High-temperature atomic superfluidity in lattice Bose-Fermi mixtures
International Nuclear Information System (INIS)
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions
Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions
Zhang, Leifeng; Chen, Qijin
Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.
High-temperature atomic superfluidity in lattice Bose-Fermi mixtures.
Illuminati, Fabrizio; Albus, Alexander
2004-08-27
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always attractive if the boson-boson on-site interaction is repulsive, and predict the existence of an enhanced BEC-BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion repulsion, the induced attraction can give rise to superfluidity via s-wave pairing at striking variance with the case of pure systems of fermionic atoms with direct repulsive interactions. PMID:15447082
Dark lump excitations in superfluid Fermi gases
Institute of Scientific and Technical Information of China (English)
Xu Yan-Xia; Duan Wen-Shan
2012-01-01
We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases.A Kadomtsev Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen-Cooper-Schrieffer (BCS) regime,Bose-Einstein condensate (BEC) regime,and unitarity regime.Onelump solution as well as one-line soliton solutions for the KPI equation are obtained,and two-line soliton solutions with the same amplitude are also studied in the limited cases.The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.
Study of superfluid Bose-Fermi mixture
Laurent, Sebastien; Delehaye, Marion; Jin, Shuwei; Pierce, Matthieu; Yefsah, Tarik; Chevy, Frederic; Salomon, Christophe
2016-05-01
Using fermionic and bosonic isotopes of lithium we produce and study ultracold Bose-Fermi mixtures. First in a low temperature counterflow experiment, we measure the critical velocity of the system in the BEC-BCS crossover. Around unitarity, we observe a remarkably high superfluid critical velocity which reaches the sound velocity of the strongly interacting Fermi gas. Second, when we increase the temperature of the system slightly above the superfluid transitions we observe an unexpected phase locking of the oscillations of the clouds induced by dissipation. Finally, as suggested in, we explore the nature of the superfluid phase when we impose a spin polarization in the situation where the mean field potential created by the bosons on the fermions tends to cancel out the trapping potential of the latter.
Institute of Scientific and Technical Information of China (English)
王俊; 高先龙
2015-01-01
It was investigated the properties of spin-orbit coupled atomic fermi gases under a Zeeman field. By solving the Bogoliubove-de Gennes equation self-consistently, it was found that the system supported the topol-ogical superfluid state and the Fulde-Ferrell-Larkin-Ovchinnikov superfluid state respectively when the system under the different strength of Zeeman field and filling factors. When the system turned into topological super-fluid state, a pair of zero-energy Majorana fermions were found.%研究了具有自旋轨道耦合的冷原子费米气在外磁场作用下的物理性质。通过自洽求解Bogoliubove-de Gennes方程，发现了在不同磁场强度和粒子填充数下，体系分别存在拓扑超流态和 Fulde-Ferrell-Larkin-Ovchinnikov超流态。当体系处于拓扑超流态时，存在零能Majorana费米子。
Induced interactions in a superfluid Bose-Fermi mixture
DEFF Research Database (Denmark)
Kinnunen, Jami; Bruun, Georg
2015-01-01
We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single-particle an......We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single...... shift in the excitation spectrum of the BEC. In addition, the excitation of quasiparticles in the Fermi superfluid leads to damping of the excitations in the BEC. Besides studying induced interactions themselves, we can use these prominent effects to systematically probe the strongly interacting Fermi...
Phase Separation in Bose-Fermi-Fermi Mixtures as a Probe of Fermi Superfluidity
Bhongale, S. G.; Pu, Han
2008-01-01
We study the phase diagram of a mixture of Bose-Einstein condensate and a two-component Fermi gas. In particular, we identify the regime where the homogeneous system becomes unstable against phase separation. We show that, under proper conditions, the phase separation phenomenon can be exploited as a robust probe of Fermi superfluid.
Towards Quantum Turbulence in Cold Atomic Fermionic Superfluids
Bulgac, Aurel; Wlazłowski, Gabriel
2016-01-01
Fermionic superfluids provide a new realization of quantum turbulence, accessible to both experiment and theory, yet relevant to both cold atoms and nuclear astrophysics. In particular, the strongly interacting Fermi gas realized in cold-atom experiments is closely related to dilute neutron matter in the neutron star crust. Unlike the liquid superfluids 4He (bosons) and 3He (fermions), where quantum turbulence has been studied in laboratory for decades, quantum gases, and in particular superfluid Fermi gases stand apart for a number of reasons. Fermi gases admit a rather reliable microscopic description based on density functional theory which describes both static and dynamical phenomena. Cold atom experiments demonstrate exquisite control over particle number, spin polarization, density, temperature, and interacting strength. Topological defects such as domain walls and quantized vortices, which lie at the heart of quantum turbulence, can be created and manipulated with time-dependent external potentials, a...
Exciting Quantized Vortex Rings in a Superfluid Unitary Fermi Gas
Bulgac, Aurel
2014-03-01
In a recent article, Yefsah et al., Nature 499, 426 (2013) report the observation of an unusual quantum excitation mode in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe collective oscillations of the superfluid atomic cloud with a period almost an order of magnitude larger than that predicted by any theory of domain walls, which they interpret as a possible new quantum phenomenon dubbed ``a heavy soliton'' with an inertial mass some 50 times larger than one expected for a domain wall. We present compelling evidence that this ``heavy soliton'' is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within an extension of the time-dependent density functional theory (TDDFT) to superfluid systems. The numerical simulations required the solution of some 260,000 nonlinear coupled time-dependent 3-dimensional partial differential equations and was implemented on 2048 GPUs on the Cray XK7 supercomputer Titan of the Oak Ridge Leadership Computing Facility.
Second sound and the superfluid fraction in a Fermi gas with resonant interactions.
Sidorenkov, Leonid A; Tey, Meng Khoon; Grimm, Rudolf; Hou, Yan-Hua; Pitaevskii, Lev; Stringari, Sandro
2013-06-01
Superfluidity is a macroscopic quantum phenomenon occurring in systems as diverse as liquid helium and neutron stars. It occurs below a critical temperature and leads to peculiar behaviour such as frictionless flow, the formation of quantized vortices and quenching of the moment of inertia. Ultracold atomic gases offer control of interactions and external confinement, providing unique opportunities to explore superfluid phenomena. Many such (finite-temperature) phenomena can be explained in terms of a two-fluid mixture comprising a normal component, which behaves like an ordinary fluid, and a superfluid component with zero viscosity and zero entropy. The two-component nature of a superfluid is manifest in 'second sound', an entropy wave in which the superfluid and the non-superfluid components oscillate with opposite phases (as opposed to ordinary 'first sound', where they oscillate in phase). Here we report the observation of second sound in an ultracold Fermi gas with resonant interactions. The speed of second sound depends explicitly on the value of the superfluid fraction, a quantity that is sensitive to the spectrum of elementary excitations. Our measurements allow us to extract the temperature dependence of the superfluid fraction, a previously inaccessible quantity that will provide a benchmark for theories of strongly interacting quantum gases. PMID:23676679
Inotani, Daisuke; Ohashi, Yoji
2015-12-01
We investigate the superfluid properties of a one-component Fermi gas with a uniaxially anisotropic p -wave pairing interaction, Ux>Uy=Uz [where Ui(i =x ,y ,z ) is a pi-wave pairing interaction]. This type of interaction is considered to be realized in a 40K Fermi gas. Including pairing fluctuations within a strong-coupling T -matrix theory, we determine the px-wave superfluid phase transition temperature Tcpx, as well as the other phase transition temperature Tcpx+i py(
Superfluidity of heated Fermi systems in the static fluctuation approximation
Energy Technology Data Exchange (ETDEWEB)
Khamzin, A. A., E-mail: airat.khamzin@rambler.ru [Kazan (Volga Region) Federal University, Institute of Physics (Russian Federation); Nikitin, A. S.; Sitdikov, A. S. [Kazan State Power Engineering University (KSPEU) (Russian Federation)
2015-10-15
Superfluidity properties of heated finite Fermi systems are studied in the static fluctuation approximation, which is an original method. This method relies on a single and controlled approximation, which permits taking correctly into account quasiparticle correlations and thereby going beyond the independent-quasiparticle model. A closed self-consistent set of equations for calculating correlation functions at finite temperature is obtained for a finite Fermi system described by the Bardeen–Cooper–Schrieffer Hamiltonian. An equation for the energy gap is found with allowance for fluctuation effects. It is shown that the phase transition to the supefluid state is smeared upon the inclusion of fluctuations.
Sound Modes of a Bose-Fermi Mixture Superfluid at Finite Temperatures
Ono, Yosuke; Sakamoto, Ryohei; Mori, Hiroyuki; Arahata, Emiko
2016-06-01
We study the sound modes of a Bose-Fermi mixture superfluid at finite temperatures in the collisional hydrodynamic regime. We extend Landau's hydrodynamic theory to deal with a Bose-Fermi mixture superfluid and show the existence of three sound modes. We calculate the hydrodynamic sound velocities numerically using the Nozières and Schmitt-Rink theory at unitarity. The three-sound-modes hybrid in Bose-Fermi mixture superfluids contrasts with the two sound modes exhibited by 3He and 4He superfluids.
Observing the drop of resistance in the flow of a superfluid Fermi gas.
Stadler, David; Krinner, Sebastian; Meineke, Jakob; Brantut, Jean-Philippe; Esslinger, Tilman
2012-11-29
The ability of particles to flow with very low resistance is characteristic of superfluid and superconducting states, leading to their discovery in the past century. Although measuring the particle flow in liquid helium or superconducting materials is essential to identify superfluidity or superconductivity, no analogous measurement has been performed for superfluids based on ultracold Fermi gases. Here we report direct measurements of the conduction properties of strongly interacting fermions, observing the well-known drop in resistance that is associated with the onset of superfluidity. By varying the depth of the trapping potential in a narrow channel connecting two atomic reservoirs, we observed variations of the atomic current over several orders of magnitude. We related the intrinsic conduction properties to the thermodynamic functions in a model-independent way, by making use of high-resolution in situ imaging in combination with current measurements. Our results show that, as in solid-state systems, current and resistance measurements in quantum gases provide a sensitive probe with which to explore many-body physics. Our method is closely analogous to the operation of a solid-state field-effect transistor and could be applied as a probe for optical lattices and disordered systems, paving the way for modelling complex superconducting devices. PMID:23192151
A new superfluid phase in atomic nuclei
International Nuclear Information System (INIS)
The influence of pairing and the dynamical α-type correlations on the structure of nuclear states is studied within the enlarged superfluid model (ESM). A comparison between ESM and different modern nuclear structure models such as: the quasiparticle-phonon nuclear model, interaction boson model, Hartree-Fock-Bogoliubov, temperature dependent Hartree-Fock-Bogoliubov and Migdal's finite Fermi system model, is done for particular cases. New gap equations are obtained. The phase structure is enriched by a new superfluid phase - the so-called α-like superfluid phase-dominated by α-type correlations. New first and second order phase transitions are predicted. A first order phase transition between the α-like superfluid phase and the pairing superfluid phase seems to be observed in Sm region. New types of isomers, the so-called ''superfluid isomers'', with their bands of elementary excitations are predicted. One of them is observed in 152Sm. These isomers correspond to a second (local) minimum of the correlation energy versus pairing deformations, analogous to the fission or superdeformed (shape) isomers, which correspond to the second (local) minimum of the potential energy along the elongation degree of shape deformation. The superfluidities of neutron and proton systems in heavy nuclei region may be generated by one another. This fact leads to the explanation of the origin of the odd-even staggering of the charge radii of chains of isotopes of different nuclei. The fact that the magnitude of the α-decay reduced widths (γ2) of the neutron-defficient Pb isotopes is almost equal to the γ2 of the actinide α-decaying nuclei is due to the above mentioned induction of the neutron superfluidity into the proton system also. Such exotic data ESM can explain especially in the region of single magic nuclei. Within ESM we could find a natural microscopic description of the scissors mode that dominates the structure of the Kπ=1+ magnetic states. (author). 89 refs, 27 figs
Transport and magnetic resonance in normal and superfluid Fermi liquids
International Nuclear Information System (INIS)
This thesis provides a framework for a series of 19 papers published by the author in a study of transport and magnetic resonance in normal and superfluid Fermi liquids. The Boltzmann equation and methods for its solution are discussed. Electron-electron scattering in metals, with particular emphasis on alkali metals, is considered. Transport in a normal uncharged Fermi liquid such as pure 3He at temperatures well below its degeneracy temperature of approximately 1 K or mixtures of 3He in 4He with degeneracy temperatures ranging typically from 100 to 200 mk is discussed with emphasis on comparison with experiments with the aim of testing models of the particle-particle scattering amplitude. Transport and magnetic resonance in superfluid 3He is considered. The phenomenological treatment of relaxation is reviewed and the magnitude of the phenomenlogical relaxation time close to Tsub(c) is derived for the case of longitudinal resonance. Comments are made on non-linear magnetic resonance and textures and spin waves. (B.R.H.)
Bogoliubov-de Gennes soliton dynamics in unconventional Fermi superfluids
Takahashi, Daisuke A.
2016-01-01
Exact self-consistent soliton dynamics based on the Bogoliubov-de Gennes (BdG) formalism in unconventional Fermi superfluids/superconductors possessing an SU(d ) -symmetric two-body interaction is presented. The derivation is based on the ansatz having the similar form as the Gelfand-Levitan-Marchenko equation in the inverse scattering theory. Our solutions can be regarded as a multicomponent generalization of the solutions recently derived by Dunne and Thies [Phys. Rev. Lett. 111, 121602 (2013), 10.1103/PhysRevLett.111.121602]. We also propose superpositions of occupation states, which make it possible to realize various filling rates even in one-flavor systems, and include Dirac and Majorana fermions. The soliton solutions in the d =2 systems, which describe the mixture of singlet s -wave and triplet p -wave superfluids, exhibit a variety of phenomena such as rotating polar phases by soliton spins, SU(2)-DHN breathers, Majorana triplet states, s -p mixed dynamics, and so on. These solutions are illustrated by animations, where order parameters are visualized by spherical harmonic functions. The full formulation of the BdG theory is also supported, and the double-counting problem of BdG eigenstates and N -flavor generalization are discussed.
Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas
Energy Technology Data Exchange (ETDEWEB)
Riedl, S; Sanchez Guajardo, E R; Kohstall, C; Hecker Denschlag, J; Grimm, R, E-mail: rudolf.grimm@uibk.ac.at [Institut fuer Experimentalphysik und Zentrum fuer Quantenphysik, Universitaet Innsbruck, 6020 Innsbruck (Austria)
2011-03-15
We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.
Ku, Mark J. H.; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin W.
2016-01-01
We follow the time evolution of a superfluid Fermi gas of resonantly interacting 6 atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium.
Ku, Mark J H; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin W
2016-01-29
We follow the time evolution of a superfluid Fermi gas of resonantly interacting ^{6}Li atoms after a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its subsequent snaking, and its decay into a vortex ring, which, in turn, breaks to finally leave behind a single solitonic vortex. In intermediate stages, we find evidence for an exotic structure resembling the Φ soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics, calling for a microscopic description of unitary fermionic superfluids out of equilibrium. PMID:26871342
Transport equations and linear response of superfluid Fermi mixtures in neutron stars
Gusakov, M E
2010-01-01
We study transport properties of a strongly interacting superfluid mixture of two Fermi-liquids. A typical example of such matter is the neutron-proton liquid in the cores of neutron stars. To describe the mixture, we employ the Landau theory of Fermi-liquids, generalized to allow for the effects of superfluidity. We formulate the kinetic equation and analyze linear response of the system to vector (e.g., electromagnetic) perturbation. In particular, we calculate the transverse and longitudinal polarization functions for both liquid components. We demonstrate, that they can be expressed through the Landau parameters of the mixture and polarization functions of noninteracting matter (when the Landau quasiparticle interaction is neglected). Our results can be used, e.g., for studies of the kinetic coefficients and low-frequency long-wavelength collective modes in superfluid Fermi-mixtures.
Two-Element Mixture of Bose and Fermi Superfluids
Roy, Richard; Bowler, Ryan; Gupta, Subhadeep
2016-01-01
We report on the production of a mixture of bosonic and fermionic superfluids composed of the elements $^{174}$Yb and $^6$Li which feature strong mismatch in mass and distinct electronic properties. Simultaneous superfluidity and prolonged co-existence are confirmed through observation of the condensed fraction of bosonic and fermionic components. We demonstrate elastic coupling between the superfluids by observing the shift in dipole oscillation frequency of the bosonic component due to the presence of the fermions. The measured magnitude of the shift is consistent with a mean-field model and its direction determines the previously unknown sign of the interspecies scattering length to be positive. We also observe the exchange of angular momentum between the superfluids from the excitation of a scissors mode in the bosonic component through interspecies interactions.
Coordinate-Space Hartree-Fock-Bogoliubov Solvers for Superfluid Fermi Systems in Large Boxes
Pei, J C; Harrison, R J; Nazarewicz, W; Hill, J; Galindo, D; Jia, J
2012-01-01
The self-consistent Hartree-Fock-Bogoliubov problem in large boxes can be solved accurately in the coordinate space with the recently developed solvers HFB-AX (2D) and MADNESS-HFB (3D). This is essential for the description of superfluid Fermi systems with complicated topologies and significant spatial extend, such as fissioning nuclei, weakly-bound nuclei, nuclear matter in the neutron star rust, and ultracold Fermi atoms in elongated traps. The HFB-AX solver based on B-spline techniques uses a hybrid MPI and OpenMP programming model for parallel computation for distributed parallel computation, within a node multi-threaded LAPACK and BLAS libraries are used to further enable parallel calculations of large eigensystems. The MADNESS-HFB solver uses a novel multi-resolution analysis based adaptive pseudo-spectral techniques to enable fully parallel 3D calculations of very large systems. In this work we present benchmark results for HFB-AX and MADNESS-HFB on ultracold trapped fermions.
Faraday waves in quasi-one-dimensional superfluid Fermi-Bose mixtures
DEFF Research Database (Denmark)
Abdullaev, F. Kh.; Ögren, Magnus; Sørensen, Mads Peter
2013-01-01
The generation of Faraday waves in superfluid Fermi-Bose mixtures in elongated traps is investigated. The generation of waves is achieved by periodically changing a parameter of the system in time. Two types of modulations of parameters are considered: a variation of the fermion-boson scattering...
High-Temperature Atomic Superfluidity in Lattice Boson-Fermion Mixtures
Illuminati, F.; Albus, A
2003-01-01
We consider atomic Bose-Fermi mixtures in optical lattices and study the superfluidity of fermionic atoms due to s-wave pairing induced by boson-fermion interactions. We prove that the induced fermion-fermion coupling is always {\\it attractive} if the boson-boson on site interaction is repulsive, and predict the existence of an enhanced BEC--BCS crossover as the strength of the lattice potential is varied. We show that for direct on-site fermion-fermion {\\it repulsion}, the induced attraction...
Superfluidity versus Bloch oscillations in confined atomic gases.
Büchler, H P; Geshkenbein, V B; Blatter, G
2001-09-01
We study the superfluid properties of (quasi) one-dimensional bosonic atom gases/liquids in traps with finite geometries in the presence of strong quantum fluctuations. Driving the condensate with a moving defect we find the nucleation rate for phase slips using instanton techniques. While phase slips are quenched in a ring resulting in a superfluid response, they proliferate in a tube geometry where we find Bloch oscillations in the chemical potential. These Bloch oscillations describe the individual tunneling of atoms through the defect and thus are a consequence of particle quantization.
The decay and collisions of dark solitons in superfluid Fermi gases
Scott, R.G.; Dalfovo, F.; Pitaevskii, L. P.; Stringari, S.; Fialko, O.; Liao, R; Brand, J.
2011-01-01
We study soliton collisions and the decay of solitons into sound in superfluid Fermi gases across the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover by performing numerical simulations of the time-dependent Bogoliubov-de Gennes equations. This decay process occurs when the solitons are accelerated to the bulk pair-breaking speed by an external potential. A similar decay process may occur when solitons are accelerated by an inelastic collision with another soliton. W...
Vortex line of spin-orbit coupled Fermi superfluid through BCS to BEC Crossover
Yao, Juan; Zhang, Shizhong
Superfluid Fermi gases with spin-orbit interaction provides a unique opportunity to investigate possible effects of strong interaction in a topological superfluid. It has been suggested that with addition of Rashba-type spin-orbit coupling, a two-component Fermi gas with strong s-wave interaction can become a topological superfluid with zero-energy bound state at the core of the vortex. In this talk, I discuss the evolution of vortex structure in a spin-orbit coupled Fermi gas through the BCS-BEC crossover within Bogoliubov-de Genne formalism. We find that the largest critical current occurs in the BEC side of the resonance, in contradiction to the usual crossover without spin-orbit coupling where it occurs at unitarity. Furthermore, we discuss the core structure of the vortex by calculating the spin and density distribution around the vortex. Department of Physics and Centre of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China.
Finite-temperature quantum fluctuations in two-dimensional Fermi superfluids
Bighin, G.; Salasnich, L.
2016-01-01
In two-dimensional systems with a continuous symmetry, the Mermin-Wagner-Hohenberg theorem precludes spontaneous symmetry breaking and condensation at finite temperature. The Berezinskii-Kosterlitz-Thouless critical temperature marks the transition from a superfluid phase characterized by quasicondensation and algebraic long-range order, to a normal phase in which vortex proliferation completely destroys superfluidity. As opposed to conventional off-diagonal long-range order typical of three-dimensional superfluid systems, algebraic long-range order is driven by quantum and thermal fluctuations strongly enhanced in reduced dimensionality. Motivated by this unique scenario and by the very recent experimental realization of trapped quasi-two-dimensional fermionic clouds, we include one-loop Gaussian fluctuations in the theoretical description of resonant Fermi superfluids in two dimensions demonstrating that first sound, second sound, and also critical temperature are strongly renormalized, away from their mean-field values. In particular, we prove that in the intermediate- and strong-coupling regimes, these quantities are radically different when Gaussian fluctuations are taken into account. Our one-loop theory shows good agreement with very recent experimental data on the Berezinskii-Kosterlitz-Thouless critical temperature [Phys. Rev. Lett. 115, 010401 (2015)], 10.1103/PhysRevLett.115.010401 and on the first sound velocity, giving predictions for the second sound as a function of interaction strength and temperature that are open for experimental verification.
Directory of Open Access Journals (Sweden)
S Nasirimoghadam
2011-09-01
Full Text Available The ultracold atoms fermion gas such as 6Li undergo superfluidity state. The transport quantities of these fluids have a direct dependence on the transition probabilities. Here, by obtaining possible processes in p-wave superfluid, we have shown that only binary processes are dominate at low temperatures.
Dynamics of atom-atom correlations in the Fermi problem
Borrelli, Massimo; Sabín, Carlos; Adesso, Gerardo; Plastina, Francesco; Maniscalco, Sabrina
2012-01-01
We present a detailed perturbative study of the dynamics of several types of atom-atom correlations in the famous Fermi problem. This is an archetypal model to study micro-causality in the quantum domain, where two atoms, one initially excited and the other prepared in its ground state, interact with the vacuum electromagnetic field. The excitation can be transferred to the second atom via a flying photon, and various kinds of quantum correlations between the two are generated during this pro...
Inelastic scattering of xenon atoms by quantized vortices in superfluids
Pshenichnyuk, I A
2016-01-01
We study inelastic interactions of particles with quantized vortices in superfluids by using a semi-classical matter wave theory that is analogous to the Landau two-fluid equations, but allows for the vortex dynamics. The research is motivated by recent experiments on xenon doped helium nanodroplets that show clustering of the impurities along the vortex cores. We numerically simulate the dynamics of trapping and interactions of xenon atoms by quantized vortices in superfluid helium and the obtained results can be extended to scattering of other impurities by quantized vortices. Different energies and impact parameters of incident particles are considered. We show that inelastic scattering is closely linked to the generation of Kelvin waves along a quantized vortex during the interaction even if there is no capture. The capture criterion of an impurity is formulated in terms of the binding energy.
Majorana modes and s-wave topological superfluids in ultracold fermionic atoms
Wu, Ya-Jie; Li, Ning; Zhou, Jiang; Kou, Su-Peng; Yu, Jing
2016-09-01
We present another topological superfluid with s-wave pairing for ultracold fermionic atoms in addition to the chiral topological superfluid proposed by Sato et al (2009 Phys. Rev. Lett. 103 020401), of which edge dislocations host Majorana zero modes that may be utilized as decoherence-free qubits, and quantized vortices trap zero energy modes. The quantum phase fluctuations for topological superfluids and Berezinsky–Kosterlitz–Thouless transition are also discussed.
Institute of Scientific and Technical Information of China (English)
Dong Hang; Ma Yong-Li
2009-01-01
Using quantum hydrodynamic approaches, we study the quantum pressure correction to the collective excitation spectrum of the interacting trapped superfluid Fermi gases in the BEC-BCS crossover. Based on a phenomenological equation of state, we derive hydrodynamic equations of the system in the whole BEC-BCS crossover regime. Beyond the Thomas-Fermi approximation, expressions of the frequency corrections of collective modes for both spherical and axial symmetric traps excited in the BEC-BCS crossover are given explicitly. The corrections of the eigenfrequencies due to the quantum pressure and their dependence on the inverse interaction strength. Anisotropic parameter and particle numbers of the condensate are discussed in detail.
Probing superfluid properties in strongly correlated Fermi gases with high spatial resolution
Energy Technology Data Exchange (ETDEWEB)
Weimer, Wolf
2014-07-01
In this thesis an apparatus to study ultracold fermionic {sup 6}Li with tunable interaction strength and dimensionality is presented. The apparatus is applied to investigate the speed of sound v{sub s} and the superfluid critical velocity v{sub c} across the transition from Bose-Einstein condensation (BEC) to Bardeen-Cooper-Schrieffer (BCS) superfluidity. The results set benchmarks for theories describing strongly correlated systems. To measure v{sub c}, an obstacle, that is formed by a tightly focused laser beam, is moved through a superfluid sample with a constant velocity along a line of constant density. For velocities larger than v{sub c} heating of the gas is observed. The critical velocity is mapped out for various different interaction strengths covering the BEC-BCS crossover. According to the Landau criterion and Bogolyubov theory, v{sub c} should be closely related to v{sub s} in a Bose-Einstein condensate. The measurement of v{sub s} is conducted by creating a density modulation in the centre of the cloud and tracking the excited modulation. The velocities v{sub s} and v{sub c} are measured in a similar range of interaction strengths and in similar samples to ensure comparability. The apparatus which provides the ultracold samples is a two chamber design with a magneto-optical trap that is loaded via a Zeeman slower. The subsequent cooling steps are all-optical and finally create an ultracold oblate atom cloud inside a flat vacuum cell. This cell provides optimal optical access and is placed between two high numerical aperture microscope objectives. These objectives are used to probe the samples in-situ on length scales which are comparable to the intrinsic length scales of the gases. Similarly, optical dipole potentials are employed to manipulate the clouds on the same small length scales. The oblate samples are sufficiently flat such that there spatial extent along the microscope axes is smaller than the depth of field of the objectives. With an
Pal, Arijeet; Huse, David
2012-02-01
Phase separation between paired superfluid and partially polarized normal phases has been observed by various experimental groups around the world using resonantly-interacting spin-imbalanced, hyperfine states of fermionic atoms. In this work we phenomenologically study the effect of the evaporation of atoms and explore the possibility of realizing a non-equilibrium steady state with chemical potential and temperature gradients in some of these experiments.
Hysteresis of noninteracting and spin-orbit-coupled atomic Fermi gases with relaxation
Metcalf, Mekena; Lai, Chen-Yen; Chien, Chih-Chun
2016-05-01
Hysteresis can be found in driven many-body systems such as magnets and superfluids. Rate-dependent hysteresis arises when a system is driven periodically while relaxing towards equilibrium. A two-state paramagnet driven by an oscillating magnetic field in the relaxation approximation clearly demonstrates rate-dependent hysteresis. A noninteracting atomic Fermi gas in an optical ring potential, when driven by a periodic artificial gauge field and subjected to dissipation, is shown to exhibit hysteresis loops of atomic current due to a competition of the driving time and the relaxation time. This is in contrast to electronic systems exhibiting equilibrium persistent current driven by magnetic flux due to rapid relaxation. Universal behavior of the dissipated energy in one hysteresis loop is observed in both magnetic and atomic systems, showing linear and inverse-linear dependence on the relaxation time in the strong and weak dissipation regimes. While interactions in general invalidate the framework for rate-dependent hysteresis, an atomic Fermi gas with artificial spin-orbit coupling can exhibit hysteresis loops of atomic currents. Cold atoms in ring-shape potentials are thus promising for demonstrating rate-dependent hysteresis and its associated phenomena.
Mean field dynamics of superfluid-insulator phase transition in a gas of ultra cold atoms
Zakrzewski, Jakub
2004-01-01
A large scale dynamical simulation of the superfluid to Mott insulator transition in the gas of ultra cold atoms placed in an optical lattice is performed using the time dependent Gutzwiller mean field approach. This approximate treatment allows us to take into account most of the details of the recent experiment [Nature 415, 39 (2002)] where by changing the depth of the lattice potential an adiabatic transition from a superfluid to a Mott insulator state has been reported. Our simulations re...
Degenerate atom-molecule mixture in a cold Fermi gas
International Nuclear Information System (INIS)
We show that the atom-molecule mixture formed in a degenerate atomic Fermi gas with interspecies repulsion near a Feshbach resonance constitutes a peculiar system where the atomic component is almost nondegenerate but quantum degeneracy of molecules is important. We develop a thermodynamic approach for studying this mixture, explain experimental observations, and predict optimal conditions for achieving molecular Bose-Einstein condensation
Degenerate Atom-Molecule Mixture in a Cold Fermi Gas
Kokkelmans, S.J.J.M.F.; Shlyapnikov, G. V.; Salomon, R.
2004-01-01
We show that the atom-molecule mixture formed in a degenerate atomic Fermi gas with interspecies repulsion near a Feshbach resonance, constitutes a peculiar system where the atomic component is almost non-degenerate but quantum degeneracy of molecules is important. We develop a thermodynamic approach for studying this mixture, explain experimental observations and predict optimal conditions for achieving molecular BEC.
Rashba Spin-Orbit-Coupled Atomic Fermi Gases in a Two-Dimensional Optical Lattice
Koinov, Zlatko; Mendoza, Rafael
2015-11-01
The collective-mode excitation energy of a population-imbalanced spin-orbit-coupled atomic Fermi gas loaded in a two-dimensional optical lattice at zero temperature is calculated within the Gaussian approximation, and from the Bethe-Salpeter equation in the generalized random-phase approximation assuming the existence of a Sarma superfluid state. It is found that the Gaussian approximation overestimates the speed of sound of the Goldstone mode. More interestingly, the Gaussian approximation fails to reproduce the roton-like structure of the collective-mode dispersion which appears after the linear part of the dispersion in the Bethe-Salpeter approach. We investigate the speed of sound of a balanced spin-orbit-coupled atomic Fermi gas near the boundary of the topological phase transition driven by an out-of-plane Zeeman field. It is shown that the minimum of the speed of sound is located at the topological phase transition boundary, and this fact can be used to confirm the existence of a topological phase transition.
Liu, Xia-Ji
2013-03-01
A strongly correlated Fermi system plays a fundamental role in very different areas of physics, from neutron stars, quark-gluon plasmas, to high temperature superconductors. Despite the broad applicability, it is notoriously difficult to be understood theoretically because of the absence of a small interaction parameter. Recent achievements of ultracold trapped Fermi atoms near a Feshbach resonance have ushered in enormous changes. The unprecedented control of interaction, geometry and purity in these novel systems has led to many exciting experimental results, which are to be urgently understood at both low and finite temperatures. Here we review the latest developments of virial expansion for a strongly correlated Fermi gas and their applications on ultracold trapped Fermi atoms. We show remarkable, quantitative agreements between virial predictions and various recent experimental measurements at about the Fermi degenerate temperature. For equations of state, we discuss a practical way of determining high-order virial coefficients and use it to calculate accurately the long-sought third-order virial coefficient, which is now verified firmly in experiments at ENS and MIT. We discuss also virial expansion of a new many-body parameter-Tan’s contact. We then turn to less widely discussed issues of dynamical properties. For dynamic structure factors, the virial prediction agrees well with the measurement at the Swinburne University of Technology. For single-particle spectral functions, we show that the expansion up to the second order accounts for the main feature of momentum-resolved rf-spectroscopy for a resonantly interacting Fermi gas, as recently reported by JILA. In the near future, more practical applications with virial expansion are possible, owing to the ever-growing power in computation.
Maria Goeppert Mayer Prize Talk: Superfluid Atom Circuits
Campbell, Gretchen
2016-05-01
We have performed a series of experiments with ring-shaped Bose-Einstein Condensates, with and without the addition of a ``weak link'' barrier. Weak connections between superconductors or superfluids can differ from classical links due to quantum coherence, which allows for flow without resistance. The properties of a weak link are characterized by a single function, the current-phase relationship. In recent experiments, we have developed a technique to directly measure the current-phase relationship of the weak link. The weak link is created using a laser beam that acts as a barrier across one side of the ring condensate. By rotating the barrier, we can control the current around the ring. When the weak link is rotated at at low rotation rates, we observe phase slips between well-defined, quantized current states, and have demonstrated that the system exhibits hysteresis. At higher rotation rates we have directly measured the onset of resistive flow across the weak link. Such measurements may open new avenues of research in quantum transport. More recently, we have studied the behavior of the ring BEC when the radius is expanded at supersonic rates. Because information can propagate only at the speed of sound, the supersonic expansion creates causally disconnected regions, whose phases evolve at different rates. Such experiments may allow us to study cosmic inflation at laboratory scales.
Pseudospin pairing and transport in atomic Fermi gases and bilayer systems
Mink, M.P.
2012-01-01
In this Thesis we consider the behavior of the drag conductivity close to exciton condensation in bilayer systems and close to the superfluid transition in cold Fermi gases. In chapter 2 we calculate the transition temperature for exciton condensation in double-layer graphene, showing that the remot
Sanpera, A.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.; Lewenstein, M.
2004-07-01
We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices.
Superfluid and Insulating Phases of Fermion Mixtures in Optical Lattices
Iskin, M.; de Melo, C. A. R. Sá
2007-08-01
The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor, and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI-FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI-FPI phases exist in Bose-Fermi mixtures, and lastly the FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices
International Nuclear Information System (INIS)
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices.
Cramer, M; Eisert, J; Illuminati, F
2004-11-01
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose-Fermi mixtures in optical lattices. PMID:15600816
Kato, Shinya; Inaba, Kensuke; Sugawa, Seiji; Shibata, Kosuke; Yamamoto, Ryuta; Yamashita, Makoto; Takahashi, Yoshiro
2016-04-01
A system of ultracold atoms in an optical lattice has been regarded as an ideal quantum simulator for a Hubbard model with extremely high controllability of the system parameters. While making use of the controllability, a comprehensive measurement across the weakly to strongly interacting regimes in the Hubbard model to discuss the quantum many-body state is still limited. Here we observe a great change in the excitation energy spectra across the two regimes in an atomic Bose-Hubbard system by using a spectroscopic technique, which can resolve the site occupancy in the lattice. By quantitatively comparing the observed spectra and numerical simulations based on sum rule relations and a binary fluid treatment under a finite temperature Gutzwiller approximation, we show that the spectra reflect the coexistence of a delocalized superfluid state and a localized insulating state across the two regimes.
He, Lianyi
2016-10-01
We present a standard field theoretical derivation of the dynamic density and spin linear response functions of a dilute superfluid Fermi gas in the BCS-BEC crossover in both three and two dimensions. The derivation of the response functions is based on the elegant functional path integral approach which allows us to calculate the density-density and spin-spin correlation functions by introducing the external sources for the density and the spin density. Since the generating functional cannot be evaluated exactly, we consider two gapless approximations which ensure a gapless collective mode (Goldstone mode) in the superfluid state: the BCS-Leggett mean-field theory and the Gaussian-pair-fluctuation (GPF) theory. In the mean-field theory, our results of the response functions agree with the known results from the random phase approximation. We further consider the pair fluctuation effects and establish a theoretical framework for the dynamic responses within the GPF theory. We show that the GPF response theory naturally recovers three kinds of famous diagrammatic contributions: the Self-Energy contribution, the Aslamazov-Lakin contribution, and the Maki-Thompson contribution. We also show that unlike the equilibrium state, in evaluating the response functions, the linear (first-order) terms in the external sources as well as the induced order parameter perturbations should be treated carefully. In the superfluid state, there is an additional order parameter contribution which ensures that in the static and long wavelength limit, the density response function recovers the result of the compressibility (compressibility sum rule). We expect that the f-sum rule is manifested by the full number equation which includes the contribution from the Gaussian pair fluctuations. The dynamic density and spin response functions in the normal phase (above the superfluid critical temperature) are also derived within the Nozières-Schmitt-Rink (NSR) theory.
Measurement of the hyperfine splitting of {sup 133}Cs atoms in superfluid helium
Energy Technology Data Exchange (ETDEWEB)
Imamura, K., E-mail: kimamura@riken.jp [RIKEN Nishina Center (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Yang, X. F. [Peking University, School of Physics (China); Mitsuya, Y. [Meiji University, Department of Physics (Japan); Fujita, T. [Osaka University, Department of Physics (Japan); Hayasaka, M. [Tokyo Gakugei University, Department of Physics (Japan); Kobayashi, T. [RIKEN Center for Advanced Photonics (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Odashima, H. [Meiji University, Department of Physics (Japan); Matsuo, Y. [Hosei University, Department of Advanced Sciences (Japan)
2015-04-15
We have been developing a new nuclear laser spectroscopy method named “OROCHI” (Optical RI-atom Observation in Condensed Helium as Ion-catcher). OROCHI utilizes superfluid helium (He II) not only as an efficient stopping medium of highly energetic ions but also as a host matrix of in-situ atomic laser spectroscopy. Using these characteristic of He II, we produce atomic spin polarization and measure Zeeman and hyperfine structure (HFS) splitting using laser-RF (radio frequency) / MW (microwave) double resonance method. From the measured energy splittings, we can deduce nuclear spins and moments. So far, we have conducted a series of experiments using both stable ({sup 85,87}Rb, {sup 133}Cs, {sup 197}Au, {sup 107,109}Ag) and unstable isotopes ({sup 84,86}Rb) to confirm the feasibility of OROCHI method, especially observing Zeeman resonance and determining nuclear spins. The measurement of HFS splitting of atoms introduced into He II is indispensable to clarify the nuclear properties by deducing nuclear moments as well as the study of nuclear spins. For this purpose, we perform a precision measurement of HFS of {sup 133}Cs atoms immersed in He II using laser ablation technique. In this paper, we describe the result of the experiment.
Measurement of the hyperfine splitting of 133Cs atoms in superfluid helium
International Nuclear Information System (INIS)
We have been developing a new nuclear laser spectroscopy method named “OROCHI” (Optical RI-atom Observation in Condensed Helium as Ion-catcher). OROCHI utilizes superfluid helium (He II) not only as an efficient stopping medium of highly energetic ions but also as a host matrix of in-situ atomic laser spectroscopy. Using these characteristic of He II, we produce atomic spin polarization and measure Zeeman and hyperfine structure (HFS) splitting using laser-RF (radio frequency) / MW (microwave) double resonance method. From the measured energy splittings, we can deduce nuclear spins and moments. So far, we have conducted a series of experiments using both stable (85,87Rb, 133Cs, 197Au, 107,109Ag) and unstable isotopes (84,86Rb) to confirm the feasibility of OROCHI method, especially observing Zeeman resonance and determining nuclear spins. The measurement of HFS splitting of atoms introduced into He II is indispensable to clarify the nuclear properties by deducing nuclear moments as well as the study of nuclear spins. For this purpose, we perform a precision measurement of HFS of 133Cs atoms immersed in He II using laser ablation technique. In this paper, we describe the result of the experiment
Effective mass of 4He atom in superfluid and normal phases
International Nuclear Information System (INIS)
The formula for the temperature dependence of the effective mass of a 4He atom in the superfluid and normal phases is obtained. This expression for the effective mass allows one to eliminate infra-red divergences, being applicable at all temperatures, except for a narrow fluctuation region 0.97<< approx T/Tc<=1. In the high and low temperature limits, as well as in the interactionless limit, the obtained expression reproduces the well known results. The temperature dependence of the heat capacity and the phase transition temperature Tc∼2.18 K are calculated, by using the formula obtained for the effective mass. In the framework of the approach proposed in this work, the small critical index η is determined in the random phase approximation. The obtained value corresponds to the well known result
Chen, Qijin
2016-05-01
BCS–Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor’kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.
Chen, Qijin
2016-01-01
BCS-Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor'kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories. PMID:27183875
Chen, Qijin
2016-01-01
BCS-Bose-Einstein condensation (BEC) crossover is effected by increasing pairing strength between fermions from weak to strong in the particle-particle channel, and has attracted a lot of attention since the experimental realization of quantum degenerate atomic Fermi gases. Here we study the effect of the (often dropped) particle-hole channel on the zero T gap Δ(0), superfluid transition temperature Tc, the pseudogap at Tc, and the mean-field ratio 2Δ(0)/, from BCS through BEC regimes, using a pairing fluctuation theory which includes self-consistently the contributions of finite-momentum pairs and features a pseudogap in single particle excitation spectrum. Summing over the infinite particle-hole ladder diagrams, we find a complex dynamical structure for the particle-hole susceptibility χph, and conclude that neglecting the self-energy feedback causes a serious over-estimate of χph. While our result in the BCS limit agrees with Gor'kov et al., the particle-hole channel effect becomes more complex and pronounced in the crossover regime, where χph is reduced by both a smaller Fermi surface and a big (pseudo)gap. Deep in the BEC regime, the particle-hole channel contributions drop to zero. We predict a density dependence of the magnetic field at the Feshbach resonance, which can be used to quantify χph and test different theories.
Critical velocity for superfluid flow across the BEC-BCS crossover.
Miller, D E; Chin, J K; Stan, C A; Liu, Y; Setiawan, W; Sanner, C; Ketterle, W
2007-08-17
Critical velocities have been observed in an ultracold superfluid Fermi gas throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at unitarity demonstrates that superfluidity is most robust for resonant atomic interactions. Critical velocities were determined from the abrupt onset of dissipation when the velocity of a moving one-dimensional optical lattice was varied. The dependence of the critical velocity on lattice depth and on the inhomogeneous density profile was studied.
International Nuclear Information System (INIS)
For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters
National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...
Harris, Glen; McAuslan, David; Sheridan, Eoin; Bowen, Warwick
2014-03-01
The field of quantum optomechanics has seen great progress over the last decade with many exciting theoretical proposals and impressive experimental achievements. Among the most successful optomechanical systems are the collective modes of ultra cold atoms where ponderomotive squeezing and quantization of collective atomic motion have been observed. In this context the collective motion of superfluid helium-4 appears to be a promising candidate given its zero viscosity flow; potentially leading to the simple preparation of macroscopic mechanical oscillators with ultra-high quality factors. Here we present the first observation of Brownian motion in superfluid helium-4 thin films. The superfluid film is formed around an optical whispering gallery mode resonator enabling high sensitivity readout. Furthermore, exceedingly strong dynamical backaction heating and cooling is observed with optomechanical instabilities arising from only 40nW of injected optical power. While there are still many open questions regarding the superfluid hydrodynamics we believe this to be a promising system to study macroscopic non-classical mechanical states.
Ferromagnetism in a repulsive atomic Fermi gas with correlated disorder
Pilati, S.; Fratini, E.
2016-05-01
We investigate the zero-temperature ferromagnetic behavior of a two-component repulsive Fermi gas in the presence of a correlated random field that represents an optical speckle pattern. The density is tuned so that the (noninteracting) Fermi energy is close to the mobility edge of the Anderson localization transition. We employ quantum Monte Carlo simulations to determine various ground-state properties, including the equation of state, the magnetic susceptibility, and the energy of an impurity immersed in a polarized Fermi gas (repulsive polaron). In the weakly interacting limit, the magnetic susceptibility is found to be suppressed by disorder. However, it rapidly increases with the interaction strength, and it diverges at a much weaker interaction strength compared to the clean gas. Both the transition from the paramagnetic phase to the partially ferromagnetic phase, and the one from the partially to the fully ferromagnetic phase, are strongly favored by disorder, indicating a case of order induced by disorder.
Collective excitations in unconventional superconductors and superfluids
Brusov, Peter
2009-01-01
This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF&SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique - authors build the three- and two-dimensional models for s -, p - and d -wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3 He, superfluid 4 He, superfluid 3 He-
Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices
Cramer, M.; Eisert, J.; Illuminati, F.
2003-01-01
We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices by studying the Bose-Fermi Hubbard model including parabolic confining potentials. We present the exact solution in the limit of vanishing hopping (ultradeep lattices) and study the resulting domain structure of composite particles. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimensionality...
Bose-Einstein condensation and superfluidity
Pitaevskii, Lev
2016-01-01
This volume introduces the basic concepts of Bose–Einstein condensation and superfluidity. It makes special reference to the physics of ultracold atomic gases; an area in which enormous experimental and theoretical progress has been achieved in the last twenty years. Various theoretical approaches to describing the physics of interacting bosons and of interacting Fermi gases, giving rise to bosonic pairs and hence to condensation, are discussed in detail, both in uniform and harmonically trapped configurations. Special focus is given to the comparison between theory and experiment, concerning various equilibrium, dynamic, thermodynamic, and superfluid properties of these novel systems. The volume also includes discussions of ultracold gases in dimensions, quantum mixtures, and long-range dipolar interactions.
Iskin, M.
2016-07-01
We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth 173Yb Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s -wave superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called π -phase) solutions in the entire BCS-BEC evolution at zero temperature.
Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature.
Mukaiyama, Takashi; Katori, Hidetoshi; Ido, Tetsuya; Li, Ying; Kuwata-Gonokami, Makoto
2003-03-21
A dynamic magneto-optical trap, which relies on the rapid randomization of population in Zeeman substates, has been demonstrated for fermionic strontium atoms on the 1S0-3P1 intercombination transition. The obtained sample, 1x10(6) atoms at a temperature of 2 microK in the trap, was further Doppler cooled and polarized in a far-off resonant optical lattice to achieve 2 times the Fermi temperature. PMID:12688925
Observation of repulsive Fermi polarons in a resonant mixture of ultracold ${}^6$Li atoms
Scazza, F; Massignan, P; Recati, A; Amico, A; Burchianti, A; Fort, C; Inguscio, M; Zaccanti, M; Roati, G
2016-01-01
We employ radio-frequency spectroscopy to investigate a polarized spin-mixture of ultracold ${}^6$Li atoms close to a broad Feshbach scattering resonance. Focusing on the regime of strong repulsive interactions, we observe well-defined coherent quasiparticles even for unitarity-limited interactions. We characterize the many-body system by extracting the key properties of repulsive Fermi polarons: the energy $E_+$, the effective mass $m^*$, the residue $Z$ and the decay rate $\\Gamma$. Above a critical interaction, $E_+$ is found to exceed the Fermi energy of the bath while $m^*$ diverges and even turns negative. Such findings reveal that the paramagnetic Fermi liquid state becomes thermodynamically unstable towards an energetically favored ferromagnetic phase.
Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model
DEFF Research Database (Denmark)
Özen, C.; Zinner, Nikolaj Thomas
2014-01-01
The physics of a two-component cold fermi gas is now frequently addressed in laboratories. Usually this is done for large samples of tens to hundreds of thousands of particles. However, it is now possible to produce few-body systems (1-100 particles) in very tight traps where the shell structure...... of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...
2010-05-05
... COMMISSION DTE ENERGY; Enrico Fermi Atomic Power Plant Unit 1; Exemption From Certain Low-Level Waste... offsite low-level radioactive waste disposal sites. Experience at other decommissioning nuclear power... radioactive waste shipment times from the Fermi-1 site to the disposal site. ] 3.0 Discussion The...
Vortex properties of a resonant superfluid
International Nuclear Information System (INIS)
The properties of a vortex in a rotating superfluid Fermi gas are studied in the unitary limit. A phenomenological approach based on Ginzburg-Landau theory is developed for this purpose. The density profiles, including those of the normal fluid and superfluid, are obtained at various temperatures and rotation frequencies. The superfluid and normal fluid densities can be identified from the angular momentum density. The total free energy and angular momentum of the vortex are also obtained
Vilà, Arnau; González, Miguel; Mayol, Ricardo
2016-01-21
The capture dynamics of a Ne atom by a superfluid helium nanodroplet (((4)He)N=1000; T = 0.37 K), Ne + ((4)He)N→ Ne@((4)He)N', was investigated using a quantum approach (TDDFT (helium) + quantum wave packet (Ne)) at zero angular momentum and a rather wide range of Ne atom initial mean velocities (〈v0〉: 90-1300 m s(-1)). This is probably the first quantum dynamics study focusing on the pick up process and the evolution of the dopant inside the nanodroplet and the second more detailed investigation on this topic. For 〈v0〉 = 210 m s(-1) and above the atom is always captured, but for lower velocities the probability of capture is somewhat below the unity and decreases as 〈v0〉 diminishes. The main energy exchange begins with the collision of the atom with the nanodroplet surface, and the excess of energy placed in the doped nanodroplet is progressively released by the evaporation of a small amount of (4)He atoms. Once the atom has entered into the nanodroplet its mean position follows an oscillatory trajectory, due to multiple sequential collisions with the inner surface of the nanodroplet, and its mean velocity reaches values which are below Landau's critical velocity. This probably corresponds to the general behavior of nanodroplets with a bulk-like region when moderate collision energies (i.e., similar to the ones considered here) are involved. In the future we hope to investigate the influence of angular momentum on the mechanism of the pick up process, using the same quantum dynamics method.
New light on the intriguing history of superfluidity in liquid 4He
Griffin, Allan
2009-04-01
Surprisingly, it was 30 years after the first liquefaction of 4He in 1908 that the discovery that liquid 4He is not just a 'cold' liquid was made. Below T = 2.18 K, it is a 'quantum' liquid which exhibits spectacular macroscopic quantum behaviour that can be seen with the naked eye. Since the observation of superfluidity in liquid 4He is one of the greatest discoveries in modern physics, we present a day-to-day chronology of the tangled events which preceded the seminal discovery of zero viscosity in 1938 by Kapitza in Moscow and by Allen and Misener in Cambridge. On the theory side, London argued in 1938 that the microscopic basis for this new superfluid phase was the forgotten phenomenon of Bose-Einstein condensation (BEC) first suggested by Einstein in 1925. In 1941, Landau developed a very successful theory of superfluid 4He, but it was not anchored in a microscopic theory of interacting atoms. It took another 20 years for theorists to unify the two seemingly different theories of Landau and London. Experiments on trapped superfluid atomic gases since 1995 have shone new light on superfluid 4He. In the mid-1930s, London had emphasized that superconductivity in metals and superfluidity in liquid 4He were similar. Experiments on trapped two-component Fermi gases in the last five years have shown that a Bose condensate is indeed the basis of both of these superfluid phases. This confirms the now famous Bardeen-Cooper-Schrieffer-BEC crossover scenario developed for superfluidity by Leggett and Nozières in the early 1980s but largely ignored until a few years ago. The study of superfluid 4He will increasingly overlap with strongly interacting dilute quantum gases, perhaps opening up a new era of research on this most amazing liquid.
New light on the intriguing history of superfluidity in liquid (4)He.
Griffin, Allan
2009-04-22
Surprisingly, it was 30 years after the first liquefaction of (4)He in 1908 that the discovery that liquid (4)He is not just a 'cold' liquid was made. Below T = 2.18 K, it is a 'quantum' liquid which exhibits spectacular macroscopic quantum behaviour that can be seen with the naked eye. Since the observation of superfluidity in liquid (4)He is one of the greatest discoveries in modern physics, we present a day-to-day chronology of the tangled events which preceded the seminal discovery of zero viscosity in 1938 by Kapitza in Moscow and by Allen and Misener in Cambridge. On the theory side, London argued in 1938 that the microscopic basis for this new superfluid phase was the forgotten phenomenon of Bose-Einstein condensation (BEC) first suggested by Einstein in 1925. In 1941, Landau developed a very successful theory of superfluid (4)He, but it was not anchored in a microscopic theory of interacting atoms. It took another 20 years for theorists to unify the two seemingly different theories of Landau and London. Experiments on trapped superfluid atomic gases since 1995 have shone new light on superfluid (4)He. In the mid-1930s, London had emphasized that superconductivity in metals and superfluidity in liquid (4)He were similar. Experiments on trapped two-component Fermi gases in the last five years have shown that a Bose condensate is indeed the basis of both of these superfluid phases. This confirms the now famous Bardeen-Cooper-Schrieffer-BEC crossover scenario developed for superfluidity by Leggett and Nozières in the early 1980s but largely ignored until a few years ago. The study of superfluid (4)He will increasingly overlap with strongly interacting dilute quantum gases, perhaps opening up a new era of research on this most amazing liquid.
Ionization of Atoms and the Thomas-Fermi Model for the Electric Field in Crystal Planar Channels
Institute of Scientific and Technical Information of China (English)
LIU Ying-Tai; ZHANG Qi-Ren; GAO Chun-Yuan
2002-01-01
The electric field in the crystal planar channels is studied by the Thomas Fermi method. The Thomas-Fermi equation and the corresponding boundary conditions are derived for the crystal planar channels. The numericalsolution for the electric field in the channels between (110) planes of the single crystal silicon and the critical angles ofchannelling protons in them are shown. Reasonable agreements with the experimental data are obtained. The resultsshow that the Thomas-Fermi method for the crystal works well in this study, and a microscopic research of the channelelectric field with the contribution of all atoms and the atomic ionization being taken into account is practical.
Energy Technology Data Exchange (ETDEWEB)
Roberts, David C [Los Alamos National Laboratory
2008-01-01
The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.
Decay of a superfluid current of ultracold atoms in a toroidal trap
Mathey, Amy C.; Clark, Charles W.; Mathey, L.
2014-08-01
Using a numerical implementation of the truncated Wigner approximation, we simulate the experiment reported by Ramanathan et al. in Phys. Rev. Lett. 106, 130401 (2011), 10.1103/PhysRevLett.106.130401, in which a Bose-Einstein condensate is created in a toroidal trap and set into rotation via a phase imprinting technique. A potential barrier is then placed in the trap to study the decay of the superflow. We find that the current decays via thermally activated phase slips, which can also be visualized as vortices crossing the barrier region in the radial direction. Adopting the notion of critical velocity used in the experiment, we determine it to be lower than the local speed of sound at the barrier, in contradiction to the predictions of the zero-temperature Gross-Pitaevskii equation. We map out the superfluid decay rate and critical velocity as a function of temperature and observe a strong dependence. Thermal fluctuations offer a partial explanation of the experimentally observed reduction of the critical velocity from the phonon velocity.
Institute of Scientific and Technical Information of China (English)
XIONG De-Zhi; CHEN Hai-Xia; WANG Peng-Jun; YU Xu-Dong; GAO Feng; ZHANG Jing
2008-01-01
@@ We report on the attainment of quantum degeneracy of 40K by means of efficient thermal collisions with the evaporatively cooled 87Rb atoms.In a quadrupole-Ioffe configuration trap,potassium atoms are cooled to 0.5 times the Fermi temperature.We obtain up to 7.59 × 105 degenerate fermions 40K.
Energy Technology Data Exchange (ETDEWEB)
Fujita, T., E-mail: tomomi.fujita@riken.jp [Osaka University, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Imamura, K.; Yang, X. F. [RIKEN Nishina Center (Japan); Hatakeyama, A. [Tokyo University of Agriculture and Technology, Department of Applied Physics (Japan); Kobayashi, T. [RIKEN Center for Advanced Photonics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Shimoda, T. [Osaka University, Department of Physics (Japan); Matsuo, Y. [Hosei University, Department of Advanced Sciences (Japan); Collaboration: OROCHI Collaboration
2015-11-15
A new laser spectroscopic method named “OROCHI (Optical RI-atom Observation in Condensed Helium as Ion catcher)” has been developed for deriving the nuclear spins and electromagnetic moments of low-yield exotic nuclei. In this method, we observe atomic Zeeman and hyperfine structures using laser-radio-frequency/microwave double-resonance spectroscopy. In our previous works, double-resonance spectroscopy was performed successfully with laser-sputtered stable atoms including non-alkali Au atoms as well as alkali Rb and Cs atoms. Following these works, measurements with {sup 84−87}Rb energetic ion beams were carried out in the RIKEN projectile fragment separator (RIPS). In this paper, we report the present status of OROCHI and discuss its feasibility, especially for low-yield nuclei such as unstable Au isotopes.
Pederson, Mark R
2015-02-14
A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeit slightly too low. PMID:25681892
Pederson, Mark R
2014-01-01
A recent modification of the Perdew-Zunger self-interaction-correction (SIC) to the density-functional formalism (Pederson, Ruzsinszky, Perdew) has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Lowdin orthonormalized Fermi-orbitals (Luken et al) which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested here on atoms. Total energies and ionization energies in closed-shell atoms, where correlation is less important, using the PW92 LDA functional are in very good to excellent agreement with experiment and non-relativistic Quantum-Monte-Carlo (QMC) results.
Fermi-Bose mixtures of 40K and 87Rb atoms
International Nuclear Information System (INIS)
After the recent realization of the BCS-BEC crossover in dilute atomic Fermi gases, quantum degenerate mixtures of bosonic and fermionic atoms are expected to provide a complementary approach to fermionic super fluidity where the attractive interaction between Fermions is mediated by the inter species interaction, a situation which is in many ways analogous to phonon-mediated Cooper pairing in superconductors. Moreover, these mixtures are expected to show a rich phase diagram when loaded into an optical lattice, with various pairing phases involving one or several fermionic and bosonic atoms. Already in a harmonic trap, these mixtures show a rich class of phenomena. The behaviour of the mixture is influenced by a lot of properties: mean ld interaction both between Fermions and Bosons as well as the mean field interaction in the condensate. Depending on the sign of the Fermi-Bose interaction, phase separation or mean ld trapping and collapse of the mixture are expected. The mass ratio between Fermions and Bosons will also influence the ratio of trapping frequencies between the two species. Three-body loss processes can have a dramatic impact on lifetime and dynamical behaviour of the mixture. The condensate overlapping only with a small part of the Fermi sea will introduce localized trapping and loss processes. We report on the production of a quantum degenerate Fermi-Bose mixture of 40K and 87Rb in a regime of large particle numbers. In the experiment, we can span a wide range of phenomena starting at small particle numbers, where the expansion of the bosonic and the fermionic component are well described by the respective single-component Thomas-Fermi profiles. As particle numbers and densities in the mixture increase, the mean field attraction will create a strong localized mean field trapping potential in the centre of the trap where the BEC is localized. We observe this in-trap effect as a bimodal distribution of the fermionic component in the axial direction
Spin-orbit coupled two-electron Fermi gases of ytterbium atoms
Song, Bo; Zhang, Shanchao; Zou, Yueyang; Haciyev, Elnur; Huang, Wei; Liu, Xiong-Jun; Jo, Gyu-Boong
2016-01-01
We demonstrate the spin-orbit coupling (SOC) in a two-electron Fermi gas of $^{173}$Yb atoms by coupling two hyperfine ground states via the two-photon Raman transition. Due to the SU($N$) symmetry of the $^1$S$_0$ ground-state manifold which is insensitive to external magnetic field, an optical AC Stark effect is applied to split the ground spin states and separate an effective spin-1/2 subspace out from other hyperfine levels for the realization of SOC. With a momentum-dependent spin-orbit gap being suddenly opened by switching on the Raman transition, the dephasing of spin dynamics is observed, as a consequence of the momentum-dependent Rabi oscillations. Moreover, the momentum asymmetry of the spin-orbit coupled Fermi gas is also examined after projection onto the bare spin state and the corresponding momentum distribution is measured for different two-photon detuning. The realization of SOC for Yb fermions may open a new avenue to the study of novel spin-orbit physics with alkaline-earth-like atoms.
Probing 2D Quantum Turbulence in Atomic Superfluid Gas using Bragg Scattering
Seo, Sang Won; Kim, Joon Hyun; Shin, Yong-il
2016-01-01
We demonstrate the use of spatially resolved Bragg spectroscopy for detection of the quantum vortex circulation signs in an atomic Bose-Einstein condensate (BEC). High-velocity atoms near the vortex cores are resonantly scattered from the BEC, and the vortex signs are determined from the scattered atom positions relative to the corresponding vortex cores. Using this method, we investigate decaying 2D quantum turbulence in a highly oblate BEC at temperatures of $\\sim 0.5 T_c$, where $T_c$ is the critical temperature of the trapped sample. Clustering of like-sign vortices is not observed; rather, the measured vortex configurations reveal weak pair correlations between the vortices and antivortices in the turbulent BEC. Our Bragg scattering method enables a direct experimental study of 2D quantum turbulence in BECs.
Collective electronic pulsation of compressed atoms in Thomas-Fermi model
Ludwig, Hendrik; Xue, She-Sheng
2014-01-01
Based on the Thomas-Fermi solution for compressed atoms, we study electric pulsations of electron number-density, pressure and electric fields, which can be caused by an external perturbations acting on the atom. We numerically obtain the eigen-frequencies and eigen-functions for stationary pulsation modes that fulfill the boundary-value problem established by electron-number and energy-momentum conservation, equation of state, laws of thermodynamics, and Maxwell's equations, as well as physical boundary conditions. The lowest-lying eigen-frequency is about a few $\\rm{keV}$ depending on the atomic number $Z$ and the radius of the compressed atoms. In addition, assuming all electrons compressed to the nuclear core, which can be of either microscopic or macroscopic dimension, we obtain an analytical solution. For large Z the lowest-lying eigen-frequency of this solution $\\omega_1\\approx2\\alpha^{1/2} \\langle {\\bar n}_e\\rangle^{1/3}\\approx 2.1\\, {\\rm MeV}$, when the average electron-density $\\langle {\\bar n}_e\\ra...
Evidence for ferromagnetic instability in a repulsive Fermi gas of ultracold atoms
Valtolina, G; Amico, A; Burchianti, A; Recati, A; Enss, T; Inguscio, M; Zaccanti, M; Roati, G
2016-01-01
Ferromagnetism is among the most spectacular manifestations of interactions within many-body fermion systems. In contrast to weak-coupling phenomena, it requires strong repulsion to develop, making a quantitative description of ferromagnetic materials notoriously difficult. This is especially true for itinerant ferromagnets, where magnetic moments are not localized into a crystal lattice. In particular, it is still debated whether the simplest case envisioned by Stoner of a homogeneous Fermi gas with short-range repulsive interactions can exhibit ferromagnetism at all. In this work, we positively answer this question by studying a clean model system consisting of a binary spin-mixture of ultracold 6Li atoms, whose repulsive interaction is tuned via a Feshbach resonance. We drastically limit detrimental pairing effects that affected previous studies by preparing the gas in a magnetic domain-wall configuration. We reveal the ferromagnetic instability by observing the softening of the spin-dipole collective mode...
Ionization of Atoms and the Thomas－Fermi Model for the Electric Field in Crystal Planar Channels
Institute of Scientific and Technical Information of China (English)
LIUYing－Tai; ZHANGQi－Ren; 等
2002-01-01
The electric field in the crystal planar channels is studied by the Thomas-Fermi method.The ThomasFermi equation and the corresponding boundary conditions are derived for the crystal palanar channels,The numerical solution for the elctric field in the channels between(110) Planes of the single crystal silicaon and the critical angles of channelling protons in them are shown.Reasonable agreements with the experimental data are obtained.The results show that the Thomas-Fermi method for the crystal works well in this study,and a microscopic research of the channel electric field with the contribution of all atoms and the atomic ionization being taken into account is practical.
Loss-induced phase separation and pairing for three-species atomic lattice fermions
Energy Technology Data Exchange (ETDEWEB)
Privitera, A. [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt am Main (Germany); Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma (Italy); Democritos National Simulation Center, Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali (CNR-IOM) and International School for Advanced Studies (SISSA), I-34136 Trieste (Italy); Titvinidze, I.; Hofstetter, W. [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt am Main (Germany); Chang, S.-Y. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, and Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria); Department of Physics, Ohio State University, Columbus, OH 43210 (United States); Diehl, S.; Daley, A. J. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, and Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)
2011-08-15
We study the physics of a three-component Fermi gas in an optical lattice, in the presence of a three-body constraint arising due to strong three-body loss. Using analytical and numerical techniques, we show that an atomic color superfluid phase is formed in this system and undergoes phase separation between unpaired fermions and superfluid pairs. This phase separation survives well above the critical temperature, giving a clear experimental signature of the three-body constraint.
Page, Dany; Prakash, Madappa; Seiner, Andrew W
2013-01-01
Neutron stars provide a fertile environment for exploring superfluidity under extreme conditions. It is not surprising that Cooper pairing occurs in dense matter since nucleon pairing is observed in nuclei as energy differences between even-even and odd-even nuclei. Since superfluids and superconductors in neutron stars profoundly affect neutrino emissivities and specific heats, their presence can be observed in the thermal evolution of neutron stars. An ever-growing number of cooling neutron stars, now amounting to 13 thermal sources, and several additional objects from which upper limits to temperatures can be ascertained, can now be used to discriminate among theoretical scenarios and even to dramatically restrict properties of nucleon pairing at high densities. In addition, observations of pulsars, including their spin-downs and glitch histories, additionally support the conjecture that superfluidity and superconductivity are ubiquitous within, and important to our understanding of, neutron stars.
Fermi and Coulomb correlation effects upon the interacting quantum atoms energy partition
Ruiz, Isela; Holguín-Gallego, Fernando José; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás
2016-01-01
The Interacting Quantum Atoms (IQA) electronic energy partition is an important method in the field of quantum chemical topology which has given important insights of different systems and processes in physical chemistry. There have been several attempts to include Electron Correlation (EC) in the IQA approach, for example, through DFT and Hartree-Fock/Coupled-Cluster (HF/CC) transition densities. This work addresses the separation of EC in Fermi and Coulomb correlation and its effect upon the IQA analysis by taking into account spin-dependent one- and two-electron matrices $D^{\\mathrm{HF/CC}}_{p\\sigma q \\sigma}$ and $d^{\\mathrm{HF/CC}}_{p\\sigma q\\sigma r\\tau s\\tau}$ wherein $\\sigma$ and $\\tau$ represent either of the $\\alpha$ and $\\beta$ spin projections. We illustrate this approach by considering BeH$_2$,BH, CN$^-$, HF, LiF, NO$^+$, LiH, H$_2$O$\\cdots$H$_2$O and C$_2$H$_2$, which comprise non-polar covalent, polar covalent, ionic and hydrogen bonded systems. The same and different spin contributions to ($i$...
Second sound in Fermi gases at the BCS-BEC crossover
Heiselberg, H.
2004-01-01
The thermodynamic potential is calculated for a uniform superfluid gas of fermi atoms from the mean field BCS equations including corrections from induced interactions, Hartree-Fock energies and quasiparticle selfenergies. The entropy, specific heat and sound modes are calculated as function of temperature, density and interaction strength from the BCS to the unitarity limit and around the BCS-BEC crossover. The second sound speed is of particular interest as it is a clear signal of a superfl...
Structure of a quantized vortex near the BCS-BEC crossover in an atomic Fermi gas
International Nuclear Information System (INIS)
In order to clarify the structure of a singly quantized vortex in a superfluid fermion gas near the Feshbach resonance, we numerically solve the generalized Bogoliubov-de Gennes equation in the boson-fermion model. The superfluid gap, which contains contributions from both condensed fermion pairs and condensed bosons, is self-consistently determined, and the quasiparticle excitation levels bound in the vortex core are explicitly shown. We find that the boson condensate contributes to enhance the matter density depletion and the discreteness of localized quasiparticle spectrum inside the core. It is predicted that the matter density depletion and the discrete core levels are detectable in the vicinity of the BCS-Bose-Einstein condensation crossover point
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
International Nuclear Information System (INIS)
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
Energy Technology Data Exchange (ETDEWEB)
Albus, A P [Institut fuer Physik, Universitaet Potsdam, D-14469 Potsdam (Germany); Giorgini, S [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy); Illuminati, F [Dipartimento di Fisica, Universita di Salerno, and Istituto Nazionale per la Fisica della Materia, I-84081 Baronissi (Italy); Viverit, L [Dipartimento di Fisica, Universita di Trento, and Istituto Nazionale per la Fisica della Materia, I-38050 Povo (Italy)
2002-12-14
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential, to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trapped Bose-Fermi mixtures is discussed. (letter to the editor)
Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population
Darsheshdar, E.; Yavari, H.; Zangeneh, Z.
2016-07-01
By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.
Quantum turbulence in superfluids with wall-clamped normal component.
Eltsov, Vladimir; Hänninen, Risto; Krusius, Matti
2014-03-25
In Fermi superfluids, such as superfluid (3)He, the viscous normal component can be considered to be stationary with respect to the container. The normal component interacts with the superfluid component via mutual friction, which damps the motion of quantized vortex lines and eventually couples the superfluid component to the container. With decreasing temperature and mutual friction, the internal dynamics of the superfluid component becomes more important compared with the damping and coupling effects from the normal component. As a result profound changes in superfluid dynamics are observed: the temperature-dependent transition from laminar to turbulent vortex motion and the decoupling from the reference frame of the container at even lower temperatures. PMID:24704879
A Realistic Model for Observing Spin-Balanced Fulde-Ferrell Superfluid in Honeycomb Lattices
Institute of Scientific and Technical Information of China (English)
Bei-Bing Huang
2016-01-01
The combination of spin-orbit coupling (SOC) and in-plane Zeeman field breaks time-reversal and inversion symmetries of Fermi gases and becomes a popular way to produce single plane wave Fulde-Ferrell (FF) superfluid.However,atom loss and heating related to SOC have impeded the successful observation of FF state until now.In this work,we propose the realization of spin-balanced FF superfiuid in a honeycomb lattice without SOC and the Zeeman field.A key ingredient of our scheme is generating complex hopping terms in original honeycomb lattices by periodical driving.In our model the ground state is always the FF state,thus the experimental observation has no need of fine tuning.The other advantages of our scheme are its simplicity and feasibility,and thus may open a new route for observing FF superfluids.
Critical temperature of Bose-Einstein condensation in trapped atomic Bose-Fermi mixtures
Albus, Alexander P.; Giorgini, Stefano; Illuminati, Fabrizio; Viverit, Luciano
2002-01-01
We calculate the shift in the critical temperature of Bose-Einstein condensation for a dilute Bose-Fermi mixture confined by a harmonic potential to lowest order in both the Bose-Bose and Bose-Fermi coupling constants. The relative importance of the effect on the critical temperature of the boson-boson and boson-fermion interactions is investigated as a function of the parameters of the mixture. The possible relevance of the shift of the transition temperature in current experiments on trappe...
Dynamics of quantised vortices in superfluids
Sonin, Edouard B
2016-01-01
A comprehensive overview of the basic principles of vortex dynamics in superfluids, this book addresses the problems of vortex dynamics in all three superfluids available in laboratories (4He, 3He, and BEC of cold atoms) alongside discussions of the elasticity of vortices, forces on vortices, and vortex mass. Beginning with a summary of classical hydrodynamics, the book guides the reader through examinations of vortex dynamics from large scales to the microscopic scale. Topics such as vortex arrays in rotating superfluids, bound states in vortex cores and interaction of vortices with quasiparticles are discussed. The final chapter of the book considers implications of vortex dynamics to superfluid turbulence using simple scaling and symmetry arguments. Written from a unified point of view that avoids complicated mathematical approaches, this text is ideal for students and researchers working with vortex dynamics in superfluids, superconductors, magnetically ordered materials, neutron stars and cosmological mo...
Quantum-Shell Corrections to the Finite-Temperature Thomas-Fermi-Dirac Statistical Model of the Atom
Energy Technology Data Exchange (ETDEWEB)
Ritchie, A B
2003-07-22
Quantum-shell corrections are made directly to the finite-temperature Thomas-Fermi-Dirac statistical model of the atom by a partition of the electronic density into bound and free components. The bound component is calculated using analytic basis functions whose parameters are chosen to minimize the energy. Poisson's equation is solved for the modified density, thereby avoiding the need to solve Schroedinger's equation for a self-consistent field. The shock Hugoniot is calculated for aluminum: shell effects characteristic of quantum self-consistent field models are fully captures by the present model.
Andreev-Majorana bound states in superfluids
Energy Technology Data Exchange (ETDEWEB)
Silaev, M. A., E-mail: msilaev@ipm.sci-nnov.ru; Volovik, G. E., E-mail: volovik@boojum.hut.fi [Aalto University, Low Temperature Laboratory (Finland)
2014-12-15
We consider Andreev-Majorana (AM) bound states with zero energy on surfaces, interfaces, and vortices in different phases of the p-wave superfluids. We discuss the chiral superfluid {sup 3}He-A and time reversal invariant phases: superfluid {sup 3}He-B, planar and polar phases. The AM zero modes are determined by topology in the bulk and disappear at the quantum phase transition from the topological to nontopological state of the superfluid. The topology demonstrates the interplay of dimensions. In particular, the zero-dimensional Weyl points in chiral superfluids (the Berry phase monopoles in momentum space) give rise to the one-dimensional Fermi arc of AM bound states on the surface and to the one-dimensional flat band of AM modes in the vortex core. The one-dimensional nodal line in the polar phase produces a two-dimensional flat band of AM modes on the surface. The interplay of dimensions also connects the AM states in superfluids with different dimensions. For example, the topological properties of the spectrum of bound states in three-dimensional {sup 3}He-B are connected to the properties of the spectrum in the two-dimensional planar phase (thin film)
On the role of the uncertainty principle in superconductivity and superfluidity
Institute of Scientific and Technical Information of China (English)
Roberto Onofrio
2012-01-01
We discuss the general interplay between the uncertainty principle and the onset of dissipationless transport phenomena such as superconductivity and superfluidity.We argue that these phenomena are possible because of the robustness of many-body quantum states with respect to the external environment,which is directly related to the uncertainty principle as applied to coordinates and momenta of the carriers.In the case of superconductors,this implies relationships between macroscopic quantities such as critical temperature and critical magnetic field,and microscopic quantities such as the amount of spatial squeezing of a Cooper pair and its correlation time.In the case of ultracold atomic Fermi gases,this should be paralleled by a connection between the critical temperature for the onset of superfluidity and the corresponding critical velocity.Tests of this conjecture are finally sketched with particular regard to the understanding of the behaviour of superconductors under external pressures or mesoscopic superconductors,and the possibility to mimic these effects in ultracold atomic Fermi gases using Feshbach resonances and atomic squeezed states.
Strongly interacting Fermi gases
Directory of Open Access Journals (Sweden)
Bakr W.
2013-08-01
Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.
Pair Correlations in Superfluid Helium 3
Vollhardt, D.
1997-01-01
In 1996 Lee, Osheroff and Richardson received the Nobel Prize for their 1971 discovery of superfluid helium 3 -- a discovery which opened the door to the most fascinating system known in condensed matter physics. The superfluid phases of helium 3, originating from pair condensation of helium 3 atoms, turned out to be the ideal test-system for many fundamental concepts of modern physics, such as macroscopic quantum phenomena, (gauge-)symmetries and their spontaneous breakdown, topological defe...
Lin, Chi-Yong; Rivers, Ray J
2013-01-01
In a series of papers to demonstrate emergent 'gravity' some authors have explored phonon production in BECs with a tunable speed of sound, in particular to emulate FRW universes. The premiss is that, within such systems, the gapless mode (the phonon) looks Lorentzian for low momentum at least. However, when it comes to phonon production in cold Fermi gases whose speed of sound is controlled by a Feshbach resonance, it is impossible to shake off the the underlying Galilean invariance because of the interplay between gapless and gapped modes. Such phonons as are produced do not follow the pattern anticipated for FRW metrics, at variance with the aims of the programme.
Fermion Superfluidity And Confining Interactions
Galal, A A
2004-01-01
We study the pairing of Fermi systems with long-range, confining interparticle interactions. We solve the Cooper problem for a pair of fermions interacting via a regularized harmonic oscillator potential and determine the s-wave spectrum of bound states. Using a model of two interacting species of fermions, we calculate the ground state energy of the normal phase in the Hartree-Fock approximation and find that it is infrared (IR) divergent, due to a combination of the sharpness of the Fermi sea and the long-range nature of the interaction. We calculate the correlation energy in the normal phase using the random phase approximation (RPA) and demonstrate the cancellation of infrared divergences between the Hartree-Fock and RPA contributions. Introducing a variational wavefunction to study the superfluid phase, we solve the BCS equations using a Hartree-Fock-Bogoliubov (HFB) analysis to determine the wave-function, excitation gap, and other parameters of the superfluid phase. We show that the system crosses over...
Mixtures of Bosonic and Fermionic Atoms in Optical Lattices
Albus, Alexander; Illuminati, Fabrizio; Eisert, Jens
2003-01-01
We discuss the theory of mixtures of Bosonic and Fermionic atoms in periodic potentials at zero temperature. We derive a general Bose--Fermi Hubbard Hamiltonian in a one--dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean field criterion for the onset of a Bosonic superfluid transition. We investigate the ground state properties of the mixture in the Gutzwiller formulation of mean field the...
Faraday waves in elongated superfluid fermionic clouds
Capuzzi, P.; Vignolo, P.
2008-01-01
We use hydrodynamic equations to study the formation of Faraday waves in a superfluid Fermi gas at zero temperature confined in a strongly elongated cigar-shaped trap. First, we treat the role of the radial density profile in the limit of an infinite cylindrical geometry and analytically evaluate the wavelength of the Faraday pattern. The effect of the axial confinement is fully taken into account in the numerical solution of hydrodynamic equations and shows that the infinite cylinder geometr...
International Nuclear Information System (INIS)
Supplement No. 4 to the Safety Evaluation Report related to the operation of the Enrico Fermi Atomic Power Plant, Unit 2, provides the staff's evaluation of additional information submitted by the applicant regarding outstanding review issues identified in Supplement No. 3 to the Safety Evaluation Report, dated January 1983
International Nuclear Information System (INIS)
Supplement No. 3 to the Safety Evaluation Report related to the operation of the Enrico Fermi Atomic Power Plant, Unit 2, provides the staff's evaluation of additional information submitted by the applicant regarding outstanding review issues identified in Supplement No. 2 to the Safety Evaluation Report, dated January 1982
Hysteresis in a quantized superfluid 'atomtronic' circuit.
Eckel, Stephen; Lee, Jeffrey G; Jendrzejewski, Fred; Murray, Noel; Clark, Charles W; Lobb, Christopher J; Phillips, William D; Edwards, Mark; Campbell, Gretchen K
2014-02-13
Atomtronics is an emerging interdisciplinary field that seeks to develop new functional methods by creating devices and circuits where ultracold atoms, often superfluids, have a role analogous to that of electrons in electronics. Hysteresis is widely used in electronic circuits-it is routinely observed in superconducting circuits and is essential in radio-frequency superconducting quantum interference devices. Furthermore, it is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity and Josephson effects. Nevertheless, despite multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate. Here we directly detect hysteresis between quantized circulation states in an atomtronic circuit formed from a ring of superfluid Bose-Einstein condensate obstructed by a rotating weak link (a region of low atomic density). This contrasts with previous experiments on superfluid liquid helium where hysteresis was observed directly in systems in which the quantization of flow could not be observed, and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices, and indicate that dissipation has an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits such as memories, digital noise filters (for example Schmitt triggers) and magnetometers (for example superconducting quantum interference devices).
Chiral Magnetic "Superfluidity"
Sadofyev, Andrey V
2015-01-01
We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will {\\it not} contribute to the drag experienced by an impurity. We argue on very general basis that those systems with a strong magnetic field would exhibit the behavior of 'superfluidity" -- the motion of the heavy impurity is frictionless, in analog to the case of a superfluid. However, this "superfluidity" exists even for chiral media at finite temperature and only in the directional longitudinal with the magnetic field, in contrast to the ordinary superfluid. We will call this novel phenomenon as the Chiral Magnetic "Superfluidity". We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion ...
Cluster sources for the low density matter beamline at the FERMI free electron laser
Energy Technology Data Exchange (ETDEWEB)
Katzy, Raphael; Lyamayev, Viktor; Mudrich, Marcel; Stienkemeier, Frank [Universitaet Freiburg, Physikalisches Institut, D-79104 Freiburg im Breisgau (Germany)
2012-07-01
Applying high gain harmonic generation process (HGHG) the new FERMI free electron laser in Trieste provides intense XUV pulses of high brilliance with tunable wavelength and excellent confinement in time. The LDM endstation has been designed to combine the FERMI XUV radiation with molecular beam experiments. In several exchangeable beam sources, atomic, molecular and cluster beams are generated and can be doped by the pick-up technique in oven cells or in a laser ablation unit. Detailed information about the interaction with the FEL light is gathered by combined VMI, TOF and X-ray imaging detectors. Design and characterization of two sources are presented: A versatile high temperature high pressure pulsed source is utilized for generation of atomic, molecular and cluster beams of various materials in a gas expansion or applying the seeded beams technique. A pulsed cryogenic source gives the opportunity to use helium droplets with their unique cold, superfluid properties.
George E. Valley, Jr. Prize Talk: Exact relations for Fermi gases with large scattering length
Tan, Shina
2011-05-01
Ultracold two-component atomic Fermi gases near broad Feshbach resonances have both strong interactions and relatively long life times, and the strong attractions between fermions lead to remarkable properties such as superfluidity at large percentages of the Fermi temperature. The interactions can often be described by a single parameter, the two-body s-wave scattering length, which determines how the many-body wave function behaves as two atoms get much closer than the average interparticle spacing. This short-range structure of the wave function leads to a number of exact relations among energy, momentum distribution, pressure, and various high-frequency and short-wave properties. All the relations involve a quantity called contact. The exact relations point to a number of independent determinations of the contact, which have been beautifully demonstrated experimentally as well as numerically. This work was supported, in part, by DOE Grant No. DE-FG02-00ER41132.
Phase Diagram of a Strongly Interacting Spin-Imbalanced Fermi Gas
Olsen, Ben A; Fry, Jacob A; Sheehy, Daniel E; Hulet, Randall G
2015-01-01
We obtain the phase diagram of spin-imbalanced interacting Fermi gases from measurements of density profiles of $^6$Li atoms in a harmonic trap. These results agree with, and extend, previous experimental measurements. Measurements of the critical polarization at which the balanced superfluid core vanishes generally agree with previous experimental results and with quantum Monte Carlo (QMC) calculations in the BCS and unitary regimes. We disagree with the QMC results in the BEC regime, however, where the measured critical polarizations are greater than theoretically predicted. We also measure the equation of state in the crossover regime for a gas with equal numbers of the two fermion spin states.
2010-10-18
.... Nuclear Regulatory Commission (NRC or the Commission) now or hereafter in effect. Fermi 1 was a fast breeder reactor power plant cooled by sodium and operated at essentially atmospheric pressure. In November... in Monroe County, Michigan. Fermi 1 is a permanently shutdown nuclear reactor facility. The...
Langlois, David
2001-01-01
Neutron stars are believed to contain (neutron and proton) superfluids. I will give a summary of a macroscopic description of the interior of neutron stars, in a formulation which is general relativistic. I will also present recent results on the oscillations of neutron stars, with superfluidity explicitly taken into account, which leads in particular to the existence of a new class of modes.
International Nuclear Information System (INIS)
The Fermi-Segre normalization expression is rederived for arbitrary orbital angular momentum l within the context of a generalized WKB method. Results from the approximation are compared with calculations employing Hartree-Slater atomic potentials
$^3P_2$ Superfluids Are Topological
Mizushima, Takeshi
2016-01-01
We clarify the topology of the $^3P_2$ superfluidity which is expected to be realized in the cores of neutron stars and cubic odd-parity superconductors. The phase diagram includes the unitary uniaxial/biaxial nematic phases and nonunitary ferromagnetic and cyclic phases. We here show that the low-energy structures of all the phases are governed by different types of topologically protected gapless fermionic excitations: Surface Majorana fermions in nematic phases, single itinerant Majorana fermion in the ferromagnetic phase, and a quartet of itinerant Majorana fermions in the cyclic phase. Using the superfluid Fermi liquid theory, we also demonstrate that dihedral-two and -four biaxial nematic phases are thermodynamically favored in the weak coupling limit under a magnetic field. The mass acquisition of surface Majorana fermions in nematic phases is subject to symmetry.
Energy Technology Data Exchange (ETDEWEB)
Erika Bailey
2011-07-07
The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963.
Neutrino emissivity of anisotropic neutron superfluids
Leinson, L. B.
2013-01-01
We examine the influence of the anisotropy of the superfluid energy gap and residual Fermi-liquid interactions in the triplet-correlated neutron liquid onto neutrino energy losses through neutral weak currents. The neutrino-pair emission caused by the pair breaking and formation processes and by the spin-wave decays is considered for the case of the $^{3}P_{2}$ pairing in the state with $m_{j}=0$. The simple analytical formulae are obtained. A comparison with the previous results of the avera...
Superfluid Brillouin Optomechanics
Kashkanova, A D; Brown, C D; Flowers-Jacobs, N E; Childress, L; Hoch, S W; Hohmann, L; Ott, K; Reichel, J; Harris, J G E
2016-01-01
Optomechanical systems couple an electromagnetic cavity to a mechanical resonator which is typically formed from a solid object. The range of phenomena accessible to these systems depends on the properties of the mechanical resonator and on the manner in which it couples to the cavity fields. In both respects, a mechanical resonator formed from superfluid liquid helium offers several appealing features: low electromagnetic absorption, high thermal conductivity, vanishing viscosity, well-understood mechanical loss, and in situ alignment with cryogenic cavities. In addition, it offers degrees of freedom that differ qualitatively from those of a solid. Here, we describe an optomechanical system consisting of a miniature optical cavity filled with superfluid helium. The cavity mirrors define optical and mechanical modes with near-perfect overlap, resulting in an optomechanical coupling rate ~3 kHz. This coupling is used to drive the superfluid; it is also used to observe the superfluid's thermal motion, resolving...
Flowing holographic anyonic superfluid
Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew
2014-01-01
We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7' probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier.
Anomalous Chiral Superfluidity
Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail
2009-01-01
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...
Khoury, Justin
2015-01-01
In this talk we present a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known cold at...
Khoury, Justin
2016-01-01
In this talk I summarize a novel framework that unifies the stunning success of MOND on galactic scales with the triumph of the $\\Lambda$CDM model on cosmological scales. This is achieved through the rich and well-studied physics of superfluidity. The dark matter and MOND components have a common origin, representing different phases of a single underlying substance. In galaxies, dark matter thermalizes and condenses to form a superfluid phase. The superfluid phonons couple to baryonic matter particles and mediate a MOND-like force. This framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures, which we briefly discuss. Remarkably the critical temperature and equation of state of the dark matter superfluid are similar to those of known co...
Byers, N
2002-01-01
This talk is about Enrico Fermi and Leo Szilard, their collaboration and involvement in nuclear energy development and decisions to construct and use the atomic bomb in World War II. Fermi and Szilard worked closely together at Columbia in 1939-40 to explore feasibility of a nuclear chain reaction, and then on the physics for construction of the first pile (nuclear reactor). "On matters scientific or technical there was rarely any disagreement between Fermi and myself" Szilard said. But there were sharp differences on other matters.
Mott states under the influence of fermion-boson conversion: invasion of superfluidity
Zhou, Fei
2005-01-01
I study the influence of fermion-boson conversion near Feshbach resonances on Mott states of Cooper pairs and demonstrate possible invasion of superfluidity. The quantum dynamics of Fermi-Bose gases is studied using both an effective coupled $U(1)\\otimes U(1)$ quantum rotor Hamiltonian and a coupled XXZ $\\otimes$ XXZ spin Hamiltonian. I also point out two distinct branches of collective modes in superfluid states, one of which involves anti-symmetric phase oscillations in fermionic and bosoni...
Cruz, Salvador A.
An assessment of the use of statistical atomic models for the study of many-electron atom confinement is presented. The Thomas-Fermi-Dirac-[lambda]-Weizsäcker TFD[lambda]W functional formalism based on known properties of the orbital electron density is shown to be an appropriate tool for the description of the ground-state energy evolution of many-electron atoms spatially limited by closed and open boundaries. A brief review of the strategy followed in the TFD[lambda]W method for the study of atoms enclosed in hard and soft spherical cavities is presented along with more refined quantitative calculations as compared with previous results. Also, detailed quantitative results are shown-for the first time-in the case of confinement by a hard prolate spheroidal box for nuclear positions located at one of the foci and for an atom located at a distance D from a hard plane. A discussion is presented on the physical consequences of different confinement geometries and the adequacy of the TFD[lambda]W formalism to explore many-electron atom confinement by open and closed boundaries.
Structured Weyl Points in Spin-Orbit Coupled Fermionic Superfluids.
Xu, Yong; Zhang, Fan; Zhang, Chuanwei
2015-12-31
We demonstrate that a Weyl point, widely examined in 3D Weyl semimetals and superfluids, can develop a pair of nondegenerate gapless spheres. Such a bouquet of two spheres is characterized by three distinct topological invariants of manifolds with full energy gaps, i.e., the Chern number of a 0D point inside one developed sphere, the winding number of a 1D loop around the original Weyl point, and the Chern number of a 2D surface enclosing the whole bouquet. We show that such structured Weyl points can be realized in the superfluid quasiparticle spectrum of a 3D degenerate Fermi gas subject to spin-orbit couplings and Zeeman fields, which supports Fulde-Ferrell superfluids as the ground state. PMID:26765002
Topological Vortices in Superfluid Films
Institute of Scientific and Technical Information of China (English)
WANGJun-Ping; DUANYi-Shi
2005-01-01
We study the topological structure of the vortex system in a superfluid film. Explicit expressions for the vortex density and velocity field as functions of the superfluid order parameter are derived. The evolution of vortices is also studied from the topological properties of the superfluid order parameter field.
Superfluid Helium 3: Link between Condensed Matter Physics and Particle Physics
Vollhardt, D.; Woelfle, P.
2000-01-01
The discovery of the superfluid phases of Helium 3 in 1971 opened the door to one of the most fascinating systems known in condensed matter physics. Superfluidity of Helium 3, originating from pair condensation of Helium 3 atoms, turned out to be the ideal testground for many fundamental concepts of modern physics, such as macroscopic quantum phenomena, (gauge-)symmetries and their spontaneous breakdown, topological defects, etc. Thereby the superfluid phases of Helium 3 enriched condensed ma...
Kalaydzhyan, Tigran
2014-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.
Directory of Open Access Journals (Sweden)
Tőkési K.
2014-01-01
Full Text Available The ionization of Ar by 15 keV N+ ion is studied theoretically. The energy distributions of the ejected electrons as a function of the scattering angle were calculated using the classical trajectory Monte Carlo method. We identify the signature of the Fermi-shuttle type ionization in the double differential cross sections which should be a possible source of the high energy electrons in the plasma. Our classical calculation also describes the previously measured data with high accuracy.
Anomalous chiral superfluidity
Energy Technology Data Exchange (ETDEWEB)
Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)
2010-02-08
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.
Frustration and time-reversal symmetry breaking for Fermi and Bose-Fermi systems
Sacha, Krzysztof; Targońska, Katarzyna; Zakrzewski, Jakub
2012-05-01
The modulation of an optical lattice potential that breaks time-reversal symmetry enables the realization of complex tunneling amplitudes in the corresponding tight-binding model. For a superfluid Fermi gas in a triangular lattice potential with complex tunnelings, the pairing function acquires a complex phase, so the frustrated magnetism of fermions can be realized. Bose-Fermi mixtures of bosonic molecules and unbound fermions in the lattice also show interesting behavior. Due to boson-fermion coupling, the fermions become enslaved by the bosons and the corresponding pairing function takes the complex phase determined by the bosons. In the presence of bosons the Fermi system can reveal both gapped and gapless superfluidity.
Geometry-induced phase transition from a bosonic superfluid to a Mott insulator
Barter, Thomas; Thomas, Claire; Leung, Tsz Him; Okano, Masayuki; Stamper-Kurn, Dan
2016-05-01
We describe a preliminary characterization of the superfluid and Mott insulating phases of ultracold Rb 87 bosonic atoms in a two-dimensional optical superlattice with tunable lattice geometry. By smoothly changing the lattice structure from the triangular to kagome geometries while maintaining near-constant tunneling and interaction energies, we observe a geometry-induced phase transition from the superfluid to the Mott-insulating state. We characterize the superfluid by measurements of the coherent population fraction in time of flight, and find that the superfluid is less robust in the kagome geometry than in the triangular lattice, owing to the lower its lower coordination number.
Chang, Soon Yong
2008-04-01
In the recent years, dilute Fermi gases have played the center stage role in the many-body physics. The gas of neutral alkali atoms such as Lithium-6 and Potassium-40 can be trapped at temperatures below the Fermi degeneracy. The most relevant feature of these gases is that the interaction is tunable and strongly interacting superfluid can be artificially created. I will discuss the recent progress in understanding the ground state properties of the dilute Fermi gases at different interaction regimes. First, I will present the case of the spin symmetric systems where the Fermi gas can smoothly crossover from the BCS regime to the BEC regime. Then, I will discuss the case of the spin polarized systems, where different quantum phases can occur as a function of the polarization. In the laboratory, the trapped Fermi gas shows spatial dependence of the different quantum phases. This can be understood in the context of the local variation of the chemical potential. I will present the most accurate quantum ab initio results and the relevant experiments.
Brackett, Jeremy; Newman, Joseph; De Silva, Theja N.
2016-10-01
We study an effective fermion model on a square lattice to investigate the cooperation and competition of superconductivity and anti-ferromagnetism. In addition to particle tunneling and on-site interaction, a bosonic excitation mediated attractive interaction is also included in the model. We assume that the attractive interaction is mediated by spin fluctuations and excitations of Bose-Einstein condensation (BEC) in electronic systems and Bose-Fermi mixtures on optical lattices, respectively. Using an effective mean-field theory to treat both superconductivity and anti-ferromagnetism at equal footing, we study a single effective model relevant for both systems within the Landau energy functional approach and a linearized theory. Within our approaches, we find possible co-existence of superconductivity and anti-ferromagnetism for both electronic and cold-atomic models. Our linearized theory shows while spin fluctuations favor d-wave superconductivity and BEC excitations favor s-wave superconductivity.
Shell Models of Superfluid Turbulence
Wacks, Daniel H.; Barenghi, Carlo F.
2011-12-01
Superfluid helium consists of two inter-penetrating fluids, a viscous normal fluid and an inviscid superfluid, coupled by a mutual friction. We develop a two-fluid shell model to study superfluid turbulence and investigate the energy spectra and the balance of fluxes between the two fluids in a steady state. At sufficiently low temperatures a 'bottle-neck' develops at high wavenumbers suggesting the need for a further dissipative effect, such as the Kelvin wave cascade.
Cavitation in flowing superfluid helium
Daney, D. E.
1988-01-01
Flowing superfluid helium cavitates much more readily than normal liquid helium, and there is a marked difference in the cavitation behavior of the two fluids as the lambda point is traversed. Examples of cavitation in a turbine meter and centrifugal pump are given, together with measurements of the cavitation strength of flowing superfluid helium. The unusual cavitation behavior of superfluid helium is attributed to its immense thermal conductivity .
Sound modes in holographic superfluids
Herzog, Christopher P.; Yarom, Amos
2009-01-01
Superfluids support many different types of sound waves. We investigate the relation between the sound waves in a relativistic and a non-relativistic superfluid by using hydrodynamics to calculate the various sound speeds. Then, using a particular holographic scalar gravity realization of a strongly interacting superfluid, we compute first, second and fourth sound speeds as a function of the temperature. The relativistic low temperature results for second sound differ from Landau's well known...
Superfluid thermodynamic cycle refrigerator
Swift, Gregory W.; Kotsubo, Vincent Y.
1992-01-01
A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.
Thin film superfluid optomechanics
Baker, Christopher G; McAuslan, David L; Sachkou, Yauhen; He, Xin; Bowen, Warwick P
2016-01-01
Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid $^4$He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates $g_0>2\\pi \\times 100$ kHz and single photon cooperativities $C_0>10$ are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as $g_0>\\Omega_M$ and opens the prospect of laser cooling a liquid into its quantum ground state.
Low-lying excitations in a strongly interacting Fermi gas
Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus
2016-05-01
We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.
Thermodynamics of ultracold Fermi gases
International Nuclear Information System (INIS)
Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally studied using ultracold gases. This thesis describes a new method for determining the equation of state of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the measurement of the local pressure inside a trapped gas from the analysis of its in situ image. We first apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting 7Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary gas accounts for the equation of state deduced from our study over its full range. The virial expansion extracted from the high-temperature data agrees with the resolution of the three-body problem. At low temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi liquid. Finally we obtain the critical temperature for superfluidity from a clear signature on the equation of state. We also measure the pressure of the ground state as a function of spin imbalance and interaction strength - measure directly relevant to describe the crust of neutron stars. Our data validate Monte-Carlo simulations and quantify the Lee-Huang-Yang corrections to mean-field interactions in low-density fermionic or bosonic superfluids. We show that, in most cases, the partially polarized normal phase can be described as a Fermi liquid of polarons. The polaron effective mass extracted from the equation of state is in agreement with a study of collective modes. (author)
Topological Superconductivity and Superfluidity
Qi, Xiao-Liang; Hughes, Taylor L.; Raghu, Srinivas; Zhang, Shou-Cheng
2008-01-01
We construct time reversal invariant topological superconductors and superfluids in two and three dimensions which are analogous to the recently discovered quantum spin Hall and three-d $Z_2$ topological insulators respectively. These states have a full pairing gap in the bulk, gapless counter-propagating Majorana states at the boundary, and a pair of Majorana zero modes associated with each vortex. We show that the time reversal symmetry naturally emerges as a supersymmetry, which changes th...
Holographic anyonic superfluidity
Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew
2013-01-01
Starting with a holographic construction for a fractional quantum Hall state based on the D3-D7' system, we explore alternative quantization conditions for the bulk gauge fields. This gives a description of a quantum Hall state with various filling fractions. For a particular alternative quantization of the bulk gauge fields, we obtain a holographic anyon fluid in a vanishing background magnetic field. We show that this system is a superfluid, exhibiting the relevant gapless excitation.
Cooling with Superfluid Helium
Lebrun, P
2014-01-01
The technical properties of helium II (‘superfluid’ helium) are presented in view of its applications to the cooling of superconducting devices, particularly in particle accelerators. Cooling schemes are discussed in terms of heat transfer performance and limitations. Large-capacity refrigeration techniques below 2 K are reviewed, with regard to thermodynamic cycles as well as process machinery. Examples drawn from existing or planned projects illustrate the presentation. Keywords: superfluid helium, cryogenics
Molecular superfluidity in helium clusters studied using impulsive alignment
Energy Technology Data Exchange (ETDEWEB)
Galinis, Gediminas; Mendoza Luna, Luis Guillermo; Watkins, Mark; Von Haeften, Klaus [Department of Physics and Astronomy, University of Leicester (United Kingdom); Kazak, Lev; Goede, Sebastian; Skruszewicz, Slawomir; Irsig, Robert; Tiggesbaeumker, Josef; Meiwes-Broer, Karl-Heinz [Institut fuer Physik, Universitaet Rostock (Germany); Minns, Russell [Department of Chemistry, University of Southampton (United Kingdom); Ellis, Andrew [Department of Chemistry, University of Leicester (United Kingdom); Turcu, Edmon; Cacho, Cephise; Springate, Emma [CLF, STFC, Rutherford Appleton Laboratories (United Kingdom)
2013-07-01
Superfluidity is an intriguing phenomenon commonly associated with frictionless flow. Although this macroscopic effect is well understood, our understanding of how superfluidity evolves on the nanoscale is less extensive.We apply new approach to study superfluidity as a function of the number of helium atoms involved. A femtosecond pump-probe laser setup is used to excite a rotational wavepacket and to follow its propagation in time. The periodically recurring molecular alignment is probed by analyzing the emission characteristics in delayed Coulomb explosion with a velocity map imaging (VMI) spectrometer. First results show CO attached to five helium atoms and rotational features of HCCH-He corresponding to a linear configuration. To maximize the molecular beam intensity and to cope with the associated high gas load we developed a unique, differentially pumped VMI spectrometer.
Peng, Q. H.; Luo, Z. Q.
2005-01-01
Starting from a neutron star heating mechanism by the magnetic dipole radiation from the 3^P_2 neutron superfluid vortices in neutron stars, we propose a neutron phase oscillation model which describes the phase transition between the normal neutron Fermi fluid and the 3^P_2 neutron superfluid vortices at the transition temperature of T_{trans}=(5-6)\\times 10^8 K. With this model, we can give qualitative explanation to most of the pulsar glitches observed up to date.
Institute of Scientific and Technical Information of China (English)
Qiu-He Peng; Zhi-Quan Luo; Chih-Kang Chou
2006-01-01
Considering neutron star heating by magnetic dipole radiation from 3pF2 superfluid neutron vortices inside the star, we propose a neutron phase oscillation model between the normal neutron Fermi fluid and the 3pF2 superfluid neutron vortices at the transition temperature of Ttrans=(2-3)×108 K. With this model we can qualitatively explain most of the observations on pulsar glitches up to date.
Luttinger's theorem, superfluid vortices, and holography
Iqbal, Nabil
2011-01-01
Strongly coupled field theories with gravity duals can be placed at finite density in two ways: electric field flux emanating from behind a horizon, or bulk charged fields outside of the horizon that explicitly source the density. We discuss field-theoretical observables that are sensitive to this distinction. If the charged fields are fermionic, we discuss a modified Luttinger's theorem that holds for holographic systems, in which the sum of boundary theory Fermi surfaces counts only the charge outside of the horizon. If the charged fields are bosonic, we show that the the resulting superfluid phase may be characterized by the coefficient of the transverse Magnus force on a moving superfluid vortex, which again is sensitive only to the charge outside of the horizon. For holographic systems these observables provide a field-theoretical way to distinguish how much charge is held by a dual horizon, but they may be useful in more general contexts as measures of deconfined (i.e. "fractionalized") charge degrees o...
Symmetry-Protected Topological Superfluids and Superconductors —From the Basics to 3He—
Mizushima, Takeshi; Tsutsumi, Yasumasa; Kawakami, Takuto; Sato, Masatoshi; Ichioka, Masanori; Machida, Kazushige
2016-02-01
In this article, we give a comprehensive review of recent progress in research on symmetry-protected topological superfluids and topological crystalline superconductors, and their physical consequences such as helical and chiral Majorana fermions. We start this review article with the minimal model that captures the essence of such topological materials. The central part of this article is devoted to the superfluid 3He, which serves as a rich repository of novel topological quantum phenomena originating from the intertwining of symmetries and topologies. In particular, it is emphasized that the quantum fluid confined to nanofabricated geometries possesses multiple superfluid phases composed of the symmetry-protected topological superfluid B-phase, the A-phase as a Weyl superfluid, the nodal planar and polar phases, and the crystalline ordered stripe phase. All these phases generate noteworthy topological phenomena, including topological phase transitions concomitant with spontaneous symmetry breaking, Majorana fermions, Weyl superfluidity, emergent supersymmetry, spontaneous edge mass and spin currents, topological Fermi arcs, and exotic quasiparticles bound to topological defects. In relation to the mass current carried by gapless edge states, we also briefly review a longstanding issue on the intrinsic angular momentum paradox in 3He-A. Moreover, we share the current status of our knowledge on the topological aspects of unconventional superconductors, such as the heavy-fermion superconductor UPt3 and superconducting doped topological insulators, in connection with the superfluid 3He.
Metastability in spin polarised Fermi gases and quasiparticle decays
DEFF Research Database (Denmark)
Sadeghzadeh, Kayvan; Bruun, Georg; Lobo, Carlos;
2011-01-01
We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each pr...
Superfluidity within a small helium-4 cluster: the microscopic andronikashvili experiment
Grebenev; Toennies; Vilesov
1998-03-27
The infrared spectrum of single oxygen carbon sulfide (OCS) molecules was measured inside large superfluid pure helium-4 droplets and nonsuperfluid pure helium-3 droplets, both consisting of about 10(4) atoms. In the helium-4 droplets, sharp rotational lines were observed, whereas in helium-3 only a broad peak was found. This difference is interpreted as evidence that the narrow rotational lines, which imply free rotations, are a microscopic manifestation of superfluidity. Upon addition of 60 helium-4 atoms to the pure helium-3 droplets, the same sharp rotational lines were found; it appears that 60 is the minimum number needed for superfluidity. PMID:9516103
Hennigar, Robie A; Tjoa, Erickson
2016-01-01
We present what we believe is the first example of a "$\\lambda$-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid $^4$He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically AdS hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
Vortex gyroscope imaging of planar superfluids.
Powis, A T; Sammut, S J; Simula, T P
2014-10-17
We propose a robust imaging technique that makes it possible to distinguish vortices from antivortices in quasi-two-dimensional Bose-Einstein condensates from a single image of the density of the atoms. Tilting the planar condensate prior to standard absorption imaging excites a generalized gyroscopic mode of the condensate, revealing the sign and location of each vortex. This technique is anticipated to enable experimental measurement of the incompressible kinetic energy spectrum of the condensate and the observation of a negative-temperature phase transition of the vortex gas, driven by two-dimensional superfluid turbulence.
Anomalous superfluid density in quantum critical superconductors
Hashimoto, Kenichiro; Mizukami, Yuta; Katsumata, Ryo; Shishido, Hiroaki; Yamashita, Minoru; Ikeda, Hiroaki; Matsuda, Yuji; Schlueter, John A.; Fletcher, Jonathan D.; Carrington, Antony; Gnida, Daniel; Kaczorowski, Dariusz; Shibauchi, Takasada
2013-01-01
When a second-order magnetic phase transition is tuned to zero temperature by a nonthermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these “quantum critical” superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature Tc often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below Tc is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points, showing that the superfluid density in these nodal superconductors universally exhibits, unlike the expected T-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this noninteger power law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta k close to the nodes in the superconducting energy gap Δ(k). We suggest that such “nodal criticality” may have an impact on low-energy properties of quantum critical superconductors. PMID:23404698
Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid
2016-01-01
In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance. PMID:27610319
Energy Technology Data Exchange (ETDEWEB)
Aharonian, F.; /Heidelberg, Max Planck Inst. /Dublin Inst.; Akhperjanian, A.G.; /Yerevan Phys. Inst.; Anton, G.; /Erlangen - Nuremberg U.; Barres de Almeida, U.; /Durham U.; Bazer-Bachi, A.R.; /Toulouse, CESR; Becherini, Y.; /APC, Paris; Behera, B.; /Heidelberg Observ.; Bernlohr, K.; /Heidelberg, Max Planck Inst. /Humboldt U., Berlin; Boisson, C.; /LUTH, Meudon; Bochow, A.; /Heidelberg, Max Planck Inst.; Borrel, V.; /Toulouse, CESR; Brion, E.; /DAPNIA, Saclay; Brucker, J.; /Erlangen - Nuremberg U.; Brun, P.; /DAPNIA, Saclay; Buhler, R.; /Heidelberg, Max Planck Inst.; Bulik, T.; /Warsaw, Copernicus Astron. Ctr.; Busching, I.; /Western Ontario U.; Boutelier, T.; /Grenoble Observ.; Chadwick, P.M.; /Durham U.; Charbonnier, A.; /Paris U., VI-VII; Chaves, R.C.G.; /Heidelberg, Max Planck Inst. /Durham U. /Ecole Polytechnique /Heidelberg, Max Planck Inst. /Annecy, LAPP /Humboldt U., Berlin /Durham U. /Namibia U. /Western Ontario U. /Ecole Polytechnique /Heidelberg, Max Planck Inst. /Durham U. /APC, Paris /Heidelberg, Max Planck Inst. /Dublin Inst. /Annecy, LAPP /Grenoble Observ. /Warsaw, Copernicus Astron. Ctr. /Cracow, INP /Heidelberg, Max Planck Inst. /Heidelberg Observ. /APC, Paris /Montpellier U. /Montpellier U. /Montpellier U. /Heidelberg, Max Planck Inst. /Ecole Polytechnique /Humboldt U., Berlin /Dublin Inst. /Montpellier U. /APC, Paris /SLAC; /more authors..
2009-05-07
We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of {gamma}-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little ({approx}30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.
International Nuclear Information System (INIS)
We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of γ-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little (∼30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.
Phase Diagram of Two-dimensional Polarized Fermi Gas With Spin-Orbit Coupling
Yang, Xiaosen; Wan, Shaolong
2011-01-01
We investigate the ground state of the two-dimensional polarized Fermi gas with spin-orbit coupling and construct the phase diagram at zero temperature. We find there exist phase separation when the binding energy is low. As the binding energy increasing, the topological nontrivial superfluid phase coexist with topologically trivial superfluid phase which is topological phase separation. The spin-orbit coupling interaction enhance the triplet pairing and destabilize the phase separation again...
Crossover from BCS superconductivity to superfluidity of local pairs
International Nuclear Information System (INIS)
We review some recent results concerning crossover from cooperative Cooper pairing to independent bound states formation and their superfluidity, and a possible relevance of the crossover behavior to the anomalous properties of short-coherence length superconductors. Using the extended Hubbard model with on-site attraction (EHM), we analyze the behavior of collective modes, thermodynamic and electromagnetic properties versus the coupling strength and electron concentration. The normal state properties of the 2D attractive Hubbard model obtained with the conserving, self-consistent T-matrix approach, are presented. These studies also indicate possible deviations from conventional Fermi-liquid behavior, above Tc, in 2D short coherence length superconductors. (orig.)
Relativistic superfluidity and vorticity from the nonlinear Klein-Gordon equation
Xiong, Chi; Guo, Yulong; Liu, Xiaopei; Huang, Kerson
2014-01-01
We investigate superfluidity, and the mechanism for creation of quantized vortices, in the relativistic regime. The general framework is a nonlinear Klein-Gordon equation in curved spacetime for a complex scalar field, whose phase dynamics gives rise to superfluidity. The mechanisms discussed are local inertial forces (Coriolis and centrifugal), and current-current interaction with an external source. The primary application is to cosmology, but we also discuss the reduction to the non-relativistic nonlinear Schr\\"{o}dinger equation, which is widely used in describing superfluidity and vorticity in liquid helium and cold-trapped atomic gases.
Coherence Times of Bose-Einstein Condensates beyond the Shot-Noise Limit via Superfluid Shielding
Burton, William Cody; Chung, Woo Chang; Vadia, Samarth; Chen, Wenlan; Ketterle, Wolfgang
2016-01-01
We demonstrate a new way to extend the coherence time of separated Bose-Einstein condensates that involves immersion into a superfluid bath. When both the system and the bath have similar scattering lengths, immersion in a superfluid bath cancels out inhomogeneous potentials either imposed by external fields or inherent in density fluctuations due to atomic shot noise. This effect, which we call superfluid shielding, allows for coherence lifetimes beyond the projection noise limit. We probe the coherence between separated condensates in different sites of an optical lattice by monitoring the contrast and decay of Bloch oscillations. Our technique demonstrates a new way that interactions can improve the performance of quantum devices.
Superfluid Fermi Gases in a Rotating Anharmonic Trap
Institute of Scientific and Technical Information of China (English)
MA Juan; XUE Ju-Kui
2011-01-01
The quadrupole mode frequency, the monopole mode frequency, and the critical rotational frequency for stirring a single vortex nucleation along the BEC-BCS crossover are obtained. The results show that, in a rotating anisotropic anharmonic trap, the quadrupole mode frequency and the critical rotational frequency for stirring a single vortex nucleation are modified significantly when the system crosses from the BEC side to the BCS side: the anisotropy of the trap induces a downshift of the quadrupole mode frequency and the critical rotational frequency and helps the vortex formation in the system, while an anharmonic trap induces an upshift of the quadrupole mode frequency and the critical rotational frequency and suppresses the vortex formation in the system.
Energy Technology Data Exchange (ETDEWEB)
Erika Bailey
2011-10-27
The Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1) was a fast breeder reactor design that was cooled by sodium and operated at essentially atmospheric pressure. On May 10, 1963, the Atomic Energy Commission (AEC) granted an operating license, DPR-9, to the Power Reactor Development Company (PRDC), a consortium specifically formed to own and operate a nuclear reactor at the Fermi 1 site. The reactor was designed for a maximum capability of 430 megawatts (MW); however, the maximum reactor power with the first core loading (Core A) was 200 MW. The primary system was filled with sodium in December 1960 and criticality was achieved in August 1963. The reactor was tested at low power during the first couple years of operation. Power ascension testing above 1 MW commenced in December 1965 immediately following the receipt of a high-power operating license. In October 1966 during power ascension, zirconium plates at the bottom of the reactor vessel became loose and blocked sodium coolant flow to some fuel subassemblies. Two subassemblies started to melt and the reactor was manually shut down. No abnormal releases to the environment occurred. Forty-two months later after the cause had been determined, cleanup completed, and the fuel replaced, Fermi 1 was restarted. However, in November 1972, PRDC made the decision to decommission Fermi 1 as the core was approaching its burn-up limit. The fuel and blanket subassemblies were shipped off-site in 1973. Following that, the secondary sodium system was drained and sent off-site. The radioactive primary sodium was stored on-site in storage tanks and 55 gallon (gal) drums until it was shipped off-site in 1984. The initial decommissioning of Fermi 1 was completed in 1975. Effective January 23, 1976, DPR-9 was transferred to the Detroit Edison Company (DTE) as a 'possession only' license (DTE 2010a). This report details the confirmatory activities performed during the second Oak Ridge Institute for Science and Education
International Nuclear Information System (INIS)
Superfluidity and phase separation in 3He-4He mixtures immersed in aerogel are studied by renormalization-group theory. The quenched disorder imposed by aerogel, both at the atomic level and at the geometric level, is included. The calculation is conducted via the coupled renormalization-group mappings, near and away from aerogel, of the quenched probability distributions of random interactions. Random-bond effects on the onset of superfluidity and random-field effects on superfluid-superfluid phase separation are seen. The quenched randomness causes the λ line of second-order phase transitions of superfluidity onset to reach zero temperature, in agreement with general predictions and experiments. The effects of the atomic and geometric randomness of aerogel are investigated separately and jointly. copyright 1997 The American Physical Society
Institute of Scientific and Technical Information of China (English)
李琳
2006-01-01
Enrico Fermi was born in Rome on 29th September, 1901. He attended a local grammar school, and in 1918, he won a fellowship of the Scuola Normale Superiore of Pisa, where he gained his doctor’s degree in physics in 1922, with Professor Puccianti. In 1923, he was awarded a scholarship from the Italian Government. With a Rockefeller Fellowship, in 1924, he moved to Leyden, and later that same year he returned to Italy to occupy for two
Enrico Fermi the obedient genius
Bruzzaniti, Giuseppe
2016-01-01
This biography explores the life and career of the Italian physicist Enrico Fermi, which is also the story of thirty years that transformed physics and forever changed our understanding of matter and the universe: nuclear physics and elementary particle physics were born, nuclear fission was discovered, the Manhattan Project was developed, the atomic bombs were dropped, and the era of “big science” began. It would be impossible to capture the full essence of this revolutionary period without first understanding Fermi, without whom it would not have been possible. Enrico Fermi: The Obedient Genius attempts to shed light on all aspects of Fermi’s life - his work, motivation, influences, achievements, and personal thoughts - beginning with the publication of his first paper in 1921 through his death in 1954. During this time, Fermi demonstrated that he was indeed following in the footsteps of Galileo, excelling in his work both theoretically and experimentally by deepening our understanding of the Pauli e...
Tanaeva, I. A.; Lindemann, U.; Jiang, N.; de Waele, A. T. A. M.; Thummes, G.
2004-06-01
A superfluid vortex cooler (SVC) is a combination of a fountain pump and a vortex cooler. The working fluid in the SVC is 4He at a temperature below the lambda line. The cooler has no moving parts, is gravity independent, and hardly requires any additional infrastructure. At saturated vapour pressure the SVC is capable of reaching a temperature as low as 0.75 K. At pressures close to the melting pressure the temperature can be brought down to 0.65 K. As the SVC operates only below the lambda line, it has to be precooled e.g. by a liquid-helium bath or a cryocooler. As a first step of our research we have carried out a number of experiments, using a liquid-helium bath as a precooler for the SVC. In this arrangement we have reached temperatures below 1 K with 3.5 mW heating power supplied to the fountain part of the SVC at 1.4 K. The next step was combining the SVC with a pulse tube refrigerator (PTR), developed at the University of Giessen. It is a two-stage G-M type refrigerator with 3He as a working fluid that reached a lowest temperature of 1.27 K. In this contribution we report on the results of the SVC tests in liquid helium and the progress in the integration of the SVC with the PTR.
Dynamics of vortex assisted metal condensation in superfluid helium
Popov, Evgeny; Mammetkuliyev, Muhammet; Eloranta, Jussi
2013-05-01
Laser ablation of copper and silver targets immersed in bulk normal and superfluid 4He was studied through time-resolved shadowgraph photography. In normal fluid, only a sub-millimeter cavitation bubble is created and immediate formation of metal clusters is observed within a few hundred microseconds. The metal clusters remain spatially tightly focused up to 15 ms, and it is proposed that this observation may find applications in particle image velocimetry. In superfluid helium, the cavitation bubble formation process is distinctly different from the normal fluid. Due to the high thermal conductivity and an apparent lag in the breakdown of superfluidity, about 20% of the laser pulse energy was transferred directly into the liquid and a large gas bubble, up to several millimeters depending on laser pulse energy, is created. The internal temperature of the gas bubble is estimated to exceed 9 K and the following bubble cool down period therefore includes two separate phase transitions: gas-normal liquid and normal liquid-superfluid. The last stage of the cool down process was assigned to the superfluid lambda transition where a sudden formation of large metal clusters is observed. This is attributed to high vorticity created in the volume where the gas bubble previously resided. As shown by theoretical bosonic density functional theory calculations, quantized vortices can trap atoms and dimers efficiently, exhibiting static binding energies up to 22 K. This, combined with hydrodynamic Bernoulli attraction, yields total binding energies as high as 35 K. For larger clusters, the static binding energy increases as a function of the volume occupied in the liquid to minimize the surface tension energy. For heliophobic species an energy barrier develops as a function of the cluster size, whereas heliophilics show barrierless entry into vortices. The present theoretical and experimental observations are used to rationalize the previously reported metal nanowire assembly in
Cooling a Band Insulator with a Metal: Fermionic Superfluid in a Dimerized Holographic Lattice
Haldar, Arijit; Shenoy, Vijay B.
A cold atomic realization of a quantum correlated state of many fermions on a lattice, eg. superfluid, has eluded experimental realization due to the entropy problem. Here we propose a route to realize such a state using holographic lattice and confining potentials. The potentials are designed to produces a band insulating state (low heat capacity) at the trap center, and a metallic state (high heat capacity) at the periphery. The metal ``cools'' the central band insulator by extracting out the excess entropy. The central band insulator can be turned into a superfluid by tuning an attractive interaction between the fermions. Crucially, the holographic lattice allows the emergent superfluid to have a high transition temperature - even twice that of the effective trap temperature. The scheme provides a promising route to a laboratory realization of a fermionic lattice superfluid, even while being adaptable to simulate other many body states. Reference: Scientific Reports 4, 6665 (2014). Work supported by CSIR, DST and DAE.
Role of nucleonic Fermi surface depletion in neutron star cooling
Dong, J M; Zhang, H F; Zuo, W
2015-01-01
The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties which determine the neutron star thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions, are calculated within the Brueckner-Hartree-Fock approach employing the AV18 two-body force supplemented by a microscopic three body force. Neutrino emissivity, heat capacity and, in particular, neutron 3PF2 superfluidity turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young neutron stars are significantly slowed
ROLE OF NUCLEONIC FERMI SURFACE DEPLETION IN NEUTRON STAR COOLING
Energy Technology Data Exchange (ETDEWEB)
Dong, J. M.; Zuo, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Lombardo, U. [Universita di Catania and Laboratori Nazionali del Sud (INFN), Catania I-95123 (Italy); Zhang, H. F. [School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 (China)
2016-01-20
The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties that determine the neutron star (NS) thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions are calculated within the Brueckner–Hartree–Fock approach, employing the AV18 two-body force supplemented by a microscopic three-body force. Neutrino emissivity, heat capacity, and in particular neutron {sup 3}PF{sub 2} superfluidity, turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young NSs are significantly slowed.
Scale invariance and superfluid turbulence
Energy Technology Data Exchange (ETDEWEB)
Sen, Siddhartha, E-mail: siddhartha.sen@tcd.ie [CRANN, Trinity College Dublin, Dublin 2 (Ireland); R.K. Mission Vivekananda University, Belur 711 202, West Bengal (India); Ray, Koushik, E-mail: koushik@iacs.res.in [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Calcutta 700 032 (India)
2013-11-11
We construct a Schroedinger field theory invariant under local spatial scaling. It is shown to provide an effective theory of superfluid turbulence by deriving, analytically, the observed Kolmogorov 5/3 law and to lead to a Biot–Savart interaction between the observed filament excitations of the system as well.
Two definitions of superfluid density
International Nuclear Information System (INIS)
We point out that two different definitions of the superfluid density - through statistical response to static gauge phase and through dynamic response to altering gauge phase - yield, generally speaking, different quantities in d<3. The physics leading to this difference is associated with the equilibrium statistics of supercurrent states. Some experimentally observable consequences of this fact are discussed
International Nuclear Information System (INIS)
A human factors audit of the Fermi-2 control room was conducted April 27 through May 1, 1981. This report contains the audit team findings, organized according to the draft NUREG-0700 guidelines sections. The discrepancies identified during the audit are categorized according to their severity and the required schedule for their resolution
International Nuclear Information System (INIS)
The visualization of chiral p-wave superfluidity in Fermi gases near p-wave Feshbach resonances is theoretically examined. It is proposed that the superfluidity becomes detectable in the entire BCS-BEC regimes through (i) vortex visualization by the density depletion inside the vortex core and (ii) intrinsic angular momentum in vortex-free states. It is revealed that both (i) and (ii) are closely connected with the Majorana zero energy mode of the vortex core and the edge mode, which survive until the strong coupling BCS regime is approached from the weak coupling limit and vanish in the Bose-Einstein condensation regime
When Do Superfluidity and Long Range Order Imply Entanglement?
Vedral, V
2007-01-01
We investigate tacitly assumed relationships between the concepts of super-fluidity (-conductivity), long range order and entanglement. We prove that the three are by no means equivalent, but that notwithstanding, some rigorous implication can be established between them. This leads to three different, albeit frequently related, notions of "criticality", all of which are exemplified within the Hubbard model in the low density regime. We use Peierls' method of twisted Hamiltonians to link the existence of entanglement to superfluidity and (quasi)-long range order. As an application of our formalism, we show that recent experiments with cold atoms already prove the existence of the field theoretic, spatial entanglement in two dimensions. More interestingly, the appearance of entanglement in these experiments seems to be intimately related to the phase transition of the Kosterlitz Thouless type.
Relativistic superfluid hydrodynamics from field theory
Alford, Mark G; Schmitt, Andreas; Stetina, Stephan
2012-01-01
It is well known that the hydrodynamics of a zero-temperature superfluid can be formulated in field-theoretic terms, relating for example the superfluid four-velocity to the gradient of the phase of a Bose-condensed scalar field. At nonzero temperatures, where the phenomenology of a superfluid is usually described within a two-fluid picture, this relationship is less obvious. For the case of a uniform, dissipationless superfluid at small temperatures and weak coupling we discuss this relationship within a phi^4 model. For instance, we compute the entrainment coefficient, which describes the interaction between the superfluid and the normal-fluid components, and the velocities of first and second sound in the presence of a superflow. Our study is very general, but can also be seen as a step towards understanding the superfluid properties of various phases of dense nuclear and quark matter in the interior of compact stars.
Institute of Scientific and Technical Information of China (English)
刘洪毓
2007-01-01
Atoms(原子)are all around us.They are something like the bricks (砖块)of which everything is made. The size of an atom is very,very small.In just one grain of salt are held millions of atoms. Atoms are very important.The way one object acts depends on what
Superfluid helium II as the QCD vacuum
Zhitnitsky, Ariel
2016-01-01
We study the winding number susceptibility in superfluid system and the topological susceptibility in QCD. We argue that both correlation functions exhibit similar structures, including the generation of the contact terms. We discuss the nature of the contact term in superfluid system and argue that it has exactly the same origin as in QCD, and it is related to the long distance physics which cannot be associated with conventional microscopical degrees of freedom such as phonons and rotons. We emphasize that the conceptual similarities between superfluid system and QCD may lead, hopefully, to a deeper understanding of the topological features of a superfluid system as well as the QCD vacuum.
Hierarchic Models of Turbulence, Superfluidity and Superconductivity
Kaivarainen, A
2000-01-01
New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.
Microphotonic Forces From Superfluid Flow
McAuslan, D. L.; Harris, G. I.; Baker, C; Sachkou, Y.; He, X; Sheridan, E.; Bowen, W. P.
2015-01-01
In cavity optomechanics, radiation pressure and photothermal forces are widely utilized to cool and control micromechanical motion, with applications ranging from precision sensing and quantum information to fundamental science. Here, we realize an alternative approach to optical forcing based on superfluid flow and evaporation in response to optical heating. We demonstrate optical forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46 nN, roughly one order of magnitu...
Rotons, Superfluidity, and Helium Crystals
International Nuclear Information System (INIS)
Fritz London understood that quantum mechanics could show up at the macroscopic level, and, in 1938, he proposed that superfluidity was a consequence of Bose-Einstein condensation. However, Lev Landau never believed in London's ideas; instead, he introduced quasiparticles to explain the thermodynamics of superfluid 4He and a possible mechanism for its critical velocity. One of these quasiparticles, a crucial one, was his famous ''roton'' which he considered as an elementary vortex. At the LT0 conference (Cambridge, 1946), London criticized Landau and his ''theory based on the shaky grounds of imaginary rotons''. Despite their rather strong disagreement, Landau was awarded the London prize in 1960, six years after London's death. Today, we know that London and Landau had both found part of the truth: BEC takes place in 4He, and rotons exist.In my early experiments on quantum evaporation, I found direct evidence for the existence of rotons and for evaporation processes in which they play the role of photons in the photoelectric effect. But rotons are now considered as particular phonons which are nearly soft, due to some local order in superfluid 4He. Later we studied helium crystals which are model systems for the general study of crystal surfaces, but also exceptional systems with unique quantum properties. In our recent studies of nucleation, rotons show their importance again: by using acoustic techniques, we have extended the study of liquid 4He up to very high pressures where the liquid state is metastable, and we wish to demonstrate that the vanishing of the roton gap may destroy superfluidity and trigger an instability towards the crystalline state
On the semiclassical description of nuclear Fermi liquid drops
International Nuclear Information System (INIS)
In this series of lectures we aimed at presenting a self-contained semiclassical theory entirely based on the extended Thomas-Fermi or Wigner-Kirkwood h expansion in phase space. We saw that not only the Wigner transform of the single particle density matrix can be understood and very accurately represented in this way but that also generalisations to correlation functions are straightforward. First, we demonstrated a generalisation to superfluid nuclei and to superfluid nuclei in slow rotation. The latter involves already the (static) particle-hole correlation function and we saw how e.g. the reduction of the moment of inertia by roughly a factor of two could be explained very easily in an analytic way. We very clearly pointed out the necessity to treat particles (holes) individually in Thomas Fermi approximation. A further very promising result is that the linear response function for transferred momenta q>0.6 fm-1 can be very accurately represented in our p-h-Thomas Fermi approach. In the last paragraph we give somewhat speculative arguments that say the 2+ states of quasi macroscopic Fermi Liquid Drops could be well calculated in expanding the time dependent density matrix on a set of coherent states and a simple example for nearly harmonic potentials is given
Feneric Fermi Size Enhancement of Pairing in Mesoscopic Fermi Systems
Farine, M; Schuck, P; Viñas, X
2002-01-01
The finite size dependent enhancement of pairing in mesoscopic Fermi systems is studied under the assumption that the BCS approach is valid and that the two body force is size independent. Different systems are investigated such as superconducting metallic grains and films as well as atomic nuclei. It is shown that the finite size enhancement of pairing in these systems is a surface effect which, when properly included, accounts for the data.
Anomalous Weyl superfluid in three-dimensional ultracold fermionic gases
Huang, Beibing
2016-08-01
In this paper we use layer construction method to construct an experimentally feasible model to realize one type of anomalous Weyl superfluids (WS) in the context of cold fermionic gases. This exotic phase still characterizes the Weyl points in the bulk but completely different Majorana Fermi arc surface state (MFASS) on the boundaries. In contrast to conventional WS, where MFASS only connects the projection of Weyl points, new MFASS continuously stretches to the border of surface Brillouin zone. We self-consistently determine the phase diagram of model at the mean-field level to claim the achievement of anomalous WS. In addition, inversion symmetry and band inversion in this model are analyzed in detail to provide unique feature of identifying anomalous WS experimentally by momentum-resolved radio-frequency spectroscopy.
Semiclassical approximation to neutron star superfluidity corrected for proximity effects.
Energy Technology Data Exchange (ETDEWEB)
Barranco, F.; Broglia, R. A.; Esbensen, H.; Vigezzi, E.; Physics; Univ. of Seville; Univ. of Milan and INFN; Univ. of Copenhagen
1998-08-01
The inner crust of a neutron star is a superfluid and inhomogeneous system, consisting of a lattice of nuclei immersed in a sea of neutrons. We perform a quantum calculation of the associated pairing gap and compare it to the results one obtains in the local density approximation (LDA). It is found that the LDA overestimates the spatial dependence of the gap, and leads to a specific heat of the system which is too large at low temperatures, as compared with the quantal result. This is caused by the neglect of proximity effects and the delocalized character of the single-particle wave functions close to the Fermi energy. It is possible to introduce an alternative, simple semiclassical approximation of the pairing gap which leads to a specific heat that is in good agreement with the quantum calculation.
Zero-point energy of ultracold atoms
Salasnich, Luca; Toigo, Flavio
2016-06-01
We analyze the divergent zero-point energy of a dilute and ultracold gas of atoms in D spatial dimensions. For bosonic atoms we explicitly show how to regularize this divergent contribution, which appears in the Gaussian fluctuations of the functional integration, by using three different regularization approaches: dimensional regularization, momentum-cutoff regularization and convergence-factor regularization. In the case of the ideal Bose gas the divergent zero-point fluctuations are completely removed, while in the case of the interacting Bose gas these zero-point fluctuations give rise to a finite correction to the equation of state. The final convergent equation of state is independent of the regularization procedure but depends on the dimensionality of the system and the two-dimensional case is highly nontrivial. We also discuss very recent theoretical results on the divergent zero-point energy of the D-dimensional superfluid Fermi gas in the BCS-BEC crossover. In this case the zero-point energy is due to both fermionic single-particle excitations and bosonic collective excitations, and its regularization gives remarkable analytical results in the BEC regime of composite bosons. We compare the beyond-mean-field equations of state of both bosons and fermions with relevant experimental data on dilute and ultracold atoms quantitatively confirming the contribution of zero-point-energy quantum fluctuations to the thermodynamics of ultracold atoms at very low temperatures.
Mixtures of bosonic and fermionic atoms in optical lattices
International Nuclear Information System (INIS)
We discuss the theory of mixtures of bosonic and fermionic atoms in periodic potentials at zero temperature. We derive a general Bose-Fermi Hubbard Hamiltonian in a one-dimensional optical lattice with a superimposed harmonic trapping potential. We study the conditions for linear stability of the mixture and derive a mean-field criterion for the onset of a bosonic superfluid transition. We investigate the ground-state properties of the mixture in the Gutzwiller formulation of mean-field theory, and present numerical studies of finite systems. The bosonic and fermionic density distributions and the onset of quantum phase transitions to demixing and to a bosonic Mott-insulator are studied as a function of the lattice potential strength. The existence is predicted of a disordered phase for mixtures loaded in very deep lattices. Such a disordered phase possessing many degenerate or quasidegenerate ground states is related to a breaking of the mirror symmetry in the lattice
Dark Matter Superfluidity and Galactic Dynamics
Berezhiani, Lasha
2015-01-01
We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the LambdaCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ~mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.
Dark matter superfluidity and galactic dynamics
Directory of Open Access Journals (Sweden)
Lasha Berezhiani
2016-02-01
Full Text Available We propose a unified framework that reconciles the stunning success of MOND on galactic scales with the triumph of the ΛCDM model on cosmological scales. This is achieved through the physics of superfluidity. Dark matter consists of self-interacting axion-like particles that thermalize and condense to form a superfluid in galaxies, with ∼mK critical temperature. The superfluid phonons mediate a MOND acceleration on baryonic matter. Our framework naturally distinguishes between galaxies (where MOND is successful and galaxy clusters (where MOND is not: dark matter has a higher temperature in clusters, and hence is in a mixture of superfluid and normal phase. The rich and well-studied physics of superfluidity leads to a number of striking observational signatures.
Superfluid properties of BPS monopoles
Lantsman, L
2006-01-01
This paper is devoted to demonstrating manifest superfluid properties of the Minkowskian Higgs model with vacuum BPS monopole solutions at assuming the "continuous" $\\sim S^2$ vacuum geometry in that model. It will be also argued that point hedgehog topological defects are present in the Minkowskian Higgs model with BPS monopoles. It turns out, and we show this, that the enumerated phenomena are compatible with the Faddeev-Popov "heuristic" quantization of the Minkowskian Higgs model with vacuum BPS monopoles, coming to fixing the Weyl (temporal) gauge $A_0=0$ for gauge fields $A$ in the Faddeev-Popov path integral.
Energy Technology Data Exchange (ETDEWEB)
Perraud, S
2007-12-15
This study aims at characterizing helium two phase flows, and to identify the dependence of their characteristics on various thermo-hydraulic parameters: vapour velocity, liquid height, vapour density, specificities of superfluidity. Both the engineer and the physicist's points of view are taken into consideration: the first one in terms of optimization of a particular cooling scheme based on a two-phase flow, and these second one in terms of more fundamental atomization-related questions. It has been shown that for velocities around 3 to 4 m/s, the liquid phase that was initially stratified undergoes an atomization through the presence of a drop haze carried by the vapor phase.This happens for superfluid helium as well as for normal helium without main differences on atomization.
Directory of Open Access Journals (Sweden)
Efstathios E. Theotokoglou
2015-01-01
Full Text Available Two kinds of second-order nonlinear, ordinary differential equations (ODEs appearing in mathematical physics are analyzed in this paper. The first one concerns the Thomas-Fermi (TF equation, while the second concerns the Langmuir-Blodgett (LB equation in current flow. According to a mathematical methodology recently developed, the exact analytic solutions of both TF and LB ODEs are proposed. Both of these are nonlinear of the second order and by a series of admissible functional transformations are reduced to Abel’s equations of the second kind of the normal form. The closed form solutions of the TF and LB equations in the phase and physical plane are given. Finally a new interesting result has been obtained related to the derivative of the TF function at the limit.
Color superfluidity and trion formation in ultracold fermionic systems
Energy Technology Data Exchange (ETDEWEB)
Rapp, Akos [Institut fuer Theoretische Physik, Universitaet zu Koeln (Germany)
2009-07-01
We investigate the low temperature properties of the three component Hubbard model. This system might be realized by trapping 3 different hyperfine states of ultracold Li-6 atoms in optical lattices. Studies concerning the SU(3) symmetric attractive case based on a Gutzwiller variational method in d={infinity} suggest that there is a continuous phase transition happening between a weak coupling color superfluid and a strong coupling trionic ground state. We construct and investigate the properties of the quantum field theory describing this quantum phase transition.
Color superfluidity and trion formation in ultracold fermionic systems
International Nuclear Information System (INIS)
We investigate the low temperature properties of the three component Hubbard model. This system might be realized by trapping 3 different hyperfine states of ultracold Li-6 atoms in optical lattices. Studies concerning the SU(3) symmetric attractive case based on a Gutzwiller variational method in d=∞ suggest that there is a continuous phase transition happening between a weak coupling color superfluid and a strong coupling trionic ground state. We construct and investigate the properties of the quantum field theory describing this quantum phase transition.
Sourie, Aurélien; Novak, Jérôme
2016-01-01
We present a numerical model for uniformly rotating superfluid neutron stars, for the first time with realistic microphysics including entrainment, in a fully general relativistic framework. We compute stationary and axisymmetric configurations of neutron stars composed of two fluids, namely superfluid neutrons and charged particles (protons and electrons), rotating with different rates around a common axis. Both fluids are coupled by entrainment, a non-dissipative interaction which in case of a non-vanishing relative velocity between the fluids, causes the fluid momenta being not aligned with the respective fluid velocities. We extend the formalism by Comer and Joynt (2003) in order to calculate the equation of state (EoS) and entrainment parameters for an arbitrary relative velocity. The resulting entrainment matrix fulfills all necessary sum rules and in the limit of small relative velocity our results agree with Fermi liquid theory ones, derived to lowest order in the velocity. This formalism is applied t...
Superfluid helium testing of a stainless steel to titanium piping transition joint
Energy Technology Data Exchange (ETDEWEB)
Soyars, W.; /Fermilab; Basti, A.; Bedeschi, F.; /INFN, Pisa; Budagov, J.; /Dubna, JINR; Foley, M.; Harms, E.; Klebaner, A.; Nagaitsev, S.; /Fermilab; Sabirov, B.; Dubna, JINR
2009-11-01
Stainless steel-to-titanium bimetallic transitions have been fabricated with an explosively bonded joint. This novel joining technique was conducted by the Russian Federal Nuclear Center, working under contract for the Joint Institute for Nuclear Research. These bimetallic transitions are being considered for use in future superconducting radio-frequency cavity cryomodule assemblies. This application requires cryogenic testing to demonstrate that this transition joint remains leak-tight when sealing superfluid helium. To simulate a titanium cavity vessel connection to a stainless steel service pipe, bimetallic transition joints were paired together to fabricate piping assemblies. These piping assemblies were then tested in superfluid helium conditions at Fermi National Accelerator Laboratory test facilities. The transition joint test program will be described. Fabrication experience and test results will be presented.
Attractive and repulsive Fermi polarons in two dimensions.
Koschorreck, Marco; Pertot, Daniel; Vogt, Enrico; Fröhlich, Bernd; Feld, Michael; Köhl, Michael
2012-05-31
The dynamics of a single impurity in an environment is a fundamental problem in many-body physics. In the solid state, a well known case is an impurity coupled to a bosonic bath (such as lattice vibrations); the impurity and its accompanying lattice distortion form a new entity, a polaron. This quasiparticle plays an important role in the spectral function of high-transition-temperature superconductors, as well as in colossal magnetoresistance in manganites. For impurities in a fermionic bath, studies have considered heavy or immobile impurities which exhibit Anderson's orthogonality catastrophe and the Kondo effect. More recently, mobile impurities have moved into the focus of research, and they have been found to form new quasiparticles known as Fermi polarons. The Fermi polaron problem constitutes the extreme, but conceptually simple, limit of two important quantum many-body problems: the crossover between a molecular Bose-Einstein condensate and a superfluid with BCS (Bardeen-Cooper-Schrieffer) pairing with spin-imbalance for attractive interactions, and Stoner's itinerant ferromagnetism for repulsive interactions. It has been proposed that such quantum phases (and other elusive exotic states) might become realizable in Fermi gases confined to two dimensions. Their stability and observability are intimately related to the theoretically debated properties of the Fermi polaron in a two-dimensional Fermi gas. Here we create and investigate Fermi polarons in a two-dimensional, spin-imbalanced Fermi gas, measuring their spectral function using momentum-resolved photoemission spectroscopy. For attractive interactions, we find evidence for a disputed pairing transition between polarons and tightly bound dimers, which provides insight into the elementary pairing mechanism of imbalanced, strongly coupled two-dimensional Fermi gases. Additionally, for repulsive interactions, we study novel quasiparticles--repulsive polarons--the lifetime of which determines the
Breathers on Quantized Superfluid Vortices
Salman, Hayder
2013-10-01
We consider the propagation of breathers along a quantized superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schrödinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localized in both space and time. The emergent structures on the vortex filament are analogous to loop solitons but arise from the dual action of bending and twisting of the vortex. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the crossover range of scales in superfluid turbulence. Moreover, the observation of breather solutions on vortices in a field model suggests that these solutions are expected to arise in a wide range of other physical contexts from classical vortices to cosmological strings.
Variational wavefunction for multi-species spinful fermionic superfluids and superconductors
Energy Technology Data Exchange (ETDEWEB)
Kastrinakis, George, E-mail: kast@iesl.forth.gr
2014-10-15
We introduce a new fermionic variational wavefunction, generalizing the Bardeen–Cooper–Schrieffer (BCS) wavefunction, which is suitable for interacting multi-species spinful systems and sustaining superfluidity. Applications range from quark matter to the high temperature superconductors. A wide class of Hamiltonians, comprising interactions and hybridization of arbitrary momentum dependence between different fermion species, can be treated in a comprehensive manner. This is the case, as both the intra-species and the inter-species interactions are treated on equally rigorous footing, which is accomplished via the introduction of a new quantum index attached to the fermions. The index is consistent with known fermionic physics, and allows for heretofore unaccounted fermion–fermion correlations. We have derived the finite temperature version of the theory, thus obtaining the renormalized quasiparticle dispersion relations, and we discuss the appearance of charge and spin density wave order. We present numerical solutions for two electron species in 2 dimensions. Based on these solutions, we show that, for equivalent spin up and down fermions, the Fermi occupation factor (per spin) equals 1/2 deep in the Fermi sea. This constitutes a unique experimental prediction of the theory, both for the normal and superfluid states. Interestingly, this result, obtained in the thermodynamic limit, is consistent with Fermi occupation factor (in-)equalities for finite systems of electrons, derived (in a different context) by Borland and Dennis (1972) and by Altunbulak and Klyachko (2008)
Holographic superconductors and superfluids - effect of backreaction
International Nuclear Information System (INIS)
Recently, the gravity-gauge theory correspondence has been used to describe so-called holographic superconductors and superfluids with the help of black holes in Anti-de Sitter space-time. In this talk, I discuss holographic superconductors and superfluids away from the probe limit, i.e. taking backreaction of the space-time into account. In the first part of the talk I present our results for Gauss-Bonnet holographic superconductors in (3+1) dimensions, while the second part deals with holographic superfluids in (2+1) dimensions where one of the spatial dimensions is compactified.
Superfluid Optomechanics: Coupling of a Superfluid to a Superconducting Condensate
DeLorenzo, L A
2013-01-01
We investigate the low loss acoustic motion of superfluid $^4$He parametrically coupled to a very low loss, superconducting Nb, TE$_{011}$ microwave resonator, forming a gram-scale, sideband resolved, optomechanical system. We demonstrate the detection of a series of acoustic modes with quality factors as high as $7\\cdot 10^6$. At higher temperatures, the lowest dissipation modes are limited by an intrinsic three phonon process. Acoustic quality factors approaching $10^{11}$ may be possible in isotopically purified samples at temperatures below 10 mK. A system of this type may be utilized to study macroscopic quantized motion and as an ultra-sensitive sensor of extremely weak displacements and forces, such as continuous gravity wave sources.
Superfluid optomechanics: coupling of a superfluid to a superconducting condensate
International Nuclear Information System (INIS)
We investigate the low loss acoustic motion of superfluid 4He parametrically coupled to a very low loss, superconducting Nb TE011 microwave resonator, forming a gram-scale, sideband resolved, optomechanical system. We demonstrate the detection of a series of acoustic modes with quality factors as high as 1.4×107. At higher temperatures, the lowest dissipation modes are limited by an intrinsic three phonon process. Acoustic quality factors approaching 1011 may be possible in isotopically purified samples at temperatures below 10 mK. A system of this type may be utilized to study macroscopic quantized motion and as a freqency tunable, ultra-sensitive sensor of extremely weak displacements and forces, such as continuous gravity wave sources. (paper)
梯状光晶格中自旋轨道耦合的排斥费米气体%Spin-orbit coupled Fermi atoms loaded in an optical ladder lattice
Institute of Scientific and Technical Information of China (English)
郭飞翔; 周晓凡; 赵华
2015-01-01
采用密度矩阵重整化群 ( density-matrix-renormalization-group, DMRG) 方法, 研究梯状光晶格中排斥相互作用费米气体的基态属性. 研究表明, Zeeman场能够激发系统的相分离 (完全极化相和部分极化相), 而自旋轨道耦合效应能抑制相分离, 使整个晶格处于部分极化相, 在不同的强弱排斥相互作用系统中, 极化率会随自旋轨道耦合改变表现出不同的变化规律.%The density-matrix-renormalization-group ( DMRG ) method is used to numerically calculate the ground state of repulsively interacting Fermi atoms loaded in optical ladder lattices. It is found that the system exhibits the spatial separation of a fully spin-polarized phase from the partially polarized phase for the suitable intensity of Zeeman field without the effect of spin-orbit coupled atoms. The spin-orbit coupling drives the fully spin-polarized phase to the partially spin-polarized phase in the whole system. The spin polarizations of weak and strong repulsively interac-ting systems vary differently with spin-orbit interaction strength.
Strongly-correlated ultracold atoms in optical lattices
International Nuclear Information System (INIS)
This thesis is concerned with the theoretical study of strongly correlated quantum states of ultra-cold fermionic atoms trapped in optical lattices. This field has grown considerably in recent years, following the experimental progress made in cooling and controlling atomic gases, which has led to the observation of the first Bose-Einstein condensation (in 1995). The trapping of these gases in optical lattices has opened a new field of research at the interface between atomic physics and condensed matter physics. The observation of the transition from a superfluid to a Mott insulator for bosonic atoms paved the way for the study of strongly correlated phases and quantum phase transitions in these systems. Very recently, the investigation of the Mott insulator state of fermionic atoms provides additional motivation to conduct such theoretical studies. This thesis can be divided broadly into two types of work: - On the one hand, we have proposed a new type of spectroscopy to measure single-particle correlators and associated physical observables in these strongly correlated states. - On the other hand, we have studied the ground state of the fermionic Hubbard model under different conditions (mass imbalance, population imbalance) by using analytical techniques and numerical simulations. In a collaboration with J. Dalibard and C. Salomon (LKB at the ENS Paris) and I. Carusotto (Trento, Italy), we have proposed and studied a novel spectroscopic method for the measurement and characterization of single particle excitations (in particular, the low energy excitations, namely the quasiparticles) in systems of cold fermionic atoms, with energy and momentum resolution. This type of spectroscopy is an analogue of angular-resolved photoemission in solid state physics (ARPES). We have shown, via simple models, that this method of measurement can characterize quasiparticles not only in the 'conventional' phases such as the weakly interacting gas in the lattice or in Fermi
A Theory of Dark Matter Superfluidity
Berezhiani, Lasha
2015-01-01
We propose a novel theory of dark matter (DM) superfluidity that matches the successes of the LambdaCDM model on cosmological scales while simultaneously reproducing the MOdified Newtonian Dynamics (MOND) phenomenology on galactic scales. The DM and MOND components have a common origin, representing different phases of a single underlying substance. DM consists of axion-like particles with mass of order eV and strong self-interactions. The condensate has a polytropic equation of state P~rho^3 giving rise to a superfluid core within galaxies. Instead of behaving as individual collisionless particles, the DM superfluid is more aptly described as collective excitations. Superfluid phonons, in particular, are assumed to be governed by a MOND-like effective action and mediate a MONDian acceleration between baryonic matter particles. Our framework naturally distinguishes between galaxies (where MOND is successful) and galaxy clusters (where MOND is not): due to the higher velocity dispersion in clusters, and corres...
Superfluid (quantum) turbulence and distributed chaos
Bershadskii, A
2016-01-01
Properties of distributed chaos in superfluid (quantum) turbulence have been studied using the data of recent direct numerical simulations (HVBK two-fluid model for He II, and a moving grid in the frames of Gross-Pitaevskii model of the Bose-Einstein condensates at low temperatures). It is found that for the viscous (normal) component of the velocity field in He II the viscosity dominates the distributed chaos with the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ and $\\beta = 2/3$. For the superfluid component the distributed chaos is dominated by the vorticity correlation integral with $\\beta =1/2$ (the soft spontaneous breaking of the space translational symmetry - homogeneity). For very low temperature the distributed chaos is tuned to the large-scale coherent motions: the viscous (normal) component is tuned to the fundamental mode, whereas the superfluid component is subharmonically tuned. For the Gross-Pitaevskii superfluid turbulence incompressible part of the energy spectrum (containing ...
Spin-down Rate of Pinned Superfluid
Jahan-Miri, M
2006-01-01
The spinning down (up) of a superfluid is associated with a radial motion of its quantized vortices. In the presence of pinning barriers against the motion of the vortices, a spin-down may be still realized through ``random unpinning'' and ``vortex motion,'' as two physically separate processes, as suggested recently. The spin-down rate of a pinned superfluid is calculated, in this framework, by directly solving the equation of motion applicable to only the unpinned moving vortices, at any given time. The results indicate that the pinned superfluid in the crust of a neutron star may as well spin down at the same steady-state rate as the rest of the star, through random unpinning events, while pinning conditions prevail and the superfluid rotational lag is smaller than the critical lag value.
Transition probabilities in superfluid He4
International Nuclear Information System (INIS)
The transition probabilities between various states of superfluid helium-4 are found by using the approximation method of Bogolyubov and making use of his canonical transformations for different states of transitions. (author)
Microphotonic Forces From Superfluid Flow
McAuslan, D L; Baker, C; Sachkou, Y; He, X; Sheridan, E; Bowen, W P
2015-01-01
In cavity optomechanics, radiation pressure and photothermal forces are widely utilized to cool and control micromechanical motion, with applications ranging from precision sensing and quantum information to fundamental science. Here, we realize an alternative approach to optical forcing based on superfluid flow and evaporation in response to optical heating. We demonstrate optical forcing of the motion of a cryogenic microtoroidal resonator at a level of 1.46 nN, roughly one order of magnitude larger than the radiation pressure force. We use this force to feedback cool the motion of a microtoroid mechanical mode to 137 mK. The photoconvective forces demonstrated here provide a new tool for high bandwidth control of mechanical motion in cryogenic conditions, and have the potential to allow efficient transfer of electromagnetic energy to motional kinetic energy.
Breathers on Quantized Superfluid Vortices
Salman, Hayder
2013-01-01
We consider the propagation of breathers along a quantised superfluid vortex. Using the correspondence between the local induction approximation (LIA) and the nonlinear Schr\\"odinger equation, we identify a set of initial conditions corresponding to breather solutions of vortex motion governed by the LIA. These initial conditions, which give rise to a long-wavelength modulational instability, result in the emergence of large amplitude perturbations that are localised in both space and time. The emergent structures on the vortex filament are analogous to loop solitons. Although the breather solutions we study are exact solutions of the LIA equations, we demonstrate through full numerical simulations that their key emergent attributes carry over to vortex dynamics governed by the Biot-Savart law and to quantized vortices described by the Gross-Pitaevskii equation. The breather excitations can lead to self-reconnections, a mechanism that can play an important role within the cross-over range of scales in superfl...
Two-dimensional superfluid transition in Hdown
International Nuclear Information System (INIS)
The surface density as function of temperature for Hdown adsorbed on superfluid helium film is studied for several gas densities. The theory used is exact in the low density limit and predict Kosterlitz-thouless transition temperatures lower than previous calculation and also lower saturation density. The results confirm the possibility of a 2D superfluid transition under conditions close to those achieved experimentally. (Author)
Spin-down Rate of Pinned Superfluid
Jahan-Miri, M.
2006-01-01
The spinning down (up) of a superfluid is associated with a radial motion of its quantized vortices. In the presence of pinning barriers against the motion of the vortices, a spin-down may be still realized through ``random unpinning'' and ``vortex motion,'' as two physically separate processes, as suggested recently. The spin-down rate of a pinned superfluid is calculated, in this framework, by directly solving the equation of motion applicable to only the unpinned moving vortices, at any gi...
Electric generation of vortices in polariton superfluids
Flayac, H.; Pavlovic, G.; Kaliteevski, M A; Shelykh, I. A.
2012-01-01
We have theoretically demonstrated the on demand electric generation of vortices in an exciton-polariton superfluid. Electric pulses applied to a horseshoe-shaped metallic mesa, deposited on top of the microcavity, generate a non-cylindrically symmetric solitonic wave in the system. Breakdown of its wavefront at focal points leads to the formation of vortex-antivortex pairs which subsequently propagate in the superfluid. The trajectory of these vortex dipoles can be controlled by applying a v...
Tanner, D. B.
Measurements for a number of cuprate families of optical reflectance over a wide spectral range (far-infrared to ultraviolet) have been analyzed using Kramers-Kronig analysis to obtain the optical conductivity σ (ω) and (by integration of the real part of the conductivity) the spectral weight of low- and mid-energy excitations. For the Kramers-Kronig analysis to give reliable results, accurate high-frequency extrapolations, based on x-ray atomic scattering functions, were used. When the optical conductivities of the normal and superconducting states are compared, a transfer of spectral weight from finite frequencies to the zero-frequency delta-function conductivity of the superconductor is seen. The strength of this delta function gives the superfluid density, ρs. In a clean metallic superconductor the superfluid density is essentially equal to the conduction electron density. The cuprates in contrast have only about 20% of the a b-plane low-energy spectral weight in the superfluid. The rest remains in finite-frequency, midinfrared absorption. In underdoped materials the superfluid fraction is even smaller. There are two ways to measure ρs, using either the partial sum rule for the conductivity or by examination of σ2 (ω) . Comparison of these two estimates of the superfluid density shows that 98% of the a b-plane superfluid density comes from energies below 0.15 eV. Many students, postdocs, and materials preparers have contributed to this work; to all I am very grateful.
Resonant superfluidity in an optical lattice
Energy Technology Data Exchange (ETDEWEB)
Titvinidze, Irakli; Hofstetter, Walter [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt am Main (Germany); Snoek, Michiel [Institute for Theoretical Physics, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)
2010-07-01
We study a system of ultracold fermionic Potassium ({sup 40}K) atoms in a three-dimensional optical lattice in the neighborhood of an s-wave Feshbach resonance. Close to resonance, the system is described by a multi-band Bose-Fermi Hubbard Hamiltonian. We derive an effective lowest-band Hamiltonian in which the effect of the higher band is incorporated by a self-consistent mean-field approximation. The resulting model is solved by means of Generalized Dynamical Mean-Field Theory. In addition to the BEC/BCS crossover we find on the BCS side of the resonance a phase transition to a fermionic Mott insulator at half filling, induced by the repulsive fermionic background scattering length. We also calculate the critical temperature of the BEC/BCS-state across the resonance and find it to be minimal at resonance.
Resonant superfluidity in an optical lattice
International Nuclear Information System (INIS)
We study a system of ultracold fermionic Potassium (40K) atoms in a three-dimensional optical lattice in the neighborhood of an s-wave Feshbach resonance. Close to resonance, the system is described by a multi-band Bose-Fermi Hubbard Hamiltonian. We derive an effective lowest-band Hamiltonian in which the effect of the higher band is incorporated by a self-consistent mean-field approximation. The resulting model is solved by means of Generalized Dynamical Mean-Field Theory. In addition to the BEC/BCS crossover we find on the BCS side of the resonance a phase transition to a fermionic Mott insulator at half filling, induced by the repulsive fermionic background scattering length. We also calculate the critical temperature of the BEC/BCS-state across the resonance and find it to be minimal at resonance.
Wu, Shuyuan; Xu, Jun; Lee, Chaohong
2016-01-01
According to the famous Kibble-Zurek mechanism (KZM), the universality of spontaneous defect generation in continuous phase transitions (CPTs) can be understood by the critical slowing down. In most CPTs of atomic Bose-Einstein condensates (BECs), the universality of spontaneous defect generations has been explained by the divergent relaxation time associated with the nontrivial gapless Bogoliubov excitations. However, for atomic BECs in synthetic gauge fields, their spontaneous superfluidity breakdown is resulted from the divergent correlation length associated with the zero Landau critical velocity. Here, by considering an atomic BEC ladder subjected to a synthetic magnetic field, we reveal that the spontaneous superfluidity breakdown obeys the KZM. The Kibble-Zurek scalings are derived from the Landau critical velocity which determines the correlation length. In further, the critical exponents are numerically extracted from the critical spatial-temporal dynamics of the bifurcation delay and the spontaneous...
Condensate and final-state effects in superfluid {sup 4}He
Energy Technology Data Exchange (ETDEWEB)
Azuah, R.T.; Stirling, W.G. [Department of Physics, University of Keele, Keele ST5 5BG (United Kingdom); Glyde, H.R.; Boninsegni, M. [Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716 (United States); Sokol, P.E. [Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Bennington, S.M. [ISIS Division, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)
1997-12-01
We present high-precision measurements of the dynamics of single atoms in superfluid {sup 4}He at T=1.6 K and saturated vapor pressure. The measurements were taken on the MARI instrument at the ISIS neutron-scattering facility, Rutherford-Appleton Laboratory. From the measurements we obtain a condensate fraction n{sub 0}=6.0{plus_minus}2.0{percent} at T=1.6 K. The final-state effects (FSE{close_quote}s) in the atomic response are also determined from the data in the form of a final-state broadening function, R(Q,y). We find that this FS function is the same in the superfluid at T=1.6 K as that determined previously in normal {sup 4}He at T=2.3 K. If we reanalyze the data assuming that the superfluid has no condensate, i.e., n{sub 0}=0, then the data requires that the normal n({bold k}) change dramatically between T=2.3 K and T=1.6 K. Since such a change in n({bold k}) is physically unexpected, given that kT is much less than the zero-point energy, the data requires that a new contribution, such as a condensate, enter n({bold k}) in the superfluid. {copyright} {ital 1997} {ital The American Physical Society}
Paoletti, Matthew
2010-11-01
Long-range quantum order underlies a number of related physical phenomena including superfluidity, superconductivity and Bose-Einstein condensation. While superfluidity in helium-4 was one of the earliest discovered, it is not the best understood, owing to the strong interactions present (making theoretical progress difficult) and the lack of local experimental probes. Quantum fluids, such as superfluid helium-4, are typically described as a mixture of two interpenetrating fluids with distinct velocity fields: a viscous normal fluid akin to water and an inviscid superfluid exhibiting long-range quantum order. In this "two-fluid model," there is no conventional viscous dissipation in the superfluid component and vorticity is confined to atomically-thin vortices with quantized circulation. Turbulence may occur in either fluid component with turbulence in the superfluid exhibiting a complex tangle of quantized vortices, as first envisioned by Feynman. Approximately five years ago, our group discovered that micron-sized hydrogen particles may be used for flow visualization in superfluid helium-4. The particles can trace the motions of the normal fluid or be trapped by the quantized vortices, which enables one to characterize the dynamics of both the normal fluid and superfluid components for the first time. By directly observing and tracking these particles, we have directly confirmed the two-fluid model, observed vortex rings and quantized vortex reconnection, characterized thermal counterflows, and observed the very peculiar nature of quantum turbulence. One of many surprising observations is the existence of power-law tails in the probability distribution of velocities in quantum turbulence, which are in stark contrast to the Gaussian distributions typical of classical fluid turbulence.
Enrico Fermi and the Old Quantum Physics
De Gregorio, Alberto; Sebastiani, Fabio
2009-01-01
We outline Fermi's early attitude towards old quantum physics. We sketch out the context from which his interest for quantum physics arose, and we deal with his work on quantum statistics. We also go through the first two courses on theoretical physics he held in Rome, and his 1928 book on atomic physics.
Molecular regimes in ultracold Fermi gases
D.S. Petrov; C. Salomon; G.V. Shlyapnikov
2009-01-01
The use of Feshbach resonances for tuning the interparticle interaction in ultracold Fermi gases has led to remarkable developments, in particular to the creation and Bose-Einstein condensation of weakly bound diatomic molecules of fermionic atoms. These are the largest diatomic molecules obtained s
Superfluidity enhanced by spin-flip tunnelling in the presence of a magnetic field
Zheng, Jun-Hui; Wang, Daw-Wei; Juzeliūnas, Gediminas
2016-01-01
It is well-known that when the magnetic field is stronger than a critical value, the spin imbalance can break the Cooper pairs of electrons and hence hinder the superconductivity in a spin-singlet channel. In a bilayer system of ultra-cold Fermi gases, however, we demonstrate that the critical value of the magnetic field at zero temperature can be significantly increased by including a spin-flip tunnelling, which opens a gap in the spin-triplet channel near the Fermi surface and hence reduces the influence of the effective magnetic field on the superfluidity. The phase transition also changes from first order to second order when the tunnelling exceeds a critical value. Considering a realistic experiment, this mechanism can be implemented by applying an intralayer Raman coupling between the spin states with a phase difference between the two layers. PMID:27633848
Fermi Liquid Instabilities in the Spin Channel
Energy Technology Data Exchange (ETDEWEB)
Wu, Congjun; /Santa Barbara, KITP; Sun, Kai; Fradkin, Eduardo; /Illinois U., Urbana; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-16
We study the Fermi surface instabilities of the Pomeranchuk type in the spin triplet channel with high orbital partial waves (F{sub l}{sup a} (l > 0)). The ordered phases are classified into two classes, dubbed the {alpha} and {beta}-phases by analogy to the superfluid {sup 3}He-A and B-phases. The Fermi surfaces in the {alpha}-phases exhibit spontaneous anisotropic distortions, while those in the {beta}-phases remain circular or spherical with topologically non-trivial spin configurations in momentum space. In the {alpha}-phase, the Goldstone modes in the density channel exhibit anisotropic overdamping. The Goldstone modes in the spin channel have nearly isotropic underdamped dispersion relation at small propagating wavevectors. Due to the coupling to the Goldstone modes, the spin wave spectrum develops resonance peaks in both the {alpha} and {beta}-phases, which can be detected in inelastic neutron scattering experiments. In the p-wave channel {beta}-phase, a chiral ground state inhomogeneity is spontaneously generated due to a Lifshitz-like instability in the originally nonchiral systems. Possible experiments to detect these phases are discussed.
Coexistence of superfluid and metallic-like state in two-component fermionic systems
Energy Technology Data Exchange (ETDEWEB)
Continentino, M.A., E-mail: mucio@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil); Padilha, Igor T. [Universidade Federal do Amazonas, Departamento de Física, Av. Gal. Rodrigo Octávio Jordão Ramos, 3000 Setor Sul e Norte, Coroado I, Manaus (Brazil)
2012-01-09
We study the possibility of coexistence in a two component fermionic system of a superfluid state with a metallic-like state with gapless excitations at a Fermi surface. We consider a two-component system with mixing (hybridization) between them and attractive interactions between only one type of quasi-particles. Besides a conventional BCS regime, we find for sufficiently strong interactions a superfluid state of Bose condensed pairs at zero temperature. We investigate whether these pairs can coexist with a metallic-like state characterized by gapless electronic excitations. The zero temperature phase diagram as a function of the strength of the attractive interaction and the mixing is obtained. For simplicity and to clarify the nature of the quantum phase diagram we consider the case of s-wave pairing. -- Highlights: ► We study superconductivity in a multi-component system along the BCS–BEC crossover. ► The T=0 phase diagram exhibits different regimes for the superfluid phases. ► We find a new metallic phase with fermions coexisting with preformed pairs. ► Superconductivity is destroyed from the BEC-like regime.
Topological States in a One-Dimensional Fermi Gas with Attractive Interactions
Ruhman, Jonathan; Berg, Erez; Altman, Ehud
2014-01-01
We describe a novel topological superfluid state, which forms in a one-dimensional Fermi gas with Rashba-like spin-orbit coupling, a Zeeman field and intrinsic attractive interactions. In spite of total number conservation and the presence of gapless excitations, Majorana-like zero modes appear in this system and can be linked with interfaces between two distinct phases that naturally form at different regions of the harmonic trap. As a result, the low lying collective excitations of the syst...
Neutron Fermi Liquids under the presence of a strong magnetic field with effective nuclear forces
Perez-Garcia, M Angeles; Polls, A
2009-01-01
Landau's Fermi Liquid parameters are calculated for non-superfluid pure neutron matter in the presence of a strong magnetic field at zero temperature. The particle-hole interactions in the system, where a net magnetization may be present, are characterized by these parameters in the framework of a multipolar formalism. We use either zero- or finite-range effective nuclear forces to describe the nuclear interaction. Using the obtained Fermi Liquid parameters, the effect of a strong magnetic field on some bulk magnitudes such as isothermal compressibility and spin susceptibility is also investigated.
Holographic Superfluidity in Imbalanced Mixtures
Erdmenger, Johanna; Kerner, Patrick; Ngo, Thanh Hai
2011-01-01
We construct superfluid black hole solutions with two chemical potentials. By analogy with QCD, the two chemical potentials correspond to the baryon and isospin symmetries, respectively. We consider two systems: the back-reacted U(2) Einstein-Yang-Mills theory in 4+1 dimensions and the 9+1-dimensional D3/D7 brane setup with two coincident D7-brane probes. In the D7-brane model, the identification of baryon and isospin chemical potential is explicit since the dual field theory is explicitly known. Studying the phase diagram, we find in both systems a quantum phase transition at a critical ratio of the two chemical potentials. However the quantum phase transition is different in the two systems: In the D3/D7 brane setup we always find a second order phase transition, while in the Einstein-Yang-Mills theory, depending on the strength of the back-reaction, we obtain a continuous or first order transition. We expect the continuous quantum phase transition to be BKT-like. We comment on the origin of this differing ...
Microscopic molecular superfluid response: theory and simulations
Zeng, Tao; Roy, Pierre-Nicholas
2014-04-01
Since its discovery in 1938, superfluidity has been the subject of much investigation because it provides a unique example of a macroscopic manifestation of quantum mechanics. About 60 years later, scientists successfully observed this phenomenon in the microscopic world though the spectroscopic Andronikashvili experiment in helium nano-droplets. This reduction of scale suggests that not only helium but also para-H2 (pH2) can be a candidate for superfluidity. This expectation is based on the fact that the smaller number of neighbours and surface effects of a finite-size cluster may hinder solidification and promote a liquid-like phase. The first prediction of superfluidity in pH2 clusters was reported in 1991 based on quantum Monte Carlo simulations. The possible superfluidity of pH2 was later indirectly observed in a spectroscopic Andronikashvili experiment in 2000. Since then, a growing number of studies have appeared, and theoretical simulations have been playing a special role because they help guide and interpret experiments. In this review, we go over the theoretical studies of pH2 superfluid clusters since the experiment of 2000. We provide a historical perspective and introduce the basic theoretical formalism along with key experimental advances. We then present illustrative results of the theoretical studies and comment on the possible future developments in the field. We include sufficient theoretical details such that the review can serve as a guide for newcomers to the field.
Fermi liquid theory: A brief survey in memory of Gerald E. Brown
Schaefer, Thomas
2014-01-01
I present a brief review of Fermi liquid theory, and discuss recent work on Fermi liquid theory in dilute neutron matter and cold atomic gases. I argue that renewed interest in transport properties of quantum fluids provides fresh support for Landau's approach to Fermi liquid theory, which is based on kinetic theory rather than effective field theory and the renormalization group. I also discuss work on non-Fermi liquids, in particular dense quark matter.
Fermi: a physicist in the upheaval; Fermi: un physicien dans la tourmente
Energy Technology Data Exchange (ETDEWEB)
Maria, M. de
2002-07-01
This book summarizes the life, works and complex personality of the Italian physicist Enrico Fermi (1901-1954) whose myth is linked with the political upheaval of the 2. world war: the youth of an autodidact, the theorician and the quantum mechanics, his invention of a quantum statistics, the weak interaction theory, his works on artificial radioactivity, the end of the Fermi team and his exile in the USA, the secrete researches at the university of Columbia and the birth of the first atomic 'pile' (December 2, 1942), the building of Los Alamos center and the Alamogordo explosion test, the disagreements among the physicists of the Manhattan project and the position of Fermi, Fermi's contribution in the H-bomb construction, the creation of the physics school of Chicago, the Oppenheimer spying affair. (J.S.)
An introduction to experiments on superfluid turbulence
International Nuclear Information System (INIS)
A description of the experimental background of superfluid turbulence was assigned to me for this lecture. Superfluid turbulence, or as some call it, quantum turbulence, has been an active field of physics since the 1950's. The field was pioneered experimentally and theoretically by Joe Vinen and as such is approaching a half century in age. It is safe to say that with few exceptions the results are unknown to those investigators who are interested in classical turbulence, that is the kind of investigation which has been pioneered by Taylor, Landau, Kolmogorov and others. It has only recently been realized that liquid helium I, liquid helium II and cryogenic (critical) helium gas are attractive candidates for investigating classical turbulence problems, and in the process many have decided to look at the kinds of challenges encountered in using helium II, that phase of liquid helium which exhibits superfluidity. (orig.)
Extension of Radiative Viscosity to Superfluid Matter
Institute of Scientific and Technical Information of China (English)
PI Chun-Mei; YANG Shu-Hua; ZHENG Xiao-Ping
2011-01-01
The radiative viscosity of superfluid npe matter is studied and it is found that to the lowest order of δμ/T,the ratio of radiative viscosity to bulk viscosity is the same as that of its normal matter.As one of the most important transport coefficients,the bulk viscosities of simple npe matter,of hyperon matter and even of quark matter,both in normal and superfluid states,have been extensively studied,[1-18] for more detail see Ref.[19].%The radiative viscosity of superfluid npe matter is studied and it is found that to the lowest order of δμ/T, the ratio of radiative viscosity to bulk viscosity is the same as that of its normal matter.
Chiral Superfluidity for the Heavy Ion Collisions
Kalaydzhyan, T
2013-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate tempera...
Transport coefficients in superfluid neutron stars
Tolos, Laura; Sarkar, Sreemoyee; Tarrus, Jaume
2014-01-01
We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.
Note on Zero Temperature Holographic Superfluids
Guo, Minyong; Niu, Chao; Tian, Yu; Zhang, Hongbao
2016-01-01
In this note, we have addressed various issues on zero temperature holographic superfluids. First, inspired by our numerical evidence for the equality between the superfluid density and particle density, we provide an elegant analytic proof for this equality by a boost trick. Second, using not only the frequency domain analysis but also the time domain analysis from numerical relativity, we identify the hydrodynamic normal modes and calculate out the sound speed, which is shown to increase with the chemical potential and saturate to the value predicted by the conformal field theory in the large chemical potential limit. Third, the generic non-thermalization is demonstrated by the fully non-linear time evolution from a non-equilibrium state for our zero temperature holographic superfluid. Furthermore, a conserved Noether charge is proposed in support of this behavior.
Note on zero temperature holographic superfluids
Guo, Minyong; Lan, Shanquan; Niu, Chao; Tian, Yu; Zhang, Hongbao
2016-06-01
In this note, we have addressed various issues on zero temperature holographic superfluids. First, inspired by our numerical evidence for the equality between the superfluid density and particle density, we provide an elegant analytic proof for this equality by a boost trick. Second, using not only the frequency domain analysis but also the time domain analysis from numerical relativity, we identify the hydrodynamic normal modes and calculate out the sound speed, which is shown to increase with the chemical potential and saturate to the value predicted by the conformal field theory in the large chemical potential limit. Third, the generic non-thermalization is demonstrated by the fully nonlinear time evolution from a non-equilibrium state for our zero temperature holographic superfluid. Furthermore, a conserved Noether charge is proposed in support of this behavior.
Turbulent velocity spectra in superfluid flows
Salort, J; Castaing, B; Chabaud, B; Daviaud, F; Didelot, T; Diribarne, P; Dubrulle, B; Gagne, Y; Gauthier, F; Girard, A; Hébral, B; Rousset, B; Thibault, P; Roche, P -E; 10.1063/1.3504375
2012-01-01
We present velocity spectra measured in three cryogenic liquid 4He steady flows: grid and wake flows in a pressurized wind tunnel capable of achieving mean velocities up to 5 m/s at temperatures above and below the superfluid transition, down to 1.7 K, and a "chunk" turbulence flow at 1.55 K, capable of sustaining mean superfluid velocities up to 1.3 m/s. Depending on the flows, the stagnation pressure probes used for anemometry are resolving from one to two decades of the inertial regime of the turbulent cascade. We do not find any evidence that the second order statistics of turbulence below the superfluid transition differ from the ones of classical turbulence, above the transition.
Transport coefficients in superfluid neutron stars
Energy Technology Data Exchange (ETDEWEB)
Tolos, Laura [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Frankfurt Institute for Advances Studies. Johann Wolfgang Goethe University, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Manuel, Cristina [Instituto de Ciencias del Espacio (IEEC/CSIC) Campus Universitat Autònoma de Barcelona, Facultat de Ciències, Torre C5, E-08193 Bellaterra (Barcelona) (Spain); Sarkar, Sreemoyee [Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai-400005 (India); Tarrus, Jaume [Physik Department, Technische Universität München, D-85748 Garching (Germany)
2016-01-22
We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.
Holographic Vortex Pair Annihilation in Superfluid Turbulence
Du, Yiqiang; Tian, Yu; Zhang, Hongbao
2014-01-01
We make a first principles investigation of the dynamical evolution of vortex number in a two-dimensional (2D) turbulent superfluid by holography through numerically solving its highly non-trivial gravity dual. With the randomly placed vortices and antivortices prepared as initial states, we find that the temporal evolution of the vortex number can be well fit statistically by two-body decay due to the vortex pair annihilation featured relaxation process remarkably from a very early time on. In particular, subtracted by the universal offset, the power law fit indicates that our holographic turbulent superfluid exhibits an apparently different decay pattern from the superfluid recently experimented in highly oblate Bose-Einstein condensates.
Current Topics in Atomic, Molecular and Optical Physics
Sinha, Chandana; Bhattacharyya, Shib Shankar
Preface -- Ultrafast dynamics of nano and mesoscopic systems driven by asymmetric electromagnetic pulses / A. Matos-Abiague, A. S. Moskalenko and J. Berakdar -- One-dimensional non-linear oscillators as models for atoms and molecules under intense laser fields / A. Wadehra and B. M. Deb -- Experimenting with topological states of Bose-Einstein condensates / C. Raman -- Laser cooling and trapping of Rb atoms / S. Chakraborty ... [et al.] -- Pair-correlation in Bose-Einstein condensate and fermi superfluid of atomic gases / B. Deb -- Properties of trapped Bose gas in the large-gas-parameter regime / A. Banerjee -- A Feynman-Kac path integral study of Rb gas / S. Datta -- Mean field theory for interacting spin-1 bosons on a lattice / R. V. Pai, K. Sheshadri and R. Pandit -- Mixed internal-external state approach for quantum computation with neutral atoms on atom chips / E. Charron ... [et al.] -- Ultrafast pulse shaping developments for quantum computation / S. K. Karthick Kumar and D. Goswami -- Quantum information transfer in atom-photon interactions in a cavity / A. S. Majumdar, N. Nayak and B. Ghosh -- Liouville density evolution in billiards and the quantum connection / D. Biswas -- MRCPA: theory and application to highly correlating system / K. Tanaka -- Calculation of negative ion shape resonances using coupled cluster theory / Y. Sajeev and S. Pal -- Optical frequency standard with Sr+: a theoretical many-body approach / C. Sur ... [et al.] -- Fast heavy ion collisions with H[symbol] molecules and young type interference / L. C. Tribedi and D. Misra -- Estimation of ion kinetic energies from time-of-flight and momentum spectra / B. Bapat -- Third-order optical susceptibility of metal nanocluster-glass 28 composites / B. Ghosh and P. Chakraborty -- Study of atom-surface interaction using magnetic atom mirror / A. K. Mohapatra.
Superfluid properties of a Bose-Einstein condensate in an optical lattice confined in a cavity
Bhattacherjee, A. B.
2007-01-01
We study the effect of a one dimensional optical lattice in a cavity field with quantum properties on the superfluid dynamics of a Bose-Einstein condensate(BEC). In the cavity the influence of atomic backaction and the external driving pump become important and strongly modify the optical potential. Due to the strong coupling between the condensate wavefunction and the cavity modes, the cavity light field develops a band structure. This study reveals that the pump and the cavity emerges as a ...
NASA
2009-01-01
1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)
How superfluid vortex knots untie
Kleckner, Dustin; Kauffman, Louis H.; Irvine, William T. M.
2016-07-01
Knots and links often occur in physical systems, including shaken strands of rope and DNA (ref. ), as well as the more subtle structure of vortices in fluids and magnetic fields in plasmas. Theories of fluid flows without dissipation predict these tangled structures persist, constraining the evolution of the flow much like a knot tied in a shoelace. This constraint gives rise to a conserved quantity known as helicity, offering both fundamental insights and enticing possibilities for controlling complex flows. However, even small amounts of dissipation allow knots to untie by means of `cut-and-splice’ operations known as reconnections. Despite the potentially fundamental role of these reconnections in understanding helicity--and the stability of knotted fields more generally--their effect is known only for a handful of simple knots. Here we study the evolution of 322 elemental knots and links in the Gross-Pitaevskii model for a superfluid, and find that they universally untie. We observe that the centreline helicity is partially preserved even as the knots untie, a remnant of the perfect helicity conservation predicted for idealized fluids. Moreover, we find that the topological pathways of untying knots have simple descriptions in terms of minimal two-dimensional knot diagrams, and tend to concentrate in states which are twisted in only one direction. These results have direct analogies to previous studies of simple knots in several systems, including DNA recombination and classical fluids. This similarity in the geometric and topological evolution suggests there are universal aspects in the behaviour of knots in dissipative fields.
Impact of medium effects on the cooling of non-superfluid and superfluid neutron stars
Schaab, C; Sedrakian, A D; Weber, F; Weigel, M K
1996-01-01
Neutrino emission from the dense hadronic component in neutron stars is subject to strong modifications due to collective effects in the nuclear medium. We implement two new neutrino--emission processes operating in the nuclear medium in numerical cooling simulations of neutron stars. The first process is the medium--modified Urca (MMU) process, which takes into account the softening of the pion exchange mode and other polarization effects as well as the neutrino emission arising from the intermediate reaction states in the modified Urca process. The second process concerns neutrino emission through superfluid pair formation and breaking processes. It is found that non--superfluid neutron star models cool mainly via the MMU process, which gives a smooth crossover from the standard to the nonstandard cooling scenario for increasing star masses. For superfluid stars, the superfluid pair formation and breaking processes accelerate mildly both the standard and the nonstandard cooling scenario. This leads to a goo...
Superfluid LDA (SLDA): Local Density Approximation for Systems with Superfluid Correlations
Bulgac, A; Bulgac, Aurel; Yu, Yongle
2004-01-01
We present a concise account of our development of the first genuine Local Density Approximation (LDA) to the Energy Density Functional (EDF) for fermionic systems with superfluid correlations, with a particular emphasis to nuclear systems.
National Aeronautics and Space Administration — All analysis results presented here are preliminary and are not intended as an official catalog of Fermi-LAT detected GRBs. Please consult the table's caveat page...
National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...
Observing chiral superfluid order by matter-wave interference.
Kock, T; Ölschläger, M; Ewerbeck, A; Huang, W-M; Mathey, L; Hemmerich, A
2015-03-20
The breaking of time-reversal symmetry via the spontaneous formation of chiral order is ubiquitous in nature. Here, we present an unambiguous demonstration of this phenomenon for atoms Bose-Einstein condensed in the second Bloch band of an optical lattice. As a key tool, we use a matter-wave interference technique, which lets us directly observe the phase properties of the superfluid order parameter and allows us to reconstruct the spatial geometry of certain low-energy excitations, associated with the formation of domains of different chirality. Our work marks a new era of optical lattices where orbital degrees of freedom play an essential role for the formation of exotic quantum matter, similarly as in electronic systems.
Enrico Fermi centenary exhibition seminar
Maximilien Brice
2002-01-01
Photo 01: Dr. Juan Antonio Rubio, Leader of the Education and Technology Transfer Division and CERN Director General, Prof. Luciano Maiani. Photo 03: Luciano Maiani, Welcome and Introduction Photo 09: Antonino Zichichi, The New 'Centro Enrico Fermi' at Via Panisperna Photos 10, 13: Ugo Amaldi, Fermi at Via Panisperna and the birth of Nuclear Medicine Photo 14: Jack Steinberger, Fermi in Chicago Photo 18: Valentin Telegdi, A close-up of Fermi Photo 21: Arnaldo Stefanini, Celebrating Fermi's Centenary in Documents and Pictures.
Energy Density Functional Approach to Superfluid Nuclei
Yu, Yongle; Bulgac, Aurel
2002-01-01
We show that within the framework of a simple local nuclear energy density functional (EDF), one can describe accurately the one-- and two--nucleon separation energies of semi--magic nuclei. While for the normal part of the EDF we use previously suggested parameterizations, for the superfluid part of the EDF we use the simplest possible local form compatible with known nuclear symmetries.
Atomic spectra in a helium bubble
Nakatsukasa, Takashi; Yabana, Kazuhiro; Bertsch, George F.
2002-01-01
Density functional theory (DFT) is applied to atomic spectra under perturbations of superfluid liquid helium. The atomic DFT of helium is used to obtain the distribution of helium atoms around the impurity atom, and the electronic DFT is applied to the excitations of the atom, averaging over the ensemble of helium configurations. The shift and broadening of the D1 and D2 absorption lines are quite well reproduced by theory, suggesting that the DFT may be useful for describing spectral perturb...
International Nuclear Information System (INIS)
We present a general method for obtaining the exact static solutions and collective excitation frequencies of a trapped Bose-Einstein condensate (BEC) with dipolar atomic interactions in the Thomas-Fermi regime. The method incorporates analytic expressions for the dipolar potential of an arbitrary polynomial density profile, thereby reducing the problem of handling nonlocal dipolar interactions to the solution of algebraic equations. We comprehensively map out the static solutions and excitation modes, including non-cylindrically-symmetric traps, and also the case of negative scattering length where dipolar interactions stabilize an otherwise unstable condensate. The dynamical stability of the excitation modes gives insight into the onset of collapse of a dipolar BEC. We find that global collapse is consistently mediated by an anisotropic quadrupolar collective mode, although there are two trapping regimes in which the BEC is stable against quadrupole fluctuations even as the ratio of the dipolar to s-wave interactions becomes infinite. Motivated by the possibility of a fragmented condensate in a dipolar Bose gas due to the partially attractive interactions, we pay special attention to the scissors modes, which can provide a signature of superfluidity, and identify a long-range restoring force which is peculiar to dipolar systems. As part of the supporting material for this paper we provide the computer program used to make the calculations, including a graphical user interface.
Enrico Fermi exhibition at CERN
2002-01-01
A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...
Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams
International Nuclear Information System (INIS)
We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He2+ and He4+, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl4 doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He)nC+, (He)nCl+, and (He)nCCl+. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets
Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams.
He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M; Kong, Wei
2015-08-01
We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He2(+) and He4(+), which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl4 doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He)(n)C(+), (He)(n)Cl(+), and (He)(n)CCl(+). Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets. PMID:26329210
Facile time-of-flight methods for characterizing pulsed superfluid helium droplet beams
Energy Technology Data Exchange (ETDEWEB)
He, Yunteng; Zhang, Jie; Li, Yang; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)
2015-08-15
We present two facile time-of-flight (TOF) methods of detecting superfluid helium droplets and droplets with neutral dopants. Without an electron gun and with only a heated filament and pulsed electrodes, the electron impact ionization TOF mass spectrometer can resolve ionized helium clusters such as He{sub 2}{sup +} and He{sub 4}{sup +}, which are signatures of superfluid helium droplets. Without ionizing any helium atoms, multiphoton non-resonant laser ionization of CCl{sub 4} doped in superfluid helium droplets at 266 nm generates complex cluster ions of dopant fragments with helium atoms, including (He){sub n}C{sup +}, (He){sub n}Cl{sup +}, and (He){sub n}CCl{sup +}. Using both methods, we have characterized our cryogenic pulsed valve—the Even-Lavie valve. We have observed a primary pulse with larger helium droplets traveling at a slower speed and a rebound pulse with smaller droplets at a faster speed. In addition, the pickup efficiency of dopant is higher for the primary pulse when the nozzle temperature is higher than 13 K, and the total time duration of the doped droplet pulse is only on the order of 20 μs. These results stress the importance of fast and easy characterization of the droplet beam for sensitive measurements such as electron diffraction of doped droplets.
Fractal generalization of Thomas-Fermi model
Rekhviashvili, S. Sh.; Sokurov, A. A.
2016-05-01
The Thomas-Fermi model is developed for a multielectron neutral atom at an arbitrary metric dimension of the electron cloud. It has been shown that the electron cloud with the reduced dimension should be located in the close vicinity of the nucleus. At a metric dimension of the electron cloud of 2, the differential equation of the model admits an analytical solution. In this case, the screening parameter does not depend on the charge of the nucleus.
Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases
International Nuclear Information System (INIS)
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe
Vortex-Core Structure in Neutral Fermion Superfluids with Population Imbalance
International Nuclear Information System (INIS)
Quantized vortex-core structure is theoretically investigated in fermion superfluids with population imbalance for two atom species of neutral atom clouds near a Feshbach resonance. In contrast with the vortex core in balance case where the quantum depletion makes a vortex visible through the density profile measurement, the vortex core is filled in and becomes less visible because the quantized discrete bound states are occupied exclusively by the majority species. Yet it is shown that the core can be visible through the minority density profile experiment using phase contrast imaging, revealing an interesting opportunity to examine low-lying fermionic core bound states unexplored so far
He, Yunteng; Zhang, Jie; Kong, Wei
2016-02-28
We compare characteristics of electron impact ionization (EI) and multiphoton ionization (MPI) of doped superfluid helium droplets using the same droplet source. Selected dopant ion fragments from the two ionization schemes demonstrate different dependence on the doping pressure, which could be attributed to the different ionization mechanisms. While EI directly ionizes helium atoms in a droplet therefore has higher yields for bigger droplets (within a limited size range), MPI is insensitive to the helium in a droplet and is only dependent on the number of dopant molecules. The optimal timing of the ionization pulse also varies with the doping pressure, implying a velocity slip among different sized droplets. Calculations of the doping statistics and ionization probabilities qualitatively agree with the experimental data. Our results offer a word of caution in interpreting the pressure and timing dependence of superfluid helium droplets, and we also devise a scheme in achieving a high degree of doping while limiting the contribution of dopant clusters. PMID:26931697
2009-01-01
In only 10 months of scientific activity, the Fermi space observatory has already collected an unprecedented wealth of information on some of the most amazing objects in the sky. In a recent talk at CERN, Luca Latronico, a member of the Fermi collaboration, explained some of their findings and emphasized the strong links between High Energy Physics (HEP) and High Energy Astrophysics (HEA). The Fermi gamma-ray telescope was launched by NASA in June 2008. After about two months of commissioning it started sending significant data back to the Earth. Since then, it has made observations that are changing our view of the sky: from discovering a whole new set of pulsars, the greatest total energy gamma-ray burst ever, to detecting an unexplained abundance of high-energy electrons that could be a signature of dark matter, to producing a uniquely rich and high definition sky map in gamma-rays. The high performance of the instrument comes as ...
D'Agostini, G
2005-01-01
It is curious to learn that Enrico Fermi knew how to base probabilistic inference on Bayes theorem, and that some influential notes on statistics for physicists stem from what the author calls elsewhere, but never in these notes, {\\it the Bayes Theorem of Fermi}. The fact is curious because the large majority of living physicists, educated in the second half of last century -- a kind of middle age in the statistical reasoning -- never heard of Bayes theorem during their studies, though they have been constantly using an intuitive reasoning quite Bayesian in spirit. This paper is based on recollections and notes by Jay Orear and on Gauss' ``Theoria motus corporum coelestium'', being the {\\it Princeps mathematicorum} remembered by Orear as source of Fermi's Bayesian reasoning.
Absence of small-scale structure in homogeneous superfluid turbulence
International Nuclear Information System (INIS)
By contrast with classical turbulence, which is driven by large-scale shear instabilities, superfluid turbulence is driven homogeneously by the mutual friction between the normal fluid and the superfluid. We suggest that this difference implies that there is no equivalent to a Kolmogorov energy cascade in turbulent superfluid flows. We then compare a recent numerical simulation of superfluid turbulence by Schwartz [Phys. Rev. B 31, 5782 (1985)] with a recent simulation of singular vortex stretching in classical fluids by Siggia and Pumir. This comparison suggests that the rigidity of the quantum-mechanical vortex core inhibits any generation of small-scale structure in the superfluid case. Superfluid turbulence is essentially a two-length-scale phenomenon, where the scales are the average intervortex distance and the vortex-core diameter
Zero Temperature Holographic Superfluids with Two Competing Orders
Li, Ran; Zhang, Hongbao; Zhao, Junkun
2016-01-01
We initiate the investigation of the zero temperature holographic superfluids with two competing orders, where besides the vacuum phase, two one band superfluid phases, the coexistent superfluid phase has also been found in the AdS soliton background for the first time. We construct the complete phase diagram in the $e-\\mu$ plane by numerics, which is consistent with our qualitative analysis. Furthermore, we calculate the corresponding optical conductivity and sound speed by the linear response theory. The onset of pole of optical conductivity at $\\omega=0$ indicates that the spontaneous breaking phase always represents the superfluid phase, and the residue of pole is increased with the chemical potential, which is consistent with the fact that the particle density is essentially the superfluid density for zero temperature superfluids. In addition, the resulting sound speed demonstrates the non-smoothness at the critical points as the order parameter of condensate, which indicates that the phase transitions c...
Institute of Scientific and Technical Information of China (English)
LI Shichun
2004-01-01
Based on the Thomas-Fermi-Dirac-Cheng model, atomic phase diagram or electron density versus atomic radius diagram describing the interaction properties of atoms of different kinds in equilibrium state is developed. Atomic phase diagram is established based on the two-atoms model. Besides atomic radius, electron density and continuity condition for electron density on interfaces between atoms, the lever law of atomic phase diagram involving other physical parameters is taken into account, such as the binding energy, for the sake of simplicity.
Position-dependent oscillated decay of a two-level atom immersed in a two-dimensional photon fluid
Zhang, Xiongfeng; Yin, Miao; Liang, Wenyao
2016-01-01
A Weisskopf-Wigner theory has been used to investigate the spontaneous emission of a two-level atom placed in a photon superfluid. It is found that the atom decays exponentially. However, the atomic decay rate changes periodically with the position of the atom and it is minimal when the atom is located at the wave nodes. The largest decay rate of the atom in photon superfluid has the same order of magnitude as it is in vacuum of free space. Moreover, the analytical result shows that the decay of an atom in photon superfluid, compared with that in planar cavity without photon superfluid, will be inhibited. The physical origin of atomic decay inhibition is also discussed.
Electron bubbles and Weyl fermions in chiral superfluid 3He-A
Shevtsov, Oleksii; Sauls, J. A.
2016-08-01
Electrons embedded in liquid 3He form mesoscopic bubbles with large radii compared to the interatomic distance between 3He atoms, voids of Nbubble≈200 3He atoms, generating a negative ion with a large effective mass that scatters thermal excitations. Electron bubbles in chiral superfluid 3He-A also provide a local probe of the ground state. We develop a scattering theory of Bogoliubov quasiparticles by negative ions embedded in 3He-A that incorporates the broken symmetries of 3He-A , particularly broken symmetries under time reversal and mirror symmetry in a plane containing the chiral axis l ̂. Multiple scattering by the ion potential, combined with branch conversion scattering by the chiral order parameter, leads to a spectrum of Weyl fermions bound to the ion that support a mass current circulating the electron bubble—a mesoscopic realization of chiral edge currents in superfluid 3He-A films. A consequence is that electron bubbles embedded in 3He-A acquire angular momentum, L ≈-(Nbubble/2 ) ℏ l ̂ , inherited from the chiral ground state. We extend the scattering theory to calculate the forces on a moving electron bubble, both the Stokes drag and a transverse force, FW=e/c v ×BW , defined by an effective magnetic field, BW∝l ̂ , generated by the scattering of thermal quasiparticles off the spectrum of Weyl fermions bound to the moving ion. The transverse force is responsible for the anomalous Hall effect for electron bubbles driven by an electric field reported by the RIKEN group. Our results for the scattering cross section, drag, and transverse forces on moving ions are compared with experiments and shown to provide a quantitative understanding of the temperature dependence of the mobility and anomalous Hall angle for electron bubbles in normal and superfluid 3He-A . We also discuss our results in relation to earlier work on the theory of negative ions in superfluid 3He.
Phase transitions in Bose-Fermi-Hubbard model in the heavy fermion limit: Hard-core boson approach
Directory of Open Access Journals (Sweden)
I.V. Stasyuk
2015-12-01
Full Text Available Phase transitions are investigated in the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations for the case of infinitely small fermion transfer and repulsive on-site boson-fermion interaction. The behavior of the Bose-Einstein condensate order parameter and grand canonical potential is analyzed as functions of the chemical potential of bosons at zero temperature. The possibility of change of order of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams are built.
Shortcut to a Fermi-Degenerate Gas of Molecules via Cooperative Association
Dannenberg, O; Suominen, K A; Dannenberg, Olavi; Mackie, Matt; Suominen, Kalle-Antti; 10.1103/.91.210404
2003-01-01
The creation of a Fermi-degenerate gas molecules using either photoassociation or the Feshbach resonance is theoretically examined. This problem raises an interest because, unlike bosons, fermions in general do not behave cooperatively, so that the collective association of, say, two million atoms into one million molecules is not to be expected. Nevertheless, we find that the coupled Fermi system displays collective Rabi-like oscillations and adiabatic passage between atoms and molecules, thereby mimicking Bose-Einstein statistics. Cooperative association of a degenerate mixture of Bose and Fermi gases could therefore serve as a shortcut to a degenerate gas of Fermi molecules.
Instability of Superfluid Flow in the Neutron Star Inner Crust
Link, Bennett
2011-01-01
I examine the hydrodynamic stability of a pinned superfluid vortex lattice undergoing thermal creep under the Magnus force in the inner crust of a spinning down neutron star. The superfluid flow is unstable over length scales $\\lap 10$ m, possibly over timescales of days to minutes. The vortex lattice could degenerate into a tangle, and the superfluid flow could become turbulent. Unexpectedly large dissipation would suppress the instability.
Bistability in a Driven-Dissipative Superfluid
Labouvie, Ralf; Santra, Bodhaditya; Heun, Simon; Ott, Herwig
2016-06-01
We experimentally study a driven-dissipative Josephson junction array, realized with a weakly interacting Bose-Einstein condensate residing in a one-dimensional optical lattice. Engineered losses on one site act as a local dissipative process, while tunneling from the neighboring sites constitutes the driving force. We characterize the emerging steady states of this atomtronic device. With increasing dissipation strength γ the system crosses from a superfluid state, characterized by a coherent Josephson current into the lossy site, to a resistive state, characterized by an incoherent hopping transport. For intermediate values of γ , the system exhibits bistability, where a superfluid and an incoherent branch coexist. We also study the relaxation dynamics towards the steady state, where we find a critical slowing down, indicating the presence of a nonequilibrium phase transition.
Relativistic superfluid models for rotating neutron stars
Carter, B
2001-01-01
This article starts by providing an introductory overview of the theoretical mechanics of rotating neutron stars as developped to account for the frequency variations, and particularly the discontinuous glitches, observed in pulsars. The theory suggests, and the observations seem to confirm, that an essential role is played by the interaction between the solid crust and inner layers whose superfluid nature allows them to rotate independently. However many significant details remain to be clarified, even in much studied cases such as the Crab and Vela. The second part of this article is more technical, concentrating on just one of the many physical aspects that needs further development, namely the provision of a satisfactorily relativistic (local but not microscopic) treatment of the effects of the neutron superfluidity that is involved.
Electric generation of vortices in polariton superfluids
Flayac, H.; Pavlovic, G.; Kaliteevski, M. A.; Shelykh, I. A.
2012-02-01
We have theoretically demonstrated the on-demand electric generation of vortices in an exciton-polariton superfluid. Electric pulses applied to a horseshoe-shaped metallic mesa, deposited on top of the microcavity, generate a noncylindrically symmetric solitonic wave in the system. Breakdown of its wave front at focal points leads to the formation of vortex-antivortex pairs, which subsequently propagate in the superfluid. The trajectory of these vortex dipoles can be controlled by applying a voltage to additional electrodes. They can be confined within channels formed by metallic stripes and unbound by a wedged mesa giving birth to grey solitons. Finally, single static vortices can be generated using a single metallic plate configuration.
Relativistic models for Superconducting-Superfluid Mixtures
Carter, B; Carter, Brandon; Langlois, David
1998-01-01
The material below the crust of a neutron star is understood to be describable in terms of three principal independently moving constituents, identifiable as neutrons, protons, and electrons, of which the first two are believed to form mutually coupled bosonic condensates. The large scale comportment of such a system will be that of a positively charged superconducting superfluid in a negatively charged ``normal'' fluid background. As a contribution to the development of the theory of such a system, the present work shows how, subject to neglect of dissipative effects, it is possible to set up an elegant category of simplified but fully relativistic three-constituent superconducting superfluid models whose purpose is to provide realistic approximations for cases in which a strictly conservative treatment is sufficient. A "mesoscopic" model, describing the fluid between the vortices, is constructed, as well as a "macroscopic" model taking into account the average effect of quantised vortices.
Superfluid stiffness of a driven dissipative condensate with disorder.
Janot, Alexander; Hyart, Timo; Eastham, Paul R; Rosenow, Bernd
2013-12-01
Observations of macroscopic quantum coherence in driven systems, e.g. polariton condensates, have strongly stimulated experimental as well as theoretical efforts during the last decade. We address the question of whether a driven quantum condensate is a superfluid, allowing for the effects of disorder and its nonequilibrium nature. We predict that for spatial dimensions d<4 the superfluid stiffness vanishes once the condensate exceeds a critical size, and treat in detail the case d=2. Thus a nonequilibrium condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems.
A theory for non-Abelian superfluid dynamics
Jain, Akash
2016-01-01
We write down a theory for non-Abelian superfluids with a partially broken (semisimple) Lie group. We adapt the offshell formalism of hydrodynamics to superfluids and use it to comment on the superfluid transport compatible with the second law of thermodynamics. We find that the second law can be also used to derive the Josephson equation, which governs dynamics of the Goldstone modes. In the course of our analysis, we derive an alternate and mutually distinct parametrization of the recently proposed classification of hydrodynamic transport and generalize it to superfluids.
Superfluidity of grain boundaries and supersolid behavior.
Sasaki, S; Ishiguro, R; Caupin, F; Maris, H J; Balibar, S
2006-08-25
When two communicating vessels are filled to a different height with liquid, the two levels equilibrate because the liquid can flow. We have looked for such equilibration with solid (4)He. For crystals with no grain boundaries, we see no flow of mass, whereas for crystals containing several grain boundaries, we detect a mass flow. Our results suggest that the transport of mass is due to the superfluidity of grain boundaries. PMID:16873608
Superfluid Helium Flow in Porous Media
Allain, Hervé; Quintard, Michel; Soulaine, Cyprien; Prat, Marc; Baudouy, Bertrand; Van Weelderen, Rob
2013-01-01
Superfluid helium is primarily used in the field of applied superconductivity. Given the complexity of the magnet geometry and the scales involved, a real 3D simulation of heat transfer in such devices at the micro-channel scale is very difficult, even impossible. However, the repeatability or even periodicity of the structure suggests the possibility of a macro-scale description following a porous medium approach. Which macro-scale model may be used? This largely remains an open field while ...
Miyake, Hirokazu; Siviloglou, Georgios A; Puentes, Graciana; Pritchard, David E; Ketterle, Wolfgang; Weld, David M
2011-10-21
We have observed Bragg scattering of photons from quantum degenerate ^{87}Rb atoms in a three-dimensional optical lattice. Bragg scattered light directly probes the microscopic crystal structure and atomic wave function whose position and momentum width is Heisenberg limited. The spatial coherence of the wave function leads to revivals in the Bragg scattered light due to the atomic Talbot effect. The decay of revivals across the superfluid to Mott insulator transition indicates the loss of superfluid coherence. PMID:22107532
Solares, H A Ayala; Hüntemeyer, P
2015-01-01
The Fermi Bubbles, which comprise two large and homogeneous regions of spectrally hard gamma-ray emission extending up to $55^{o}$ above and below the Galactic Center, were first noticed in GeV gamma-ray data from the Fermi Telescope in 2010. The mechanism or mechanisms which produce the observed hard spectrum are not understood. Although both hadronic and lep- tonic models can describe the spectrum of the bubbles, the leptonic model can also explain similar structures observed in microwave data from the WMAP and Planck satellites. Recent publications show that the spectrum of the Fermi Bubbles is well described by a power law with an exponential cutoff in the energy range of 100MeV to 500GeV. Observing the Fermi Bubbles at higher gamma-ray energies will help constrain the origin of the bubbles. A steeper cutoff will favor a leptonic model. The High Altitude Water Cherenkov (HAWC) Observatory, located 4100m above sea level in Mexico, is designed to measure high-energy gamma rays between 100GeV to 100TeV. With...
Superfluidity in topologically nontrivial flat bands.
Peotta, Sebastiano; Törmä, Päivi
2015-11-20
Topological invariants built from the periodic Bloch functions characterize new phases of matter, such as topological insulators and topological superconductors. The most important topological invariant is the Chern number that explains the quantized conductance of the quantum Hall effect. Here we provide a general result for the superfluid weight Ds of a multiband superconductor that is applicable to topologically nontrivial bands with nonzero Chern number C. We find that the integral over the Brillouin-zone of the quantum metric, an invariant calculated from the Bloch functions, gives the superfluid weight in a flat band, with the bound Ds⩾|C|. Thus, even a flat band can carry finite superfluid current, provided the Chern number is nonzero. As an example, we provide Ds for the time-reversal invariant attractive Harper-Hubbard model that can be experimentally tested in ultracold gases. In general, our results establish that a topologically nontrivial flat band is a promising concept for increasing the critical temperature of the superconducting transition.
Chiral superfluidity for the heavy ion collisions
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)
2013-02-15
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate temperatures (T{sub c}
Landau level-superfluid modified factor and effective X/$\\gamma$-ray coefficient of a magnetar
Gao, Z F; Wang, N; Chou, C K; Huo, W S
2013-01-01
As soon as the energy of electrons near the Fermi surface are higher than $Q$, the threshold energy of inverse $\\beta-$ decay, the electron capture process will dominate. The resulting high-energy neutrons will destroy anisotropic ${}^3P_2$ neutron superfluid Cooper pairs. By colliding with the neutrons produced in the process $n+ (n\\uparrow n\\downarrow)\\longrightarrow n+ n+ n$, the kinetic energy of the outgoing neutrons will be transformed into thermal energy. The transformed thermal energy would transported from the star interior to the star surface by conduction, then would be transformed into radiation energy as soft X-rays and gamma-rays. After a highly efficient modulation within the pulsar magnetosphere, the surface thermal emission (mainly soft X/$\\gamma$-ray emission) has been shaped into a spectrum with the observed characteristics of magnetars. By introducing two important parameters: Landau level-superfluid modified factor and effective X/$\\gamma$-ray coefficient, we numerically simulate the proc...
A smooth polaron-molecule crossover in a Fermi system
Edwards, D.M.
2013-01-01
The problem of a single down spin particle interacting with a Fermi sea of up spin particles is of current interest in the field of cold atoms. The Hubbard model, appropriate to atoms in an optical lattice potential, is considered in parallel with a gas model. As the strength of an attractive short-range interaction is increased there is a crossover from "polaron" behaviour, in which the Fermi sea is weakly perturbed, to "molecule" behaviour in which the down spin particle is bound to a singl...
A two-dimensional Fermi gas in the BEC-BCS crossover
Energy Technology Data Exchange (ETDEWEB)
Ries, Martin Gerhard
2016-01-21
This thesis reports on the preparation of a 2D Fermi gas in the BEC-BCS crossover and the observation of the BKT transition into a quasi long-range ordered superfluid phase. The pair momentum distribution of the gas is probed by means of a matter-wave focusing technique which relies on time-of-flight evolution in a weak harmonic potential. This distribution holds the coherence properties of the gas. The quasi long-range ordered phase manifests itself as a sharp low-momentum peak. The temperature where it forms is identified as the transition temperature. By tuning the temperature and the interaction strength, the phase diagram of the 2D Fermi gas in the BEC-BCS crossover is mapped out. The phase coherence is investigated in a self-interference experiment. Furthermore, algebraic decay of correlations is observed in the trap average of the first order correlation function, which is obtained from the Fourier transform of the pair momentum distribution. This is in qualitative agreement with predictions of homogeneous theory for the superfluid phase in a 2D gas. The presented results provide a foundation for future experimental and theoretical studies of strongly correlated 2D Fermi gases. They might thus help to elucidate complex systems such as the electron gas in high-T{sub c} superconductors.
Hydrodynamics of normal and superfluid polar liquids. Sound propagation
International Nuclear Information System (INIS)
Hydrodynamic equations for normal and superfluid liquids, possessing spontaneous electric polarization, are obtained using the phenomenological approach. It is shown that sound wave propagation is followed by electric field oscillations. Corrections to speeds of the first and second sounds in normal and superfluid polar liquids are calculated
Measurements and modelling of recuperator for superfluid Stirling refrigerator
Brisson, J. G.; Swift, G. W.
Measurements and several methods of modelling of a recuperator for use in a dual superfluid Stirling refrigerator are discussed. The models are also applicable to non-superfluid machines. The heat capacity of the fluid entrained in the recuperator is essential for its efficient operation if the piston motions are sinusoidal.
Generalized equation of state for cold superfluid neutron stars
Chamel, N.; Pearson, J M; Goriely, S
2010-01-01
Mature neutron stars are expected to contain various kinds of superfluids in their interiors. Modeling such stars requires the knowledge of the mutual entrainment couplings between the different condensates. We present a unified equation of state describing the different regions of a neutron star with superfluid neutrons and superconducting protons in its core.
Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry
2015-01-01
A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.
Fermi and the Elucidation of Matter
Wilczek, Frank
2001-01-01
Fermi helped establish a new framework for understanding matter, based on quantum theory. This framework refines and improves traditional atomism in two crucial respects. First, the elementary constituents of matter belong to a very small number of classes, and all objects of a given class (e.g., all electrons) are rigorously identical, indeed indistinguishable. This profound identity is demonstrated empirically through the phenomena of quantum statistics, and is explained by the principles of free quantum field theory. Second, objects of one class can mutate into objects of other classes. Such mutability can be understood as manifesting interacting quantum field theory. Fermi contributed to establishing theoretical foundations for the new viewpoint, through his work on quantum statistics and quantum field theory, and to its fruitful application and empirical validation, through his work on beta decay, nuclear transmutation, and primeval strong interaction theory.
Laser cooling and control of excitations in superfluid helium
Harris, G I; Sheridan, E; Sachkou, Y; Baker, C; Bowen, W P
2015-01-01
Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. However measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high me...
Vortex structure in superfluid color-flavor locked quark matter
Alford, Mark G; Vachaspati, Tanmay; Windisch, Andreas
2016-01-01
The core region of a neutron star may feature quark matter in the color-flavor- locked (CFL) phase. The CFL condensate breaks the baryon number symmetry, such that the phenomenon of superfluidity arises. If the core of the star is rotating, vortices will form in the superfluid, carrying the quanta of angular momentum. In a previous study we have solved the question of stability of these vortices, where we found numerical proof of a conjectured instability, according to which superfluid vortices will decay into an arrangement of so-called semi-superfluid fluxtubes. Here we report first results of an extension of our framework that allows us to study multi-vortex dynamics. This will in turn enable us to investigate the structure of semi-superfluid string lattices, which could be relevant to study pinning phenomena at the boundary of the core.
Superfluid response of two-dimensional parahydrogen clusters in confinement
Energy Technology Data Exchange (ETDEWEB)
Idowu, Saheed; Boninsegni, Massimo [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E7 (Canada)
2015-04-07
We study by computer simulations the effect of confinement on the superfluid properties of small two-dimensional (2D) parahydrogen clusters. For clusters of fewer than twenty molecules, the superfluid response in the low temperature limit is found to remain comparable in magnitude to that of free clusters, within a rather wide range of depth and size of the confining well. The resilience of the superfluid response is attributable to the “supersolid” character of these clusters. We investigate the possibility of establishing a bulk 2D superfluid “cluster crystal” phase of p-H{sub 2}, in which a global superfluid response would arise from tunnelling of molecules across adjacent unit cells. The computed energetics suggests that for clusters of about ten molecules, such a phase may be thermodynamically stable against the formation of the equilibrium insulating crystal, for values of the cluster crystal lattice constant possibly allowing tunnelling across adjacent unit cells.
Dark Energy and Dark Matter in a Superfluid Universe
Huang, Kerson
2013-01-01
The vacuum is filled with complex scalar fields, such as the Higgs field. These fields serve as order parameters for superfluidity (quantum phase coherence over macroscopic distances), making the entire universe a superfluid. We review a mathematical model consisting of two aspects: (a) emergence of the superfluid during the big bang; (b) observable manifestations of superfluidity in the present universe. The creation aspect requires a self-interacting scalar field that is asymptotically free, i.e., the interaction must grow from zero during the big bang, and this singles out the Halpern-Huang potential, which has exponential behavior for large fields. It leads to an equivalent cosmological constant that decays like a power law, and this gives dark energy without "fine-tuning". Quantum turbulence (chaotic vorticity) in the early universe was able to create all the matter in the universe, fulfilling the inflation scenario. In the present universe, the superfluid can be phenomenologically described by a nonline...
Pinning down the superfluid and measuring masses using pulsar glitches
Ho, Wynn C G; Antonopoulou, Danai; Andersson, Nils
2015-01-01
Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and X-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.
Oscillations of dissipative superfluid neutron stars
International Nuclear Information System (INIS)
We investigate the oscillations of slowly rotating superfluid stars, taking into account the vortex-mediated mutual friction force that is expected to be the main damping mechanism in mature neutron star cores. Working to linear order in the rotation of the star, we consider both the fundamental f-modes and the inertial r-modes. In the case of the (polar) f-modes, we work out an analytic approximation of the mode which allows us to write down a closed expression for the mutual friction damping time scale. The analytic result is in good agreement with previous numerical results obtained using an energy integral argument. We extend previous work by considering the full range of permissible values for the vortex drag, e.g. the friction between each individual vortex and the electron fluid. This leads to the first ever results for the f-mode in the strong drag regime. Our estimates provide useful insight into the dependence on, and relevance of, various equation of state parameters. In the case of the (axial) r-modes, we confirm the existence of two classes of modes. However, we demonstrate that only one of these sets remains purely axial in more realistic neutron star models. Our analysis lays the foundation for companion studies of the mutual friction damping of the r-modes at second order in the slow-rotation approximation, the first time evolutions for superfluid neutron star perturbations and also the first detailed attempt at studying the dynamics of superfluid neutron stars with both a relative rotation between the components and mutual friction.
Turning bacteria suspensions into a "superfluid"
López, Héctor Matías; Douarche, Carine; Auradou, Harold; Clément, Eric
2015-01-01
The rheological response under simple shear of an active suspension of Escherichia coli is determined in a large range of shear rates and concentrations. The effective viscosity and the time scales characterizing the bacterial organization under shear are obtained. In the dilute regime, we bring evidences for a low shear Newtonian plateau characterized by a shear viscosity decreasing with concentration. In the semi-dilute regime, for particularly active bacteria, the suspension display a "super-fluid" like transition where the viscous resistance to shear vanishes, thus showing that macroscopically, the activity of pusher swimmers organized by shear, is able to fully overcome the dissipative effects due to viscous loss.
Dirac and Weyl rings in three-dimensional cold-atom optical lattices
Xu, Yong; Zhang, Chuanwei
2016-06-01
Recently three-dimensional topological quantum materials with gapless energy spectra have attracted considerable interest in many branches of physics. Besides the celebrated example, Dirac and Weyl points which possess gapless point structures in the underlying energy dispersion, the topologically protected gapless spectrum, can also occur along a ring, named Dirac and Weyl nodal rings. Ultracold atomic gases provide an ideal platform for exploring new topological materials with designed symmetries and dispersion. However, whether Dirac and Weyl rings can exist in the single-particle spectrum of cold atoms remains elusive. Here we propose a realistic model for realizing Dirac and Weyl rings in the single-particle band dispersion of a cold-atom optical lattice. Our scheme is based on a previously experimentally implemented Raman coupling setup for realizing spin-orbit coupling. Without the Zeeman field, the model preserves both pseudo-time-reversal and inversion symmetries, allowing Dirac rings. The Dirac rings split into Weyl rings with a Zeeman field that breaks the pseudo-time-reversal symmetry. We examine the superfluidity of attractive Fermi gases in this model and also find Dirac and Weyl rings in the quasiparticle spectrum.
A phenomenological approach to the equation of state of a unitary Fermi gas
Indian Academy of Sciences (India)
M V N Murthy; M Brack; R K Bhaduri
2014-06-01
We propose a phenomenological approach for the equation of state of a unitary Fermi gas. The universal equation of state is parametrized in terms of Fermi–Dirac integrals. This reproduces the experimental data over the accessible range of fugacity and normalized temperature, but cannot describe the superfluid phase transition found in the MIT experiment [Ku et al, Science 335, 563 (2012)]. The most sensitive data for compressibility and specific heat at phase transition can, however, be fitted by introducing into the grand partition function a pair of complex conjugate zeros lying in the complex fugacity plane slightly off the real axis.
Transport phenomena in correlated quantum liquids: Ultracold Fermi gases and F/N junctions
Li, Hua
Landau Fermi-liquid theory was first introduced by L. D. Landau in the effort of understanding the normal state of Fermi systems, where the application of the concept of elementary excitations to the Fermi systems has proved very fruitful in clarifying the physics of strongly correlated quantum systems at low temperatures. In this thesis, I use Landau Fermi-liquid theory to study the transport phenomena of two different correlated quantum liquids: the strongly interacting ultracold Fermi gases and the ferromagnet/normal-metal (F/N) junctions. The detailed work is presented in chapter II and chapter III of this thesis, respectively. Chapter I holds the introductory part and the background knowledge of this thesis. In chapter II, I study the transport properties of a Fermi gas with strong attractive interactions close to the unitary limit. In particular, I compute the transport lifetimes of the Fermi gas due to superfluid fluctuations above the BCS transition temperature Tc. To calculate the transport lifetimes I need the scattering amplitudes. The scattering amplitudes are dominated by the superfluid fluctuations at temperatures just above Tc. The normal scattering amplitudes are calculated from the Landau parameters. These Landau parameters are obtained from the local version of the induced interaction model for computing Landau parameters. I also calculate the leading order finite temperature corrections to the various transport lifetimes. A calculation of the spin diffusion coefficient is presented in comparison to the experimental findings. Upon choosing a proper value of F0a, I am able to present a good match between the theoretical result and the experimental measurement, which indicates the presence of the superfluid fluctuations near Tc. Calculations of the viscosity, the viscosity/entropy ratio and the thermal conductivity are also shown in support of the appearance of the superfluid fluctuations. In chapter III, I study the spin transport in the low
A new look at Thomas–Fermi theory
DEFF Research Database (Denmark)
Solovej, Jan Philip
2016-01-01
In this short note, we argue that Thomas–Fermi theory, the simplest of all density functional theories, although failing to explain features such as molecular binding or stability of negative ions, is surprisingly accurate in estimating sizes of atoms. We give both numerical, experimental and rig...... and rigorous mathematical evidence for this claim. Motivated by this, we formulate two new mathematical conjectures on the exactness of Thomas–Fermi theory.......In this short note, we argue that Thomas–Fermi theory, the simplest of all density functional theories, although failing to explain features such as molecular binding or stability of negative ions, is surprisingly accurate in estimating sizes of atoms. We give both numerical, experimental...
Anisotropic superfluidity of {sup 4}He on a C{sub 36} fullerene molecule
Energy Technology Data Exchange (ETDEWEB)
Park, Sungjin; Kim, Byeongjoon; Kwon, Yongkyung, E-mail: ykwon@konkuk.ac.kr [Division of Quantum Phases and Devices, School of Physics, Konkuk University, Seoul 143-701 (Korea, Republic of)
2015-09-14
We have performed path-integral Monte Carlo calculations to study the adsorption of {sup 4}He atoms on two different C{sub 36} isomers with the D{sub 6h} and the D{sub 2d} symmetries. The radial {sup 4}He density distributions reveal layer-by-layer growth with the first layer being located at a distance of ∼5.5 Å from the C{sub 36} molecular center and the second layer at ∼8.3 Å. From the angular density profiles of {sup 4}He, we find different quantum states as the number of {sup 4}He adatoms N varies. For N = 20, we observe commensurate solid structures on both D{sub 6h} and D{sub 2d} isomers, where each of 8 hexagon and 12 pentagon centers of the fullerene surfaces is occupied by a single {sup 4}He atom. The second-layer promotion starts beyond N = 38 on both isomers, where a compressible incommensurate structure is observed on the D{sub 6h} isomer and another commensurate structure on D{sub 2d}. Between N = 20 and N = 38, the {sup 4}He monolayer on D{sub 6h} shows several distinct rings of delocalized {sup 4}He atoms along with strongly anisotropic superfluid responses at low temperatures, while isotropic but weak superfluid responses are observed in the {sup 4}He layer on D{sub 2d}.
Coexistence of density wave and superfluid order in a dipolar Fermi gas
DEFF Research Database (Denmark)
Wu, Zhigang; Block, Jens Kusk; Bruun, Georg M.
2015-01-01
diagram. In this region, the repulsive part of the interaction drives the stripe formation and the attractive part induces the pairing, resulting in a supersolid with $p$-wave Cooper pairs aligned along the stripes. From a momentum space perspective, the stability of the supersolid phase is due...
First and Second Sound Modes in a Uniform Fermi Gas
Institute of Scientific and Technical Information of China (English)
HUANG Bei-Bing; WAN Shao-Long
2009-01-01
First and second sound modes in a uniform fermionic atom gas with Feshbach resonance are investigated in the frame of a two-fluid model at finite temperature. All thermodynamic quantities are calculated for a given thermodynamic potential The analytical results for thermodynamic quantities and sound velocities in BCS and BEC limits are obtained. The numerical rcsults show that there exists a continuous interpolation for sound velocities of the first and second sound modes at fixed T/Tc between BCS and BEC limits. The existence of the second sound mode indicates the existence of superfluidity.
Theory of superfluidity macroscopic quantum waves
International Nuclear Information System (INIS)
A new description of superfluidity is proposed, based upon the fact that Bogoliubov's theory of superfluidity exhibits some so far unsuspected macroscopic quantum waves (MQWs), which have a topological nature and travel within the fluid at subsonic velocities. To quantize the bounded quasi-particles the field theoretic version of the Bohr-Sommerfeld quantization rule, is employed and also resort to a variational computation. In an instantaneous configuration the MQWs cut the condensate into blocks of phase, providing, by analogy with ferromagnetism, a nice explanation of what could be the lambda-transition. A crude estimate of the critical temperature gives T sub(c) approximately equal to 2-4K. An attempt is made to understand Tisza's two-fluid model in terms of the MQWs, and we rise the conjecture that they play an important role in the motion of second. We present also a qualitative prediction concerning to the behavior of the 'phononroton' peak below 1.0K, and propose two experiments to look for MQWs
Dissipative processes in superfluid neutron stars
Mannarelli, Massimo; Manuel, Cristina
2010-01-01
We present some results about a novel damping mechanism of r-mode oscillations in neutron stars due to processes that change the number of protons, neutrons and electrons. Deviations from equilibrium of the number densities of the various species lead to the appearance in the Euler equations of the system of a dissipative mechanism, the so-called rocket effect. The evolution of the r-mode oscillations of a rotating neutron star are influenced by the rocket effect and we present estimates of the corresponding damping timescales. In the description of the system we employ a two-fluid model, with one fluid consisting of all the charged components locked together by the electromagnetic interaction, while the second fluid consists of superfluid neutrons. Both components can oscillate however the rocket effect can only efficiently damp the countermoving r-mode oscillations, with the two fluids oscillating out of phase. In our analysis we include the mutual friction dissipative process between the neutron superfluid...
Large quantum superpositions of a nanoparticle immersed in superfluid helium
Lychkovskiy, O.
2016-06-01
Preparing and detecting spatially extended quantum superpositions of a massive object comprises an important fundamental test of quantum theory. These quantum states are extremely fragile and tend to quickly decay into incoherent mixtures due to the environmental decoherence. Experimental setups considered up to date address this threat in a conceptually straightforward way—by eliminating the environment, i.e., by isolating an object in a sufficiently high vacuum. We show that another option exists: decoherence is suppressed in the presence of a strongly interacting environment if this environment is superfluid. Indeed, as long as an object immersed in a pure superfluid at zero temperature moves with a velocity below the critical one, it does not create, absorb, or scatter any excitations of the superfluid. Hence, in this idealized situation the decoherence is absent. In reality the decoherence will be present due to thermal excitations of the superfluid and impurities contaminating the superfluid. We examine various decoherence channels in the superfluid
Zero temperature holographic superfluids with two competing orders
Ran, Li; Tian, Yu; Zhang, Hongbao; Zhao, Junkun
2016-08-01
We initiate the investigation of the zero temperature holographic superfluids with two competing orders, where besides the vacuum phase, two one component superfluid phases, the coexistent superfluid phase has also been found in the anti-de Sitter soliton background for the first time. We construct the complete phase diagram in the e - μ plane by numerics, which is consistent with our qualitative analysis. Furthermore, we calculate the corresponding optical conductivity and sound speed by the linear response theory. The onset of the pole of optical conductivity at ω =0 indicates that the spontaneous breaking phase always represents the superfluid phase, and the residue of the pole is increased with the chemical potential, which is consistent with the fact that the particle density is essentially the superfluid density for zero temperature superfluids. In addition, the resulting sound speed demonstrates the nonsmoothness at the critical points as the order parameter of the condensate, which indicates that the phase transitions can also be identified by the behavior of the sound speed. Moreover, as expected from the boundary conformal field theory, the sound speed saturates to 1/√{2 } at the large chemical potential limit for our two component holographic superfluid model.
Multiscaling in superfluid turbulence: A shell-model study
Shukla, Vishwanath; Pandit, Rahul
2016-10-01
We examine the multiscaling behavior of the normal- and superfluid-velocity structure functions in three-dimensional superfluid turbulence by using a shell model for the three-dimensional (3D) Hall-Vinen-Bekharevich-Khalatnikov (HVBK) equations. Our 3D-HVBK shell model is based on the Gledzer-Okhitani-Yamada shell model. We examine the dependence of the multiscaling exponents on the normal-fluid fraction and the mutual-friction coefficients. Our extensive study of the 3D-HVBK shell model shows that the multiscaling behavior of the velocity structure functions in superfluid turbulence is more complicated than it is in fluid turbulence.
Itinerant Ferromagnetism in a Polarized Two-Component Fermi Gas
DEFF Research Database (Denmark)
Massignan, Pietro; Yu, Zhenhua; Bruun, Georg
2013-01-01
We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repul...... of the minority atoms, raising the prospects of detecting the transition to the elusive itinerant ferromagnetic state with ultracold atoms....
Superfluid and antiferromagnetic phases in ultracold fermionic quantum gases
Energy Technology Data Exchange (ETDEWEB)
Gottwald, Tobias
2010-08-27
In this thesis several models are treated, which are relevant for ultracold fermionic quantum gases loaded onto optical lattices. In particular, imbalanced superfluid Fermi mixtures, which are considered as the best way to realize Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states experimentally, and antiferromagnetic states, whose experimental realization is one of the next major goals, are examined analytically and numerically with the use of appropriate versions of the Hubbard model. The usual Bardeen-Cooper-Schrieffer (BCS) superconductor is known to break down in a magnetic field with a strength exceeding the size of the superfluid gap. A spatially inhomogeneous spin-imbalanced superconductor with a complex order parameter known as FFLO-state is predicted to occur in translationally invariant systems. Since in ultracold quantum gases the experimental setups have a limited size and a trapping potential, we analyze the realistic situation of a non-translationally invariant finite sized Hubbard model for this purpose. We first argue analytically, why the order parameter should be real in a system with continuous coordinates, and map our statements onto the Hubbard model with discrete coordinates defined on a lattice. The relevant Hubbard model is then treated numerically within mean field theory. We show that the numerical results agree with our analytically derived statements and we simulate various experimentally relevant systems in this thesis. Analogous calculations are presented for the situation at repulsive interaction strength where the N'eel state is expected to be realized experimentally in the near future. We map our analytical results obtained for the attractive model onto corresponding results for the repulsive model. We obtain a spatially invariant unit vector defining the direction of the order parameter as a consequence of the trapping potential, which is affirmed by our mean field numerical results for the repulsive case. Furthermore, we observe
Harmonically trapped quasi-two-dimensional Fermi gases with synthetic spin-orbit coupling
Wang, JingKun; Chen, JinGe; Chen, KeJi; Yi, Wei; Zhang, Wei
2016-09-01
We study the properties of spin-orbit coupled and harmonically trapped quasi-two-dimensional Fermi gas with tunable s-wave interaction between the two spin species. We adapt an effective two-channel model which takes the excited states occupation in the strongly confined axial direction into consideration by introducing dressed molecules in the closed channel, and use a Bogoliubovde Gennes (BdG) formalism to go beyond local density approximation. We find that both the in-trap phase structure and density distribution can be significantly modified near a wide Feshbach resonance compared with the single-channel model without the dressed molecules. Our findings will be helpful for the experimental search for the topological superfluid phase in ultracold Fermi gases.
Composite-fermionization of the mixture composed of Tonks gas and Fermi gas
Institute of Scientific and Technical Information of China (English)
Hao Ya-Jiang
2011-01-01
This paper investigates the ground-state properties of the mixture composed of the strongly interacting TonksGirardeau gas and spin polarized Fermi gas confined in one-dimensional harmonic traps, where the interaction between the Bose atoms and Fermi atoms is tunable. With a generalized Bose-Fermi transformation the mixture is mapped into a two-component Fermi gas. The homogeneous Fermi gas is exactly solvable by the Bethe-ansatz method and the ground state energy density can be obtained. Combining the ground-state energy function of the homogeneous system with local density approximation it obtains the ground-state density distributions of inhomogeneous mixture. It is shown that with the increase in boson-fermion interaction, the system exhibits composite-fermionization crossover.
This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.
Fermi Communications and Public Outreach
Cominsky, L
2015-01-01
The Sonoma State University (SSU) Education and Public Outreach (E/PO) group participates in the planning and execution of press conferences that feature noteworthy Fermi discoveries, as well as supporting social media and outreach websites. We have also created many scientific illustrations for the media, tools for amateur astronomers for use at star parties, and have given numerous public talks about Fermi discoveries.
Correlated Density Matrix Theory of Boson Superfluids
Ristig, M. L.; Senger, G.; Serhan, M.; Clark, J. W.
1995-11-01
A variational approach to unified microscopic description of normal and superfluid phases of a strongly interacting Bose system is proposed. We begin the formulation of an optimal theory within this approach through the diagrammatic analysis and synthesis of key distribution functions that characterize the spatial structure and the degree of coherence present in the two phases. The approach centers on functional minimization of the free energy corresponding to a suitable trial form for the many-body density matrix W(R, R‧) ∝ Φ(R) Q(R, R‧) Φ(R‧), with the wave function Φ and incoherence factor Q chosen to incorporate the essential dynamical and statistical correlations. In earlier work addressing the normal phase, Φ was taken as a Jastrow product of two-body dynamical correlation factors and Q was taken as a permanent of short-range two-body statistical bonds. A stratagem applied to the noninteracting Bose gas by Ziff, Uhlenbeck, and Kac is invoked to extend this ansatz to encompass both superfluid and normal phases, while introducing a variational parameter B that signals the presence of off-diagonal long-range order. The formal development proceeds from a generating functional Λ, defined by the logarithm of the normalization integral ∫ dR Φ2(R) Q(R, R). Construction of the Ursell-Mayer diagrammatic expansion of the generator Λ is followed by renormalization of the statistical bond and of the parameter B. For B ≡ 0, previous results for the normal phase are reproduced, whereas For B > 0, corresponding to the superfluid regime, a new class of anomalous contributions appears. Renormalized expansions for the pair distribution function g(r) and the cyclic distribution function Gcc(r) are extracted from Λ by functional differentiation. Standard diagrammatic techniques are adapted to obtain the appropriate hypernetted-chain equations for the evaluation of these spatial distribution functions. Corresponding results are presented for the internal energy
The extension of radiative viscosity to superfluid matter
Pi, Chun-Mei; Yang, Shu-Hua; Zheng, Xiao-Ping
2010-01-01
The radiative viscosity of superfluid $npe$ matter is studied, and it is found that to the lowest order of $\\delta \\mu/T$ the ratio of radiative viscosity to bulk viscosity is the same as that of the normal matter.
Identifying a Superfluid Reynolds Number via Dynamical Similarity
Reeves, M. T.; Billam, T. P.; Anderson, B. P.; Bradley, A. S.
2015-04-01
The Reynolds number provides a characterization of the transition to turbulent flow, with wide application in classical fluid dynamics. Identifying such a parameter in superfluid systems is challenging due to their fundamentally inviscid nature. Performing a systematic study of superfluid cylinder wakes in two dimensions, we observe dynamical similarity of the frequency of vortex shedding by a cylindrical obstacle. The universality of the turbulent wake dynamics is revealed by expressing shedding frequencies in terms of an appropriately defined superfluid Reynolds number, Res, that accounts for the breakdown of superfluid flow through quantum vortex shedding. For large obstacles, the dimensionless shedding frequency exhibits a universal form that is well-fitted by a classical empirical relation. In this regime the transition to turbulence occurs at Res≈0.7 , irrespective of obstacle width.
Self-Ordered Limit Cycles, Chaos, and Phase Slippage with a Superfluid inside an Optical Resonator.
Piazza, Francesco; Ritsch, Helmut
2015-10-16
We study dynamical phases of a driven Bose-Einstein condensate coupled to the light field of a high-Q optical cavity. For high field seeking atoms at red detuning the system is known to show a transition from a spatially homogeneous steady state to a self-ordered regular lattice exhibiting superradiant scattering into the cavity. For blue atom pump detuning the particles are repelled from the maxima of the light-induced optical potential suppressing scattering. We show that this generates a new dynamical instability of the self-ordered phase, leading to the appearance of self-ordered stable limit cycles characterized by large amplitude self-sustained oscillations of both the condensate density and cavity field. The limit cycles evolve into chaotic behavior by period doubling. Large amplitude oscillations of the condensate are accompanied by phase slippage through soliton nucleation at a rate that increases in the chaotic regime. Different from a superfluid in a closed setup, this driven dissipative superfluid is not destroyed by the proliferation of solitons since kinetic energy is removed through cavity losses. PMID:26550874
Superfluid 4He dynamics beyond quasiparticle excitations
Beauvois, K.; Campbell, C. E.; Dawidowski, J.; Fâk, B.; Godfrin, H.; Krotscheck, E.; Lauter, H.-J.; Lichtenegger, T.; Ollivier, J.; Sultan, A.
2016-07-01
The dynamics of superfluid 4He at and above the Landau quasiparticle regime is investigated by high-precision inelastic neutron scattering measurements of the dynamic structure factor. A highly structured response is observed above the familiar phonon-maxon-roton spectrum, characterized by sharp thresholds for phonon-phonon, maxon-roton, and roton-roton coupling processes. The experimental dynamic structure factor is compared to the calculation of the same physical quantity by a dynamic many-body theory including three-phonon processes self-consistently. The theory is found to provide a quantitative description of the dynamics of the correlated bosons for energies up to about three times that of the Landau quasiparticles.
Phase order in superfluid helium films
Bramwell, Steven T.; Faulkner, Michael F.; Holdsworth, Peter C. W.; Taroni, Andrea
2015-12-01
Classic experimental data on helium films are transformed to estimate a finite-size phase order parameter that measures the thermal degradation of the condensate fraction in the two-dimensional superfluid. The order parameter is found to evolve thermally with the exponent β = 3 π^2/128 , a characteristic, in analogous magnetic systems, of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Universal scaling near the BKT fixed point generates a collapse of experimental data on helium and ferromagnetic films, and implies new experiments and theoretical protocols to explore the phase order. These results give a striking example of experimental finite-size scaling in a critical system that is broadly relevant to two-dimensional Bose fluids. This paper is dedicated to the memory of our friend and colleague Maxime Clusel, with whom we enjoyed many stimulating discussions on related topics.
Quench from Mott Insulator to Superfluid
Energy Technology Data Exchange (ETDEWEB)
Zurek, Wojciech H. [Los Alamos National Laboratory; Dziarmaga, Jacek [Instytut Fizyki Uniwersytetu Jagiello´nskiego; Tylutki, Marek [Instytut Fizyki Uniwersytetu Jagiello´nskiego
2012-06-01
We study a linear ramp of the nearest-neighbor tunneling rate in the Bose-Hubbard model driving the system from the Mott insulator state into the superfluid phase. We employ the truncated Wigner approximation to simulate linear quenches of a uniform system in 1...3 dimensions, and in a harmonic trap in 3 dimensions. In all these setups the excitation energy decays like one over third root of the quench time. The -1/3 scaling is explained by an impulse-adiabatic approximation - a variant of the Kibble-Zurek mechanism - describing a crossover from non-adiabatic to adiabatic evolution when the system begins to keep pace with the increasing tunneling rate.
Directory of Open Access Journals (Sweden)
Ynduráin, Francisco J.
2002-01-01
Full Text Available Not available
Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.
Holographic superfluid flows with a localized repulsive potential
Ishibashi, Akihiro; Okamura, Takashi
2016-01-01
We investigate a holographic model of superfluid flows with an external repulsive potential. When the strength of the potential is sufficiently weak, we analytically construct two steady superfluid flow solutions. As the strength of the potential is increased, the two solutions merge into a single critical solution at a critical strength, and then disappear above the critical value, as predicted by a saddle-node bifurcation theory. We also analyze the spectral function of fluctuations around the solutions under a certain decoupling approximation.
New dynamic critical phenomena in nuclear and quark superfluids
Sogabe, Noriyuki
2016-01-01
We study the dynamic critical phenomena near the possible high-density QCD critical point inside the superfluid phase of nuclear and quark matter. We find that this critical point belongs to a new dynamic universality class beyond the conventional classification by Hohenberg and Halperin. We show that the speed of the superfluid phonon vanishes at the critical point and that the dynamic critical index is $z \\approx 2$.
Geometric origin of superfluidity in the Lieb lattice flat band
Julku, Aleksi; Peotta, Sebastiano; Vanhala, Tuomas; Kim, Dong-Hee; Törmä, Päivi
2016-01-01
The ground state and transport properties of the Lieb lattice flat band in the presence of an attractive Hubbard interaction are considered. It is shown that the superfluid weight can be large even for an isolated and strictly flat band. Moreover the superfluid weight is proportional to the interaction strength and to the quantum metric, a band structure invariant obtained from the flat-band Bloch functions. These predictions are amenable to verification with ultracold gases and may explain t...
First Sound in Holographic Superfluids at Zero Temperature
Esposito, Angelo; Penco, Riccardo
2016-01-01
Within the context of AdS/CFT, the gravity dual of an s-wave superfluid is given by scalar QED on an asymptotically AdS spacetime. While this conclusion is vastly supported by numerical arguments, here we provide an analytical proof that this is indeed the case. Working at zero temperature, we explicitly find the quadratic action for the superfluid phonon at the boundary in an arbitrary number of dimensions, recovering the known dispersion relation for conformal first sound.
Interaction of phonons at superfluid helium-solid interfaces
I.N. Adamenko; Nemchenko, E. K.
2014-01-01
A new method of obtaining the interaction Hamiltonian of phonons at superfluid helium-solid interface is proposed in the work. Equations of hydrodynamic variables are obtained in terms of second quantization if helium occupies a half-space. The contributions of all processes to the heat flux from solid to superfluid helium are calculated based on the obtained Hamiltonian. The angular distribution of phonons emitted by a solid is found in different processes. It is shown that all the exit angl...
Energy spectra of finite temperature superfluid helium-4 turbulence
International Nuclear Information System (INIS)
A mesoscopic model of finite temperature superfluid helium-4 based on coupled Langevin-Navier-Stokes dynamics is proposed. Drawing upon scaling arguments and available numerical results, a numerical method for designing well resolved, mesoscopic calculations of finite temperature superfluid turbulence is developed. The application of model and numerical method to the problem of fully developed turbulence decay in helium II, indicates that the spectral structure of normal-fluid and superfluid turbulence is significantly more complex than that of turbulence in simple-fluids. Analysis based on a forced flow of helium-4 at 1.3 K, where viscous dissipation in the normal-fluid is compensated by the Lundgren force, indicate three scaling regimes in the normal-fluid, that include the inertial, low wavenumber, Kolmogorov k−5/3 regime, a sub-turbulence, low Reynolds number, fluctuating k−2.2 regime, and an intermediate, viscous k−6 range that connects the two. The k−2.2 regime is due to normal-fluid forcing by superfluid vortices at high wavenumbers. There are also three scaling regimes in the superfluid, that include a k−3 range that corresponds to the growth of superfluid vortex instabilities due to mutual-friction action, and an adjacent, low wavenumber, k−5/3 regime that emerges during the termination of this growth, as superfluid vortices agglomerate between intense normal-fluid vorticity regions, and weakly polarized bundles are formed. There is also evidence of a high wavenumber k−1 range that corresponds to the probing of individual-vortex velocity fields. The Kelvin waves cascade (the main dynamical effect in zero temperature superfluids) appears to be damped at the intervortex space scale
A minimal model for finite temperature superfluid dynamics
Andersson, N.; Krueger, C.; Comer, G. L.; Samuelsson, L.
2012-01-01
Building on a recently improved understanding of the problem of heat flow in general relativity, we develop a hydrodynamical model for coupled finite temperature superfluids. The formalism is designed with the dynamics of the outer core of a mature neutron star (where superfluid neutrons are coupled to a conglomerate of protons and electrons) in mind, but the main ingredients are relevant for a range of analogous problems. The entrainment between material fluid components (the condensates) an...
Buoyancy and g-modes in young superfluid neutron stars
Passamonti, A.; Andersson, N.; Ho, W.C.G.
2015-01-01
We consider the local dynamics of a realistic neutron star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a num...
Quasi-periodic oscillations in superfluid magnetars
Passamonti, A.; Lander, S. K.
2014-02-01
We study the time evolution of axisymmetric oscillations of superfluid magnetars with a poloidal magnetic field and an elastic crust, working in Newtonian gravity. Extending earlier models, we study the effects of composition gradients and entrainment on the magneto-elastic wave spectrum and on the potential identification of the observed quasi-periodic oscillations (QPOs). We use two-fluid polytropic equations of state to construct our stellar models, which mimic realistic composition gradient configurations. The basic features of the axial axisymmetric spectrum of normal fluid stars are reproduced by our results and in addition we find several magneto-elastic waves with a mixed character. In the core, these oscillations mimic the shear mode pattern of the crust as a result of the strong dynamical coupling between these two regions. Incorporating the most recent entrainment configurations in our models, we find that they have a double effect on the spectrum: the magnetic oscillations of the core have a frequency enhancement, while the mixed magneto-elastic waves originating in the crust are moved towards the frequencies of the single-fluid case. The distribution of lower frequency magneto-elastic oscillations for our models is qualitatively similar to the observed magnetar QPOs with ν In particular, some of these QPOs could represent mixed magneto-elastic oscillations with frequencies not greatly different from the crustal modes of an unmagnetized star. We find that many QPOs could even be accounted for using a model with a relatively weak polar field of Bp ≃ 3 × 1014 G, because of the superfluid enhancement of magnetic oscillations. Finally, we discuss the possible identification of 625 and 1837 Hz QPOs either with non-axisymmetric modes or with high-frequency axisymmetric QPOs excited by crustal mode overtones.
Momentum sharing in imbalanced Fermi systems
Hen, O; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; Beck, S May-Tal; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; DAngelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; Alaoui, A El; Fassi, L El; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Camacho, C Munoz; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Rossi, P; Roy, P; Sabatie, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Watts, D; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I
2014-01-01
The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron stars and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.
Density Functional Theory Studies of Magnetically Confined Fermi Gas
Institute of Scientific and Technical Information of China (English)
陈宇俊; 马红孺
2001-01-01
A theory is developed for magnetically confined Fermi gas at a low temperature based on the density functional theory. The theory is illustrated by the numerical calculation of the density distributions of Fermi atoms 40K with parameters according to DeMarco and Jin's experiment [Science, 285(1999)1703]. Our results are in close agreement with the experiment. To check the theory, we also performed calculations using our theory at a high temperature, which compared very well to the results of the classical limit.
Instability of Superfluid Flow in the Neutron Star Core
Link, Bennett
2011-01-01
Pinning of superfluid vortices to magnetic flux tubes in the outer core of a neutron star supports a velocity difference of ~10^5 cm/s between the neutron superfluid and the proton-electron fluid as the star spins down. Under the Magnus force that arises on the vortex array, vortices undergo vortex creep through thermal activation or quantum tunneling. We examine the hydrodynamic stability of this situation. Vortex creep introduces two low-frequency modes, one of which is unstable above a critical wavenumber for any non-zero flow velocity of the neutron superfluid with respect to the charged fluid. For typical pinning parameters of the outer core, the superfluid flow is unstable over wavelengths $\\lambda\\lap 10$ m and over timescales of $\\sim (\\lambda/1 m)^{1/2}$ yr down to $\\sim 1$ d. The vortex lattice could degenerate into a tangle, and the superfluid flow would become turbulent. We suggest that superfluid turbulence could be responsible for the red timing noise seen in many neutron stars, and find a predi...
Acoustic and optical investigations of superfluid 3He. Doctoral thesis
Energy Technology Data Exchange (ETDEWEB)
Manninen, A.
1993-06-15
The thesis is an experimental survey of properties of rotating and stationary superfluid (3)He. Two techniques, acoustics and optics, were used. Ultrasound, together with NMR, has provided most of the present experimental knowledge about the superfluid phases of (3)He. The author applied acoustics for the first time to study rotating (3)He. The main result was the discovery of a new vortex in (3)He-A when the magnetic field is low. New phenomena were observed in stationary (3)He as well. Most importantly, one of the collective modes, the real squashing (rsq) mode, of (3)He-B could be excited by means of two-phonon absorption. Superfluid (3)He was studied optically for the first time. No one has previously seen (3)He in the superfluid state. The principal achievement was developing techniques which facilitate optical experiments at temperatures below 1 mK, required to study superfluid (3)He. Optical fibers were used to transmit light between room temperature and the cold parts of the cryostat. Before these investigations, photography had not been done below 10 mK. The usefulness of optics as a proble of the superfluid phases of (3)He was demonstrated by studying the macroscopic shape of the free surface of rotating (3)He-B. The classical parabolic meniscus was observed, which is indicative of the equilibrium density of vortices.
Josephson effect in fermionic superfluids across the BEC-BCS crossover.
Valtolina, Giacomo; Burchianti, Alessia; Amico, Andrea; Neri, Elettra; Xhani, Klejdja; Seman, Jorge Amin; Trombettoni, Andrea; Smerzi, Augusto; Zaccanti, Matteo; Inguscio, Massimo; Roati, Giacomo
2015-12-18
The Josephson effect is a macroscopic quantum phenomenon that reveals the broken symmetry associated with any superfluid state. Here we report on the observation of the Josephson effect between two fermionic superfluids coupled through a thin tunneling barrier. We show that the relative population and phase are canonically conjugate dynamical variables throughout the crossover from the molecular Bose-Einstein condensate (BEC) to the Bardeen-Cooper-Schrieffer (BCS) superfluid regime. For larger initial excitations from equilibrium, the dynamics of the superfluids become dissipative, which we ascribe to the propagation of vortices through the superfluid bulk. Our results highlight the robust nature of resonant superfluids. PMID:26680193
Schoepe, W.
2015-07-01
This comment is on Phys. Rev. Lett. 144, 155302 (2015) by M.T. Reeves, T.P. Billam, B.P. Anderson, and A.S. Bradley "Identifying a superfluid Reynolds number via dynamical similarity" where a new superfluid Reynolds number is introduced. This definition is shown to be useful in the data analysis of the finite lifetime of turbulence observed with an oscillating sphere in superfluid helium at mK temperatures in a small velocity interval Δ v = ( v-v c ) just above the critical velocity v c . The very rapid increase in the lifetime with increasing superfluid Reynolds number is compared with the "supertransient" turbulence observed in classical pipe flow.
Directory of Open Access Journals (Sweden)
Hao Guo
2015-01-01
Full Text Available Recent experimental progress allows for exploring some important physical quantities of ultracold Fermi gases, such as the compressibility, spin susceptibility, viscosity, optical conductivity, and spin diffusivity. Theoretically, these quantities can be evaluated from suitable linear response theories. For BCS superfluid, it has been found that the gauge invariant linear response theories can be fully consistent with some stringent consistency constraints. When the theory is generalized to stronger than BCS regime, one may meet serious difficulties to satisfy the gauge invariance conditions. In this paper, we try to construct density and spin linear response theories which are formally gauge invariant for a Fermi gas undergoing BCS-Bose-Einstein Condensation (BEC crossover, especially below the superfluid transition temperature Tc. We adapt a particular t-matrix approach which is close to the G0G formalism to incorporate noncondensed pairing in the normal state. We explicitly show that the fundamental constraints imposed by the Ward identities and Q-limit Ward identity are indeed satisfied.
Magnetism and domain formation in SU(3)-symmetric multi-species Fermi mixtures
Energy Technology Data Exchange (ETDEWEB)
Titvinidze, I; Privitera, A; Hofstetter, W [Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, 60438 Frankfurt am Main (Germany); Chang, S-Y; Diehl, S; Baranov, M A; Daley, A, E-mail: irakli@itp.uni-frankfurt.de [Institute for Quantum Optics and Quantum information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria, Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)
2011-03-15
We study the phase diagram of an SU(3)-symmetric mixture of three-component ultracold fermions with attractive interactions in an optical lattice, including the additional effect on the mixture of an effective three-body constraint induced by three-body losses. We address the properties of the system in D{>=}2 by using dynamical mean-field theory and variational Monte Carlo techniques. The phase diagram of the model shows a strong interplay between magnetism and superfluidity. In the absence of the three-body constraint (no losses), the system undergoes a phase transition from a color superfluid (c-SF) phase to a trionic phase, which shows additional particle density modulations at half-filling. Away from the particle-hole symmetric point the c-SF phase is always spontaneously magnetized, leading to the formation of different c-SF domains in systems where the total number of particles of each species is conserved. This can be seen as the SU(3) symmetric realization of a more general tendency for phase separation in three-component Fermi mixtures. The three-body constraint strongly disfavors the trionic phase, stabilizing a (fully magnetized) c-SF also at strong coupling. With increasing temperature we observe a transition to a non-magnetized SU(3) Fermi liquid phase.
Fermionic condensation in ultracold atoms, nuclear matter and neutron stars
Salasnich, Luca
2013-01-01
We investigate the Bose-Einstein condensation of fermionic pairs in three different superfluid systems: ultracold and dilute atomic gases, bulk neutron matter, and neutron stars. In the case of dilute gases made of fermionic atoms the average distance between atoms is much larger than the effective radius of the inter-atomic potential. Here the condensation of fermionic pairs is analyzed as a function of the s-wave scattering length, which can be tuned in experiments by using the technique of...
Ultracold Fermi and Bose gases and Spinless Bose Charged Sound Particles
Directory of Open Access Journals (Sweden)
Minasyan V.
2011-10-01
Full Text Available We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or gas which consists of decoupled electrons and ions in the uppermost hyperfine state. Hence, we use such a concept as the fluctuation motion of “charged fluid particles” or “charged fluid points” representing a charged longitudinal elastic wave. In turn, this elastic wave is quantized by spinless longitudinal Bose charged sound particles with the rest mass m and charge e 0 . The existence of spinless Bose charged sound particles allows us to present a new model for description of Bose or Fermi liquid via a non-ideal Bose gas of charged sound particles . In this respect, we introduce a new postulation for the superfluid component of Bose or Fermi liquid determined by means of charged sound particles in the condensate, which may explain the results of experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6 Li and 40 K, and such a Bose gas as 87 Rb in the uppermost hyperfine state, where the Bose- Einstein condensation of charged sound particles is realized by tuning the magnetic field.
The fermi paradox is neither Fermi's nor a paradox.
Gray, Robert H
2015-03-01
The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox.
The fermi paradox is neither Fermi's nor a paradox.
Gray, Robert H
2015-03-01
The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox. PMID:25719510
Critical Velocity and Dissipation of an Ultracold Bose-Fermi Counterflow.
Delehaye, Marion; Laurent, Sébastien; Ferrier-Barbut, Igor; Jin, Shuwei; Chevy, Frédéric; Salomon, Christophe
2015-12-31
We study the dynamics of counterflowing bosonic and fermionic lithium atoms. First, by tuning the interaction strength we measure the critical velocity v(c) of the system in the BEC-BCS crossover in the low temperature regime and we compare it to the recent prediction of Castin et al., C. R. Phys. 16, 241 (2015). Second, raising the temperature of the mixture slightly above the superfluid transitions reveals an unexpected phase locking of the oscillations of the clouds induced by dissipation.
Sun, Kuei; Bolech, Carlos J.
2014-03-01
We study a Bose-Hubbard model with a nearest-neighbor occupation-parity coupling that can be considered as energy cost for a domain-wall link between two adjacent sites if their occupation parity is different (one even and the other odd). Our analysis shows that the parity coupling has non-trivial interplay with the tunneling and onsite repulsion, resulting in several exotic quantum phases. For example, a uniform system with zero tunneling can exhibit a pair-liquid phase or phase separation of two Mott insulators, while a trapped system with finite tunneling shows a wedding-cake structure of only even-filling Mott insulators or a structure of central regular superfluid and outer pair superfluid. In addition, we find similar physics in a recent experimental system of imbalanced Fermi gases in optical lattices producing a 2D array of 1D tubes, with the presence of an oscillatory superfluid order parameter (the Fulde-Ferrell-Larkin-Ovchinnikov or FFLO state). We show that the unpaired majority fermions on each tube have a bosonic behavior with cross-tube tunneling, on-tube repulsion, and interplay with the spatial parity of the FFLO order that contributes to the occupation-parity coupling. Therefore, such system provides a realization of our model in two dimensions. Supported by the DARPA-ARO Award No. W911NF-07-1-0464 and by the University of Cincinnati.
Ueresin, C.; Decker, L.; Treite, P.
In 2011, Linde Cryogenics, a division of Linde Process Plants, Tulsa, Oklahoma, was awarded the contract to deliver a 500 W at 2 K superfluid cryogenic plant to Fermi National Accelerator Laboratory (FNAL) in Batavia, Illinois, USA. This system includes a cold compressor string with three centrifugal compressors and a vacuum pump skid with five volumetric pumps in parallel used to pump down helium to its saturation pressure corresponding to 2 K. Linde Kryotechnik AG, Pfungen Switzerland engineered and supplied the cold compressor system and commissioned it with its control logic to cover the complete range of system operation. The paper outlines issues regarding compressor design, compressor string modeling, control algorithms, controller performance, and surge protection.
Energy-momentum tensor of quasiparticles in the effective gravity in superfluids
Volovik, G.E.
1998-01-01
The problem of the energy-momentum conservation for matter in the gravitational field is discussed on the example of the effective gravity, which arises in superfluids. The "gravitational" field experienced by the relativistic-like massless quasiparticles which form the "matter" (phonons in superfluid 4He and low-energy fermions in superfluid 3He-A), is induced by the flow of the superfluid "vacuum". It appears that the energy-momentum conservation law for quasiparticles, has the covariant fo...
Relativistic Scott correction for atoms and molecules
DEFF Research Database (Denmark)
Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang Ludwig
2010-01-01
We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here, are of ...
Renormalization group approach to superfluid neutron matter
Energy Technology Data Exchange (ETDEWEB)
Hebeler, K.
2007-06-06
In the present thesis superfluid many-fermion systems are investigated in the framework of the Renormalization Group (RG). Starting from an experimentally determined two-body interaction this scheme provides a microscopic approach to strongly correlated many-body systems at low temperatures. The fundamental objects under investigation are the two-point and the four-point vertex functions. We show that explicit results for simple separable interactions on BCS-level can be reproduced in the RG framework to high accuracy. Furthermore the RG approach can immediately be applied to general realistic interaction models. In particular, we show how the complexity of the many-body problem can be reduced systematically by combining different RG schemes. Apart from technical convenience the RG framework has conceptual advantage that correlations beyond the BCS level can be incorporated in the flow equations in a systematic way. In this case however the flow equations are no more explicit equations like at BCS level but instead a coupled set of implicit equations. We show on the basis of explicit calculations for the single-channel case the efficacy of an iterative approach to this system. The generalization of this strategy provides a promising strategy for a non-perturbative treatment of the coupled channel problem. By the coupling of the flow equations of the two-point and four-point vertex self-consistency on the one-body level is guaranteed at every cutoff scale. (orig.)
Microscopic characterization of overpressurized superfluid 4He
Rossi, M.; Vitali, E.; Reatto, L.; Galli, D. E.
2012-01-01
We have studied static and dynamical properties of superfluid 4He at T=0 K in the pressure range from -6 up to 87 atm well above freezing into the metastable region. Zero temperature properties have been obtained with the exact shadow path integral ground state (SPIGS) method. Information about dynamic structure factors at different pressures have been obtained from imaginary time correlation functions via the genetic inversion via falsification of theories (GIFT) method. In the full pressure range sharp roton excitations are always present in the spectral functions. The roton energy decreases at higher pressures in good agreement with experimental data also in the metastable region. The roton energies have essentially a linear trend with pressure, going from about 7.4 K near freezing to about 4.3 K at about 87 atm. The pressure at which the linear trend would extrapolate to a zero roton energy turns out to be about 170 atm. At T=0 K, no sign of metastable glass phase has been found; the disordered systems studied at pressures above about 87 atm readily start homogeneous nucleation processes. Our results in the metastable phase for the condensate fractions and roton gaps differ remarkably from previous ones obtained via a diffusion Monte Carlo study.
Resonant tidal excitation of superfluid neutron stars in coalescing binaries
Yu, Hang
2016-01-01
We study the resonant tidal excitation of g-modes in coalescing superfluid neutron star binaries and investigate how such tidal driving impacts the gravitational-wave signal of the inspiral. Previous studies of this type treated the neutron star core as a normal fluid and thus did not account for its expected superfluidity. The source of buoyancy that supports the g-modes is fundamentally different in the two cases: in a normal fluid core the buoyancy is due to gradients in the proton-to-neutron fraction whereas in a superfluid core it is due to gradients in the muon-to-electron fraction. The latter yields a stronger stratification and a superfluid neutron star therefore has a denser spectrum of g-modes with frequencies above 10 Hz. As a result, many more g-modes undergo resonant tidal excitation as the binary sweeps through the bandwidth of gravitational-wave detectors such as LIGO. We find that roughly 10 times more orbital energy is transferred into g-mode oscillations if the neutron star has a superfluid ...
Buoyancy and g-modes in young superfluid neutron stars
Passamonti, A.; Andersson, N.; Ho, W. C. G.
2016-01-01
We consider the local dynamics of a realistic neutron-star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a number of key issues that should be kept in mind whenever equation of state data is compiled from nuclear physics for use in neutron-star calculations. We provide explicit results for a particular stellar model and a specific nucleonic equation of state, making use of cooling simulations to show how the local wave spectrum evolves as the star ages. Our results show that the composition gradient is effectively dominated by the muons whenever they are present. When the star cools below the superfluid transition, the support for g-modes at lower densities (where there are no muons) is entirely thermal. We confirm the recent suggestion that the g-modes in this region may be unstable, but our results indicate that this instability will be weak and would only be present for a brief period of the star's life. Our analysis accounts for the presence of thermal excitations encoded in entrainment between the entropy and the superfluid component. Finally, we discuss the complete spectrum, including the normal sound waves and, in superfluid regions, the second sound.
Bose-Fermi mixtures near an interspecies Feshbach resonance: testing a non-equilibrium approach
Energy Technology Data Exchange (ETDEWEB)
Bortolotti, Daniele C E [JILA and Department of Physics, University of Colorado Boulder, CO 80309-0440 (United States); LENS and Dipartimento di Fisica, Universita di Firenze, and INFM, Sesto Fiorentino (Italy); Avdeenkov, Alexandr V [Institute of Physics and Power Engineering, Obninsk (Russian Federation); Ticknor, Christopher [JILA and Department of Physics, University of Colorado Boulder, CO 80309-0440 (United States); Bohn, John L [JILA and Department of Physics, University of Colorado Boulder, CO 80309-0440 (United States)
2006-01-14
We test a non-equilibrium approach to study the behaviour of a Bose-Fermi mixture of alkali atoms in the presence of a Feshbach resonance between bosons and fermions. To this end we derive the Hartree-Fock-Bogoliubov (HFB) equations of motion for the interacting system. This approach has proven very successful in the study of resonant systems composed of Bose particles and Fermi particles. However, when applied to a Bose-Fermi mixture, the HFB theory fails to identify even the correct binding energy of molecules in the appropriate limit. Through a more rigorous analysis we are able to ascribe this difference to the peculiar role that noncondensed bosons play in the Bose-Fermi pair correlation, which is the mechanism through which molecules are formed. We therefore conclude that molecular formation in Bose-Fermi mixtures is driven by three-point and higher-order correlations in the gas.
Bose-Fermi mixtures near an interspecies Feshbach resonance: testing a non-equilibrium approach
International Nuclear Information System (INIS)
We test a non-equilibrium approach to study the behaviour of a Bose-Fermi mixture of alkali atoms in the presence of a Feshbach resonance between bosons and fermions. To this end we derive the Hartree-Fock-Bogoliubov (HFB) equations of motion for the interacting system. This approach has proven very successful in the study of resonant systems composed of Bose particles and Fermi particles. However, when applied to a Bose-Fermi mixture, the HFB theory fails to identify even the correct binding energy of molecules in the appropriate limit. Through a more rigorous analysis we are able to ascribe this difference to the peculiar role that noncondensed bosons play in the Bose-Fermi pair correlation, which is the mechanism through which molecules are formed. We therefore conclude that molecular formation in Bose-Fermi mixtures is driven by three-point and higher-order correlations in the gas
Parity effect in a mesoscopic Fermi gas
Hofmann, Johannes; Lobos, Alejandro M.; Galitski, Victor
2016-06-01
We develop a quantitative analytic theory that accurately describes the odd-even effect observed experimentally in a one-dimensional, trapped Fermi gas with a small number of particles [G. Zürn et al., Phys. Rev. Lett. 111, 175302 (2013), 10.1103/PhysRevLett.111.175302]. We find that the underlying physics is similar to the parity effect known to exist in ultrasmall mesoscopic superconducting grains and atomic nuclei. However, in contrast to superconducting nanograins, the density (Hartree) correction dominates over the superconducting pairing fluctuations and leads to a much more pronounced odd-even effect in the mesoscopic, trapped Fermi gas. We calculate the corresponding parity parameter and separation energy using both perturbation theory and a path integral framework in the mesoscopic limit, generalized to account for the effects of the trap, pairing fluctuations, and Hartree corrections. Our results are in an excellent quantitative agreement with experimental data and exact diagonalization. Finally, we discuss a few-particle to many-particle crossover between the perturbative mesoscopic regime and nonperturbative many-body physics that the system approaches in the thermodynamic limit.
Momentum-resolved spectroscopy of a Fermi liquid.
Doggen, Elmer V H; Kinnunen, Jami J
2015-01-01
We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948
On the disappearance of superfluidity in helium films
International Nuclear Information System (INIS)
Experiments to investigate the changes in superfluid properties when helium films become thinner are reported. A thin-film oscillator, formed by two large filmreservoirs connected by a long and narrow tube, is used to study both the mass transport properties and the third-sound phenomena. Both sets of data are analysed in the framework of a two-fluid model. Absolute values for the areal superfluid density are deduced from the results, and also the observation of friction in the film itself is briefly discussed. A series of additional measurements of the thermo-mechanical effect in the reservoirs, with the purpose of determing the thickness at which onset of superfluidity occurs, are also reported. Finally the overall picture of the film properties is discussed on the basis of a phase diagram of the observed mobilities. (Auth.)
A minimal model for finite temperature superfluid dynamics
Andersson, N; Comer, G L; Samuelsson, L
2012-01-01
Building on a recently improved understanding of the problem of heat flow in general relativity, we develop a hydrodynamical model for coupled finite temperature superfluids. The formalism is designed with the dynamics of the outer core of a mature neutron star (where superfluid neutrons are coupled to a conglomerate of protons and electrons) in mind, but the main ingredients are relevant for a range of analogous problems. The entrainment between material fluid components (the condensates) and the entropy (the thermal excitations) plays a central role in the development. We compare and contrast the new model to previous results in the literature, and provide estimates for the relevant entrainment coefficients that should prove useful in future applications. Finally, we consider the sound-wave propagation in the system in two simple limits, demonstrating the presence of second sound if the temperature is sub-critical, but absence of this phenomenon above the critical temperature for superfluidity.
Tunable anisotropic superfluidity in an optical kagome superlattice
Zhang, Xue-Feng; Wang, Tao; Eggert, Sebastian; Pelster, Axel
2015-07-01
We study the phase diagram of the Bose-Hubbard model on the kagome lattice with a broken sublattice symmetry. Such a superlattice structure can naturally be created and tuned by changing the potential offset of one sublattice in the optical generation of the frustrated lattice. The superstructure gives rise to a rich quantum phase diagram, which is analyzed by combining quantum Monte Carlo simulations with the generalized effective potential Landau theory. Mott phases with noninteger filling and a characteristic order along stripes are found, which show a transition to a superfluid phase with an anisotropic superfluid density. Surprisingly, the direction of the superfluid anisotropy can be tuned by changing the particle number, the hopping strength, or the interaction. Finally, we discuss characteristic signatures of anisotropic phases in time-of-flight absorption measurements.
Chiral superfluidity of the quark-gluon plasma
Kalaydzhyan, Tigran
2013-01-01
In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (Tc < T < 2 Tc) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, c...
Thermal and Quantum Mechanical Noise of a Superfluid Gyroscope
Chui, Talso; Penanen, Konstantin
2004-01-01
A potential application of a superfluid gyroscope is for real-time measurements of the small variations in the rotational speed of the Earth, the Moon, and Mars. Such rotational jitter, if not measured and corrected for, will be a limiting factor on the resolution potential of a GPS system. This limitation will prevent many automation concepts in navigation, construction, and biomedical examination from being realized. We present the calculation of thermal and quantum-mechanical phase noise across the Josephson junction of a superfluid gyroscope. This allows us to derive the fundamental limits on the performance of a superfluid gyroscope. We show that the fundamental limit on real-time GPS due to rotational jitter can be reduced to well below 1 millimeter/day. Other limitations and their potential mitigation will also be discussed.
Mott-superfluid transition of q-deformed bosons
Energy Technology Data Exchange (ETDEWEB)
Kopeć, T.K., E-mail: kopec@int.pan.wroc.pl
2015-10-16
The effect of q-deformation of the bosonic algebra on the Mott-superfluid transition for interacting lattice bosons described by the Bose–Hubbard model is studied using mean-filed theory. It has been shown that the Mott state proliferates and the initial periodicity of the Mott lobes as a function of the chemical potential disappears as the q-deformation increases. The ground state phase diagram as a function of the q-parameter exhibits superfluid order, which intervenes in narrow regions between Mott lobes, demonstrating the new concept of statistically induced quantum phase transition. - Highlights: • We study the effect of q-deformed bosons on superfluid transition. • A mean-field theory is employed. • Bosons can change statistics due to deformation of the commutation rules. • Statistically induced quantum phase transition is found.
A minimal model for finite temperature superfluid dynamics
Andersson, N.; Krüger, C.; Comer, G. L.; Samuelsson, L.
2013-12-01
Building on a recently improved understanding of the problem of heat flow in general relativity, we develop a hydrodynamical model for coupled finite temperature superfluids. The formalism is designed with the dynamics of the outer core of a mature neutron star (where superfluid neutrons are coupled to a conglomerate of protons and electrons) in mind, but the main ingredients are relevant for a range of analogous problems. The entrainment between material fluid components (the condensates) and the entropy (the thermal excitations) plays a central role in the development. We compare and contrast the new model to previous results in the literature, and provide estimates for the relevant entrainment coefficients that should prove useful in future applications. Finally, we consider the sound-wave propagation in the system in two simple limits, demonstrating the presence of second sound if the temperature is sub-critical, but absence of this phenomenon above the critical temperature for superfluidity.
Holographic p-wave superfluid in Gauss-Bonnet gravity
Liu, Shancheng; Jing, Jiliang
2016-01-01
We construct the holographic p-wave superfluid in Gauss-Bonnet gravity via a Maxwell complex vector field model and investigate the effect of the curvature correction on the superfluid phase transition in the probe limit. We obtain the rich phase structure and find that the higher curvature correction hinders the condensate of the vector field but makes it easier for the appearance of translating point from the second-order transition to the first-order one or for the emergence of the Cave of Winds. Moreover, for the supercurrents versus the superfluid velocity, we observe that our results near the critical temperature are independent of the Gauss-Bonnet parameter and agree well with the Ginzburg-Landau prediction.
Buoyancy and g-modes in young superfluid neutron stars
Passamonti, A; Ho, W C G
2015-01-01
We consider the local dynamics of a realistic neutron star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a number of key issues that should be kept in mind whenever equation of state data is compiled from nuclear physics for use in neutron star calculations. We provide explicit results for a particular stellar model and a specific nucleonic equation of state, making use of cooling simulations to show how the local wave spectrum evolves as the star ages. Our results show that the composition gradient is effectively dominated by the muons whenever they are present. When the star cools below the superfluid transition, the support fo...
The Fermi Paradox is Neither Fermis Nor a Paradox
Gray, Robert H.
2016-01-01
The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth-and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked 'where is everybody?'- apparently suggesting that we don't see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesti...
Information entropy and Thomas-Fermi screening functions
International Nuclear Information System (INIS)
In this work we apply the information entropy concept to analyze different trial electron densities in momentum and coordinate spaces, into the Thomas-Fermi density functional formalism. Furthermore, we try to assess how well-known physical properties of neutral atoms are reproduced and hence evaluate the quality of the screening functions in the light of their predictive capacity. (author). 32 refs, 4 figs, 3 tabs
Relativistic Thomas-Fermi Model at Finite Temperatures
G. Bertone(GRAPPA Center of Excellence, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, The Netherlands); Ruffini, R.
2001-01-01
We briefly review the Thomas-Fermi statistical model of atoms in the classical non-relativistic formulation and in the generalised finite-nucleus relativistic formulation. We then discuss the classical generalisation of the model to finite temperatures in the non-relativistic approximation and present a new relativistic model at finite temperatures, investigating how to recover the existing theory in the limit of low temperatures. This work is intended to be a propedeutical study for the eval...
Anisotropic phases of superfluid ^{3}he in compressed aerogel.
Li, J I A; Zimmerman, A M; Pollanen, J; Collett, C A; Halperin, W P
2015-03-13
It has been shown that the relative stabilities of various superfluid states of ^{3}He can be influenced by anisotropy in a silica aerogel framework. We prepared a suite of aerogel samples compressed up to 30% for which we performed pulsed NMR on ^{3}He imbibed within the aerogel. We identified A and B phases and determined their magnetic field-temperature phase diagrams as a function of strain. From these results, we infer that the B phase is distorted by negative strain forming an anisotropic superfluid state more stable than the A phase.
A Neutron Scattering Study of Collective Excitations in Superfluid Helium
DEFF Research Database (Denmark)
Graf, E. H.; Minkiewicz, V. J.; Bjerrum Møller, Hans;
1974-01-01
Extensive inelastic-neutron-scattering experiments have been performed on superfluid helium over a wide range of energy and momentum transfers. A high-resolution study has been made of the pressure dependence of the single-excitation scattering at the first maximum of the dispersion curve over...... of the multiexcitation scattering was also studied. It is shown that the multiphonon spectrum of a simple Debye solid with the phonon dispersion and single-excitation cross section of superfluid helium qualitatively reproduces these data....
Quantised vortices and mutual friction in relativistic superfluids
Andersson, N; Vickers, J A
2016-01-01
We consider the detailed dynamics of an array of quantised superfluid vortices in the framework of general relativity, as required for quantitative modelling of realistic neutron star cores. Our model builds on the variational approach to relativistic (multi-) fluid dynamics, where the vorticity plays a central role. The description provides a natural extension of, and as it happens a better insight into, existing Newtonian models. In particular, we account for the mutual friction associated with scattering of a second "normal" component in the mixture off of the superfluid vortices.
Collective Modes in the Superfluid Inner Crust of Neutron Stars
Urban, Michael
2015-01-01
The neutron-star inner crust is assumed to be superfluid at relevant temperatures. The contribution of neutron quasiparticles to thermodynamic and transport properties of the crust is therefore strongly suppressed by the pairing gap. Nevertheless, the neutron gas still has low-energy excitations, namely long-wavelength collective modes. We summarize different approaches to describe the collective modes in the crystalline phases of the inner crust and present an improved model for the description of the collective modes in the pasta phases within superfluid hydrodynamics.
Bantilan, H.; Brewer, J. T.; Ishii, T.; Lewis, W. E.; Romatschke, P.
2016-09-01
Very different strongly interacting quantum systems such as Fermi gases, quark-gluon plasmas formed in high-energy ion collisions, and black holes studied theoretically in string theory are known to exhibit quantitatively similar damping of hydrodynamic modes. It is not known if such similarities extend beyond the hydrodynamic limit. Do nonhydrodynamic collective modes in Fermi gases with strong interactions also match those from string theory calculations? In order to answer this question, we use calculations based on string theory to make predictions for modes outside the hydrodynamic regime in trapped Fermi gases. These predictions are amenable to direct testing with current state-of-the-art cold atom experiments.
BEC of 41 K in a Fermi sea of 6 Li
Lous, Rianne S.; Fritsche, Isabella; Huang, Bo; Jag, Michael; Cetina, Marko; Walraven, Jook T. M.; Grimm, Rudolf
2016-05-01
We report on the production of a 41 K Bose-Einstein condensate (BEC) immersed in a degenerate two-component 6 Li Fermi sea. After evaporation in an optical dipole trap, we obtain 1 . 2 ×104 41 K atoms with a 55% BEC fraction and a Fermi sea with T /TF work is supported by the Austrian Science Fund FWF within the collaborative research grant FoQuS.
Palade, D I
2014-01-01
We study the static linear response in spherical Thomas-Fermi systems deriving a simple diferen- tial equation for general multipolar moments and associated polarizabilities. We test the equation on sodium clusters between 20 and 100 atoms and on fullerenes between C60 and C240 and propose it for general Thomas-Fermi systems. Our simple method provides results which deviates from experimental data with less then 15%.
DEFF Research Database (Denmark)
Bruun, Georg
2011-01-01
We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures......, strong correlation effects are included through the Landau parameters which we extract from Monte Carlo results. We show that the spin diffusion coefficient has a minimum for a temperature somewhat below the Fermi temperature with a value that approaches the quantum limit ~/m in the unitarity regime...
The Fermi Paradox is Neither Fermis Nor a Paradox
Gray, Robert H
2016-01-01
The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth-and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked 'where is everybody?'- apparently suggesting that we don't see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist, or suggesting its absence is paradoxical. The claim 'they are not here; therefore they do not exist' was first published by Michael Hart, claiming that interstellar travel and colonization of the galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important...
Third sound measurements of superfluid 4He films on multiwall carbon nanotubes below 1 K
International Nuclear Information System (INIS)
Third sound is studied for superfluid films of 4He adsorbed on multiwall carbon nanotubes packed into an annular resonator. The third sound is generated with mechanical oscillation of the cell, and detected with carbon bolometers. A filling curve at temperatures near 250 mK shows oscillations in the third sound velocity, with maxima at the completion of the 4th and 5th atomic layers. Sharp changes in the Q factor of the third sound are found at partial layer fillings. Temperature sweeps at a number of fill points show strong broadening effects on the Kosterlitz-Thouless (KT) transition, and rapidly increasing dissipation, in qualitative agreement with the predictions of Machta and Guyer. At the 4th layer completion there is a sudden reduction of the transition temperature TKT, and then a recovery back to linear variation with temperature, although the slope is considerably smaller than the KT prediction
Meraki, Adil; Mao, Shun; McColgan, Patrick T.; Boltnev, Roman E.; Lee, David M.; Khmelenko, Vladimir V.
2016-03-01
We studied the dynamics of thermoluminescence during destruction of porous structures formed by nanoclusters of nitrogen molecules containing high concentrations of stabilized nitrogen atoms. The porous structures were formed in bulk superfluid helium by injection of the products of discharges in nitrogen-helium gas mixtures through the liquid helium surface. Fast recombination of nitrogen atoms during warming-up led to explosive destruction of the porous structures accompanied by bright flashes. Intense emissions from the α -group of nitrogen atoms, the β -group of oxygen atoms and the Vegard-Kaplan bands of N_2 molecules were observed at the beginning of destruction. At the end of destruction the M- and β -bands of NO molecules as well as bands of O_2 molecules were also observed. Observation of the emissions from NO molecules at the end of destruction was explained by processes of accumulation of NO molecules in the system due to the large van der Waals interaction of NO molecules. For the first time, we observed the emission of the O_2 molecules at the end of destruction of the porous nitrogen structures as a result of the (NO)_2 dimer formation in solid nitrogen and subsequent processes leading to the appearance of excited O_2 molecules.
Energy Technology Data Exchange (ETDEWEB)
Yang, X.F., E-mail: yangxf@ribf.riken.jp [School of Physics, Peking University, Chengfu Road, Haidian District, Beijing 100871 (China); RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Furukawa, T. [Dept. of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Wakui, T. [Cyclotron and Radioisotope Center Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Imamura, K. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Tetsuka, H. [Dept. of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Fujita, T. [Dept. of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Yamaguchi, Y. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Tsutsui, Y. [Dept. of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Mitsuya, Y. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Ichikawa, Y. [Dept. of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo152-8551 (Japan); Ishibashi, Y. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Dept. of Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Yoshida, N.; Shirai, H. [Dept. of Physics, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro, Tokyo152-8551 (Japan); Ebara, Y.; Hayasaka, M. [Dept. of Physics, Tokyo Gakugei University, 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501 (Japan); Arai, S.; Muramoto, S. [Dept. of Physics, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan); Hatakeyama, A. [Dept. of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Wada, M.; Sonoda, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others
2013-12-15
In order to investigate the structure of exotic nuclei with extremely low yields by measuring nuclear spins and moments, a new laser spectroscopy technique – “OROCHI” (Optical Radioisotopes Observation in Condensed Helium as Ion-catcher) has been proposed in recent years. The feasibility of this technique has been demonstrated by means of a considerable amount of offline and online studies of various atoms in superfluid helium. For in-situ laser spectroscopy of atoms in He II, trapping atoms in the observation region of laser is a key step. Therefore, a method which enables us to trap accelerated atoms at a precise position in He II is highly needed for performing experiment. In this work, a technique making use of a degrader, two plastic scintillators and a photon detection system is established for checking the stopping position of beam based on the LISE++ calculation. The method has been tested and verified by on-line experiments with the {sup 84,85,87}Rb beam. Details of the experimental setup, working procedure and testing results of this method are presented.
Engineering mesoscopic superpositions of superfluid flow
Hallwood, David W
2011-01-01
Modeling strongly correlated atoms demonstrates the possibility to prepare quantum superpositions that are robust against experimental imperfections and temperature. Such superpositions of vortex states are formed by adiabatic manipulation of interacting ultracold atoms confined to a one-dimensional ring trapping potential when stirred by a barrier. Here, we discuss the influence of non-ideal experimental procedures and finite temperature. Adiabaticity conditions for changing the stirring rate reveal that superpositions of many atoms are most easily accessed in the strongly-interacting, Tonks-Girardeau, regime, which is also the most robust at finite temperature. NOON-type superpositions of weakly interacting atoms are most easily created by adiabatically decreasing the interaction strength by means of a Feshbach resonance. The quantum dynamics of small numbers of particles is simulated and the size of the superpositions is calculated based on their ability to make precision measurements. Experimental creatio...
International Nuclear Information System (INIS)
We study the phase coherence property of Bose−Einstein condensates confined in a one-dimensional optical lattice formed by a standing-wave laser field. The lattice depth is determined using a method of Kapitza–Dirac scattering between a condensate and a short pulse lattice potential. Condensates are then adiabatically loaded into the optical lattice. The phase coherence property of the confined condensates is reflected by the interference patterns of the expanded atomic cloud released from the optical lattice. For weak lattice, nearly all of the atoms stay in a superfluid state. However, as the lattice depth is increased, the phase coherence of the whole condensate sample is gradually lost, which confirms that the sub-condensates in each lattice well have evolved into number-squeezed states. (atomic and molecular physics)
Electron Attachment to CO2 Embedded in Superfluid He Droplets
Postler, Johannes; Vizcaino, Violaine; Denifl, Stephan; Zappa, Fabio; Ralser, Stefan; Daxner, Matthias; Illenberger, Eugen; Scheier, Paul
2014-01-01
Electron attachment to CO2 embedded in superfluid He droplets leads to ionic complexes of the form (CO2) n – and (CO2) n O– and, at much lower intensities, He containing ions of the form He m (CO2) n O–. At low energies (
H on He: sticking and 2d-superfluidity
International Nuclear Information System (INIS)
The sticking coefficient, which governs the sticking time τs, is discussed for high surface-coverage conditions. We point out that τs must remain large compared to a characteristic vortex diffusion time, if the system is to display 2d-superfluidity
Design and testing of a superfluid liquid helium cooling loop
International Nuclear Information System (INIS)
This paper describes the design and preliminary testing of a cryogenic cooling loop that uses a thermomechanical pump to circulate superfluid liquid helium. The cooling loop test apparatus is designed to prove forced liquid helium flow concepts that will be used on the Astromag superconducting magnet facility. 3 refs., 2 figs
How viscous is a superfluid neutron star core?
Andersson, N; Glampedakis, K
2004-01-01
In this paper we discuss the effects of superfluidity on the shear viscosity in a neutron star core. Our study combines existing theoretical results for the viscosity coefficients with data for the various superfluid energy gaps into a consistent description. In particular, we provide a simple model for the electron viscosity which is relevant both when the protons form a normal fluid and when they become superconducting. This result explains in a clear way why proton superconductivity leads to a significant strengthening of the shear viscosity. We present our results in a form which permits the use of data for any given modern equation of state (our final formulas are explicitly dependent on the proton fraction). We discuss a simple description of the relevant superfluid pairing gaps, and construct a number of models (spanning the range of current uncertainty) which are then used to discuss the superfluid suppression of shear viscosity. We conclude by a discussion of a number of challenges that must be met i...
Dislocation-induced superfluidity in a model supersolid
Energy Technology Data Exchange (ETDEWEB)
Goswami, Debajit [Universitaet des Saarlandes, Saarbruecken (Germany); Dasbiswas, Kinjal; Dorsey, Alan [University of Florida, Gainesville, FL (United States); Yoo, Chi-Deuk [University of Minnesota, Minneapolis, MN (United States)
2012-07-01
Motivated by recent experiments on the supersolid behavior of {sup 4}He, we study the effect of an edge dislocation in promoting superfluidity in a Bose crystal. Using Landau theory, we couple the elastic strain field of the dislocation to the superfluid density, and use a linear analysis to show that superfluidity nucleates on the dislocation before occurring in the bulk of the solid. Moving beyond the linear analysis, we develop a systematic perturbation theory in the weakly nonlinear regime, and use this method to integrate out transverse degrees of freedom and derive a one-dimensional Landau equation for the superfluid order parameter. We then extend our analysis to a network of dislocation lines, and derive an XY model for the dislocation network by integrating over fluctuations in the order parameter. Our results show that the ordering temperature for the network has a sensitive dependence on the dislocation density, consistent with numerous experiments that find a clear connection between the sample quality and the supersolid response.
Briton wins Nobel physics prize for work on superfluids
Connor, S
2003-01-01
A British born scientist, Anthony Leggett, 65, has jointly won this year's Nobel prize in physics for research into the arcane area of superfluids - when matter behaves in its lowest and most ordered state. He shares the 800,000 pounds prize with two Russian physicists who have worked in the field of superconductivity - when electrical conductors lose resistance (1/2 page).
Laser cooling and control of excitations in superfluid helium
Harris, G. I.; McAuslan, D. L.; Sheridan, E.; Sachkou, Y.; Baker, C.; Bowen, W. P.
2016-08-01
Superfluidity is a quantum state of matter that exists macroscopically in helium at low temperatures. The elementary excitations in superfluid helium have been probed with great success using techniques such as neutron and light scattering. However, measurements of phonon excitations have so far been limited to average thermodynamic properties or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of phonon excitations in real time. Furthermore, strong light-matter interactions allow both laser cooling and amplification. This represents a new tool to observe and control superfluid excitations that may provide insight into phonon-phonon interactions, quantized vortices and two-dimensional phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including the prospect of femtogram masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.
Gurzadyan, V. G.; Penrose, R.
2016-01-01
Within the scheme of conformal cyclic cosmology (CCC), information can be transmitted from aeon to aeon. Accordingly, the "Fermi paradox" and the SETI programme --of communication by remote civilizations-- may be examined from a novel perspective: such information could, in principle, be encoded in the cosmic microwave background. The current empirical status of CCC is also discussed.
Experimental characterization of turbulent superfluid helium
Paoletti, Matthew S.
Fundamental processes in turbulent superfluid 4He are experimentally characterized by refining a visualization technique recently introduced by Bewley et al.. A mixture of hydrogen and helium gas is injected into the bulk fluid, which produces a distribution of micron-sized hydrogen tracer particles that are visualized and individually tracked allowing for local velocity measurements. Tracer trajectories are complex since some become trapped on the quantized vortices while others flow with the normal fluid. This technique is first applied to study the dynamics of a thermal counterflow. The resulting observations constitute the first direct confirmation of two-fluid motions in He II and provide a quantitative test of the expression for the dependence of the normal fluid velocity, vn, on the applied heat flux, q, derived by L. D. Landau in 1941. Nearly 20,000 individual reconnection events are identified for the first time and used to characterize the dynamics by the minimum separation distance, delta( t), between two reconnecting vortices. Dimensional arguments predict that this separation behaves asymptotically as delta(t) ≈ A(kappa∣t -- t0∣) 1/2, where kappa = h/m is the quantum of circulation. The major finding of the experiments is strong support for this asymptotic form with kappa as the dominant controlling quantity. Nevertheless there are significant event-to-event fluctuations that are equally well fit by two modified expressions: (a) an arbitrary power-law expression delta( t) = B∣t -- t0∣alpha and (b) a correction-factor expression delta(t) = A(kappa∣t -- t 0)1/2 (1 + c∣t -- t0∣). In light of various physical interpretations we regard the correction-factor expression (b), which attributes the observed deviations from the predicted asymptotic form to fluctuations in the local environment and boundary conditions, as best describing the experimental data. The observed dynamics appear statistically time-reversible, suggesting that an effective
Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.
Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S
2016-08-26
We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions. PMID:27610853
Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction
Institute of Scientific and Technical Information of China (English)
CHENG Ze
2011-01-01
@@ We find that uniform Bose atomic gases with weak attraction can undergo a Bardeen-Cooper-Schrieffer(BCS)condensation below a critical temperature.In the BCS condensation state,bare atoms with opposite wave vectors are bound into pairs,and unpaired bare atoms are transformed into a new kind of quasi-particles,i.e.the dressed atoms.The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid.The critical temperature and the effective mass of dressed atoms are derived analytically.The transition from the BCS condensation state to the normal state is a first-order phase transition.%We find that uniform Bose atomic gases with weak attraction can undergo a Bardeen-Cooper-Schrieffer (BCS)condensation below a critical temperature. In the BCS condensation state, bare atoms with opposite wave vectors are bound into pairs, and unpaired bare atoms are transformed into a new kind of quasi-particles, i.e. the dressed atoms. The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid. The critical temperature and the effective mass of dressed atoms are derived analytically. The transition from the BCS condensation state to the normal state is a first-order phase transition.
A compact copper nuclear demagnetization cryostat and a search for superfluidity in solid 4He
International Nuclear Information System (INIS)
The subject of this thesis is the theoretical and experimental study of matter at low temperatures, and the development of techniques to reach and measure these temperatures. A copper nuclear demagnetization cryostat was developed in order to reach low temperatures. This system distinguishes itself from other cryostats by its compact construction. The lowest temperature recorded by a pulsed Pt-NMR thermometer was 115 μK. This system was used to search for superfluidity in solid 4He. Due to the large zero-point motion of the atoms, 4He remains liquid down to zero temperature; a pressure of 25.3 bar is needed to force the atoms in a lattice. Even in solid state, the 4He atoms remain very mobile, changing lattice sites at a frequency of approximately 107 Hz. It is possible that solid 4He contains vacancies at zero temperature. These zero point vacancies are expected to behave like a gas of bosons, and should Bose-condense at some temperature. From experiments the upper limit to the vacancy concentration is set of 4·10-5. (author). 217 refs.; 46 figs.; 2 tabs
Small metal particles and the ideal Fermi gas
International Nuclear Information System (INIS)
Kubo's theoretical model of a small metal particle consists of a number of noninteraction electrons (an ideal Fermi gas) confined to a finite volume. By 'small' it meant that the size of the particle is intermediate between that of a few atoms cluster and the bulk solid, the radius of the particle being 5 to 50 Angstroms. The model is discussed and size dependence of various energy scales is studied. For a fermi gas confined in a sphere or a cube, two size-dependent energy scales are important. The inner scale δ is the mean spacing between successive energy levels. It governs the very low temperature behaviour. The outer scale Δ is associated with the shell structure when δ ≤T<Δ, thermodynamic properties show an oscillatory fluctuations around a smooth background as the size or energy is varied. (M.G.B.) 23 refs
Fermi acceleration of Lyman-alpha photons by shocks
Neufeld, David A.; Mckee, Christopher F.
1988-01-01
The repeated scattering of Ly-alpha radiation across a shock front results in a systematic blueshift which may greatly exceed the shock velocity vs and is proportional to cube root of (Nvs), where N is the column density of hydrogen atoms on either side of the shock front. The blueshifting process is similar to the Fermi acceleration of cosmic rays and may be responsible for the blue asymmetric line profiles that have been observed in high-redshift Ly-alpha galaxies. The Ly-alpha line profile in 3C 326.1 is accounted for by a model in which shocks, driven into a population of interstellar clouds by a radio lobe, trigger the formation of ionizing stars and Fermi accelerate the Ly-alpha radiation emitted by H II regions surrounding those stars. Galaxy mergers, particularly between galaxies with low dust content, should produce Ly-alpha lines with strong blue wings.
Fermi acceleration of Lyman-alpha photons by shocks
International Nuclear Information System (INIS)
The repeated scattering of Ly-alpha radiation across a shock front results in a systematic blueshift which may greatly exceed the shock velocity vs and is proportional to cube root of (Nvs), where N is the column density of hydrogen atoms on either side of the shock front. The blueshifting process is similar to the Fermi acceleration of cosmic rays and may be responsible for the blue asymmetric line profiles that have been observed in high-redshift Ly-alpha galaxies. The Ly-alpha line profile in 3C 326.1 is accounted for by a model in which shocks, driven into a population of interstellar clouds by a radio lobe, trigger the formation of ionizing stars and Fermi accelerate the Ly-alpha radiation emitted by H II regions surrounding those stars. Galaxy mergers, particularly between galaxies with low dust content, should produce Ly-alpha lines with strong blue wings. 14 references
Energy Technology Data Exchange (ETDEWEB)
Mills, R.L. [BlackLight Power, Inc., Cranbury, NJ (United States)
2001-10-01
The Schroedinger equation was originally postulated in 1926 as having a solution of the one electron atom. It gives the principal energy levels of the hydrogen atom as eigenvalues of eigenfunction solutions of the Laguerre differential equation. But, as the principal quantum number n>>1, the eigenfunctions become nonsensical. Despite its wide acceptance, on deeper inspection, the Schroedinger solution is plagued with many failings as well as difficulties in terms of a physical interpretation that have caused it to remain controversial since its inception. Only the one electron atom may be solved without approximations, but it fails to predict electron spin and leads to models with nonsensical consequences such as negative energy states of the vacuum, infinities, and negative kinetic energy. In addition to many predictions which simply do not agree with observations, the Schroedinger equation predicts noncausality, nonlocality, spooky actions at a distance or quantum telepathy, perpetual motion, and many internal inconsistencies where contradicting statements have to be taken true simultaneously. Recently, the behavior of free electrons in superfluid helium has again forced the issue of the meaning of the wave function. Electrons form bubbles in superfluid helium which reveal that the electron is real and that a physical interpretation of the wave function is necessary. Furthermore, when irradiated with light of energy of about a 0.5 to several electron volts (H.J. Marris, J. Low Temp. Phys. 120 (2000) 173), the electrons carry current at different rates as if they exist with different sizes. It has been proposed that the behavior of free electrons in superfluid helium can be explained in terms of the electron breaking into pieces at superfluid helium temperatures (H.J. Marris, J. Low Temp. Phys. 120 (2000) 173). Yet, the electron has proven to be indivisible even under particle accelerator collisions at 90 GeV (LEPII). The nature of the wave function must now be
Non-Riemannian effective spacetime effects on Hawking radiation in superfluids
Garcia de Andrade, L C
2005-01-01
Riemannian effective spacetime description of Hawking radiation in $^{3}He-A$ superfluids is extended to non-Riemannian effective spacetime. An example is given of non-Riemannian effective geometry of the rotational motion of the superfluid vacuum around the vortex where the effective spacetime Cartan torsion can be associated to the Hawking giving rise to a physical interpretation of effective torsion recently introduced in the literature in the form of an acoustic torsion in superfluid $^{4}He$ (PRD-70(2004),064004). Curvature and torsion singularities of this $^{3}He-A$ fermionic superfluid are investigated. This Lense-Thirring effective metric, representing the superfluid vacuum in rotational motion, is shown not support Hawking radiation when the isotropic $^{4}He$ is restored at far distances from the vortex axis. Hawking radiation can be expressed also in topological solitons (moving domain walls) in fermionic superfluids in non-Riemannian (teleparallel) $(1+1)$ dimensional effective spacetime. A telep...
Lopatnikova, Anna; Berker, A. Nihat
1997-03-01
Superfluidity and phase separation in ^3He-^4He mixtures immersed in jungle-gym (non-random) aerogel are studied by renormalization-group theory.(Phys. Rev. B, in press (1996)) Phase diagrams are calculated for a variety of aerogel concentrations. Superfluidity at very low ^4He concentrations and a depressed tricritical temperature are found at the onset of superfluidity. A superfluid-superfluid phase separation, terminating at an isolated critical point, is found entirely within the superfluid phase. These phenomena, and trends with respect to aerogel concentration, are explained by the connectivity and tenuousness of jungle-gym aerogel.
Cai, Rong-Gen; Wu, Yue-Liang; Zhang, Yun-Long
2016-01-01
In this paper we investigate the $(2+1)$-dimensional topological non-Fermi liquid in strongly correlated electron system, which has a holographic dual description by Einstein gravity in $(3+1)$-dimensional anti-de Sitter (AdS) space-time. In a dyonic Reissner-Nordstrom black hole background, we consider a Dirac fermion coupled to the background $U(1)$ gauge theory and an intrinsic chiral gauge field $b_M$ induced by chiral anomaly. UV retarded Green's function of the charged fermion in the UV boundary from AdS$_4$ gravity is calculated, by imposing in-falling wave condition at the horizon. We also obtain IR correlation function of the charged fermion at the IR boundary arising from the near horizon geometry of the topological black hole with index $k=0,\\pm 1$. By using the UV retarded Green's function and IR correlation function, we analyze the low frequency behavior of the topological non-Fermi liquid at zero and finite temperatures, especially the relevant non-Fermi liquid behavior near the quantum critical...
Enrico Fermi and the Dolomites
Battimelli, Giovanni
2014-01-01
Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scient...
Enrico Fermi and the Dolomites
Energy Technology Data Exchange (ETDEWEB)
Battimelli, Giovanni, E-mail: giovanni.battimelli@uniroma1.it; Angelis, Alessandro de, E-mail: alessandro.de.angelis@cern.ch
2014-11-15
Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scientific discussions held in the region of the Dolomites.
Atomic Bose and Anderson Glasses in Optical Lattices
Damski, B.; Zakrzewski, J.; Santos, L.; Zoller, P.; Lewenstein, M.
2003-08-01
An ultracold atomic Bose gas in an optical lattice is shown to provide an ideal system for the controlled analysis of disordered Bose lattice gases. This goal may be easily achieved under the current experimental conditions by introducing a pseudorandom potential created by a second additional lattice or, alternatively, by placing a speckle pattern on the main lattice. We show that, for a noncommensurable filling factor, in the strong-interaction limit, a controlled growing of the disorder drives a dynamical transition from superfluid to Bose-glass phase. Similarly, in the weak interaction limit, a dynamical transition from superfluid to Anderson-glass phase may be observed. In both regimes, we show that even very low-intensity disorder-inducing lasers cause large modifications of the superfluid fraction of the system.
Superfluid behavior of a Bose–Einstein condensate in a random potential
International Nuclear Information System (INIS)
We investigate the relation between Bose–Einstein condensation (BEC) and superfluidity in the ground state of a one-dimensional model of interacting bosons in a strong random potential. We prove rigorously that in a certain parameter regime the superfluid fraction can be arbitrarily small while complete BEC prevails. In another regime there is both complete BEC and complete superfluidity, despite the strong disorder. (paper)
Neutrino Emissivity of Non-equilibrium beta processes With Nucleon Superfluidity
Pi, Chun-Mei; Zheng, Xiao-Ping; Yang, Shu-Hua
2009-01-01
We investigate the influence of nucleon superfluidity on the neutrino emissivity of non-equilibrium beta processes. Calculations are performed of the reduction factors for direct and modified Urca processes with three types of nucleon superfluidity in $npe$ matter. The numerical results are given since the analytical solution is impossible. We find that the behavior of the superfluid influence is closely related to the chemical departure from beta equilibrium. For small chemical departure, th...
Superfluid and normal fluid helium II in a rotating tank under low and microgravity environments
Hung, R. J.
1990-01-01
The physical behavior of superfluid and normal fluid helium II is discussed. It is shown that the centrifugal force due to a rotating container can never separate the superfluid from the normal fluid helium in a large rotating cylindrical spacecraft. A classical approach is appropriate for treating superfluid and normal fluid cryogenic helium as a mixture without separation in a large rotating cylinder in a spacecraft propellant systems.
A Quantum Gas Microscope for Fermionic Atoms
Cheuk, Lawrence W.; Nichols, Matthew A.; Okan, Melih; Gersdorf, Thomas; Ramasesh, Vinay V.; Bakr, Waseem S.; Lompe, Thomas; Zwierlein, Martin W.
2015-01-01
Strongly interacting fermions define the properties of complex matter at all densities, from atomic nuclei to modern solid state materials and neutron stars. Ultracold atomic Fermi gases have emerged as a pristine platform for the study of many-fermion systems. Here we realize a quantum gas microscope for fermionic $^{40}$K atoms trapped in an optical lattice, which allows one to probe strongly correlated fermions at the single atom level. We combine 3D Raman sideband cooling with high-resolu...
Classical and Quantum Chaos in Atom Optics
Saif, Farhan
2006-01-01
The interaction of an atom with an electromagnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electromagnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits ...
Geometry and Dynamics of Vortex Loops at Superfluid Phase Transitions
Williams, Gary A.
2004-03-01
The geometrical properties of thermally-excited vortex loops near a superfluid phase transition can be deduced from the dynamics of the transition. The frictional force on a loop is proportional to the total length of the vortex core, and hence depends on the fractal Hausdorff dimension DH of the random-walking core. By comparing the results for the loop dynamics with the dynamic-scaling predictions of Halperin and Hohenberg for the relaxation time, we find DH = (D+2)/2 = 2.5 in D = 3 dimensions, if the dynamic exponent is z = D/2. Computing the frequency-dependence of the superfluid density and comparing with the dynamic scaling of Fisher, Fisher, and Huse gives just the same value. Since Shenoy and co-workers have found precisely the same DH from a Flory-scaling analysis of the loop random walk, our results show that Shenoy's theory is exact if dynamic scaling is exact.
Relativistic Coulomb excitation within Time Dependent Superfluid Local Density Approximation
Stetcu, I; Bulgac, A; Magierski, P; Roche, K J
2014-01-01
Within the framework of the unrestricted time-dependent density functional theory, we present for the first time an analysis of the relativistic Coulomb excitation of the heavy deformed open shell nucleus $^{238}$U. The approach is based on Superfluid Local Density Approximation (SLDA) formulated on a spatial lattice that can take into account coupling to the continuum, enabling self-consistent studies of superfluid dynamics of any nuclear shape. We have computed the energy deposited in the target nucleus as a function of the impact parameter, finding it to be significantly larger than the estimate using the Goldhaber-Teller model. The isovector giant dipole resonance, the dipole pygmy resonance and giant quadrupole modes were excited during the process. The one body dissipation of collective dipole modes is shown to lead a damping width $\\Gamma_\\downarrow \\approx 0.4$ MeV and the number of pre-equilibrium neutrons emitted has been quantified.
Hydrodynamics of rapidly rotating superfluid neutron stars with mutual friction
Passamonti, A
2010-01-01
We study time evolutions of superfluid neutron stars, focussing on the nature of the oscillation spectrum, the effect of mutual friction force on the oscillations and the hydrodynamical spin-up phase of pulsar glitches. We linearise the dynamical equations of a Newtonian two-fluid model for rapidly rotating backgrounds. In the axisymmetric equilibrium configurations, the two fluid components corotate and are in beta-equilibrium. We use analytical equations of state that generate stratified and non-stratified stellar models, which enable us to study the coupling between the dynamical degrees of freedom of the system. By means of time evolutions of the linearised dynamical equations, we determine the spectrum of axisymmetric and non-axisymmetric oscillation modes, accounting for the contribution of the gravitational potential perturbations, i.e. without adopting the Cowling approximation. We study the mutual friction damping of the superfluid oscillations and consider the effects of the non-dissipative part of ...
Superfluid-like dynamics in active vortex fluids
Slomka, Jonasz; Dunkel, Jorn
Active biological fluids exhibit rich non-equilibrium dynamics and share striking similarities with quantum fluids, from vortex formation and magnetic ordering to superfluid-like behavior. Building on universality ideas, we have recently proposed a generalization of the Navier-Stokes equations that captures qualitatively the active bulk flow structures observed in bacterial suspensions. Here, we present new numerical simulations that explicitly account for boundary and shear effects. The theory successfully reproduces recent experimental observations of bacterial suspensions, including a superfluid-like regime of nearly vanishing shear viscosity. Our simulations further predict a geometry-induced 'quantization' of viscosity and the existence of excited states capable of performing mechanical work. It is plausible that these results generalize to a broad a class of fluids that are subject to an active scale selection mechanism.
Lifshitz effects on holographic p-wave superfluid
Directory of Open Access Journals (Sweden)
Ya-Bo Wu
2015-02-01
Full Text Available In the probe limit, we numerically build a holographic p-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent z contributes evidently to the effective mass of the matter field and dimension of the gravitational background. Concretely, we obtain that the Cave of Winds appeared only in the five-dimensional anti-de Sitter (AdS spacetime, and the increasing z hinders not only the condensate but also the appearance of the first-order phase transition. Furthermore, our results agree with the Ginzburg–Landau results near the critical temperature. In addition, the previous AdS superfluid model is generalized to the Lifshitz spacetime.
Transitions and excitations in a superfluid stream passing small impurities
Pinsker, Florian
2014-05-08
We analyze asymptotically and numerically the motion around a single impurity and a network of impurities inserted in a two-dimensional superfluid. The criticality for the breakdown of superfluidity is shown to occur when it becomes energetically favorable to create a doublet—the limiting case between a vortex pair and a rarefaction pulse on the surface of the impurity. Depending on the characteristics of the potential representing the impurity, different excitation scenarios are shown to exist for a single impurity as well as for a lattice of impurities. Depending on the lattice characteristics it is shown that several regimes are possible: dissipationless flow, excitations emitted by the lattice boundary, excitations created in the bulk, and the formation of large-scale structures.
Hydrodynamics of superfluid helium in a single nanohole.
Savard, M; Dauphinais, G; Gervais, G
2011-12-16
The flow of liquid helium through a single nanohole with radius smaller than 25 nm was studied. Mass flow was induced by applying a pressure difference of up to 1.4 bar across a 50 nm thick Si(3)N(4) membrane and was measured directly by means of mass spectrometry. In liquid He I, we experimentally show that the fluid is not clamped by the short pipe with diameter-to-length ratio D/L≃1, despite the small diameter of the nanohole. This viscous flow is quantitatively understood by making use of a model of flow in short pipes. In liquid He II, a two-fluid model for mass flow is used to extract the superfluid velocity in the nanohole for different pressure heads at temperatures close to the superfluid transition. These velocities compare well to existing data for the critical superflow of liquid helium in other confined systems. PMID:22243081
Spatial Relevancies of Hybrid Systems Relates to Superfluid
Hidajatullah-Widastra, Fatahillah
2015-05-01
After S/F hybrid system from Martin Lange, of spatial modulation Superconductor-Electromagnet hybrids superconductor producing studies conclusion, for superconductor at large Hand/or T(i.e close to the phase transitionline), when the superfluid densitiy tends to 0. Further as for He3-B superfluid ``testing ground'', after sought extensometer for every materials testing application from , in K Matsumoto:``Flux pinning Engineering for Application of HTS'', 2013 quote Higgs boson , whereas it plays role as similar phenomena of Meissner effect, both involves magnet levitating. Accompanying Gosowong vein, US 16. 3 Million costed study-report who said the toxic waste also endangering biodiversity[Dini Septanti: ``The BUYAT Case: Straddling between Environmental Securitization & De-securitization'', herewith proposed the ``complexity systems'' comparison comprises also phase transition & ``directed polymer'' notions of JP Bouchaud et al: ``Wealth condensation in a simple model of economy''. Incredibles acknowledgment to HE. Mr. Drs. P. SWANTORO & HE.Mr.Ir. H. ABURIZAL BAKRIE.
Experimental study of ultracold neutron production in pressurized superfluid helium
Schmidt-Wellenburg, P; Farhi, E; Fertl, M; Leung, K K H; Rahli, A; Soldner, T; Zimmer, O
2015-01-01
We have investigated experimentally the pressure dependence of the production of ultracold neutrons (UCN) in superfluid helium in the range from saturated vapor pressure to 20bar. A neutron velocity selector allowed the separation of underlying single-phonon and multiphonon pro- cesses by varying the incident cold neutron (CN) wavelength in the range from 3.5 to 10{\\AA}. The predicted pressure dependence of UCN production derived from inelastic neutron scattering data was confirmed for the single-phonon excitation. For multiphonon based UCN production we found no significant dependence on pressure whereas calculations from inelastic neutron scattering data predict an increase of 43(6)% at 20bar relative to saturated vapor pressure. From our data we conclude that applying pressure to superfluid helium does not increase the overall UCN production rate at a typical CN guide.
Vortex structure in rotational state superfluid 3He
International Nuclear Information System (INIS)
The structure of vortices in rotational superfluid 3He is considered. It is marked that in the A-phase quantum vortices are possible, in which the A-phase superfluid state is never disturbed. As a consequence of a discrete combined invariance (calibration transformation plus rotation of a spin subsystem) one more exotic type of vortices is possible in the A-phase. This is a hybrid of disclination in a magnetic anisotropy vector field d (with a half-integer Frank index) and vortex that possesses a half-integer number of circulation quanta. Such vortices can be observed at rotation of the A-phase confined between parallel plates. The vortex properties in the B-phase are determined by a continuous combined symmetry. The calculations show the vortex in the β-phase at low pressures to be in the ν-state. The vortices considered are observed in the NMR experiments
Communication: Electron diffraction of ferrocene in superfluid helium droplets.
Zhang, Jie; He, Yunteng; Kong, Wei
2016-06-14
We report electron diffraction of ferrocene doped in superfluid helium droplets. By taking advantage of the velocity slip in our pulsed droplet beam using a pulsed electron gun, and by doping with a high concentration of ferrocene delivered via a pulsed valve, we can obtain high quality diffraction images from singly doped droplets. Under the optimal doping conditions, 80% of the droplets sampled in the electron beam are doped with just one ferrocene molecule. Extension of this size selection method to dopant clusters has also been demonstrated. However, incomplete separation of dopant clusters might require deconvolution and modeling of the doping process. This method can be used for studies of nucleation processes in superfluid helium droplets. PMID:27305988
An introduction to the theory of superfluid turbulence
International Nuclear Information System (INIS)
In this paper I first describe some aspects of the theory of counterflow turbulence. I then devote most of the paper to grid turbulence, where the theory is less well developed, although I make use of an important experimental result obtained with a more complicated type of flow generated by two counter-rotating discs. My aim is to stimulate interest in the theory of superfluid turbulence, particularly, at this stage, in the simple case of grid turbulence, among both low temperature physicists and those with a background in classical fluid mechanics. I focus on open questions and unsolved problems, questions and problems that are clearly seen in grid turbulence, but which are more widely relevant. My own background is in experimental quantum fluids. I tend to speculate about what I see as the physics of superfluid turbulence. (orig.)
Critical Analysis of the Bogoliubov Theory of Superfluidity
Adams, S
2003-01-01
The microscopic theory of superfluidity [1-3] was proposed by Bogoliubov in 1947 to explain the Landau-type excitation spectrum of helium 4. An analysis of the Bogoliubov theory has already been performed in the recent review [4]. Here we add some new critical analyses of this theory. This leads us to consider the superstable Bogoliubov model [5]. It gives rise to an improvement of the previous theory which will be explained with more details in a next paper [6]: coexistence in the superfluid liquid of particles inside and outside the Bose condensate (even at zero temperature), Bose/Bogoliubov statistics, ``Cooper pairs'' in the Bose condensate, Landau-type excitation spectrum...
Coherent magneto-elastic oscillations in superfluid magnetars
Gabler, Michael; Stergioulas, Nikolaos; Font, José A; Müller, Ewald
2016-01-01
We study the effect of superfluidity on torsional oscillations of highly magnetised neutron stars (magnetars) with a microphysical equation of state by means of two-dimensional, magnetohydrodynamical- elastic simulations. The superfluid properties of the neutrons in the neutron star core are treated in a parametric way in which we effectively decouple part of the core matter from the oscillations. Our simulations confirm the existence of two groups of oscillations, namely continuum oscillations that are confined to the neutron star core and are of Alfv\\'enic character, and global oscillations with constant phase and that are of mixed magneto-elastic type. The latter might explain the quasi-periodic oscillations observed in magnetar giant flares, since they do not suffer from the additional damping mechanism due to phase mixing, contrary to what happens for continuum oscillations. However, we cannot prove rigorously that the coherent oscillations with constant phase are normal modes. Moreover, we find no crust...
Critical superfluid velocity in a trapped dipolar gas.
Wilson, Ryan M; Ronen, Shai; Bohn, John L
2010-03-01
We investigate the superfluid properties of a dipolar Bose-Einstein condensate (BEC) in a fully three-dimensional trap. Specifically, we estimate a superfluid critical velocity for this system by applying the Landau criterion to its discrete quasiparticle spectrum. We test this critical velocity by direct numerical simulation of condensate depletion as a blue-detuned laser moves through the condensate. In both cases, the presence of the roton in the spectrum serves to lower the critical velocity beyond a critical particle number. Since the shape of the dispersion, and hence the roton minimum, is tunable as a function of particle number, we thereby propose an experiment that can simultaneously measure the Landau critical velocity of a dipolar BEC and demonstrate the presence of the roton in this system.
Reconnection dynamics and normal fluid mutual friction in superfluid turbulence
Laurie, Jason
2014-01-01
We investigate the forcing of the normal fluid via mutual friction in finite temperature superfluid turbulence in helium-4, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant vortex tangles each with different topological properties in steady state conditions. Subsequently we investigate, through statistical analysis, how the mutual friction force upon the normal fluid is affected by the characteristic of each of the vortex tangles. Finally, by monitoring the vortex reconnection events, we show how reconnections produce areas of relatively high curvature and superfluid velocity leading to regions of high normal fluid mutual friction, particularly for the homogeneous and isotropic tangles.
Oscillatory motion: quantum whistling in superfluid helium-4.
Hoskinson, E; Packard, R E; Haard, Thomas M
2005-01-27
Fundamental considerations predict that macroscopic quantum systems such as superfluids and the electrons in superconductors will undergo oscillatory motion when forced through a small constriction. Here we induce these oscillations in superfluid helium-4 (4He) by pushing it through an array of nanometre-sized apertures. The oscillations, which are detected as an audible whistling sound, obey the so-called Josephson frequency relation and occur coherently among all the apertures. The discovery of this property in 4He at the relatively high temperature of 2 K (2,000 times higher than the temperature at which a related but different phenomenon occurs in 3He) may pave the way for a new class of practical rotation sensors of unprecedented precision. PMID:15674281
Instabilities in relativistic two-component (super)fluids
Haber, Alexander; Stetina, Stephan
2016-01-01
We study two-fluid systems with nonzero fluid velocities and compute their sound modes, which indicate various instabilities. For the case of two zero-temperature superfluids we employ a microscopic field-theoretical model of two coupled bosonic fields, including an entrainment coupling and a non-entrainment coupling. We analyse the onset of the various instabilities systematically and point out that the dynamical two-stream instability can only occur beyond Landau's critical velocity, i.e., in an already energetically unstable regime. A qualitative difference is found for the case of two normal fluids, where certain transverse modes suffer a two-stream instability in an energetically stable regime if there is entrainment between the fluids. Since we work in a fully relativistic setup, our results are very general and of potential relevance for (super)fluids in neutron stars and, in the non-relativistic limit of our results, in the laboratory.
Quantum Nucleation of Phase Slips in 1-d Superfluids
Arovas, Daniel
1998-03-01
The rate for quantum nucleation of phase slips past an impurity in a one-dimensional superfluid is computed. Real time evolution of the nonlinear Schrödinger equation shows that there is a critical velocity vc below which solutions are time-independent [1,2]; this is the regime of quantum phase slip nucleation. We start with the Gross-Pitaevskii model in the presence of an impurity potential, and derive the Euclidean action for a space-time vortex-antivortex pair, which describes a phase slip event. The action is computed as a function of the superfluid velocity v and the impurity potential width and depth.l [1] V. Hakim, Phys. Rev. E 55, 2835 (1997).l [1] J. A. Freire, D. P. Arovas, and H. Levine, Phys. Rev. Lett (in press, 1997).l
From Field Theory to the Hydrodynamics of Relativistic Superfluids
Stetina, Stephan
2015-01-01
The hydrodynamic description of a superfluid is usually based on a two-fluid picture. In this thesis, basic properties of such a relativistic two-fluid system are derived from the underlying microscopic physics of a complex scalar quantum field theory. To obtain analytic results of all non-dissipative hydrodynamic quantities in terms of field theoretic variables, calculations are first carried out in a low-temperature and weak-coupling approximation. In a second step, the 2-particle-irreducible formalism is applied: This formalism allows for a numerical evaluation of the hydrodynamic parameters for all temperatures below the critical temperature. In addition, a system of two coupled superfluids is studied. As an application, the velocities of first and second sound in the presence of a superflow are calculated. The results show that first (second) sound evolves from a density (temperature) wave at low temperatures to a temperature (density) wave at high temperatures. This role reversal is investigated for ult...
Communication: Electron diffraction of ferrocene in superfluid helium droplets
Zhang, Jie; He, Yunteng; Kong, Wei
2016-06-01
We report electron diffraction of ferrocene doped in superfluid helium droplets. By taking advantage of the velocity slip in our pulsed droplet beam using a pulsed electron gun, and by doping with a high concentration of ferrocene delivered via a pulsed valve, we can obtain high quality diffraction images from singly doped droplets. Under the optimal doping conditions, 80% of the droplets sampled in the electron beam are doped with just one ferrocene molecule. Extension of this size selection method to dopant clusters has also been demonstrated. However, incomplete separation of dopant clusters might require deconvolution and modeling of the doping process. This method can be used for studies of nucleation processes in superfluid helium droplets.
Superfluid hydrodynamics in the inner crust of neutron stars
Martin, Noël
2016-01-01
The inner crust of neutron stars is supposed to be inhomogeneous and composed of dense structures (clusters) that are immersed in a dilute gas of unbound neutrons. Here we consider spherical clusters forming a BCC crystal and cylindrical rods arranged in a hexagonal lattice. We study the relative motion of these dense structures and the neutron gas using superfluid hydrodynamics. Within this approach, which relies on the assumption that Cooper pairs are small compared to the crystalline structures, we find that the entrainment of neutrons by the clusters is very weak since neutrons of the gas can flow through the clusters. Consequently, we obtain a low effective mass of the clusters and a superfluid density that is even higher than the density of unbound neutrons. Consequences for the constraints from glitch observations are discussed.
Heat Capacity of Superfluid (sup 4)He in the Presence of a Heat Current Near T
Chui, Talso C. P.; Goodstein, David L.; Harter, Alexa W.; Mukhopadhyay, Ranjan
1996-01-01
The thermodynamic theory of superfluid helium in the presence of a heat current is presented. We show that there is a thermodynamic relation between the heat capacity and the expression ps(W), which describes the depression of the superfluid density with the counterflow velocity W. Using this relation we show that the heat capacity of superfluid super4He in the presence of a heat current diverges at a depressed lambda transition temperature, suggesting the possibility of a new second order phase transition where the superfluid wave function is not the order parameter.
The onset of superfluidity in thin films of 4He adsorbed on ordered and disordered substrates
International Nuclear Information System (INIS)
The authors have completed a systematic study of the superfluid density of 4He films adsorbed on two substrates: exfoliated basal-plane graphite and 91% porosity aerogel glass. The authors measurements demonstrate a dramatic difference in the coverage-dependence of the superfluid density in these two systems. The onset of superfluidity in the aerogel system is similar to that observed in the case of other disordered substrates such as Vycor glass and mylar. The superfluid density at zero temperature is nearly proportional to coverage once the critical coverage for superfluidity is exceeded. The superfluid density for films adsorbed on graphite does not evolve in this simple fashion. The onset of superfluidity appears to occur near two layers, but the superfluid density increases very rapidly between 2.5 and 3 layers. This coverage regime is also characterized by a dramatic sharpening density and transition temperature remain essentially unchanged as the coverage is increased. We will discuss in the context of recent theoretical work on the onset of superfluidity in model Bose systems
Polar Phase of Superfluid (3)He in Anisotropic Aerogel.
Dmitriev, V V; Senin, A A; Soldatov, A A; Yudin, A N
2015-10-16
We report the first observation of the polar phase of superfluid (3)He. This phase appears in (3)He confined in a new type of aerogel with a nearly parallel arrangement of strands which play the role of ordered impurities. Our experiments qualitatively agree with theoretical predictions and suggest that in other systems with unconventional Cooper pairing (e.g., in unconventional superconductors) similar phenomena may be found in the presence of anisotropic impurities.
Fluctuations above the superfluid transition in liquid 3He
International Nuclear Information System (INIS)
It is shown that fluctuations above the superfluid transition in liquid 3He depend strongly upon the relative angular momentum l of a Cooper pair but are insensitive to the fourth order term in the Ginsburg-Landau free energy. The effects are shown to be observable in the static magnetization, viscosity and spin diffusion and give a means of determining the value of l. (U.S.)
Large Chern Number Topological Superfluids in Coupled Layer System
Huang, Beibing; Chan, Jeffrey Chun Fai; Ming GONG
2014-01-01
We investigate the topological phase transition with large Chern number in a coupled layer system. The topological transitions between different topological superfluids can be realized by controlling the binding energy, interlay tunneling and layer asymmetry {\\it etc}. These topological phase transitions can be characterized by energy gap closing and reopening at the critical points at zero momentum, where the Pfaffian and Chern number undergo a discontinuous change. The bulk-edge corresponde...
Baryon superfluidity and neutrino emissivity of neutron stars
Takatsuka, T.; Tamagaki, R.
2004-01-01
For neutron stars with hyperon-mixed core, neutrino emissivity is studied under the equation of state, obtained by introducing repulsive three-body force universal for all baryons so as to assure the maximum mass compatible with the observation. By paying attention to the density-dependence of critical temperatures of baryon superfluids, which reflect the nature of baryon-baryon interaction and control neutron star cooling, we show what neutrino emission processes are efficient in the regions...
Emergent Geometric Hamiltonian and Insulator-Superfluid Phase Transitions
Zhou, Fei
2005-01-01
I argue that certain bosonic insulator-superfluid phase transitions as an interaction constant varies are driven by emergent geometric properties of insulating states. The {\\em renormalized} chemical potential and distribution of disordered bosons define the geometric aspect of an effective low energy Hamiltonian which I employ to study various resonating states and quantum phase transitions. In a mean field approximation, I also demonstrate that the quantum phase transitions are in the unive...
Generalized deformed oscillator for vortices in superfluid films
Bonatsos, Dennis; Daskaloyannis, C.
1997-01-01
The algebra of observables of a system of two identical vortices in a superfluid thin film is described as a generalized deformed oscillator with a structure function containing a linear (harmonic oscillator) term and a quadratic term. In contrast to the deformed oscillators occuring in other physical systems (correlated fermion pairs in a single-$j$ nuclear shell, Morse oscillator), this oscillator is not amenable to perturbative treatment and cannot be approximated by quons. From the mathem...
Collective modes in superfluid-superconducting neutron stars
Kobyakov, D.; Samuelsson, L; Marklund, M.; Lundh, E; Bychkov, V.; Brandenburg, A.
2015-01-01
The collective longitudinal modes of vibration of baryon density in uniform nuclear matter are considered in a regime where the electrons are ultrarelativistic and quantum-degenerate, and the nucleons are superfluid and superconducting. The equation of state of matter in the core of neutron stars is represented phenomenologically, based on the chiral effective field theory of nuclear interactions constrained by observations of neutron stars, and is matched to properties of nuclear matter in t...
Spontaneous current in an holographic s+p superfluid
Arias, Raúl
2016-01-01
We study a Maxwell-Proca action in an asymptotically AdS black hole background. When moving the temperature of the black hole, we find rich phase diagrams having, that depend strongly on the dimension of the operator dual to the Proca field . We present different solutions in the bulk that correspond to the holographic dual for $s$, $p$ or $s+p$-wave superfluids. In the last case we observe the onset of a spontaneously induced current.
Energy Technology Data Exchange (ETDEWEB)
Yan, D; Kevrekidis, P G [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Frantzeskakis, D J, E-mail: kevrekid@math.umass.edu [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 157 84 (Greece)
2011-10-14
In this work, we consider a model of a defocusing nonlinear Schroedinger equation with a variable nonlinearity exponent. This is motivated by the study of a superfluid Fermi gas in the Bose-Einstein condensation (BEC)-Bardeen-Cooper-Schrieffer crossover. In particular, we focus on the relevant mean-field model in the regime from BEC to unitarity and especially consider the modification of the nearly black soliton oscillation frequency due to the variation in the nonlinearity exponent in a harmonic trapping potential. The analytical expressions given as a function of the relevant nonlinearity exponent are corroborated by numerical computations and also extended past the BEC limit. (paper)
On Holographic p-wave Superfluids with Back-reaction
Ammon, Martin; Grass, Viviane; Kerner, Patrick; O'Bannon, Andy
2009-01-01
We numerically construct asymptotically Anti-de Sitter charged black hole solutions of (4+1)-dimensional SU(2) Einstein-Yang-Mills theory that, for sufficiently low temperature, develop vector hair. Via gauge-gravity duality, these solutions describe a strongly-coupled conformal field theory at finite temperature and density that undergoes a phase transition to a superfluid state with spontaneously broken rotational symmetry (a p-wave superfluid state). The bulk theory has a single free parameter, the ratio of the five-dimensional gravitational constant to the Yang-Mills coupling, which we denote as alpha. Previous analyses have shown that in the so-called probe limit, where alpha goes to zero and hence the gauge fields are ignored in Einstein's equation, the transition to the superfluid state is second order. We construct fully back-reacted solutions, where alpha is finite and the gauge fields are included in Einstein's equation, and find that for values of alpha above a critical value alpha_c = 0.365 +- 0.0...
Chiral superfluidity of the quark-gluon plasma
Energy Technology Data Exchange (ETDEWEB)
Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)
2012-08-15
In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}
Vortex sheet in superfluid 3He-A
International Nuclear Information System (INIS)
A new state of rotating superfluid 3He-A has been found recently. Usually superfluids respond to rotation by creating an array of vortex lines, which are parallel to the rotation axis, and the circulation around them is quantized. In the new state the vorticity is located on a 2 dimensional sheet instead of 1 D lines. The sheet is parallel to the rotation axis z but in the x - y plane it folds to equidistant layers. The distance between the layers is larger but on the same order of magnitude as the distance between vortex lines. In contrast to other superfluids, the sheet is stable in the A phase because, of its internal structure. The sheet has as a backbone a topologically stable domain wall called soliton, to which non-singular vorticity is bound. Thus it can exist in spite of its presumably higher energy. The vortex sheet is distinguished by its NMR response, in particular because of its higher absorption at a characteristic frequency. Experiment and theory on the vortex sheet are in good agreement
Black-Hole and White-Hole Horizons in Superfluids
Volovik, G E
2006-01-01
Ripplons -- gravity-capillary waves on the free surface of a liquid or at the interfaces between two superfluids -- are the most favourable excitations for simulation of the general-relativistic effects related to horizons and ergoregions. The white-hole horizon for the ``relativistic'' ripplons at the surface of the shallow liquid is easily simulated using the kitchen-bath hydraulic jump. The same white-hole horizon is observed in quantum liquid -- superfluid 4He. The ergoregion for the ``non-relativistic'' ripplons is generated in the experiments with two sliding 3He superfluids. The common property experienced by all these ripplons is the Miles instability inside the ergoregion or horizon. Because of the universality of the Miles instability, one may expect that it could take place inside the horizon of the astrophysical black holes, if there is a preferred reference frame which comes from the trans-Planckian physics. If this is the case, the black hole would evapotate much faster than due to the Hawking r...
Thermal resistance at a solid/superfluid helium interface
Ramiere, Aymeric; Volz, Sebastian; Amrit, Jay
2016-05-01
Kapitza in 1941 discovered that heat flowing across a solid in contact with superfluid helium (related to all interfaces at all temperatures, given the dependence of heat transmission on the acoustic impedance (sound velocity × density) of each medium. For the solid/superfluid interface, the measured transmission of heat is almost one hundred times stronger than the Khalatnikov prediction. This discrepancy could be intuitively attributed to diffuse scattering of phonons at the interface but, despite several attempts, a detailed quantitative comparison between theoretical and experimental findings to explain the occurrence of scattering and its contribution to heat transmission had been lacking. Here we show that when the thermal wavelength λ of phonons of the less dense medium (liquid 4He) becomes comparable to the r.m.s. surface roughness σ, the heat flux crossing the interface is amplified; in particular when σ ~ 0.33λ, a spatial resonant mechanism occurs, as proposed by Adamenko and Fuks. We used a silicon single crystal whose surface roughness was controlled and characterized. The thermal boundary resistance measurements were performed from 0.4 to 2 K at different superfluid pressures ranging from saturated vapour pressure (SVP) to above 4He solidification, to eliminate all hypothetical artefact mechanisms. Our results demonstrate the physical conditions necessary for resonant phonon scattering to occur at all interfaces, and therefore constitute a benchmark in the design of nanoscale devices for heat monitoring.
Landau Theory of Helical Fermi Liquids.
Lundgren, Rex; Maciejko, Joseph
2015-08-01
We construct a phenomenological Landau theory for the two-dimensional helical Fermi liquid found on the surface of a three-dimensional time-reversal invariant topological insulator. In the presence of rotation symmetry, interactions between quasiparticles are described by ten independent Landau parameters per angular momentum channel, by contrast with the two (symmetric and antisymmetric) Landau parameters for a conventional spin-degenerate Fermi liquid. We project quasiparticle states onto the Fermi surface and obtain an effectively spinless, projected Landau theory with a single projected Landau parameter per angular momentum channel that captures the spin-momentum locking or nontrivial Berry phase of the Fermi surface. As a result of this nontrivial Berry phase, projection to the Fermi surface can increase or lower the angular momentum of the quasiparticle interactions. We derive equilibrium properties, criteria for Fermi surface instabilities, and collective mode dispersions in terms of the projected Landau parameters. We briefly discuss experimental means of measuring projected Landau parameters.
Emergent physics: Fermi point scenario
Volovik, G E
2008-01-01
The Fermi-point scenario of emergent gravity has the following consequences: gravity emerges together with fermionic and bosonic matter; emergent fermionic matter consists of massless Weyl fermions; emergent bosonic matter consists of gauge fields; Lorentz symmetry persists well above the Planck energy; space-time is naturally 4-dimensional; Universe is naturally flat; cosmological constant is naturally small or zero; underlying physics is based on discrete symmetries; `quantum gravity' cannot be obtained by quantization of Einstein equations; there is no contradiction between quantum mechanics and gravity; etc.
Bioterrorism and the Fermi Paradox
Cooper, Joshua
2013-04-01
We proffer a contemporary solution to the so-called Fermi Paradox, which is concerned with conflict between Copernicanism and the apparent paucity of evidence for intelligent alien civilizations. In particular, we argue that every community of organisms that reaches its space-faring age will (1) almost immediately use its rocket-building computers to reverse-engineer its genetic chemistry and (2) self-destruct when some individual uses said technology to design an omnicidal pathogen. We discuss some of the possible approaches to prevention with regard to Homo sapiens' vulnerability to bioterrorism, particularly on a short-term basis.
Experimental study of nanofluidics and phase transitions of normal and superfluid 4He
Velasco, Angel Enriques
flows. The second portion of this thesis presents the experimental results on the 2D superfluid phase diagram of helium on alkali metals. A simultaneous measurement of the total and superfluid film thickness were done with a combination of a photoelastic modulated ellipsometer and a quartz crystal microbalance. Sodium and lithium films were ablated onto the gold electrodes of a QCM at 4 K. The adsorption isotherms of 4He were controlled by increasing the chemical potential from vacuum to bulk coexistence. The behavior of helium films are dependent on the strength of the substrate potential. For strong potentials such as gold and graphite the initial layers solidify while for the weaker substrate cesium films do not grow. Lithium and sodium were predicted to be intermediate in strength and for a mobile, helium film to directly grow on its surface. In addition to the superfluid transition a liquid/vapor coexistence region was predicted to also exist directly on an intermediate strength substrate. Our simultaneous QCM and ellipsometer measurements showed no clear evidence for the coexistence of 2D liquid/vapor on sodium or lithium. The gold electrodes which supported the alkali films were suspected of being too rough. We then ablated sodium on atomically smooth HOPG and the ellipsometer measured a discontinuous step at 0.5 K implying a liquid/vapor coexistence which decreased in size until it disappeared at the critical temperature T≈0.7 K. This is the first experimental evidence of a 2D critical point on sodium. (Abstract shortened by UMI.).
Hayward, A. L. C.; Martin, A. M.
2016-02-01
We investigate the ground-state behavior of Jaynes-Cummings-Hubbard lattices in the presence of a synthetic magnetic field, via a Gutzwiller ansatz. Specifically, we study the superfluid-Mott transition and the formation of vortex lattices in the superfluid regime. We find a suppression of the superfluid fraction due to the frustration induced by the incommensurate magnetic and spacial lattice lengths. We also predict the formation of triangular vortex lattices inside the superfluid regime.
Relativistic Thomas-Fermi Model at Finite Temperatures
Bertone, Gianfranco
2002-01-01
We briefly review the Thomas-Fermi statistical model of atoms in the classical non-relativistic formulation and in the generalised finite-nucleus relativistic formulation. We then discuss the classical generalisation of the model to finite temperatures in the non-relativistic approximation and present a new relativistic model at finite temperatures, investigating how to recover the existing theory in the limit of low temperatures. This work is intended to be a propedeutical study for the evaluation of equilibrium configurations of relativistic ``hot'' white dwarfs.
Fermi liquids near Pomeranchuk instabilities
Reidy, Kelly Elizabeth
We explore features of a Fermi liquid near generalized Pomeranchuk instabilities (PIs) starting from both ordered and disordered phases. These PIs can be viewed as quantum critical points in parameter space, and thus provide an alternate viewpoint on quantum criticality. We employ the tractable crossing symmetric equation method, which is a non-perturbative diagrammatic many-particle method used to calculate the Fermi liquid interaction functions and scattering amplitudes. We consider both repulsive and attractive underlying interactions of arbitrary strength. Starting from a ferromagnetically ordered ground state, we find that upon approach to an s-wave instability in one critical channel, the system simultaneously approaches instabilities in non-critical channels. We study origins and implications of this "quantum multicriticality". We also find that a nematic (non-s-wave) instability precedes and is driven by Pomeranchuk instabilities in both the s-wave spin and density channels. Finally, we discuss potential applications of our results to physical systems, such as ferromagnetic superconductors.
Vortex-Kink Interaction and Capillary Waves in a Vector Superfluid
Nepomnyashchy, A A
1996-01-01
Interaction of a vortex in a circularly polarized superfluid component of a 2d complex vector field with the phase boundary between superfluid phases with opposite signs of polarization leads to a resonant excitation of a ``capillary'' wave on the boundary. This leads to energy losses by the vortex--image pair that has to cause its eventual annihilation.
Solitons in superfluid (He-3)-A - Bound states on domain walls
Ho, T. L.; Fulco, J. R.; Schrieffer, J. R.; Wilczek, F.
1984-01-01
The effects of solitons on the spectrum of fermion excitations in superfluid (He-3)-A are investigated. It is found that there is a two-dimensional manifold of bound states with energies within the gap of the bulk superfluid. The bound-state spectrum lacks inversion symmetry parallel to the wall.
Vacuum alignment and radiatively induced Fermi scale
Alanne, Tommi
2016-01-01
We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges radiatively. This scenario provides an interesting link between the unification and Fermi scale physics.
Towards laboratory detection of topological vortices in superfluid phases of QCD
Das, Arpan; De, Somnath; Srivastava, Ajit M
2016-01-01
Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from glitches in pulsars. One also expects that topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. We investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions. Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give unambiguous signal for superfluid transition resulting in vortices, allowing for check of defect formation theories in a relativistic quantum field theory system.
1997-01-01
Lectures on "Superfluidity in Helium 3" : Prof. R. C. Richardson : "The Discovery of Superfluid 3He" Prof. D. D. Osheroff : "Superfluidity in 3He: The Discovery Through the Eyes of a Graduate Student" Prof. D. M. Lee : "Significance of Superfluid Helium 3 Research to Other Branches of Science"
Bose-Einstein Condensate of Trimers Dressed by Atom-Dimer Cooper Pairs
Mackie, M; Dannenberg, O; Mackie, Matt; Piilo, Jyrki; Dannenberg, Olavi
2004-01-01
We theoretically examine the neutral atom-molecule analogue of the anomalous quantum correlations between degenerate electrons, i.e., Cooper pairs, that are responsible for superconductivity. Based on rogue dissociation of triatomic molecules (trimers) into opposite-momentum pairs of atoms and diatomic molecules (dimers) via a photoassociation or Feshbach resonance, we find a superfluid transition to a Bose-Einstein condensate of trimers dressed by atom-dimer Cooper pairs, at a critical temperature in reach of present ultracold technology.
Vortex clusters in superfluid 3He-B
International Nuclear Information System (INIS)
A unique property of 3He-B is vortex-free rotation, due to a high nucleation threshold of the singular vortices. In contrast to other superfluids, rotational states consisting of a vortex cluster surrounded by vortex-free counterflow form spontaneously and can also be prepared with a fixed number of vortices. The clusters can be analyzed by means of NMR measurements with high precision. These techniques have been exploited to study rotational states in the presence of different phase boundaries. (orig.)
Transition from Quantum to Classical Information in a Superfluid
Granik, A
2003-01-01
Whereas the entropy of any deterministic classical system described by a principle of least action is zero, one can assign a "carry quantum information" to quantum mechanical degree of freedom equal to Hausdorff area of the deviation from a classical path. This raises the question whether superfluids have a quantum information. We show that in general the transition from the classical to quantum behavior depends on the probing length scale, and occurs for microscopic length scales, except when the interactions between the particles are very weak. This transition explains why, on macroscopic length scales, physics is described by classical equations.
Superfluid Response and the Neutrino Emissivity of Neutron Matter
Steiner, Andrew W.; Reddy, Sanjay
2008-01-01
{We calculate the neutrino emissivity of superfluid neutron matter in the inner crust of neutron stars. We find that neutrino emission due to fluctuations resulting from the formation of Cooper pairs at finite temperature is highly suppressed in non-relativistic systems. This suppression of the pair breaking emissivity in a simplified model of neutron matter with interactions that conserve spin is of the order of $v_F^4$ for density fluctuations and $v_F^2$ for spin fluctuations, where $v_F$ ...
Fractional excitation in one-dimensional two species fermionic superfluids
Ye, Fei
2015-01-01
We study one-dimensional two-species fermionic superfluids with order parameter twisted by an angle $\\varphi$ at the two ends. By solving the corresponding Bogoliubov-de-Gennes equation, we obtain the U(1) soliton state which turns out to carry $\\varphi S/(2\\pi)$ spin, where $S$ is the spin of single fermion. For $Z_2$ soliton with $\\varphi=\\pi$, the localized state carries only $1/2$ of a single fermion spin. To conserve the total spin of the system as an integal multiple of $S$, we demonstr...
On the Detectability of Light Dark Matter with Superfluid Helium
Schutz, Katelin
2016-01-01
We show that a two-excitation process in superfluid helium, combined with sensitivity to meV energy depositions, can probe dark matter down to the ~keV warm dark matter mass limit. This mass reach is three orders of magnitude below what can be probed with ordinary nuclear recoils in helium at the same energy resolution. The kinematics of the process requires the two athermal excitations to have nearly equal and opposite momentum, potentially providing a built-in coincidence mechanism for controlling backgrounds.
Dynamical density fluctuations of superfluids near the critical velocity.
Kato, Yusuke; Watabe, Shohei
2010-07-16
We propose a stability criterion of superfluids in condensed Bose-Einstein systems, which incorporates the spectral function or the autocorrelation function of the local density. Within the Gross-Pitaevskii-Bogoliubov theory, we demonstrate the validity of our criterion for the soliton-emission instability, with use of explicit forms of zero modes of the Bogoliubov equation and a dynamical scaling near the saddle-node bifurcation. We also show that the criterion is applicable to the Landau phonon instability and the Landau roton instability within the single-mode approximation.
On the Detectability of Light Dark Matter with Superfluid Helium
Schutz, Katelin; Zurek, Kathryn M.
2016-01-01
We show that a two-excitation process in superfluid helium, combined with sensitivity to meV energy depositions, can probe dark matter down to the ~keV warm dark matter mass limit. This mass reach is three orders of magnitude below what can be probed with ordinary nuclear recoils in helium at the same energy resolution. The kinematics of the process requires the two athermal excitations to have nearly equal and opposite momentum, potentially providing a built-in coincidence mechanism for cont...
Topological Effects on Quantum Phase Slips in Superfluid Spin Transport
Kim, Se Kwon; Tserkovnyak, Yaroslav
2016-03-01
We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal magnetoresistance.
Vortex in holographic two-band superfluid/superconductor
Wu, Mu-Sheng; Zhang, Hai-Qing
2015-01-01
We construct numerically static vortex solutions in a holographic model of two-band superconductor with an interband Josephson coupling in both the superfluid and superconductor regime. We investigate the effect of the interband coupling on the order parameter of each superconducting band, and we find that it has different effects on the two bands. We compute the free energy, critical magnetic field, magnetic penetration length and coherence lengths for the two bands, and we study their dependence on the interband coupling and temperature. Interestingly, we find that the coherence lengths of the two bands are close to identical.
International Nuclear Information System (INIS)
We theoretically investigate quantum phases and transport dynamics of ultracold atoms trapped in an optical lattice in the presence of effective multi-body interaction. When a harmonic external potential is added, several interesting phenomena are revealed, such as the broadening and the emergence of a central insulator plateau and the phase transition between superfluid and Mott insulator phase. We also study the transport of the system which runs across the superfluid—insulator transition after ramping up the lattice, and predict a slower relaxation which is attributed to the influence of the multi-body interaction on the mass transport
Observation of relativistic antihydrogen atoms
Blanford, Glenn Delfosse, Jr.
1997-09-01
An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e+e/sp- pair creation near a nucleus with the e+ being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.
Radio core dominance of Fermi blazars
Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He
2016-07-01
During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are ext.} = 0.70 (a photon spectral index of α_{γ}^{ph}|_{ext.} = 1.70). Some discussions are also presented.
Stiles, Paul L; Miller, Roger E
2007-08-01
High-resolution infrared spectroscopy has been used to determine the structures, C-H stretching frequencies, and dipole moments of the HCN-Agn (n = 1-3) complexes formed in superfluid helium droplets. The HCN-Ag4 cluster was tentatively assigned based upon pick-up cell pressure dependencies and harmonic vibrational shift calculations. Ab initio and density functional theory calculations were used in conjunction with the high-resolution spectra to analyze the bonding nature of each cluster. All monoligated species reported here are bound through the nitrogen end of the HCN molecule. The HCN-Agn complexes are structurally similar to the previously reported HCN-Cun clusters, with the exception of the HCN-Ag binary complex. Although the interaction between the HCN and the Agn clusters follows the same trends as the HCN-Cun clusters, the more diffuse nature of the electrons surrounding the silver atoms results in a much weaker interaction.
NASA'S Chandra Finds Superfluid in Neutron Star's Core
2011-02-01
NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and
Stabilization of Multi-electron Bubbles in Superfluid Helium
International Nuclear Information System (INIS)
Multielectron bubbles (MEBs) in liquid helium were first observed in the late 1970s, but their properties have never been explored experimentally due to their short lifetimes and the difficulty to localize them. We report the observation of long- lived MEBs in a novel cell filled with superfluid helium at static negative pressures. MEBs were extracted from the electron filled vapor sheath of a heated filament loop embedded in the superfluid helium and observed by high-speed photography. MEBs are 2D electron gases on the 3D surface of hollow helium bubbles. Diameters can range from nanometers to millimeters, depending on the number of enclosed electrons. Electrons move in angular momentum states; deformations of the surface are called spherical ripplons. The attractive electron-ripplon interaction leads to an unusual form of superconductivity. If they can be compressed, Wigner crystallization and quantum melting can be observed, as well as a new phase for localization called the ripplo- polaron lattice. MEBs are unstable to tunneling discharge when pressed against a surface. Just as Bose gases are captured in a trap for study, MEBs must also be localized away from walls. We shall discuss methods of capturing them in an electromagnetic trap embedded in the liquid helium
NASA'S Chandra Finds Superfluid in Neutron Star's Core
2011-02-01
NASA's Chandra X-ray Observatory has discovered the first direct evidence for a superfluid, a bizarre, friction-free state of matter, at the core of a neutron star. Superfluids created in laboratories on Earth exhibit remarkable properties, such as the ability to climb upward and escape airtight containers. The finding has important implications for understanding nuclear interactions in matter at the highest known densities. Neutron stars contain the densest known matter that is directly observable. One teaspoon of neutron star material weighs six billion tons. The pressure in the star's core is so high that most of the charged particles, electrons and protons, merge resulting in a star composed mostly of uncharged particles called neutrons. Two independent research teams studied the supernova remnant Cassiopeia A, or Cas A for short, the remains of a massive star 11,000 light years away that would have appeared to explode about 330 years ago as observed from Earth. Chandra data found a rapid decline in the temperature of the ultra-dense neutron star that remained after the supernova, showing that it had cooled by about four percent over a 10-year period. "This drop in temperature, although it sounds small, was really dramatic and surprising to see," said Dany Page of the National Autonomous University in Mexico, leader of a team with a paper published in the February 25, 2011 issue of the journal Physical Review Letters. "This means that something unusual is happening within this neutron star." Superfluids containing charged particles are also superconductors, meaning they act as perfect electrical conductors and never lose energy. The new results strongly suggest that the remaining protons in the star's core are in a superfluid state and, because they carry a charge, also form a superconductor. "The rapid cooling in Cas A's neutron star, seen with Chandra, is the first direct evidence that the cores of these neutron stars are, in fact, made of superfluid and
Coherent magneto-elastic oscillations in superfluid magnetars
Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A.; Müller, Ewald
2016-08-01
We study the effect of superfluidity on torsional oscillations of highly magnetised neutron stars (magnetars) with a microphysical equation of state by means of two-dimensional, magneto-hydrodynamical-elastic simulations. The superfluid properties of the neutrons in the neutron star core are treated in a parametric way in which we effectively decouple part of the core matter from the oscillations. Our simulations confirm the existence of two groups of oscillations, namely continuum oscillations that are confined to the neutron star core and are of Alfvénic character, and global oscillations with constant phase and that are of mixed magneto-elastic type. The latter might explain the quasi-periodic oscillations observed in magnetar giant flares, since they do not suffer from the additional damping mechanism due to phase mixing, contrary to what happens for continuum oscillations. However, we cannot prove rigorously that the coherent oscillations with constant phase are normal modes. Moreover, we find no crustal shear modes for the magnetic field strengths typical for magnetars. We provide fits to our numerical simulations that give the oscillation frequencies as functions of magnetic field strength and proton fraction in the core.
Quantum chaos on a critical Fermi surface
Patel, Aavishkar A
2016-01-01
We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of $N$ species of fermions at non-zero density coupled to a $U(1)$ gauge field in two spatial dimensions, and determine the Lyapunov rate and the butterfly velocity in an extended RPA approximation. The thermal diffusivity is found to be universally related to these chaos parameters, i.e. the relationship is independent of $N$, the gauge coupling constant, the Fermi velocity, the Fermi surface curvature, and high energy details.
Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets
International Nuclear Information System (INIS)
We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs+ is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs+-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 106 helium atoms when the source temperature is between 14 K and 17 K
Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets
Energy Technology Data Exchange (ETDEWEB)
Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)
2015-07-28
We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.
String Theory Based Predictions for Novel Collective Modes in Strongly Interacting Fermi Gases
Bantilan, H; Ishii, T; Lewis, W E; Romatschke, P
2016-01-01
Very different strongly interacting quantum systems such as Fermi gases, quark-gluon plasmas formed in high energy ion collisions and black holes studied theoretically in string theory are known to exhibit quantitatively similar damping of hydrodynamic modes. It is not known if such similarities extend beyond the hydrodynamic limit. Do non-hydrodynamic collective modes in Fermi gases with strong interactions also match those from string theory calculations? In order to answer this question, we use calculations based on string theory to make predictions for novel types of modes outside the hydrodynamic regime in trapped Fermi gases. These predictions are amenable to direct testing with current state-of-the-art cold atom experiments.
Fermi liquid-to-Bose condensate crossover in a two-dimensional ultracold gas experiment
Barmashova, T. V.; Mart'yanov, K. A.; Makhalov, V. B.; Turlapov, A. V.
2016-02-01
By controling interparticle interactions, it is possible to transform a fermionic system into a bosonic system and vice versa, while preserving quantum degeneracy. Evidence of such a transformation may be found by monitoring the pressure and interference. The Fermi pressure is an indication of the fermion?ic character of a system, while the interference implies a nonzero order parameter and Bose condensation. Lowering from three to two spatial dimensions introduces new physics and makes the system more difficult to describe due to the increased fluctuations and the reduced applicability of mean field methods. An experiment with a two-dimensional ultracold atomic gas shows a crossover between the Bose and Fermi limits, as evident from the value of pressure and from the interference pattern, and provides data to test models of 2D Fermi and Bose systems, including the most-difficult-to-model strongly coupled systems.
Geometric Origin of Superfluidity in the Lieb-Lattice Flat Band
Julku, Aleksi; Peotta, Sebastiano; Vanhala, Tuomas I.; Kim, Dong-Hee; Törmä, Päivi
2016-07-01
The ground state and transport properties of the Lieb lattice flat band in the presence of an attractive Hubbard interaction are considered. It is shown that the superfluid weight can be large even for an isolated and strictly flat band. Moreover the superfluid weight is proportional to the interaction strength and to the quantum metric, a band structure quantity derived solely from the flat-band Bloch functions. These predictions are amenable to verification with ultracold gases and may explain the anomalous behavior of the superfluid weight of high-Tc superconductors.
Formation of a Mesa Shaped Phonon Pulse in Superfluid 4He
Adamenko, I. N.; Nemchenko, K. E.; Slipko, V. A.
2010-05-01
We present a theory for the formation of a mesa shaped phonon pulse in superfluid 4He. Starting from the hydrodynamic equations of superfluid helium, we obtain the system of equations which describe the evolution of strongly anisotropic phonon systems. Such systems can be created experimentally. The solution of the equations are simple waves, which correspond to second sound in the moving phonon pulse. Using these exact solutions, we describe the expansion of phonon pulses in superfluid helium at zero temperature. This theory gives an explanation for the mesa shape observed in the measured phonon angular distributions. Almost all dependencies of the mesa shape on the system parameters can be qualitatively understood.
Competition between the superfluidity and the slippage of 4He films adsorbed on porous gold
International Nuclear Information System (INIS)
We have carried out QCM measurements for 4He films adsorbed on porous gold in the crossover region between the superfluidity and slippage. In relative low areal densities, the resonance frequency increases gradually below TS due to the slippage of solid film, while the superfluid onset is observed in high areal densities. In the crossover region, we observed a peculiar behavior: The increase in the resonance frequency below TS is suddenly suppressed at a certain temperature TD. From these observations, it is concluded that the superfluidity and the slippage of 4He competes with each other.
Competition between the superfluidity and the slippage of {sup 4}He films adsorbed on porous gold
Energy Technology Data Exchange (ETDEWEB)
Ideura, K; Kobayashi, H; Taniguchi, J; Suzuki, M [Department of Applied Physics and Chimistry, University of Eletro-Communications, Chofu, Tokyo 182-8585 (Japan); Hosomi, N [Department of Physics, Aichi University of Education, Kariya, Aichi 448-8542 (Japan)], E-mail: ide@phys.uec.ac.jp
2009-02-01
We have carried out QCM measurements for {sup 4}He films adsorbed on porous gold in the crossover region between the superfluidity and slippage. In relative low areal densities, the resonance frequency increases gradually below T{sub S} due to the slippage of solid film, while the superfluid onset is observed in high areal densities. In the crossover region, we observed a peculiar behavior: The increase in the resonance frequency below T{sub S} is suddenly suppressed at a certain temperature T{sub D}. From these observations, it is concluded that the superfluidity and the slippage of {sup 4}He competes with each other.
Anisotropic pair superfluidity of trapped two-component Bose gases in an optical lattice
Li, Yongqiang; He, Liang; Hofstetter, Walter
2013-09-01
We theoretically investigate the pair-superfluid phase of two-component ultracold gases with attractive inter-species interactions in an optical lattice. We establish the phase diagram for filling n = 1 at zero and finite temperatures, by applying bosonic dynamical mean-field theory, and observe stable pair-superfluid and charge-density wave quantum phases for asymmetric hopping of the two species. While the pair superfluid is found to be robust in the presence of a harmonic trap, we observe that it is destroyed already by a small population imbalance of the two species.
Dynamics of quantized vortices in applied flow in superfluid 3He-B
Graaf, Robert Jan de
2011-01-01
This thesis is mostly focussed on studies of dynamics of superfluid ³He-B at temperatures below 0.4Tc where the flow of quantized vortex lines was expected to be generally turbulent. The damping in vortex motion changes many orders of magnitude in a small temperature interval making vortices in superfluids an ideal tool to study turbulence. The quantum nature of vortices in superfluids allows for exotic hydrodynamics that does not exist in classical fluids. Earlier research had showed that vo...
Decoupling between first sound and second sound in $^3$He - superfluid $^4$He mixtures
Riekki, T. S.; Manninen, M. S.; Tuoriniemi, J. T.
2016-01-01
Bulk superfluid helium supports two sound modes: first sound is an ordinary pressure wave, while second sound is a temperature wave, unique to inviscid superfluid systems. These sound modes do not usually exist independently, but rather variations in pressure are accompanied by variations in temperature, and vice versa. We studied the coupling between first and second sound in dilute $^3$He - superfluid $^4$He mixtures, between 1.6 K and 2.2 K, at $^3$He concentrations ranging from 0 to 11 %,...
Radiatively induced Fermi scale and unification
Alanne, Tommi
2016-01-01
We propose a framework, where the hierarchy between the unification and the Fermi scale emerges radiatively. This work tackles the long-standing question about the connection between the low Fermi scale and a more fundamental scale of Nature. As a concrete example, we study a Pati-Salam-type unification of Elementary-Goldstone-Higgs scenario, where the Standard Model scalar sector is replaced by an SU(4)-symmetric one, and the observed Higgs particle is an elementary pseudo-Goldstone boson. We construct a concrete model where the unification scale is fixed to a phenomenologically viable value, while the Fermi scale is generated radiatively. This scenario provides an interesting link between the unification and Fermi scale physics, and opens up prospects for exploring a wide variety of open problems in particle physics, ranging from neutrinos to cosmic inflation.
Gamma-Ray Astrophysics NSSTC Fermi GBM
National Aeronautics and Space Administration — The Fermi Gamma-Ray Burst Monitor (GBM) is not a pointed or imaging instrument. To determine fluxes for known sources, we measure the change in the count rate...
Fermi breakup and the statistical multifragmentation model
Energy Technology Data Exchange (ETDEWEB)
Carlson, B.V., E-mail: brett@ita.br [Departamento de Fisica, Instituto Tecnologico de Aeronautica - CTA, 12228-900 Sao Jose dos Campos (Brazil); Donangelo, R. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, CP 68528, 21941-972, Rio de Janeiro (Brazil); Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, Julio Herrera y Reissig 565, 11.300 Montevideo (Uruguay); Souza, S.R. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Cidade Universitaria, CP 68528, 21941-972, Rio de Janeiro (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, CP 15051, 91501-970, Porto Alegre (Brazil); Lynch, W.G.; Steiner, A.W.; Tsang, M.B. [Joint Institute for Nuclear Astrophysics, National Superconducting Cyclotron Laboratory and the Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)
2012-02-15
We demonstrate the equivalence of a generalized Fermi breakup model, in which densities of excited states are taken into account, to the microcanonical statistical multifragmentation model used to describe the disintegration of highly excited fragments of nuclear reactions. We argue that such a model better fulfills the hypothesis of statistical equilibrium than the Fermi breakup model generally used to describe statistical disintegration of light mass nuclei.
Effective Field Theory for Dilute Fermi Systems
Hammer, H. -W.; Furnstahl, R. J.
2000-01-01
The virtues of an effective field theory (EFT) approach to many-body problems are illustrated by deriving the expansion for the energy of an homogeneous, interacting Fermi gas at low density and zero temperature. A renormalization scheme based on dimensional regularization with minimal subtraction leads to a more transparent power-counting procedure and diagrammatic expansion than conventional many-body approaches. Coefficients of terms in the expansion with logarithms of the Fermi momentum a...