead in human hair by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. Human hair is a stable matrix that presents numerous advantages for human biomonitoring, such as easy collection, low cost, easy transport and storage, information about short- and long-term exposure (Angerer J et al., Int. J. Hyg. Environ. Health, 2007, 201-228). The use of the slurry sampling procedure was applied for the determination of lead in human hair by electrothermal atomic absorption spectrometry (ETAAS). This technique presents high sensitivity, low cost and the possibility of direct determination. Hair samples were pulverized using a cryogenic mill. Ten milligrams of the hair powder were transferred into a polyethylene vial and 2 ml of 2.5% HNO3 and 1.5% H2O2 were added. The slurries were maintained homogeneous with air bubbling with an aquarium pump. Niobium and Rhodium were chosen from several potential permanent modifiers by evaluating the background and absorbance signals obtained under the conditions recommended by the manufacturer. A 23 factorial design and a central composite design (CCD) were realized to optimize permanent modifier and pyrolysis and atomization temperatures. The parameters of merit were obtained in the optimized conditions (Tp = 660 deg C, Ta = 1780 deg C and Rh), and they were as follows: linear working range up to 50 μg L-1; limit of detection (0.032 0.002) μg g-1; limit of quantification (0.106 0.005) μg g-1; matrix-matched calibration, with r2 > 0.99 and reproducibility ranged from 2.3 to 4.2 relative standard deviation (RSD). The accuracy was evaluated by recovery tests and comparing slurry sampling and microwave decomposition. The recovery values for different concentrations were in the range between 89 and 101% and non-significant differences were observed (t-test; p = 0.05) when comparing the average of lead values obtained from microwave decomposition method and proposed method. Lead concentrations in different samples ranged between 0.13 and 1.11 μg g-1. The authors kindly

  7. Determination of arsenic and cadmium in crude oil by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Alexandre de; Zmozinski, Ariane Vanessa [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Damin, Isabel Cristina Ferreira [Faculdade Dom Bosco de Porto Alegre, 90520-280, Porto Alegre, RS (Brazil); Silva, Marcia Messias, E-mail: mmsilva@iq.ufrgs.br [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti Rodrigues [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2012-05-15

    In this work, a direct sampling graphite furnace atomic absorption spectrometry method has been developed for the determination of arsenic and cadmium in crude oil samples. The samples were weighed directly on the solid sampling platforms and introduced into the graphite tube for analysis. The chemical modifier used for both analytes was a mixture of 0.1% Pd + 0.06% Mg + 0.06% Triton X-100. Pyrolysis and atomization curves were obtained for both analytes using standards and samples. Calibration curves with aqueous standards could be used for both analytes. The limits of detection obtained were 5.1 {mu}g kg{sup -1} for arsenic and 0.2 {mu}g kg{sup -1} for cadmium, calculated for the maximum amount of sample that can be analyzed (8 mg and 10 mg) for arsenic and cadmium, respectively. Relative standard deviations lower than 20% were obtained. For validation purposes, a calibration curve was constructed with the SRM 1634c and aqueous standards for arsenic and the results obtained for several crude oil samples were in agreement according to paired t-test. The result obtained for the determination of arsenic in the SRM against aqueous standards was also in agreement with the certificate value. As there is no crude oil or similar reference material available with a certified value for cadmium, a digestion in an open vessel under reflux using a 'cold finger' was adopted for validation purposes. The use of paired t-test showed that the results obtained by direct sampling and digestion were in agreement at a 95% confidence level. Recovery tests were carried out with inorganic and organic standards and the results were between 88% and 109%. The proposed method is simple, fast and reliable, being appropriated for routine analysis. - Highlights: Black-Right-Pointing-Pointer A direct sampling GF AAS method to determine As and Cd in crude oil was proposed. Black-Right-Pointing-Pointer The conventional chemical modifier Pd/Mg has been used to stabilize As and Cd. Black

  8. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    Science.gov (United States)

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death. PMID:17721164

  9. Determination of Lead in Human Teeth by Hydride Generation Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    Hassan T. Abdulsahib

    2011-01-01

    Full Text Available Problem statement: The determination of lead in human teeth at concentration levels of ìg/ml is proposed using Hydride Generation Atomic Absorption Spectrometry (HG-AAS. To do this, 2% (wv lanthanum chloride solution is employed as matrix modifying reagent to increase sensitivity and remove matrix interferences. Approach: About 100 µL of sample and 100 µL of 3.0% (m/v NaBH4 are simultaneously injected into carrier streams. The detection of limit of 0.46 µg L-1 for Pb was achieved and the relative standard deviation of 3.0% for 10 µg L-1 lead was obtained. The recovery percentage of the method has been found to be (92.8-100.5% for known quantities of lead added to teeth sample which were completely recovered. A comparison of the proposed method with standard addition method showed nearly results in the same samples of teeth and the results compared with other studies in the world. Results: The method was shown to be satisfactory for determination of traces of lead in teeth samples with excellent accuracy. Teeth analysis reveals that intact teeth contained the highest amounts of lead which provide an evidence that lead may reduce the prevalence of dantal caries. Statistically significant differences (pConclusion: Statistically significant difference between age groups were seen in the mean value of lead concentrations in human teeth, the concentration of lead increased with age. The differences may be due to the exposure of lead and others factors such as differences in diet and drinking water.

  10. Simple analysis of total mercury and methylmercury in seafood using heating vaporization atomic absorption spectrometry.

    Science.gov (United States)

    Yoshimoto, Keisuke; Anh, Hoang Thi Van; Yamamoto, Atsushi; Koriyama, Chihaya; Ishibashi, Yasuhiro; Tabata, Masaaki; Nakano, Atsuhiro; Yamamoto, Megumi

    2016-01-01

    This study aimed to develop a simpler method for determining total mercury (T-Hg) and methylmercury (MeHg) in biological samples by using methyl isobutyl ketone (MIBK) in the degreasing step. The fat in the samples was extracted by MIBK to the upper phase. T-Hg transferred into the water phase. This was followed by the extraction of MeHg from the water phase using HBr, CuCl2 and toluene. The MeHg fraction was reverse-extracted into L-cysteine-sodium acetate solution from toluene. The concentrations of T-Hg and MeHg were determined by heating vaporization atomic absorption spectrometry. Certified reference materials for T-Hg and MeHg in hair and fish were accurately measured using this method. This method was then applied to determine T-Hg and MeHg concentrations in the muscle, liver and gonads of seafood for the risk assessment of MeHg exposure. The mean T-Hg and MeHg concentrations in squid eggs were 0.023 and 0.022 µg/g, and in squid nidamental glands 0.052 and 0.049 µg/g, respectively. The MeHg/T-Hg ratios in the eggs and nidamental glands of squid were 94.4% and 96.5%, respectively. The mean T-Hg and MeHg concentrations in the gonads of sea urchins were 0.043 and 0.001 µg/g, respectively, with a MeHg/T-Hg ratio of 3.5%. We developed an efficient analytical method for T-Hg and MeHg using MIBK in the degreasing step. The new information on MeHg concentration and MeHg/T-Hg ratios in the egg or nidamental glands of squid and gonads of sea urchin will also be useful for risk assessment of mercury in seafood. PMID:27432235

  11. Preconcentration method for the determination of thorium in natural water by wavelength dispersive X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    The preconcentration of thorium from natural water and its determination directly by wavelength dispersive X-ray fluorescence spectrometry (WDXRF) were attempted. The first step consists of thorium preconcentration from slightly acid solutions on polyurethane foam (PUF) loaded with 2-etilhexylphosphonic acid (EHPA) reagent as solid phase. PUF held up to 50% (w/w) of the reagent and the preconcentration was maximum at the acidity of 0.25 mol x 1-1 hydrochloric solution. Sorption of PUF had fast kinetics and 4.0 and 10μg x 1-1 detection and quantitation limits of thorium were achieved, respectively, as well as a R.S.D. of 4.2% at 21.7 μg x 1-1. This method was successfully applied to natural water analyses. The results were in good agreement with reference values of water samples at 95% confidence level. (author)

  12. A POLYNOMIAL CORRECTION TECHNIQUE USING RhKα COMPTON PEAK IN X-RAY FLUORESCENCE SPECTROMETRY

    Institute of Scientific and Technical Information of China (English)

    包生祥

    2003-01-01

    @@ Compton scattering radiation of an X ray tube target line is widely used for matrix absorption correction in X-ray fluorescence analysis of heavy trace elements in light matrix samples,Compton scatter ing internal standard technique has been a routine method in geological samples since Reynolds recommended the method in 1963.

  13. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    Science.gov (United States)

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  14. [Determination of major, minor elements in the samples of SrCO3 product by X-ray fluorescence spectrometry].

    Science.gov (United States)

    Wang, Xiao-Huan; Dong, Ya-Ping; Meng, Qing-Fen; Bian, Shao-Ju; Feng, Hai-Tao; Liu, Xin

    2009-08-01

    In the present paper a method for the determination of strontium, barium, calcium, magnesium, silicon, iron, aluminum and sulfur in the product of strontium carbonate by X-ray fluorescence spectrometry with pressed powder sample preparation was developed, and the standard samples were synthesized by high purity reagent. As the contents of strontium in the product of strontium carbonate were very high, the phenomenon of spectrum-peak-saturated occurred and the count rate was overflowed according to the measuring condition which was automatically given by the software system of X-ray fluorescence spectrometry. As a result, the deviation of the measurement is greater. According to analyzing the measuring condition of strontium, a method was given for reducing the count rate by reducing the measuring power of strontium, thus achieving the goal of measurement. When sulfate was measured with pressed powder sample, the results were enhanced with the increase in measuring number. In light of this situation, a method was proposed to solve the problem. As the self-forming characteristic of the product of strontium carbonate was not so well, it was very difficult to press the sample successfully. So, the condition of squash method involving the kinds of the adhesives, the mixing technique with powder sample and the pressing-time technique was discussed. During making the sample, it was found that the effects of pellet formation were better if the time could be delayed by 120 seconds. Matrix effect was corrected by alpha coefficient method, the accuracy of the method was evaluated by analysis of synthetic sample. Detection limits of 0.623-107.6 mg x g(-1) were obtained. The results were in good agreement with certified values with precision of < 2.5% RSD. PMID:19839355

  15. Simultaneous determination of trace elements in soils and sediments by polarizing energy dispersive x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Possibilities of polarizing energy dispersive X-ray fluorescence (EDXRF) spectrometry were fully explored to materialize rapid trace element determinations of soil and sediment samples. The pressed powder pellet technique was adopted for sample preparation because of its simplicity. The trace elements examined were V, Cr, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Sn, Cs, Ba, La, Ce, Pr, Nd, Pb, and Th. The instrument was calibrated by using 26 reference materials. Compton scatter radiation was used as an internal standard to compensate any matrix effects and operating characteristics of the instruments. The correlation coefficients of the calibration lines were greater than 0.98, with the exception of Co and Pr. The results obtained by the proposed EDXRF spectrometry were compared with those obtained by other methods for around 450 samples. Out of the 20 trace elements examined, the results for 10 elements (Ni, Cu, Zn, Rb, Sr, Nb, Cs, Ba, La, Ce and Nd) obtained by the proposed EDXRF spectrometry compared favorably with those determined through conventional wet chemical methods. In contrast, the results for 5 elements (Cr, Co, Zr, Sn, and Pr) exhibited poor agreements with those obtained by the chemical methods. Among these elements, poor agreements of Cr, Zr and Sn were attributable to incomplete dissolution and/or volatilization losses during chemical treatments based on an acid attack, and therefore we concluded that results obtained by EDXRF are superior over those by chemical methods. In the case of Co, however, overlapping of the Fe Kβ line is responsible for the lower correlation coefficient. Although the results of the other 4 analytes (V, Y, Pb and Th) were not as good as those of the first group, they still appeared to be of practical use, considering the time-consuming and potentially hazardous acid digestion pretreatments. (author)

  16. Sensitivity enhancement of beryllium determination in graphite furnace-atomic absorption spectrometry by use of atomization under pressure

    International Nuclear Information System (INIS)

    Using pressurized atomization both peak height and area sensitivity of beryllium is considerably improved. The enhancement may probably be explained by the fact that the Lorentz broadening and shift is more than compensated for by the lower diffusion rate of atoms with increasing pressures. The alteration of peak shapes and parameters should result in a diminishment of vapor phase interferences with increasing pressure. The relative time resolution of the detection system also improves with increasing pressures, with a consequent improvement of precision and accuracy. In the absorbance domain calibration curves are more linear with pressurized atomization than at atmospheric pressure. (Author)

  17. Direct analysis of environmental and biological samples for total mercury with comparison of sequential atomic absorption and fluorescence measurements from a single combustion event

    International Nuclear Information System (INIS)

    A Direct Mercury Analyzer (DMA) based on sample combustion, concentration of mercury by amalgamation with gold, and cold vapor atomic absorption spectrometry (CVAAS) was coupled to a mercury-specific cold vapor atomic fluorescence spectrometer (CVAFS). The purpose was to evaluate combustion-AFS, a technique which is not commercially available, for low-level analysis of mercury in environmental and biological samples. The experimental setup allowed for comparison of dual measurements of mercury (AAS followed by AFS) for a single combustion event. The AFS instrument control program was modified to properly time capture of mercury from the DMA, avoiding deleterious combustion products from reaching its gold traps. Calibration was carried out using both aqueous solutions and solid reference materials. The absolute detection limits for mercury were 0.002 ng for AFS and 0.016 ng for AAS. Recoveries for reference materials ranged from 89% to 111%, and the precision was generally found to be <10% relative standard deviation (RSD). The two methods produced similar results for samples of hair, finger nails, coal, soil, leaves and food stuffs. However, for samples with mercury near the AAS detection limit (e.g., filter paper spotted with whole blood and segments of tree rings) the signal was still quantifiable with AFS, demonstrating the lower detection limit and greater sensitivity of AFS. This study shows that combustion-AFS is feasible for the direct analysis of low levels of mercury in solid samples that would otherwise require time-consuming and contamination-prone digestion.

  18. Arsenic in marine tissues - The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Karadjova, Irina B.; Petrov, Panayot K. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria); Serafimovski, Ivan [Food Institute, Faculty of Veterinary Medicine, Sts. Cyril and Methodius University, P.O. Box 95, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Stafilov, Trajce [Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, P.O. Box 162, MK-1000, Skopje (Macedonia, The Former Yugoslav Republic of); Tsalev, Dimiter L. [Faculty of Chemistry, University of Sofia, 1 James Bourchier Blvd., Sofia 1164 (Bulgaria)], E-mail: tsalev@chem.uni-sofia.bg

    2007-03-15

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant (Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel (Mytilus galloprovincialis) and Brown algae (Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 deg. C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 deg. C and atomization temperature 2100 deg. C) with 1.5 {mu}g Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 {mu}mol of zirconium and then with 0.10 {mu}mol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely

  19. Arsenic in marine tissues - The challenging problems to electrothermal and hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Analytical problems in determination of arsenic in marine tissues are addressed. Procedures for the determination of total As in solubilized or extracted tissues with tetramethylammonium hydroxide and methanol have been elaborated. Several typical lyophilized tissues were used: NIST SRM 1566a 'Oyster Tissue', BCR-60 CRM 'Trace Elements in an Aquatic Plant (Lagarosiphon major)', BCR-627 'Forms of As in Tuna Fish Tissue', IAEA-140/TM 'Sea Plant Homogenate', NRCC DOLT-1 'Dogfish Liver' and two representatives of the Black Sea biota, Mediterranean mussel (Mytilus galloprovincialis) and Brown algae (Cystoseira barbata). Tissues (nominal 0.3 g) were extracted in tetramethylammonium hydroxide (TMAH) 1 ml of 25% m/v TMAH and 2 ml of water) or 5 ml of aqueous 80% v/v methanol (MeOH) in closed vessels in a microwave oven at 50 deg. C for 30 min. Arsenic in solubilized or extracted tissues was determined by electrothermal atomic absorption spectrometry (ETAAS) after appropriate dilution (nominally to 25 ml, with further dilution as required) under optimal instrumental parameters (pyrolysis temperature 900 deg. C and atomization temperature 2100 deg. C) with 1.5 μg Pd as modifier on Zr-Ir treated platform. Platforms have been pre-treated with 2.7 μmol of zirconium and then with 0.10 μmol of iridium which served as a permanent chemical modifier in direct ETAAS measurements and as an efficient hydride sequestration medium in flow injection hydride generation (FI-HG)-ETAAS. TMAH and methanol extract 96-108% and 51-100% of As from CRMs. Various calibration approaches have been considered and critically evaluated. The effect of species-dependent slope of calibration graph or standard additions plot for total As determination in a sample comprising of several individual As species with different ETAAS behavior has been considered as a kind of 'intrinsic element speciation interference' that cannot be completely overcome by standard additions technique. Calibration by means of

  20. Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy

    CERN Document Server

    Spedden, Elise; Naumova, Elena N; Kaplan, David L; Staii, Cristian

    2013-01-01

    Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here we combine Atomic Force Microscopy based force spectroscopy with Fluorescence Microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglion, and P-19 (mouse embryonic carcinoma stem cells) neurons. We measure how the stiffness of neurons changes both during neurite outgrowth and upon disruption of microtubules of the cell. We find reversible local stiffening of the cell during growth, and show that the increase in local elastic modulus is primarily due to the formation of microtubules. We also report that cortical and P-19 neurons have similar elasticity maps, with elastic moduli in the range 0.1-2 kPa, with typical average values of 0.4 kPa (P-19) and 0.2 k...

  1. Using laser-induced fluorescence spectroscopy method for investigating iron atom behaviour on the TO-2 tokamak plasma filament periphery

    International Nuclear Information System (INIS)

    Theoretical prerequisites and methods for laser fluorescent spectroscopy (LFS) to measure heavy impurity concentration in a tokamak with TO-2 diverter are described with the purpose of organizing plasma diagnostics in the T-15 tokamak. Results of measuring iron atom absolute concentrations during discharge in the TO-2 tokamak near-the well area by LFS method are presented. Preliminary experiments on detecting channel absolute calibration by the fluorescent signal of a tube with a hollow cathode, pumped by probing laser radiation are conducted

  2. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, G.A. [National Food Agency of Denmark, Institute of Food Chemistry and Nutrition, Moerkhoej Bygade 19, DK-2860 Soeborg (Denmark); Larsen, E.H. [National Food Agency of Denmark, Institute of Food Chemistry and Nutrition, Moerkhoej Bygade 19, DK-2860 Soeborg (Denmark)

    1997-07-01

    An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination with an aqueous solution of 6 mmol L{sup -1} of salicylate ion at pH 8.5 as the mobile phase which allowed the isocratic separation of the four selenium analytes within 8 minutes. The separated selenium species were detected on-line by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 {sigma}) achieved by the HPLC-FAAS system was 1 mg L{sup -1} of selenium (100 {mu}L injections) for each of the four selenium species. More powerful selenium detection was achieved using an ELAN 5000 ICP-MS instrument. Selenium was measured at m/z = 82. The ICP-MS signal intensity was enhanced by a factor of 3-4 after addition of 3% methanol to the chromatographic mobile phase and by using an increased plasma power input of 1300 W. The limit of detection achieved under these conditions was 1 {mu}g L{sup -1} (100 {mu}L injections). The HPLC-ICP-MS system was used for selenium speciation of selenite and selenate in aqueous solutions during a BCR certification exercise and for selenium speciation in the certified reference material, BCR No. 402 White Clover. Extraction experiments revealed that the selenium species in the biological material were extractable only in the presence of water in the extraction medium. The results indicated that selenate and a compound of unknown identity U were present in the plant sample. (orig.). With 5 figs., 5 tabs.

  3. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an atmospheric pressure air plasma jet

    Science.gov (United States)

    Conway, J.; Gogna, G. S.; Gaman, C.; Turner, M. M.; Daniels, S.

    2016-08-01

    Atomic oxygen number density [O] is measured in an air atmospheric pressure plasma jet (APPJ) using two-photon absorption laser induced fluorescence (TALIF). Gas flow is fixed at 8 slpm, the RF power coupled into the plasma jet varied between 5 W and 20 W, and the resulting changes in atomic oxygen density measured. Photolysis of molecular oxygen is employed to allow in situ calibration of the TALIF system. During calibration, O2 photo-dissociation and two-photon excitation of the resulting oxygen atoms are achieved within the same laser pulse. The atomic oxygen density produced by photolysis is time varying and spatially non-uniform which needs to be corrected for to calibrate the TALIF system for measurement of atomic oxygen density in plasma. Knowledge of the laser pulse intensity I 0(t), wavelength, and focal spot size allows correction factors to be determined using a rate equation model. Atomic oxygen is used for calibration and measurement, so the laser intensity can be increased outside the TALIF quadratic laser power dependence region without affecting the calibration reliability as the laser power dependence will still be the same for both. The atomic O density results obtained are not directly benchmarked against other known density measurement techniques. The results show that the plasma jet atomic oxygen content increases as the RF power coupled into the plasma increases.

  4. Rapid diagnosis of Zellweger syndrome and infantile Refsum's disease by fast atom bombardment-mass spectrometry of urine bile salts

    International Nuclear Information System (INIS)

    A method is described for the rapid determination of urinary bile salt profiles by fast atom bombardment-mass spectrometry (FAB-MS). Negative ion FAB spectra could be obtained from the equivalent of 10 μl of urine loaded onto the target probe with glycerol as matrix. In samples from infants and children with cholestasis the major peaks were produced by the taurine and glycine conjugates of di-, tri- and tetrahydroxycholanoic acids. In samples from patients with Zellweger syndrome and infantile Refsum's disease, a unique ion at m/z 572 indicated the presence of taurine-conjugated tetrahydroxycholestanoic acid(s). Capillary gas chromatography-mass spectrometry (GC-MS) of the bile acids liberated by alkaline hydrolysis indicated the presence of at least two nuclear-tetrahydroxylated cholestanoic acids, probably the 6α- and 1β-hydroxylated derivatives of 3α, 7α, 12α-trihydroxy-5β-cholestan-26-oic acid. (Auth.)

  5. Atomic oxygen surface loss probability on silica in microwave plasmas studied by a pulsed induced fluorescence technique

    International Nuclear Information System (INIS)

    The aim of this paper is to determine the atomic oxygen surface loss probability on silica under microwave plasma conditions around 133 Pa (1 Torr). A pulsed induced fluorescence technique where a main long pulse creates the plasma and a shorter one re-excites atoms in the time post-discharge was used. The method and its validity under the present experimental conditions are discussed at large. The oxygen surface loss probability on silica is found to be around 3% under plasma conditions, while it is estimated to be two orders of magnitude lower for a surface not submitted to the plasma

  6. Direct determination of selenium in rat blood plasma by Zeeman atomic absorption spectrometry.

    Science.gov (United States)

    Kabirov, K K; Kapetanovic, I M; Lyubimov, A V

    2008-01-30

    The method was developed to be applied for direct determination of selenium in rat plasma by graphite-furnace atomic absorption spectrometry with Zeeman background correction. Blood was obtained from CD rats of both sexes 2h after dosing in weeks 7 and 13 in order to acquire data on the levels of selenium in these animals during 13-week gavage administration of l-seleno-methylselenocysteine (SeMC), a new candidate chemopreventive agent under development. Application of the commonly used method of standard addition was found to be unsuitable to calculate the selenium content in rat plasma (within-run and between-run accuracy and precision parameters were less than 85%). Therefore, a new analytical method was developed. In this method, samples of rat plasma (50 microL) were diluted 10-fold with a reducing agent containing l-ascorbic acid, a modifier solution containing palladium chloride and Triton X-100. Samples were atomized in pyrolytically coated graphite tubes and peak height signals were measured. Selenium concentrations were determined by linear least squares regression analysis based on the standard curve generated in pooled rat blank plasma. Since selenium is normally present in plasma, a three-step approach was used to calculate selenium plasma levels. Initially selenium levels were determined based on the standard curve with selenium-spiked pool plasma. In the second step, background selenium levels in the pooled plasma were determined based on the same standard curve. In the third step, background level was added to the previously derived number. The relative errors were in the range from -4.6 to 11.4% (intra-day assay) and from -0.4 to 8.8% (inter-day assay) which proved good accuracy. The relative standard deviations were in the range from 1.88 to 4.70% (intra-day precision) and from 3.28 to 5.38% (inter-day precision). In rat plasma, the following dose-dependent selenium levels (mean+/-S.D.) in males and females, respectively, were observed at 13 weeks

  7. Speciation analysis of thallium using solid phase extraction and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Complete text of publication follows. Thallium is a heavy, very toxic metallic element, which occurs in earth's crust in an estimated abundance from 0.1 to 0.8 mg.kg-1. In the environment, it is mainly combined with other elements (primarily oxygen, sulfur, halogens, potassium and rubidium) in inorganic compounds. During the weathering processes it can be mobilized by aqueous media and accumulated in sediments and soils. The main sources of pollution nowadays come from anthropogenic emissions from refineries, coal-fired power stations, mining activities, metal smelters and the cement industry. Thallium exists in natural waters as either Tl(I) (thallous) or Tl(III) (thallic) species. The oxidation state of Tl affects its complexation and subsequent bioavailability and toxicity in the environment. Thallium content in surface waters is within the range 1-82 ng l-1. Due to this low contents of Tl in water samples, it is necessary to combine the laboratory separation, preconcentration and determination techniques for the purpose of Tl speciation analysis. The scope of the presented work was to use an solid phase extraction (SPE) for the separation and preconcentration of Tl species in water samples followed by the determination using electrothermal atomic absorption spectrometry (ET AAS). In this method, Tl(III) was stabilized by formation of a Tl(III)-DTPA complex. Tl(I) species remained in its original form. These two species were then separated by using a cation exchange resin Amberlite IR120 and nitric acid as the eluent in a batch SPE protocol. The potential interferences of Fe (III), Al, Ca, Mg and other metals were investigated. The optimized experimental conditions for separation/preconcentration step (pH 2-3, time 15 min, temperature 60 deg C) and Zeeman ET AAS determination (chemical modifier Pd + ascorbic acid, atomization temperature 2100 deg C) were used for the speciation analysis of thallium in filtered acid water samples from open quartzite mine in the

  8. Thorium determination by X-ray Fluorescence Spectrometry in simulated thorex process solutions

    International Nuclear Information System (INIS)

    The X-ray fluorescence method for thorium determination in aqueous and organic (TBP-n-dodecane) solutions is described. The thin film-technique for sample preparation and a suitable internal standard have been used. Some parameters as analytical line, internal standard, filter paper, paper geometry, sample volume and measurement conditions were studied. Uranium, fission products, corrosion products and thorex reagent components were studied as interfering elements in the thorium analysis, as well as the matrix effect by using the thorex process simulated solutions the method to thorium determination in irradiated thorium solutions was applied. (M.J.C.)

  9. Analysis of Jamaican soils and sediments by energy-dispersive X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    The calibration of a tube excited Energy-Dispersive X-Ray Fluorescence spectrometer for routine geochemical analyses of Ca, Ti, V, Cr, Mn, Fe, Cu, Zn, Rb, Sr and Pb in Jamaican soils and sediments is described. Simple linear and parabolic regression models using scattered radiation and an element as internal standards were applied. The analysis of over 200 samples from a regional soil survey has been used to contribute to a database on the geochemistry of Jamaican soils and sediments. An application example of the Zn distribution map in Jamaican soils is presented. (author). 20 refs., 5 figs., 4 tabs

  10. Potential of two-line atomic fluorescence for temperature imaging in turbulent indium-oxide-producing flames

    International Nuclear Information System (INIS)

    The applicability of two-line atomic fluorescence (TLAF) for temperature imaging in an indium-based flame spray pyrolysis (FSP) process is demonstrated using a single tunable optical parametric oscillator (OPO) to generate the required excitation wavelengths consecutively. Single-shot images of the detected fluorescence signals demonstrate that the signal levels in the flame are suitable for evaluation of temperature and verify the capability and potential of the measurement technique directly during particle formation without additional indium seeding. Qualitative averaged two-dimensional temperature distributions in the FSP flame are presented, showing the influence of varying sheath gas flow rates on the resulting temperature distribution. With the addition of a second OPO and detection system, the two fluorescence signals acquired consecutively in this work could be obtained simultaneously and enable spatio-temporally resolved single-shot temperature measurements in flame synthesis processes of indium-containing nanoparticles

  11. Potential of two-line atomic fluorescence for temperature imaging in turbulent indium-oxide-producing flames

    Energy Technology Data Exchange (ETDEWEB)

    Münsterjohann, Bettina; Huber, Franz J. T.; Klima, Tobias C.; Holfelder, Sandra; Engel, Sascha R. [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Technische Thermodynamik (LTT) (Germany); Miller, Joseph D. [Aerospace Systems Directorate, Air Force Research Laboratory (United States); Meyer, Terrence R. [Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen Graduate School in Advanced Optical Technologies (SAOT) (Germany); Will, Stefan, E-mail: stefan.will@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Technische Thermodynamik (LTT) (Germany)

    2015-11-15

    The applicability of two-line atomic fluorescence (TLAF) for temperature imaging in an indium-based flame spray pyrolysis (FSP) process is demonstrated using a single tunable optical parametric oscillator (OPO) to generate the required excitation wavelengths consecutively. Single-shot images of the detected fluorescence signals demonstrate that the signal levels in the flame are suitable for evaluation of temperature and verify the capability and potential of the measurement technique directly during particle formation without additional indium seeding. Qualitative averaged two-dimensional temperature distributions in the FSP flame are presented, showing the influence of varying sheath gas flow rates on the resulting temperature distribution. With the addition of a second OPO and detection system, the two fluorescence signals acquired consecutively in this work could be obtained simultaneously and enable spatio-temporally resolved single-shot temperature measurements in flame synthesis processes of indium-containing nanoparticles.

  12. Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization

    International Nuclear Information System (INIS)

    The measurement conditions for determining boron using graphite furnace–atomic absorption spectrometry (GF-AAS) were investigated. Differences in the boron absorbance profiles were found using three different commercially available GF-AAS instruments when the graphite atomizers in them were not tuned. The boron absorbances found with and without adjusting the graphite atomizers suggested that achieving an adequate absorbance for the determination of boron requires a sharp temperature profile that overshoots the target temperature during the atomization process. Chemical modifiers that could improve the boron absorbance without the need for using coating agents were tested. Calcium carbonate improved the boron absorbance but did not suppress variability in the peak height. Improvement of boron absorbance was comparatively less using iron nitrate or copper nitrate than using calcium carbonate, but variability in the peak height was clearly suppressed using iron nitrate or copper nitrate. The limit of detection was 0.0026 mg L−1 when iron nitrate was used. It appears that iron nitrate is a useful new chemical modifier for the quick and simple determination of boron using GF-AAS. (author)

  13. Precious metal assay analysis of fresh reforming catalyst by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    This paper reports that precious metal analysis of fresh reforming catalysts are typically performed by both the catalyst manufacturer and buyer to arrive at a financial settlement on the quantity of metal in each lot of commercial catalyst. Traditional assay methods involve a variety of fire assay or wet chemical acid digestion schemes coupled with gravimetric, colorimetic, or titrimetric measurement for precious metals. Methods must have sufficient precision and accuracy to afford interlaboratory agreement of within one half of one percent relative between the catalyst supplier and purchaser. To meet this requirement many laboratories rely on classical methods. Unfortunately these proceeders are labor intensive and time consuming. X-ray fluorescence has the inherent instrument precision to achieve typical intralaboratory precision of 0.5% RSD on a wide variety of elements and numerous sample types. We have developed an X-ray fluorescence method for the assay quality analysis of fresh reforming catalyst containing platinum, rhenium, and iridium. This method was applied to numerous samples over the past five years

  14. In situ collection of volatile silver species in a new modular quartz tube atomizer for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Kratzer, Jan; Vobecký, Miloslav; Matoušek, Tomáš

    2012-01-01

    Roč. 27, č. 9 (2012), s. 1382-1390. ISSN 0267-9477 R&D Projects: GA ČR GA203/09/1783 Institutional support: RVO:68081715 Keywords : volatile species generation * in-situ collection * quartz tube atomizer Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.155, year: 2012

  15. Sapphire: a better material for atomization and in situ collection of silver volatile species for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Musil, Stanislav; Matoušek, Tomáš; Dědina, Jiří

    2015-01-01

    Roč. 108, JUN (2015), s. 61-67. ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant ostatní: GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : silver * volatile species generation * sapphire tube atomizer Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.176, year: 2014

  16. Determination of Heavy Metals in Meat, Intestine, Liver, Eggs, and Chicken Using Neutron Activation Analysis and Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    The elements As, Cd, Co, Cr, Fe, Hg, Ni, Pb, Sb, se and Zn in meat, intestine, and liver of cow and goat, as well as in broiler, local breed chicken and eggs have been determined using Neutron Activation Analysis and Atomic Absorption Spectrometry. Mercury was determined after being separated radiochemically. The results showed that concentration of the essential elements studied i.e. Cr, Cu, Fe, Zn, Co, and Ni were higher in liver and intestine than in the meat, but still in the normal range, while toxic elements As, Cd, and Pb were undetectable in all samples. (author). 8 refs., 6 tabs

  17. ANALYSES OF QUINOLONE ANTIMICROBIALS IN HUMAN PLASMA BY CAPILLARY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY/FAST ATOM BOMBARDMENT MASS SPECTROMETRY

    OpenAIRE

    Hattori, Hideki; Suzuki, Osamu; Seno, Hiroshi; Ishii, Akira; Yamada, Takamichi

    1993-01-01

    Capillary high-performance liquid chromatography (HPLC) was combined with frit fast atom bombardment (FAB)-mass spectrometry (MS) , and a detailed procedure has been established for on-line analysis of ten quinolone antimicrobials in human plasma by the HPLC/FAB-MS. A special column switching device for concentration enabled injection of as large as a 500 μl sample; and the capillary column (0.5 mm i. d.) enabled introduction of its entire effluent to the frit interface of FAB-MS. These condi...

  18. Air quality status in Kinshasa as determined by instrumental neutron activation analysis, atomic absorption spectrometry and ion-exchange chromatography

    International Nuclear Information System (INIS)

    Three independent analytical techniques - instrumental neutron activation analysis. Atomic absorption spectrometry and ion-exchange chromatography - were applied to airborne particulate collected on filters and to atmospheric acid gases collected in carbonate buffer solutions. 20 trace elements and 7 acid gases and acid aerosols were determined. Results were compared with those observed elsewhere and showed that air pollution is low in Kinshasa and does not give rise to anxieties. The main known sources of pollutants are: vehicle exhaust and aeolian process on stripped soils. (author). 13 refs, 2 figs, 6 tabs

  19. Flow injection sorbent extraction of metals with activated carbon and its application to flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    In the present study activated carbon was used as a sorbent material for the flow injection on-line sorbent extraction of metal ions combined with atomic absorption spectrometry. On-line chelation of zinc was performed with 8-Hydroxyquinoline and the resultant metal chelate was adsorbed on the activated carbon, then adsorbed with zinc acid and on-line detected with flame AAS. Various parameters affecting the zinc enrichment were optimized and the method was applied for the determination of zinc in tap water, natural water, boiled and tea samples. The results obtained with the present method were compared with those obtained by the ICP-AES. (author)

  20. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    International Nuclear Information System (INIS)

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy

  1. Analytical procedure for characterization of medieval wall-paintings by X-ray fluorescence spectrometry, laser ablation inductively coupled plasma mass spectrometry and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Syta, Olga; Rozum, Karol; Choińska, Marta [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland); Zielińska, Dobrochna [Institute of Archaeology, University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw (Poland); Żukowska, Grażyna Zofia [Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Kijowska, Agnieszka [National Museum in Warsaw, Aleje Jerozolimskie 3, 00-495 Warsaw (Poland); Wagner, Barbara, E-mail: barbog@chem.uw.edu.pl [Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw (Poland)

    2014-11-01

    Analytical procedure for the comprehensive chemical characterization of samples from medieval Nubian wall-paintings by means of portable X-ray fluorescence (pXRF), laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and Raman spectroscopy (RS) was proposed in this work. The procedure was used for elemental and molecular investigations of samples from archeological excavations in Nubia (modern southern Egypt and northern Sudan). Numerous remains of churches with painted decorations dated back to the 7th–14th century were excavated in the region of medieval kingdoms of Nubia but many aspects of this art and its technology are still unknown. Samples from the selected archeological sites (Faras, Old Dongola and Banganarti) were analyzed in the form of transfers (n = 26), small fragments collected during the excavations (n = 35) and cross sections (n = 15). XRF was used to collect data about elemental composition, LA-ICPMS allowed mapping of selected elements, while RS was used to get the molecular information about the samples. The preliminary results indicated the usefulness of the proposed analytical procedure for distinguishing the substances, from both the surface and sub-surface domains of the wall-paintings. The possibility to identify raw materials from the wall-paintings will be used in the further systematic, archeometric studies devoted to the detailed comparison of various historic Nubian centers. - Highlights: • The analytical procedure for examination of unique wall paintings was proposed. • Identification of pigments and supporting layers of wall-paintings was obtained. • Heterogeneous samples were mapped with the use of LA-ICPMS. • Anatase in the sub-surface regions of samples was detected by Raman spectroscopy.

  2. Characterization of nuclear materials by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Nuclear energy is one of the available energy options for long term energy security of world. In order to produce electricity using this mode of energy generation in an efficient and safe manner, it is necessary that the materials used for such energy generation comply with the specifications assigned. The major and trace composition of these materials is an important specification for their quality control. Different analytical techniques are used for such quality control. Total reflection X-ray fluorescence (TXRF) is a comparatively new technique having several features well suited for trace and major element determinations in nuclear materials. However, this technique has not been used so far extensively for characterization of nuclear materials. The present paper gives a brief introduction of TXRF, its suitability for nuclear material characterization and some details of the TXRF studies made in our laboratory for the characterization of nuclear materials. (author)

  3. Ultraviolet photodissociation enhances top-down mass spectrometry as demonstrated on green fluorescent protein variants.

    Science.gov (United States)

    Dang, Xibei; Young, Nicolas L

    2014-05-01

    Ultraviolet photodissociation (UVPD) is a compelling fragmentation technique with great potential to enhance proteomics generally and top-down MS specifically. In this issue, Cannon et al. (Proteomics 2014, 14, XXXX-XXXX) use UVPD to perform top-down MS on several sequence variants of green fluorescent protein and compare the results to CID, higher energy collision induced dissociation, and electron transfer dissociation. As compared to the other techniques UVPD produces a wider variety of fragment ion types that are relatively evenly distributed across the protein sequences. Overall, their results demonstrate enhanced sequence coverage and higher confidence in sequence assignment via UVPD MS. Based on these and other recent results UVPD is certain to become an increasingly widespread and valuable tool for top-down proteomics. PMID:24723542

  4. X-ray fluorescence in Member States: Argentina. Characterization of black vulcanites coming from Rincon Chico 2 site, Neuquen, Argentina, by using X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Full text: The investigation of prehistoric hunter-gatherers archaeological sites in the Limay river basin (provinces of Neuquen and Rio Negro) raised different questions concerning the lithic technology. In Rincon Chico 2, a site located on the margin of the Limay river in the Neuquen province and nowadays submerged by the Piedra del Aguila reservoir, many tools and debitage made in black volcanic rock has been found. The identification of this raw material can give information about possible sources of provenance. The rocks were classified macroscopically either as basalt (with coarse grains) or dacite (with fine grains) However, in several cases, a dual behaviour was observed in the fracture zone: the texture was coarse on the surface and very fine, sometimes almost vitreous, in the interior. Following this observation, it was decided to introduce a new more general category called 'black vulcanites'. Looking for the origin and more precise identification of this raw material, artifactual samples and a set of black vulcanite fragments coming from Paso Limay, a dacite source located 50 km from the archaeological site, were characterized by X-ray fluorescence spectrometry using a Philips Minipal energy dispersive system. Samples were analysed as loose powder. Statistical analysis reveals greater variability between artefact samples than between the samples from the source itself. This discrepancy is more evident if Fe, Ti and Zn are used as markers. These results suggests that the quarry at Paso Limay was not the main source of provenance of the black vulcanites utilized by the hunter-gatherers occupying Rincon Chico. (author)

  5. Characterization of Arsenic Biotransformation Products from an Open Anaerobic Degradation of Fucus distichus by Hydride Generation Gas Chromatography Atomic Absorption Spectrometry and High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Abiodun A. Ojo; Onasanya, Amos

    2013-01-01

    This work reports on the isolation and determination of biotransformation products obtained from the organoarsenic compounds that are present in Fucus distichus when it was subjected to an open anaerobic decomposition by using the Hydride Generation Gas Chromatography Atomic Absorption Spectrometry (HG-GC-AAS) and High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS). The seaweed and filtrate residues obtained from the open anaerobic degradation pro...

  6. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap.

    Science.gov (United States)

    Demirtaş, İlknur; Bakırdere, Sezgin; Ataman, O Yavuz

    2015-06-01

    Flame atomic absorption spectrometry (FAAS) still keeps its importance despite the relatively low sensitivity; because it is a simple and economical technique for determination of metals. In recent years, atom traps have been developed to increase the sensitivity of FAAS. Although the detection limit of FAAS is only at the level of µg/mL, with the use of atom traps it can reach to ng/mL. Slotted quartz tube (SQT) is one of the atom traps used to improve sensitivity. In atom trapping mode of SQT, analyte is trapped on-line in SQT for few minutes using ordinary sample aspiration, followed by the introduction of a small volume of organic solvent to effect the revolatilization and atomization of analyte species resulting in a transient signal. This system is economical, commercially available and easy to use. In this study, a sensitive analytical method was developed for the determination of lead with the help of SQT atom trapping flame atomization (SQT-AT-FAAS). 574 Fold sensitivity enhancement was obtained at a sample suction rate of 3.9 mL/min for 5.0 min trapping period with respect to FAAS. Organic solvent was selected as 40 µL of methyl isobutyl ketone (MIBK). To obtain a further sensitivity enhancement inner surface of SQT was coated with several transition metals. The best sensitivity enhancement, 1650 fold enhancement, was obtained by the Ta-coated SQT-AT-FAAS. In addition, chemical nature of Pb species trapped on quartz and Ta surface, and the chemical nature of Ta on quartz surface were investigated by X-ray photoelectron spectroscopy (XPS) and Raman Spectroscopy. Raman spectrometric results indicate that tantalum is coated on SQT surface in the form of Ta2O5. XPS studies revealed that the oxidation state of Pb in species trapped on both bare and Ta coated SQT surfaces is +2. For the accuracy check, the analyses of standard reference material were performed by use of SCP SCIENCE EnviroMAT Low (EU-L-2) and results for Pb were to be in good agreement with

  7. Highly uniform holographic microtrap arrays for single atom trapping using a feedback optimization of in-trap fluorescence measurements.

    Science.gov (United States)

    Tamura, Hikaru; Unakami, Tomoyuki; He, Jun; Miyamoto, Yoko; Nakagawa, Ken'ichi

    2016-04-18

    We report on the novel optimization method to realize highly uniform microtrap arrays for single atom trapping with a spatial light modulator (SLM). This method consists of two iterative feedback loops with the measurements of both diffracted light intensities and in-trap fluorescence intensities from each microtrap. By applying this method to the single 87Rb atom trapping, we can reduce the variance of trap depths from 20.8% to 1.7% for 4 × 4 square arrays and less than 4% for various arrays with up to 62 sites. The detection error of individual single atoms is also reduced from 1.7% to 0.0054% on average. PMID:27137252

  8. Atomization in graphite-furnace atomic absorption spectrometry. Peak-height method vs. integration method of measuring absorbance: heated graphite atomizer 2100

    International Nuclear Information System (INIS)

    The signal integration technique developed and reported earlier has been used for measuring atomic absorption signals generated by the Heated Graphite Atomizer 2100. Cd, Zn, Al, Sn, Cu, Mo, and V have been selected for this study. In theory, the integration method of measuring absorbance is superior to the conventional peak-height as the measure of absorbance. In practice, integration does offer some advantages over the peak-height method of measurement; absolute sensitivity is increased by a factor of 2- to 8-fold and the linear range of the working curves is increased by a factor of up to 2. This study shows the effect of the better cell geometry of the HGA 2100 (as opposed to the Carbon Rod Atomizer 63) on the integrated absorbance signals. Modifications to the Heated Graphite Atomizer 2100 which would improve the atomization conditions beneficial to the integration method of measuring are suggested. (U.S.)

  9. Collective resonance fluorescence in small and dense atom clouds: Comparison between theory and experiment

    CERN Document Server

    Jenkins, S D; Javanainen, J; Jennewein, S; Bourgain, R; Pellegrino, J; Sortais, Y R P; Browaeys, A

    2016-01-01

    We study the emergence of a collective optical response of a cold and dense $^{87}$Rb atomic cloud to a near-resonant low-intensity light when the atom number is gradually increased. Experimental observations are compared with microscopic stochastic simulations of recurrent scattering processes between the atoms that incorporate the atomic multilevel structure and the optical measurement setup. We analyze the optical response of an inhomogeneously-broadened gas and find that the experimental observations of the resonance line shifts and the total collected scattered light intensity in cold atom clouds substantially deviate from those of thermal atomic ensembles, indicating strong light-induced resonant dipole-dipole interactions between the atoms. At high densities, the simulations also predict a significantly slower decay of light-induced excitations in cold than in thermal atom clouds. The role of dipole-dipole interactions is discussed in terms of resonant coupling examples and the collective radiative exc...

  10. Characterization of nuclear materials by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Nuclear energy is one of the available energy options for long term energy security of world. In order to produce electricity using this mode of energy generation in an efficient and safe manner, it is necessary that the materials used for such energy generation comply with the specifications assigned. The major and trace composition of these materials is an important specification for their quality control. Different analytical techniques are used for such quality control. Total Reflection X-ray Fluorescence is a comparatively new technique having several features well suited for trace and major element determinations in nuclear materials. However, this technique has not been used so far extensively for characterization of nuclear materials. Some studies for characterization of nuclear materials using TXRF has been carried out in Fuel Chemistry Division, BARC. A brief introduction of TXRF, its suitability for nuclear material characterization and some details of the TXRF studies made in Fuel Chemistry Division for the characterization of nuclear materials are described in the present paper. (author)

  11. A flexible setup for angle-resolved X-ray fluorescence spectrometry with laboratory sources

    Science.gov (United States)

    Spanier, M.; Herzog, C.; Grötzsch, D.; Kramer, F.; Mantouvalou, I.; Lubeck, J.; Weser, J.; Streeck, C.; Malzer, W.; Beckhoff, B.; Kanngießer, B.

    2016-03-01

    X-ray fluorescence (XRF) analysis is one of the standard tools for the analysis of stratified materials and is widely applied for the investigation of electronics and coatings. The composition and thickness of the layers can be determined quantitatively and non-destructively. Recent work showed that these capabilities can be extended towards retrieving stratigraphic information like concentration depth profiles using angle-resolved XRF (ARXRF). This paper introduces an experimental sample chamber which was developed as a multi-purpose tool enabling different measurement geometries suited for transmission measurements, conventional XRF, ARXRF, etc. The chamber was specifically designed for attaching all kinds of laboratory X-ray sources for the soft and hard X-ray ranges as well as various detection systems. In detail, a setup for ARXRF using an X-ray tube with a polycapillary X-ray lens as source is presented. For such a type of setup, both the spectral and lateral characterizations of the radiation field are crucial for quantitative ARXRF measurements. The characterization is validated with the help of a stratified validation sample.

  12. Quantitative multi-element analysis of denitration ceramics by X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    A procedure for the determination of C, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, Ga, As, Se, Zr, Mo, Sb, La, Tl, Pb and Th based on two X-ray fluorescence (XRF) methods and combined with instrumental neutron activation analysis and infrared combustion analysis was developed to give quantitative analytical information on a large number of ceramic catalyst samples used for the denitration of flue gas from a coal-fired power plant. A special sample preparation method for small amounts (20 mg) of powder was used for XRF analysis. Two types of synthetic calibration standards were prepared: (1) single-element standards with an Fe2O3 matrix for the minor elements and limited concentration ranges (nine elements) and (2) multi-element standards with simulated matrices for the major elements and large concentration ranges (ten elements). The quantitative evaluation of minor elements was performed with a linear calibration graph. Major elements were determined using the so-called fundamental parameters program. (author)

  13. Thorium determination by x-ray fluorescence spectrometry in simulated thorex process solutions

    International Nuclear Information System (INIS)

    The X-ray fluorescence method for thorium determination in aqueous and organic (TBP/n-dodecane) solutions is described. The thin film technique for sample preparation and a suitable internal standard had been used. The best conditions for Thorium determination had been established studying some parameters as analytical line, internal standard, filter paper, paper geometry, sample volume and measurement conditions. With the established conditions, thorium was concentration range of to 200 g Th/L and in organic solutions (2-63g Th/L) with 1,5% of precision. The accuracy of the proposed method was 3% in aqueous and organic phases. The detection limit was 1,2μg thorium for aqueous solutions and 1,4μg for organic solutions. Uranium, fission products, corrosion products and Thorex reagent components were studied as interfering elements in the thorium analysis. The matrix effect was also studied using the Thorex process simulated solutions. Finally, the method was applied to thorium determination in irradiated thorium solutions with satisfactory results. (author)

  14. MERCURY QUANTIFICATION IN SOILS USING THERMAL DESORPTION AND ATOMIC ABSORPTION SPECTROMETRY: PROPOSAL FOR AN ALTERNATIVE METHOD OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Liliane Catone Soares

    2015-08-01

    Full Text Available Despite the considerable environmental importance of mercury (Hg, given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique, were used in validation of the method, which proved to be accurate and precise.

  15. Determination of total selenium in pharmaceutical and herbal supplements by hydride generation and graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Kazi, Tasneem G; Kolachi, Nida F; Afridi, Hassan I; Brahman, Kapil Dev; Shah, Faheem

    2014-01-01

    The total selenium (Se) was determined in herbal and pharmaceutical supplements used for liver diseases. The total Se contents were determined in different pharmaceutical and herbal supplements by hydride generation atomic absorption spectrometry (HGAAS) and graphite furnace atomic absorption spectrometry (GFAAS) after microwave-assisted acid digestion. The accuracy of the techniques was evaluated by using certified reference material and the standard addition method. The recoveries of total Se were 99.4 and 99.0% for HGAAS and GFAAS, respectively. The precision of the techniques expressed as RSD were 2.34 and 4.54% for HGAAS and GFAAS measurements, respectively. The LOD values for HGAAS and GFAAS were 0.025 and 0.052 pglg, respectively. The concentrations of Se in pharmaceutical and herbal supplements were found in the range of 19.2-53.8 and 25.0-42.5 pg/g, respectively, corresponding to 35-76% and 45-76% of the total recommended dose of Se for adults. PMID:25632445

  16. Determination of the elemental composition of cyanobacteria cells and cell fractions by atomic emission and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    An approach to studying the elemental composition of cyanobacteria Spirulina platensis and Nostoc commune using a set of complementary analytical methods (ICP-AES, PAAS, and ETAAS) was proposed . The procedures were adapted for the determination of macro- and microelements (Na, K, Mg, Ca, Fe, Mn, Cu, Mo, Zn, B, and Se) in the biomass of cyanobacteria and separated cell fractions (chloroform and water-methanol extracts and precipitates). The conditions for the mineralization of biological materials were optimized for autoclave and microwave sample preparation procedures. The evaporation and atomization of Se and Mo in a graphite furnace in the presence of chloroform and methanol were studied

  17. Analysis of Mexican archaeological specimens by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Several archaeological specimens pertaining to the museums of Anthropology and History and Mexico City's Major Temple were analyzed. To perform this analysis a HgI2 (mercury iodine) detector property of Xsirius Inc. of United States which still is in experimental stage, a Norland multichannel, two Am-241 sources a P.C. Sillicon Valley, property of the University of Rome were used. Depending on culture type, the elements Au, Ag, Cu, Zn and Mo were analyzed. Mexica, Mixteca, Western or Michoacana and Mayan were the cultures in study. This work was undertaken with the cooperation of National Museum of Anthropology and History, University of Rome, Xsirius Inc. International Atomic Energy Agency and National Institute of Nuclear Research. (Author)

  18. Pots, plates and provenance: sourcing Indian coarse wares from Mleiha using X-ray fluorescence (XRF) spectrometry analysis

    International Nuclear Information System (INIS)

    The identification of more than 25% of the pottery sherds from the late PIR.D period (ca. 2nd - mid. 3rd c. AD) assemblage from the recently excavated building H at Mleiha as Indian is based on form and fabric, but using only visual assessment. Petrographic analysis of the fabrics can provide more precise indicators of the geographical origin of the wares. In this study, a total of 21 sherds from various key sites in Western India were compared with 7 different 'Indian' coarse-ware vessels sampled at Mleiha using X-ray fluorescence (XRF) spectrometry. The analyses were conducted on powdered samples collected from the core of each sherd. Each sample was irradiated for 1000 seconds using a 1.2 mm diameter X-ray beam. The resulting spectra were used for quantification of the X-ray intensity and elemental concentration. Levels of correlation in the elemental ratios of the sherds were statistically tested using an F-test as well as a Chi-test. Initial review of the XRF results indicates that the Maharashtra and Gujarat regions of India are probable source areas for at least two of the types of wares. Collection of additional samples from these areas and other regions of India, and further statistical analysis through methods such as Principal Component Analysis will help to isolate groups of wares from India and correlate them with types of vessels imported into the Oman peninsula in antiquity.

  19. Elemental concentration analysis in the brain of young and old Wistar rats by total reflection X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    It is well known that aging is associated with neurobehavioral deficits. The aging process of human brain is characterized by progressive neuronal loss. Furthermore, certain brain areas are more vulnerable to neuronal degeneration than others, reflecting an altered resistance to stress of the tissue itself and/or the lack of adequate immunological defense mechanisms in these regions. About the elemental levels in the brain, it is known that the excess ou deficiency of some elements are toxic for human healthy, being also related to several neurodegenerative diseases. In this way, the main goal of this work was to determine the elemental concentration in the hippocampus of young and old male (n = 10) and female (n = 10) Wistar rats by total reflection X-ray fluorescence spectrometry with synchrotron radiation (SR-TXRF). These measurements were carried out at XRF beam line at Light Synchrotron Brazilian Laboratory, Campinas, Brazil. About the results, we could observe that Al, Fe, Cu, Zn and Br levels were higher in the hippocampus of the old female rats than the young ones. On the other hand, only Cu levels were higher in the hippocampus of the old male rats than the young ones. Therefore, the aging of the hippocampus of the female rats can be characterized by an accumulate for Al, Fe, Cu, Zn and Br. The excess in these elements levels are also associated with several neurodegenerative disorders, such as Alzheimer' disease, Parkinson's disease and Huntington's disease. (author)

  20. Localization of iron in rice grain using synchrotron X-ray fluorescence microscopy and high resolution secondary ion mass spectrometry

    KAUST Repository

    Kyriacou, Bianca

    2014-03-01

    Cereal crops accumulate low levels of iron (Fe) of which only a small fraction (5-10%) is bioavailable in human diets. Extensive co-localization of Fe in outer grain tissues with phytic acid, a strong chelator of metal ions, results in the formation of insoluble complexes that cannot be digested by humans. Here we describe the use of synchrotron X-ray fluorescence microscopy (XFM) and high resolution secondary ion mass spectrometry (NanoSIMS) to map the distribution of Fe, zinc (Zn), phosphorus (P) and other elements in the aleurone and subaleurone layers of mature grain from wild-type and an Fe-enriched line of rice (Oryza sativa L.). The results obtained from both XFM and NanoSIMS indicated that most Fe was co-localized with P (indicative of phytic acid) in the aleurone layer but that a small amount of Fe, often present as "hotspots", extended further into the subaleurone and outer endosperm in a pattern that was not co-localized with P. We hypothesize that Fe in subaleurone and outer endosperm layers of rice grain could be bound to low molecular weight chelators such as nicotianamine and/or deoxymugineic acid. © 2014.

  1. The analysis of thallium in geological materials by radiochemical neutron activation and x-ray fluorescence spectrometry: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    McGoldrick, P.J.; Robinson, P. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1993-12-31

    Carrier-based radiochemical neutron activation (RNAA) is a precise and accurate technique for the analysis of Tl in geological materials. For about a decade, until the mid-80s, a procedure modified from Keays et al. (1974) was used at the University of Melbourne to analyse for Tl in a wide variety of geological materials. Samples of powdered rock weighing several hundred milligrams each were irradiated in HIFAR for between 12 hours and 1 week, and subsequently fused with a sodium hydroxide - sodium peroxide mixture and several milligrams of inactive Tl carrier. Following acid digestion of the fusion mixture anion exchange resin was used to separate Tl from the major radioactive rock constituents. The Tl was then stripped from the resin and purified as thallium iodide and a yield measured gravimetrically. Activity from {sup 204}Tl (a {beta}-emitter with a 3 8 year half-life) was measured and Tl determined by reference to pure chemical standards irradiated and processed along with the unkowns. Detection limits for the longer irradiations were about one part per billion. Precision was monitored by repeat analyses of `internal standard` rocks and was estimated to be about five to ten percent (one standard deviation). On the other hand, X-ray fluorescence spectrometry (XRF) was seen as an excellent cost-effective alternative for thallium analysis in geological samples, down to 1 ppm. 6 refs. 1 tab., 1 fig.

  2. Elemental concentration analysis in the brain of young and old Wistar rats by total reflection X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Serpa, Renata F.B.; Jesus, Edgar F.O. de; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Nuclear Instrumentation Lab.]. E-mail: renata@lin.ufrj.br; Anjos, Marcelino J. dos [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Physics Inst.]. E-mail: marcelin@lin.ufrj.br; Carmo, Maria G.T. do [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Nutrition Inst.; Rocha, Monica S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. of Basics and Clinic Pharmacy; Moreira, Silvana [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Civil Engineering Dept.; Martinez, Ana M.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Dept. of Histology and Embryology

    2007-07-01

    It is well known that aging is associated with neurobehavioral deficits. The aging process of human brain is characterized by progressive neuronal loss. Furthermore, certain brain areas are more vulnerable to neuronal degeneration than others, reflecting an altered resistance to stress of the tissue itself and/or the lack of adequate immunological defense mechanisms in these regions. About the elemental levels in the brain, it is known that the excess ou deficiency of some elements are toxic for human healthy, being also related to several neurodegenerative diseases. In this way, the main goal of this work was to determine the elemental concentration in the hippocampus of young and old male (n = 10) and female (n = 10) Wistar rats by total reflection X-ray fluorescence spectrometry with synchrotron radiation (SR-TXRF). These measurements were carried out at XRF beam line at Light Synchrotron Brazilian Laboratory, Campinas, Brazil. About the results, we could observe that Al, Fe, Cu, Zn and Br levels were higher in the hippocampus of the old female rats than the young ones. On the other hand, only Cu levels were higher in the hippocampus of the old male rats than the young ones. Therefore, the aging of the hippocampus of the female rats can be characterized by an accumulate for Al, Fe, Cu, Zn and Br. The excess in these elements levels are also associated with several neurodegenerative disorders, such as Alzheimer' disease, Parkinson's disease and Huntington's disease. (author)

  3. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  4. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Peng Jinfeng; Liu Rui [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085 (China); Liu Jingfu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085 (China)], E-mail: jfliu@rcees.ac.cn; He Bin; Hu Xialin; Jiang Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085 (China)

    2007-05-15

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO{sub 3} that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L{sup -1}) and a relative standard deviation (2.5% at 50 ng L{sup -1} level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L{sup -1} and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  5. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L-1) and a relative standard deviation (2.5% at 50 ng L-1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L-1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples

  6. Direct analysis of blood serum by total reflection X-ray fluorescence spectrometry and application of an artificial neural network approach for cancer diagnosis*1

    Science.gov (United States)

    Hernández-Caraballo, Edwin A.; Marcó-Parra, Lué M.

    2003-12-01

    Iron, copper, zinc and selenium were determined directly in serum samples from healthy individuals ( n=33) and cancer patients ( n=27) by total reflection X-ray fluorescence spectrometry using the Compton peak as internal standard [L.M. Marcó P. et al., Spectrochim. Acta Part B 54 (1999) 1469-1480]. The standardized concentrations of these elements were used as input data for two-layer artificial neural networks trained with the generalized delta rule in order to classify such individuals according to their health status. Various artificial neural networks, comprising a linear function in the input layer, a hyperbolic tangent function in the hidden layer and a sigmoid function in the output layer, were evaluated for such a purpose. Of the networks studied, the (4:4:1) gave the highest estimation (98%) and prediction rates (94%). The latter demonstrates the potential of the total reflection X-ray fluorescence spectrometry/artificial neural network approach in clinical chemistry.

  7. Direct analysis of blood serum by total reflection X-ray fluorescence spectrometry and application of an artificial neural network approach for cancer diagnosis

    International Nuclear Information System (INIS)

    Iron, copper, zinc and selenium were determined directly in serum samples from healthy individuals (n=33) and cancer patients (n=27) by total reflection X-ray fluorescence spectrometry using the Compton peak as internal standard [L.M. Marco P. et al., Spectrochim. Acta Part B 54 (1999) 1469-1480]. The standardized concentrations of these elements were used as input data for two-layer artificial neural networks trained with the generalized delta rule in order to classify such individuals according to their health status. Various artificial neural networks, comprising a linear function in the input layer, a hyperbolic tangent function in the hidden layer and a sigmoid function in the output layer, were evaluated for such a purpose. Of the networks studied, the (4:4:1) gave the highest estimation (98%) and prediction rates (94%). The latter demonstrates the potential of the total reflection X-ray fluorescence spectrometry/artificial neural network approach in clinical chemistry

  8. Determination of gold in geologic materials by solvent extraction and atomic-absorption spectrometry

    Science.gov (United States)

    Huffman, Claude; Mensik, J.D.; Riley, L.B.

    1967-01-01

    The two methods presented for the determination of traces of gold in geologic materials are the cyanide atomic-absorption method and the fire-assay atomic-absorption method. In the cyanide method gold is leached with a sodium-cyanide solution. The monovalent gold is then oxidized to the trivalent state and concentrated by extracting into methyl isobutyl ketone prior to estimation by atomic absorption. In the fire-assay atomic-absorption method, the gold-silver bead obtained from fire assay is dissolved in nitric and hydrochloric acids. Gold is then concentrated by extracting into methyl isobutyl ketone prior to determination by atomic absorption. By either method concentrations as low as 50 parts per billion of gold can be determined in a 15-gram sample.

  9. Simultaneous Determination of Fluorescein, Rhodamine 6G and Rhodamine B in Turbid Solution by Polarization Variable-Angle Synchronous Fluorescence Spectrometry

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Polarization variable-angle synchronous fluorescence spectrometry was proposed to determine samples in turbid solution. A mixture of fluorescein, rhodamine 6G and rhodamine B was used to evaluate the technique. The background caused by scattering light was decreased remarkably. The limits of detection were 0.6 ng/ml for fluorescein, 2.3 ng/ml for rhodamine 6G and 4.1 ng/ml for rhodamine B, respectively.

  10. The application of energy-dispersive x-ray fluorescence spectrometry (EDXRF) to the analysis of cosmetic evidence in Indian nail polishes

    International Nuclear Information System (INIS)

    The application of energy-dispersive x-ray fluorescence (EDXRF) spectrometry in the quantitative analysis of samples of Indian nail polishes of apparently similar shades from different manufacturers has been examined by evaluating the possibility of detecting spurious material which is marketed under the guise of a popular brand. On the basis of the number of elements detected, and from the ratios of particular elements [Fe/Ti,Fe/Cu,Ti/Cu] the results are very encouraging. (author)

  11. A determination of air pollution in Colombo and Kurunegala, Sri Lanka, using energy dispersive X-ray fluorescence spectrometry on Heterodermia speciosa

    OpenAIRE

    GUNATHILAKA, Patikiri Arachchilage Don Hasantha Nayan

    2011-01-01

    Sri Lanka is facing severe environmental problems such as air and water pollution due to rapid industrialisation and urbanisation. Because there have not been many studies on heavy metal pollution in Sri Lanka, the present study attempts to contribute to the literature a determination of metal pollution using indicators found in lichen specimens. Our study utilised energy dispersive X-ray fluorescence spectrometry to determine element concentrations resulting from air pollution in the lichen ...

  12. X-ray fluorescence spectrometry analysis of soil heavy metals in a populous place and evaluation on its heavy metals pollution

    International Nuclear Information System (INIS)

    Abstract The contents of As, Cr, Pb, Cu, Zn and Ni in soil of the populous place, were determined by X-ray fluorescence spectrometry. The heavy metals pollution of soil was evaluated by using single pollute index, synthesis pollute index, geoaccumulation index and potential ecological risk index, and the results showed that the populous place was in the state of slight pollution and ecological risk. (authors)

  13. Ultraviolet vapor generation atomic fluorescence spectrometric determination of mercury in natural water with enrichment by on-line solid phase extraction

    Science.gov (United States)

    Qin, Deyuan; Gao, Feng; Zhang, Zhaohui; Zhao, Liqian; Liu, Jixin; Ye, Jianping; Li, Junwei; Zheng, Fengxi

    2013-10-01

    A novel method, which coupled an on-line solid phase extraction (SPE) enrichment with ultraviolet vapor generation (UVG) atomic fluorescence spectrometry (AFS), was developed to improve the sensitivity of mercury determination and to remove the interference of some anion and organics to UVG of mercury. A high mercury retention efficiency and maximum exclusion of inorganic and organic matrix in water samples were achieved by using C18 SPE mini cartridge modified with sodium diethyldithiocarbamate (DDTC). Fast and efficient elution from the cartridge was found by using L-cysteine mixing solution. Furthermore, through the investigation of different UV reactor designs, the most important factor was the structure of the reactor (which corresponded roughly to the photon flux) wherein the tubing was sintered into the UV lamp to give the highest UV generation efficiency. The second factor was the materials of the tubing (which roughly corresponded to the working wavelength). Synthetic quartz, characterized by the highest transparency at 185 nm, attained the highest UVG efficiency, suggesting that the most favorable wavelength for UVG was 185 nm. Under optimum conditions, the achievable detection limit (3σ) with sample loadings of 10.0 mL was 0.03 ng L- 1 and 0.08 ng L- 1 with different manifolds, respectively. The method was successfully applied to the determination of Hg in tap water, river water and lake water samples.

  14. Use of Ni/NixB Nanoparticles as a Novel Adsorbent for the Preconcentration of Mercury Species prior to Cold Vapor-Atomic Fluorescence Spectrometric Determination.

    Science.gov (United States)

    Yayayürük, Onur; Henden, Emür

    2016-01-01

    A selective matrix separation/enrichment method, utilizing a simple batch procedure with nickel/nickel boride (Ni/NixB) nanoparticles was proposed for the determination of inorganic mercury(II), Hg(2+) and methyl mercury(I), CH3Hg(+) in waters prior to cold vapor-atomic fluorescence spectrometry (CV-AFS). The Ni/NixB nanoparticles, were synthesized by the chemical reduction of Ni(II) to Ni/NixB. The novel adsorbent was selective to Hg(2+) and CH3Hg(+) species between pH values of 4 - 10. Both of the mercury species were recovered from the adsorbent using 1.0 mol L(-1) hot HNO3 with high efficiency. It was observed that the adsorbent selectively removed Hg(2+) and CH3Hg(+) from the bulk solution in the presence of several competitor ions (As(3+), Sb(3+), Pb(2+), Zn(2+), Cu(2+), Cd(2+) and Fe(3+)) with ≥96% adsorption. The limit of detection (3σ above blank) was found to be 1.8 ng L(-1) with a preconcentration factor of 20. The validation of the method was tested through spike recovery experiments with several water samples (tap and seawater) at μg L(-1) concentration levels, and all recovery values were found to vary between 95 and 105%. PMID:27506713

  15. Determination of As(III) and As(V) in soils using sequential extraction combined with flow injection hydride generation atomic fluorescence detection

    International Nuclear Information System (INIS)

    An analytical procedure for determination of As(III) and As(V) in soils using sequential extraction combined with flow injection (FI) hydride generation atomic fluorescence spectrometry (HG-AFS) was presented. The soils were sequentially extracted by water, 0.6 mol l-1 KH2PO4 solution, 1% (v/v) HCl solution and 1% (w/v) NaOH solution. The arsenite (As(III)) in extract was analyzed by HG-AFS in the medium of 0.1 mol l-1 citric acid solution, then the total arsenic in extract was determined by HG-AFS using on-line reduction of arsenate with L-cysteine. The concentration of arsenate (As(V)) was calculated by the difference. The optimum conditions of extraction and determination were studied in detail. The detection limit (3σ) for As(III) and As(V) were 0.11 and 0.07 μg l-1, respectively. The relative standard deviation (R.S.D.) was 1.43% (n=11) at the 10 μg l-1 As level. The method was applied in the determination of As(III) and As(V) of real soils and the recoveries of As(III) and As(V) were in the range of 89.3-118 and 80.4-111%, respectively

  16. Nonstationary structure of atomic and molecular layers in electrothermal. Atomic absorption spectrometry: formation of atomic and molecular absorbing layers of gallium and indium

    International Nuclear Information System (INIS)

    The dynamics of the formation of absorbing layers of gallium and indium atoms and their compounds in a graphite tubular atomizer was investigated by the shadow spectral filming method. These compounds are localozed in the central part of the furnace over the platform and dissapear ay the hotter walls. It the case of gallium and indium atomization, the effects of chemical reactions between the vapor and the walls of the furnace on the formation of absorbing layers are stronger than that of diffusion and convective mass-transfer processes, which are common to all of the elements. Atom propagation from the center to the stomizer ends proceeds through the cascade mechanism because of its relatively low rate of warming up and strong longitudinal anisothermicity

  17. Three-dimensional time-dependent computer modeling of the electrothermal atomizers for analytical spectrometry

    Science.gov (United States)

    Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.

    2016-02-01

    A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.

  18. Green method for ultrasensitive determination of Hg in natural waters by electrothermal-atomic absorption spectrometry following sono-induced cold vapor generation and 'in-atomizer trapping'

    International Nuclear Information System (INIS)

    Sono-induced cold vapor generation (SI-CVG) has been used for the first time in combination with a graphite furnace atomizer for determination of Hg in natural waters by electrothermal-atomic absorption spectrometry after in situ trapping onto a noble metal-pretreated platform (Pd, Pt or Rh) inserted into a graphite tube. The system allows 'in-atomizer trapping' of Hg without the use of conventional reduction reactions based on sodium borohydride or tin chloride in acid medium for cold vapor generation. The sono-induced reaction is accomplished by applying ultrasound irradiation to the sample solution containing Hg(II) in the presence of an organic compound such as formic acid. As this organic acid is partly degraded upon ultrasound irradiation to yield CO, CO2, H2 and H2O, the amount of lab wastes is minimized and a green methodology is achieved. For this purpose, experimental variables influencing the generation/trapping process are fully investigated. The limit of detection for a 10 min trapping time and 10 mL sample volume was 0.03 μg L-1 (Integrated absorbance) and the repeatability expressed as relative standard deviation was about 3%. Carbonates and chlorides at 100 mg L-1 level caused a signal depression by 20-30%. The enhanced trapping efficiency observed with the sono-induced cold vapor generation as compared with 'in-atomizer trapping' methods employing chemical vapor generation is discussed. A reaction pathway for SI-CVG is proposed on the basis of the current knowledge for synthesis of noble metal nanoparticles by ultrasound

  19. Method development for the determination of manganese, cobalt and copper in green coffee comparing direct solid sampling electrothermal atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Oleszczuk, Nédio; Castro, Jacira T; da Silva, Márcia M; Korn, Maria das Graças A; Welz, Bernhard; Vale, Maria Goreti R

    2007-10-31

    A method has been developed for the determination of cobalt, copper and manganese in green coffee using direct solid sampling electrothermal atomic absorption spectrometry (SS-ET AAS). The motivation for the study was that only a few elements might be suitable to determine the origin of green coffee so that the multi-element techniques usually applied for this purpose might not be necessary. The three elements have been chosen as test elements as they were found to be significant in previous investigations. A number of botanical certified reference materials (CRM) and pre-analyzed samples of green coffee have been used for method validation, and inductively coupled plasma optical emission spectrometry (ICP OES) after microwave-assisted acid digestion of the samples as reference method. Calibration against aqueous standards could be used for the determination of Mn and Co by SS-ET AAS, but calibration against solid CRM was necessary for the determination of Cu. No significant difference was found between the results obtained with the proposed method and certified or independently determined values. The limits of detection for Mn, Cu and Co were 0.012, 0.006 and 0.004mugg(-1) using SS-ET AAS and 0.015, 0.13 and 0.10mugg(-1) using ICP OES. Seven samples of Brazilian green coffee have been analyzed, and there was no significant difference between the values obtained with SS-ET AAS and ICP OES for Mn and Cu. ICP OES could not be used as a reference method for Co, as essentially all values were below the limit of quantification of this technique. PMID:19073113

  20. X-ray spectrometry with synchrotron radiation; Roentgenspektrometrie mit Synchrotronstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Matthias [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' Roentgen- und IR-Spektrometrie' ; Gerlach, Martin; Holfelder, Ina; Hoenicke, Philipp; Lubeck, Janin; Nutsch, Andreas; Pollakowski, Beatrix; Streeck, Cornelia; Unterumsberger, Rainer; Weser, Jan; Beckhoff, Burkhard

    2014-12-15

    The X-ray spectrometry of the PTB at the BESSY II storage ring with radiation in the range from 78 eV to 10.5 keV is described. After a description of the instrumentation development reference-sample free X-ray fluorescence analysis, the determination of fundamental atomic parameters, X-ray fluorescence analysis under glance-angle incidence, highly-resolving absorption spectrometry, and emission spectrometry are considered. Finally liquid cells and in-situ measurement techniques are described. (HSI)